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Personal preferences in networks

Olena Orlova ∗

Abstract

We consider a network of players endowed with individual preferences and involved
in interactions of various patterns. We show that their ability to make choices ac-
cording to their preferences is limited, in a specific way, by their involvement in the
network. The earlier literature demonstrated the conflict between individuality and
peer pressure. We show that such a conflict is also present in contexts in which players
do not necessarily aim at conformity with their peers. We investigate the consequences
of preference heterogeneity for different interaction patterns, characterize correspond-
ing equilibria and outline the class of games in which following own preferences is the
unique Nash equilibrium. The introduction of personal preferences changes equilibrium
outcomes in a non-trivial fashion: some equilibria disappear, while other, qualitatively
new, appear. These results are robust to both independent and interdependent rela-
tionship between personal and social utility components.

1 Introduction

It is quite common for economic decisions of an individual to be influenced not only by her
personal preferences, but also by analogous decisions of her social environment. While the
first factor is classical in economic theory, the importance of the second one was recognized
more recently and modeled within one of the branches of network economics – games on
networks.

In the last decade the economic networks literature has undertaken the in-depth study
of how social networks influence individuals’ decisions.1 However, in order to investigate the
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1The latest survey is Bramoullé and Kranton (2016). See also the seminal work of Galeotti et al. (2010)
or an extensive survey of Jackson and Zenou (2014).
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role of a network in shaping individual behavior, personal preferences are usually removed
from the analyses. In most of the literature, the only dimension of heterogeneity between
players is their structural position in the network, since such an approach allows to isolate the
network effects.2 In this paper, heterogeneity between players stems both from their network
positions and from their personal preferences over action choices in a network game.

The introduction of personal preferences into analysis of games played on networks is
important not only for the reason of increasing heterogeneity between players. More im-
portantly, it allows to integrate into one model two utility sources that determine players’
decisions in their network interactions. The first utility component – personal utility – origi-
nates from the concordance of choices with personal preferences. The second one – social, or
network utility – owes its origins to interactions with neighbors and depends on the nature
of a particular game. The aim of this paper is to study the specific interplay between personal
preferences and various types of interactions in a network.

For this purpose, we consider a variety of games with strategic complements or substitutes
and analyze network outcomes in these games when players have heterogeneous preferences
over actions.3 Then we compare these network outcomes to the corresponding ones in the
absense of personal preferences. In our baseline model, the two utility components – personal
and social – are interdependent, which represents a departure from the traditional assump-
tion.4 We then consider an alternative model specification with independent (additively
separable) utility components and compare the results in the two models.

It should be justly mentioned that this paper is not the first attempt in the literature
on games on networks to account for individual preferences. Hernández et al. (2013) in-
troduce preferences over actions in the binary-action setting for two specific games, where
network utility arises either from coordination with neighbors (action matching) or from anti-
coordination (action mismatching). In the follow-up paper, Hernández et al. (2017), the au-
thors extend the analysis for the case of coordination and present some existence/uniqueness
conditions for different types of equilibria. Two experimental papers, Ellwardt et al. (2016)
and Goyal et al. (2017), test the theoretical predictions for the pure coordination case, adding

2In theoretical literature, exceptions usually concern models of network formation, which introduce
heterogeneity in the cost of interaction (Golub and Livne (2011)) or in benefits from socialization (Currarini
et al. (2009), Cabrales et al. (2011)). In empirical applications there are more models with heterogeneity in
players’ characteristics: see e.g. Calvó-Armengol et al. (2009) for education, or Patacchini and Zenou (2012)
for crime.

3In a game with strategic complements, a player is more inclined to choose a particular action as more
of her network neighbors choose it. For strategic substitutes the opposite holds: the less chosen by the
neighbors the more attractive an action is for a player. Typical examples of network interactions with
strategic complements include peer pressure or buying compatible products, while strategic substitutes are
usually used to model local public good provision, costly experimentation or competition for a certain
resource.

4With a very few exceptions, additive separability is a typical assumption in modeling the relationship
between within-group and across-group discordance (or more specifically, between the deviation from a
personal prior and the deviation from social expectations or social average). This is the case in the models
of opinion formation in networks (DeGroot (1974), Golub and Jackson (2010), among others), as well as
in the literature on evolution of cultural traits (for example, Kuran and Sandholm (2008)) or dynamics of
social norms (Olcina et al. (2018), Della Lena and Dindo (2018)).
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to the game the network formation stage.
We extend the framework of Hernández et al. (2013) and analyze two different model

specifications for a wide range of games on a fixed, exogenous network. We consider games
that allow players to benefit from their network interactions regardless of whether their
action choices match those of their neighbors. We call these games matching (mismatching)
games with tolerance.

As an illustration let us consider the following technology adoption scenario. Let players
– firms or individuals – be connected in a network and run two-party projects with their
network partners. Each player has to make a choice between two available technologies and
to use the chosen technology in all her projects. First, assume that an important (though
not decisive) factor for project profitability is compatibility of technologies of the parties
involved in a project. If the parties use the same technology, they get higher payoffs in this
project, while if they use different technologies, they get lower (though still positive) payoffs.
This positivity of payoffs despite difference in technologies captures what we call tolerance
in this matching game. Next, consider the contrary assumption and let the technologies
be complementary. Now if the parties in a project use the same technology, they get lower
(though still positive) payoffs than if they have both technologies at their disposal. This is an
example of a mismatching game with tolerance. Finally, every player might have a personal
preference over available technologies and get an additional utility payoff if she adopts her
preferred technology.

Further examples of matching games with tolerance and personal preferences include
deviant behavior among teenagers, a decision to persue or not higher education, a school
choice, or a choice of a place to live. Mismatching games with tolerance appear in contexts
like attending overlapping information events, buying complementary goods or developing
complementary skills, or whenever there are gains from variety or differentiation.

Thus, our setting is the following. Players connected in a network simultaneously choose
between two alternative actions, over which they have individual preferences. These prefer-
ences are exogenously given and stable over time, and the players have complete information
about the network and the distribution of preferences. Action choices of a player’s network
neighbors influence her own decision in a particular way that depends on the nature of in-
teractions, that is, on a specific game. The game is either matching or mismatching game
with a given degree of tolerance and the given strength of personal preferences. We analyze
Nash equilibrium sets of such network games with heterogeneous preferences, and in partic-
ular, existence of consensus equilibria (symmetric equilibria, in terms of the action choice),
disagreement (asymmetric) equilibria and so-called fully-satisfying equilibria (in which all
players satisfy their personal preferences).

As it has been already specified, in our framework players’ utility comes from two dif-
ferent sources that, generally speaking, can be independent or interdependent. The two
model specifications correspond to different situations and, depending on the context, one
or another can be more favorable. The interdependent one (multiplicative utility function)
implies that the utility bonus for choosing own preferred action accompanies each connection
of a player. In the above technology adoption example, if an agent adopts her preferred tech-
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nology, she receives an additional payoff for every project in which she uses this technology.
In the independent specification (additive utility function), the utility bonus for choosing
the preferred alternative does not depend on the degree of connectivity of a player, that
is, a player enjoys the fact of being able to satisfy her preference separately from matching
or mismatching with her neighbors. In our technology adoption example, this specification
would be appropriate if the technologies were intended for individual use as well as for the
two-party projects.

Our results show that the whole range of games that we consider splits into three qual-
itatively different classes, which differ in best response strategies and thus in equilibria
outcomes. It appears that there exists a nonempty class, including both games of strate-
gic complements and those of strategic substitutes, for which the only individually rational
strategy is to follow own preference. This result is robust to both additive and multiplicative
relationship between the two utility components.

Furthermore, we derive necessary and sufficient conditions for existence of a fully satisfy-
ing equilibrium. These conditions are completely determined by the game, network structure
and the distribution of preferences over the network.

The rest of the paper is organized as follows. Section 2 presents the model. In Section 3
the best response functions of players are derived for different classes of games. Equilibrium
analysis and some illustrations of the results for standard network structures are contained
in Section 4. Section 5 investigates the impact of preference heterogeneity by comparing
our framework with the no-preference framework, and then discusses an alternative, additive
specification of the utility function. Section 6 briefly concludes and appendix contains proofs
of the results.

2 The model

2.1 Matching and mismatching games with tolerance

Let G be a network (graph) with the set of nodes N = {1, 2, ...n} and links represented by an
adjacency matrix. We consider undirected unweighted networks, i.e. the adjacency matrix
is symmetric with entries Gij ∈ {0, 1} for all i, j ∈ N (with 1 implying a link between i and
j, and 0 implying no link). We assume that Gii = 0 for all i ∈ N .

For a node i ∈ N , we denote the set of i’s neighbors in G by Ni(G) = {j ∈ N | Gij = 1}
and the cardinality of this set, called also i’s degree, by di.

Given a network G, we let the set of nodes N = {1, 2, ...n} be the set of players and
X = {0, 1} be the action set (the same for all players). For a player i ∈ N , xi ∈ X denotes
i’s action in an action profile x̄ = (x1, ..., xn) and x̄Ni(G) ∈ Xdi denotes the vector of actions
of i’s neighbors in G.

The payoff for a player i with the set of neighbors Ni(G) is defined as follows:

ui(xi, x̄Ni(G)) = δ
∑

j∈Ni(G)

1{xi=xj} + (1− δ)
∑

j∈Ni(G)

1{xi 6=xj},
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where δ ∈ [0; 1]. That is, the payoff of a player depends on her own action and the actions
of her neighbors, and the game is semi-anonymous in the sense that only the number of
neighbors choosing one or another action matters but not their identity.5

The parameter δ reflects relative advantage of matching versus mismatching of own action
with the actions of neighbors. If δ = 1 it is a pure coordination game, where players
benefit exclusively from action matches with their neighbors, while if δ = 0 it is a pure anti-
coordination game. If δ ∈ (0; 1) players benefit (to a different extent) both from matches
and mismatches with their neighbors. We say that tolerance is higher when the difference
|δ − 1

2
| is smaller.

For an isolated pair of connected players the game can be represented in normal form
(Table 1). Here if δ > 1

2
the game is a matching game with tolerance, and if δ < 1

2
it is a

mismatching game with tolerance. Obviously, the first case belongs to the class of games on
networks with strategic complements, and the second – to games with strategic substitutes.

0 1

0 δ, δ 1− δ, 1− δ
1 1− δ, 1− δ δ, δ

Table 1: The game between two players: matching with tolerance (δ > 1
2) or mismatching with

tolerance (δ < 1
2)

2.2 Personal preferences of the players

We assume that all players have strict personal preferences over the action set X = {0, 1},
which are given exogenously and do not change throughout the game. Obviously, the set of
possible personal preferences coincides with the set of available actions: Θ = {0, 1}.

Similar to an action profile, a preference profile θ̄ = (θ1, ..., θn) is a vector of preferences
of all players in the network. We call a preference profile homogeneous if θi = θj for all
i, j ∈ N , otherwise we call it heterogeneous. Whenever it does not create confusion with
the common terminology, we use the term network to refer to the pair (G, θ̄), combining
network structure and the distribution of preferences in this network, which is assumed to
be common knowledge prior to the game.

Now a player’s payoff depends also on her preference (type). The payoff for a player i
with preference θi and the set of neighbors Ni(G) is defined as follows:

ui(θi, xi, x̄Ni(G)) =

δ ∑
j∈Ni(G)

1{xi=xj} + (1− δ)
∑

j∈Ni(G)

1{xi 6=xj}

(1 + λ · 1{xi=θi}
)
,

where δ ∈ [0; 1] and λ ∈ (0;∞).
The second parameter λ determines the (relative) utility bonus a player gets if she chooses

her preferred action. Thus λ reflects the strength of personal preference: the higher λ, the

5For more on semi-anonymous graphical games, see chapter 9.3 in Jackson (2008).
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stronger personal preference and the larger utility loss if the player cannot choose her pre-
ferred action. Since we are interested in the impact of introducing heterogeneous preferences,
we consider λ ∈ (0;∞). The case λ = 0 corresponds to the no-preference framework and is
discussed separately in Section 5.

To better illustrate the nature of the game, let us consider again a pair of connected
players. Tables 2 and 3 represent their interactions in normal form in the case when two
players have the same personal preference and in the case when their preferences differ.

0 1

0 δ(1 + λ), δ(1 + λ) (1− δ)(1 +λ), 1− δ
1 1−δ, (1−δ)(1+λ) δ, δ

Table 2: The game between two players with the same preference: θi = θj = 0

0 1

0 δ(1 + λ), δ (1−δ)(1+λ), (1−δ)(1+λ)

1 1− δ, 1− δ δ, δ(1 + λ)

Table 3: The game between two players with different preferences: θi = 0 for the row player and
θj = 1 for the column player

Note that the utility function defined above has multiplicative form with regard to δ and
λ. It implies that once a player chooses her preferred action, she enjoys a utility supplement
from each of her connections. In Section 5 we consider an alternative specification of the
utility function, which takes additive form so that the bonus from choosing the preferred
action does not depend on a player’s degree.

Note also that if a player is isolated (has no neighbors), her utility in the network is zero
regardless of her preference and the action she chooses. As long as network formation is not
explicitly modelled, such nodes do not matter for equilibrium analysis. In the rest of the
paper we assume that no player is isolated, i.e. di > 0 for every i ∈ N .

