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Abstract

We design a laboratory experiment to test the importance of wealth as a channel for finan-

cial contagion across markets with unrelated fundamentals. Specifically, in a sequential global

game, we analyze the decisions of a group of investors that hold assets in two markets. We

consider two treatments that vary the level of diversification of these assets across markets,

which allows us to disentangle the wealth effect from other sources of financial contagion. We

provide evidence of contagion due to a wealth effect when investors have completely diversified

portfolios. In this treatment, for certain ranges of fundamentals, we show that a coordination

failure in the first market reduces investors’ wealth, which makes them more likely to withdraw

their investments in the second market, thereby increasing the probability of a crisis.
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1 Introduction

How do crises spread across countries, markets or asset classes? Episodes of contagion – defined

as the spillover of disturbances across markets – are a frequent phenomenon.1 However, the main

drivers underlying these episodes of contagion are hard to pin down empirically. Contagion can

occur in situations in which fundamentals are related (through trade or the financial sector) or

unrelated (through the actions of investors). In this paper, we focus on the latter, as distinguishing

between the various forms of investor behavior that trigger non-fundamental contagion is empirically

more difficult. It is generally hard to identify whether such market co-movements are due to

social imitation, wealth or liquidity problems. Therefore, in order to understand the importance of

different channels of financial contagion, a laboratory experiment is a useful methodology that allows

us to control for the information that investors have, the interdependencies between fundamentals,

and the observability of feedback.

In this paper, we present an experiment that tests the role of investor wealth as an explanation

of why a financial crisis spreads across markets with unrelated fundamentals (Kyle & Xiong 2001,

Goldstein & Pauzner 2004, Yuan 2005). Our experimental design is based on Goldstein & Pauzner

(2004), who model contagion as a sequential coordination game with incomplete information, i.e., a

global game. In the model, the same group of investors holds a perfectly diversified portfolio of assets

across two different markets, and decide on whether to withdraw or roll-over their investment in each

market sequentially. This coordination game has a unique threshold equilibrium: for fundamentals

that are below a threshold it is optimal to withdraw, while above it, it is optimal to roll-over. They

show that the realization of a crisis in one market increases the probability of a crisis in the other

market, even if the fundamentals of the two markets are uncorrelated. The mechanism through

which this happens is a wealth effect. Specifically, risk-averse investors are less willing to bear

risks in a second market after experiencing losses in the first market. This makes them less likely

to coordinate on the high risk/high return outcome in the second market, which makes contagion

more likely.

The experiment parametrizes the Goldstein & Pauzner (2004) model in two treatments that differ

in the diversification of assets across the two markets. In a between-subjects design, participants are

endowed with an initial wealth that is allocated across two markets. In the complete diversification

treatment, wealth is invested evenly in both markets, while in the small diversification treatment,

investors have 5% of their wealth invested in the first market and 95% in the second market. As the

change in total wealth after the decision in the first market is much larger in the first treatment,

we expect wealth effects to be important when portfolios are completely diversified and less so in

1Well-known examples include the 1994 Mexican crisis that led investors to flee emerging markets in Asia and
Latin America, the Thai currency crises of 1997 that spread to East Asia, Russia and Brazil. More recently, the 2008
Global Financial Crisis originated in the US and rapidly spread across emerging and advanced economies, as well as
across different economic sectors, while the 2012 Sovereign debt crisis in Europe led to a spillover of sovereign yields
spreads across a large number of advanced and emerging economies.
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the small diversification treatment.

In each market, an investor can withdraw and obtain a safe payoff, or roll-over and obtain a

risky payoff, which depends on the state of the economy and the behavior of others. Investors

have asymmetric information about the underlying state of the economy and receive a precise noisy

signal. The same group of five investors plays the simultaneous coordination game in each market

sequentially. Each investor first takes a decision about his investment in market one, receives

feedback about the outcome in this market, then he decide on the investment in market two.

Subjects play for twenty rounds with random matching between rounds.

Our experimental framework best describes debt rollover crises, where two countries raise ex-

ternal debt from a common pool of creditors. This type of short-term financing is subject to

re-financing risk that has its roots in the coordination problem faced by creditors when they make

their rollover decisions. Debt roll-over crises such as these are a common phenomenon, in particular,

among emerging markets which tend to finance themselves in the short-term (Broner et al. 2013).

Understanding the role of investor wealth and portfolio diversification during such crises is therefore

central to the design of policies aimed at limiting the spread of contagion.

We derive several testable hypotheses from the model’s theoretical predictions and our parametriza-

tion. The first relates to the presence of contagion across the two markets. The main theoretical

prediction is that contagion occurs for certain intermediate values of the state of the economy or

fundamentals in the second market, where the decision to withdraw or roll-over is sensitive to the

behavior in the first market. The second hypothesis is that changes in wealth drive this financial

contagion across markets.

Our findings provide support for these hypotheses. We first show that, in both treatments and

markets, the majority of subjects withdraw below a critical value of the fundamentals and roll-over

above it. Their behavior is thus consistent with threshold strategies, in line with the experimental

global games literature (Heinemann et al. 2004, 2009, Shurchkov 2013). In addition, our data shows

that both treatments have a large proportion of withdrawals and runs (situations where all investors

in a given market withdraw) in both markets. Furthermore, the actual change in total wealth after

the decision in the first market is much larger in the complete diversification treatment compared

to the small diversification treatment.

To uncover evidence of financial contagion, we test whether the decision to withdraw in the first

market affects the investment decision in the second market. We find evidence of contagion for

high levels of fundamentals in both treatments. However, we do not find that there are statistically

significant differences between treatments.

We then examine whether this observed contagion is due to a wealth effect. We find that the

changes in market one wealth have a statistically significant impact on the probability of withdraw-

ing in market two in the complete diversification treatment for values of fundamentals above the

theoretical threshold. However, in the small diversification treatment, this wealth effect is not sta-
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tistically significant. Hence, we attribute financial contagion in the small diversification treatment

to social imitation, i.e. that the previous decision of other investors influences an investor’s subse-

quent decisions even if the fundamentals are unrelated. In the complete diversification treatment

the main driver of financial contagion is a wealth effect even though there is possibly some degree

of social imitation.

Moreover, we explore the determinants of the wealth effect in the complete diversification treat-

ment. We find that the wealth effect depends non-linearly on the level of fundamentals. It is

strongest for higher levels of fundamentals, where lower wealth or experiencing a loss in market one

leads to a significant increase in the propensity to withdraw in market two. We can link this to the

participant’s level of risk aversion. Our finding that the wealth effect works for losses and not for

gains is novel and not predicted by the extant theoretical literature. Thus, our results highlight the

role of the wealth effect as a driver of financial contagion in situations where a common group of

investors holds perfectly diversified portfolios across two markets.

There is a small but growing experimental literature on contagion. One type of experiments is

related to fundamentals-based contagion in bank-run settings using a modified Diamond & Dybvig

(1983) framework. Chakravarty et al. (2014) find that contagion can occur due to panics even when

fundamentals are independent, while Brown et al. (2016) observe contagion of withdrawals across

banks only when there are economic linkages between banks. In a one-bank setting, Kiss et al.

(2018) find that panic-based runs can occur even in the absence of problems with fundamentals

or problems with coordination failure among depositors. These can be attributed to unreasonable

depositors’ beliefs - depositors overestimate the likelihood that a bank run is occurring, and to

depositors’ loss-aversion. Finally, in a bank network experiment, Duffy et al. (2017) find evidence

of contagion in bank networks where banks place cross-deposits with other banks. In contrast to

this literature, we examine financial contagion in a setting where investors hold asset portfolios in

markets with unrelated fundamentals. We find that the main reason for financial contagion is a

wealth effect when investors have perfectly diversified portfolios, but we also observe some contagion

due to social imitation when portfolios have a small degree of diversification.

A second type of experiment looks at contagion due to cross-market portfolio rebalancing. Cipri-

ani et al. (2013) test the informational linkages channel modeled by Kodres & Pritsker (2002) in

which a shock in one market transmits itself to others, as investors adjust their portfolio allocations.

