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1 Introduction

A recent but sizable literature points to a permanent—or, at least very persistent—decline in the “natural”

rate of interest in advanced economies (Holston et al. 2017; Laubach and Williams 2016). Various likely

sources of that decline are discussed, including a lower trend growth rate of productivity (Gordon, 2015),

demographic factors (Eggertsson et al. 2017), and an enhanced preference for safe and liquid assets (Ca-

ballero and Farhi 2018; Del Negro et al. 2017; Summers 2014).

A lower steady-state real interest rate matters for monetary policy. Given average inflation, a lower

steady-state real rate will cause the nominal interest rate to hit its zero lower bound (ZLB) more frequently,

hampering the ability of monetary policy to stabilize the economy and bringing about more frequent (and

potentially protracted) episodes of recession and below-target inflation. The low interest rate environment

is a key factor behind the Federal Reserve’s current review of its monetary policy framework (see Clarida

2019; Fuhrer et al. 2018).1

In the face of that risk, several prominent economists forcefully argue in favor of raising the inflation

target (see, among others, Ball 2014; Blanchard et al. 2010; and, with qualifications, Williams 2016). Since a

lower natural rate of interest is conducive to a higher ZLB incidence, one would expect a higher inflation

target to be desirable as, all else being equal, a higher inflation target increases the steady-state nominal

interest rate and reduces the ZLB incidence. But the answer to the practical question of how much the

target should be increased is not obvious. Indeed, the benefit of providing a better hedge against hitting

the ZLB, which is an infrequent event, comes at a cost of higher steady-state inflation, which induces

permanent costs, as Bernanke (2016), among others, argues. The answer to this question thus requires us

to assess how the tradeoff between the incidence of the ZLB and the welfare cost induced by steady-state

inflation is modified when the natural rate of interest decreases. While the decrease in the natural rate of

interest is emphasized in the recent literature, such assessment has received surprisingly little attention.

This paper contributes to this debate by asking four questions. First, to what extent does a lower steady-

state real interest rate (r?) call for a higher optimal inflation target (π?)? Second, does the source of decline

in r? matter? Third, how does parameter uncertainty affect the (r?, π?) curve? Fourth, to what extent do

the strategy and rules followed by the central bank alter the relation between r? and π?? We focus on the

US economy, but the issues we investigate equally apply to other advanced economies—in particular the

euro area—because the decline in r? appears to be a global phenomenon (see Brand et al. 2018; Del Negro

et al. 2018; Rachel and Summers 2019).2

We provide answers to these questions using a structural, empirically estimated macroeconomic model.

Our main findings can be summarized as follows: (1) the relation between r? and π? is downward slop-

ing, but not necessarily, in general, one for one; (2) in the vicinity of the pre-crisis values for r?, the slope of

1Note that the numerical value of the inflation target is not part of that review.
2We provide a comparable analysis for the euro area in a work in progress.

2



the (r?, π?) locus is close to −1, though slightly less in absolute value; the relation is largely robust to the

underlying source of variation in r? for a plausible range of r? values; (3) the slope of the (r?, π?) locus

remains close to −1 when the central bank is uncertain about the parameters of the model characterizing

the economy, including r?; and (4) the slope of the curve is also robust to various alterations of the mon-

etary policy rule, albeit not to considering rules such as price level targeting, which consist in credibly

committing to making up for past deviations from the inflation target.

Our results are obtained from extensive simulations of a New Keynesian DSGE model estimated for the

US over a Great Moderation sample.3 The framework features (1) price stickiness and partial indexation

of prices to trend inflation, (2) wage stickiness and partial indexation of wages to both inflation and pro-

ductivity, and (3) a ZLB constraint on the nominal interest rate. The first two features imply the presence

of potentially substantial costs associated with non-zero steady-state inflation. The third feature warrants

a strictly positive inflation rate, in order to mitigate the incidence and adverse effects of the ZLB. To our

knowledge, these three features have not been jointly taken into account in previous analyses of optimal

inflation.

Our analysis focuses on the tradeoff between the costs attached to the probability of hitting the ZLB

and the costs induced by a positive steady-state inflation rate for a given monetary policy strategy. In the

baseline, monetary policy follows an inertial interest rate rule estimated using pre-crisis data. Importantly,

the specification of the policy rule implies that interest rates remain “low for long” after the end of a

ZLB episode and that private agents expect the central bank to follow this rule. This implies that some

monetary accommodation can be provided despite the ZLB constraint. This specification can thus be seen

as a parsimonious way to factor in the effects of non-conventional policies that the Fed implemented during

the ZLB period in our analysis.

According to our simulations, the optimal inflation target obtained when the policymaker is assumed

to know the economy’s parameters with certainty (and taken to correspond to the mean of the posterior

distribution) is around 2% (in annual terms). This result is obtained in an environment with a relatively

low, 6% probability of hitting the ZLB when the target for the inflation rate is set at the historical mean of

inflation, and given the size of the shocks estimated on our Great Moderation sample. Our simulations

also show that a 100 basis point drop of r? from its estimated 2.5% pre-crisis level will almost double the

probability of hitting the ZLB if the monetary authority keeps its inflation target unchanged. The optimal

reaction of the central bank is to increase the inflation target by 99 basis points. This optimal reaction limits

the increase in the probability of hitting the ZLB to a mere half of a percentage point.

This optimal adjustment is robust to a set of alternative scenarios. It does not depend on the cause

(productivity, demography, or safe assets) underlying such a structural decline. It also remains close to

one for one when we consider alternative assumptions regarding key structural parameters: structural

shocks with higher variance, alternative markups in the goods and labor markets, and a different degree

3In a work in progress, we show that very similar results are obtained in a model estimated with euro area data.
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of indexation to trend inflation. Strikingly, while the level of the locus can be significantly affected by those

changes—these alternative scenarios call for an optimal inflation target that would have been close to or

above 2% before the crisis—overall the slope of the (r?, π?) relation remains close to −1 in the vicinity of

the pre-crisis parameter region.

More generally, one may wonder how a central bank should adjust its optimal inflation target when it

is uncertain about the true values of structural parameters describing the economy. A noticeable feature of

our approach is that we perform a full-blown Bayesian estimation of the model. This allows us not only to

assess the uncertainty surrounding π?, but also to derive an optimal inflation target taking into account the

parameter uncertainty facing the policymaker, including uncertainty with regard to the determinants of the

steady-state real interest rate. When that parameter uncertainty is allowed for, the optimal inflation target

value increases significantly, to 2.40%. The higher optimal target under parameter uncertainty reflects the

fact that the loss function is asymmetric, so that choosing an inflation target that is below the optimal one

is more costly than choosing an inflation target that is above it. In spite of the higher level, it remains true

that a Bayesian-theoretic optimal inflation target rises by about 90 basis points in response to a downward

shift of the distribution in r? by 100 basis points.

Finally, we study how potential changes in the monetary policy rule or strategy affect the (r?, π?) rela-

tion. We consider a number of different cases: (1) defining the inflation target in terms of average realized

inflation as opposed to a parameter in the rule, (2) a central bank constrained by an effective lower bound

on the policy rate that can be below zero, (3) a central bank with a lower or higher smoothing parameter in

the interest-rate policy rule, (4) a central bank with a smoothing component that involves the lagged actual

policy rate instead of the lagged shadow rate, and (5) a central bank targeting the price level rather than

the inflation rate. All these changes have an impact on the level of π? for any given level of r?. Yet, only in

the case of a higher interest rate smoothing and price level targeting do we find a noticeable change in the

slope of the (r?, π?) relation. In these two cases, the relation is much less steep, illustrating the strength of

“make-up” strategies to overturn the ZLB. However, as we discuss in the conclusion, an important caveat

is that this result is obtained under the joint assumption of rational expectations, perfect information, and

full credibility of the commitment.

The remainder of the paper is organized as follows. Section 1.1 reviews the related literature. Section

2 describes our baseline model. Section 3 discusses how the model is estimated and simulated, as well

as how the welfare-based optimal inflation target is computed. Section 4 is devoted to the analysis of

the (r?, π?) relation under the baseline estimates as well as for a set of alternative parameters. Section 5

presents and discusses this locus under parameter uncertainty. Section 6 investigates the (r?, π?) relation

under alternative monetary policy rules and strategies. Finally, Section 7 summarizes and concludes.
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1.1 Related Literature

To our knowledge, no paper has systematically investigated the (r?, π?) relation. Coibion et al. (2012)

(and its follow-up, Dordal-i-Carreras et al. 2016) and Kiley and Roberts (2017) are the papers most closely

related to ours, as they study optimal inflation in quantitative setups that account for the ZLB. However, the

analyses in Coibion et al. (2012) assume a constant steady-state natural rate of interest, so a key difference

is our focus on eliciting the relation between the steady-state real interest rate and optimal inflation. Other

differences are that (1) we estimate, rather than calibrate, the model, and (2) we allow for wage rigidity in

the form of infrequent staggered wage adjustments. A distinctive feature with respect to Kiley and Roberts

(2017) is that we use a model-consistent, micro-founded loss function to compute optimal inflation.

A series of papers assesses the probability that the US economy hit the ZLB for a given inflation target.

Interestingly, our own assessment of this pre-crisis ZLB incidence falls in the ballpark of available estimates,

including those in Chung et al. (2012). As we show, when the inflation target is not adjusted, but post–

Great Moderation shocks are allowed, we also get “post-crisis” probabilities of hitting the ZLB that are

comparable to the ones obtained in recent related studies, such as Chung et al. (2019).

In the New Keynesian setup that we consider, agents have rational expectations and make decisions

that are forward looking: They fully understand that the central bank’s inability to lower the policy fur-

ther will lead to a deflation that magnifies the contractionary demand shocks responsible for driving the

economy to the ZLB in the first place. One concern may be that this framework makes the ZLB too desta-

bilizing, hence overweighting the benefits of a positive inflation target. However, this is partially offset by

the fact that rational expectations and forward looking decisions also make the “lower for longer” mon-

etary policies that we consider at the end of the trap very effective, which limits the length and width of

ZLB episodes. Chung et al. (2019) illustrate that ZLB episodes can also be very costly in setups featuring

agents that are less forward looking, such as in the FRB/US model.

Our assessment of the (welfare) cost of inflation also critically relies on our assumptions of a Calvo

mechanism for price and wage setting. Among the recent papers examining the ZLB, Blanco (2016) studies

optimal inflation in a state-dependent pricing model, that is, a “menu cost” model. In this setup, optimal

inflation is typically positive and higher than it would be with time-dependent pricing. Indeed, as in

our analysis, positive inflation edges the economy against detrimental effects of the ZLB.4 In addition,

as shown by Nakamura et al. (2018), the presence of state-dependent pricing weakens considerably the

positive relationship between inflation and price dispersion, thus reducing the costs of inflation. Nakamura

et al. (2018) further argue that menu costs are a more plausible mechanism for pricing frictions.5 Two

4See Burstein and Hellwig (2008) for a similar exercise under menu costs without the ZLB, which leads to negative optimal

inflation rate.
5They document that the cross-sector dispersion in the size of price changes is similar in the current, low inflation period to

what it was in the high inflation period of the late 1970s. If Calvo was the relevant pricing frictions, the dispersion in size of price

changes should have been much larger in the high inflation period than today.
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points are, however, worth making. First, in the range of values for the inflation target that we consider,

the difference between the welfare cost in a Calvo model and in a menu cost model is less dramatic than

with a 10 percent or higher inflation rate, as documented, for example, by Nakamura et al. (2018). Second,

most recent empirical analyses of price setting show that there is a mass of small price changes in the

data that cannot be rationalized by a menu cost model. To fit the microdata, much of this recent literature

typically introduces a random opportunity of price change, hence a Calvo component, in the menu cost

model (see, for example, Alvarez et al. 2016). In such an augmented menu cost model, the distinction with

the assessment taken from the Calvo model is bound to be attenuated.

Our paper is also connected to the voluminous literature on monetary policy under uncertainty (see, for

example, Levin et al. 2006; Williams 2013), although to our knowledge this literature does not investigate

the impact of uncertainty on the determination of the optimal inflation target.

Other relevant references, albeit ones that put little or no emphasis on the ZLB, are the following. An

early literature focuses on sticky prices and monetary frictions. In such a context, as shown by Khan

et al. (2003) and Schmitt-Grohé and Uribe (2010), the optimal rate of inflation should be slightly negative.

Similarly, a negative optimal inflation would result from an environment with trend productivity growth

and prices and wages both sticky, as shown by Amano et al. (2009). In this kind of environment, moving

from a 2% to a 4% inflation target would be extremely costly, as suggested by Ascari et al. (2018). By

contrast, adding search and matching frictions to the setup, Carlsson and Westermark (2016) show that

optimal inflation can be positive. Bilbiie et al. (2014) find positive optimal inflation can be an outcome in

a sticky-price model with endogenous entry and product variety. Somewhat related, Adam and Weber

(2019) show that, even without any ZLB concern, optimal inflation might be positive in the context of

a model with heterogeneous firms and systematic firm-level productivity trends. Finally, Lepetit (2018)

shows that optimal inflation can be different from zero when profits and utility flows are discounted at

different rates, as is generally the case in overlapping-generation models. In a parameterized example of

the latter he shows the optimal steady-state inflation is significantly above zero.

2 The Model

We use a relatively standard medium-scale New Keynesian model as a framework of reference. Crucially,

the model features elements that generate a cost to inflation: (1) nominal rigidities, in the form of staggered

price and wage setting; (2) less-than-perfect price (and wage) indexation to past or trend inflation; and (3)

trend productivity growth, to which wages are imperfectly indexed.

As is well known, staggered price setting generates a positive relation between deviations from zero

inflation and price dispersion (with the resulting inefficient allocation of resources). Also, all else being

equal, price inflation induces (nominal) wage inflation, which in turn triggers inefficient wage dispersion

in the presence of staggered wage setting. Partial indexation also magnifies the costs of non-zero price
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(or wage) inflation as compared with a setup in which price and wages mechanically catch up with trend

inflation (Ascari and Sbordone 2014). Finally the lack of a systematic indexation of wages to productivity

also induces an inefficient wage dispersion.

At the same time, there are benefits associated with a positive inflation rate, as interest rates are subject

to a ZLB constraint. In particular, and given the steady-state real interest rate, the incidence of binding ZLB

episodes and the associated macroeconomic volatility should decline with the average rate of inflation.

Overall, the model we use, and the implied tradeoff between costs and benefits of steady-state inflation,

are close to those considered by Coibion et al. (2012). However we assume Calvo-style sticky wages, in

addition to sticky prices.6

2.1 Households

The economy is inhabited by a continuum of measure one of infinitely lived, identical households. The

representative household is composed of a continuum of workers, each specialized in a particular labor

type indexed by h ∈ [0, 1]. The representative household’s objective is to maximize an intertemporal

welfare function

Et

∞

∑
s=0

βs
{

eζg,t+s log(Ct+s − ηCt+s−1)−
χ

1 + ν

∫ 1

0
Nt+s(h)1+νdh

}
, (1)

where β ≡ e−ρ is the discount factor (ρ being the discount rate), Et{·} is the expectation operator con-

ditional on information available at time t, Ct is consumption, and Nt(h) is the supply of labor of type h.

The utility function features habit formation, with degree of habits η. The inverse Frisch elasticity of labor

supply is ν, and χ is a scale parameter for labor disutility. The utility derived from consumption is subject

to a preference shock ζg,t.

The representative household maximizes (1) subject to the sequence of constraints

PtCt + eζq,t QtBt ≤
∫ 1

0
Wt(h)Nt(h)dh + Bt−1 − Tt + Dt, (2)

where Pt is the aggregate price level; Wt(h) is the nominal wage rate associated with labor of type h; eζq,t Qt

is the price at t of a one-period nominal bond paying one unit of currency in the next period, where ζq,t is

a “risk-premium” shock; Bt is the quantity of such bonds acquired at t; Tt denotes lump-sum taxes; and Dt

stands for the dividends rebated to the households by monopolistic firms.

6In their robustness analysis, Coibion et al. (2012) consider downward nominal wage rigidity, which involves mechanisms that

are different from those used with Calvo-style rigidities.
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2.2 Firms and Price Setting

The final good is produced by perfectly competitive firms according to the Dixit-Stiglitz production func-

tion

Yt =

(∫ 1

0
Yt( f )(θp−1)/θp d f

)θp/(θp−1)

,

where Yt is the quantity of the final good produced at t, Yt( f ) is the input of intermediate good f , and θp

is the elasticity of substitution between any two intermediate goods. The zero-profit condition yields the

relation

Pt =

(∫ 1

0
Pt( f )1−θp d f

)1/(1−θp)

.

Intermediate goods are produced by monopolistic firms, each specialized in a particular good f ∈ [0, 1].