Moreover, we assume that G is a connected network, that is, every two nodes are con-
nected by some path in the network. If the network is disconnected, each of its components
(maximal connected subnetworks) can be analyzed separately. In this case all the results of
this paper also hold, componentwise.

2.3 Equilibrium concept

We consider the complete information setting with rational players. Each player, given her
personal preference and the network (G, θ̄), chooses an action from X so that to maximize
her utility payoff. All the players decide simultaneously. The equilibrium concept used in
this paper is the n-player Nash for a fixed network.

In our further analysis we differentiate between two types of equilibria – symmetric and
asymmetric. In symmetric equilibria all players choose the same action, hence the second
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name – consensus equilibria. In our binary setting there are two possibilities: either consensus
on 0 or on 1. Asymmetric equilibria are disagreement equilibria, since different actions are
chosen.

What also matters for comparison of equilibria in our framework is whether players are
able to follow their preferences or, due to social pressure, have to surrender them and make
unfavored choices. Based on the idea of frustration accompanying the choice of an unfavored
action under social pressure, we define satisfying and frustrating actions.6 We call an action
xi chosen by player i with preference θi satisfying if xi = θi, otherwise we call it frustrating.
A player who chooses a satisfying (frustrating) action in x̄ is called a satisfied (frustrated)
player.

In some contexts it might be of interest to single out this personal aspect of utility
and analyze the level of individuals’ satisfaction in a network. In this paper we focus on
a particular type of equilibria – those characterized by the maximum level of preference
satisfaction.

Definition 1. In a network (G, θ̄) an action profile x̄ is called fully satisfying if xi = θi ∀i ∈ N .
If a fully satisfying action profile constitutes an equilibrium, it is called a fully satisfying equi-
librium.

Obviously, in any given network there is only one fully satisfying action profile, and thus
at most one fully satisfying equilibrium.

The last two definitions, that will prove useful in this paper, characterize player’s neigh-
bors with respect to whether they choose i’s preferred action. For a player i with preference
θi, her neighbor j is called i’s companion if she chooses i’s preferred action, i.e. xj = θi,
otherwise j is called i’s opponent.

3 Individual best responses

In this section we analyze individual best response strategies that characterize the set of all
behaviors that can potentially be present in equilibrium.

Recall that the payoff ui of a player i depends on the actions of i’s neighbors in an
anonymous way. What matters for i’s decision is just the total number of her neighbors
choosing each of the actions. Without loss of generality, we denote the number of i’s neighbors
who choose action 1 by τi. The number of i’s neighbors who choose action 0 then equals
di − τi.

Due to linearity of payoffs with respect to τi, best responses take the form of threshold
functions. However, the optimal actions below and above the thresholds are not always the
same, they depend on the relationship between parameters δ and λ. Below we show that
the whole range of possible parameter values naturally splits into three regions (see Figure
1) that correspond to qualitatively different behaviors, and eventually different equilibria.
These are the region of strong advantage of matching, RM = {(δ, λ) : 1+λ

2+λ
< δ ≤ 1, λ > 0},

6The terminology is partly borrowed from Hernández et al. (2013).
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the region of strong advantage of mismatching, RMM = {(δ, λ) : 0 ≤ δ < 1
2+λ

, λ > 0}, and the

in-between region of no well-pronounced advantage, RNP = {(δ, λ) : 1
2+λ
≤ δ ≤ 1+λ

2+λ
, λ > 0}.7

λ

0 1
2

1

δ

δ
=

12
+
λ δ

=
1
+
λ

2
+
λ

RMM

strong advantage

of mismatching

RM

strong advantage

of matching

RNP

no well-pronounced

advantage

Figure 1: Three regions of parameter values

As long as both δ and λ are the same for all players, each particular pair of parameter
values – a point in the (δ, λ)-space – represents a particular game.8 We analyze these three
qualitatively different classes of games in turn.

3.1 Games with strong advantage of matching

The region RM corresponds to the class of games with strong advantage of matching own
action with the actions of the neighbors. The games that fall into this region are games with
strategic complements.

Before we characterize the players’ best responses, let us define special partitions of RM

consisting of L parts, where L = ddi
2
e.9,10 As we will see later, within each of these parts

(subregions) the best responses of the players of degree di are the same.
For a player i of degree di the partition

{
R1
M(di), ..., R

L
M(di)

}
is defined as follows (for a

7What we call matching (mismatching) here is also referred to as coordination (anti-coordination) in the
networks literature: e.g. Bramoullé (2007), Bramoullé et al. (2004), Jackson and Watts (2002).

8In principle, the relative advantage of matching versus mismatching, as well as the strength of personal
preference, might not be the same for all players. However, this possibility lies outside the scope of our
analysis.

9Although L is a function of degree di, we omit the argument whenever it does not create confusion, in
order to avoid cumbersome notation.

10Here dxe denotes the ceiling of x.
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graphical illustration see Figure 2):

RlM (di) = {(δ, λ) ∈ RM :
(di − (l − 1))(1 + λ)− (l − 1)

(di − 2(l − 1))(2 + λ)
< δ ≤ (di − l)(1 + λ)− l

(di − 2l)(2 + λ)
}

for l = 1, ..., L− 1, and

RLM (di) = {(δ, λ) ∈ RM :
(di − (L− 1))(1 + λ)− (L− 1)

(di − 2(L− 1))(2 + λ)
< δ ≤ 1}.

The following proposition characterizes the best responses of the players, which take
the form of threshold functions and where particular thresholds depend on the players’
preferences, their degrees and the (subregion of) parameter values δ and λ.

Proposition 1 [Best responses. Strong advantage of matching]
In a game (δ, λ) ∈ RM the best response function of a player i with preference θi and di
neighbors, τi of whom play 1, is

BRi(θi, di, τi) =


1, if τi > τ θiδ,λ(di)

0, if τi < τ θiδ,λ(di)

θi, if τi = τ θiδ,λ(di)

where τ θiδ,λ(di) = θil + (1− θi)(di − l) for (δ, λ) ∈ Rl
M(di), l = 1, ..., L.11

We assume hereafter the following, quite natural tie-breaking rule: whenever on the
threshold, a player chooses her preferred action.12 If the number of neighbors choosing
action 1 is above the threshold, a player also chooses 1 (because of the matching advantage);
if this number is below the threshold, she chooses action 0.

To visualize the results, consider Figure 2 depicting subregions of parameter values cor-
responding to different thresholds. Games with strong advantage of matching are contained
in the area between two blue curves.

11As mentioned above, BRi(θi, x̄Ni(G)) = BRi(θi, di, τi) due to semi-anonymity of the games considered
in this paper.

12Introducing a tie-breaking rule allows to avoid set-valued best responses and focus on pure equilibrium
characterizations.
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λ

0
1
2

1

δ

δ
=

1
+
λ

2
+
λ

R1
M(di)

R2
M(di)

...

RL
M(di)

τ 1δ,λ = 1, τ 0δ,λ = di − 1

τ 1δ,λ = 2, τ 0δ,λ = di − 2

...

τ 1δ,λ = L, τ 0δ,λ = di − L

Figure 2: Decision thresholds for a player of degree di for different games with strong advantage of
matching

The subregion R1
M(di) covers the cases with high strength of personal preference relative

to the matching advantage. Here the decision threshold for a player i with preference 1
equals 1, while for a player with preference 0 it equals di − 1. In other words, for choosing
her preferred action it is sufficient for a player i to have at least one companion, and only if
she has no companions at all would she follow her neighbors’ choice.

Intuitively, the less a player is concerned about matching her action with neighbors (the
lower δ) the fewer companions she needs in order to switch to her preferred action. The same
is true with respect to the strength of preference: the stronger personal preference is (the
higher λ) the fewer companions are needed in order to follow it. Thus, for a given degree
di, the need for companions monotonically increases with δ and decreases with λ, and the
maximum possible companion requirement is ddi

2
e – the majority of neighbors.13

Note that if none of i’s neighbors chooses her preferred action, i will not choose it either,
regardless of the strength of her preference. This important observation, which we use
intensively later in the paper, is summarized in the following corollary.

Corollary 1 (Minimum companion requirement). For (δ, λ) ∈ RM

∀i ∈ N : BRi(θi, di, τi) = θi ⇒ ∃j ∈ Ni(G) s.t. xj = θi.

In other words, in games with strong advantage of matching every player needs at least
one companion in order to follow personal preference.

13When the number of neighbors choosing i’s preferred action exceeds ddi2 e, the player i always chooses
this action, since there is no longer conflict between following personal preference and matching the neighbors’
choices.
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We now present subsidiary results concerning the number of required companions for a
player who adds or loses one link. For notational convenience, we set Rl

M(di) = ∅ whenever
l /∈ {1, ..., L}.

Corollary 2 (Adding/deleting a link). For all degrees di ≥ 2 and l = 1, ..., L the
following holds:

• Rl
M(di) ⊆ Rl

M(di + 1) ∪Rl+1
M (di + 1), and

• Rl
M(di) ⊆ Rl

M(di − 1) ∪Rl−1
M (di − 1).

That is, a player with di links who needs l companions in order to follow her personal
preference, would increase this companion requirement by at most one if she gets an ad-
ditional link, and would decrease this requirement by at most one if she loses one existing
link.

3.2 Games with strong advantage of mismatching

Next, we will study optimal behavior in the region RMM , corresponding to the class of games
with strong advantage of action mismatching. The games that fall into this region are games
with strategic substitutes.

Similarly to the previous case, let us define the following partition of RMM for a given
degree di (see Figure 3):

{
R1
MM(di), ..., R

L
MM(di)

}
, where

RlMM (di) = {(δ, λ) ∈ RMM :
di − (2 + λ)l

(di − 2l)(2 + λ)
≤ δ < di − (2 + λ)(l − 1)

(di − 2(l − 1))(2 + λ)
}

for l = 1, ..., L− 1, and

RLMM (di) = {(δ, λ) ∈ RMM : 0 ≤ δ < di − (2 + λ)(L− 1)

(di − 2(L− 1))(2 + λ)
}.

Note that for each degree di this partition is symmetric to the corresponding partition of
RM . The following proposition characterizes players’ best responses in the region RMM .

Proposition 2 [Best responses. Strong advantage of mismatching]
In a game (δ, λ) ∈ RMM the best response function of a player i with preference θi and di
neighbors, τi of whom play 1, is

BRi(θi, di, τi) =


1, if τi < τ θiδ,λ(di)

0, if τi > τ θiδ,λ(di)

θi, if τi = τ θiδ,λ(di)

where τ θiδ,λ(di) = θi(di − l) + (1− θi)l for (δ, λ) ∈ Rl
MM(di), l = 1, ..., L.
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The optimal choices below and above the threshold here are different than in the case
of matching advantage. Now action 1 is the best response for player i if the number of i’s
neighbors choosing 1 is sufficiently low, while the more neighbors choose 1 the less attractive
this action becomes for i.

For visualization purposes consider Figure 3, depicting the subregions of parameter values
(δ, λ) corresponding to different thresholds for the case of mismatching advantage (symmetric
to the corresponding subregions from Figure 2).

λ

0 1
2

δ

δ
=

12+
λ

R1
MM(di)

R2
MM(di)

...

RL
MM(di)

τ 1δ,λ = di − 1, τ 0δ,λ = 1

τ 1δ,λ = di − 2, τ 0δ,λ = 2

...

τ 1δ,λ = di − L, τ 0δ,λ = L

Figure 3: Decision thresholds for a player of degree di for different games with strong advantage of
mismatching

Again, individual best responses for players with preference 0 and those with preference
1 are symmetric. If either personal preference is very strong or advantage of mismatching
is small (subregion R1

MM(di)), having one opponent is sufficient for following i’s preference.
The minimal number of such opponents that i would require in order to follow her preference
increases with advantage of mismatching and with weaker personal preference until it reaches
its maximum possible value – ddi

2
e.14

Similar to the matching case, the following corollary provides a necessary condition for
choosing the preferred action in games with strong advantage of mismatching.

Corollary 3 (Minimum opponent requirement). For (δ, λ) ∈ RMM

∀i ∈ N : BRi(θi, di, τi) = θi ⇒ ∃j ∈ Ni(G) s.t. xj = 1− θi.
14Similar to the previous case, when the number of neighbors choosing i’s unfavored action exceeds ddi2 e,

she always chooses her preferred action, since there is no longer conflict between following personal preference
and mismatching neighbors’ actions.
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Thus, in games with strong advantage of mismatching every player needs at least one
opponent in order to follow personal preference.

The next corollary describes the change in the number of required opponents as a player
adds or loses one link. Since the partitions of RM and RMM are symmetric for any given
degree di, the following result is similar to the one of the previous subsection (Corollary 2).

Corollary 4 (Adding/deleting a link). For all degrees di ≥ 2 and l = 1, ..., L the
following holds:

• Rl
MM(di) ⊆ Rl

MM(di + 1) ∪Rl+1
MM(di + 1), and

• Rl
MM(di) ⊆ Rl

MM(di − 1) ∪Rl−1
MM(di − 1).

That is, similar to the matching case, a player with di links who needs l opponents in
order to follow her personal preference would increase her opponents requirement by at most
one if she gets an additional link, and would decrease this requirement by at most one if she
loses one existing link.