Contagion due to portfolio re-balancing occurs because subjects’ payoffs depend not only on the

return to their investment, but also on the composition of their portfolios. Cipriani et al. (2017)

investigate experimental asset markets where financial contagion occurs when asset returns in two

markets are correlated, but no contagion effect is present in markets with independent fundamen-

tals. These models, however, describe a different nature of “crises”, in which contagion is reflected

in asset prices. Our setting best describes crises in which coordination plays a key role such as debt

or currency crises.
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Closer to our setting is Treviño (2019) who studies contagion in a global games framework and

shows how contagion is driven by fundamentals and social learning channels. She finds that subjects

in the experiment do not update information optimally: a base rate neglect bias makes agents

underweight priors and weakens the fundamental channel, while an overreaction bias strengthens

the social learning channel and makes subjects take into account the behavior of agents in the

other country even when it is completely uninformative. Another related paper is Shurchkov (2013)

who studies coordination and learning in a dynamic global game. She finds that beliefs about

others’ actions are crucial for understanding how the arrival of new information affects the attacking

behavior of speculators. The experiment we propose shares the global games mechanism of these

works, but focuses on a wealth channel that is absent from previous literature.

The remainder of the paper is organized as follows. Section 2 discusses the theoretical framework.

Section 3 describes the experimental design and hypotheses. Section 4 presents our results and

Section 5 concludes.

2 Financial contagion as a global game

Financial contagion across markets can be modeled as a global game - a coordination game of in-

complete information where players receive private signals (Carlsson & Van Damme 1993, Morris

& Shin 1998, 2004, Goldstein & Pauzner 2005). We base our experiment on the work of Goldstein

& Pauzner (2004) (hereafter, GP) who focus on two countries that have independent fundamentals

but share the same group of investors.2 In the theoretical model, financial crises are self-fulfilling:

investors withdraw their investment in a market because they believe others will also do so. Con-

tagion from one market to another occurs because of a wealth effect: a crisis in the first market

reduces investors’ wealth, which makes them more risk averse, and therefore less likely to sustain

their investments in the second market. This increases the probability of a crises in the second

market.

GP consider a model with a continuum of risk-averse investors each holding a unit of wealth in a

perfectly diversified portfolio of assets in two different markets, indexed by i = 1, 2, with independent

fundamentals (denoted by θi, i = 1, 2). Investors have decreasing absolute risk aversion (DARA)

utility functions, and choose between two actions in a sequential game: to withdraw or roll-over

their investment in each market. First, given the private signal about market 1’s fundamentals,

each player decides whether to liquidate or roll-over his investment in market 1. If an investor

decides to roll-over his investment in either market, then his payoff is R(·), which is increasing in

fundamentals and decreasing in the number of investors who decide to withdraw, denoted by ni,

i.e. R(θi, ni). If an investor withdraws in either market, he gets back his initial investment in that

market. This implies investors’ actions are strategic complements, as more investors withdrawing

2While GP discuss contagion across countries, we frame our experiment in terms of markets rather than countries.
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decreases the payoff of those rolling-over and, as such, increases the attractiveness of liquidating

one’s investment. Second, once the outcome of the coordination game in market 1 is realized and

becomes known to all agents, an equivalent coordination game is played in market 2.

The fundamentals in each market are independent and drawn from a uniform distribution over

[0,1]. In the spirit of a global games equilibrium selection refinement, fundamentals are not observ-

able and player j receives a noisy signal about the fundamentals in each market: θji = θi+εji ; where

the εi are independent and uniformly distributed over [−ε, ε].

Solving the game backwards and using a global game framework, GP show that there exists a

threshold equilibrium in each market, where players withdraw when they observe signals below a

threshold signal, and roll-over when signals are above a threshold. Since the game is sequential,

the threshold of market 2 depends on the outcome in market 1, i.e. on whether a run occurred

or not in market 1 (a run is a situation where all investors in a given market withdraw). This

generates a “contagion” effect in markets with unrelated fundamentals. GP show that if the group

of investors is wealthier (in distribution) after the investment in market 1, then crises in market

2 become less likely. The intuition is that an increase in wealth, as a result of the investment in

market 1, makes investors more willing to bear risks in market 2 and more likely to choose the risky

payoff, which is to roll-over the investment. This is the result of investors’ diversified portfolios and

their decreasing absolute risk aversion. Figure 1 exemplifies this contagion effect, by showing that

the threshold in market 2 corresponding to when a run occurred in market 1, θ∗2(θ1, run), is higher

than the corresponding threshold when a run did not occur in market 1, θ∗2(θ1, no run). The region

where we expect contagion to occur is the intermediate region where there is a run in market 2 if

and only if there has been a run in market 1.

Figure 1: Contagion of crises: the optimal decision in market 2

𝜃2
∗ 𝜃1, 𝑛𝑜 𝑟𝑢𝑛 𝜃2

∗ 𝜃1, 𝑟𝑢𝑛

run in 

market 2

run in market 2 iff 

run in market 1

no run in 

market 2

𝜃2

In the main analysis, GP assume investors have fully diversified portfolios and invest a unit

of wealth in each of the two markets. They also explore how other levels of diversification affect

the probability of runs and show that these are non-monotone. They suggest that the effects of

diversification on the probability of runs depend on various factors such as proportion of wealth

invested in each market, number of investors, and risk preferences.
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In our experiment, we consider a simplified version of this game with a finite number of investors,

N , who choose sequentially in markets 1 and 2 whether to withdraw or roll-over their investment.

As such, in order to calculate the thresholds which determine whether an investor will withdraw or

roll-over, we use a binomial distribution as in Heinemann et al. (2004). In addition, we assume that

θi are independent and uniformly distributed over [θ, θ]. Finally, in order to avoid any framing with

the actions of withdrawing and rolling over, in the experiment, we ask subjects to choose between

actions A and B, respectively. Action A has a safe payoff, while action B is a risky action since the

payoff of action B depends on the fundamentals in the corresponding market and the number of

investors that chose action A. In Appendix I, we detail how we compute the theoretical thresholds.

3 Experimental design and hypotheses

In this section, we describe the experimental design, parametrization and hypotheses.

3.1 Experimental design

The experiment consists of two treatments using a between-subject design. We run six sessions with

20 participants in each treatment. Each session consists of two parts. In the first part, subjects play

a coordination game for several rounds. Subjects are divided into groups of 5 (i.e. N = 5).3 In each

round, the same group of participants are investors in the two markets: market 1 and market 2.

There are 20 independent rounds, and in each round, participants in a given group change randomly

from round to round.

In each round, each participant is initially endowed with 200 experimental currency points (EC)

which are invested differently across two markets in each treatment. We consider two different

treatments as follows. In the complete diversification treatment, hereafter CD, investors have 50%

of their wealth in each market. In the small diversification treatment, hereafter SD, investors have

5% of their wealth in market 1 and 95% percent in market 2. The rationale for the two treatments

is to compare two scenarios where the change in total wealth after investors’ decision in market 1

is different: the potential change in total wealth after the decision in the first market in the CD

treatment is much larger than in the SD treatment. Therefore, we expect wealth effects to be

important in the CD treatment and less so in the SD treatment.

In each round there are two stages. In the first stage, each participant observes a private signal

about market 1, takes a decision regarding market 1’s investment, and receives feedback. In the

second stage, each participant receives a private signal about market 2, takes a decision regarding

market 2’s investment and receives feedback. Then, a new round starts. Each round is independent

from subsequent rounds.

3Similar group sizes are employed in various experiments of coordination games, see, among others, Schotter &
Yorulmazer (2009), Garratt & Keister (2009), Kiss et al. (2012), Peia & Vranceanu (2019).
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The decision that each participant takes in each round and each market, and the corresponding

payoffs are:

• Action A: The investor gets back the initial investment in the corresponding market.

• Action B: The investor receives the payoff R(θi, ni) = 3θi
1+2ni

, where θi is the fundamentals in

market i, and ni is the number of investors in this market that choose to action A.

Thus, Action A is the safe action, but yields a zero return. Action B is risky due to two factors.

The first is fundamental risk: a lower value of fundamentals implies lower returns. The second is

strategic risk: the behavior of others since as more investors withdraw returns are lower.

