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Abstract

This paper introduces a new class of observation-driven models, including
score models as a special case. This new class inherits and extends the basic
ideas behind the development of score models and addresses a number of
unsolved issues in the score literature. In particular, the new class of mod-
els (i) allows QML estimation of static parameters, (ii) allows production of
leverage effects in the presence of negative outliers, (iii) allows update asym-
metry and asymmetric forecast loss functions in the presence of symmetric
or skewed innovations, and (iii) achieves out-of-sample outlier robustness in
the presence of sub-exponential tails. We establish the asymptotic proper-
ties of the QLE, QMLE and MLE as well as likelihood ratio and Lagrange
multiplier test statistics. The finite sample properties are studied by means
of an extensive Monte Carlo study. Finally, we show the empirical relevance
of this new class of models on real data.
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1 Introduction
Generalized autoregressive score (GAS) models, also known as dynamic conditional
score (DCS) models, have been proposed independently by Creal, Koopman and
Lucas (2012) and Harvey and Chakravarty (2008).

GAS models provide a general modelling strategy for time series data. Consider
a time-series {yt}t∈Z with conditional density indexed by a time-varying parameter
{ft}t∈Z,

pt(yt, θ) = p(yt|ft, θ) ∀ t ∈ Z.

A GAS(1, 1) model for ft is a model of the form

ft+1 = ω + αS(ft)
∂ log p(yt|ft, θ)

∂ft
+ βft, (1)

where S(ft) is a scaling function for the score.
There are more than 220 papers referenced on the gasmodel.com website that

build upon this modelling strategy and have applications in various areas such
as default and credit risk modelling, stock volatility and correlation modelling,
modelling time-varying dependence structures, CDS spread modelling, systemic
risk, and high-frequency data.

The success of GAS models is because (i) these models nest and extend exist-
ing observation-driven models such as the GARCH, (ii) their estimation does not
require sophisticated techniques (maximum likelihood is the rule), (iii) they consti-
tute a natural way to achieve robustness in the presence of fat-tailed innovations,
(iv) statistical inference is standard, and (v) the models usually fit the data quite
well.

GAS models have, for instance, received considerable attention in the litera-
ture on volatility modelling because when pt(yt, θ) has fatter tails than the Gaus-
sian distribution (e.g., a Student’s t-distribution with a finite degree of freedom),
∂ log pt(yt|ft,θ)

∂ft
downweights and even bounds the effect of large shocks on the con-

ditional variance; in contrast, in GARCH models, the squared shock is the main
driver of the dynamics, irrespective of the choice of the density. This is in line with
the empirical literature that suggests that GARCH models may overestimate the
conditional volatility for several days or even weeks following very large unexpected
shocks (see Lecourt, Laurent and Palm, 2016, among others).

However, it is also clear from (1) that GAS models impose a strong link be-
tween the conditional distribution of yt, i.e., pt(yt|ft, θ), and the updating equation
of ft, which is not always desirable. Testing the relevance of these restrictions and
eventually relaxing them if they are rejected by the data can therefore be advan-
tageous. In this paper, we keep the downweighting mechanism of the above GAS
model but allow the updating equation of ft to be disconnected from the den-
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sity of the innovations if needed. Our family of models, called ψGAS, therefore
encompasses GAS models.

We study the statistical properties of ψGAS models in the case where the
conditional moment of interest depends on some covariates. We also study three
estimation methods for this model. Since ψGAS models disconnect the dynamics
in ft and the density of the innovations, unlike GAS models, they allow considering
the estimation of the parameters by QML or by ML with a score function in (1)
taken with respect to a conditional density other than the one of yt. We also study
the estimation of ψGAS models using the estimating functions approach, which
encompasses the QMLE.

In addition to the fact that these estimators are consistent and asymptotically
normal, we also show that likelihood ratio and Lagrange multiplier tests of lin-
ear restrictions have the usual χ2 distribution that offers a strategy to test some
restrictions implied by standard GAS models.

We present several examples of ψGAS models throughout this paper but study
in detail the ψTGAS − T model, a volatility model extending the βTGAS model
of Harvey and Chakravarty (2008). This model relies on a standardized Student’s
t-density for the innovations and the score of a standardized Student’s t-density
in the updating equation of the conditional variance but does not restrict the
degrees of freedom to be the same. The additional flexibility of this model (over
the βTGAS) is found to be significant at the 5% significance level in more than
one-third of the cases out of more than 400 US stocks.

The rest of the paper is structured as follows. Section 2 presents the ψ-filtering
equation and the properties of this model. The estimation of this model is studied
in Section 3. Section 4 studies in more detail the ψTGAS − T model. The small
sample properties of the ψTGAS − T model as well as some empirical results are
reported in Section 5. Finally, Section 6 concludes. All proofs are given in the
appendix.

2 The ψ-filtering equation

2.1 Score models and robust estimation

In the robust statistics literature, the criterion function of an M-estimator is usu-
ally called the “ρ function”. The shape of the criterion ρ defines the robustness
properties of the estimator. Well-known examples include the quadratic ρ, the
absolute-error ρ, the Winsorizing ρ, the censorizing ρ, and the biweight ρ. When
ρ is the conditional log-likelihood of the data, we obtain the MLE. Additionally,
the derivative of ρ with respect to the parameter of interest is usually known in the
robust statistics literature as the “ψ function”. The ψ function defines implicitly
the z-estimator counterpart of the M-estimator. When ρ is a log-likelihood, the ψ
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function is the score.
We propose a new class of observation-driven models with an updating equation

given by

ft+1 = ω + αψ(yt, ft, θ)S(ft) + βft, where ψ(yt, ft, θ) :=
∂ρ(yt, ft, θ)

∂ft
.

Note that when ρ(yt, ft, θ) is the log-likelihood log p(yt|ft, θ), we obtain the class
of score models. When p(yt|ft, θ) is a Student’s t-density and ρ(yt, ft, θ) is a Gaus-
sian density, we obtain the GARCH − T model, which is not nested by score
models. In this formulation, the QMLE also becomes a naturally viable alter-
native to MLE. This is in contrast to score models where there is a strong link
between the innovation density and the updating equation, which makes it un-
natural to use QMLE. We note also that, in our new model formulation, we can
formulate updating equations that Winsorize or censorize outliers, regardless of
the conditional distribution p(yt|ft, θ). More generally, ψGAS models allow us to
obtain filtering equations that employ many popular loss functions used in the
robust statistics. These include the Cauchy–Lorentzian, the Geman–McClure and
the Welsch–Leclerc criteria, as well as the generalized Charbonnier and pseudo
Huber–Charbonnier loss functions. Additionally, in empirical applications, we can
define updating equations for volatility models that incorporate leverage effects
even if the conditional density of yt is symmetric or left-skewed. This stands in
sharp contrast to “pure" score models that are unable to deliver an updating equa-
tion with a leverage effect when the innovation density is left-skewed. One can
also have an asymmetric updating equation that gives greater penalty to over-
prediction of conditional means or under-prediction of conditional volatilities (as
is common in macro and financial policy) regardless of the conditional distribu-
tions of yt. This is impossible in the more restrictive class of score models since
ρ(yt, ft, θ) must be equal to log p(yt|ft, θ).