3.3 Games with no well-pronounced interactional advantage

A particularly interesting result is the one for the in-between region RNP , in which advantage
of neither action matching nor mismatching is well-pronounced. Notably, this region contains
both games of strategic complements and those of strategic substitutes. It appears that for
this class of games the unique individually rational strategy is to follow personal preference.

The intuition behind this result is simple: when personal preference becomes relatively
more important than interactional advantage (the personal utility bonus outweights the util-
ity difference between matching and mismatching a neighbor’s action), players no longer take
the interactional advantage into account and choose exclusively according to their personal
preference. Acting according to own preference becomes the strictly dominant strategy for
every player. The following proposition formalizes this result.

Proposition 3 [Best responses. No well-pronounced advantage]
In a game (δ, λ) ∈ RNP the best response for every player is her preferred action:

BRi(θi, di, τi) = θi ∀i ∈ N.

Proof. A player i with preference θi ∈ {0, 1} has two possible actions: θi or 1 − θi. The
utility gain she gets from each her connection depends on her own action (rows) and that of
the corresponding neighbor (columns):

θi 1 − θi
θi δ(1 + λ) (1− δ)(1 + λ)

1−θi 1− δ δ

13



If δ ∈
(
1
2
; 1+λ
2+λ

]
then 1− δ < δ ≤ (1− δ)(1 + λ) < δ(1 + λ). This means that the strategy

θi is strictly dominant for player i (in the case of indifference, the tie-breaking rule in favor
of personal preference is applied.)

If δ ∈
[

1
2+λ

; 1
2

)
then δ < 1 − δ ≤ δ(1 + λ) < (1 − δ)(1 + λ). Hence, the strategy θi is

strictly dominant for i also in this case.
Finally, if δ = 1

2
then strict dominance of the strategy θi follows from the fact that λ > 0.

As the above is true for every i’s neighbor in G, we can conclude that the only best
response of player i is θi.

4 Equilibrium analysis

Using the best response functions derived in the previous section, we seek to characterize the
sets of n-player Nash equilibria for different classes of games on a given network (G, θ̄). The
first, preparatory subsection containing some useful notation and definitions. The next three
subsections deal with existence and uniqueness of different types of equilibria for a general
network structure and an arbitrary preference profile for three classes of games – RM , RMM

and RNP – respectively. Finally, the last subsection further specifies and illustrates the
results for several standard network structures.

4.1 Preliminaries

Before we proceed, let us define a function l : [0, 1] × (0; +∞) × N → N ∪ {0} that maps
every game (δ, λ) and every possible degree di ∈ N of a player to the minimum number of
companions (for δ ≥ 1

2
) or opponents (for δ ≤ 1

2
) the player of this degree needs in order to

follow her preference. That is, the value of the function l corresponds to the natural number
labelling the corresponding subregion Rl

M(di) or Rl
MM(di) (or to zero for RNP ).

It is straightforward to check that l is weakly decreasing in λ (the stronger personal
preference is, the fewer companions/opponents a player needs in order to follow it), increas-
ing in |δ − 1

2
| (the stronger advantage of considering neighbors’ actions, the more compan-

ions/opponents are needed in order to act according to personal preference) and increasing
in di (the more neighbors a player has, the more restricted she is in her choices).

For analysis of equilibria in different games, it is convenient to consider δ and λ as
parameters and use the function l as a function of a single argument – a player’s degree:
l(δ, λ, di) = lδ,λ(di). The following technical lemma allows to explicitly calculate the value of
l for given δ, λ and di.

Lemma 1 (Companion/opponent requirement).

(i) In games with strong advantage of matching (mismatching) the minimum number of
companions (opponents) that a player of degree di needs in order to follow her preference
equals

lδ,λ(di) = l∗ + 1λ<λ̃(l∗),

14



where l∗ = argmin
m=1...L

|λ− λ̃(m)| and λ̃(m) = 2·|2δ−1|·(di−2m)
(1−|2δ−1|)(di−2m)+2m

.15,16

(ii) In games with no well-pronounced advantage a player does not need any companions
or opponents to follow her preference: lδ,λ(di) = 0.

To simplify the further exposition, let us denote by N θ(⊆ N) the subset of players with
preference θ ∈ {0, 1}. Obviously, for a heterogeneous preference profile, {N0, N1} forms a
partition of the set of players N . We will refer to N0 and N1 as corresponding preference
groups of players.

In equilibrium characterizations we will also utilize the definition of (r1, ..., rK)-cohesive
partitions of a subset, which is based on the definition of r-cohesive subsets.17

Definition 2 (Morris, 2000). A subset of nodes S ⊂ N in a network G is r-cohesive if

min
i∈S

|Ni(G) ∩ S|
|Ni(G)|

≥ r.

That is, a subset of nodes is r-cohesive if for its every node the share of inward-looking
links (the links with nodes from the same subset) is at least r. Now let us partition the
subset of nodes and look at the same measure for each of the parts specifically.

Definition 3. A partition {S1, ..., SK} of a subset of nodes S ⊂ N in a network G is
(r1, ..., rK)-cohesive if for k = 1, ..., K:

min
i∈Sk

|Ni(G) ∩ S|
|Ni(G)|

≥ rk.

Obviously, if {S1, ..., SK} is a (r1, ..., rK)-cohesive partition of S, then S is min{r1, ..., rK}-
cohesive. On the other hand, if S is r-cohesive, then any partition {S1, ..., SK} of S is
(r, ..., r)-cohesive.

Furthermore, let us introduce related definitions of r-outward subsets and (r1, ..., rK)-
outward partitions of a subset.

Definition 4. A subset of nodes S ⊂ N in a network G is r-outward if

min
i∈S

|Ni(G) ∩ (N \ S)|
|Ni(G)|

≥ r.

That is, for every node the share of outward-looking links must be at least r (or the share
of inward-looking links must be at most 1− r).

15Here |x| denotes the absolute value of x.
16Note that, for a given degree di, the curve λ̃(m) separates subregion RmM from Rm+1

M and subregion
RmMM from Rm+1

MM .
17See Morris (2000), as well as chapter 9.6 in Jackson (2008).
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Definition 5. A partition {S1, ..., SK} of a subset of nodes S ⊂ N in a network G is
(r1, ..., rK)-outward if for k = 1, ..., K:

min
i∈Sk

|Ni(G) ∩ (N \ S)|
|Ni(G)|

≥ rk.

Similar to the cohesion case, if {S1, ..., SK} is a (r1, ..., rK)-outward partition of S, then
S is min{r1, ..., rK}-outward. On the other hand, if S is r-outward, then any partition
{S1, ..., SK} of S is (r, ..., r)-outward.

Finally, we will need the definition of a degree partition of a network.

Definition 6 (Mahadev and Peled, 1995). Let G be a network with distinct positive degrees
d(1) < ... < d(M). Define Dm = {i ∈ N | di = d(m)} for m = 1, ...,M . Then the set-valued
vector D(G) = (D1, ..., DM) is called the degree partition of G. See Mahadev and Peled
(1995).

4.2 Games with strong advantage of matching

We can now fully characterize equilibrium sets for games with strong advantage of matching,
given an arbitrary network (G, θ̄). The following theorem provides existence conditions
separately for symmetric and asymmetric equilibria. As we will see, there always exist at
least two equilibria – two consensus equilibria – for this class of games, thus equilibrium
multiplicity is unavoidable. At the same time, existence of disagreement equilibria is not
always guaranteed (counterexample – a star network).

Theorem 1 [Equilibria. Strong advantage of matching]
For a network (G, θ̄) and game (δ, λ) ∈ RM :

(i) two symmetric equilibria exist,

(ii) an asymmetric equilibrium exists if and only if there exists such a partition {S0, S1}
of N that the following conditions are satisfied for θ = 0, 1:

• ∀i ∈ Sθ ∩N θ : |Ni(G) ∩ Sθ| ≥ lδ,λ(di) and

• ∀i ∈ Sθ ∩N1−θ : |Ni(G) ∩ Sθ| > di − lδ,λ(di).18

The first conclusion of the theorem, namely that both symmetric action profiles are
equilibrium profiles (part (i) of the theorem), is not very surprising. The same result holds for
the games of strategic complements without preference heterogeneity.19 Theorem 1 confirms
this result in a more general setting. It holds true even if the strength of personal preferences
is very high: as long as advantage of matching is big enough, none would deviate from the
symmetric equilibrium action.

18Here |S| denotes the cardinality of a set S.
19See, for instance, Galeotti et al. (2010).
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Part (ii) of the theorem, concerning asymmetric equilibria, states that existence of an
asymmetric equilibrium is equivalent to existence of a partition {S0, S1} of players satisfying
several interconnectivity conditions. If we interpret this partition as the partition of players
by chosen action and consider its refinement by the partition of N into preference groups –
{S0 ∩ N0, S0 ∩ N1, S1 ∩ N0, S1 ∩ N1} (some of the four subsets can be empty) – then the
conditions of the theorem guarantee that the chosen actions are the best responses for all
satisfied (i ∈ Sθ ∩N θ) as well as for all frustrated (i ∈ Sθ ∩N1−θ) players.

Hence, Theorem 1 provides an algorithm for practical derivation of the set of asymmetric
equilibria for any given network by enumerating all possible partitions of the set of players
into two subsets and checking whether they satisfy well-defined connectivity conditions. Since
(ii) provides necessary and sufficient conditions for existence of an asymmetric equilibrium,
the number of asymmetric equilibria is given by the number of such partitions.

We can use the definition of (r1, ..., rK)-cohesive partitions of a subset of nodes to for-
mulate necessary and sufficient conditions for existence of asymmetric equilibria in cohesion
terminology. For this purpose, we refine a partition {S0, S1} of N using the degree partition
of the network and the partition of N into preference groups.

Corollary 5 (Asymmetric equilibria. Strong advantage of matching). For a
network (G, θ̄) with degree partition (D1, ..., DM) and a game (δ, λ) ∈ RM , an asymmetric
equilibrium exists if and only if there exists such a partition {S0, S1} of N that for θ ∈ {0, 1}
the (possibly trivial) partition {Sθ∩N θ∩D1, ..., S

θ∩N θ∩DM , S
θ∩N1−θ∩D1, ..., S

θ∩N1−θ∩
DM} of Sθ is

(
lδ,λ(d(1))

d(1)
, ...,

lδ,λ(d(M))

d(M)
, 1− lδ,λ(d(1))−1

d(1)
, ..., 1− lδ,λ(d(M))−1

d(M)

)
-cohesive.20

This formulations provides additional intuition for Theorem 1: for maintaining variation
in behavior in a network, sufficient interconnection within two groups of players is important.
And it does not matter for existence of an asymmetric equilibrium whether these groups
coincide with preference groups or not : sufficient connectivity within groups guarantees that
the action choices are the best responses for both satisfied and frustrated players.

Next, we examine the existence of fully satisfying equilibria as such that guarantee the
highest degree of satisfaction of personal preferences in a network. The following theorem
provides necessary and sufficient conditions for existence of the fully satisfying equilibrium
in an arbitrary network.

Theorem 2 [Existence of the fully satisfying equilibrium]
For a network (G, θ̄) and game (δ, λ) ∈ RM the fully satisfying equilibrium exists if and only
if the following condition is satisfied:

∀i ∈ N : |Ni(G) ∩N θi | ≥ lδ,λ(di).

That is, such an equilibrium exists if and only if every player has at least lδ,λ(di) distinct
neighbors whose preferences coincide with her own. Given a network and a preference profile,
this condition is very easy to check.

20Here a trivial partition is such that contains empty subsets.

17



Let us consider an example. Figure 4 depicts a network with two different preference
profiles. The players are numbered (numbers inside circles) and their personal preferences
over actions are depicted as coloured numbers outside circles. Degrees of the players are
1, 2 or 4. In the network (a) the fully satisfying action profile constitutes an equilibrium,
since every player has sufficiently many neighbors with the same preference. The required
number of such neighbors is one for players 1, 2, 4 and 5, and one or two – depending on
the game (δ, λ) – for player 3. In the network (b) the fully satisfying action profile is not
an equilibrium, since the condition of Theorem 2 for player 5 (and, for some (δ, λ), also for
player 3) is not satisfied.

1
0

2
0

3
1

4
1

5
1

(a)

1
0

2
0

3
1

4
1

5
0

(b)

(δ, λ) ∈ RM

lδ,λ(1) = 1

lδ,λ(2) = 1

lδ,λ(4) = 1 or 2

Figure 4: Fully satisfying equilibrium exists in (a); does not exist in (b)

Thus, distribution of personal preferences on a network is crucial for existence of the
fully satisfying equilibrium. But even prior to the preference distribution, some minimal
preconditions regarding the size of preference groups must be satisfied.

Corollary 6 (Necessary condition for the fully satisfying equilibrium). For
a network (G, θ̄) with a heterogeneous preference profile and a game (δ, λ) ∈ RM the fully
satisfying equilibrium exists only if |N θ| ≥ 2 ∀θ ∈ {0, 1}.

That is, for a heterogeneous preference profile the fully satisfying equilibrium exists only
if each preference group contains at least two players. If this condition is not satisfied, there
is a player who has no companions in the fully satisfying action profile, which contradicts
the minimum companion requirement (Corollary 1).

On the other hand, network structure itself might already be decisive. There are such
network structures in which fully satisfying equilibria never exist, regardless of the preference
distribution and even of the strength of personal preferences. A star is a good example of
such network structure: it never allows for the fully satisfying equilibrium if players have
heterogeneous preferences.