Firm f has technology

Yt( f ) = ZtLt( f )1/φ,

where Lt( f ) is the input of aggregate labor, 1/φ is the elasticity of production with respect to aggregate

labor, and Zt is an index of aggregate productivity. The latter evolves according to

Zt = Zt−1eµz+ζz,t ,

where µz is the average growth rate of productivity. Thus, technology is characterized by a unit root in the

model.

Intermediate goods producers are subject to nominal rigidities à la Calvo. Formally, firms face a con-

stant probability αp of not being able to re-optimize prices. In the event that firm f is not drawn to re-

optimize at t, it re-scales its price according to the indexation rule

Pt( f ) = (Πt−1)
γp Pt−1( f ),

where Πt ≡ Pt/Pt−1, Π is the associated steady-state value, and 0 ≤ γp < 1. Thus, in case firm f is

not drawn to re-optimize, it mechanically re-scales its price by past inflation. Importantly, however, we

assume that the degree of indexation is less than perfect since γp < 1. One obvious drawback of the Calvo

setup is that the probability of price reoptimization is assumed to be invariant, with respect to the long run

inflation rate. Drawing from the logic of menu cost models, the Calvo parameter of price stickiness could

be expected to endogenously decrease when trend inflation rises. However, in the range of values for trend

inflation that we will consider, available microeconomic evidence, such as that summarized in Golosov and

Lucas (2007), suggests there is no significant correlation between the frequency of price change and trend

inflation.

If drawn to re-optimize in period t, a firm chooses P?
t in order to maximize

Et

∞

∑
s=0

(βαp)
sΛt+s

{
(1 + τp,t+s)

Vp
t,t+sP?

t

Pt+s
Yt,t+s −

Wt+s

Pt+s

(
Yt,t+s

Zt+s

)φ
}

,
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where Λt denotes the marginal utility of wealth, τp,t is a sales subsidy paid to firms and financed via a

lump-sum tax on households, and Yt,t+s is the demand function of a monopolistic firm that last revised its

price at t faces at t + s; the firm obeys

Yt,t+s =

(
Vp

t,t+sP?
t

Pt+s

)−θp

Yt+s,

where Vp
t,t+s reflects the compounded effects of price indexation to past inflation

Vp
t,t+s =

t+s−1

∏
j=t

(Πj)
γp .

We further assume that

1 + τp,t = (1 + τp)e−ζu,t ,

with ζu,t appearing in the system as a cost-push shock. Furthermore, we set τp in order to neutralize the

steady-state distortion induced by price markups.

2.3 Aggregate Labor and Wage Setting

There is a continuum of perfectly competitive labor-aggregating firms that mix the specialized labor types

according to the CES technology

Nt =

(∫ 1

0
Nt(h)(θw−1)/θw dh

)θw/(θw−1)

,

where Nt is the quantity of aggregate labor and Nt(h) is the input of labor of type h, and where θw denotes

the elasticity of substitution between any two labor types. Aggregate labor Nt is then used as an input in

the production of intermediate goods. Equilibrium in the labor market thus requires

Nt =
∫ 1

0
Lt( f )d f .

Here, it is important to notice the difference between Lt( f ), the demand for aggregate labor emanating

from firm f , and Nt(h), the supply of labor of type h by the representative household.

The zero-profit condition yields the relation

Wt =

(∫ 1

0
Wt(h)1−θw dh

)1/(1−θw)

,

where Wt is the nominal wage paid to aggregate labor, while Wt(h) is the nominal wage paid to labor of

type h.

As with prices, we assume that wages are subject to nominal rigidities, à la Calvo, in the manner of

Erceg et al. (2000). Formally, unions face a constant probability αw of not being able to re-optimize wages.

9



In the event that union h is not drawn to re-optimize at t, it re-scales its wage according to the indexation

rule

Wt(h) = eγzµz(Πt−1)
γwWt−1(h),

where, as before, wages are indexed to past inflation. However, we assume that the degree of indexation

here is also less than perfect by imposing 0 ≤ γw < 1. In addition, nominal wages are also indexed to

average productivity growth with indexation degree 0 ≤ γz < 1.

If drawn to re-optimize in period t, a union chooses W?
t in order to maximize

Et

∞

∑
s=0

(βαw)
s

{
(1 + τw)Λt+s

Vw
t,t+sW

?
t

Pt+s
Nt,t+s −

χ

1 + ν
N1+v

t,t+s

}
,

where the demand function at t + s facing a union that last revised its wage at t obeys

Nt,t+s =

(
Vw

t,t+sW
?
t

Wt+s

)−θw

Nt+s,

and where Vw
t,t+s reflects the compounded effects of wage indexation to past inflation and average produc-

tivity growth

Vw
t,t+s = eγzµz(t+s)

t+s−1

∏
j=t

(Πj)
γw .

Furthermore, we set τw in order to neutralize the steady-state distortion induced by wage markups.

2.4 Monetary Policy and the ZLB

Monetary policy in "normal times" is assumed to be given by an inertial Taylor-like interest rate rule

ı̂t = ρi ı̂t−1 + (1− ρi)
(
aππ̂t + ay x̂t

)
+ ζR,t, (3)

where it ≡ − log(Qt), with ı̂t denoting the associated deviation from steady state; that is, ı̂t ≡ it − i. Also,

πt ≡ log Πt, π̂t ≡ πt − π is the gap between inflation and its target, and x̂t ≡ log(Yt/Yn
t ), where Yn

t is

the efficient level of output, defined as the level of output that would prevail in an economy with flexible

prices and wages and no cost-push shocks. Finally, ζR,t is a monetary policy shock.

Importantly, we interpret π as the central bank target for change in the price index. An annual inflation

target of 2% would thus imply π = 2/400 = 0.005, as the model will be parameterized and estimated with

quarterly data. Note that the inflation target thus defined may differ from average inflation.

Crucially for our purposes, the nominal interest rate it is subject to a ZLB constraint:

it ≥ 0.

The steady-state level of the real interest rate is defined by r? ≡ i − π. Given logarithmic utility, it is

related to technology and preference parameters according to r? = ρ + µz. Combining these elements, it is

convenient to write the ZLB constraint in terms of deviations from steady state

ı̂t ≥ −(µz + ρ + π). (4)
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The rule effectively implemented is given by:

ı̂t = max{ı̂n
t , −(µz + ρ + π)}, (5)

where

ı̂n
t = ρi ı̂n

t−1 + (1− ρi)
(
aππ̂t + ay x̂t

)
+ ζR,t, (6)

with in
t denoting the shadow or notional rate, that is, the one that would be effective in the absence of

the ZLB constraint. Thus the lagged rate that matters is the lagged notional interest rate, rather than the

lagged actual rate. In making that assumption we follow Coibion et al. (2012) and a large share of the recent

literature.

Before we proceed, several remarks are in order. First, note that realized inflation might be on average

below the target π as a consequence of ZLB episodes; that is, E{πt} < π. In such instances of ZLB, mon-

etary policy fails to deliver the appropriate degree of accommodation, resulting in a more severe recession

and lower inflation than in an economy with no ZLB constraint.7

Second, we assume the central bank policy is characterized by simple interest rate rule rather than a

Ramsey-type fully optimal policy of the type studied by, for example, Khan et al. (2003) or Schmitt-Grohé

and Uribe (2010). Such rules have been shown to be a good empirical characterization of the behavior of

central banks in the last decades. Moreover, two features in our setup, the inertia in the monetary policy

rule, as well as the use of a lagged notional rate rather than a lagged actual rate, render the policy more

persistent and thus closer to a Ramsey-like fully optimal interest rate rule. In particular, the dependence on

the lagged notional rate ı̂n
t results in the nominal interest rate ı̂t being “lower for longer” in the aftermath

of ZLB episodes (as ı̂n
t will stay negative for a protracted period). In Section 6, we study how alternative

strategies of “lower for longer” affect the (r?, π?) relation.

As equation (4) makes clear, µz, ρ, π enter symmetrically in the ZLB constraint. Put another way, for

given structural parameters and a given process for ı̂t, the probability of hitting the ZLB would remain un-

changed if productivity growth or the discount rate declined 1 percent and the inflation target is increased

a commensurate amount at the same time. Based on these observations, one may be tempted to argue that

in response to a permanent decline in µz or ρ, the optimal inflation target π∗ must necessarily change by

the same amount (with a negative sign).

The previous conjecture is, however, incorrect. The reason for this is twofold. First, any change in µz

(or ρ) also translates into a change in the coefficients of the equilibrium dynamic system. It turns out that

this effect is non-negligible since, as our later results imply, after a 1 percentage point decline in r∗ the

inflation target has to be raised more than 1 percent in order to keep the probability of hitting the ZLB

unchanged. Second, because there are welfare costs associated with increasing the inflation target, the

policymaker would also have to balance the benefits of keeping the incidence of ZLB episodes constant

7For convenience, Table A.1 in the Appendix summarizes the various notions of optimal inflation and long-run or target

inflation considered in this paper.
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with the additional costs of extra price dispersion and inefficient resource allocation. These costs can be

substantial and may more than offset the benefits of holding the probability of hitting the ZLB constant.

Assessing these forces is precisely this paper’s endeavor.

3 Estimation and Simulations

3.1 Estimation without a Lower Bound on Nominal Interest Rates

We estimate the model using data for a pre-crisis period over which the ZLB constraint is not binding. This

enables us to use the linear version of the model.8

Estimation Procedure. Because the model has a stochastic trend, we first induce stationarity by dividing

trending variables by Zt. The resulting system is then log-linearized in the neighborhood of its determin-

istic steady state.9 We append to the system a set of equations describing the dynamics of the structural

shocks, namely

ζk,t = ρkζk,t−1 + σkεk,t, εk,t ∼ N(0, 1)

for k ∈ {R, g, u, q, z}.

Absent the ZLB constraint, the model can be solved and cast into the usual linear transition and obser-

vation equations:

st = T (θ)st−1 +R(θ)εt, xt =M(θ) +H(θ)st,

with st a vector collecting the model’s state variables, xt a vector of observable variables, and εt a vector of

innovations to the shock processes εt = (εR,t, εg,t, εu,t, εq,t, εz,t)′. The solution coefficients are regrouped in

the conformable matrices T (θ),R(θ),M(θ), andH(θ), which depend on the vector of structural parame-

ters θ.

The sample of observable variables is XT ≡ {xt}T
t=1 with

xt = [∆ log(GDPt), ∆ log(GDP Deflatort), ∆ log(Wagest), Short Term Interest Ratet]
′,

where the short-term nominal interest rate is the effective fed funds rate. We use a sample of quarterly data

covering the period 1985Q2–2008Q3.10 This choice is guided by two objectives. First, this sample strikes a

balance between size and the concern of having a homogeneous monetary policy regime over the period

considered. The sample covers the Volcker and post-Volcker period, arguably one of relative homogeneity

of monetary policy. Second, the sample coincides more or less with the so-called Great Moderation, when,

as is argued in the literature, we expect smaller shocks to hit the economy. In principle, smaller shocks

8See Gust et al. (2017) and Lindé et al. (2017) for alternative methods that deal with the ZLB constraint at the estimation stage.
9See the Appendix for further details.

10The data are obtained from the FRED database. GDP is expressed in per capita terms.
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will lead to a conservative assessment of the effects of the more stringent ZLB constraint due to lower real

interest rates.

The parameters φ, θp, and θw are calibrated before estimation. The parameter θp is set to 6, resulting

in a steady-state price markup of 20%. Similarly, the parameter θw is set to 3, resulting in a wage markup

of 50%. These numbers fall into the arguably large ballpark of available values used in the literature. In a

robustness section, we investigate the sensitivity of our results to these parameters. The parameter φ is set

to 1/0.7. Given the assumed subsidy correcting the steady-state price markup distortion, this results in a

steady-state labor share of 70%.

We rely on a full-system Bayesian approach to estimate the remaining model parameters. After casting

the dynamic system in the state-space representation for the set of observable variables, we use the Kalman

filter to measure the likelihood of the observed variables. We then form the joint posterior distribution of

the structural parameters by combining the likelihood function p(XT|θ) with a joint density characterizing

some prior beliefs p(θ). The joint posterior distribution thus obeys

p(θ|XT) ∝ p(XT|θ)p(θ).

Given the specification of the model, the joint posterior distribution cannot be recovered analytically

but may be computed numerically using a Monte-Carlo Markov Chain (MCMC) sampling approach. More

specifically, we rely on the Metropolis-Hastings algorithm to obtain a random draw of 1 million from the

joint posterior distribution of the parameters.

Estimation Results. Table 1 reports the parameter’s postulated priors (type of distribution, mean, and

standard error) and estimation results, that is, the posterior mean and standard deviation, together with

the bounds of the 90% probability interval for each parameter.

For the parameters π, µz, and ρ, we impose Gaussian prior distributions. The parameters governing the

latter are chosen so that the model steady-state values match the mean values of inflation, real per capita

GDP growth, and the real interest rate in our US sample. Our choice of priors for the other parameters are

standard. In particular, we use beta distributions for parameters in [0, 1], gamma distributions for positive

parameters, and inverse gamma distributions for the standard error of the structural shocks.

Most of our estimated parameters are in line with the calibration adopted by Coibion et al. (2012),

with important qualifications. First, we obtain a degree of price rigidity that is slightly higher than theirs

(0.67 versus 0.55). Second, our specification of monetary policy is different from theirs. In particular, they

allow for two lags of the nominal interest rate in the monetary policy rule while we have only one lag.

However, we can compare the overall degree of interest rate smoothing in the two setups. To this end,

abstracting from the other elements of the rule, we simply focus on the sum of autoregressive coefficients.

It amounts to 0.92 in their calibration, whereas the degree of smoothing in our setup has a mean posterior

value of 0.85. While this might not seem to be a striking difference, it is useful to cast these figures in
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Table 1: Estimation Results

Parameter Prior Shape Prior Mean Priod std Post. Mean Post. std Low High

ρ Normal 0.20 0.05 0.19 0.05 0.11 0.27

µz Normal 0.44 0.05 0.43 0.04 0.36 0.50

π? Normal 0.61 0.05 0.62 0.05 0.54 0.69

αp Beta 0.66 0.05 0.67 0.03 0.61 0.73

αw Beta 0.66 0.05 0.50 0.05 0.43 0.58

γp Beta 0.50 0.15 0.20 0.07 0.08 0.32

γw Beta 0.50 0.15 0.44 0.16 0.21 0.68

γz Beta 0.50 0.15 0.50 0.18 0.26 0.75

η Beta 0.70 0.15 0.80 0.03 0.75 0.85

ν Gamma 1.00 0.20 0.73 0.15 0.47 0.97

aπ Gamma 2.00 0.15 2.13 0.15 1.89 2.38

ay Gamma 0.50 0.05 0.50 0.05 0.42 0.58

ρTR Beta 0.85 0.10 0.85 0.02 0.82 0.89

σz Inverse Gamma 0.25 1.00 1.06 0.22 0.74 1.38

σR Inverse Gamma 0.25 1.00 0.10 0.01 0.09 0.11

σq Inverse Gamma 0.25 1.00 0.39 0.11 0.16 0.61

σg Inverse Gamma 0.25 1.00 0.23 0.04 0.16 0.29

σu Inverse Gamma 0.25 1.00 0.24 0.05 0.06 0.46

ρR Beta 0.25 0.10 0.51 0.06 0.41 0.61

ρz Beta 0.25 0.10 0.27 0.13 0.09 0.45

ρg Beta 0.85 0.10 0.98 0.01 0.97 1.00

ρq Beta 0.85 0.10 0.88 0.04 0.80 0.95

ρu Beta 0.80 0.10 0.80 0.10 0.65 0.96

Note: “std” stands for standard deviation, “Post.” stands for posterior, and “Low” and “High” denote the bounds of the 90%
probability interval for the posterior distribution.

terms of half-life of convergence in the context of autoregressive model of order 1. Our value implies a

half-life that is twice as short as theirs. Third, our monetary policy shock and our shocks to demand have

an unconditional standard deviation that is approximately twice as small as theirs. Finally, we estimate

the degree of indexation to past inflation rather than setting it to zero, as in Coibion et al. (2012). We find

small though non-zero degrees of indexation to past inflation. This will translate into a higher tolerance

for inflation in our subsequent analysis of the optimal inflation target. This is because a higher indexation

helps to mitigate the distortions induced by a higher inflation target. However, it turns out that, given

these estimates, this effect is quantitatively small.

Properties of the estimated model, such as the response to a monetary policy shock, are standard (see

the Appendix, Section B. The Appendix also illustrates the “lower for longer” property embedded in the

policy rule).

3.2 Computing the Optimal Inflation Target

Simulations with a ZLB Constraint. The model becomes non-linear when one allows the ZLB constraint

to bind. The solution method we implement follows the approach developed by Bodenstein et al. (2017)

and Guerrieri and Iacoviello (2015). The approach can be described as follows. There are two regimes: the

no-ZLB regime k = n, and the ZLB regime k = e; and the canonical representation of the system in each
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regime is

Et{A(k)st+1 + B(k)st + C(k)st−1 +D(k)εt}+ f (k) = 0.