Examples 1-3 cover examples of location and volatility filtering involving non-
linear asymmetric criteria as well as fat-tailed and skewed innovations.

Example 1. (Leverage effect with left-skewed innovations) Stock returns are typi-
cally heavy tailed and left-skewed. As such, score models of the conditional volatility
yt = ftεt employing asymmetric distributions such as the asymmetric Gaussian or
asymmetric Student’s t-distribution, may define an updating equation

ft+1 = ω + αs(yt, ft, θ) + βft,

where the score s(yt, ft, θ) is an asymmetric function of the returns yt that produces
higher volatility for positive returns (i.e., yt > 0) and is more conservative for
negative returns (i.e., yt < 0). Unfortunately, this is contrary to the empirical
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evidence for the ‘leverage effect’ that predicts higher volatility as a result of negative
returns. Depending on the asymmetric Student’s t-distribution that is adopted,
score models may thus be unable to capture the leverage effect. This issue does not
affect the larger class of ψGAS models

ft+1 = ω + αψ(yt, ft, θ) + βft

since the ψ function can adopt nonlinear functional forms independently of the
density of the innovations εt.

Example 2. (Robust count ψGAS models) Consider a model for a time series
of counts for which the conditional distribution of yt is Poisson with parameter ft
(Davis et al., 2003, Fokianos et al., 2009). The updating equation for the inten-
sity parameter ft obtained in the score model framework with conditional variance
scaling is linear (Blasques et al, 2014),

ft+1 = ω + α(yt − ft) + βft.

This formulation can be sensitive to large outliers in yt. A strong form of robustness
can, however, be achieved in a ψGAS model with the updating equation determined
by an appropriate ρ function. For example, the negative Cauchy–Lorentzian loss
function ρ(yt, ft, θ) = exp

(
− 1

2
(yt−ft)2

δ2

)
− 1 delivers

ft+1 = ω + αδ−2(yt − ft) exp
(
− (yt − ft)2

2δ2

)
+ βft.

Note that this updating equation is approximately linear at the origin but uniformly
bounded in yt and ft. We recover the linear score update by taking δ → ∞ and
α→ 0 such that αδ−2 → α∗.

Example 3. (Asymmetric forecast with symmetric innovations) Consider a loca-
tion model where yt = ft + εt and εt

i.i.d.∼ N(0, σ2). The score is symmetric in εt,
and the resulting score updating equation is given by

ft+1 = ω + α
εt
σ2

+ βft.

Asymmetric loss functions are often employed in practical problems that involve
forecasting economic time series. The reasoning is simple and practical: as pointed
out by Granger (1999), the cost of arriving 10 min early in the airport is quite
different from arriving 10 min late. Similarly, Zellner (1986), points out that, in
dam construction, an underestimate of the peak water is usually much more serious
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than an overestimate. Consider the inverse linex forecast loss function introduced
in Varian (1975),

ρ(yt, ft, θ) = 1 + δεt − exp(δεt).

This loss function suggests a ψ-filtering equation given by

ft+1 = ω + αδ(exp(δεt)− 1) + βft.

2.2 Local ρ-improvement of the ψ-filter

Compared to score models, the additional flexibility of the class of ψ-filters may
come at some cost. In fact, the results in Blasques et al (2015) provide a reasoning
for imposing the restriction of score models that

ψ(yt, ft, θ) =
∂ log p(yt|ft, θ)

∂ft
.

Blasques et al (2015) show that only the score filter guarantees that the parameter
update from ft to ft+1 produces a local improvement in the log-likelihood of the
model and, under appropriate conditions, an improvement in the Kullback-Leibler
distance to the true conditional distribution of the data. In particular, Blasques et
al (2015) explore the fact that, in regions of high probability, the conditional log-
likelihood is improved (i.e., log p(yt, ft) ≤ log p(yt, ft+1)) when the update is small
ft+1 ≈ ft if and only if the parameter update is score equivalent. This happens
because, under appropriate conditions, the score can be seen as a derivative of a
local Kullback-Leibler divergence between the true unknown conditional density p0

t

of yt given its past yt−1, and the conditional density p(·|ft) implied by the model;
i.e., the score term takes the form

st =
∂ log p(yt|ft)

∂ft
= lim

δ→0

∂

∂ft
KL(yt,δ)

(
p0
t , p(·|ft)

)
,

where KL(yt,δ) is a local Kullback-Leibler divergence that places its mass on a δ-
neighbourhood of yt. The ψGAS model allows for a generalization of this idea
whereby ψt is a derivative of some local distance function,

ψt = lim
δ→0

∂

∂ft
D (yt,δ)

(
p0
t , p(·|ft)

)
.

Proposition 1 highlights the trivial but relevant notion that the ψ-update can
be used as a Newton-type algorithm when the ρ-function is adopted as a filtering
objective criterion and the parameter update is smooth. For simplicity, we focus
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on updates that resemble a Newton step by setting (ω, β) ≈ (0, 1). For complete-
ness, a short justification for Proposition 1 is given in the appendix. Definition 1
introduces the notion of ψ-equivalent update as being an update that always steps
in the same direction as the ψ-update.

Definition 1. (ψ-equivalent update) A parameter update of the form

ft+1 = ω + αξ(yt, ft, θ) + βft,

is said to be ψ-equivalent if sign
(
ξ(y, f, θ)

)
= sign

(
ψ(y, f, θ)

)
∀ (y, f, θ).

Proposition 1. (local ρ-improvement of ψ-updates) Let ρ be continuously differ-
entiable in ft and suppose that (ω, β) ≈ (0, 1). Then,

ρ(yt, ft+1, θ)− ρ(yt, ft, θ) ≥ 0 for every yt ∈ R and ft+1 ≈ ft

if and only if ft is ψ-equivalent. Additionally, let ρη and η be such that

ρη(η(y), f, θ) = ρ(y, f, θ) ∀ (f, y, θ)

with ρη continuously differentiable in η(y) and η(yt+1) ≈ η(yt). Then,

ρ(yt+1, ft+1, θ)− ρ(yt, ft, θ) ≥ 0 for every ft+1 ≈ ft

if and only if ft is ψ-equivalent.

The following two examples illustrate the reasoning behind Proposition 1 on
conditional location and scale examples.

Example 4. (Location model) For the location model yt = ft + εt with the inverse
linex forecast loss function, ρ(yt, ft, θ) = 1+δεt−exp(δεt), Proposition 1 tells us that
the ψ-update with ψ(yt, ft, θ) = δ exp(δεt)−δ delivers one-step-ahead local improve-
ments of the inverse linex criterion (i.e., ρ(yt, ft+1, θ) > ρ(yt, ft, θ)). Furthermore,
in this case, we can set η(yt) = yt and hence conclude that we also improve relative
to yt+1 (i.e., ρ(yt+1, ft+1, θ) > ρ(yt, ft, θ)) if the data evolve smoothly.