4.3 Games with strong advantage of mismatching

The following theorem characterizes equilibrium sets for games with strong advantage of
mismatching. Similar to the matching case, it considers symmetric and asymmetric equilibria
separately. Since no symmetric equilibria exist for this class of games, equilibrium existence
in general is no longer guaranteed.
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Theorem 3 [Equilibria. Strong advantage of mismatching]
For a network (G, θ̄) and game (δ, λ) ∈ RMM :

(i) no symmetric equilibria exist,

(ii) an asymmetric equilibrium exists if and only if there exists such a partition {S0, S1}
of N that the following conditions are satisfied for θ = 0, 1:

• ∀i ∈ Sθ ∩N θ : |Ni(G) ∩ S1−θ| ≥ lδ,λ(di) and

• ∀i ∈ Sθ ∩N1−θ : |Ni(G) ∩ S1−θ| > di − lδ,λ(di).

Again, the first result concerning non-existence of (pure-strategy) symmetric equilibria
goes along with typical conclusions for anti-coordination games.21 Consequently, existence
of equilibria in the general case is no longer guaranteed, while in some networks multiplicity
of equilibria is still an issue. The second result of the theorem is similar to the corresponding
result of Theorem 1: existence of an asymmetric equilibrium is equivalent to existence of
a partition {S0, S1} of network nodes that satisfies specific interconnectivity conditions.
Theorem 3 provides an algorithm for practical derivation of all Nash equilibria in a given
network for games with strong advantage of mismatching.

For this class of games, it is impossible to reformulate the necessary and sufficient condi-
tions for existence of asymmetric equilibria in cohesion terminology. However, here we can
employ the notion of outwardness of a subset (partition of a subset).

Corollary 7 (Asymmetric equilibria. Strong advantage of mismatching). For a
network (G, θ̄) with degree partition (D1, ..., DM) and a game (δ, λ) ∈ RMM , an asymmetric
equilibrium exists if and only if there exists such a partition {S0, S1} of N that for θ ∈ {0, 1}
the (possibly trivial) partition {Sθ∩N θ∩D1, ..., S

θ∩N θ∩DM , S
θ∩N1−θ∩D1, ..., S

θ∩N1−θ∩
DM} of Sθ is

(
lδ,λ(d(1))

d(1)
, ...,

lδ,λ(d(M))

d(M)
, 1− lδ,λ(d(1))−1

d(1)
, ..., 1− lδ,λ(d(M))−1

d(M)

)
-outward.

Now, we will state necessary and sufficient conditions for existence of the equilibrium
that satisfies personal preferences of all players in a network.

Theorem 4 [Existence of the fully satisfying equilibrium]
For a network (G, θ̄) and game (δ, λ) ∈ RMM the fully satisfying equilibrium exists if and
only if the following condition is satisfied:

∀i ∈ N : |Ni(G) ∩N1−θi | ≥ lδ,λ(di).

In other words, the fully satisfying equilibrium exists if and only if every player has at
least lδ,λ(di) distinct neighbors whose preferences do not coincide with i’s preference. Thus,
what matters now is the number of neighbors with a different preference. As Corollary
3 suggests, for each player this number is greater or equal to one, hence fully satisfying
equilibria are possible only for heterogeneous preference profiles.

21See, in particular, Bramoullé (2007) and Galeotti et al. (2010).
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Figure 5 provides an example. Again, numbers inside circles identify players and coloured
numbers outside circles correspond to players’ preferences. For a preference profile in (a) the
fully satisfying equilibrium exists, since every player has the required number of neighbors
with different preference (the requirements are listed in the right part of the figure). In (b)
the fully satisfying action profile is not an equilibrium, since for player 4 the requirement is
not satisfied.
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(a)

1
0

2
0

3
1

4
1

5
0

(b)

(δ, λ) ∈ RMM

lδ,λ(1) = 1

lδ,λ(2) = 1

lδ,λ(4) = 1 or 2

Figure 5: Fully satisfying equilibrium exists in (a); does not exist in (b)

4.4 Games with no well-pronounced interactional advantage

As it follows from Proposition 3, whenever the advantage of matching or mismatching is
not well-pronounced, every player chooses her preferred action. The following theorem fully
characterizes the set of equilibria for this class of games.

Theorem 5 [Equilibria. No well-pronounced advantage]
For a network (G, θ̄) and game (δ, λ) ∈ RNP there always exists a unique equilibrium – the
fully satisfying equilibrium.

The proof is straightforward. Since following personal preference is the unique best re-
sponse for each player, in equilibrium every player chooses her preferred action: xi = θi
∀i ∈ N . Uniqueness follows from the assumption that players’ preferences over actions are
strict. Thus, the equilibrium action profile coincides with the preference profile of the net-
work.

Let us note immediately one interesting feature of such equilibria: they are characterized
by the minimal possible level of network frustration, as they allow for complete concordance
of chosen actions with the preferred ones.

Thus, there exists a nonempty class of games, including both games of strategic com-
plements and those of strategic substitutes, such that the only possible equilibrium is the
one in which every player follows her own preference. Note that since every player chooses
to follow her preference regardless of the choices of her neighbors, this equilibrium is strong
Nash, and thus it is Pareto optimal.
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4.5 Existence of asymmetric equilibria in standard networks

In this subsection we provide the complete characterization of the Nash equilibrium set
for several standard network structures, namely a star, a circle and a complete network.
The focus here is existence and uniqueness of asymmetric equilibria, since for symmetric
equilibria the general results of Theorems 1, 3 and 5 apply. At the end of the subsection, we
also present sufficient conditions for existence of asymmetric equilibria in regular networks
of an arbitrary degree.

The following propositions provide necessary and sufficient conditions for existence of
asymmetric equilibria in games with strong advantage of matching or mismatching. For
games with no well-pronounced interactional advantage the general result applies (Theorem
5): an asymmetric equilibrium exists if and only if the preference profile is heterogeneous,
and the equilibrium is always unique.

Proposition 4 [Star networks]
Let (G, θ̄) be a star network with a heterogeneous preference profile.

(i) In a game (δ, λ) ∈ RM no asymmetric equilibria exist.

(ii) In a game (δ, λ) ∈ RMM two asymmetric equilibria exist.

Thus, any game with strong advantage of matching or mismatching has two equilibria in
a star network. In the case of matching these are two symmetric equilibria, in the case of
mismatching – two asymmetric. Figure 6 illustrates the latter case (here colours correspond
to the chosen actions: yellow – to action 0, green – to action 1). Note that the equilibrium
set is completely independent of a preference profile for star networks.

0

1

0 1

0

1

0 1

(δ, λ) ∈ RMM

Figure 6: Star networks. Asymmetric equilibria in games with strong advantage of mismatching

Proposition 5 [Circle networks]
Let (G, θ̄) be a circle network with n players and a heterogeneous preference profile, and let
the players be numbered consecutively.

(i) In a game (δ, λ) ∈ RM an asymmetric equilibrium exists if and only if there exist four
distinct players such that θi 6= θi+1 = θj 6= θj+1. It is a unique asymmetric equilibrium
if and only if there are no other players satisfying the above condition.

(ii) In a game (δ, λ) ∈ RMM an asymmetric equilibrium always exists. It is unique if and
only if n is odd and ∃!i ∈ N s.t. θi = θi+1.
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Hence, in a circle network existence of an asymmetric equilibrium is only guaranteed for
games with strong advantage of mismatching, while for the matching games it might be that
only consensus is possible in equilibrium. At the same time, multiplicity of (asymmetric)
equilibria is not excluded for both classes of games.

Figure 7 provides an example of equilibria multiplicity for a game with strong ad-
vantage of matching. It depicts a circle network with heterogeneous preference profile
θ̄ = (0, 1, 1, 0, 0, 1, 0) (the players numbered clockwise starting with the top one). Obvi-
ously, this network satisfies the condition in part (i) of the proposition: such 4-tuples of
players are {1, 2, 3, 4}, {1, 2, 6, 7} and {3, 4, 5, 6}. The figure shows three respective asym-
metric equlibria for this network.

0
0 1

1 1

0 0

0
0 1

1 1

0 0

0
0 1

1 1

0 0

(δ, λ) ∈ RM

Figure 7: Circle networks. Asymmetric equilibria in games with strong advantage of matching

For games with strong advantage of mismatching, as expected, existence of asymmetric
equilibria does not impose any conditions. For even number of players, there are at least
two asymmetric equilibria (those with alternating actions) regardless of a preference profile.
For odd number of players, an asymmetric equilibrium might be unique (and then, fully-
satisfying). The necessary and sufficient condition for this is that in a network there are
only two neighboring players with the same preference. If not, each pair of such neighbors
corresponds to a different asymmetric equilibrium (see Figure 8).

0
0 0

1 1

1 0

0
0 0

1 1

1 0

0
0 0

1 1

1 0

(δ, λ) ∈ RMM

Figure 8: Circle networks. Asymmetric equilibria in games with strong advantage of mismatching

Proposition 6 [Complete networks]
Let (G, θ̄) be a complete network with n players and a heterogeneous preference profile.
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(i) In a game (δ, λ) ∈ RM an asymmetric equilibrium exists if and only if |N θ| ≥
lδ,λ(n− 1) + 1 for θ = 0, 1. If it exists, it is a unique asymmetric equilibrium.

(ii) In a game (δ, λ) ∈ RMM an asymmetric equilibrium always exists. It is unique if and
only if |N θ| ≥ lδ,λ(n− 1) for θ = 0, 1 (strict for at least some θ).

Again, for the matching case existence of an asymmetric equilibrium is not guaranteed
(e.g. it does not exist for games with very strong advantage of matching, (δ, λ) ∈ RL

M(n−1)).
If the advantage of matching is smaller and the preference minority (the smaller of the two
preference groups) is sufficiently large, then an asymmetric equilibrium is possible, but only
the fully satisfying one. That is, in games from RM all asymmetric equilibria are fully
satisfying equilibria. Intuition for this is quite straightforward: in a maximally connected
network with strong advantage of action matching, departure from consensus is only possible
if it allows players to satisfy their personal preferences.

It is also quite intuitive that if action mismatching brings strong advantage, then asym-
metric equilibria always exist and equilibrium multiplicity is a common issue. While in the
matching games a large minority is necessary for asymmetric equilibrium existence, in the
mismatching games it is a necessary and sufficient condition for equilibrium uniqueness. The
intuition is the following: if two preference groups are too unequal in size, some players from
the majority group have to surrender their personal preferences to make the action profile
more balanced, and the larger majority the more potential players who could take these
roles. If, on the contrary, the minority is large enough and the equilibrium is unique, it is
always fully satisfying.

Before we state sufficient conditions for existence of asymmetric equilibria in regular
networks, let us recall several definitions from the graph theory.22

For a graph G with the set of nodes N , an induced subgraph G[S] is another graph with
the set of nodes S ⊂ N and all the links in G connecting pairs of nodes in S (that is,
G[S]ij = 1⇔ i, j ∈ S ∧Gij = 1).

A graph G is bipartite if its set of nodes N can be partitioned into two subsets {S1, S2}
so that every link has its ends in different subsets: formally, Gij = 1 ∧ i ∈ S1 ⇒ j ∈ S2,
and Gij = 1 ∧ i ∈ S2 ⇒ j ∈ S1. If any two nodes from different subsets are linked
(i ∈ S1, j ∈ S2 ⇒ Gij = 1), then G is a complete bipartite graph.

The next proposition provides sufficient conditions for existence of asymmetric equilibria
in regular networks.

Proposition 7 [Regular networks. Sufficient conditions]
Let (G, θ̄) be a regular network of degree d.

(i) In a game (δ, λ) ∈ RM an asymmetric equilibrium exists if ∀θ ∈ {0, 1} ∃Xθ ⊆ N θ such
that |Xθ| ≥ l(δ,λ)(d) + 1 and the induced subgraph G[Xθ] is complete.

22See, for instance, Diestel (2017), Bondy and Murty (2008) or Harary (1969).
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(ii) In a game (δ, λ) ∈ RMM an asymmetric equilibrium exists if ∀θ ∈ {0, 1} ∃Xθ ⊆ N θ

such that |Xθ| ≥ l(δ,λ)(d) and K[X0, X1] ⊆ G, where K[X0, X1] is a complete bipartite
graph with partition {X0, X1}.

In other words, in games with strong advantage of matching, if each preference group
contains at least l(δ,λ)(d) + 1 fully interconnected players, then an asymmetric equilibrium
exists. In games with strong advantage of mismatching, an asymmetric equilibrium exists if
there are at least l(δ,λ)(d) players from each preference group and they are fully intraconnected
(connected to each player of the other subgroup). Thus, sufficiently large minority and
specific connectivity conditions for the preference groups guarantee existence of asymmetric
equilibria in regular networks.

Figure 9 shows some asymmetric equilibria in a cubic (3-regular) network with different
heterogeneous preference profiles. The first two examples correspond to games with strong
advantage of matching, where the companion requirement is either 1 or 2. The last example
corresponds to games with strong advantage of mismatching and the opponent requirement
of 2. In all networks the respective sufficient conditions of Proposition 7 are satisfied.
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Figure 9: Asymmetric equilibria in regular networks

5 Discussion

5.1 No-preference framework

Let us briefly outline the results for the case when players do not have any preferences over
action choices (and hence λ = 0). It would allow us to compare the two frameworks – with
and without personal preferences.