Here, st is a vector collecting all the model’s variables; A(k), B(k), C(k), and D(k) are conformable matrices;

and f (k) is a vector of constants. In the no-ZLB regime, the vector f (n) is filled with zeros. In the ZLB

regime, the row of f (e) associated with it is equal to µz + ρ + π. Similarly, the rows of the system matrices

associated with it in the no-ZLB regime correspond to the coefficients of the Taylor rule, whereas in the

ZLB regime, the coefficient associated with it is equal to one and all the other coefficients are set to zero.

In each period t, given an initial state vector st−1 and vector stochastic innovations εt, we simulate the

model under perfect foresight (that is, assuming that no further shocks hit the economy) over the next N

periods, for N sufficiently large. In case this particular draw is not conducive to a ZLB episode, we find

st using the linear solution stated above. In contrast, if this draw leads to a ZLB episode, we postulate

integers Ne < N and Nx < N such that the ZLB is reached at time t + Ne and left at time t + Nx. In this

case, we solve the model by backward induction. We obtain the time varying solution

st+q = dt+q + Tt+qst+q−1 +Rt+qεt+q,

where for q ∈ {Ne, ..., Nx − 1},

Tt+q = −
(
A(e)Tt+q+1 + B(e)

)−1
C(e), Rt+q = −

(
A(e)Tt+q+1 + B(e)

)−1
D(e),

dt+q = −
(
A(e)Tt+q+1 + B(e)

)−1(
A(e)dt+q+1 + f (e)

)
,

and for q ∈ {0, ..., Ne − 1},

Tt+q = −
(
A(n)Tt+q+1 + B(n)

)−1
C(n), Rt+q = −

(
A(n)Tt+q+1 + B(n)

)−1
D(n),

dt+q = −
(
A(n)Tt+q+1 + B(n)

)−1(
A(n)dt+q+1 + f (n)

)
,

using Tt+Nx = T , Rt+Nx = R, and dt+Nx set to a column filled with zeros as initial conditions of the

backward recursion.

We then check that, given the obtained solution, the system hits the ZLB at t + Ne and leaves the ZLB

at t + Nx. Otherwise, we shift Ne and/or Nx forward or backward by one period and start all over again

until convergence. Once convergence has been reached, we use the resulting matrices to compute st and

repeat the process for all the simulation periods.

Our approach is thus similar to the one used by Coibion et al. (2012) in their study of the optimal

inflation target in a New Keynesian setup.11 A shortcoming of this approach is that the agents in the model

are assumed to believe that the ZLB will not bind again in the future, once the current ZLB episode comes

11In practice we combine the implementation of the Bodenstein et al. (2017) algorithm developed by Coibion et al. (2012) with

the solution algorithm and the parser from Dynare. Our implementation is in the spirit of Guerrieri and Iacoviello (2015), resulting

in a less user-friendly yet faster suite of programs.
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to an end. This may bias estimates, as explained by Gust et al. (2017), even when, as in our case, estimation

is performed on a pre-ZLB period. The scope of this concern is, however, dampened by evidence that in

the pre-crisis environment, even experts severely underestimated the probability of the ZLB occurring; see

Chung et al. (2012).12

A Welfare-based Optimal Inflation Target. A second-order approximation of the household expected

utility derived from the structural model is used to quantify welfare, as in Woodford (2003), assuming a

small steady-state inflation rate. As detailed in the Appendix, this second-order approximation is given by

U0 = −1
2

1− βη

1− η
E0

∞

∑
t=0

βt
{

λy[x̂t − δx̂t−1 + (1− δ)x̄]2 + λp[(1− γp)π + π̂t − γpπ̂t−1]
2

+ λw[(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1]
2
}
+ t.i.p +O(||ζ, π||3),

where t.i.p collects terms that are independent of monetary policy, and O(||ζ, π||3) denotes residual terms

of order 3, with ||ζ, π|| denoting a bound on the amplitude of exogenous shocks and the inflation target.

Parameters λy λp, λw are effectively weights on an output gap term, a price inflation term, and a wage

inflation term. Parameter δ fulfills 0 ≤ δ ≤ 1. The parameter x̄ is the log ratio of steady-state output to

efficient output. x̄ is zero either when trend inflation and trend productivity growth are zero, or when

indexation is full, and negative otherwise (in which case, output is inefficiently low). Finally, λy λp, λw, δ,

and x̄ are functions of the structural parameters θ.

We let W (π; θ) denote this welfare criterion, to emphasize that welfare depends on the inflation target π

together with the rest of the structural parameters θ. Two cases are considered concerning the latter. In the

baseline case, the structural parameters θ are fixed at reference values and taken to be known with certainty

by the policymaker. In an alternative exercise, the policymaker maximizes welfare while recognizing the

uncertainty associated with the model’s parameters.

Using the algorithm outlined above, the optimal inflation target associated with a given vector of pa-

rameters θ, π?(θ) is approximated via numerical simulations of the model allowing for an occasionally

binding ZLB constraint.13 The optimal inflation rate associated with a given vector of parameters θ is then

12Global solution methods, such as advocated and implemented by Gust et al. (2017), are in principle more accurate. However,

given the size of our model, and the large set of inflation targets and real interest rates that we need to consider (and given

that these have to be considered for each and every parameter configuration in our simulations), a global solution would be

computationally prohibitive.
13More precisely, a sample of size T = 100, 000 of innovations {εt}T

t=1 is drawn from a Gaussian distribution (we also allow

for a burn in sample of 200 points that we later discard). We use these shocks to simulate the model for given parameter vector

θ. The welfare function W (π; θ) is approximated by replacing expectations with sample averages. The procedure is repeated for

each of K = 51 inflation targets on the grid {π(k)}K
k=1 ranging from π = (0.5/4)% to π = (5/4)% (expressed in quarterly rates).

Importantly, we use the exact same sequence of shocks {εt}T
t=1 in each and every simulation over the inflation grid.
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Figure 1: Welfare and the inflation target
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at the posterior mode. π? ≡ log(Π?). In all cases, the welfare functions are normalized so that they peak at 0.

obtained as the one that maximizes the welfare function; that is,

π?(θ) ≡ arg max
π

W (π; θ).

Given parameter estimates at the posterior mean, we can compute the weight on output and wage

inflation relative to inflation, that is, λy/λp and λw/λp). These relative weights are equal to 0.22 and 0.10,

respectively.14 Note that these values are in the ballpark of values obtained in analyses of optimal inflation

based on welfare criteria.

3.3 Some Properties of Loss Function and the Optimal Inflation Target in the Estimated Model

This section presents selected properties of the model related to the optimal inflation target. Figure 1

displays the welfare function—expressed as losses relative to the maximum social welfare—associated

with three natural benchmarks for the parameter vector θ: the posterior mean (dark blue line), the median

(light blue line), and the mode (lighter blue line). For convenience, the peak of each welfare function is

identified with a dot of the same color. Also, to facilitate interpretations, the inflation targets are expressed

in annualized percentage rates.

As Figure 1 illustrates, the US optimal inflation target is close to 2% and varies between 1.85% and

2.21% depending on which indicator of central tendency (mean, mode, or median) is selected. This range

14The absolute value of λp is found to be 130.52.
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Figure 2: Probability of ZLB
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Note: Blue: parameters set at the posterior mean. Light blue: parameters set at the posterior median. Lighter blue: parameters set
at the posterior mode. π? ≡ log(Π?).

of values is consistent with the ones of Coibion et al. (2012), even though in this paper it is derived from

an estimated model over a much shorter sample.15 Importantly, while the larger shocks in Coibion et al.

(2012), all else being equal, induce larger inflation targets, the high degree of interest rate smoothing in the

authors’ analysis works in the other direction (as documented below in Section 6) .

To complement these illustrative results, Figure 2 displays the probability of reaching the ZLB as a

function of the annualized inflation target (again, with the parameter vector θ evaluated at the posterior

mean, median, and mode). For convenience, the circles in each curve mark the corresponding optimal

inflation target.

The probability of hitting the ZLB associated with these positive optimal inflation targets is relatively

low, at about 6%. This result, as anticipated above, is the mere reflection of our choice of a Great Modera-

tion sample. At the same time, our model is able to predict a fairly spread-out distribution of ZLB episode

durations, with a significant fraction of ZLB episodes lasting more than, say, five years (see figure in Ap-

pendix D). Given the existence of a single ZLB episode in recent history, we do not attempt here to take

a stand on what is a relevant distribution of ZLB episodes (see Dordal-i-Carreras et al. 2016 for further

analysis in that direction).

A property of our model, as noticed by Kiley (2019), is that ZLB episodes are rather costly, compared

15Coibion et al. (2012) calibrate their model on a post–World War II, pre-Great Recession US sample. By contrast, we use a Great

Moderation sample.
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with other studies. This property reflects the absence in our model of ad hoc stabilizing devices that are

present in some other papers concerned with the ZLB, such as emergency fiscal packages or exogenous

caps on the maximum duration of ZLB episodes (as in Kiley and Roberts 2017; Williams 2009). Allowing

for such devices would mechanically reduce the severity of ZLB episodes in our framework, resulting in a

lower optimal inflation target.

4 The Optimal Inflation Target and the Steady State Real Interest Rate

This section investigates how the monetary authority should adjust its optimal inflation target π? in re-

sponse to changes in the steady-state real interest rate, r?.16 Intuitively, with a lower r? the ZLB is bound

to bind more often, so one expects that a higher inflation target is desirable in that case. But the answer

to the practical question of how much the target should be increased is not obvious. Indeed, the benefit of

providing a better hedge against hitting the ZLB, which is an infrequent event, comes at a cost of higher

steady-state inflation that induces permanent costs, as argued by, for example, Bernanke (2016).

To start with, we compute the relation linking the optimal inflation target to the steady-state real interest

rate, based on simulations of the estimated model and ignoring parameter uncertainty. We show that the

link between π? and r? depends to some extent on the factor underlying a variation in r?, that is, a change

in the discount rate ρ or a change in the growth rate of technology µz. In our setup the first scenario

roughly captures the “taste for safe asset” and “aging population” rationale for secular stagnation, while

the second one captures the “decline in technological progress” rationale. Subsequently, we investigate

how the relation between the optimal inflation target and the steady-state real interest rate depends on

various features of the monetary policy framework, as well as on the size of shocks or on the steady-state

price and wage markups.

4.1 The Baseline (r?, π?) Relation

To characterize the link between r? and π?, the following simulation exercise is conducted. The structural

parameter vector θ is fixed at its posterior mean, θ̄, with the exception of µz and ρ. These two parameters

are varied—each in turn keeping the other parameter, µz or ρ, fixed at its baseline posterior mean value

(namely 0.76% and 1.72%, respectively, in annualized terms). For both µz and ρ, we consider values on

a grid ranging from 0.4% to 10% in annualized percentage terms. The model is then simulated for each

possible value of µz or ρ and various values of inflation targets π using the procedure as before.17 The

16Note that our exercise here is different from assessing what would be the optimal response to a time-varying steady state—a

specification consistent with econometric work such as that of Holston et al. (2017). Our exercise is arguably consistent with

“secular stagnation” understood as a permanently lower real rate of interest—without having to assume a unit root process in the

real rate of interest.
17In particular, we use the same sequence of shocks {εt}T

t=1 used in the computation implemented in the baseline exercises of

Section 3.2. Here again, we start from the same grid of inflation targets for all the possible values of µz or ρ. Then, for each value
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optimal value π? associated with each value of r? is obtained as the one maximizing the welfare criterion

W (π; θ).

We finally obtain two curves. The first one links the optimal inflation target π? to the steady-state real

interest rate r? for various growth rates of technology µz: π?(r?(µz)), where the notation r?(µz) highlights

that the steady-state real interest rate varies as µz varies. The second curve links the optimal inflation target

π? to the steady-state real interest rate r? for various discount rates ρ: π?(r?(ρ)). Here, the notation r?(ρ)

highlights that the steady-state real interest rate varies as ρ varies.18

Figure 3: (r?, π?) locus (at the posterior mean)
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varies with ρ.

Figure 3 depicts the (r?, π?) relations thus obtained. The blue dots correspond to the case when the real

steady-state interest rate r? varies with µz. The red dots correspond to the case when the real steady-state

interest rate r? varies with ρ. For convenience, both the real interest rate and the associated optimal inflation

target are expressed in annualized percentage rates. The dashed gray lines indicate the benchmark result

corresponding to the optimal inflation target at the posterior mean of the structural parameter distribution.

These results are complemented by Figure 4, which shows the relation between r? and the probability

of hitting the ZLB, evaluated at the optimal inflation target. As with Figure 3, blue dots correspond to the case

of µz or ρ, we refine the inflation grid over successive passes until the optimal inflation target associated with a particular value

of µz or ρ proves insensitive to the grid.
18Figures G.1 and G.2 report similar results at the posterior mode and at the posterior median. Figure H.1 documents the

relation in terms of “optimal nominal interest rate.”
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Figure 4: Relation between probability of ZLB at optimal inflation and r? (at the posterior mean)
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when r? varies with µz, while red dots correspond to the case when it varies with ρ.19

As expected, the relation in Figure 3 is decreasing. However, the slope varies with the value of r?.

The slope is relatively large in absolute value—although smaller than one—for moderate values of r? (say

below 4 percent). The slope declines in absolute value as r? increases: Lowering the inflation target to

compensate for an increase in r? becomes less and less desirable. This reflects the fact that as r? increases,

the probability of hitting the ZLB becomes smaller and smaller. For very large r? values, the probability

becomes almost zero, as Figure 4 shows.

At some point, the optimal inflation target becomes insensitive to changes in r? when those changes

originate from changes in the discount rate ρ. In this case, the inflation target stabilizes at a slightly negative

value, in order to lower the nominal wage inflation rate required to support positive productivity growth,

given the imperfect indexation of nominal wages to productivity. At the steady state, the real wage must

grow at a rate of µz. It is optimal to obtain this steady-state growth as the result of a moderate nominal

wage increase and a moderate price decrease, rather than from a zero price inflation and a consequently

larger nominal wage inflation.20

19Figure H.1 in the Appendix shows the relation between r? and the nominal interest rate when the inflation target is set at its

optimal value.
20For very large r?, as a rough approximation, we can ignore the effects of shocks and assume that the ZLB is a zero-mass

event. Assuming also a negligible difference between steady-state and efficient outputs and letting λp and λw denote the weights

attached to price dispersion and wage dispersion, respectively, in the approximated welfare function, the optimal inflation obeys
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Figure 5: Relation between probability of ZLB and r? (at the posterior mean)
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Note: The blue dots correspond to the relation linking r? and the probability of ZLB, holding the optimal inflation target π? at
the baseline value. The red dots correspond to the same relation when the optimal inflation target π? is set at the value consistent
with a steady-state real interest rate 1 percentage point lower. The pink dots correspond to the probability of ZLB obtained under
the optimal inflation target π? associated with a given value of r?.

The previous tension is even more apparent when r? varies with µz since, in this case, the effects of

imperfect indexation of wages to productivity are magnified given that a higher µz calls for a higher growth

in the real wage, which is optimally attained through greater price deflation as well as a higher wage

inflation. Notice however that even in this case, the optimal inflation target becomes mildly sensitive to

changes in r? for very large values of r?, typically above 6%.

For low values of r∗, on the other hand, the slope of the curve is steeper. In particular, in the empirically

relevant region, the relation is not far from one to one. More precisely, it shows that, starting from the

posterior mean estimate of θ, a 100 basis point decline in r? should lead to a 99 basis point increase in π?.

Importantly, this increase in the optimal inflation target is virtually the same regardless of whether the

underlying factor causing the change in r? is a drop in potential growth, µz, or a decrease in the discount

factor, ρ. At the same time, the ZLB incidence evaluated at the optimal inflation rate also increases when

the real rate decreases. At some point, the speed at which this probability increases diminishes, reflecting

that the social planner would increase the inflation target as needed so as to avoid a higher ZLB incidence.

Figure 5 shows how the probability of ZLB changes as a function of r? when the inflation target is

held constant. We first set the inflation target at its optimal baseline value (that is, the value computed

π? ≈ −λw(1− γz)(1− γw)/[λp(1− γp)2 + λw(1− γw)2]µz. Given the low values of λw resulting from our estimation, it is not

surprising that π? is negative but close to zero. See Amano et al. (2009) for a similar point in the context of a model abstracting

from ZLB issues.
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at the posterior mean, 2.21%). This is reported as the brown dots. Similarly, we also compute an analog

relation assuming, this time, that the inflation target is held constant at the optimal value consistent with

a steady-state real interest rate 1 percentage point lower (thus, inflation is set to 3.20 ). Here again, the

other parameters are set at their posterior mean. This corresponds to the green dots in the figure. For

convenience, we also report the probability of hitting the ZLB as a function of r? conditional on adjusting

optimally the inflation target, as in Figure 4. This corresponds to the blue dots.