In both treatments we choose the distribution of fundamentals and signals that allows us to

numerically estimate the threshold equilibria in the GP model (we detail the steps of the numerical

simulations in Appendix I). In the CD treatment, fundamentals in market i, θi, follow a uniform

distribution in the interval [10, 150], and fundamentals in each market are drawn independently

from each other. Participants do not observe fundamentals before making their decisions, but each

receives a private signal which is randomly selected from a uniform distribution in the interval

[θi− 10, θi + 10]. Note that, as in GP, we have choose the signal precision in both treatments to be

high in relation to the fundamentals in order to minimize the uncertainty level about fundamentals

in a given market. This allows us to focus on the strategic risk. An example of a payoff table shown

to participants is presented in Table 1.

In the SD treatment, the fundamentals in market 1, θ1, follow a uniform distribution over the

interval [1, 10], and private signals in market 1 are randomly selected from a uniform distribution

in the interval [θ1 − 1, θ1 + 1] with 1 decimal. In market 2, fundamentals, θ2, follow a uniform

distribution in the interval [20, 330], and the private signals of market 2 are randomly chosen from

a uniform distribution in the interval [θ2 − 20, θ2 + 20].4 Fundamentals in market 1 and 2 are

drawn independently from each other. The independence of fundamentals across the two markets

is carefully explained in the instructions to the participants such that this feature of the experiment

is salient.5

In the second part of each experimental session, participants is asked to answer various individual

incentivized tasks to elicit risk and loss aversion attitudes. As the wealth effect characterized in GP

is the direct consequence of decreasing absolute risk aversion (DARA) preferences, it is important

to assess the risk preferences of our subject pool. The risk aversion test is based on Eckel &

Grossman (2008) and Dave et al. (2010). It consists of a choice between six lotteries each with

a 50% probability of a low outcome and a 50% probability of a high outcome. The choice of a

particular lottery corresponds to a range of relative risk aversion parameters.

4The precision of signals in the SD treatment is chosen to match the relation between the signal precision to
fundamentals in the CD treatment.

5The distribution of fundamentals was chosen with the goal of matching the theoretical probability of a run in
the second market across the two treatments.
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Table 1: Example of payoff table in complete diversification treatment

Hypothetical number
of other investors that
choose A

Payoff if you choose A Payoff if you choose B

θ=0 θ=25 θ=50 θ=75 θ=100 θ= 125 θ=150

0 100 0 75 150 225 300 375 450
1 100 0 25 50 75 100 125 150
2 100 0 15 30 45 60 75 90
3 100 0 11 21 32 43 54 64
4 100 0 8 17 25 33 42 50

Furthermore, as our experiment entails the possibility of losses, we also conduct a loss aversion

questionnaire adapted on the test in Gächter et al. (2007). The loss aversion tests asks subjects

to choose how many lotteries they are willing to accept from a sample of six coin tosses where

tails implies a fixed win, while heads an increasingly larger loss. The fewer the number of lotteries

accepted, the larger the implied degree of loss aversion of the participant.6

Once the two main parts of the experiment are completed, participants also answer some addi-

tional questions regarding personal information.

With regards to incentives for the coordination game, we randomly choose one round of the 20

rounds, and participants are paid the earnings from this round according to the following formula:

100 EC are equivalent to 3 Euros. The Euros for this part are not shown to participants until the

risk and loss aversion tasks and questionnaires are completed. With regards to incentives related

to the risk and loss aversion parts, both tests are framed in experimental points to be gained/lost.

We convert each 20 points to 1 Euro. Appendix II shows the instructions of all the parts of the

experiment and Appendix III illustrates the screenshots of the coordination game.

Finally, participants were paid in private the total obtained during the first and second parts of

the experiment. On average, participants received 18 Euros and sessions lasted 60 minutes.

The experiment had 240 participants, who were students of economics, business, finance and

other related areas from Universitat Pompeu Fabra and ESADE Business School, both in Barcelona

(Spain) using z-Tree (Fischbacher 2007).

3.2 Hypotheses

Given the parametrization described in the previous subsection, we derive the theoretical predictions

of GP’s model of contagion. The first hypothesis concerns the relationship between a subject’s

decision to withdraw and the realization of signals.

Hypothesis 1 [Threshold strategies]: Subjects use threshold strategies, withdrawing their invest-

ment when the signal is below a threshold, and rolling-over when the signal is above it with at most

6As this test implies that subjects can incur losses, we parametrize the lotteries so that the maximum loss in the
loss aversion test is equal to the minimum gain in the risk aversion questionnaire. This avoids participants ending
up with overall losses from the experiment and receiving less than the participation fee.
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one switching point.

We then derive the specific numerical thresholds corresponding to threshold strategies, above

which it is optimal to roll-over and below which it is optimal to withdraw. These are presented in

Table 2. The distributions of fundamentals and signals were chosen so that the probability of a run

was similar across the two treatments. Thus, if subjects chose threshold strategies and withdrew

below a certain threshold, then the probability of a run is the probability that the signal received is

below the theoretical threshold. Given uniform distributions and the computed theoretical thresh-

olds, these probabilities are displayed in the last column of Table 2. Notice that the threshold

equilibrium values are around the third quartile of values of the fundamentals in both treatments,

hence we expect a large proportion of withdrawals.

Table 2: Numerical predictions for each treatment

Complete diversification Small diversification

Market Threshold Probability of run Threshold Probability of run

Market 1 106 75% 6.15 68%

Market 2 if run in Market 1 111 79% 246 79%

Market 2 if no run in Market 1 99 71% 241 78%

While we analyze the general properties of the behavior in market 1, we aim to find differences

between treatments in behavior of the second market. Table 2 shows that in the CD treatment, if

there has been a run in market 1, the threshold value for the fundamentals in market 2 is equal to

111, while if there is no run in market 1, the threshold value for the fundamentals in market 2 is

equal to 99. This means that we expect contagion due to a wealth effect since a run in market 1

increases the probability of a run in market 2. In fact, the difference in the probability of a run in

market 2 depending on whether there has been a run in market 1 or not is equal to 8%.

In the SD treatment, we expect the outcome of market 1 to have a much smaller effect on

market 2, since potential changes in wealth are very small. If there has been a run in market 1, the

threshold value for the fundamentals in market 2 is equal to 246, while if there is no run in market

1, the threshold value for the fundamentals in market 2 is equal to 241. In fact, the difference in

the probability of a run in market 2 depending on whether there has been a run in market 1 or not

is close to 1%.

From these theoretical predictions, changes in wealth, together with investors’ risk aversion

is the only mechanism that can explain the correlation in the propensity to withdraw across the

two markets. Recall that fundamentals in the two markets are uncorrelated in both treatments.

However, empirically we can observe that contagion across the two markets is a result of social

imitation, i.e., that the investors’ behavior in the first market can affect investors’ behavior in the

second market. Hence, empirically we could observe contagion in both treatments. We can thus
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formulate a second hypothesis regarding how the behavior in the first market affects that in the

second.

Hypothesis 2 [Contagion]. A higher proportion of withdrawals in the first market increases the

proportion of withdrawals in the second market in markets with unrelated fundamentals.

Notice that we have formulated Hypothesis 2 in terms of withdrawals rather than runs. GP focus

on runs, which require the full coordination of all the investors in a market. Given the usual

experimental heterogeneity, we formulate the hypothesis in terms of withdrawals.

Contagion due to social imitation can be present in both treatments, however in the SD treat-

ment, the change of overall wealth as a result of the investment in the market 1 is very small. Hence,

we do not expect that this will play an important role in driving contagion in the SD treatment.

As such, wealth effects will matter mainly in the CD treatment.

Hypothesis 3 [The wealth effect]. The source of contagion in the second market is due to a

change in participants’ wealth in the first market. This contagion due to a wealth effect is mainly

present in the CD treatment.

This is the main hypothesis of the paper.

4 Results

We start by presenting some simple statistics on the general features of the experimental data.

We then briefly describe subjects’ decisions in market 1. Next, we analyze participants’ behavior

in market 2. This focuses on understanding whether contagion exists, on the role of the wealth

channel in explaining contagion, and on the importance of risk and loss aversion in driving our

results. Finally, we discuss our results in the light of the channels that may be driving contagion

in both markets.