The payoff function of player i with the set of neighbors Ni(G) takes the form:

ui(xi, x̄Ni(G)) = δ
∑

j∈Ni(G)

1{xi=xj} + (1− δ)
∑

j∈Ni(G)

1{xi 6=xj},

where δ ∈ [0; 1].
The best responses of a player are given by the following lemma.
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Lemma 2 (Best responses. No-preference framework). In the no-preference
framework, the best response of a player i of degree di is

BRi(di, τi) =

{
1, if τi ≥ di

2

0, if τi ≤ di
2

for δ >
1

2

and

BRi(di, τi) =

{
0, if τi ≥ di

2

1, if τi ≤ di
2

for δ <
1

2
,

where τi is the number of i’s neighbors who choose action 1.

It is easy to see that whenever δ > 1
2

the best response for every player is to choose the
same action as the majority of her neighbors, while whenever δ < 1

2
the best response is to

choose the opposite action. The two cases correspond to games with strategic complements
and those with strategic substitutes respectively. The equilibrium characterizations for the
two cases are given by the following propositions.

Proposition 8 [Equilibria. Strategic complements]
In the no-preference framework, for a network G and δ > 1

2
:

(i) two symmetric equilibria exist;

(ii) an asymmetric equilibrium exists if and only if there exists such a partition {S0, S1}
of N that the following condition is satisfied for θ = 0, 1:

∀i ∈ Sθ : |Ni(G) ∩ Sθ| ≥ di
2
.

Proposition 9 [Equilibria. Strategic substitutes]
In the no-preference framework, for a network G and δ < 1

2
:

(i) no symmetric equilibria exist;

(ii) an asymmetric equilibrium exists if and only if there exists such a partition {S0, S1}
of N that the following condition is satisfied for θ = 0, 1:

∀i ∈ Sθ : |Ni(G) ∩ S1−θ| ≥ di
2
.

The necessary and sufficient conditions for existence of asymmetric equilibria in the case
of strategic complements (Propositions 8) can be easily reformulated using the definition of
r-cohesive subsets of nodes. Specifically, for a network G and δ > 1

2
asymmetric equilibria

exist if and only if there exists such a partition {S0, S1} of N that both S0 and S1 are
1
2
-cohesive. In the case of strategic substitutes (δ < 1

2
), Proposition 9 can be similarly

reformulated using the notion of r-outwardness of a subset: asymmetric equilibria exist if
and only if there exists such a partition {S0, S1} of N that both S0 and S1 are 1

2
-outward.
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It is notable that if we compare, for a given network and game, the set of equilibria in
the no-preference framework to the corresponding set in our framework with preferences,
there is generally no inclusion in either direction. On the one hand, equilibria in the frame-
work without preferences do not necessarily remain equilibria if we allow players to have
preferences. On the other hand, some equilibria in the framework with preferences are never
possible in the framework without.

Figure 10 illustrates this fact. Five players are connected in a network and play a game
with strategic complements (δ > 1

2
). For the framework with preferences, we additionally

assume a heterogeneous preference profile θ̄ = (0, 0, 1, 1, 0) and the strength of personal
preferences such that (δ, λ) ∈ R1

M(3). In the no-preference framework, x̄ = (0, 0, 0, 1, 1) is
an equilibrium (Figure 10.a), while x̄ = (0, 0, 1, 1, 1) is not, as player 3 has an incentive to
deviate and follow the majority of her neighbors (Figure 10.b). However, if we allow players
to have personal preferences, the situation is reverse: x̄ = (0, 0, 0, 1, 1) is not an equilibrium
anymore, as player 3 has enough companions to switch to her preferred action 1 (Figure
10.a), while x̄ = (0, 0, 1, 1, 1) is an equilibrium for this very reason (Figure 10.b).

Therefore, we can neither claim that the introduction of personal preferences in general
extends the equilibrium set, nor that it shrinks it. What happens depends on a particular
network, preference profile and the strength of personal preferences.

1
0

2
0

3
1

4
1

5
0

(a)

(δ, λ) ∈ R1
M(3)

1
0

2
0

3
1

4
1

5
0

(b)

Figure 10: (a) is an equilibrium in the no-preference framework, but not an equilibrium in the
framework with preferences; (b) – vice versa.

5.2 Additively separable utility

In this subsection we consider an alternative – additive – specification of the utility function,
that assumes additive separability of personal and social utility components. The payoff for
player i with preference θi and the set of neighbors Ni(G) is now defined as

ui(θi, xi, x̄Ni(G)) =

δ ∑
j∈Ni(G)

1{xi=xj} + (1− δ)
∑

j∈Ni(G)

1{xi 6=xj}

+ λ · 1{xi=θi}.

As the following figure shows, the borders between the three regions – RM , RMM and
RNP – now depend on di. It means that the interactional advantage might not be of the same
kind for all players. More precisely, there are games in which more connected players have
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strong advantage of matching (or mismatching), whereas less connected ones have no well-
pronounced interactional advantage (as compared to benefits from following their personal
preference).

λ

di

0 1
2

1

δ

δ
=
1
2 −

λ2d
i δ

=
1

2
+

λ
2d
i

RMM(di) RM(di)

RNP (di)

Figure 11: Additive utility. Regions of different best response strategies for a player of degree di

Let us fix a game (δ, λ) and partition the players according to the type of their interac-
tional advantage in this game (and thus their best response strategy): N = NM

δ,λ ∪ NMM
δ,λ ∪

NNP
δ,λ , where N t

δ,λ = {i ∈ N | (δ, λ) ∈ Rt(di)} with t ∈ {M,MM,NP}. Obviously, NMM
δ,λ = ∅

for δ ≥ 1
2

and NM
δ,λ = ∅ for δ ≤ 1

2
. If a player belongs to NM

δ,λ, N
MM
δ,λ or NNP

δ,λ , her best
response function is given by Proposition 1, 2 or 3 respectively, with the only difference that
subregions Rl

M(di) and Rl
MM(di) are accordingly redefined.

Given a network G, we can now specify such partition of the set of players for each
admissible game (δ, λ). Let (D1, ..., DK) be the degree partition of G with corresponding
(positive) degrees d(1) < ... < d(K). Obviously, the more neighbors a player has the more
restricted she is in following her personal preference: RNP (d(k)) ⊂ RNP (d(k−1)) for any
k = 2, .., K (see Figure 11). This nestedness implies that the right half of the parameter space
(δ ≥ 1

2
) can be partitioned into following subregions (Figure 12): RNP (d(K)), RM(d(K)) ∩

RNP (d(K−1)), ..., RM(d(2)) ∩ RNP (d(1)), and RM(d(1)). The union of all inner subregions is

denoted by R̃M(d(1), d(K)). For the left half of the parameter space (δ ≤ 1
2
) the partition is

symmetric and the corresponding union of all inner subregions is denoted by R̃MM(d(1), d(K)).
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d(K)
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RMM (d(1)) RM (d(1))

RNP (d(K))

R̃MM (d(1), d(K)) R̃M (d(1), d(K))

Figure 12: Additive utility. Regions of different player partitions for a network with degree partition
(D1, ..., DK)

Note that for regular networks both R̃M(d, d) and R̃MM(d, d) are empty, hence the pa-
rameter space splits, as before, into three regions – RM(d), RMM(d) and RNP (d). However,
let us specify the player partition in the general case.

Lemma 3 (Additive utility. Player partition). For a network G with degree par-
tition (D1, ..., DK) and a game (δ, λ), the (possibly trivial) partition of players according to
their interactional advantage is

NNP
δ,λ = D1 ∪ ... ∪Dk, N

t
δ,λ = Dk+1 ∪ ... ∪DK

with t = M for δ > 1
2
, t = MM for δ < 1

2
and k = k∗−1λ<λ̃(k∗), where k∗ = argmin

m=1...K
|λ−λ̃(m)|

and λ̃(m) = |(2δ − 1) · d(m)|.23,24

Note that (δ, λ) ∈ RNP (d(K)) impliesN = NNP
δ,λ , and thus for all players the best responses

are their preferred actions. According to Theorem 5, a unique, fully satisfying equilibrium
exists in this case. Similarly, if (δ, λ) ∈ RM(d(1)) (or RMM(d(1))) then N = NM

δ,λ (or NMM
δ,λ

respectively), and thus Theorem 1 (Theorem 3) applies for the equilibrium characterization.
In the remaining regions of games, R̃M(d(1), d(K)) and R̃MM(d(1), d(K)), the best response

strategies partition the set of players into two proper subsets: NNP
δ,λ = D1 ∪ ... ∪ Dk and

NM
δ,λ (or NMM

δ,λ )= Dk+1 ∪ ... ∪ DK with some k ∈ {1, ..., K − 1}. That is, only for players
with sufficiently high degrees interactional advantage (of matching or mismatching) is well-
pronounced, while for players with lower degrees it is never reasonable to deviate from their
preferred actions. Theorems 6 and 7 provide equilibrium characterizations for games from
regions R̃M(d(1), d(K)) and R̃MM(d(1), d(K)) respectively.

23The curve λ̃(m) defines the boundary of RNP (d(m)) for m = 1, ...,K (blue lines in Figure 12).
24Note that k ∈ {0, ...,K}. If k = 0 then N = NM

δ,λ (or NMM
δ,λ ). If k = K then N = NNP

δ,λ .
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Theorem 6 [Additive utility. Equilibria for games with heterogeneous in-
teractional advantage. Matching]
For a network (G, θ̄) with degree partition (D1, ..., DK) and a game (δ, λ) ∈ R̃M(d(1), d(K)):

(i) a (unique) symmetric equilibrium exists if and only if

∀i, j ∈ NNP
δ,λ : θi = θj,

(ii) an asymmetric equilibrium exists if and only if there exists such a partition {S0, S1}
of N that the following conditions are satisfied for θ = 0, 1:

• Sθ ∩N1−θ ∩NNP
δ,λ = ∅,

• ∀i ∈ Sθ ∩N θ ∩NM
δ,λ : |Ni(G) ∩ Sθ| ≥ lδ,λ(di) and

• ∀i ∈ Sθ ∩N1−θ ∩NM
δ,λ : |Ni(G) ∩ Sθ| > di − lδ,λ(di).25

It is noteworthy that existence of symmetric equilibria is no longer guaranteed for
R̃M(d(1), d(K)) as compared to RM(d(1)). The necessary and sufficient condition for existence
of (one) symmetric equilibrium is that all the players that fall into NNP

δ,λ (less connected
players) prefer the same action; in such a case, this action is the symmetric equilibrium
action.

Thus, some consensus equilibria are ruined if additive separability of the utility function is
assumed. Among those can also be efficient equilibria (such that maximize aggregate utility
in the network), like in Figure 13. Here (δ, λ) ∈ RNP (1) ∩ RM(2), implying that player 4
always follows her personal preference in equilibrium, while players 1, 2 and 3 have strong
advantage of matching neighbors’ actions. This nonalignment of the consensus equilibrium
with efficiency is not surprising, since the equilibrium action is ”dictated” by the players
with lower degrees and absolutely regardless of their relative number.

1
1

2
1

3
1

4
0

(a)

δ = 1, λ = 1.5

1
1

2
1

3
1

4
0

(b)

Figure 13: Multiplicative utility: both (a) and (b) are consensus equilibria. Additive utility: (a) is
the unique consensus equilibrium, while (b) is the (unique) efficient action profile.

Theorem 7 [Additive utility. Equilibria for games with heterogeneous in-
teractional advantage. Mismatching]
For a network (G, θ̄) with degree partition (D1, ..., DK) and a game (δ, λ) ∈ R̃MM(d(1), d(K)):

25Note that for derivation of lδ,λ(di) in this and the following theorem, Lemma 1 must be slightly modified:

λ̃(m) = |2δ − 1| · (di − 2m).
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(i) no symmetric equilibria exist,

(ii) an asymmetric equilibrium exists if and only if there exists such a partition {S0, S1}
of N that the following conditions are satisfied for θ = 0, 1:

• Sθ ∩N1−θ ∩NNP
δ,λ = ∅,

• ∀i ∈ Sθ ∩N θ ∩NMM
δ,λ : |Ni(G) ∩ S1−θ| ≥ lδ,λ(di) and

• ∀i ∈ Sθ ∩N1−θ ∩NMM
δ,λ : |Ni(G) ∩ S1−θ| > di − lδ,λ(di).

Thus, for a given network G with degree partition (D1, ..., DK), the qualitative results of
sections 3 and 4 hold for all games from RM(d(1)) ∪RMM(d(1)) ∪RNP (d(K)) and with slight
modifications also hold for the remaining games.

A notable difference from the multiplicative utility case is that social influence is limited
if the utility function is additively separable. Whenever the strength of personal preferences
is high enough (to be precise, higher than d(K) – the maximal possible network utility gain),
the only thing that matters for a player is her own preference. In this case, there is a unique,
fully satisfying equilibrium. Clearly, this difference follows directly from the specification of
the utility function.

Another notable difference is that the in-between region RNP , with the unique and fully
satisfying Nash equilibrium, shrinks as long as connectivity of the network increases. The
intuition behind this phenomenon is the following: as a player becomes more connected,
the relative weight of the personal utility component gets lower for her, which reduces the
possibility of the fully satisfying equilibrium.