Example 5. (Volatility model) The same reasoning applies to a volatility model.
Here, one might set η(yt) = y2

t so that the ψ-update is ensured to deliver

ρ(yt+1, ft+1, θ) > ρ(yt, ft, θ)

when both ft and y2
t evolve smoothly.
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2.3 Stationarity and invertibility of ψGAS models

The examples of ψGAS models previously given explain yt by means of their past
values only. It is often the case that some extra information is available, under the
form of exogenous covariates, such as transaction volumes, or realized measures
based on high frequency intraday data, or even series of other returns. To exploit
the extra information conveyed by such covariates, let us investigate the following
extension

yt = g(ft, εt), (2)
ft+1 = ω + αψ(yt, Xt, ft, θ) + βft, (3)

where εt is a random variable that can be interpreted as an error term, ω, α, β
are real parameters and θ is an element of a parameter space Θ ⊂ Rp, g and ψ
are differentiable measurable functions and Xt is a vector of exogenous random
variables. When there are no exogenous variables, with some abuse of notation,
we simply write

ft+1 = ω + αψ(yt, ft, θ) + βft, (4)

instead of (3).
We now give general conditions for stationarity and invertibility of Model (2)-

(3). These general conditions will be illustrated on specific examples and on the
ψTGAS − T model presented in Section 4.

Let zt = (εt, X
>
t )> ∈ Rd. Note that the time-varying parameter ft satisfies a

Stochastic Recurrence Equation (SRE) of the form

ft+1 = ϕ(zt, ft), (5)

where ϕ : E × F → F is measurable, and we assume that E is a convex subspace
of Rd and F is an interval.

Lemma 1 details conditions for the ψGAS model to generate stationary se-
quences as a data generating process.

Lemma 1. (Existence of a DGP) Assume that (zt) is stationary and ergodic. Sup-
pose that

(i) E log+ |ψ(g(f 0, εt), Xt, f
0, θ)| <∞ for some constant f 0 ∈ F ⊂ R;

(ii) E log supf
∣∣α∂ψ(g(f,εt),Xt,f,θ)

∂f
+ β

∣∣ < 0.

Then there exist unique strictly stationary and ergodic solutions {ft}t∈Z and {yt}t∈Z
to Equations (2)-(3).
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The following example gives explicit conditions derived from Lemma 1 for a
nonlinear conditional volatility model.

Example 6. (Robust asymmetric volatility ψGAS models) Consider a volatil-
ity model with yt = ftεt, with εt i.i.d. and an updating equation defined by an
asymmetric Charbonnier loss function,

ft+1 = ω + α
√

(yt − δ)2 + ι2 + βft.

Lemma 1 tells us that both {ft}t∈Z and {yt}t∈Z generated by this ψGAS model are
stationary and ergodic when

E log sup
f

∣∣∣α ε2tf − δεt√
(fεt − δ)2 + ι2

+ β
∣∣∣ < 0.

If, for instance, the distribution of εt is Student’s t, then the latter condition is
implied by the familiar GARCH contraction condition

E log |αεt + β| < 0.

Note that the stationarity condition is unchanged when the updating equation is
augmented by an exogenous term of the form π>Xt. The model takes the form (3)
by setting ψ(yt, Xt, ft, θ) =

√
(yt − δ)2 + ι2 + π>Xt/α.

Lemma 2 states sufficient conditions for data generated by the ψGAS model
to generate data with bounded unconditional moments.

Lemma 2. (Existence of a marginal moment) Under the assumptions of Lemma 1,
if the sequence (zt) is i.i.d.,

E
∣∣ψ(g(f 0, εt), Xt, f

0, θ)
∣∣r <∞ and E sup

f

∣∣∣∣∂ψ(g(f, εt), Xt, f, θ)

∂f

∣∣∣∣r <∞
for some r > 0, then the stationary solution to Equations (2)-(3) satisfies E |ft|s <
∞ for some s > 0.

Assume that, for some θ = θ0 satisfying the assumptions of Lemma 1, (yt) is
the stationary solution to (2)-(3) and recall that the time-varying parameter ft
depends on the true but unknown parameter θ0. For all θ, let us investigate the
solutions of the filter

ft+1(θ) = ω + αψ(yt, Xt, ft(θ), θ) + βft(θ), t ∈ Z, (6)
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so that ft(θ0) = ft. Note, however, that ft(θ) cannot be computed from a finite
number of past observations y1, . . . , yt−1 and X1, . . . , Xt−1. We thus approximate
ft(θ) by the statistics

f̂t+1(θ) = ω + αψ(yt, Xt, f̂t(θ), θ) + βf̂t(θ), t ≥ 1, (7)

with a starting value f̂1(θ) ∈ C(Θ, F ), where C(Θ, F ) denotes the space of the
continuous functions from Θ to F .

Lemma 3 gives sufficient conditions for the invertibility of the ψGAS filter.

Lemma 3. (Properties of the filter) Let {yt, Xt}t∈Z be stationary and ergodic, and
suppose that

(i) for all θ ∈ Θ there exists f 0 ∈ F such that E log+ |ψ(yt, Xt, f
0, θ)| <∞;

(ii) E log supf∈R supθ∈Θ

∣∣α∂ψ(yt,Xt,f,θ)
∂f

+ β
∣∣ < 0.

Then, for all θ ∈ Θ, there exists a unique strictly stationary and ergodic solution
{ft(θ)}t∈Z to (6). Furthermore, for all starting functions f̂1(·) ∈ C(Θ, F ), there
exists % ∈ (0, 1) such that

%−t sup
θ∈Θ

∣∣∣f̂t(θ)− ft(θ)∣∣∣→ 0 a.s. as t→∞. (8)

When (8) holds, the model is said to be uniformly invertible. This property
will be essential to find a consistent estimator of θ0 and to approximate the time-
varying parameter ft.

The following example verifies the invertibility conditions stated in Lemma 3
in the context of a location model.

Example 7. (Location ψGAS models) Consider the location model with an updat-
ing equation obtained from the ‘negative pseudo Huber loss function’ of Charbonnier
et al (1997) and Hartley and Zisserman (2003), i.e.,

ft+1(θ) = ω + α
yt − ft(θ)√

(yt − ft(θ))2/δ2 + 1
+ βft(θ).

Lemma 3 tells us that this model is uniformly invertible if

E log sup
θ∈Θ

sup
f
| − α(1 + (yt − f)2/δ2)−3/2 + β| < 0 ⇐ sup

θ∈Θ
(|α|+ |β|) < 1.