4.1 General features of the experimental data

First, we check whether subjects behave in accordance with threshold strategies. Note that the

signals about fundamentals received by participants were randomly drawn in each round and hence

they were presented unordered.

Analyzing the data at the individual level across both treatments and markets, we find that, on

average, 66% of subjects use monotone strategies and switch only once between the two possible

actions (withdraw and roll-over) after the first five rounds.7 This observed behavior is in accordance

7Subjects that had chosen the same action for all signals were classified as using threshold strategies.
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with the existing results in global games experiments (Heinemann et al. 2004, Shurchkov 2013, Szkup

& Treviño 2017). This evidence provides support for Hypothesis 1.

Result 1 [Threshold Strategies]: The majority of subjects employ threshold strategies after the

first five rounds.

Next, table 3 presents some descriptive statistics on the average proportion of withdrawals and runs

across our two treatments.

Table 3: Proportion of withdrawals and runs

Complete diversification Small diversification

Withdrawals in both markets 63% 71%

Runs in both markets 44% 48%

Market 1 withdrawals 65% 76%

Market 1 runs 45% 52%

Market 2 withdrawals 62% 68%

Market 2 runs 42% 45%

Table shows the proportion of withdrawals and runs in each treatment and market. There are

2400 observations in each treatment.

Overall, we observe that the average proportion of withdrawals is quite high and close to the

levels suggested by the theoretical thresholds. The average probability of runs is slightly lower than

the theoretical levels presented in Table 2, suggesting that we have more cases in which there are

“partial runs”, i.e., not all of the five group members withdraw.

Finally, we present some statistics on the risk and loss preferences of participants collected in the

second part of the experiment. The mechanism that explains the wealth effect in GP is a property

of investors’ risk aversion. Even though GP do not analyze the effect of loss aversion on financial

contagion, there is some experimental evidence that it matters (see, for example, Kiss et al. 2018).

Table 4 shows the distribution of participants along the two measures of risk and loss aversion

assessed using the Dave et al. (2010) risk aversion test and Gächter et al. (2007) loss aversion

questionnaire, respectively. Panel A shows the percentages of subjects accepting each lottery in the

Dave et al. (2010) questionnaire eliciting risk preferences. The risk preference classification based

on the lottery chosen is shown in the last column of Table 4. We find that 64% of participants

chose gambles corresponding to risk aversion preferences. This is comparable to the proportion

of risk averse participants (77%) in the original Dave et al. (2010) experiments. In our case, we

observe a slightly higher number of subjects accepting the last lottery, which corresponds to a risk

loving behavior (21% versus 11% in Dave et al.’s (2010) sample). This is most likely to be the

result of the lower payoffs in our version of the questionnaire, which is in line with the experimental
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literature on incentive and risk aversion (see Holt & Laury 2002). For our subsequent analysis, we

construct a variable that captures risk attitudes as a scalar corresponding to the lottery chosen by

the participant. The risk tolerance variable takes integer values from 1 to 6 with 1 being highly

risk averse and 6 risk loving.

Similarly, in Panel B of Table 4, we report the implied degree of loss aversion across our sample

of participants. Similar to Gächter et al. (2007), we find that around 64% of participants display

moderate degrees of loss aversion, accepting from two to four of the gambles (compared to 60%

in Gächter et al. (2007)). For the analysis which follows, we define a variable that captures the

implied degree of loss aversion that makes an individual indifferent to the gains and losses in the

lotteries chosen. The values of the loss aversion variable are displayed in the last column of Table

4, panel B (we cap the first and last value at 0 and 4, respectively).

Table 4: Distribution of subjects’ preferences: risk and loss aversion

CD SD
Panel A: Risk aversion test Implied risk aversion Risk tolerance

Gamble 1 8% 7% Highly risk averse 1
Gamble 2 13% 11% Very risk averse 2
Gamble 3 13% 23% Risk averse 3
Gamble 4 25% 23% Slightly risk averse 4
Gamble 5 27% 15% Risk neutral 5
Gamble 6 14% 21% Risk loving 6

Panel B: Loss aversion test Implied loss aversion Loss aversion

Reject all lotteries 6% 4% >3 4
Accept lottery 1, reject 2 to 6 14% 17% 3 3
Accept lotteries 1 and 2, reject 3 to 6 26% 20% 2 2
Accept lotteries 1 to 3, reject 4 to 6 20% 21% 1.5 1.5
Accept lotteries 1 to 4, reject 5 to 6 17% 23% 1.2 1.2
Accept lotteries 1 to 5, reject 6 11% 11% 1 1
Accept all lotteries 2% 2% ≤0.87 0

4.2 Behavior and outcomes in market 1

The main insight from analyzing market 1 behavior rests in understanding whether subjects behave

in accordance to the prescriptions of the global games equilibrium selection criteria, i.e., they with-

draw when values of the signal about market fundamentals are small and roll-over for high signals.

Figure 2 shows a locally weighted scatterplot smoothing (lowess smoother) of the total number of

withdrawals in Market 1 as a function of the signal about fundamentals received by participants.

The graph clearly shows that in both treatments when signals are low, most participants withdraw,

while if the signal is sufficiently high, most subjects do not withdraw. This evidence confirms that

subjects’ behavior is consistent with the theoretical prediction that coordination on rolling-over

investments is more likely at higher values of the fundamentals.

It is also worth understanding the distribution of wealth after the decision in market 1. Table
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Figure 2: Locally weighted scatterplot of the total number of withdrawals in market 1 as a function
of signal
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(b) Small diversification

5 displays distribution of the decisions taken by subjects in each treatment (columns) by the total

change in wealth after participants’ decision in market 1 (rows).

We notice that, as expected by design, the variation in total wealth is much larger in the CD

treatment (ranging from -40% to 169%) than in the SD treatment (ranging from -4.1% to 10%).

A further analysis shows that in the CD treatment there are 10.5% of the observations with losses

that are smaller than the smallest loss in the SD treatment (-4.7% ), and 20.6% of the observations

with gains that are larger than the largest gain in the SD treatment (10%). In addition, we observe

that 69% of the observations in the CD treatment have a change of wealth which is of a similar

range to the SD treatment, 65% of them correspond to withdrawals and 4% to roll-over decisions

with a small return.

Table 5: Distribution of withdrawal and roll-over decisions by changes in wealth

CD Treatment SD Treatment
Change in total wealth after market 1 decision Withdraw Roll-over Withdraw Roll-over
<-5% 0% 11.04% 0% 0%
[-5%, 10%] 64.92% 3.5% 75.63% 24.68%
>10% 0% 20.54% 0% 0%
Table shows the proportion of withdrawals and roll-over decisions in each treatment by different
levels of changes in total wealth after market 1 outcome. The change in wealth is computed
as (market 1 wealth after the decision in market 1 + initial investment in market 2) divided
by the total initial wealth invested in both markets.

4.3 Behavior and outcomes in market 2

We now turn to analyzing the behavior of market 2 and focus on understanding how the outcomes

of market 1 affect the proportion of withdrawals in market 2. Recall that prior to observing their

signal in market 2, subjects learn the outcome of the coordination game (the behavior of other

investors) and their wealth from their investment in market 1.
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We first examine whether the outcome of market 1 affects the proportion of withdrawals in

market 2. Figure 3 displays the average proportion of withdrawals in market 2 in both treatments

as a function of the fundamentals in market 2 and whether a run occurred in market 1. We sort

the fundamentals into the corresponding quartiles in each treatment.

Figure 3: Contagion across the two markets
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Similar to the analysis in market 1 in the previous section and as predicted by the theory, Figure

3 shows that overall there is a higher proportion of withdrawals for lower values of the fundamen-

tals. Moreover, in the first two quartiles, there are no significant differences in the proportion of

withdrawals depending on whether there has been a run in market 1 or not. In other words, when

market 2 fundamentals are low, subjects are likely to withdraw their investment, regardless of the

outcome in market 1. However, for higher values of market 2 fundamentals (in the third and fourth

quartiles), we observe that the proportion of withdrawals differs substantially as a function of the

outcome in market 1. Specifically, in these two last quartiles, we find a statistically significant

higher number of withdrawals if there has been a run in market 1 compared to when a run did not

occur (t-test of equality of means is t=3.12 for the 3rd quartile and t=2.23 for the 4th quartile,

respectively). Thus, the figure suggests that there is contagion from market 1 to market 2 in both

treatments, particularly for higher values of fundamentals. Moreover, contagion appears stronger

in the third quartile, where the proportion of withdrawals in market 2 is 18% higher in rounds when

a run occurred in market 1 as opposed to those in which it did not. This quartile corresponds to

values of the fundamentals close to the theoretical thresholds characterized in the previous section.