6 Conclusions

Our results confirm that the introduction of individual preferences over actions makes an
important difference to equilibrium outcomes. We show that, in most of the cases, the set
of equilibria in a no-preference network is different from the analogous set in a network with
personal preferences, and that there is no inclusion in either direction.

Extending the framework of Hernández et al. (2013), we characterize individual behavior
and equilibria outcomes in a much wider range of games, for both multiplicative and addi-
tive relationship between what we call social (originating from the network) and personal
(originating from individual preferences) utility components.

We demonstrate that under either specification of the utility function there exists a class
of games (including both games of strategic complements and of strategic substitutes) in
which everyone choosing their preferred action is a unique equilibrium, and it is a strong
Nash. At the same time, there are classes of games in which such a fully satisfying action
profile is never an equilibrium, no matter how strong players’ preferences are.

We provide necessary and sufficient conditions for existence of different types of equilibria
for different classes of games on an arbitrary network with an arbitrary preference profile of
the players. If the game is such that matching neighbors’ actions has strong advantage, two
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consensus equilibria always exist. For maintaining different behavior in a network, sufficient
interconnection between two groups of players is important – no matter whether these groups
coincide with preference groups or not. If the game is such that action mismatching has
strong advantage, only different behavior is possible in equilibrium.

A Appendix

Proof of Proposition 1

We will first prove an auxiliary lemma characterizing the best responses of players in a
general form.

Lemma 4. In a game (δ, λ) ∈ RM the best response function of a player i with preference
θi and di neighbors, τi of whom play 1, is

BRi(θi, di, τi) =


1, if τi > τ̃ θiδ,λ(di)

0, if τi < τ̃ θiδ,λ(di)

θi, if τi = τ̃ θiδ,λ(di)

where τ̃ θiδ,λ(di) = δ(2+λ)−1−λθi
(2δ−1)(2+λ) di.

Proof. At the decision threshold the utility the player gets if she chooses action 1 should
equal her utility from choosing action 0. It means that (δτi + (1 − δ)(di − τi))(1 + λθi) =

(δ(di − τi) + (1− δ)τi)(1 + λ(1− θi)), which gives the threshold τ̃ θiδ,λ(di) = δ(2+λ)−1−λθi
(2δ−1)(2+λ) di.

It is straightforward to verify that in the region RM action 0 gives higher utility whenever
τi < τ̃ θiδ,λ(di), while action 1 is preferred whenever τi > τ̃ θiδ,λ(di). If the player is indifferent

(which happens when τi = τ̃ θiδ,λ(di)), then according to the tie-breaking rule she chooses her
preferred action.

Note that for a given game (δ, λ) ∈ RM and degree di we always have τ̃ 0δ,λ(di) > τ̃ 1δ,λ(di),
that is, a player with preference 0 needs more neighbors choosing action 1 in order to switch
her choice from 0 to 1 than a player with preference 1 does. It goes along with the intuition:
a player is more reluctant to switch from her preferred action to an unfavoured one than
vice versa.

Let us now make an important observation that allows to specify further the threshold
values. Since τi can only be a non-negative integer, if we substitute τ̃ 1δ,λ(di) by dτ̃ 1δ,λ(di)e
and τ̃ 0δ,λ(di) by bτ̃ 0δ,λ(di)c in the above best response function, Lemma 4 still holds.26 It
implies that we could focus solely on integer thresholds. Let us denote dτ̃ 1δ,λ(di)e by τ 1δ,λ(di)
and bτ̃ 0δ,λ(di)c by τ 0δ,λ(di). To complete the proof of the proposition we are left to verify the
following:

(i) τ 1δ,λ(di) = l if and only if (δ, λ) ∈ Rl
M(di) for l = 1, ..., L, and

26Here bxc and dxe denote the floor and ceiling of x respectively.
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(ii) τ 0δ,λ(di) = di − τ 1δ,λ(di).

Let us prove the first equivalence.
Note that for every l = 1, ..., L the condition τ 1δ,λ(di) = l is equivalent to l−1 < τ̃ 1δ,λ(di) ≤ l,

which in its turn can be rewritten as a conjunction of two inequalities:{
(δ(2 + λ)− 1− λ) di > (l − 1)(2δ − 1)(2 + λ)

(δ(2 + λ)− 1− λ) di ≤ l(2δ − 1)(2 + λ),

or equivalently, {
δ(di − 2l + 2)(2 + λ) > (di − l + 1)(1 + λ)− l + 1 (1)

δ(di − 2l)(2 + λ) ≤ (di − l)(1 + λ)− l. (2)

Consider any l = 1, ..., L − 1. Since l ≤ L − 1 = ddi
2
e − 1 < di

2
, the above system of

inequalities can be rewritten as
δ >

(di − (l − 1))(1 + λ)− (l − 1)

(di − 2(l − 1))(2 + λ)
(3)

δ ≤ (di − l)(1 + λ)− l
(di − 2l)(2 + λ)

, (4)

which, provided that (δ, λ) ∈ RM , is precisely the condition (δ, λ) ∈ Rl
M(di). Thus, we have

proved (i) for l = 1, ..., L− 1.

Now consider l = L. Since di
2
≤ L < di

2
+ 1, inequality (1) can be rewritten as (3) with

l = L. Further, let us consider two separate cases: when di is even and when it is odd.
If it is even, then L = di

2
and (2) holds trivially. Therefore, τ 1δ,λ(di) = L is equivalent to

condition (3) with l = L and, provided that (δ, λ) ∈ RM , to (δ, λ) ∈ RL
M(di). If di is odd,

then di
2
< L < di

2
+ 1 and inequality (2) can be rewritten as

δ ≥ (di − L)(1 + λ)− L
(di − 2L)(2 + λ)

. (5)

Now τ 1δ,λ(di) = L is equivalent to the conjunction of (5) and (3) with l = L. It is straightfor-
ward to show that the right-hand-side of the former is strictly less than the right-hand-side
of the latter, and thus (5) is redundant. Again, provided that (δ, λ) ∈ RM , we get that
τ 1δ,λ(di) = L is equivalent to (δ, λ) ∈ RL

M(di), which completes the proof of (i).

Finally, (ii) follows trivially: τ 0δ,λ(di) = di − l = di − τ 1δ,λ(di) for every l = 1, ..., L.

Proof of Corollary 1

Fix (δ, λ) ∈ RM and an arbitrary i ∈ N . We will prove the corollary by contraposition. That
is, we will prove the following: @j ∈ Ni(G) s.t. xj = θi ⇒ BRi(θi, di, τi) = 1− θi.

If @j ∈ Ni(G) s.t. xj = θi, then xj = 1 − θi ∀j ∈ Ni(G). Let θi = 0. Then, according
to Proposition 1, τ 0δ,λ(di) = di − l where l ∈ {1, ..., ddi

2
e}, and thus BRi(0, di, di) = 1. Let

θi = 1. In this case τ 1δ,λ(di) = l where l ∈ {1, ..., ddi
2
e}, and thus BRi(1, di, 0) = 0. In either

case, BRi(θi, di, τi) = 1− θi, what was to be shown.
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Proof of Corollary 2

Fix a degree di of a player and let (δ, λ) ∈ Rl
M(di). For the sake of conciseness, let us denote

(di−l)(1+λ)−l
(di−2l)(2+λ) by δl(di) for l = 0, ..., L− 1 and set δL(di) = 1.

We first consider l = 1, ..., L − 1. In this case, by the definition of the partition of RM ,
(δ, λ) ∈ Rl

M(di) is equivalent to δl−1(di) < δ ≤ δl(di).
First, we need to prove that it implies δl−1(di + 1) < δ ≤ δl+1(di + 1). Since δl(di) is

decreasing in di for l = 1, ..., L − 1, the first inequality is straightforward: δl−1(di + 1) <
δl−1(di) < δ. The second inequality follows from the fact that the difference δl+1(di+1)−δl(di)
is positive for l = 1, ..., L(di)− 1.

Next, we need to prove that δl−1(di) < δ ≤ δl(di) implies δl−2(di − 1) < δ ≤ δl(di − 1).
Again, since δl(di) is decreasing in di, it follows that δl(di) < δl(di − 1), and thus δ ≤
δl(di − 1) holds true. The remaining inequality follows from the fact that the difference
δl−1(di)− δl−2(di − 1) is positive.

Now we consider the second case, l = L. We need to prove that δL−1(di) < δ ≤ 1 implies
δL−1(di + 1) < δ ≤ 1 and δL−2(di − 1) < δ ≤ 1. Similarly to the above, the first implication
is a consequence of the fact that δl(di) is decreasing in di for l = 1, ..., L− 1, and the second
implication follows from positivity of δL−1(di)− δL−2(di − 1).

Proof of Proposition 2

Similar to the proof of Proposition 1, we will first prove an auxiliary lemma characterizing
the best responses of players in a general form.

Lemma 5. In a game (δ, λ) ∈ RMM the best response function of a player i with preference
θi and di neighbors, τi of whom play 1, is

BRi(θi, di, τi) =


1, if τi < τ̃ θiδ,λ(di)

0, if τi > τ̃ θiδ,λ(di)

θi, if τi = τ̃ θiδ,λ(di)

where τ̃ θiδ,λ(di) = δ(2+λ)−1−λθi
(2δ−1)(2+λ) di.

Proof. See the proof of Lemma 4 for derivation of the decision threshold τ̃ θiδ,λ(di). It can be

verified that in RMM action 1 gives higher utility whenever τi < τ̃ θiδ,λ(di) and action 0 does

so whenever τi > τ̃ θiδ,λ(di). The tie-breaking rule manages the remaining case of τi = τ̃ θiδ,λ(di),
in which the preferred action θi is chosen.

Compared to Lemma 4, the relationship between the thresholds changes: now τ̃ 0δ,λ(di) <
τ̃ 1δ,λ(di), that is a player with preference 0 needs fewer neighbors choosing action 1 in order
to switch her choice from 1 to 0, since now she is switching to her preferred action. If we
substitute τ̃ 1δ,λ(di) by bτ̃ 1δ,λ(di)c and τ̃ 0δ,λ(di) by dτ̃ 0δ,λ(di)e in the above best response function,
Lemma 5 still holds, so we could focus solely on integer thresholds.

The rest of the proof of Proposition 2 is analogous to the above proof of Proposition 1.
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Proof of Corollary 3

The proof uses contraposition, analogously to the proof of Corollary 1. Fix (δ, λ) ∈ RMM and
an arbitrary i ∈ N . If @j ∈ Ni(G) s.t. xj = 1 − θi, then xj = θi ∀j ∈ Ni(G). According to
Proposition 2, τ 0δ,λ(di) = l and τ 1δ,λ(di) = di− l where l ∈ {1, ..., ddi

2
e}. Then BRi(0, di, 0) = 1

and BRi(1, di, di) = 0, that is, in either case BRi(θi, di, τi) = 1− θi.

Proof of Lemma 1

(i) Let us fix a player’s degree di. As it follows from the definition of the partition of
RM (see subsection 3.1), the curve separating subregions Rm

M(di) and Rm+1
M (di) is δ =

(di−m)(1+λ)−m
(di−2m)(2+λ)

, or equivalently, λ = (2δ−1)(di−2m)
(1−δ)(di−2m)+m

on the domain δ ∈ [1
2
; 1], which is

exactly the curve λ̃(m) for δ ≥ 1
2
. Then l∗ = argmin

m=1...L
|λ − λ̃(m)| corresponds to the

separating curve that lies closest to a given λ (and separates Rl∗
M(di) and Rl∗+1

M (di)). It
can be easily seen from Figure 2 that if λ lies above this curve, it belongs to subregion
Rl∗
M(di), and if it lies below this curve, it belongs to the next subregion Rl∗+1

M (di).
Finally, let us note that λ̃(L) ≤ 0, that is why λ can never lie below the curve λ̃(L),
and thus 1 ≤ lδ,λ(di) ≤ L.

The proof for RMM is analogous. For a given degree di, the curve separating subregions
Rm
MM(di) and Rm+1

MM (di) is δ = di−(2+λ)m
(di−2m)(2+λ)

, or equivalently, λ = (1−2δ)(di−2m)
δ(di−2m)+m

on the

domain δ ∈ [0; 1
2
], which is the curve λ̃(m) for δ ≤ 1

2
. Then l∗ corresponds to the

separating curve that lies closest to a given λ. If λ is above this curve, it belongs to
subregion Rl∗

MM(di), and if it is below – to subregion Rl∗+1
MM(di). And again, λ̃(L) ≤ 0,

thus λ can never lie below the curve λ̃(L), implying 1 ≤ lδ,λ(di) ≤ L.

(ii) The proof follows directly from Proposition 3.

Proof of Theorem 1

(i) Take an arbitrary (connected) network G with a preference profile θ̄ and consider an
action profile x̄ = (x1, ..., xn). If x̄ is symmetric, then for every player i all her neighbors
choose the same action: ∀i ∈ N ∀j ∈ Ni(G) xj = x∗ with some x∗ ∈ {0, 1}. If x∗ = 0
then τi = 0, and according to Proposition 1 player i’s best response is also 0 (since for
any (δ, λ) ∈ RM the threshold τ θiδ,λ(di) ≥ 1). If x∗ = 1 then τi = di, and according to

Proposition 1 player i’s best response is 1 (since the threshold τ θiδ,λ(di) ≤ di − 1). As
the above is true for all i ∈ N , x̄ is an equilibrium.