Consider first the brown curve. At the level where the real interest rate prevails before the permanent

decline, assuming that the central bank sets its target to the associated optimal level, the probability of

reaching the ZLB would be slightly below 6%. Imagine now that the real interest rate experiences a decline

of 100 basis points. When the inflation target is kept at the same level as before the shock, the probability of

reaching the ZLB climbs to approximately 11%. However, the change in the optimal inflation target brings

the probability of reaching the ZLB back to approximately 6%. Thus, the social planner would almost

neutralize the effects of the natural rate decline on the probability of hitting the ZLB.

Finally we investigate whether the tradeoff analyzed above translates into meaningful welfare costs,

measured in terms of foregone per-period consumption. Results are reported in Appendix F. It turns out

that, under sufficiently low r? values, agents faced with a 1 percentage point decline in the steady-state

real interest rate would require as much as a 1.5 percentage point increase in consumption to be as well-off

under the former optimal inflation target (that is, 2.21%) as they were under the optimal target associated

with the lower real interest rate (3.20% in this case). In other words, the welfare costs of not adjusting the

target in the face of a decline in r? are substantial.

4.2 Robustness to Alternative Structural Assumptions

In this section, we investigate the robustness of the (r?, π?) relation to altering (or modifying) some struc-

tural features of the environment. We consider several relevant dimensions: larger shocks, alternative

calibrations for the steady-state price and wage markup, and changes in the degree of price and wage

indexation.21

Larger Shocks. As noted previously, the model is estimated using data from the Great Moderation pe-

riod. One may legitimately argue that the decline in the real interest rate resulting from the secular stagna-

tion has come hand in hand with larger shocks, as the Great Recession suggests. To address this concern,

we simulate the model assuming that demand shocks have a standard deviation that is 30 percent larger

than estimated.

We conduct this exercise assuming that changes in average productivity growth µz are the only driver of

changes in the natural rate. Apart from σq and σg, which are re-scaled, all the other parameters are frozen at

21Robustness to altering the monetary policy rule is assessed further below.
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Figure 6: (r?, π?) relation with larger demand shocks
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Note: The blue dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄.
The red dots correspond to the counterfactual simulation with σq and σg set to twice their baseline value.

their posterior mean. Given this setup, the optimal inflation target is 3.7% as opposed to 2.21%, conditional

on the baseline value of r?. Also, under the alternative shock configuration, the probability of hitting the

ZLB is 5.3%, as opposed to 5.5% in the baseline. These probabilities may seem low, especially in the case

of large shocks, which, we argue, capture Great Recession-like shocks. However they are particularly

low because the inflation target is chosen optimally in this setup. In particular, in the larger shocks case,

the increase in the inflation target is large enough to offset the impact of larger shocks in terms of ZLB

incidence. When instead we keep the inflation target unchanged, the probability of hitting the ZLB rises to

18% in the face of a 1% decline in r?.22 In that case, these ZLB probabilities come close to the probabilities

reported by Kiley and Roberts (2017) in their DSGE model (albeit, they find a higher probability of ZLB, of

the order of 30% when using the FRS/US model) and by Chung et al. (2019). 23

Figure 6 reports the (r?, π?) relation under larger demand shocks (red dots) and compares the outcome

with the baseline relation (blue dots).24 Interestingly, the (r?, π?) locus has essentially the same slope in

the low r? region. Here again, we find a slope close to −1. However, the curve is somewhat steeper in

the high r? region and shifted up, compared with the baseline scenario. This reflects that under larger

22See Appendix Section I, in which such counterfactual probabilities of ZLB are reported.
23In addition to per period probability of ZLB, these authors also put forward and emphasize the probability that a ZLB event

occurs in the next decade. By construction this number is a larger one, and the mapping between the two numbers is not fully

straightforward
24We obtain this figure using the same procedure outlined earlier. Here again, we run several passes with successively refined

inflation grids.
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demand shocks, even at very high levels of the natural rate, a drop in the rate is conducive to more fre-

quent ZLB episodes. The social planner is then willing to increase the inflation target faster than in the

baseline scenario and generically sets the inflation target at higher levels to hedge the economy against

ZLB episodes.

Alternative Markups. The optimal level of inflation in our setup depends on the elasticities of substi-

tution among intermediate goods, θp, and among labor types, θw, since those parameters determine the

extent to which the price and wage dispersion induced by inflation is translated into an inefficient allo-

cation of resources. These parameters have been calibrated, as they cannot be identified from time-series

data and a log-linearized version of the model.

In our calibration, the baseline value for the elasticity of substitution θp is 6, leading to a steady-state

price markup of 20%. While this value is in line with common “textbook” parameterizations (see Galí 2015),

and is close to the baseline value obtained in Hall (2018) and in Christiano et al. (2005), there is considerable

uncertainty in the empirical literature about the level of markups. For example, some estimates in Basu

and Fernald (1997) and Traina (2015) point to possibly much smaller values, while Autor et al. (2017),

De Loecker and Eeckhout (2017), and Farhi and Gourio (2018) suggest substantially larger figures. To

investigate the robustness of our results, we re-do our main simulation exercise, this time setting θp to

a value as large as 10 and as low as 3. These values largely encompass the range of available empirical

estimates.

Similarly, for the wage markup, there is arguably scarcer evidence, and in any case considerable uncer-

tainty around our baseline parameterization, given by θw set to 3. Here again, in order to cover a broad

range of plausible estimates, we run alternatives exercises, setting in turn θw to 8 and θw to 1.5. Results are

reported in Figure 7 in the case of robustness with respect to the price markup, and in Figure 8 with respect

to the wage markup.

The main takeaway from these figures is that our key result is by and large preserved. That is, in the

empirically relevant region (for levels of r? lower than, say, 4%), the slope of the (r?, π?) curve is only very

mildly affected when the elasticity of substitution of goods or labor types is changed.

Another noticeable result of this robustness exercise is that, by contrast, in the region with high steady-

state real interest rates (say, r? larger than 5%), the value of the optimal inflation target, and the slope of the

curve of interest, are more sensitive to the value of θp or θw. To see why, first note that in this region, the ZLB

is essentially irrelevant, so the standard welfare cost of the inflation setup applies. With less substitution

across goods, a given level of price dispersion induced by inflation leads to smaller output dispersion (as

is clear, for instance, in the polar case of complementary goods that lead to no output dispersion across

firms at all). The effect of θp on output dispersion is apparent from the formulas in our Appendix and

in textbook derivations of output dispersion, such as those in chapter 3 of Galí (2015). Thus, with a low

substitution (that is, a low θp), the welfare loss due to inflation (or deflation) is smaller. Therefore a lower
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Figure 7: (r?, π?) relation with alternative θp
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Note: The blue dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄. The
red dots correspond to the counterfactual simulation with θp set to 10. The green dots correspond to the counterfactual simulation
with θp set to 3.

Figure 8: (r?, π?) relation with alternative θw
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Note: The blue dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄. The
red dots correspond to the counterfactual simulation with θw set to 8. The green dots correspond to the counterfactual simulation
with θw set to 1.5.
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θp allows for an inflation target that is further from zero, insofar as there are motives for a non-zero steady-

state inflation. Such a mechanism explains why, in Figure 7, optimal inflation is more negative with lower

substitution.

Interestingly, when we consider robustness with respect to parameter θw, the ranking of the correspond-

ing curves is reversed (see Figure 8). That is, a larger θw induces a larger inflation target in absolute value.

The reason is that with a larger substitution across labor types, a given nominal wage growth generates

dispersion of quantities across types of labor that turns out to be particularly costly. In such a case, it is

optimal that the burden of adjustment of real wages to growth is borne not by nominal wages, but rather

by nominal prices (thus leading to a more pronounced deflation).25

Alternative Degrees of Indexation. The degree of indexation of price and wage is an important deter-

minant of the cost of inflation. In our empirical estimate, the degrees of indexation are moderate: 0.22 for

prices and 0.44 for wages at the posterior mean. It is worthwhile to examine the sensitivity of our results

to the degree of indexation. Indeed, some macro studies’ estimates find or impose a much larger degree

of indexation (Christiano et al. 2005). By contrast, micro studies hardly find any evidence of indexation.

In this robustness exercise, we consider in turn a “zero indexation” case, a high indexation case (setting

γp and γw to 0.7), and a very high indexation case (setting γp and γw to 0.9). The last two configurations

are arguably unrealistic. Results are presented in Figure 9. In the absence of indexation, results are similar

to those under our estimated indexation levels. For the high indexation case (γp and γw equal to 0.7), the

results differ from the baseline only for relatively large values of the steady-state real interest rate.

In the very high indexation case, the position and shape of the curve are substantially affected. The

curve is nearly a declining straight line. For a very large indexation degree the welfare cost of inflation

(or deflation) is substantially reduced. Thus, it is optimal to allow for a sizable trend deflation when the

natural rate is large as a result of large productivity growth. However, we can note that in the empirically

relevant region, that is, for r? below 2%, the local slope of the curve is similar whatever the degree of

indexation.

5 The Effect of Parameter Uncertainty

In this section we investigate the impact of parameter uncertainty on the relation between the optimal

inflation target and the steady-state real interest rate. Specifically, we analyze how a Bayesian-theoretic

optimal inflation target reacts to a downward shift in the distribution of the steady-state real interest rate.

25 This can be illustrated again in the approximated welfare function, and ignoring the effects of shocks. Then the optimal

inflation obeys π? ≈ −(λw(1− γz)(1− γw)/[λp(1− γp)2 + λw(1− γw)2])µz. The inflation target is a decreasing function of λw,

thus of θw.
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Figure 9: (r?, π?) relation with alternative indexation degrees
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Note: The blue dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean θ̄.
The red dots correspond to the counterfactual simulation with γp = γw = 0 . The green dots correspond to the counterfactual
simulation with γp = γw = 0.7

A Bayesian-theoretic Optimal Inflation Target. The location of the loss function W (π; θ) evidently de-

pends on the vector of parameters θ describing the economy. As a result of estimation uncertainty around θ,

the optimal inflation rate π?(θ) will be subject to uncertainty. Further, a policymaker may wish to take into

account the uncertainty surrounding θ when determining the optimal inflation target. A relevant feature of

the welfare functions in our setup is that, in general, and as shown above, they are markedly asymmetric:

Adopting an inflation target 1 percentage point below the optimal value generates welfare losses larger

than by setting it 1 percentage point above. As a result, the certainty equivalence does not hold. A policy-

maker maximizing expected welfare while recognizing the uncertainty will choose an inflation target that

differs from the one corresponding to the case where θ is set to its expected value, and taken to be known

with certainty, as in our baseline analysis.

Formally, the estimated posterior distribution of parameters p(θ|XT) can be exploited to quantify the

impact of parameter uncertainty on the optimal inflation target and to compute a “Bayesian-theoretic op-

timal inflation target.” We define such a target as the inflation target π?? that maximizes the expected
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welfare not only over the realizations of shocks, but also over the realizations of parameters26

π?? ≡ arg max
π

∫
θ
W (π; θ)p(θ|XT)dθ.

We interpret the spread between the optimal Bayesian inflation target and the “certainty-equivalent” op-

timal inflation target at the posterior mean θ̄ as a measure of how uncertainty about the parameter value

affects optimal inflation. Given the nature of the asymmetry in the welfare function, the spread will turn

out to be positive: A Bayesian policymaker will tend to choose a higher inflation target than a policymaker

who takes θ to be known and equal to the mean of its distribution. A higher inflation target indeed acts

as a buffer to hedge against particularly detrimental parameter values (either because they lead to more

frequent ZLB episodes or because they lead to particularly acute inflation distortions). We define

Spr(θ) ≡ π?? − π?(θ)

and assess below Spr(θ̄).

Results. According to the simulation exercise, π?? = 2.40%. This robust optimal inflation target is higher

than the value obtained with θ set at its central tendency. As expected, a Bayesian policymaker chooses a

higher inflation target to hedge against particularly harmful states of the world (that is, parameter draws)

where the frequency of hitting the ZLB is high.27

Assessing how a change in r? affects π?? for every value of r? is not possible, due to the computational

cost involved. Such a reaction is thus investigated for a particular scenario: It is assumed that the economy

starts from the posterior distribution of parameters p(θ|XT) and that, everything else being constant, the

mean of r? decreases by 100 basis points. Such a 1 percentage point decline is chosen mainly for illustrative

purposes. Yet, it is of a comparable order of magnitude (although somewhat smaller in absolute value) to

recent estimates of the drop of the natural rate after the crisis, such as those in Laubach and Williams (2016)

and Holston et al. (2017). The counterfactual exercise considered can therefore be seen as a relatively con-

servative characterization of the shift in steady-state real interest rate. Figure 10 depicts the counterfactual

shift in the distribution of r? that is considered.

The Bayesian-theoretic optimal inflation target corresponding to the counterfactual lower distribution

26This Bayesian inflation target is recovered from simulating the model under a ZLB constraint using the exact same sequence

of shocks {εt}T
t=1 with T = 100, 000 as in the previous subsection (together with the same burn-in sample) and combining it with

N draws of parameters {θj}N
j=1 from the estimated posterior distribution p(θ|XT), with N = 500. As in the previous section, the

social welfare function W (π; θ) is evaluated for each draw of θ over a grid of inflation targets {π(k)}K
k=1. The Bayesian welfare

criterion is then computed as the average welfare across parameter draws. Here, we start with the same inflation grid as before

and then run several passes. In the first pass, we identify the inflation target maximizing the Bayesian welfare criterion. We then

set a finer grid of K = 51 inflation targets around this value. We repeat this process several times with successively finer grids

of inflation targets, until the identified optimal inflation target proves insensitive to the grid. In this particular exercise, some

parameter draws for θ lead to convergence failure in the algorithm implementing the ZLB. These draws are discarded.
27Figure E.1 in the Appendix illustrates this point by showing that the posterior distribution of π?(θ) is broadly symmetric.
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Figure 10: Posterior distributions of r? and counterfactual r?
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of r? is obtained from a simulation exercise that relies on the same procedure as before.28 Given a draw in

the posterior of parameter vector θ, the value of the steady-state real interest rate is computed using the

expression implied by the postulated structural model r?(θ) = ρ(θ) + µz(θ). From this particular draw,

a counterfactual lower steady-state real interest rate, r?(θ∆), is obtained by shifting the long-run growth

component of the model µz downward by 1 percentage point (in annualized terms). The welfare function

W (π; θ∆) is then evaluated. Since there are no changes other than this shift in the mean value of µz in the

distribution of the structural parameters, we can characterize the counterfactual distribution p(θ∆|XT) as

a simple transformation of the estimated posterior p(θ|XT). The counterfactual Bayesian-theoretic optimal

inflation target is then obtained as

π??
∆ ≡ arg max

π

∫
θ∆

W (π; θ∆)p(θ∆|XT)dθ∆.

Figure 11 illustrates the counterfactual change in the optimal inflation target obtained when the mean

of the distribution of the steady-state real interest rate declines by 100 basis points. The simulation exercise

returns a value of π??
∆ = 3.30%, that is, 90 basis points higher than the optimal value under uncertainty

obtained with the posterior distribution of parameters in the pre-crisis sample π??
∆ = 2.40%.29

Thus, in our setup, a monetary authority that is concerned about the uncertainty surrounding the pa-

rameters driving the costs and benefits of the inflation chooses a higher optimal inflation target. However,

28Again, we use the same sequence of shocks and the same parameter draws as in Section 3.2.
29Figure J.1 in Appendix shows how the posterior distribution of π? is shifted after the permanent decline in the mean of r?.
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Figure 11: Eθ(W (π, θ)) in baseline and counterfactual
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Note: Blue curve: Eθ(W (π, θ)). Red curve: Eθ(W (π, θ)) with lower r?.

the reaction of this optimal inflation target following a drop in the mean r? is hardly altered: A 100 basis

point decrease in the steady-state real interest rate calls for a roughly 90 basis point increase in the optimal

inflation target, which is in the vicinity of pre-crisis parameter estimates.

A Known Reaction Function. Here we study the consequences of the (plausible) assumption that the

central bank actually knows with certainty the coefficients of its interest rate rule. More specifically, we

repeat the same simulation exercise as in the previous subsection but with parameters aπ, ay, and ρi in the

reaction function (3) taken to be known with certainty. In practice we fix these three parameters at their

posterior mean, instead of sampling them from their posterior distribution. This is arguably the relevant

approach from the point of view of the policymaker.30 Note, however, that all the other parameters are

subject to uncertainty from the standpoint of the central bank.