Additionally, Table 6 reports market-level regressions for each treatment separately where the
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Table 6: Contagion at the market level

Dependent variable: Complete diversification Small diversification
(1) (2) (4) (5)

M1 withdrawals -0.049 -0.276 0.471** 0.319
(0.180) (0.204) (0.198) (0.211)

M1 withdrawals × Y∈ 3rdQ 0.394** 0.373**
(0.162) (0.182)

Y -0.075*** -0.075*** -0.024*** -0.023***
(0.004) (0.004) (0.001) (0.001)

Period 0.073*** 0.071*** 0.038*** 0.041***
(0.012) (0.012) (0.013) (0.014)

Constant 6.467*** 6.546*** 4.247*** 4.181***
(0.354) (0.347) (0.286) (0.277)

Observations 480 480 480 480
Table presents GLM estimations where the dependent variables is the proportion of with-
drawals in market 2. M1 withdrawals is the proportion of withdrawals in market 1. M1
withdrawals × Y∈ 3rdQ is an interaction term between the proportion of market 1 with-
drawals and a dummy variable that takes the value 1 is Y is in the 3rd quartile of the
distribution. Y is the fundamentals in market 2. Period is a scalar from 1 to 20. Robust
standard error in parenthesis. *** , ** and * denotes significance at the 1%, 5% and 10%
levels.

dependent variable is the proportion of withdrawals in market 2 in each period. Since the dependent

variable is a proportion, we estimate the models in Table 6 using a generalized linear model that

assumes the dependent variable follows a binomial distribution.8

Columns (1) and (2) in Table 6 pertain to the CD treatment, while (3) and (4) to the SD

treatment. The baseline regression in each treatment (columns (1) and (3)) control for: the propor-

tion of withdrawals in market 1 (M1 withdrawals), the market 2 fundamentals (Y), and a period

variable (Period) to account for learning effects across periods. In this first specification, we find

that the proportion of withdrawals in market 1 is statistically significant only in the SD treatment.

Moreover, as expected, the market 2 fundamentals have a strong impact on the proportion of with-

drawals, with the proportion of withdrawals decreasing for higher values of the fundamentals. In

addition, when looking at the regression coefficient, we notice that withdrawals tend to be more

sensitive to fundamentals in the CD treatment than in the SD treatment, which would explain the

low statistical power of the withdrawals in market 1 in this treatment.

At the same time, the descriptive statistics in Figure 3 suggests that contagion across markets

only occurs for some ranges of fundamentals in market 2 and not for others. Recall that the

theoretical contagion region occurs in the third quartile of fundamentals of market 2. To explore

this possibility, in columns (2) and (4) of Table 6 we add an interaction term between market 1

proportion of withdrawal and a dummy variable equal to 1 if the value of the market 2 fundamentals

8See Baum (2008) for a discussion on how this method is appropriate for handling bounded data such as propor-
tions.
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is in the third quartile (M1 withdrawals × Y∈ 3rdQ).

The results in columns (2) and (4) show that, in both treatments, market 1 withdrawals only

matter when fundamentals of market 2 are in the third quartile. The regression coefficient of the

interaction term is positive and statistically significant in both treatments, indicating that there is

contagion from the outcome of market 1 to the proportion of withdrawals in market 2 if fundamentals

are in the third quartile.

Finally, across all specifications in Table 6, the period scalar is significant suggesting that the

proportion of withdrawals increases over time. Consequently, we control for learning effects in all

subsequent tests.

Overall, the analysis in Table 6 provides evidence of contagion effects from market 1 to market

2 for some levels of fundamentals in market 2. These findings can be summarized as follows.

Result 2 [Contagion at the market level]: A higher proportion of withdrawals in market 1 in-

creases the proportion of withdrawals in market 2 for high levels of fundamentals in market 2 in

both treatments.

The fact that there is contagion from market 1 to market 2 for some levels of fundamentals in

market 2 supports Hypothesis 2. However, the fact that there is no statistically significant difference

between the two treatments could be the result of different mechanisms. In the next section, we

attempt to isolate the role of wealth as a driver of this observed contagion across the two markets,

and explore the role of other potential channels of financial contagion.

4.4 Contagion due to the wealth effect

We provide several tests that aim to isolate the role that changes in wealth play in explaining the

contagion documented in the previous section. We expect market 1 wealth to be significant in the

CD treatment where subjects hold perfectly diversified portfolios in both markets, but matter less

in the SD treatment, where the investment in market 1 represents only 5% of the total investment.

The analysis in the previous section suggested that the level of the fundamentals plays an im-

portant role in the strength of contagion across the two markets. Consequently, we start by plotting

the average proportion of withdrawals across different quintiles of the market 2 fundamentals (Y) in

Figure 4. We split the sample of fundamentals in quintiles and then look at the average withdrawals

in market 2 in cases where the subject experienced a loss in market 1 and no loss, separately.9 Fig-

ure 4 shows the distribution of outcomes in the CD treatment (Panel a) and SD treatment (Panel

b).

Similar to the results in the previous section, the outcome in market 1 affects market 2 behavior

for some ranges of fundamentals and not others. In particular, in the CD treatment in Figure 4 panel

9The equivalent graphs for gains show no statistically significant differences.
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Figure 4: Proportion of withdrawals in market 2 for different returns in market 1
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(a), we observe that for the first three quintiles of fundamentals there is no statistically significant

difference in the average proportion of withdrawals in market 2 between subjects that experienced

a loss or no loss in market 1 (95% confidence intervals for the means in each group are shown on the

graphs). However, for the remaining two quintiles of fundamentals (starting at Y = 83), we find

that the proportion of withdrawals is significantly higher when subjects experienced a loss in market

1 compared to when there was no loss (t-test of equality of means is t=3.38 for the 4th quintile

and t=2.97 for the 5th quintile, respectively, both tests being rejected at the 1% level). However,

this difference is only observed in the CD treatment (panel a), whereas in the SD treatment, (panel

b) there is no statistically significant difference in the proportion of withdrawals for a change in

wealth in market 1 across the quintiles of fundamentals considered. Notice also that experiencing

a loss in the first market does not correspond to a run in the first market, as the latter implies all

subjects recover their initial investment. So the contagion illustrated in this figure is more likely to

be driven by losses, than by the behavior of others, as depicted in Figure 3.

The patterns observed in Figure 4 suggest that, in the CD treatment, the change in wealth

after the decision in market 1 (in particular if there is a loss) does have a significant effect on

the proportion of withdrawals in market 2, but only for higher values of the fundamentals. In

particular, this effect appears significant around the theoretical threshold level computed in Section

3.2. To investigate if this is the case, Figure 5 splits the sample at the corresponding theoretical

threshold, Y ∗ = 99. We find that, whenever subjects experience a loss in market 1, there is a

significantly higher proportion of withdrawals in market 2 for values of Y above the theoretical

threshold (t=3.16), but not below it.10

Moreover, a closer analysis presented in Appendix IV (Figure 13) suggests that this effect is

mainly driven by strong differences in the proportion of withdrawals in the region of fundamentals

[99-111] for which the theoretical framework in section 3.2 suggested contagion.

10We do not observe such differences in the SD treatment.
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Figure 5: Market 2 withdrawals for different returns in market 1 in the Complete diversification
treatment
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These descriptive statistics suggest that wealth does matter, but only for intermediate values

of the market fundamentals for which the optimal decision to roll-over is sensitive to whether a

loss was experienced in market 1. For values of fundamentals below the theoretical threshold, the

optimal decision to withdraw is not affected by the level of wealth from market 1. This suggests

that, unlike the theoretical framework in GP, contagion due to a wealth effect is asymmetric: losses

make withdrawals more likely, but gains do not make them less likely.