Note that the invertibility condition for the filter stands in contrast to the station-
arity contraction condition of Lemma 1, which takes the form |β| < 1 for this
model.
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It is necessary to study the first and second derivatives of the filter (6):

f ′t+1(θ) :=
∂ft+1(θ)

∂θ
= At + btf

′
t(θ), (9)

f ′′t+1(θ) :=vec
(
∂2ft+1(θ)

∂θ∂θ>

)
= Ct + btf

′′
t (θ), (10)

where

At =
∂ω

∂θ
+ ψt

∂α

∂θ
+ α

∂ψt
∂θ

+ ft(θ)
∂β

∂θ
, bt = α

∂ψt
∂f

+ β,

Ct =vec
(

∂2ω

∂θ∂θ>
+ ψt

∂2α

∂θ∂θ>
+
∂α

∂θ

∂ψt
∂θ>

+
∂ψt
∂f

∂α

∂θ
(f ′t)

>

+
∂ψt
∂θ

∂α

∂θ>
+ α

∂2ψt
∂f∂θ

(f ′t)
>

+ α
∂2ψt
∂θ∂θ>

+ ft
∂2β

∂θ∂θ>
+
∂β

∂θ
(f ′t)

>

+
∂ψt
∂f

f ′t
∂α

∂θ>
+ αf ′t

∂2ψt
∂f∂θ>

+ ft
∂β

∂θ>
+ α

∂2ψt
∂f 2

f ′t(f
′
t)
>
)
,

with ψt = ψ(yt, Xt, ft(θ), θ) and, using Leibniz’s notation,

∂ψt
∂θ

=
∂ψ(y,X, f, θ)

∂θ

∣∣∣∣
(y,X,f,θ)=(yt,Xt,ft(θ),θ)

,

∂ψt
∂f

=
∂ψ(y,X, f, θ)

∂f

∣∣∣∣
(y,X,f,θ)=(yt,Xt,ft(θ),θ)

and similar notations for the other derivatives. Assume that Θ is a compact sub-
space of Rp with p ≥ 3. Without loss of generality, assume that θ = (θ1, . . . , θp)

′

with θ1 = ω, θ2 = α and θ3 = β. Note that the expressions of At and Ct then
become more explicit because, for instance, ∂ω/∂θ = (1, 0, . . . , 0). As in (7), we
approximate f ′t(θ) by

f̂ ′t+1(θ) = Ât + b̂tf̂
′
t(θ), t ≥ 1, (11)

with a starting value f̂ ′1(θ) ∈ C(Θ,Rp), and where Ât and b̂t are obtained by
substituting f̂t(θ) for ft(θ) in At and bt. With similar notations and assumptions,
let

f̂ ′′t+1(θ) = Ĉt + b̂tf̂
′′
t (θ), t ≥ 1. (12)

Lemma 4 establishes stationarity and invertibility properties for the derivatives
of the filter.
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Lemma 4. (Derivatives of the filter) Let the conditions of Lemma 3 hold, assume
that ψ admits continuous second-order derivatives with respect to its last two com-
ponents, and suppose that

(i) for all θ ∈ Θ, E
{

log+ |ψt|+ log+
∥∥∂ψt
∂θ

∥∥+ log+
∣∣∣∂ψt∂f

∣∣∣+ log+ |ft(θ)|
}
<∞.

Then, for all θ ∈ Θ, there exists a unique strictly stationary and ergodic solution
{f ′t(θ)}t∈Z to (9). If in addition

(ii) E
{

log+
(

supf

∣∣∣∂ψt∂f

∣∣∣+ supf,θ

∥∥∥ ∂2ψt∂θ∂f

∥∥∥+ supf

∣∣∣∂2ψt∂f2

∣∣∣+ supθ ‖f ′t(θ)‖
)}

<∞,

then, for all starting functions f̂1(·) ∈ C(Θ, F ) and f̂ ′1(·) ∈ C(Θ,Rp), there exists
% ∈ (0, 1) such that

%−t sup
θ∈Θ

∥∥∥f̂ ′t(θ)− f ′t(θ)∥∥∥→ 0 a.s. as t→∞.

If we further assume

(iii) for all θ ∈ Θ, E
{

log+
∥∥∥ ∂2ψt
∂θ∂θ>

∥∥∥+ log+
∥∥∥ ∂2ψt∂θ∂f

∥∥∥+ log+ |∂2ψt
∂f2
|
}
<∞,

then, for all θ ∈ Θ there exists a unique strictly stationary and ergodic solution
{f ′′t (θ)}t∈Z to (10). Under the additional assumption

(iv) E
{

log+
(

supf,θi,θj

∣∣∣ ∂3ψt
∂θi∂θj∂f

∣∣∣+ supf,θi

∥∥∥ ∂3ψt
∂θi∂f2

∥∥∥+ supf

∣∣∣∂3ψt∂f3

∣∣∣)} <∞,
then, for all starting functions f̂1(·) ∈ C(Θ, F ), f̂ ′1(·) ∈ C(Θ,Rp) and f̂ ′′1 (·) ∈
C(Θ,Rp2), there exists % ∈ (0, 1) such that

%−t sup
θ∈Θ

∥∥∥f̂ ′′t (θ)− f ′′t (θ)
∥∥∥→ 0 a.s. as t→∞.

The following example considers the derivatives of the filter in the context of a
robust ψGAS conditional volatility model.

Example 8. (Robust asymmetric volatility ψGAS models) Consider the volatility
model introduced in Example 6 with yt = ftεt and ft+1 = ω+α

√
(yt − δ)2 + ι2+βft.

As shown above, the conditions of Lemma 3 are satisfied for this model when |β| <
1. Note that the derivatives of ψ(yt, f, θ) w.r.t. f are zero and the derivatives
w.r.t. δ and ι are given by

∂ψt
∂δ

= − yt − δ√
(δ − yt)2 + ι2

,
∂2ψt
∂δ2

= − ι2

(δ2 − 2δyt + ι2 + y2
t )

3/2
,

12



∂2ψt
∂δ∂ι

= − ι(yt − δ)
((yt − δ)2 + ι2)3/2

,
∂ψt
∂ι

=
ι√

(yt − δ)2 + ι2
,

∂2ψt
∂ι2

=
(yt − δ)2

(δ2 − 2δyt + ι2 + y2
t )

3/2
.

Additionally, note that we have already shown that E log+ supθ∈Θ |ft(θ)| <∞ holds
when supθ∈Θ |β| < 1 and E|yt|n < ∞ for some n > 0. Finally, we have that
E log+ supθ∈Θ |f ′t(θ)| <∞ holds since

sup
t

E sup
θ∈Θ
‖f̂ ′t+1(θ)‖n ≤ sup

t

t−1∑
j=0

sup
θ∈Θ
|β|njE sup

θ∈Θ
‖At−j‖n + sup

t
sup
θ∈Θ
|βt|n sup

θ∈Θ
‖f̂ ′1(θ)‖n

≤ (1− sup
θ∈Θ
|β|n)−1E sup

θ∈Θ
‖At−j‖n + sup

θ∈Θ
|β|n sup

θ∈Θ
‖f̂1(θ)′‖n <∞,

with E supθ∈Θ ‖At−j‖n < ∞ implied by E|yt|n < ∞ and E supθ∈Θ |ft|n (shown
above) since

At =
[
1 ψt ft α

∂ψt
∂δ

α
∂ψt
∂ι

]>
.

Finally, conditions (i), (ii) and (iii) of Lemma 4 are satisfied. We thus conclude
that {f̂ ′t}t∈N and {f̂ ′′t }t∈N converge e.a.s. to unique strictly stationary and ergodic
sequences as t→∞.

3 Estimating the ψGAS models
In contrast to score models, the ψGAS models disentangle the parameters involved
in ft of those involved in the conditional distribution p(· | f, θ). We first consider
the case where the time-varying parameter of interest is ft = ft(θ0). It makes sense
to estimate θ0, trying to be as agnostic as possible on the p distribution. This is
generally achieved by using QML estimators. Since ψGAS models are closely
related to score functions and, more generally, to z-estimators, it seems natural to
estimate the static parameters of a ψGAS model by means of a z-estimator. In
the next section, we consider a class of z-estimators that encompasses the QMLE.