Figure 12 presents the Bayesian-theoretic optimal inflation targets obtained when simulating the model

at the initial posteriors and after a −100 basis point level shift in the posterior distribution of the long-run

growth rate µz and, hence, the steady-state real rate r?. According to these simulations, the inflation target

should initially be π?? = 2.24%. After the counterfactual change in the distribution of r? is considered, π??

should be increased to 3.16%, which is again in the ballpark of a 90 basis point increase in π? in response

30In practice, long-run inflation targets are seldom reconsidered while the rotation in monetary policy committees occurs at a

higher frequency. From this viewpoint, our baseline assumption of uncertainty on all the monetary policy rule parameters is not

necessarily unwarranted.
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Figure 12: Eθ(W (π, θ))
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Note:: Blue curve: Eθ(W (π, θ)). Red curve: Eθ(W (π, θ)) with lower r?. In each case, ρi, aπ , and ay are frozen at their posterior
mean values.

to a 100 basis point downward shift in the distribution of r?.

6 Alternative Monetary Policy Rules and Environments

In this section we study the optimal adjustment of the inflation target in response to a change in the steady-

state real interest rate under five alternative assumptions regarding monetary policy: (1) an inflation target

that is set in terms of average realized inflation, (2) an effective lower bound on the policy rate that can be

below zero, (3) alternative degrees of smoothing in the policy rule, (4) a central bank with no “lower for

longer” strategy, and (5) a price level targeting rule. For simplicity, throughout this section we ignore the

role of uncertainty and treat the model parameters as known.

Average versus Target Inflation. As emphasized in recent works (see, notably, Hills et al. 2016; Kiley and

Roberts 2017), when the probability of hitting the ZLB is non-negligible, realized inflation is, on average,

significantly lower than the inflation rate that the central bank targets in the interest rate rule (and which

would correspond to steady-state inflation in the absence of shocks or in a linear model). This results from

the fact that anytime the ZLB is binding (a recurrent event), the central bank effectively loses its ability to

stabilize inflation around the target. Therefore, it may be relevant to assess the central bank’s outcomes

and set the corresponding target in terms of the effective average realized inflation. In this section, we

investigate whether measuring the inflation target in this alternative way matters.
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Figure 13: Average realized inflation and optimal inflation
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To this end, the analysis of the (r?, π?) relation in Section 3.2 is complemented here with the analysis

of the relation between r? and the average realized inflation rate E{πt} obtained when simulating the

model for various values of r? and the associated optimal inflation target π?. In the interest of brevity, the

calculations are presented only for when the source of variation in the natural interest rate is the change in

average productivity growth µz.

Figure 13 illustrates the difference between the (r?, π?) curve (blue dots) and the (r?, E{πt}) curve (red

dots). The overall shape of the curve is unchanged. Unsurprisingly, the curves are identical when r? is

high enough. In this case, the ZLB is (almost) not binding, and average realized inflation does not differ

much from π?. A spread between the two emerges for very low values of r?. There, for low values of the

natural rate, the ZLB incidence is higher, and as a result, average realized inflation indeed becomes lower

than the optimal inflation target. However, that spread remains limited; it is less than 10 basis points. The

reason is that the implied optimal inflation target is sufficiently high to prevent the ZLB from binding too

frequently, thus limiting the extent to which average realized inflation and π? can differ.

Unreported simulation results show that the gap between π? and average realized inflation becomes

more substantial when the inflation target is below its optimal value. For instance, mean inflation is

roughly zero when the central bank adopts a 1% inflation target in an economy where the optimal inflation

target is π? = 2%.

A Negative Effective Lower Bound. The recent experience of many advanced economies (including the

euro area) points to an effective lower bound (ELB) for the nominal interest rate below zero. For instance,
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Figure 14: Optimal inflation with a negative ELB
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the ECB’s deposit facility rate, which gears the overnight money market rate due to excess liquidity, was

set at a value of−10 basis points in June 2014 and was further lowered to−40 basis points in March 2016.31

We use the estimated model to evaluate the implications of a negative ELB in the US. More precisely,

we set the lower bound on the nominal rate it so that

it ≥ e,

and we set e to −40 basis points (in annual terms) instead of zero. Results are presented in Figure 14. As

expected, the (r?, π?) locus shifts downward, though by slightly fewer than 40 basis points. Importantly,

its slope remains identical to the baseline case: Around the baseline value for the real interest rate, a 100

basis point downward shift in the distribution of r? calls for an increase in π? of about 90 basis points.

Alternative Degrees of Interest Rate Smoothing. Our analysis is conditional on a specific reaction func-

tion of the central bank, described in our setup by the set of parameters aπ, ay, and ρi. Among these

parameters, the smoothing parameter, ρi, has a key influence on the probability of being in a ZLB regime.

A higher smoothing has two effects in our model. The first effect is—through standard monetary pol-

icy rule inertia—to reduce the speed at which interest rates are raised when the economy exits the lower

bound regime since the current rate inherits the past values of the effective nominal rate. The second effect

comes from the fact that the smoothing applies to the notional rate in
t that would prevail absent the lower

31In September 2019, the rate on the deposit facility was lowered to −0.50%
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bound constraint (see equation 6), while the effective nominal interest rate is the maximum of zero and

the notional rate (see equation 5). Thus the interest rate inherits the past negative values of the notional

nominal rate. So, a higher smoothing results in the effective interest rate remaining at zero for an extended

period of time beyond that implied by the macroeconomic shocks that initially brought the economy to the

zero lower bound constraint. Such a monetary policy strategy introduces history dependence, whereby

in the instance of a ZLB episode, the central bank is committed to keeping rates lower for longer. As this

reaction function is known to the agents in the model, this commitment to future accommodation, through

generating higher expected inflation and output, helps with exiting the trap (or even not entering it).

Through both effects, a higher degree of smoothing thus reinforces the history dependence of monetary

policy and tends to shorten the length of ZLB episodes and the probability of hitting the ZLB constraint.

Everything else being equal, one should therefore expect a lower optimal inflation rate for higher values of

the smoothing parameters. This property of the model is illustrated in Figure 15, which depicts the (r?, π?)

relation under three possible values of the smoothing parameter ρi. The value used under our baseline

scenario, that is, the posterior mean estimates, are 0.85. We also consider two alternative settings: a higher

value of ρi = 0.95, which is close to the inertia of the central bank reaction function in Coibion et al. (2012),

and a lower value of ρi = 0.8. These two values arguably encompass the existing empirical uncertainty

on the degree of smoothing, as they stand outside the 90% probability interval of our posterior parameter

estimates.

The effect of a higher interest rate smoothing is to shift the (r?, π?) curve downward, except for high

values of r?, for which the probability of hitting the ZLB is close to zero and the optimal inflation target is

slightly negative. Under this strategy, the pre-crisis optimal inflation rate would have been close to 0.5% in

the US.32 Conversely, a lower interest rate smoothing shifts the (r?, π?) curve upward, even for relatively

high values of r?—because the probability of being in a ZLB regime increases under this strategy. With a

lower ρi, the pre-crisis optimal inflation rate would be close to 3.5%.

As for the slope of the (r?, π?) curve, in the empirically relevant region, it is much less affected than is

the level of this locus. It is, however, more affected in this exercise than in other robustness experiments

considered above. A very large smoothing parameter, due to its effect outlined above on the probability

of ZLB, somewhat alleviates the extent to which an increase in the inflation target is needed. The slope

is indeed close to −0.7 in that case. For a strategy associated with a low smoothing parameter, the slope

is close to −1.0, which is closer to the benchmark case. For large values of r?, the degree of smoothing is

irrelevant.
32This is not inconsistent with the result of Coibion et al. (2012), who report an optimal inflation target of 1.5% under their

baseline calibration on US post–World War II data. Indeed, the variance of their underlying shocks is higher than in our baseline,

which is based on Great Moderation estimates. As discussed above, a higher variance of shocks induces more frequent ZLB

episodes and hence calls for a higher optimal inflation target.
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Figure 15: (r?, π?) relation with alternative ρi
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Notes: The blue dots correspond to the baseline scenario wherein all the structural parameters are set at their posterior mean
θ̄. The red dots correspond to the counterfactual simulation with ρi set to 0.8. The green dots correspond to the counterfactual
simulation with ρi set to 0.95.

More Traditional Specifications of the Policy Rule. We also considered the case of a monetary policy rule

featuring no shadow rate (that is, no “lower for longer” feature) as well as the case of a simple non-inertial

Taylor rule. Results are reported in Figures 16 and 17. In the first case, the lagged interest rate is the lagged

actual rate. Immediately after the liftoff that follows a ZLB episode, the interest rate follows a standard

path, so monetary policy does not “keep memory” that it has been constrained for some periods by the

ZLB (unlike under our baseline specification). In the second case, there is no inertia at all, but we use a

four-quarter inflation rate as in the standard Taylor rule (and its implementation in Kiley and Roberts 2017).

In both cases, the overall degree of monetary policy inertia decreases, and so the stabilization property of

the policy rule is weaker in our forward-looking model, materializing in more frequent ZLB episodes. As

a result, the optimal inflation rate is in both cases larger than in the baseline, for realistic values of the real

interest rate. Also the optimal inflation rate is positive for a wider range of values of r?. However, in both

variants the slope of the (r?, π?) is similar to that of our baseline curve around the sample value of r?.

A Price Level Targeting Rule. Finally, we consider that the rule effectively implemented by the central

bank reacts to deviations of the (log) price level p̂t = p̂t−1 + π̂t from a targeted path, instead of to the gap

π̂t between the inflation rate and its optimal target. Formally, we assume that the central bank sets the

policy rate according to the following rule:

ı̂plt
t = ρi ı̂

plt
t−1 + (1− ρi)

(
ap p̂t + ay x̂t

)
+ ζR,t, (7)
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Figure 16: (r?, π?) relation with simple standard Taylor rule
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Notes: The blue dots correspond to the baseline scenario. The green dots correspond to the counterfactual simulation using the
simple standard Taylor rule. Parameters of the rules on inflation and output gap are the same as in the baseline, but there is no
inertia, and four-quarter inflation is used.

Figure 17: (r?, π?) relation with “‘no shadow rate” rule
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Notes: The blue dots correspond to the baseline scenario. The red dots correspond to the counterfactual non-inertial policy rule
used.
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Figure 18: (r?, π?) relation with price level targeting strategy
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Notes: Simulations obtained under the price level targeting policy rule given in equation 7. The blue (red) dashes correspond to
the scenario wherein ap = 0.1 (0.5). All the other structural parameters are set at their posterior mean θ̄.

with ı̂t = max{ı̂plt
t , −(µz + ρ + π)}.

We perform the same exercises as before, focusing on the case in which average productivity growth

µz is the driver of changes in the natural rate. We consider two values for ap: 0.1 and 0.5. All the other

parameters of the model are set to their posterior mean.

Figure 18 reports the (r?, π?) relation obtained under these two alternative scenarios. A striking fea-

tures of the new curve is that the optimal inflation target lies between 0% and 1%, as opposed to 2.21% in

the baseline. Price level targeting makes a commitment to make up for past inflation undershooting (or

overshooting) that is even stronger than what can be obtained when increasing the smoothing parameters

in a rule that targets inflation instead. This commitment stabilizes inflation expectations by reducing both

the probability of hitting the zero lower bound and the average length of such episodes. As a consequence,

there is no incentive to bear the costs of a positive steady-state inflation, and the optimal inflation target

is close to zero. This holds regardless of whether the central bank reacts aggressively to a deviation of the

price level from its targeted path.

Another striking result is that the (r?, π?) relation is much flatter in the vicinity of the pre-crisis level for

r? than under alternative inflation targeting monetary policy strategies. The slope is close to −0.3 instead

of the (−1.0 to −0.7) range obtained previously. A price-level targeting strategy thus allows the costs of

the ZLB to remain small even if the natural rate of interest drops by, say, 1% compared with the pre-crisis

regime.
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7 Summary and Conclusions

We have assessed how changes in the steady-state natural interest rate translate into changes in the optimal

inflation target in a model subject to the ZLB. Our main finding is that, starting from pre-crisis values,

a 1 percentage point decline in the natural rate should be accommodated by an increase in the optimal

inflation target of 0.9 to 1.0 percentage points. For convenience, Table 2 recaps our results. Overall, across

the different concepts of optimal inflation considered in this paper, the level of optimal inflation does vary.

However, our finding that the slope of the (r?, π?) relation is close to −1 in the vicinity of the pre-crisis

value of steady-state real interest rates is very robust.

Table 2: Effect of a decline in r? under alternative notions of optimal inflation

Baseline Lower r? ∆

Mean of π? 2.00 3.00 1.00

Median of π? 1.96 2.90 .94

π? at post. mean 2.21 3.20 .99

π? at post. median 2.12 3.11 .99

π?? 2.40 3.30 .90

π??, frozen MP 2.24 3.16 .92

Average realized inflation at post. mean 2.20 3.19 .99

π? at post. mean, ELB -40 bp 1.90 2.83 .93

Average realized inflation at post. mean, ELB -40 bp 1.86 2.77 .91

π? at post. mean, higher ρi 0.44 1.13 .69

π? at post. mean, price level targeting 0.06 0.32 .26

Note: All figures are annualized percentage rates.

Our analysis considers adjusting the inflation target as the only option at the policymaker’s disposal.

This is not to say that this is the only option in their choice set. Indeed, recent discussions revolving around

monetary policy in the new normal suggest that the various non-conventional measures—forward guid-

ance on interest rates and large scale asset purchases—used in the aftermath of the Great Recession could

feature permanently in the policy toolbox. In particular, unconventional monetary policies could represent

useful second-best instruments when the ZLB is reached, as advocated by Reifschneider (2016), Swanson

(2018), and Sims and Wu (2019) (see also Eberly et al. 2019 and Chung et al. 2019 for recent work docu-

menting the efficiency of such instruments). By implying a “low for long" interest rate at the end of the

trap, the monetary policy rule that we consider in our exercise accounts, at least partially, for the effect of

non-conventional policies that were implemented at the ZLB. But more aggressive non-conventional pack-

ages could be considered as alternative strategies. Beyond these monetary policy measures, fiscal policies

could play a significant role, as emphasized by Correia et al. (2013). As a result, the ZLB might be less
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stringent a constraint in a practical policy context than in our analysis, as argued in Debortoli et al. (2019)

among others. However, the efficacy and the costs of these policies should also be part of the analysis. The

complete comparison of these policy tradeoffs goes beyond the scope of this paper.

An alternative would consist of a change of monetary policy strategies, for example, adopting variants

of the price-level targeting strategy, as recently advocated by Williams (2016) and Bernanke et al. (2019).

Our exercises emphasize that when the central bank follows such a “make-up” strategy for past inflation

deviations from its target, the case for increasing the inflation target is greatly reduced. Nevertheless, these

results are obtained under the assumption that private agents believe and understand the commitment

of the central bank to deviating from its inflation target in order to compensate for previous deviations.

This is a debatable assumption. Andrade et al. (2019) show that the lower-for-longer guidance on future

interest rates that the FOMC gave during the recent ZLB episode was interpreted differently by private

agents, including professional forecasters: Some viewed it as a good news of a commitment to future

accommodation, and some viewed it as bad news that the lowflation would last longer. This finding

emphasizes that lower-for-longer policies are much less effective in practice than is implied by theoretical

models with assumptions of perfect credibility, full information, and rational expectations. They can even

be detrimental if the bad signals prevail.

We discuss the potential desirability of a higher inflation target, abstracting from the challenges of

implementing an eventual transition to the new objective. In the current low-inflation environment, in-

creasing the inflation target in reaction to a drop in the steady-state value of the real interest rate might

raise some credibility issues. However, a move toward make-up strategies would also raise substantial

credibility issues, as these imply an arguably time-inconsistent commitment to deviate from the inflation

target once it has been reached.

Finally, our analysis abstracts from forces identified in the literature as warranting a small, positive

inflation target, irrespective of ZLB issues, as emphasized in, for example, Bernanke et al. (1999) and Kiley

et al. (2007). The first is grounded in measurement issues, following the finding from the 1996 Boskin report

that the Consumer Price Index did probably overestimate inflation in the US by more than 1 percentage

point in the early 1990s. downward rigidities (for example, in nominal wages), a positive inflation rate

can help "grease the wheel" of the labor market by facilitating relative price adjustments. Symmetrically,

we also abstract from forces calling for lower inflation targets. The most obvious is the so-called Friedman

(1969) rule, according to which average inflation should be equal to minus the steady-state real interest

rate, hence negative, in order to minimize loss of resources or utility and the distortionary wedge between

cash and credit goods (for example, consumption and leisure) induced by a non-zero nominal interest

rate. Presumably, these and several other factors were taken into account when an inflation target of 2%

was chosen. But an estimate of r∗ was, undoubtedly, one of the key factors in that choice. Accordingly,

the current re-assessment of r∗ by the Federal Reserve and other central banks would seem to call for a

simultaneous re-assessment of the optimal inflation target.
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Appendix

A Various long-run and optimal inflation rates considered

Table A.1: Various notions of long-run and optimal inflation in the model

π Any inflation target, used to define the “inflation gap” that enters the Taylor rule

E(πt) Average realized inflation, might differ from π due to ZLB

π?(θ) Inflation target that minimizes the loss function given a structural parameters θ

π?(θ̄) π? assuming parameters at post. mean

π?(median(θ)) π? assuming parameters at post. median

π̄? average of π?(θ) over the posterior distribution of θ, i.e.,
∫

θ π?(θ)p(θ|XT)dθ

Median(π?) Median of π?(θ) over the posterior distribution

π?? Inflation target that minimizes the average loss function over the posterior distribution of θ

B Illustrating model properties: moments, IRF to monetary policy shock

This section illustrates basic properties of the estimated baseline model.