In Table 7, we provide a more robust investigation of this wealth effect. We present a series

of probit regressions where the dependent variable is a dummy variable equal to 1 if a participant

withdrew his/her investment in market 2, and 0 otherwise. We investigate the determinants of the

individual probability of withdrawing for the CD treatment (columns (1)-(2)) and SD treatment

(columns (3)-(4)) separately. Our main independent variables are two proxies for the wealth effect:

(i) the percentage change in the first market’s wealth (Wealth M1) and (ii) interactions between

Wealth M1 and the fundamentals, given the non-linear dynamics suggested by the descriptive

statistics above. Across all specifications, we control for the level of the fundamentals in market 2

(Y), a variable for the period (Period) to capture any learning effects across the 20 periods, and

individual controls for risk tolerance and loss aversion. We cluster errors at the individual level to

account for any correlation across the 20 decisions of each individual.

Columns (1) and (3) in Table 7 present our baseline estimations for each treatment, where we

include the change of wealth in market 1 and its interaction with market 2 fundamentals. We find
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evidence that wealth matters in the CD treatment, but does not in the SD treatment. Moreover,

this wealth effect is non-linear. Figure 6 shows that for low values of the fundamentals, a higher

wealth in market 1 makes participants more likely to withdraw, although this effect is generally

not statistically significant. However, for larger values of the fundamentals, higher wealth has a

statistically significant negative effect on the propensity to withdraw. Again this effect appears

significant for values of fundamentals above the theoretical threshold. This is confirmed in column

(2) of Table 7, where we interact wealth with a dummy taking the value 1 whenever the fundamentals

is above the equilibrium cut-off (Wealth Market 1×Y>Y∗). In this specification only the interaction

term is robustly estimated. This suggests that, for values of the fundamentals where the optimal

strategy is to roll-over, market 1 wealth lowers the propensity of withdrawing in market 2 .11

Table 7: Wealth effects in the individual probability of withdrawing

Complete diversification Small diversification
(1) (2) (3) (4)

Wealth M1 0.529*** 0.068 0.315 -0.041
(0.194) (0.050) (0.259) (0.070)

Y × Wealth M1 -0.006*** -0.002
(0.002) (0.001)

Wealth Market 1 × Y>Y∗ -0.200*** -0.099
(0.074) (0.186)

Y -0.045*** -0.045*** -0.016*** -0.016***
(0.003) (0.003) (0.001) (0.001)

Period 0.045*** 0.044*** 0.029*** 0.030***
(0.009) (0.009) (0.008) (0.008)

Risk tolerance -0.085* -0.085* -0.071 -0.070
(0.047) (0.046) (0.059) (0.059)

Loss aversion 0.041 0.040 -0.161* -0.163*
(0.075) (0.074) (0.096) (0.096)

Constant 4.117*** 4.150*** 3.571*** 3.567***
(0.356) (0.353) (0.418) (0.416)

Observations 2,400 2,400 2,400 2,400
Number of subjects 120 120 120 120
The table presents panel probit estimations where the dependent variable is a
dummy variable equal 1 if an individual withdrew in Market 2. Y is the fun-
damentals in Market 2. Y > Y ∗ is a dummy variable equal to 1 for values of
the fundamentals above the theoretical threshold (Y ∗ = 99 in the Complete
diversification treatment and Y ∗ = 241). Period is a scalar for the 20 experi-
mental rounds. Risk tolerance is a scalar from 1 to 6 with 1 being highly risk
averse and 6 risk loving. Loss aversion is a scalar taking value from 0 to 4, with
higher numbers indicating a higher degree of loss aversion. Standard errors are
clustered at the individual level. *** , ** and * denotes significance at the 1%,
5% and 10% levels.

11These results are robust to different specifications of changes in wealth, such as replacing the change in wealth
in market 1 by the total change in wealth of an investor’s portfolio. We present the results of the change in wealth
in market 1 since these are more conservative and equivalent in the two treatments.
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Additionally, we also find some evidence that higher risk aversion (lower values of the risk

tolerance measure reported in Table 7) is associated with a higher probability of withdrawing,

although the risk aversion coefficient is only significant in the CD treatment. Loss aversion is

statistically significant only in the SD treatment and with the opposite expected sign.12

Figure 6: Average marginal effects of wealth in market 1 on market 2 withdrawals for the complete
diversification treatment
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The marginal effects graph corresponds to columns (1) and (3) in Table 7. 95% confidence intervals are shown.

We summarize these findings as follows.

Result 3 [Comparison of the wealth effect in the two treatments]: In the complete diversification

treatment, the change in market 1’s wealth has a statistically significant impact on the probability of

withdrawing the investment in market 2 for values of fundamentals above the theoretical threshold.

However, the wealth effect is not statistically significant in the small diversification treatment.

This result provides support for Hypothesis 3 that the wealth effect is an important driver of

contagion in the CD treatment where changes in wealth are large by construction.

We now examine the determinants of the wealth effect. Given the evidence of Figure 4, we

repeat the previous empirical exercise by analyzing losses in Table 8. We replace the change of

wealth in market 1 with a dummy variable which is equal to 1 if a loss was experienced in market

1, and 0 otherwise. Again, we find that having experienced a loss overall decreases the propensity

to withdraw, but this effect turns positive for larger values of fundamentals in the CD treatment.

Specifically, when fundamentals are above the theoretical threshold, experiencing a loss in the first

12In unreported results, we also control for the gender of the participant. Surprisingly, we find that women are less
likely to withdraw in both treatments.
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market increases the probability of withdrawing in the second. Again, none of these effects are

present in the SD treatment. In addition, we notice that the wealth effect does not work for gains

in either treatment. The determinants of the wealth effect in the CD treatment can be summarized

as follows:

Result 4 [Determinants of the wealth effect]: In the complete diversification treatment, the

wealth effect depends non-linearly on the level of fundamentals. It is strongest for higher levels of

fundamentals, where experiencing a loss in market 1 leads to a significant increase in the propensity

to withdraw in market 2. Risk aversion increases the propensity to withdraw in market 2.

Our result goes in line with the predictions of GP that financial contagion only occurs for some

regions of fundamentals in the third quartile. However, our finding that the wealth effect works for

losses and not for gains is novel and not predicted by the extant literature.

Table 8: Market 1 losses and the individual probability of withdrawing in Market 2

Complete diversification Small diversification
(1) (2) (3) (4)

Loss M1 -1.029*** -0.160 -0.187 -0.234**
(0.396) (0.157) (0.301) (0.118)

Loss M1 × Y 0.012*** -0.000
(0.004) (0.002)

Loss Market 1 × Y> Y ∗ 0.458* -0.064
(0.241) (0.261)

Y -0.048*** -0.047*** -0.016*** -0.016***
(0.003) (0.003) (0.001) (0.001)

Period 0.046*** 0.044*** 0.028*** 0.028***
(0.009) (0.009) (0.008) (0.008)

Risk tolerance -0.082* -0.082* -0.066 -0.066
(0.046) (0.046) (0.058) (0.058)

Loss aversion 0.039 0.037 -0.163* -0.164*
(0.073) (0.073) (0.094) (0.094)

Constant 4.394*** 4.315*** 3.576*** 3.582***
(0.394) (0.377) (0.413) (0.411)

Observations 2,400 2,400 2,400 2,400
Number of subjects 120 120 120 120
The table presents panel probit estimations where the dependent variable is a
dummy variable equal to 1 if an individual withdrew in Market 2. Loss M1
is a dummy equal to 1 if an individual experienced a loss in market 1. Y is
the fundamentals in Market 2. Y > Y ∗ is a dummy variable equal to 1 for
values of the fundamentals above the theoretical threshold (Y ∗ = 99 in the
Complete diversification treatment and Y ∗ = 241). Period is a scalar for the 20
experimental rounds. Risk tolerance is a scalar from 1 to 6 with 1 being highly
risk averse and 6 risk loving. Loss aversion is a scalar taking value from 0 to
4, with higher numbers indicating a higher degree of loss aversion. Standard
errors are clustered at the individual level. *** , ** and * denotes significance
at the 1%, 5% and 10% levels.
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Our experimental results show that contagion can occur in markets with unrelated fundamentals

due to investors’ actions. In Section 4.3 we showed that in some regions of fundamentals, the

behavior of investors in market 1 affects the outcome in market 2, and that these spillover effects are

present in both treatments. In line with theoretical predictions, contagion occurs for intermediate

values of the fundamentals in the second market, where the decision to withdraw or roll-over is

sensitive to the propensity to coordinate in the first market. Subjects place more weight on the

value of fundamentals in their decision for very low or high levels of fundamentals.