Assume that (yt) is a stationary process satisfying the ψGAS models (2)-(3)
for some unknown parameter value θ = θ0 and ft = ft(θ0).

3.1 The estimating functions approach

To estimate θ0 using very weak assumptions, the estimating functions theory can be
used. This is a general estimation method that has been introduced in the seminal
papers of Durbin (1960) and Godambe (1960) and that encompasses moment, like-
lihood and quasi-likelihood-based techniques (see Chandra and Taniguchi, 2001,
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Bera and Bilias, 2002, Heyde, 2008 and the references therein). By extending the
Gauss-Markov theorem, Godambe (1960, 1985) developed a concept of optimal
estimating function that applies in finite i.i.d. samples, as well as for stochastic
processes.

In score models, there generally exist “unbiased estimating functions” ht =
ht(θ0) ∈ Rp, depending on yt and ft = ft(θ0), such that

Et−1 (ht) = 0p,

where Et−1 denotes the conditional expectation given the sigma-field Ft−1 gener-
ated by {ys, Xs; s < t}. For a location model of the form yt = ft + εt where {εt}t∈Z
is i.i.d. with Eεt = 0, or for a duration model of the form yt = ftεt where {εt}t∈Z is
i.i.d. positive with Eεt = 1, one can take ht(θ) = yt− ft(θ). For a volatility model
yt =

√
ftεt, with standard notation, we can set ht(θ) = y2

t − ft(θ). Obviously, un-
der standard regularity conditions, the score ∂ log pt(yt, θ0)/∂θ is also an unbiased
estimating function. An estimator of θ0 can be obtained by solving an “estimating
equation” of the form

T∑
t=1

at−1ht(θ̂) = 0r, (13)

where the r × p matrices at = at(θ) ∈ Ft. Godambe (1985) shows that, within
the class of the estimating functions of this form and under mild assumptions, the
optimal choice of the ats is

at−1 = Et−1

(
∂h>t
∂θ

)(
Et−1hth

>
t

)−1
. (14)

According to the terminology of the estimating functions theory, a solution to
(13)–(14) is called quasi-likelihood estimator (QLE).

3.1.1 Conditional moment estimation

We consider the case where ft = Et−1y
k
t for some k > 0. Location and duration

models correspond to k = 1, and volatility models to k = 2. We thus set ht(θ) =
ykt − ft(θ). Of course, in our framework, the estimating function ht(θ) is generally
not computable because it depends on the unknown values {yt, Xt; t ≤ 0}. We
thus approximate ft(θ) by f̂t(θ) in (7) and ∂ft(θ)/∂θ by ∂f̂t(θ)/∂θ = f̂ ′t(θ) in (11).
Let ĥt(θ) = ykt − f̂t(θ). Under the assumptions of Lemma 4, we have seen that
there exists % ∈ (0, 1) such that

%−t sup
θ∈Θ

{∣∣∣f̂t(θ)− ft(θ)∣∣∣+

∥∥∥∥∥∂f̂t(θ)∂θ
− ∂ft(θ)

∂θ

∥∥∥∥∥
}
→ 0 a.s. as t→∞. (15)
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Let σ2
t (θ) = Et−1h

2
t (θ) be the assumed conditional variance of ykt (possibly mul-

tiplied by an unimportant non-zero constant). In general, σ2
t (θ) also depends on

the unknown values {yt, Xt; t ≤ 0}, but we assume that there exists a sequence
{σ̂2

t (θ)}t∈N computable from y1, . . . , yt and X1, . . . , Xt such that

%−t sup
θ∈Θ

∣∣σ̂2
t (θ)− σ2

t (θ)
∣∣→ 0 a.s. as t→∞. (16)

Moreover, assume that there exists a constant σ2 > 0 such that

inf
θ∈Θ

∣∣σ2
t (θ)

∣∣ > σ2 a.s. (17)

As approximations of (13)–(14), it seems natural to consider the solutions of

ĜT (θ̂) = 0p, ĜT (θ) =
1

T

T∑
t=t0+1

ĥt(θ)

σ̂2
t (θ)

∂f̂t(θ)

∂θ
. (18)

The integer t0 is fixed and does not matter for the asymptotic behaviour of the
estimator but is expected to attenuate the effect of the (arbitrary) choice of the
initial values f̂1(θ) and ∂f̂1(θ)/∂θ. In practice, one could take t0 = 5 (one week for
most daily series), f̂1(θ) =

∑t0
t=1 y

k
t /t0 and ∂f̂1(θ)/∂θ = 0p.

3.1.2 Existence of the estimator

Note that the existence of a solution θ̂ ∈ Θ to (18) is not guaranteed. For instance,
consider a location model yt = ft + εt where (εt) is i.i.d. with a mean of 0 and
variance σ2

ε . If ft(θ) = ω + αyt−1 with θ0 = (ω0, 0) and Θ = [ω, ω] × [0, α], then
with non-zero probability, we have

ĜT (θ) =
1

T

T∑
t=t0+1

yt − ω − αyt−1

σ2
ε

(
1
yt−1

)
6= 02, ∀θ ∈ Θ.

More precisely, when the first component of ĜT (θ) is null and
∑

t(yt−y)(yt−1−y) <
0 (which should be the case with probability of approximately 1/2 when α0 = 0),
the second component of ĜT (θ) is strictly negative for any value of α ≥ 0. Instead
of (18), we thus define a QLE as a measurable solution of

θ̂T = arg min
θ∈Θ

∥∥∥ĜT (θ)
∥∥∥ (19)

with

ĜT (θ) =
1

T

T∑
t=t0+1

ĝt(θ), ĝt(θ) =
ĥt(θ)

σ̂2
t (θ)

∂f̂t(θ)

∂θ
.

Since Θ is a compact set and ft is assumed to be of class C1, a solution of (19)
always exists, but may not be unique. We will see that the asymptotic value of θ̂T
does not depend on the norm taken in (19).
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3.1.3 Moment and identifiability assumptions

Let the rescaled innovations ηt(θ) = ht(θ)/σt(θ). Consider the moment conditions

E sup
θ∈Θ
|ηt(θ)|r <∞, E sup

θ∈Θ

∥∥∥∥ 1

σt(θ)

∂ft(θ)

∂θ

∥∥∥∥r <∞. (20)

Let us illustrate these conditions on a duration model.

Example 9. (Autoregressive Conditional Duration (ACD) model) Let yt = ftεt,
where (εt) is i.i.d. positive with a mean of 1, θ = (ω, α1, . . . , αq0 , β1, . . . , βp0) ∈ Θ
and ft = ft(θ) = ω +

∑q0
i=1 αiyt−i +

∑p0
j=1 βjft−j. We have σ2

t (θ) = f 2
t (θ)σ2

ε ,
where σ2

ε > 0 is the variance of εt. If Θ is a compact subset of (0,∞)p0+q0+1, by
reproducing standard arguments used to show the CAN of the QMLE of GARCH
models (see, in particular, (7.54) in Francq and Zakoian, 2019) it can be seen
that the last condition of (20) holds for any r and that the first holds whenever
E|εt|r+κ <∞ for some κ > 0. To show the latter result, we note that∥∥∥∥ yt

ft(θ)

∥∥∥∥
r

≤
∥∥∥∥ft(θ0)

ft(θ)

∥∥∥∥
r(r+κ)
κ

‖εt‖r+κ

by the Holder inequality.