Table B.1: Moments of key variables

Data 1985Q2-2008Q3

Variable Inflation 4-Quarter -Inflation Output gap Output growth Interest rate

Std. dev. 0.22 0.73 — 0.54 2.20

Simulated Model (with ZLB constraint)

Variable Inflation 4-Quarter -Inflation Output gap Output growth Interest rate

Std. dev. 0.43
(0.11)

1.53
(0.41)

0.58
(0.14)

0.99
(0.14)

2.15
(0.14)

Note: In percent. Inflation is quarterly inflation (not annualized). Interest rate is annualized. 4-Quarter
inflation is the year-on-year growth rate of the price index. The model moments are based on 1000
simulations at the posterior mean. At each simulation, shocks are drawn (with replacement) from the
historical shocks. The figures in parentheses are the standard deviation across bootstrap simulations.
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Figure B.1: Response to a monetary policy shock
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Note: Plain line : response to a monetary policy shock leading to -25 basis point cut in the nominal interest on impact. Inflation is
the annualized quarterly growth rate of the price index. Interest rate is annualized.
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C Illustrating the “lower for longer” property of the model policy rule

Figure C.1: Interest rate, inflation and output path in a recession with ELB scenario
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Note: Plain line : actual model policy rule. Dashed line: illustrative interest rule featuring actual rate lagged term rather than
lagged “notional rate” term. The latter rule has no feedback on the model.

In this section, we illustrate how the “lower for longer” property of the model policy rule works in

practice. To this end, we assume that the model starts in steady state and is hit by a series of unexpected

risk-premium shocks that drive the economy to the ZLB. Given the implied path for inflation π̂t, the output

gap x̂t, and the notional rate ı̂n
t , we reconstruct the path of an alternative interest rate ı̃t that would obey

ı̃n
t = ρi ı̃t−1 + (1− ρi)(aππ̂t + ay x̂t) + ζR,t

ı̃t = max{ı̃n
t ,−(µz + ρ + π)}.

In this alternative specification, the notional rate does not depend on its lagged value but rather on the

lagged value of the nominal interest rate. Away from the ZLB, this has no discernible effect. However,

when the economy hits the ZLB, ı̃n
t will mechanically increase sooner than ı̂n

t . Figure C.1 reports the out-

come of this simulation. The solid blue line shows the path of ı̂t while the dashed line shows the implied

path for ı̃t.
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D The distribution of ZLB spells duration

Figure D.1: Distribution of ZLB spells duration at the posterior mean
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Note: Histograms are based on a simulated sample of 500,000 quarters. Simulations are carried out assuming in turn that the
inflation target is the estimated inflation target; and then that the inflation target is the optimal inflation target obtained using the
mean of the posterior density of estimated parameters

E The distribution of optimal inflation targets

Figure E.1: Posterior Distribution of π?
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F The welfare cost of inflation

Following a standard approach when assessing alternative policies, we complement our characterization

of optimal inflation by providing measures of consumption-equivalent welfare gains/losses of choosing a

suboptimal inflation target.

Let W (π) denote welfare under the inflation target π. It is defined as

W (π) = E0

∞

∑
t=0

βt
[

eζg,t log(Ĉt(π)− ηĈt−1(π)e−ζz,t)− χ

1 + ν

∫ 1

0
Nt(π, h)1+νdh

]
+ Ψ0(µz, ζz).

Importantly, the welfare function is stated in terms of detrended consumption. The term Ψ0 captures the

part of welfare that depends exclusively on µz and ζz,t and is not affected by changes in the inflation target.

Let us now consider a deterministic economy in which labor supply is held constant at the undistorted

steady-state level Nn and in which agents consume the constant level of detrended consumption Ĉ(π). We

seek to find the Ĉ(π) such that this deterministic economy enjoys the same level of welfare as above. Thus

W (π) = E0

∞

∑
t=0

βt
[

log
(
(1− η)Ĉ(π)

)
− χ

1 + ν
N1+ν

n

]
+ Ψ0(µz, 0).

Direct manipulations thus yield

W (π) =
1

1− β

[
log
(
(1− η)Ĉ(π)

)
− χ

1 + ν
N1+ν

n

]
+ Ψ0(µz, 0).

Consider now an economy with π = π? and another one with π = π̃ 6= π?. Imagine that in the latter,

consumer are compensated in consumption units in such a way that they are as well off with π̃ as with π?.

Let 1 + ϕ(π) denote this percentage increase in consumption. Thus ϕ(π) is such that

W (π?) = E0

∞

∑
t=0

βt
[

log
(
(1 + ϕ)(1− η)Ĉ(π)

)
− χ

1 + ν
N1+ν

n

]
+ Ψ0(µz, 0)

=
log(1 + ϕ(π))

1− β
+W (π).

It then follows that

ϕ(π) = exp{(1− β)[W (π?)−W (π)]} − 1.

In practice, welfare is approximated to second order.

We compute ϕ(π) under two alternative steady-state interest rate scenarios. In the first scenario, we set

r? to the baseline estimated value, corresponding to the posterior mean of µz + ρ. In the second scenario,

we consider a downward shift in µz by one percentage point (in annual terms), resulting in a lower steady-

state real rate. The results are reported in Figure F.1. The blue lines show ϕ(π) in the first scenario and the

red lines show ϕ(π) under a lower real interest rate. For ease of interpretation, the dashed, vertical lines

indicate the optimal values of inflation under the two alternative interest rate scenarios.
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Figure F.1: Welfare cost of inflation at the posterior mean
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Note: The figure reports the welfare cost of inflation stated as a percentage of steady-state consumption in the optimal setting.

Figures F.1 suggests that in the baseline scenario, the welfare cost of raising or lowering the inflation

target by one percentage point is relatively mild. However, this conclusion is not robust to a lower real

interest rate. As the red line shows, with a one percentage rate lower r?, the welfare cost of inflation is

asymmetric. It would be much costlier to lower the inflation target than to raise it in the neighborhood of

the optimal target. In particular, keeping the inflation target unchanged when faced with a 1 percentage

point decline in r? gives rise to a 1.5% consumption loss.
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G Further illustrations of the (r?, π?) relation

G.1 When µz varies

Figure G.1: (r?, π?) locus when µz varies
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. Memo: r? = ρ + µz. Range for µz: 0.4% to 10% (annualized) .

G.2 When ρ varies

Figure G.2: (r?, π?) locus when ρ varies
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; Lighter blue: parameters set
at the posterior mode. Memo: r? = ρ + µz. Range for µz: 0.4% to 10% (annualized) .
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H Nominal and Real Interest Rates

Figure H.1: (r?, i?) locus (at the posterior mean)
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I The probability of ZLB under large shocks

Figure I.1: Relation between probability of ZLB at optimal inflation and r? (at the posterior mean)
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J Distribution of π? following a downward shift of the distribution of r?

Figure J.1: Counterfactual - US
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K Model Solution

K.1 Households

K.1.1 First Order Conditions

The Lagrangian associated with the program (1) under constraint (2) is

Lt = Et

∞

∑
s=0

βs
{

eζc,t+s log(Ct+s − η̂Ct+s−1)−
χ

1 + ν

∫ 1

0
eζh,t+s(Nt+s(h))1+νdh

− Λt+s

Pt+s

[
Pt+sCt+s + Qt+sBt+se−ζq,t+s + Pt+staxt+s −

∫ 1

0
Wt+s(h)Nt+s(h)dh− Bt+s−1 − Pt+sdivt+s

]}
,

The associated first-order condition with respect to bonds is

∂Lt

∂Bt
= 0⇔ ΛtQte−ζq,t = βEt

{
Λt+1

Πt+1

}
, (K.1)

and the first-order condition with respect to consumption is

∂Lt

∂Ct
= 0⇔ eζc,t

Ct − η̂Ct−1
− βη̂Et

{
eζc,t+1

Ct+1 − ηCt

}
= Λt. (K.2)

where Πt ≡ Pt/Pt−1 represents the (gross) inflation rate, and

We induce stationarity by normalizing trending variables by the level of technical progress. To this end,

we use the subscript z to refer to a normalized variable. For example, we define

Cz,t ≡
Ct

Zt
, Λz,t ≡ ΛtZt,

where it is recalled that

Zt = ezt

with

zt = µz + zt−1 + ζz,t.

We then rewrite the first order condition in terms of the normalized variables. Equation (K.2) thus

rewrites
eζc,t

Cz,t − ηCz,t−1e−ζz,t
− βηEt

{
e−ζz,t+1

eζc,t+1

Cz,t+1 − ηCz,te−ζz,t+1

}
= Λz,t, (K.3)

Similarly, equation (K.1) rewrites

Λz,tQte−ζq,t = βe−µz Et

{
e−ζz,t+1

Λz,t+1

Πt+1

}
, (K.4)

where we defined

η ≡ η̂e−µz .
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Let us define it ≡ − log(Qt) and for any generic variable Xt

xt ≡ log(Xt), x̂t ≡ xt − x,

where x is the steady-state value of x. Using these definitions, log-linearizing equation (K.3) yields

ĝt + βηEt{ĉt+1} − (1 + βη2)ĉt + ηĉt−1 − η(ζz,t − βEt {ζz,t+1}) = ϕ−1λ̂t, (K.5)

where we defined

ϕ−1 ≡ (1− βη)(1− η),

ĝt = (1− η)(ζc,t − βηEt{ζc,t+1}).

Similarly, log-linearizing equation (K.4) yields

λ̂t = ı̂t + Et{λ̂t+1 − π̂t+1 − ζz,t+1}+ ζq,t. (K.6)

K.2 Firms

Expressing the demand function in normalized terms yields

Yz,t( f ) =
(

Pt( f )
Pt

)−θp

Yz,t,

In the case of a firm not drawn to re-optimize, this equation specializes to (in log-linear terms)

ŷt,t+s( f )− ŷt+s = θp(π̂t,t+s − δ̂
p
t,t+s − p̂?t ( f )). (K.7)

K.2.1 Cost Minimization

The real cost of producing Yt( f ) units of good f is

Wt

Pt
Lt( f ) =

Wt

Pt

(
Yt( f )

Zt

)φ

. (K.8)

The associated real marginal cost is thus

St( f ) = φ
Wt

PtZt

(
Yt( f )

Zt

)φ−1

. (K.9)

It is useful at this stage to restate the production function in log-linearized terms:

ŷz,t( f ) =
1
φ

n̂t( f ). (K.10)
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K.2.2 Price Setting of Intermediate Goods: Optimization

Firm f chooses P?
t ( f ) in order to maximize

Et

∞

∑
s=0

(βαp)
sΛt+s

{
(1 + τp,t+s)

Vp
t,t+sP?

t ( f )
Pt+s

Y?
t,t+s( f )− S (Yt,t+s( f ))

}
, (K.11)

subject to the demand function

Y?
t,t+s( f ) =

(
Vp

t,t+sP?
t ( f )

Pt+s

)−θp

Yt+s.

and the cost schedule (K.8), where Λt is the representative household’s marginal utility of wealth, and

Et{·} is the expectation operator conditional on information available as of time t. That Λt appears in the

above maximization program reflects the fact that the representative household is the ultimate owner of

firm f .

The associated first-order condition is

Et

∞

∑
s=0

(βαp)
sΛt+s


(

Vp
t,TP?

t ( f )
Pt+s

)1−θp

Yt+s −
µp

1 + τp
eζu,t+s

Wt+s

Pt+s
φ

(Vp
t,t+sP?

t ( f )
Pt+s

)−θp
Yt+s

Zt+s

φ = 0,

where

µp ≡
θp

θp − 1
.

This rewrites (
P?

t ( f )
Pt

)1+θp(φ−1)

=
µp

1 + τp

Kp,t

Fp,t
,

where

Kp,t = Et

∞

∑
s=0

(βαp)
sΛz,t+seζu,t+s

Wz,t+s

Pt+s
φ

( Vp
t,t+s

Πt,t+s

)−θp

Yz,t+s

φ

,

and

Fp,t = Et

∞

∑
s=0

(βαp)
sΛz,T

(
Vp

t,t+s

Πt,t+s

)1−θp

Yz,t+s,

where Πt,t+s ≡ Pt+s/Pt.

Note that

Kp,t = φΛz,teζu,t
Wz,t

Pt
(Yz,t)

φ + βαpEt

(
(Πt))γp

Πt+1

)−φθp

Kp,t+1,

and

Fp,t = Λz,tYz,t + βαpEt

(
(Πt)γp

Πt+1

)1−θp

Fp,t+1.

With a slight abuse of notation, we obtain the steady-state relation(
P?

P

)1+θp(φ−1)

=
µp

1 + τp
φ

Wz

P
Yφ−1

z
1− βαp(Π)(1−γp)(θp−1)

1− βαp(Π)φθp(1−γp)
.
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Log-linearizing yields

[1 + θp(φ− 1)](p?t − pt) = k̂p,t − f̂p,t

k̂p,t = (1−ωK,p)[λ̂z,t + ω̂t + φŷz,t + ζu,t] + ωK,pEt{k̂p,t+1 + φθp(π̂t+1 − γpπ̂t)},

and

f̂p,t = (1−ωF,p)(λ̂z,t + ŷz,t) + ωF,pEt{ f̂p,t+1 + (θp − 1)(π̂t+1 − γpπ̂t)}.

where we defined the de-trended real wage

ωt ≡ wz,t − pt,

and the auxiliary parameters

ωK,p ≡ βαp(Π)(1−γp)φθp ,

and

ωF,p ≡ βαp(Π)(1−γp)(θp−1).

Finally, note that

P1−θp
t =

∫ 1

0
Pt( f )1−θp d f

= (1− αp)(P?
t )

1−θp + αp

∫ 1

0
[(Πt−1))

γp Pt−1( f )]1−θp d f .

Thus

1 = (1− αp)

(
P?

t
Pt

)1−θp

+ αp

[
(Πt−1)

γp

Πt

]1−θp

.

The steady-state relation is (
P?

P

)1−θp

=
1− αp(Π)(1−γp)(θp−1)

1− αp
.

Log-linearizing this yields

p̂?t =
ωF,p

β−ωF,p
(π̂t − γpπ̂t−1).

K.3 Unions

K.3.1 Wage Setting

Union h sets W?
t (h) so as to maximize

Et

∞

∑
s=0

(βαw)
s
{
(1 + τw)

Λt+s

Pt+s
eγzµzsVw

t,t+sW
?
t (h)Nt,t+s(h)−

χ

1 + ν
eζh,t+s(Nt,t+s(h))1+ν

}
,

where

Nt,t+s(h) =
(

eγzµzsVw
t,t+sW

?
t (h)

Wt+s

)−θw

Nt+s.
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The associated first-order condition is

Et

∞

∑
s=0

(βαw)
s

{
ΛT

Wt+s

Pt+s
ht+s

(
eγzµzsVw

t,T

Πw
t,t+s

W?
t (h)

Wt+s

)1−θw

− µw

1 + τw
χeζh,t+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

W?
t (h)

Wt+s

)−(1+ν)θw

N1+ν
t+s

}
= 0,

where Πw
t,t+s = Wt+s/Wt.

Rearranging yields (
W?

t (h)
Wt

)1+θwν

=
µw

1 + τw

Kw,t

Fw,t
,

where

Kw,t = Et

∞

∑
s=0

(βαw)
s

χeζh,t+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

)−(1+ν)θw

N1+ν
t+s

 ,

Fw,t = Et

∞

∑
s=0

(βαw)
s

Λt+s
Wt+s

Pt+s
Nt+s

(
eγzµzsVw

t,t+s

Πw
t,t+s

)1−θw
 ,

and where Πw
t,t+s ≡Wt+s/Wt.

Note that

Kw,t = χeζh,t N1+ν
t + βαwEt

{(
eγzµz

(Πt)γw

Πw,t+1

)−(1+ν)θw

Kw,t+1

}
,

and

Fw,t = Λz,t
Wz,t

Pt
Nt + βαwEt

{(
eγzµz

(Πt)γw

Πw,t+1

)1−θw

Fw,t+1

}
.

The associated steady-state relations are(
W?

W

)1+θwν

=
µw

1 + τw

Kw

Fw
,

Kw =
χN1+ν

1− βαw[e(1−γz)µz(Π)1−γw ](1+ν)θw
,

Fw =
Λ Wz

P H
1− βαw[e(1−γz)µz(Π)1−γw ]θw−1

.