Moreover, in the region where financial contagion exists, we have shown in Section 4.4 that, in

the CD treatment returns in the first market impact the propensity to run in the second, while in

the SD treatment this effect is not statistically significant. Hence, contagion in the SD treatment

is likely to be due to social imitation, i.e. that the previous decision of the group of investors

influences an investor’s subsequent decision, thus generating financial contagion. It is possible that

this channel also partially explains financial contagion in the CD treatment, however our results

clearly show that changes in wealth, and losses in particular, are an important channel through

which the outcome of market 1 influences the outcome of market 2 even if fundamentals in the two

markets are unrelated.

5 Conclusions

Our experiment is the first to analyze the importance of the wealth effect as a channel for financial

contagion in a controlled laboratory setting. Specifically, we analyze the sequential decisions of

the same group of investors in two markets that have independent fundamentals. Investors have

incomplete information about fundamentals in each market and receive private signals. We use the

global games solution of Goldstein & Pauzner (2004) as the benchmark, which highlights that a

coordination failure in one market can be the result of a coordination failure in another market.

This is due to a wealth effect: a crisis in one market reduces investors’ wealth, making them more

averse to the risk in the other market. This increases their incentive to withdraw their investment

in the second market, which increases the probability of a crisis in the second market. In addition,

our design allows us to disentangle the effects of social imitation (observability of what others have

done in the previous period) from the wealth channel.

We find evidence of financial contagion across markets in both treatments when fundamentals

are high, but not when they are low. Our results indicate that this observed financial contagion

is due to a wealth effect when investors have completely diversified portfolios and not when there

is a small degree of diversification. In addition, the wealth effect when investors have perfectly

diversified portfolios depends non-linearly on fundamentals since it is stronger for higher levels

of fundamentals, where subjects experienced a loss in the first market. We also find that risk
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averse investors are more likely to withdraw. Given our experimental design, when there is small

diversification, the channel which best explains financial contagion is social imitation.

Our results highlight the wealth effect as an important driver of financial contagion in situations

where a common group of investors holds diversified portfolios across two markets. Understanding

the main source of financial contagion is crucial in designing policies to limit the effects of these

episodes on the wider economy. Take for example, the case of government debt crises. If contagion

happens only because of herding behaviour among government debt holders, then policy can address

this through increased market transparency. However, if wealth effects play an important role in

portfolio decisions, then understanding the nature of the balance sheet constraints of government

debt holders is crucial in understanding how contagion will spread.
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Gächter, S., Johnson, E. J. & Herrmann, A. (2007), ‘Individual-level loss aversion in riskless and

risky choices’.

Garratt, R. & Keister, T. (2009), ‘Bank runs as coordination failures: An experimental study’,

Journal of Economic Behavior & Organization 71(2), 300–317.

Goldstein, I. & Pauzner, A. (2004), ‘Contagion of self-fulfilling financial crises due to diversification

of investment portfolios’, Journal of Economic Theory 119(1), 151–183.

25



Goldstein, I. & Pauzner, A. (2005), ‘Demand-deposit contracts and the probability of bank runs’,

Journal of Finance 60(3), 1293–1327.

Heinemann, F., Nagel, R. & Ockenfels, P. (2004), ‘The theory of global games on test: experimental

analysis of coordination games with public and private information’, Econometrica 72(5), 1583–

1599.

Heinemann, F., Nagel, R. & Ockenfels, P. (2009), ‘Measuring strategic uncertainty in coordination

games’, The Review of Economic Studies 76(1), 181–221.

Holt, C. A. & Laury, S. K. (2002), ‘Risk aversion and incentive effects’, American economic review

92(5), 1644–1655.
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Appendix I: Calculation of equilibrium numerical thresholds

We compute the numerical thresholds implied by the game described in Section 2 and our experi-

mental design in Section 3.1. We illustrate the calculation for the structure and parameters of the

CD treatment, while an analogous derivation may be obtained for the SD treatment.

Each market is indexed by i = 1, 2, with independent fundamentals (denoted by θi, i = 1, 2).

We assume that for a given level of wealth, ω, agents have a DARA utility function as in GP given

by: u(ω) = log(ω), where log is the natural logarithm. Denote the agent’s initial wealth in each

market as ω0i, for i = 1, 2.

As in GP, the coordination game is solved backwards. First, we compute the threshold in market

2, for a given equilibrium outcome in market 1. We then compute the expected wealth from the

market 2’s investment, which depends on the computed threshold in market 2 and the realization

of market 2’s fundamentals. Next, the threshold in market 1 is found, which depends on market 1

fundamentals, but also the expected wealth in market 2.

The model of GP is modified to account for the finite number of players. In addition we assume

that θi are independent and uniformly distributed over [θ, θ]. Following the global games approach,

players withdraw their investment if their signal, θji , is below a threshold signal, denoted by θ∗2 . The

probability that a single player gets a signal below θ∗2 for a random state θ2 is: p(θ2) = Prob[θji <

θ∗2 |θ2] =
θ∗2−θ2+ε

i
2

2εi2
, given θi2 ∼ [θ2 − εi2, θ2 + εi2]. A player’s payoff then depends on the probability

that none, one, two, three or four of the other players withdraws their investment. This can be

represented by the binomial distribution: Bin(n2, 4, p(θ2)), where Bin is the probability that n2

of the other 4 players withdraw, when each player withdraws with a probability p(θ2). Then the

expected utility from rolling over ones’ investment in market 2 for any θ2 ∼ [θi2 − εi2, θi2 + εi2] is

simply:

EUWAIT(θji ) =

4∑
n2=0

[
1

2ε

∫ θi2+ε

θ2=θi2−ε
B(n2, 4, p(θ2)) u(R2(θ2, n2) + ω1)dθ2

]
, (1)

while the payoff from withdrawing is:

EUWITHDRAW(θji ) = u(ω02 + ω1), (2)

where ω1 is the wealth resulting from market 1’s investment. An agent receiving a signal equal

to the threshold θ∗2 is indifferent between withdrawing and rolling over. We can thus compute the

threshold signal θ∗2(ω1), by solving the indifference condition:

EUWAIT(θ∗2(ω1)) = EUWITHDRAW(θ∗2(ω1)) (3)

Given this threshold, we can compute the expected wealth from market 2’s investment.

Following GP, we assume that when the noise in the signals is low, players’ behavior can be
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approximated as follows: all players run when fundamentals are below the threshold signal and do

not run above. In the first case, each player has a wealth of ω02, while in the second, each has

R(θ2, n2 = 0). This means that the expected wealth from market 2 investment for a given threshold

θ∗2(ω1) is:

E[ω2(θ∗2(ω1))] = Prob[θ2 < θ∗2(ω1)]× ω02 + Prob[θ2 ≥ θ∗2(ω1)]× 1

2ε

∫ θ

θ2=θ∗2 (ω1)

R(θ2, 0)dθ2 (4)

Note that the threshold signal θ∗2(ω1) and E[ω2] depend on ω1, and thus on fundamentals and

number of withdrawals in market 1, i.e., θ1 and n1, respectively.

Turning to the equilibrium in market 1, the behavior of players can be approximately described

as follows: All agents run in market 1 when the fundamentals in market 1 are below θ∗1 ; whereas none

of the agents withdraws when fundamentals in market 1 are above θ∗1 . In the first case, all players

possess wealth of ω01; while in the second each has wealth R(θ1, 0). By the results of Theorem 1

in GP, in the first case agents will run in market 2 when the fundamentals are below the threshold

θ∗2,run(ω1 = ω01), which is higher than the threshold θ∗2,no run(ω1 = R(θ1, 0)) corresponding to the

second case.