Under (20) with r = 2, let

G(θ) = Eg1(θ), gt(θ) =
ht(θ)

σ2
t (θ)

∂ft(θ)

∂θ
.

Since Et−1(ykt ) = ft(θ0), we obviously have G(θ0) = 0. Assume that the equality
holds at only θ = θ0:

θ0 ∈ Θ and G(θ) = 0 for θ ∈ Θ if and only if θ = θ0. (21)

Let us discuss the identifiability condition on the previous example.

Example 10. (Identifiability of the ACD model) Let us come back to Example 9.
Let

Aθ(z) =

q0∑
i=1

αiz
i and Bθ(z) = 1−

p0∑
j=1

βjz
j.

For any fixed θ∗, the function

θ 7→ E
(yt − ft(θ))2

σ2
t (θ
∗)

= E
(yt − ft(θ0))2

σ2
t (θ
∗)

+ E
(ft(θ0)− ft(θ))2

σ2
t (θ
∗)
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admits a minimum at θ iff ft(θ) = ft(θ0) almost surely. At such a point, and for
any θ∗, we have

E
yt − ft(θ)
σ2
t (θ
∗)

∂ft(θ)

∂θ

∣∣∣∣
θ=θ0

= 0p0+q0+1.

Taking θ∗ = θ, we thus see that G(θ) = 0 if and only if θ is such that ft(θ) = ft(θ0)
almost surely. By standard arguments (see, e.g., step (b) in the proof of Theorem
7.1 of Francq and Zakoian, 2019 for an analogous result in GARCH models), it
can be checked that

ft(θ) = ft(θ0) a.s. ⇒ θ = θ0

under the following assumptions:

1. The distribution of εt is not degenerate;

2. If p0 > 0, Aθ0(z) and Bθ0(z) have no common roots, Aθ0(1) 6= 0, and
(α0q0 , β0p0) 6= (0, 0).

To show the asymptotic normality of the QLEs, we need to consider the extra
moment conditions

E sup
θ∈Θ

∥∥∥∥ 1

σ2
t (θ)

∂σ2
t (θ)

∂θ∂θ>

∥∥∥∥r <∞, E sup
θ∈Θ

∥∥∥∥ 1

σt(θ)

∂2ft(θ)

∂θ∂θ>

∥∥∥∥r <∞. (22)

To deal with the effect of the initial values, we also need

%−t sup
θ∈Θ

∥∥∥∥∂σ̂2
t (θ)

∂θ
− ∂σ2

t (θ)

∂θ

∥∥∥∥→ 0 a.s. as t→∞. (23)

3.1.4 Asymptotic behaviour of the QLE

Under (20) with r = 2, let us define the information matrices as follows:

I = E
h2
t (θ0)

σ4
t (θ0)

∂ft(θ0)

∂θ

∂ft(θ0)

∂θ>
, J = E

1

σ2
t (θ0)

∂ft(θ0)

∂θ

∂ft(θ0)

∂θ>
.

Assume that
J is invertible. (24)

Theorem 1 establishes the consistency and asymptotic normality of the QLE
for conditional moment models, when the sample size diverges, i.e., when T →∞.

Theorem 1. (CAN of the QLE for conditional moment models) Let {yt}t∈Z be
generated by (2)-(3) with θ replaced by θ0 and Et−1(ykt ) = ft(θ0) for some θ0 ∈ Θ
and k > 0. Let the conditions of Lemma 1 hold at θ = θ0 and the conditions
of Lemma 4 hold. Assume that E log+ |yt|k < ∞, E log+ supθ∈Θ |ft(θ)| < ∞ and
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E log+ supθ∈Θ ‖∂ft(θ)/∂θ‖ <∞. Suppose further (16), (17), (20) with r = 2, (21),
Θ is a compact subset of Rp and θ0 ∈ Θ. Then, for any sequence θ̂T satisfying (19)
for T large enough, we have θ̂T

as→ θ0 as T →∞.
Moreover, if θ0 belongs to the interior of Θ, (22) holds with r = 2, (23) and

(24), then

√
T (θ̂T − θ0) = J 1 1√

T

T∑
t=1

ηt(θ0)

σt(θ0)

∂ft(θ0)

∂θ
+ oP (1)

d→ N(0,J −1IJ −1)

with the usual notation.

The following remark discusses the link between the QLE in Theorem 1 and
the QMLE.

Remark 1. (Link with the QMLEs) Since the works of Wedderburn (1974) and
Gouriéroux, Monfort and Trognon (1984), it is known that in some location models
of the form yt = ft(θ) + εt, the parameter θ can be estimated consistently by a
quasi-maximum likelihood estimator (QMLE) that does not assume a particular
distribution for εt but coincides with the MLE when the distribution of εt belongs
to the linear exponential family, i.e., when, with respect to some σ-finite measure,
εt admits a density of the form

pft(x) = exp{A(ft) +B(x) + C(ft)x}.

Since A′(ft) +C ′(ft)ft = 0 and C ′(ft(θ)) = 1/s2
t (θ), where s2

t (θ) is the variance of
the density pft(θ), the quasi-score of this QMLE is

s(θ) =
1

T

T∑
t=1

yt − ft(θ)
s2
t (θ)

∂ft(θ)

∂θ
.

For instance, the Poisson QMLE

θ̂T = arg max
θ∈Θ

T∑
t=1

{−ft(θ) + yt log ft(θ)}

is the QLE obtained by assuming σ2
t = ft(θ) in g(θ). The only–but essential–

difference between QLE and QMLE is that the QMLE is based on a quasi-score
with a variance constrained to be that of a linear exponential distribution. When
the true density of εt does not belong to that family, the QLE and QMLE are
generally consistent, but the QLE may be more efficient.

Examples 11-14 below address the properties of the QLE and QMLE for dura-
tion and volatility models.
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Example 11. (Duration model) Let the duration model yt = ftεt where {εt}t∈Z is
i.i.d. positive with a mean of 1. For this model, take the QLE with σ̂2

t = f̂ 2
t (up to

an unimportant multiplicative constant). Then

I = (Eε4t − 1)J −1, J = E
1

f 2
t (θ0)

∂ft(θ0)

∂θ

∂ft(θ0)

∂θ>
.

Note that the asymptotic variance of the QMLE is J −1
0 I0J −1

0 , where

I0 = (Eε4t − 1)E
f 2
t (θ0)

s4
t (θ0)

∂ft(θ0)

∂θ

∂ft(θ0)

∂θ>
, J0 = E

1

s2
t (θ0)

∂ft(θ0)

∂θ

∂ft(θ0)

∂θ>
.

Setting Dt = J −1
0

(ε2t−1)ft(θ0)

s2t (θ0)

∂ft(θ0)
∂θ
− J −1 ε2t−1

ft(θ0)
∂ft(θ0)
∂θ

, we have

EDtD
′
t = J −1

0 I0J −1
0 − (Eε4t − 1)J −1,

showing that the QLE is asymptotically more, or equally, efficient than any QMLE,
with equality when s2

t (θ0) = f 2
t (θ0). This corresponds to the QMLE based on the

exponential distribution f(x) = exp(−x)1x>0 for εt.