Log-linearizing the above equations finally yields

(1 + θwν)(w?
t − wt) = k̂w,t − f̂w,t,

k̂w,t = (1−ωK,w)[(1 + ν)n̂t + ζh,t] + ωK,wEt{k̂w,t+1 + (1 + ν)θw(π̂w,t+1 − γwπ̂t)},
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f̂w,t = (1−ωF,w)(λ̂z,t + ω̂t + n̂t) + ωF,wEt{ f̂w,t+1 + (θw − 1)(π̂w,t+1 − γwπ̂t)},

where we defined

ωK,w = βαw[e(1−γz)µz(Π)(1−γw)](1+ν)θw ,

ωF,w = βαw[e(1−γz)µz(Π)(1−γw)]θw−1.

To complete this section, note that

1 = (1− αw)

(
W?

t
Wt

)1−θw

+ αw

(
eγzµz

[Πt−1]
γw

Πw,t

)1−θw

,

and

w?
t − wt =

ωF,w

β−ωF,w
(π̂w,t − γwπ̂t−1).

K.4 Market Clearing

The clearing on the labor market implies

Nt =

(
Yt

Zt

)φ ∫ 1

0

(
Pt( f )

Pt

)−φθp

d f .

Let us define

Ξp,t =

( ∫ 1

0

(
Pt( f )

Pt

)−φθp

d f

)−1/(φθp)

,

so that

Nt = (Yz,tΞ
−θp
p,t )φ.

Hence, expressed in log-linear terms, this equation reads

n̂t = φ(ŷz,t − θp ξ̂p,t).

Note that

Ξ−φθp
p,t = (1− αp)

(
P?

t
Pt

)−φθp

+ αp

(
[Πt−1]

γp

Πt

)−φθp

Ξ−φθp
p,t−1.

The associated steady-state relation is

Ξ−φθp
p =

(1− αp)

1− αp(Π)(1−γp)φθp

(
P?

P

)−φθp

.

Log-linearizing the price dispersion yields

ξ̂p,t = (1−ωΞ)(p?t − pt) + ωΞ[ξ̂p,t−1 − (π̂t − γpπ̂t−1)],

where we defined

ωΞ = αp(Π)(1−γp)φθp .
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K.5 Natural Rate of Output

The natural rate of output is the level of production that would prevail in an economy without nominal

rigidities, i.e. αp = αw = 0 and without cost-push shocks (that is, ζu,t = 0). Under such circumstances, the

dynamic system simplifies to

ŵn
z,t + (φ− 1)ŷn

z,t = 0,

νn̂n
t + ζh,t = λ̂n

z,t + ŵn
z,t,

n̂n
t = φŷn

z,t,

ĝt + βηEt{ŷn
z,t+1} − (1 + βη2)ŷn

z,t + ηŷn
z,t−1 − η(ζz,t − βEt{ζz,t+1}) = ϕ−1λ̂n

z,t,

where the superscript n stands for natural.

Combining these equations yields

[ϕ(1 + βη2) + ω]ŷn
z,t − ϕβηEt{ŷn

z,t+1} − ϕηŷn
z,t−1 = ϕĝt − ζh,t − ϕηζ∗z,t,

where we defined

ω ≡ νφ + φ− 1,

and

ζ∗z,t = ζz,t − βEt{ζz,t+1}.

K.6 Working Out the Steady State

The steady state is defined by the following set of equations

1− βη

(1− η)C
= Λz,

e−i = βe−µz Π−1,

(
P?

P

)1+θp(φ−1)

=
µp

1 + τp

Kp

Fp
,

Kp =
φΛz

Wz
P Yφ

z

1− βαp(Π)φθp(1−γp)
,
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Fp =
ΛzYz

1− βαp(Π)(1−γp)(θp−1)
,

(
P?

P

)1−θp

=
1− αp(Π)(1−γp)(θp−1)

1− αp
,

(
W?

W

)1+θwν

=
µw

1 + τw

Kw

Fw
,

Kw =
χN1+ν

1− βαw[e(1−γz)µz(Π)1−γw ](1+ν)θw
,

Fw =
Λz

Wz
P H

1− βαw[e(1−γz)µz(Π)1−γw ]θw−1
,

(
W?

W

)1−θw

=
1− αw[e(1−γz)µz(Π)(1−γw)]θw−1

1− αw
,

Πw = Πeµz .

We can solve for i and Πw using

Πw = Πeµz

1 = βe−µz eiΠ−1,

Standard manipulations yield

1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp(φ−1)
θp−1

=
µp

1 + τp
φ

Wz

P
Yφ−1

z ,

where we used

ωK,p = βαp(Π)(1−γp)φθp

ωF,p = βαp(Π)(1−γp)(θp−1).

Similar manipulations yield

1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,w

) 1+θwν
θw−1

=
µw

1 + τw

χNν

Λz
Wz
P

,

where we used

ωK,w = βαw[e(1−γz)µz(Π)(1−γw)](1+ν)θw
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ωF,w = βαw[e(1−γz)µz(Π)(1−γw)]θw−1.

Combining these conditions yields

1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,w

) 1+θwν
θw−1 1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp(φ−1)
θp−1

=
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχNνYφ

z .

Now, recall that

(YzΞ−θp
p )φ = N.

Then, using

Ξ−φθp
p =

1− αp

1−ωΞ

(
P?

P

)−φθp

,

and (
P?

P

)−φθp

=

(
β(1− αp)

β−ωF,p

)−φ
θp

θp−1

we end up with

NνYφ
z =

 1− αp

1−ωΞ

(
β(1− αp)

β−ωF,p

)−φ
θp

θp−1

ν

Y(1+ν)φ
z ,

so that

Ω =
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχY(1+ν)φ

z ,

where

Ω =
1−ωK,w

1−ωF,w

(
β(1− αw)

β−ωF,w

) 1+θwν
θw−1 1−ωK,p

1−ωF,p

(
β(1− αp)

β−ωF,p

) 1+θp [(1+ν)φ−1]
θp−1

(
1−ωΞ

1− αp

)ν

.

Recall that we defined the natural rate of output as the level of production that would prevail in an

economy without nominal rigidities, i.e. αp = αw = 0, and no cost-push shock. Under such circumstances,

the steady-state value of the (normalized) natural rate of output Yn
z obeys

1 =
µw

1 + τw

µp

1 + τp

1− η

1− βη
φχ(Yn

z )
φ(1+ν).

It follows that the steady-state distortion due to sticky prices and wages (and less than perfect indexa-

tion) is (
Yz

Yn
z

)φ(1+ν)

= Ω.

L Welfare

Let us define for any generic variable Xt

Xt − X
X

= x̂t +
1
2

x̂2
t +O(||ζ||3)
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Xt − Xn

Xn = x̃t +
1
2

x̃2
t +O(||ζ||3).

Below, we repeatedly use the following two lemmas:

Lemma 1. Let g(·) be a twice differentiable function and let X be a stationary random variable. Then

E{g(X)} = g(E{X}) + 1
2

g′′(E{X})V{X}+O(||X||3).

Lemma 2. Let g(·) be a twice differentiable function and let x be a stationary random variable. Then

V{g(X)} = [g′(E{X})]2V{X}+O(||X||3).

In the rest of this section, we take a second-order approximation of welfare, where we consider the

inflation rate as an expansion parameter. It follows that we consider the welfare effects of non-zero trend

inflation only up to second order.

L.1 Second-Order Approximation of Utility

Consider first the utility derived from consumption. For the sake of notational simplicity, define

U(Cz,t − ηCz,t−1e−ζz,t) = log(Cz,t − ηCz,t−1e−ζz,t).

We thus obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[(
Cz,t − Cn

z
Cn

z

)
− η

(
Cz,t−1 − Cn

z
Cn

z

)

− 1
2

1
(1− η)

(
Cz,t − Cn

z
Cn

z

)2

+
η

(1− η)

(
Cz,t − Cn

z
Cn

z

)(
Cz,t−1 − Cn

z
Cn

z

)
− 1

2
η2

(1− η)

(
Cz,t−1 − Cn

z
Cn

z

)2

+ ζc,t

(
Cz,t − Cn

z
Cn

z

)
− ηζc,t

(
Cz,t−1 − Cn

z
Cn

z

)
− η

(1− η)
ζz,t

(
Cz,t − Cn

z
Cn

z

)
+

η

(1− η)
ζz,t

(
Cz,t−1 − Cn

z
Cn

z

)]
+ t.i.p +O(||ζ||3),

where t.i.p stands for terms independent of policy.

Then, using
Cz,t − Cn

z
Cn

z
= c̃z,t +

1
2

c̃2
z,t +O(||ζ||3),

we obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[
c̃z,t − ηc̃z,t−1 +

1
2
(c̃2

z,t − ηc̃2
z,t−1)

− 1
2

1
1− η

c̃2
z,t +

η

1− η
c̃z,t c̃z,t−1 −

1
2

η2 1
1− η

c̃2
z,t−1

+ ζc,t(c̃z,t − ηc̃z,t−1)−
η

1− η
ζz,t(c̃z,t − c̃z,t−1)

]
+ t.i.p +O(||ζ||3).
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Using

ϕ−1 = (1− βη)(1− η),

we obtain

eζc,tU(Cz,t − ηCz,t−1e−ζz,t) =
1

1− η

[
ỹz,t − ηỹz,t−1 +

1
2
(ỹ2

z,t − ηỹ2
z,t−1)

− 1
2
(1− βη)ϕỹ2

z,t + η(1− βη)ϕỹz,tỹz,t−1 −
1
2

η2(1− βη)ϕỹ2
z,t−1

+ ζc,t(ỹz,t − ηỹz,t−1)− η(1− βη)ϕζz,t(ỹz,t − ỹz,t−1)

]
+ t.i.p +O(||ζ||3),

where we imposed the equilibrium condition on the goods market.

Similarly, taking a second-order approximation of labor disutility in the neighborhood of the natural

steady-state Nn yields

χ

1 + ν
eζh,t(Nt(h))1+ν = χ(Nn)1+ν

(
Nt(h)− Nn

Nn

)
+

1
2

χν(Nn)1+ν

(
Nt(h)− Nn

Nn

)2

+ χ(Nn)1+ν

(
Nt(h)− Nn

Nn

)
ζh,t + t.i.p +O(||ζ||3).

Now, using
Nt(h)− Nn

Nn = ñt(h) +
1
2

ñt(h)2 +O(||ζ||3),

we get

χ

1 + ν
eζh,t(Nt(h))1+ν = χ(Nn)1+ν

[
ñt(h) +

1
2
(1 + ν)ñt(h)2 + ñt(h)ζh,t

]
+ t.i.p +O(||ζ||3).

Integrating over the set of labor types, one gets∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
Eh{ñt(h)}+

1
2
(1+ ν)Eh{ñt(h)2}+Eh{ñt(h)}ζh,t

]
+ t.i.p+O(||ζ||3).

Now, since

Vh{ñt(h)} = Eh{ñt(h)2} −Eh{ñt(h)}2,

the above relation rewrites

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
Eh{ñt(h)}+

1
2
(1 + ν)(Vh{ñt(h)}+ Eh{ñt(h)}2)

+ Eh{ñt(h)}ζh,t

]
+ t.i.p +O(||ζ||3).

We need to express Eh{ñt(h)} and Vh{ñt(h)} in terms of the aggregate variables. To this end, we first

establish a series of results, on which we draw later on.
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L.2 Aggregate Labor and Aggregate Output

Notice that
θw − 1

θw
ñt = log

(∫ 1

0

(
Nt(h)

Nn

)(θw−1)/θw

dh

)
.

Then, applying lemma 1, one obtains

ñt = Eh{ñt(h)}+
1
2

θw

θw − 1
Eh

{(
Nt(h)

Nn

) θw−1
θw

}−2

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
+O(||ζ||3).

Then, note that

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
= Vh

{
exp

[
(1− θ−1

w ) log
(

Nt(h)
Nn

)]}
,

so that, by applying lemma 2, one obtains

Vh

{(
Nt(h)

Nn

) θw−1
θw

}
= (1− θ−1

w )2 exp
(
(1− θ−1

w )Eh{ñt(h)}
)2

Vh{ñt(h)}+O(||ζ||3).

Similarly

Eh

{(
Nt(h)

Nn

) θw−1
θw

}
= Eh

{
exp

[
(1− θ−1

w )ñt(h)
]}

,

so that, by applying lemma 1 once more, one obtains

Eh

{(
Nt(h)

Nn

) θw−1
θw

}
= exp

[
(1− θ−1

w )Eh{ñt(h)}
] (

1 +
1
2
(1− θ−1

w )2Vh{ñt(h)}
)
+O(||ξ||3).

Then combining the previous results

ñt = Eh{ñt(h)}+
1
2

1
1− θ−1

w

(1− θ−1
w )2Vh{ñt(h)}(

1 + 1
2 (1− θ−1

w )2Vh{ñt(h)}
)2 +O(||ζ||3).

It is convenient to define

∆h,t ≡ Vh{ñt(h)},

so that finally

ñt = Eh{ñt(h)}+ Q0,h +
1− θ−1

w
2

Q1,h(∆h,t − ∆n) +O(||ζ||3),

where we defined

Q0,h =
1−θ−1

w
2 ∆n[

1 + 1
2 (1− θ−1

w )2∆n

]2

and

Q1,h =
1− 1

2 (1− θ−1
w )2∆n[

1 + 1
2 (1− θ−1

w )2∆n

]3 .
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Applying the same logic on output and defining

∆y,t ≡ V f {ỹt( f )},

one gets

ỹz,t = E f {ỹz,t( f )}+ Q0,y +
1− θ−1

p

2
Q1,y(∆y,t − ∆y) +O(||ζ||3),

where we defined

Q0,y =

1−θ−1
p

2 ∆y[
1 + 1

2 (1− θ−1
p )2∆y

]2 ,

and

Q1,y =
1− 1

2 (1− θ−1
p )2∆y[

1 + 1
2 (1− θ−1

p )2∆y

]3 .

Then recall that

Nt =
∫ 1

0
Lt( f )d f =

∫ 1

0
Yz,t( f )φd f ,

which implies
Nt

Nn =
∫ 1

0

(
Yz,t( f )

Yn
z

)φ

d f ,

where we used Nn = (Yn
z )

φ.

This relation rewrites

ñt = log

(∫ 1

0

(
Yz,t( f )

Yn
z

)φ

d f

)
.

This expression is of the form

ñt = log

(
E f

{(
Yz,t( f )

Yn
z

)φ
})

.

Using lemmas 1 and 2, we obtain the following three approximations:

ñt = E f {φ(ỹz,t( f )− zt)}+
1
2

V f

{(
Yz,t( f )

Yn
z

)φ
}

(
E f

{(
Yz,t( f )

Yn
z

)φ
})2 +O(||ζ||3),

V f

{(
Yz,t( f )

Yn
z

)φ
}

= φ2 [exp [φE{ỹz,t( f )}]]2 V f {ỹz,t( f )}+O(||ζ||3),

E f

{(
yz,t( f )

yn
z

)φ
}

= exp [φE{ỹz,t( f )}]
(

1 +
1
2

φ2V f {ỹz,t( f )}
)
+O(||ζ||3).

Combining these expressions as before yields

ñt = φE f {ỹz,t( f )}+ 1
2

φ2 V f {ỹz,t( f )}(
1 + 1

2 φ2V f {ỹz,t( f )}
)2 +O(||ζ||3).
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We finally obtain

ñt = φE f {ỹz,t( f )}+ P0,y +
1
2

φ2P1,y(∆y,t − ∆y) +O(||ζ||3),

where we used

V f {ỹz,t( f )}(
1 + 1

2 φ2V f {ỹz,t( f )}
)2 =

∆y(
1 + 1

2 φ2∆y
)2 +

1− 1
2 φ2∆y(

1 + 1
2 φ2∆y

)3 (∆y,t − ∆y) +O(||ζ||3),

and defined

P0,y =
1
2 φ2∆y(

1 + 1
2 φ2∆y

)2 ,

and

P1,y =
1− 1

2 φ2∆y(
1 + 1

2 φ2∆y
)3 .

L.3 Aggregate Price and Wage Levels

The aggregate price index is

P1−θp
t =

(∫ 1

0
Pt( f )1−θp d f

)
,

and the aggregate wage index is

W1−θw
t =

(∫ 1

0
Wt(h)1−θw dh

)
.

From lemma 1 and the definitions of Pt and Wt, we obtain

pt = E f {pt( f )}+ 1
2

1
1− θp

V f {Pt( f )1−θp}
E f {Pt( f )1−θp}2

+O(||ζ||3),

and

wt = Eh{wt(h)}+
1
2

1
1− θw

Vh{Wt(h)1−θw}
Eh{Wt(h)1−θw}2 +O(||ζ||3).

Then, from lemma 2, we obtain

V f {Pt( f )1−θp} = V f {exp[(1− θp)pt( f )]}

= (1− θp)
2 exp[(1− θp) p̄t]

2∆p,t +O(||ζ||3),

and

Vh{Wt(h)1−θw} = Vh{exp[(1− θw)wt(h)]}

= (1− θw)
2 exp[(1− θw)w̄t]

2∆w,t +O(||ζ||3),

where we defined

p̄t = E f {pt( f )}, w̄t = Eh{wt(h)},
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∆p,t = V f {pt( f )}, ∆w,t = Vh{wt(h)}.