(ii) Necessity. Fix (δ, λ) ∈ RM , a network (G, θ̄) and let x̄ = (x1, ..., xn) be an asymmetric

equilibrium. For θ = 0, 1 set Sθ := {i ∈ N | xi = θ}. Since x̄ is asymmetric, both S0

and S1 are nonempty and thus form a partition of N . We are left to prove that this
partition satisfies the conditions of the theorem:

∀i ∈ Sθ ∩N θ : |Ni(G) ∩ Sθ| ≥ lδ,λ(di) and
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∀i ∈ Sθ ∩N1−θ : |Ni(G) ∩ Sθ| > di − lδ,λ(di).
First, take a player i ∈ S1 ∩ N θ. That is, xi = 1 and θi = θ with some θ ∈ {0, 1}.
According to Proposition 1, BRi(θ, di, τi) = 1 iff τi ≥ τ θδ,λ(di) (with strict inequality if
θ = 0). The same proposition implies that τ 1δ,λ(di) = lδ,λ(di) and τ 0δ,λ(di) = di− lδ,λ(di).
Since |Ni(G)∩S1| = τi, it follows that |Ni(G)∩S1| ≥ lδ,λ(di) for θ = 1 and |Ni(G)∩S1| >
di − lδ,λ(di) for θ = 0.

Second, take a player i ∈ S0 ∩ N θ. That is, xi = 0 and θi = θ with some θ ∈ {0, 1}.
Similarly, Proposition 1 implies that BRi(θ, di, τi) = 0 iff τi ≤ τ θδ,λ(di) (with strict

inequality if θ = 1), which is equivalent to di− τi ≥ di− τ θδ,λ(di) (strict if θ = 1). Recall
that τ 1δ,λ(di) = lδ,λ(di) and τ 0δ,λ(di) = di− lδ,λ(di). Since |Ni(G)∩S0| = di− τi, it follows
that |Ni(G) ∩ S0| ≥ lδ,λ(di) for θ = 0 and |Ni(G) ∩ S0| > di − lδ,λ(di) for θ = 1, which
completes the proof.

Sufficiency. Fix (δ, λ) ∈ RM and a network (G, θ̄). Assume that there exists a partition
{S0, S1} of N satisfying the conditions of the theorem and let us prove that an asym-
metric equilibrium exists. Consider an action profile x̄ = (x1, ..., xn) such that xi = 0
for i ∈ S0 and xi = 1 for i ∈ S1. Since {S0, S1} is a partition of N , both S0 and S1

are nonempty, and thus x̄ is an asymmetric action profile. We are left to prove that it
is an equilibrium.

Take a player i ∈ S0. There are two possibilities: either i ∈ N0 or i ∈ N1. If
i ∈ S0 ∩ N0 then it must be that |Ni(G) ∩ S0| ≥ lδ,λ(di), which is equivalent to
di − τi ≥ di − τ 0δ,λ(di) (since τ 0δ,λ(di) = di − lδ,λ(di), according to Proposition 1). Then
τi ≤ τ 0δ,λ(di) and, again according to Proposition 1, BRi(0, di, τi) = 0. That is, the
player i has no incentive to deviate from xi = 0. Alternatively, if i ∈ S0 ∩N1 then it
must be that |Ni(G) ∩ S0| > di − lδ,λ(di), which is equivalent to di − τi > di − τ 1δ,λ(di)
(recall, τ 1δ,λ(di) = lδ,λ(di)), and thus τi < τ 1δ,λ(di). Proposition 1 implies in this case that
BRi(1, di, τi) = 0. And again, the player i has no incentive to deviate from xi = 0.

Now take a player i ∈ S1. Either i ∈ N0 or i ∈ N1 must be true. If i ∈ S1 ∩N1 then
it must be that |Ni(G)∩S1| ≥ lδ,λ(di), which is equivalent to τi ≥ τ 1δ,λ(di). Proposition
1 implies that BRi(1, di, τi) = 1, and thus i has no incentive to deviate from xi = 1.
If i ∈ S1 ∩N0 then it must be that |Ni(G) ∩ S1| > di − lδ,λ(di), which is equivalent to
τi > τ 0δ,λ(di). According to Proposition 1, BRi(0, di, τi) = 1, implying that in this case
as well i has no incentive to deviate from xi = 1.

Since for all players their actions in x̄ are the best responses, x̄ is an asymmetric
equilibrium.

Proof of Corollary 5

We will prove that the necessary and sufficient conditions for existence of an asymmet-
ric equilibrium of this corollary are equivalent to the conditions of part (ii) of Theorem
1. Take a network (G, θ̄) with a degree partition (D1, ..., DM), a game (δ, λ) ∈ RM and
a partition {S0, S1} of N . Fix some θ ∈ {0, 1}. We will prove that the (possibly trivial)
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partition {Sθ ∩ N θ ∩ D1, ..., S
θ ∩ N θ ∩ DM , S

θ ∩ N1−θ ∩ D1, ..., S
θ ∩ N1−θ ∩ DM} of Sθ is(

lδ,λ(d(1))

d(1)
, ...,

lδ,λ(d(M))

d(M)
, 1− lδ,λ(d(1))−1

d(1)
, ..., 1− lδ,λ(d(M))−1

d(M)

)
-cohesive if and only if the two condi-

tions are satisfied:

∀i ∈ Sθ ∩N θ : |Ni(G) ∩ Sθ| ≥ lδ,λ(di),
∀i ∈ Sθ ∩N1−θ : |Ni(G) ∩ Sθ| > di − lδ,λ(di).

(6)

First, let the above-mentioned partition be (r1, ..., r2M)-cohesive, where rm =
lδ,λ(d(m))

d(m)
for

m = 1, ...,M , and rm = 1− lδ,λ(d(m−M))−1
d(m−M)

for m = M + 1, ..., 2M . According to Definition 3,

it implies that for m = 1, ...,M :

∀i ∈ Sθ ∩N θ ∩Dm: |Ni(G)∩Sθ|
|Ni(G)| ≥

lδ,λ(d(m))

d(m)
,

∀i ∈ Sθ ∩N1−θ ∩Dm: |Ni(G)∩Sθ|
|Ni(G)| ≥ 1− lδ,λ(d(m))−1

d(m)
.

(7)

Since i ∈ Dm, we can substitute d(m) by di in the above conditions. Further, we group all
the conditions for m = 1, ...,M together, since now they do not depend on m. Finally, noting
that |Ni(G)| = di by definition, we multiply all the conditions by di and get the following:

∀i ∈ Sθ ∩N θ: |Ni(G) ∩ Sθ| ≥ lδ,λ(di),
∀i ∈ Sθ ∩N1−θ: |Ni(G) ∩ Sθ| ≥ di − lδ,λ(di) + 1.

(8)

To see that the resulting conditions (8) are exactly the conditions (6), let us remark that
both |Ni(G) ∩ Sθ| and di − lδ,λ(di) are integer expressions. This completes the first part of
the proof.

Second, let conditions (6) be satisfied. We will prove that the partition
{Sθ ∩ N θ ∩ D1, ..., S

θ ∩ N θ ∩ DM , S
θ ∩ N1−θ ∩ D1, ..., S

θ ∩ N1−θ ∩ DM} of Sθ is(
lδ,λ(d(1))

d(1)
, ...,

lδ,λ(d(M))

d(M)
, 1− lδ,λ(d(1))−1

d(1)
, ..., 1− lδ,λ(d(M))−1

d(M)

)
-cohesive. It suffices to prove that con-

ditions (7) hold for m = 1, ...,M .
As it is mentioned in the first part of the proof, conditions (6) are equivalent to condi-

tions (8). Let us divide them by di and then group the players according to their degrees
(D1, ..., DM), which allows to substitute di by the corresponding d(m) in each degree group
m = 1, ...,M . We get conditions (7), what was to be shown.

Proof of Theorem 2

Necessity. Fix (δ, λ) ∈ RM . Suppose that the fully satisfying action profile x̄ = (θ1, ..., θn)
is an equilibrium, but for some player i the condition on her neighbors does not hold:
|Ni(G) ∩N θi | = |{j ∈ Ni(G) : θj = θi}| < lδ,λ(di). Since xj = θj ∀j ∈ N , it implies
|{j ∈ Ni(G) : xj = θi}| < lδ,λ(di).

If θi = 0, the last inequality is equivalent to di−τi < lδ,λ(di), or τi > di− lδ,λ(di) = τ 0δ,λ(di)
(see Proposition 1 for the last equality), and thus BRi(0, di, τi) = 1 6= θi (again, from
Proposition 1). If θi = 1 then τi < lδ,λ(di) = τ 1δ,λ(di), implying BRi(1, di, τi) = 0 6= θi.
In either case, the player i has an incentive to deviate from her preferred action. Hence,
x̄ = (θ1, ..., θn) is not an equilibrium.
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Sufficiency. Fix (δ, λ) ∈ RM and suppose that the condition on neighbors’ preferences

holds: |Ni(G) ∩ N θi | = |{j ∈ Ni(G) : θj = θi}| ≥ lδ,λ(di) ∀i ∈ N . Let us check if the fully
satisfying action profile is an equilibrium. Since xj = θj ∀j ∈ N , the above condition implies
|{j ∈ Ni(G) : xj = θi}| ≥ lδ,λ(di) ∀i ∈ N .

Take an arbitrary i ∈ N . If θi = 0, the above becomes di − τi ≥ lδ,λ(di), or τi ≤
di − lδ,λ(di) = τ 0δ,λ(di), and Proposition 1 implies BRi(0, di, τi) = 0. If θi = 1 then τi ≥
lδ,λ(di) = τ 1δ,λ(di), and thus BRi(1, di, τi) = 1. In either case, BRi(θi, di, τi) = θi. Since it
holds for any i ∈ N , the fully satisfying action profile is indeed an equilibrium.

Proof of Theorem 3

(i) For an arbitrary network G with a preference profile θ̄ consider a symmetric action
profile x̄. Fix a player i. Since the action profile is symmetric, all i’s neighbors choose
the same action: ∀j ∈ Ni(G) xj = x∗ with some x∗ ∈ {0, 1}. If x∗ = 0 then τi = 0,
and according to Proposition 2 player i’s best response is 1 (for any (δ, λ) ∈ RMM the
threshold τ θiδ,λ(di) ≥ 1). If x∗ = 1 then τi = di, and according to Proposition 2 player i’s

best response is 0 (the threshold τ θiδ,λ(di) ≤ di − 1). Since i has an incentive to deviate
from x∗, x̄ = (x∗, ..., x∗) cannot be an equilibrium action profile.

(ii) The proof builds directly on Proposition 2 and is analogous to the proof of part (ii) of
Theorem 1.

Proof of Theorem 4

The proof is analogous to the proof of Theorem 2 and uses the results of Proposition 2.

Proof of Proposition 4

Without loss of generality, let player 1 be the central one in a star. Then d1 ≥ 2 and di = 1
for i = 2, ..., n. Let x̄ be an equilibrium and consider an arbitrary i ∈ {2, ..., n}.

(i) In a game with strong advantage of matching, if x1 = θi then xi = θi, and if x1 = 1−θi
then xi = 1 − θi (see Corollary 1). That is, i matches the action of the central
player regardless of whether this action is her preferred one. Since it is true for all
i ∈ {2, ..., n}, x̄ is symmetric.

(ii) In a game with strong advantage of mismatching, if x1 = 1 − θi then xi = θi, and if
x1 = θi then xi = 1− θi (see Corollary 3). That is, i always mismatches the action of
the central player. Since it is true for all i ∈ {2, ..., n}, there are two possible equilibria:
x̄ = (0, 1, ..., 1) and x̄ = (1, 0, ..., 0).
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Proof of Proposition 5

(i) Fix some (δ, λ) ∈ RM .

Necessity. Let x̄ be an asymmetric equilibrium. Then, since players are arranged in
a circle, there must be four players such that xi 6= xi+1 = xj 6= xj+1. Note that all
players must be distinct (i.e. i+ 1 6= j), otherwise xj−1 = xj+1 6= xj, which contradicts
the best response behavior for player j. Moreover, it must be that xk−1 6= xk+1

∀k ∈ {i, i + 1, j, j + 1}, otherwise it would contradict the best response behavior for
player k. Due to the tie-breaking rule, xk = θk, and hence θi 6= θi+1 = θj 6= θj+1.

Sufficiency. Let such players i, i + 1, j and j + 1 exist: without loss of generality,
θi = θj+1 = 0 and θi+1 = θj = 1. Consider an action profile that assigns the following
actions to players: x1 = ... = xi = xj+1 = ... = xn = 0 and xi+1 = ... = xj = 1. Such
an action profile is an asymmetric equilibrium.

Uniqueness. If another 4-tuple of players {l, l + 1,m,m+ 1} satisfies θl 6= θl+1 = θm 6=
θm+1, then the action profile x̄′ in which x′1 = ... = x′l = x′m+1 = ... = x′n = θl and
x′l+1 = ... = x′m = θl+1 is an asymmetric equilibrium that is different from the original
one (see Figure 7 for an illustration). Thus, uniqueness of such a 4-tuple of players is
necessary for uniqueness of an asymmetric equilibrium.