Example 12. (Standard volatility models and link with the Gaussian QMLE)
Consider the case where (2) is of the form yt =

√
ftεt with εt i.i.d. with a mean of

0 and variance of 1. The usual QMLE of the volatility parameter θ0 is

θ̂T = arg min
θ∈Θ

T∑
t=t0+1

y2
t

f̂t(θ)
+ log f̂t(θ).

Writing the first-order conditions and noting that σ2
t = f 2

t (Eε4t − 1), it is easy to
see that, in the case, the QMLE coincides with the optimal QLE.

Example 13. (A non-multiplicative volatility model) Let Zt be a random variable
whose distribution, conditional on Ft−1, is a Gamma law of shape parameter kt =
f 2
t /σ

2
t and rate parameter θt = σ2

t /ft (so that Et−1(Zt) = ft and vart−1(Zt) =
σ2
t ). Let yt = st

√
Zt, where st is uniformly distributed on {−1, 1}. We thus

have Et−1(y2
t ) = ft and vart−1(y2

t ) = σ2
t . When σ2

t is not proportional to f 2
t , the

sequence (yt) does not follow the standard volatility model of Example 12 and the
QMLE is not the optimal QLE of θ0 involved in ft = ft(θ0). For the sake of
illustration, we run a Monte Carlo simulation in which we simulated T = 4, 000
observations using the above model in which ft is specified as a GARCH(1, 1) model,
i.e., ft = ω + αZt + βft−1 with ω = 0.03, α = 0.13 and β = 0.84 and σ2

t = 2 so
that σ2

t is not proportional to f 2
t . A GARCH(1, 1) model is then estimated by

Gaussian QMLE (i.e., σ2
t = 2f 2

t ) and optimal QLE (i.e., σ2
t = 2). The biases

(over 1,000 simulations) are found to be marginal for both methods. The RMSE
of the three parameters, i.e., ω, α and β, are 0.0117, 0.0217, 0.0291 and 0.0073,
0.0093, 0.0128, respectively, for the Gaussian QMLE and optimal QLE, so that,
on average, the optimal QLE is two times more efficient than the Gaussian QMLE.
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3.2 The MLE approach

When the conditional distribution p(yt | ft, θ) of the observations is entirely spec-
ified, the MLE is the benchmark estimator. It results in simultaneous estimation
of the parameters involved in the time-varying parameter ft and the extra param-
eters involved in p(· | f, θ). To estimate the parameters of the model, the MLE is
often much more efficient than the QML and QL estimators when the conditional
distribution p(yt | ft, θ) is well specified but is likely to be inconsistent when this
distribution is misspecified. We will therefore study the asymptotic behaviour of
the MLE in both situations. For the sake of simplicity, and in order to be able
to apply existing ML estimation results, we focus on the case where there are no
exogenous variables.

3.2.1 Strong consistency

Theorem 2 establishes the consistency of the MLE θ̂T for ψGAS models satisfying
the stationarity and invertibility conditions stated in Section 2.3. This theorem
allows model misspecification and ensures only the convergence of the MLE θ̂T to
the pseudo-true parameter θ∗0 that maximizes the limit log-likelihood and minimizes
the limit Kullback-Leilber divergence between the true conditional density of the
data and the model-implied conditional density; see, e.g., White (1994, Chapter 3)
for details. Below, `(yt, f̂t(θ), θ) denotes the logarithm of the conditional density
of yt given f̂t, i.e., `(yt, f̂t(θ), θ) = log p(yt|f̂t, θ), and θ̂T is the MLE defined as

θ̂T = arg max
θ∈Θ

̂̀
T (θ), ̂̀

T (θ) =
1

T

T∑
t=2

`(yt, f̂t(θ), θ).

Theorem 2. (Consistency of MLE under misspecification) Let the conditions
of Lemma 3 hold. Suppose further that ` is continuous, the parameter space
Θ is compact, E supθ∈Θ |`(yt, f̂t(θ), θ)| < ∞ and there exists θ∗0 ∈ Θ such that
E`(yt, ft(θ), θ) < E`(yt, ft(θ∗0), θ∗0) for every θ 6= θ∗0, θ ∈ Θ. Then, θ̂T

as→ θ∗0 ∈ Θ for
every f̂1 ∈ C(Θ,R), as T →∞, and

θ∗0 := arg minE KL
(
p0
t (yt), p(yt|ft(θ), θ)

)
.

When the ψGAS model is misspecified, the assumption of a unique maximizer
of the limit log-likelihood θ∗0 ∈ Θ may be too restrictive. Freedman and Dia-
conis (1982) show that uniqueness fails in a simple location problem with i.i.d.
data. Kabaila (1983) provides similar results for ARMA models. Lemma 5 be-
low follows Postcher and Prucha (1997, Lemma 4.2) and highlights that when the
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uniqueness fails, the estimator can still be consistent to the argmax set of the limit
log-likelihood as long as the level sets of the limit log-likelihood function are regular
(see Definition 4.1 in Postcher and Prucha, 1997).

Lemma 5. (Set consistency of MLE under possible misspecification) Let the con-
ditions of Lemma 3 hold. Suppose further that ` is continuous, Θ is compact, and
E supθ∈Θ |`(yt, ft(θ), θ)| < ∞. Then, θ̂T

as→ θ∗0 ∈ Θ for every f̂1 ∈ C(Θ,R), as
T →∞, and

Θ∗0 := arg minE KL
(
p0
t (yt), p(yt|ft(θ), θ)

)
.

The following example takes the MLE consistency and set consistency results
in the context of a robust asymmetric ψGAS model for conditional volatilities.

Example 14. (Robust asymmetric volatility ψGAS models) Consider again the
volatility model with yt =

√
ftεt with ft derived from an asymmetric Charbonnier

loss function,
ft+1(θ) = ω + α

√
(yt − δ)2 + ι2 + βft(θ),

where εt follows a standardized Student law Stν (with ν > 2). The conditions
of Lemma 3 are satisfied when |β| < 1. Furthermore, since the conditional log-
likelihood is given by

`(yt, ft(θ), θ) ∝ −
1

2
log(ft(θ))−

λ+ 1

2
log
(

1 +
y2
t

λ2ft(θ)

)
,

the moment condition E supθ∈Θ |`(yt, f̂t(θ), θ)| < ∞ holds easily as long as ω > 0,
α ≥ 0, β ≥ 0 and the data have a small n > 0 bounded moment E|yt|n <∞,