Applying lemma 1 once again, we obtain

E f {Pt( f )1−θp} = E f {exp[(1− θp)pt( f )]}

= exp[(1− θp) p̄t]

(
1 +

1
2
(1− θp)

2∆p,t

)
,

and

Eh{Wt(h)1−θw} = Eh{exp[(1− θw)wt(h)]}

= exp[(1− θw)w̄t]

(
1 +

1
2
(1− θw)

2∆w,t

)
.

Combining these relations, we obtain

pt = p̄t +
1
2

(1− θp)∆p,t[
1 + 1

2 (1− θp)2∆p,t
]2 +O(||ζ||3),

and

wt = w̄t +
1
2

(1− θw)∆w,t[
1 + 1

2 (1− θw)2∆w,t
]2 +O(||ζ||3).

Thus

pt = p̄t + Q0,p +
1− θp

2
Q1,p(∆p,t − ∆p) +O(||ζ||3),

and

wt = w̄t + Q0,w +
1− θw

2
Q1,w(∆w,t − ∆w) +O(||ζ||3),

where we defined

Q0,p =

1−θp
2 ∆p[

1 + 1
2 (1− θp)2∆p

]2 , Q0,w =
1−θw

2 ∆w[
1 + 1

2 (1− θw)2∆w
]2

and

Q1,p =
1− 1

2 (1− θp)2∆p[
1 + 1

2 (1− θp)2∆p
]3 , Q1,w =

1− 1
2 (1− θw)2∆w[

1 + 1
2 (1− θw)2∆w

]3 .

Note that the constant terms in the second-order approximation of the log-price index can be rewritten

as

Q0,p −
1− θp

2
Q1,p∆p =

1
2

(1− θp)3∆2
p[

1 + 1
2 (1− θp)2∆p

]3 .

Finally, using the demand functions, one obtains

ỹz,t( f ) = −θp[pt( f )− pt] + ỹz,t,

ñt(h) = −θw[wt(h)− wt] + ñt,
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from which we deduce that

∆y,t = θ2
p∆p,t,

and

∆h,t = θ2
w∆w,t.

L.4 Price and Wage Dispersions

We now derive the law of motion of price dispersion. Note that

∆p,t = V f {pt( f )− p̄t−1}.

Immediate manipulations of the definition of the cross-sectional mean of log-prices yield

p̄t − p̄t−1 = αpγpπt−1 + (1− αp)[p?t − p̄t−1]. (L.1)

Then, the classic variance formula yields

∆p,t = E f {[pt( f )− p̄t−1]
2} − [E f {pt( f )− p̄t−1}]2.

Using this, we obtain

∆p,t = αpE f {[pt−1( f )− p̄t−1 + γpπt−1]
2}+ (1− αp)[p?t − p̄t−1]

2 − [ p̄t − p̄t−1]
2.

Note that

(1− αp)[p?t − p̄t−1]
2 − [ p̄t − p̄t−1]

2

= (1− αp)

[
1

1− αp
( p̄t − p̄t−1)−

αp

1− αp
γpπt)

]2

− [ p̄t − p̄t−1]
2

=
αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2 − αp[γpπt]
2.

Using this in the above equation yields

∆p,t = αpE f {[pt−1( f )− p̄t−1 + γpπt]
2} − αp[γpπt]

2 +
αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2.

Now, note also that

αpE f {[pt−1( f )− p̄t−1]
2} = αpE f {[pt−1( f )− p̄t−1 + γpπt]

2} − αp[γpπt]
2.

It then follows that

∆p,t = αpE f {[pt−1( f )− p̄t−1]
2}+

αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2.
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Hence,

∆p,t = αp∆p,t−1 +
αp

1− αp
[ p̄t − p̄t−1 − γpπt]

2.

Using

pt = p̄t + Q0,p +
1− θp

2
Q1,p(∆p,t − ∆p) +O(||ζ||3),

we obtain

p̄t − p̄t−1 = πt −
1− θp

2
Q1,p(∆p,t − ∆p,t−1) +O(||ζ||3).

Hence,

∆p,t = αp∆p,t−1 +
αp

1− αp

[
πt −

1− θp

2
Q1,p(∆p,t − ∆p,t−1)− γpπt−1

]2

+O(||ζ||3).

The steady-state value of ∆p is thus

∆p =
(1− γp)2αp

(1− αp)2 π2.

We obtain finally

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpπ̂t−1 −

1− θp

2
Q1,p(∆p,t − ∆p,t−1)

]2
+O(||ζ||3).

For sufficiently small π, price dispersion ∆p,t is second-order.

We now derive the law of motion of wage dispersion. Following similar steps as for price dispersion,

note that

∆w,t = Vh{wt(h)− w̄t−1}.

Immediate manipulations of the definition of the cross-sectional mean of log-wages yield

w̄t − w̄t−1 = αw(γzµz + γwπt−1) + (1− αw)[w?
t − w̄t−1]. (L.2)

Then, the classic variance formula yields

∆w,t = Eh{[wt(h)− w̄t−1]
2} − [Eh{wt(h)− w̄t−1}]2.

Using this, we obtain

∆w,t = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπt−1]
2}+ (1− αw)[w?

t − w̄t−1]
2 − [w̄t − w̄t−1]

2.

Note that

w?
t − w̄t−1 =

1
1− αw

(w̄t − w̄t−1)−
αw

1− αw
[γzµz + γwπt],
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so that

(1− αw)[w?
t − w̄t−1]

2 − [w̄t − w̄t−1]
2

= (1− αw)
[ 1

1− αw
(w̄t − w̄t−1)−

αw

1− αw
[γzµz + γwπt]

]2
− [w̄t − w̄t−1]

2

=
αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπt]

]2
− αw[γzµz + γwπt]

2.

Using this in the above equation yields

∆w,t = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπt]
2}

− αw[γw log(1 + πt)]
2 +

αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπt]

]2
.

Now, note also that

αwEh{[wt−1(h)− w̄t−1]
2} = αwEh{[wt−1(h)− w̄t−1 + γzµz + γwπt]

2} − αw[γzµz + γwπt]
2.

It then follows that

∆w,t = αwEh{[wt−1(h)− w̄t−1]
2}+ αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γpπt]

]2
.

Hence,

∆w,t = αw∆w,t−1 +
αw

1− αw

[
w̄t − w̄t−1 − [γzµz + γwπt]

]2
,

which, in turn, implies

∆w,t = αw∆w,t−1 +
αw

1− αpw
[w̄t − w̄t−1 − γzµz − γwπt−1]

2 .

Using

wt = w̄t + Q0,w +
1− θw

2
Q1,w(∆w,t − ∆w) +O(||ζ||3),

we obtain

w̄t − w̄t−1 = πw,t −
1− θw

2
Q1,w(∆w,t − ∆w,t−1) +O(||ζ||3).

Hence,

∆w,t = αw∆w,t−1 +
αw

1− αw

[
πw,t −

1− θw

2
Q1,w(∆w,t − ∆w,t−1)

− γzµz − γwπt−1

]2

+O(||ζ||3).

The steady-state value of ∆w is thus

∆w =
αw

(1− αw)2 [(1− γz)µz + (1− γw)π]2.
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We obtain finally

∆w,t = αw∆w,t−1 +
αw

1− αw

[
(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1

− 1− θw

2
Q1,w(∆w,t − ∆w,t−1)

]2
+O(||ζ||3).

For sufficiently small π and µz, wage dispersion ∆w,t is second-order.

Because the steady-state value of ∆p is of second-order, many of the expressions previously derived

considerably simplify. In particular, we now obtain

pt = p̄t +
1− θp

2
∆p,t +O(||ζ, π||3),

wt = w̄t +
1− θw

2
∆w,t +O(||ζ, π||3).

Now, because ∆y and ∆n are proportional to ∆p and ∆w, respectively, and because ∆p and ∆w are both

proportional to π2, we also obtain

ñt = Eh{ñt(h)}+
1− θ−1

w
2

∆h,t +O(||ζ, π||3),

ñt = φ(E f {ỹz,t( f )} − zt) +
1
2

φ2∆y,t +O(||ζ, π||3),

ỹt = E f {ỹt( f )}+
1− θ−1

p

2
∆y,t +O(||ζ, π||3).

Thus, for sufficiently small inflation rates, we obtain formulas resembling those derived in Woodford

(2003).

Finally, price and wage dispersions rewrite as

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpπ̂t−1

]2
+O(||ζ, π||3).

∆w,t = αw∆w,t−1 +
αw

1− αw

[
(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1

]2
+O(||ζ, π||3).

L.5 Combining the Results

Combining the previous results, we obtain

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = χ(Nn)1+ν

[
ñt +

1
2
(1 + ν)ñ2

t + ñtζh,t

+
1
2
(1 + νθw)θw∆w,t

]
+ t.i.p +O(||ζ, π||3).
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In turn, we have

ñt = φỹt +
1
2

φ[(φ− 1)θp + 1]θp∆p,t +O(||ζ, π||3),

so that

∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh = φχ(Nn)1+ν

[
(ỹt − zt) +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3).

Then, using

(1−Φ)
1− βη

1− η
= φχ(Nn)1+ν,

where we defined

1−Φ ≡ 1 + τw

µw

1 + τp

µp
,

we obtain

E0

∞

∑
t=0

βt
{∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh

}
=

(1−Φ)
1− βη

1− η
E0

∞

∑
t=0

βt
[
ỹt +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3).

Assuming the distortions are themselves negligible, this simplifies further to

E0

∞

∑
t=0

βt
{∫ 1

0

χ

1 + ν
eζh,t(Nt(h))1+νdh

}
=

1− βη

1− η
E0

∞

∑
t=0

βt
[
(1−Φ)ỹt +

1
2
(1 + ν)φỹ2

t + ỹtζh,t

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ, π||3).

We now deal with the first term in the utility function. To that end, note that

∞

∑
t=0

βtat−1 = a−1 + β
∞

∑
t=0

βt−1at−1 = a−1 + β
∞

∑
t=0

βtat.

Using this trick, we obtain

E0

∞

∑
t=0

βteζc,t log(Cz,t − ηCz,t−1e−ζz,t) =
1− βη

1− η
E0

∞

∑
t=0

βt

[
ỹz,t −

1
2
[ϕ(1 + βη2)− 1]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ ϕĝtỹz,t − ηϕζ∗z,tỹz,t

]
+ t.i.p +O(||ζ||3),
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where we defined

ϕ−1 ≡ (1− βη)(1− η),

ĝt = (1− η)(ζc,t − βηEt{ζc,t+1}),

so that

(1− βη)ϕĝt ≡ (ζc,t − βηEt{ζc,t+1}),

and

ζ∗z,t = ζz,t − βEt{ζz,t+1}.

Combining terms, we obtain

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹz,t −

1
2
[ϕ(1 + βη2) + ω]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ (ϕĝt − ζh,t − ϕηζ∗z,t)ỹz,t

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ||3),

where, as defined earlier

ω = (1 + ν)φ− 1.

Now, recall that

[ϕ(1 + βη2) + ω]ŷn
z,t − ϕβηEt

{
ŷn

z,t+1
}
− ϕηŷn

z,t−1 = ϕĝt − ζh,t − ϕηζ∗z,t.

Using this above yields

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹz,t −

1
2
[ϕ(1 + βη2) + ω]ỹ2

z,t + ηϕỹz,tỹz,t−1

+ [ϕ(1 + βη2) + ω]ŷn
z,tỹz,t − ϕβηŷn

z,t+1ỹz,t − ϕηŷn
z,t−1ỹz,t

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ζ||3),

U0 =
1− βη

1− η
E0

∞

∑
t=0

βt

[
Φỹt −

1
2
[ϕ(1 + βη2) + ω]ỹ2

t + ηϕỹtỹt−1

+ [ω + ϕ(1 + βη2)]ŷn
t ỹt − ϕβηŷn

t+1ỹt − ϕηŷn
t−1ỹt

− 1
2
[(φ− 1)θp + 1]θp∆p,t −

1
2
(1 + νθw)φ

−1θw∆w,t

]
+ t.i.p +O(||ξ, π||3)
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To simplify this expression, we seek constant terms δ0, δ and x? such that

E0

∞

∑
t=0

βt

{
− 1

2
δ0[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x?]2

}

= E0

∞

∑
t=0

βt

[
Φỹt −

1
2
[ϕ(1 + βη2) + ω]ỹ2

t + ηϕỹtỹt−1

+ [ω + ϕ(1 + βη2)]ỹtŷn
t − ϕβηỹtŷn

t+1 − ϕηỹtŷn
t−1

]
+ t.i.p.

Developing yields

− δ0

2

[
(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗

]2

= −1
2

δ0ỹ2
t + δ0ỹtŷn

t + δ0δỹtỹt−1 − δ0δỹtŷn
t−1 − δ0δỹt−1ŷn

t

− 1
2

δ0δ2ỹ2
t−1 + δ0δ2ỹt−1ŷn

t−1 + δ0(ỹt − δỹt−1)x̂∗ + t.i.p.

Thus

E0

∞

∑
t=0

βt

{
− δ0

2
[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗]2

}

= E0

∞

∑
t=0

βt

{
δ0(1− βδ)x̂∗ỹt −

1
2

δ0(1 + βδ2)ỹ2
t + δ0δỹtỹt−1

+ δ0(1 + βδ2)ỹtŷn
t − δ0δỹtŷn

t−1 − δ0δβỹtŷn
t+1

}
+ t.i.p.

Identifying term by term, we obtain

δ0(1− βδ)x∗ = Φ,

δ0(1 + βδ2) = [ω + ϕ(1 + βη2)],

δ0δ = ηϕ.

Recall that the steady-state subsidy rates τp and τw are chosen to neutralize markups. Then, it follows that

Φ = x∗ = 0.

Combining these relations, we obtain

ηδ2 − ω + ϕ)(1 + βη2)

βϕ
δ + ηβ−1 = 0,

or equivalently

P(κ) = β−1κ2 − χκ + η2 = 0,
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where

κ =
η

δ
,

χ =
ω + ϕ(1 + βη2)

βϕ
> 0.

Note that

P(0) = η2 > 0,

P(1) = − ω

βϕ
< 0,

so that the two roots of P(κ) = 0 obey

0 < κ1 < 1 < κ2.

In the sequel, we focus on the larger root and define

κ = κ2 =
β

2

(
χ +

√
χ2 − 4η2β−1

)
> 1.

Since δ = η/κ, we have

0 ≤ δ ≤ η < 1.

Thus, given the obtained value for κ, we can deduce δ from which we can compute δ0.

We thus obtain

U0 = −1− βη

1− η
E0

∞

∑
t=0

βt

{
δ0

2
[(ỹt − ŷn

t )− δ(ỹt−1 − ŷn
t−1)− x∗]2

+
1
2
[(φ− 1)θp + 1]θp∆p,t +

1
2
(1 + νθw)φ

−1θw∆w,t

}
+ t.i.p +O(||ζ, π||3).

The last step consists of expressing price and wage dispersions in terms of squared price and wage

inflations.

Recall that

∆p,t = αp∆p,t−1 +
αp

1− αp

[
(1− γp)π + π̂t − γpπ̂t−1

]2
+O(||ζ, π||3).

Iterating backward on this formula yields

∆p,t =
αp

1− αp

t

∑
s=0

αt−s
p [(1− γp)π + π̂s − γpπ̂s−1]

2 + t.i.p +O(||ζ, π||3).

It follows that

∞

∑
t=0

βt∆p,t =
αp

(1− αp)(1− βαp)

∞

∑
t=0

βt[(1− γp)π + π̂t − γpπ̂t−1]
2 + t.i.p +O(||ζ, π||3).
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and by the same line of reasoning

∞

∑
t=0

βt∆w,t =
αw

(1− αw)(1− βαw)

∞

∑
t=0

βt[(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1]
2 + t.i.p +O(||ζ, π||3).

Thus, defining

λy ≡ δ0

λp ≡
αpθp[(φ− 1)θp + 1]
(1− αp)(1− βαp)

λw ≡
αwφ−1θw(1 + νθw)

(1− αw)(1− βαw)
.

Using this and recalling that x∗ = 0, the second order approximations to welfare rewrites as

U0 = −1
2

1− βη

1− η
E0

∞

∑
t=0

βt
{

λy[x̂t − δx̂t−1 + (1− δ)x̄]2 + λp[(1− γp)π + π̂t − γpπ̂t−1]
2

+ λw[(1− γz)µz + (1− γw)π + π̂w,t − γwπ̂t−1]
2
}
+ t.i.p +O(||ζ, π||3),

where we defined

x̂t ≡ ŷt − ŷn
t

x̄ ≡ log
(

Yz

Yn
z

)
.
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