Now let us prove the opposite: if another asymmetric equilibrium exists, then there
must be another 4-tuple of players satisfying the conditions of the proposition. For
a circle network, in any asymmetric equilibrium there must be four players such that
xi 6= xi+1 = xj 6= xj+1. If x̄′ is an asymmetric equilibrium different from x̄, there
must be a different 4-tuple of players: x′l 6= x′l+1 = x′m 6= x′m+1. As it follows
from the necessity part of the proof, xk = θk ∀k ∈ {i, i + 1, j, j + 1} and x′k = θk
∀k ∈ {l, l + 1,m,m+ 1}. Hence, two different asymmetric equilibria imply two differ-
ent 4-tuples of players satisfying the conditions of the proposition.

(ii) Fix some (δ, λ) ∈ RMM .

Existence. Let n be even. Then an action profile with alternating actions, xk = 0 for
even k and xk = 1 for odd k, is always an equilibrium.

Let n be odd. Then there must exist two neighbors, denote them i and i + 1, with
the same preference. Without loss of generality, let i be odd and let θi = θi+1 = 0.
Consider the following action profile: xk = 0 for odd k ≤ i and for even k ≥ i + 1
and xk = 1 for all other players. This is an action profile with alternating actions,
except for those of players i and i + 1. It is easy to see that such a profile is a Nash
equilibrium.

Uniqueness. For even n there always exist at least two asymmetric equilibria (those
with alternating actions), regardless of the preference profile.

Let n be odd. Then ∃i ∈ N s.t. θi = θi+1. Without loss of generality, let i be odd.
The action profile x̄ in which xk = θi for odd k ≤ i and even k ≥ i+ 1 and xk = 1− θi
for all other players is an equilibrium (see the proof of the existence part). Assume
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that ∃j ∈ N \ {i} s.t. θj = θj+1 and, without loss of generality, let j also be odd.
Then the action profile x̄′ in which x′k = θj for odd k ≤ j and even k ≥ j + 1 and
x′k = 1 − θj for all other players is also an asymmetric equilibrium, and it is different
from x̄. Thus, uniqueness of the pair of neighbors with the same preference is necessary
for equilibrium uniqueness.

Finally, we need to prove that multiplicity of equilibria implies multiplicity of such
pairs of same-preference neighbors. Let x̄ be an equilibrium. Since n is odd, ∃i ∈ N
s.t. xi = xi+1. Note that xi−1 6= xi+1 and xi 6= xi+2, otherwise it would contradict
the best response behavior for players i and i+ 1 respectively. Due to the tie-breaking
rule, xi = θi and xi+1 = θi+1. Hence, θi = θi+1. If x̄′ is a different equilibrium, it must
be that ∃j ∈ N \ {i} s.t. x′j = x′j+1. Thus, ∃j ∈ N \ {i} s.t. θj = θj+1, what has to be
shown.

Proof of Proposition 6

(i) Fix a game (δ, λ) ∈ RM . Every player has n − 1 neighbors and needs lδ,λ(n − 1)
companions to choose her preferred action (see Lemma 1). For brevity, we will drop
the subscript and the argument of lδ,λ(n− 1) until the end of this proof.

Necessity. Let x̄ be an asymmetric equilibrium and Sθ = {i ∈ N | xi = θ} for θ = 0, 1.
Obviously, both subsets are nonempty and S0 ∪ S1 = N . We need to prove that
|N θ| ≥ l + 1 for θ = 0, 1.

Without loss of generality, suppose that |S0| ≤ l. Then |{j ∈ Ni(G) : xj = 0}| ≤
l − 1 ∀i ∈ S0. If θi = 0 for some i ∈ S0, it would contradict i’s best response to her
neighbors’ actions, hence θi = 1 ∀i ∈ S0. Then |S1| ≤ l − 1 (otherwise players in S0

would switch to action 1). It implies that the total number of players n ≤ 2l − 1.
However, it contradicts the fact that l ≤ dn−1

2
e ≤ n

2
. Thus, by contradiction we proved

that |Sθ| ≥ l + 1 for θ = 0, 1.

Consequently, for all i ∈ N both |{j ∈ Ni(G) : xj = 0}| ≥ l and |{j ∈ Ni(G) : xj = 1}|
≥ l, implying xi = θi. Together with the previous conclusion about cardinality of S0

and S1, it implies in its turn that |N θ| ≥ l + 1 for θ = 0, 1. Obviously, it also proves
uniqueness of an asymmetric equilibrium.

Sufficiency. Let |N θ| ≥ l + 1 for θ = 0, 1 and consider a fully satisfying action profile
x̄, in which xi = θi ∀i ∈ N . Obviously, this action profile is asymmetric and it is an
equilibrium, since the companion requirement is satisfied.

(ii) Consider a game (δ, λ) ∈ RMM . Every player has n− 1 neighbors and needs lδ,λ(n− 1)
opponents to choose her preferred action (Lemma 1). Again, for brevity we drop
the subscript and the argument of lδ,λ(n − 1) in what follows. We also denote Sθ =
{i ∈ N | xi = θ} for θ = 0, 1.

Since l ≤ dn−1
2
e ≤ n

2
, it must be that either n = 2l or n > 2l. Let us consider the first

case, n = 2l. Let x̄ be such an action profile that |S0| = |S1| = l. In this profile, if
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xi = θi for a player i then she has l opponents, otherwise she has l−1 opponents. Since
no player has an incentive to deviate, x̄ is an (asymmetric) equilibrium. Obviously,
regardless of the preference profile, many asymmetric equilibria are possible in this
case.

Let us consider now the second case, n > 2l, which we split into two subcases: |N θ| < l
for some θ ∈ {0, 1} and |N θ| ≥ l ∀θ ∈ {0, 1}.
Consider the first subcase. Without loss of generality, let |N0| < l, and hence |N1| > l.
Let x̄ be such an action profile that N0 ⊆ S0 and |S0| = l. In this profile, every i ∈ N0

has more than l opponents (since |S1| > l), every i ∈ N1 ∩ S0 has l − 1 opponents
and every i ∈ N1 ∩ S1 has l opponents. Again, no player has an incentive to deviate,
hence x̄ is an equilibrium. Obviously, multiplicity of equilibria is also a case here, since
|N0| < |S0|.
Now consider the second subcase, that is, both |N0| ≥ l and |N1| ≥ l. Let xi = θi
∀i ∈ N . Since the opponent requirement is satisfied, this fully satisfying action profile
is an equilibrium. This completes the proof of existence of asymmetric equilibria in
games (δ, λ) ∈ RMM .

Finally, let us prove that in this last subcase the fully satisfying equilibrium is a unique
equilibrium. Assume the contrary: there is another equilibrium x̄, in which xi 6= θi
for some i ∈ N . Without loss of generality, let θi = 0. Then it must be that |S1| ≤ l
(inequality is not strict, since i is also in S1). It follows that |S0| > l, and since any
j ∈ N1 has sufficiently many opponents, xj = θj ∀j ∈ N1, i.e. N1 ⊆ S1. As |N1| ≥ l
and i ∈ S1 \ N1, it must be that |S1| > l, which contradicts |S1| ≤ l. Thus, x̄ is not
an equilibrium.

Proof of Proposition 7

(i) Fix (δ, λ) ∈ RM . Since every player has d neighbors, l := l(δ,λ)(d) is the number of
companions every player needs in order to follow her preference. Suppose, ∀θ ∈ {0, 1}
∃Xθ ⊆ N θ such that |Xθ| ≥ l + 1 and G[Xθ] is complete, i.e. Gij = 1 ∀i, j ∈ Xθ.
Consider an action profile x̄ in which xi = θi ∀i ∈ X0 ∪ X1 and xi = BRi(θi, d, τi)
∀i ∈ N \ (X0 ∪ X1). Since every i ∈ X0 ∪ X1 has at least l companions, θi is her
best response action. Hence, actions in x̄ are the best responses for all players, which
implies that x̄ is an (asymmetric) equilibrium.

(ii) Fix (δ, λ) ∈ RMM . Denote by l := l(δ,λ)(d) the number of opponents a player needs
in order to follow her preference. Suppose, ∀θ ∈ {0, 1} ∃Xθ ⊆ N θ such that |Xθ| ≥
l(δ,λ)(d) and K[X0, X1] ⊆ G, i.e. Gij = 1 ∀i ∈ X0 ∀j ∈ X1. Consider an action profile
x̄ in which xi = θi ∀i ∈ X0 ∪ X1 and xi = BRi(θi, d, τi) ∀i ∈ N \ (X0 ∪ X1). Every
player i ∈ X0∪X1 has at least l opponents, thus θi is her best response. Since no player
has an incentive to deviate from her action in x̄, it is an (asymmetric) equilibrium.
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Proof of Lemma 3

Note that the curve λ̃(m) defines the boundary of RNP (d(m)). For a graph with degree

partition (D1, ..., DK) there are K such curves, one for each degree. Obviously, λ̃(1) ≤ ... ≤
λ̃(K). Among these curves, λ̃(k∗) is the one that lies closest to a given λ.

If δ = 1
2

then neither matching nor mismatching gives players interactional advantage,

hence N = NNP
δ,λ . In the rest of the proof we let δ 6= 1

2
, which implies λ̃(1) < ... < λ̃(K).

If λ ≥ λ̃(k∗), then λ ≥ λ̃(m) for m = 1, ..., k∗, and λ < λ̃(m) for m = k∗+1, ..., K (strictly,
since λ̃(k∗) is the closest to λ curve). Recall that NNP

δ,λ = {i ∈ N : (δ, λ) ∈ RNP (di)} =
{i ∈ N : λ ≥ |(2δ − 1) · di|}. By the definition of the degree partition, di = d(m) for some
m ∈ {1, ..., K} if and only if i ∈ Dm. Hence, NNP

δ,λ = D1 ∪ ... ∪Dk∗ . The remaining players

Dk∗+1 ∪ ... ∪DK belong to NM
δ,λ if δ > 1

2
, or to NMM

δ,λ if δ < 1
2
.

If λ < λ̃(k∗), then λ > λ̃(m) for m = 1, ..., k∗− 1, and λ < λ̃(m) for m = k∗, ..., K. Thus,
NNP
δ,λ = D1 ∪ ... ∪Dk∗−1 and the remaining players belong to either NM

δ,λ or NMM
δ,λ .

Proof of Theorem 6

(i) First, note that NNP
δ,λ 6= ∅ for games (δ, λ) ∈ R̃M(d(1), d(K)) and take some i ∈ NNP

δ,λ .
According to Proposition 3, in any equilibrium xi = θi, thus at most one symmetric
equilibrium is possible.

Necessity. Suppose the contrary holds: i, j ∈ NNP
δ,λ and θi 6= θj. In any equilibrium

xi = θi and xj = θj, hence xi 6= xj, which contradicts the definition of a symmetric
equilibrium.

Sufficiency. Suppose the condition of the theorem holds. Without loss of generality,

let θi = 0 ∀i ∈ NNP
δ,λ . Then x̄ = (0, ..., 0) is an equilibrium action profile, since no

player has an incentive to deviate: xi = 0 is the unique best response for i ∈ NNP
δ,λ

(Proposition 3), and for i ∈ NM
δ,λ see the proof of part (i) of Theorem 1.

(ii) Fix a network (G, θ̄) with degree partition (D1, ..., DK) and a game (δ, λ) ∈ R̃M(d(1), d(K)).
The proof is analogous to the proof of part (ii) of Theorem 1 with the only difference:
now NNP

δ,λ 6= ∅.

Necessity. Let x̄ = (x1, ..., xn) be an asymmetric equilibrium and set Sθ := {i ∈ N | xi =
θ} for θ = 0, 1. Since x̄ is asymmetric, both S0 and S1 are nonempty and thus form
a partition of N . We need to prove that this partition satisfies the conditions of the
theorem.

Since i ∈ NNP
δ,λ implies i ∈ Sθ ∩N θ for some θ ∈ {0, 1}, the first condition must hold:

Sθ ∩ N1−θ ∩ NNP
δ,λ = ∅. Moreover, (δ, λ) ∈ RM(di) for all players i ∈ NM

δ,λ, thus the
second and third conditions can be proved as in Theorem 1.

Sufficiency. Assume, there exists a partition {S0, S1} of N satisfying the conditions of
the theorem, and consider an action profile x̄ = (x1, ..., xn) such that xi = 0 for i ∈ S0
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and xi = 1 for i ∈ S1. Since {S0, S1} is a partition of N , both S0 and S1 are nonempty,
and thus x̄ is an asymmetric action profile. We need to prove that it is an equilibrium.

The first condition implies that xi = θi for any i ∈ NNP
δ,λ , that is, players from NNP

δ,λ

have no incentive to deviate from their actions in x̄. Neither do players from NM
δ,λ,

as (δ, λ) ∈ RM(di) for every i ∈ NM
δ,λ and thus the same reasoning as in the proof of

Theorem 1 applies.

Proof of Theorem 7

(i) Note that NMM
δ,λ 6= ∅ for games (δ, λ) ∈ R̃MM(d(1), d(K)) and take some i ∈ NMM

δ,λ .
Suppose a symmetric equilibrium exists. Then all i’s neighbors choose the same action
in this equilibrium: ∀j ∈ Ni(G) xj = x∗ with some x∗ ∈ {0, 1}. The rest of the proof
coincides with the proof of part (i) of Theorem 3.

(ii) The proof builds on Theorem 3 and is analogous to the proof of Theorem 6, part (ii).
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