If none of the agents run in market 1, n1 = 0, the expected wealth from market 1 investment

depends on the realization of θ1 and the threshold signal in market 1, θ∗1 . The threshold equilibrium

in market 1, however, now depends on the signals and expectations of agents that withdraw in

market 1, but also, on the expected wealth in market 2, in Eq. (4). As such, the indifference

condition that determines this equilibrium condition in market 1 is:

U1
WAIT − U1

WITHDRAW =

4∑
n1=0

[
1

2ε

∫ θ∗1+ε

θ1=θ∗1−ε
B(n1, 4, p(θ1))u(R1(θ1, n1) + E[ω2(θ∗2)])dθ1

]
−

4∑
n1=0

[
1

2ε

∫ θ∗1+ε

θ1=θ∗1−ε
B(n1, 4, p(θ1))u(ω01 + E[ω2(θ∗2)])dθ1

]
, (5)

where E[ω2(θ∗2)]) is given by Eq. (4).The equilibrium thresholds are the solutions to the system

of equations: (3), (4), and (5). Using our parametrization, we find the equilibrium thresholds

presented in Table 2 using this approach.
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Appendix II: Instructions- Complete diversification treatment

Part I: Game

You are about to participate in an economic experiment where you will be asked to make decisions

under uncertainty and have the chance to earn some money. Please read the instructions carefully. If

you have any questions during the experiment, please raise your hand and wait for an experimenter

to come to you. Please do not talk or communicate with other participants. The use of mobile

phones is not allowed. The rules are the same for all the participants. The experiment consists

of two parts: In part I, you will play a game with other participants, while in part II, you will be

asked to fill out several individual questionnaires. Your final payoff will be the sum of your gains

in both parts of the experiment to which a 5 Euros participation fee is added.

Part I

Background: In this experiment, your role is to be an investor. There are 20 rounds and you

will be asked to take 2 decisions in each round. Each round is independent of the others. There

are 20 participants in the experiment, which will be divided into groups of 5. In each round, the

same group of 5 participants are investors in two markets: market 1 and market 2. Investors in

your group will change randomly from round to round. You will not know which of the other

participants belong to your group in a given round. In each round, you and the other participants

in your group have an initial wealth of 200 Experimental Currency (EC), which is invested

in the two markets in the following way: 100 EC in market 1 and 100 EC in market 2.

Graphically, your wealth is distributed in the following way:

In each round, there are two stages:

• In the first stage, you have to decide regarding your investment in market 1 and you will then

be provided with feedback about the outcome of this investment.
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• In the second stage, you are asked to take a decision about your investment in market 2, and

feedback is provided about the outcome of your investment in both markets.

Decisions: In each round and for each market, you will choose between Action A and Action B:

• Action A. You get back your initial investment.

• Action B. You receive a payoff that depends on an unknown state of the economy in a market

(State of the economy) and on the decision of the other investors in your group. The higher

the state of the economy, the higher your payoff. The higher the number of investors that

select A, the lower your payoff. Specifically, if you choose B the payoff for your investment in

market i, where i = 1, 2 is:

3× (State of the economy in market i)

1 + 2× (Number of investors that choose action A in your group in market i)

We illustrate the potential payoffs with an example later in the instructions.

Features of markets 1 and 2:

In each market, the state of the economy is randomly selected from the interval 10 to 150. Each

state in the interval has the same probability of being drawn and is the same for all the investors

in your group. When you make your decision, you do not know the exact value of the state of the

economy.

However, in each market, each member of your group receives a hint about the unknown state of

the economy. The hint number is randomly selected from the interval:

[State in market i-10, State in market i+10],

where i = 1, 2.

All numbers in the interval have the same probability to be drawn. Hint numbers of different

participants are drawn independently from the same interval. Note that each of the investors in

your group receives a different hint, which is only known by the participant who receives it.

IMPORTANT: The state of the economy in market 1 and 2 are drawn independently

from each other. This means that the state of the economy in market 1 does not convey

any information about the state of the economy in market 2. Specifically, receiving

information about the state of the economy in market 1 does not tell you anything

about the state of the economy in market 2.

Recall that, in each round, the same group of 5 participants invest in both market 1 and market

2. However, investors in your group will change randomly from round to round.
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Feedback: After all participants in market 1 take their decisions, you will receive the following

feedback: state of the economy in market 1; the number of investors that choose A and your own

payoff from market 1. After all participants in market 2 take their decisions, you will receive the

following feedback: state of the economy in market 2; the number of investors that choose A; your

own payoff from market 2; and your total EC at the end of this round, which adds up your earnings

from investing in markets 1 and 2.

Example of potential payoffs: We provide an example of potential payoffs in market 1 in the

table below (in EC).

We provide an example of potential payoffs in market 2 in the table below (in EC).

Incentives:

At the end of Part I, one of the 20 rounds will be randomly selected, and you will be paid your

earnings from this round according to the formula: 100 Experimental Currency (EC) are equivalent

to 3 Euros. These will not be shown to you until the end of Part II of the experiment.

Example: Market 1

The state of the economy for market 1 is drawn and it is equal to 36. The hints for the 5 investors

are in the range [26, 46] and are equal to: 39, 46, 35, 37, 33. The participant who receives hint

39 knows that the state of the economy in market 1 must be between 29 and 49. The participant

who receives hint 46 knows that the state of the economy in market 1 must be between 36 and 56

etc. The table below illustrates the payoff from choosing A and B depending on the hypothetical

number of other investors that choose A.

In order to show how the payoffs for B are calculated, suppose that if 3 other investors choose

A and I choose B. Then, my payoff is 15.4 EC since: 3×36
1+2×3 = 108

7 =15.4 EC.

Market 2

The state of the economy for market 2 is drawn and it is equal to 127. The hints for the 5

participants are in the range [117, 137] as follows: 129, 135, 130, 128, 126. The participant who
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receives hint 129 knows that the state of the economy in market 2 must be between 119 and 139.

The participant who receives hint 135 knows that the state of the economy in market 2 must be

between 125 and 145 etc. The table below illustrates the payoff from choosing A and B depending

on the hypothetical number of other investors that choose A.

In order to show how the payoffs for B are calculated, suppose that 1 other investor chooses A

and I choose B. Then, my payoff is 127 EC since: 3×127
1+2×1 = 381

3 = 127.0 EC.

Part II You will be asked to make several other decisions, which are answered individually and

do not depend on the choices of other participants. You will see 2 screens where you will choose

among different gambles. The gambles in the two screens are independent from each other. You

will be able to gain or lose money depending on your choice and outcome of the gamble. When we

reach this part, the instructions will be found in the computer screen. This part is also incentivized

- the computer screens will show how ECs are converted to Euros.

At the end of Part II of the experiment, we will display on the screen your total payoffs for the

experiment, which includes the participation fee and the payoffs for Parts I and II of the experiment

in Euros.

Questionnaire Subsequently, we will ask you some personal information. The data will be treated

confidentially and will be used only for research purposes.
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Part II: Risk and Loss aversion tests

Risk aversion

You have to select ONE gamble that you would like to play from the gambles below. Each gamble

has two possible outomes (Event A or Event B), each with 50% chance of occurring. For example,

if you select gamble 4 and Event A occurs, you will gain 21 points. If event B occurs, you will get

57 points. Your gains in points will be converted into Euros according to the conversion rate: 20

points are equivalent to 1 Euro.

Figure 7: Risk aversion test

Loss aversion

For EACH gamble below, you have to choose whether you want to Accept it or Reject it. If you

reject a gamble, your payoff is zero. Each gamble has two possible outcomes (Event A or Event B),

each with a 50% of occurring. After you have made your choice, one of the gambles you accepted

will be picked at random and you will be paid the outcome of that gamble. Your gains in points

will be converted into Euros according to the conversion rate: 20 points are equivalent to 1 Euro.

See Figure 8.
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Figure 8: Loss aversion test

Part III: Personal Information

At the end of the two parts, we asked participats some demographic information: gender, age, and

degree studied.
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Appendix III: Screenshots for the coordination game (Small

diversification treatment)

Figure 9: Screen 1
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Figure 10: Screen 2

Figure 11: Screen 3

Figure 12: Screen 4
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Appendix IV: Robustness tests

Figure 13: Complete diversification treatment
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