E sup
θ∈Θ
|`(yt, f̂t(θ), θ)| ≤ E sup

θ∈Θ
| log(f̂t(θ))|+

λ+ 1

2
E sup
θ∈Θ

∣∣∣ log
(

1 +
y2
t

λ2ω2

)∣∣∣ <∞.
Note that the small bounded moment for the data yt, together with the contrac-
tion |β| < 1 and the compactness of Θ, implies that the filter f̂t has n moments
uniformly in t ∈ N,

sup
t

E sup
θ∈Θ
|f̂t+1(θ)|n ≤ sup

t

t−1∑
j=0

sup
θ∈Θ
|β|njE sup

θ∈Θ
|ut−j|n + sup

t
sup
θ∈Θ
|βt|n sup

θ∈Θ
|f̂1(θ)|n

≤ (1− sup
θ∈Θ
|β|n)−1E sup

θ∈Θ
|ut−j|n + sup

θ∈Θ
|β|n sup

θ∈Θ
|f̂1(θ)|n < ∞,

where ut := ω+α
√

(yt − δ)2 + ι2 and E supθ∈Θ |ut−j|n <∞ ⇐ E|yt|n <∞. As a
result, we can conclude by Theorem 2 that the MLE is strongly consistent for the
pseudo-true parameter θ̂T

as→ θ∗0 (when θ∗0 is unique), or set-consistent θ̂T
as→ Θ∗0

(when uniqueness fails), as the sample size diverges, i.e., T →∞.
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In Theorem 2, we imposed high-level conditions on the data {yt}t∈Z since the data
generating process was left unspecified. Corollary 1 highlights that if the ψGAS
model is assumed to be well specified, then we can derive the properties of the
data and the convergence of the MLE θ̂T to the vector of true parameters θ0 can
be obtained under the additional conditions of Lemma 1 (ensuring that the data
are well behaved).

Corollary 1. (Consistency of MLE under correct specification) Let {yt}t∈Z be
generated by (2) and (4) under some θ0 ∈ Θ and let the conditions of Lemma 1
hold at θ0 ∈ Θ, and the conditions of Lemma 3 hold on Θ. Suppose further that
Θ is compact and E supθ∈Θ |`(yt, ft(θ), θ)| < ∞. Finally, let E log+ |ft| < ∞ and
E`t(θ0) > E`t(θ) ∀ θ 6= θ0. Then, θ̂T

as→ θ0 ∈ Θ.

The following example revisits the robust location ψGAS model and discusses
MLE consistency under correct specification. Additionally, we also consider the
robust asymmetric conditional volatility model.

Example 15. (Robust location ψGAS models) We revisit the location model yt =
ft + εt, with standardized Student’s t-distributed innovations εt (i.e., εt ∼ Stν, with
ν > 2), and the negative pseudo Huber loss function,

ft+1(θ) = ω + α
(yt − ft(θ))√

(yt − ft(θ))2/δ2 + 1
+ βft(θ).

As we have already seen, the contraction condition of Lemma 1 holds if |β0| < 1,
and the conditions of Lemma 3 hold if supθ∈Θ(|α| + |β|) < 1. Note that since |ψ|
is uniformly bounded by |δ| > 0, the moment conditions of Lemmas 1 and 3 are
immediately satisfied, and furthermore, ft(θ) and f̂t(θ) are both uniformly bounded,

|ft(θ)| ≤ |ω|+ |αδ|+ |β||ft−1(θ)| ≤ |ω|+ |αδ|
1− |β|

<∞, and

sup
t

sup
θ∈Θ
|f̂t+1(θ)| ≤ (1− sup

θ∈Θ
|β|)−1 sup

θ∈Θ
(|ω|+ |αδ|) + sup

θ∈Θ
|β| sup

θ∈Θ
|f̂1(θ)| < ∞.

As a result, the data generated by the model have a logarithmic moment

E log+ |yt| = E log+ |ftεt| ≤ log+ |ω0|+ |α0δ0|
1− |β0|

+ E log+ |εt| <∞

as long as λ0 > 0. Furthermore, the moment bound E supθ∈Θ |`(yt, ft(θ), θ)| < ∞
holds easily since

`(yt, ft(θ), θ) ∝ −
1

2
log(σ2)− λ+ 1

2
log
(

1 +
(yt − ft(θ))2

λ2σ2

)
, and hence,
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E sup
θ∈Θ
|`(yt, ft(θ), θ)| ≤ sup

θ∈Θ
| log(σ2)|+ λ+ 1

2
E sup
θ∈Θ

∣∣∣ log
(

1 +
(yt − ft(θ))2

λ2σ2

)∣∣∣ <∞.
As a result, we can conclude by Theorem 2 that if θ0 is identifiable, then the MLE
is strongly consistent for the true parameter θ̂T

as→ θ0 as T →∞.

Example 16. (Robust asymmetric volatility ψGAS models) Revisit once more the
volatility ψGAS models with yt = ftεt and asymmetric Charbonnier loss function
ft+1 = ω + α

√
(yt − δ)2 + ι2 + βft. We already know that conditions of Lemmas 1

and 3 hold. Since ψ(y, f, θ) ≥ 0 ∀ (y, f, θ) holds trivially, we obtain the consistency
of the MLE as long as the true conditional volatility has a logarithmic moment.

3.2.2 Asymptotic normality

We now turn to the asymptotic normality of the ML and QML estimators for the
static parameters of ψGAS models.

When the ψGAS model is correctly specified, we can use the martingale difference
sequence property of the score at θ0 to obtain a central limit theorem. However,
when the model is misspecified, the score will generally fail to be a martingale
difference sequence; see White (1994). Lemma 6 ensures that the MLE’s score is
near epoch dependent (NED) on an underlying (strong mixing) sequence; see e.g.,
Davidson (1994) and Potscher and Prucha (1997, Definition 6.3). This lemma is
written for robust ψGAS models with bounded updates delivered by a uniformly
bounded ψ function supf,y |ψ(y, f, θ)| < ∞ with uniformly bounded derivatives.
The NED property gives us sufficient fading memory for establishing the asymp-
totic normality of the score when the model is misspecified and the score fails to
be a martingale difference sequence (Potscher and Prucha, Chapter 10).

Let ̂̀′t(θ0) denote the score evaluated at θ0 and defined as follows:

̂̀′
t(θ0) =

∂`(yt, f̂t(θ0), θ0)

∂θ
+
∂`(yt, f̂t(θ0), θ0)

∂f
f̂t(θ0)′.

Notice that a hat is used in the notation ̂̀′t to highlight the fact that the score
depends on the filtered values (f̂t, f̂

′
t).

Lemma 6. (Near epoch dependent score) Let {yt} have two bounded moments
supt E|yt|2 <∞ and be NED of size −q on some process {et}t∈Z and suppose that

(i) supy,f
∣∣∂ψ(y,f,θ0)

∂y

∣∣ <∞; (ii) supy,f
∣∣α0

∂ψ(y,f,θ0)
∂f

+ β0

∣∣ < 1.
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Then, {f̂t(θ0)}t∈N is NED of size −q on {et}t∈Z. Additionally, if we have that

(iii) supy,f
∣∣ψ(y, f, θ0)

∣∣ <∞; (iv) supy,f
∣∣∂ψ(y,f,θ0)

∂θ

∣∣ <∞;

(v) supy,f
∣∣∂2ψ(y,f,θ0)

∂θ∂y

∣∣ <∞; (vi) supy,f
∣∣∂2ψ(y,f,θ0)

∂θ∂f

∣∣ <∞
then the derivative process {f̂ ′t(θ0)}t∈N is NED of size −q on {et}t∈Z. Finally, if
the score ̂̀′t(θ0) is Lipschitz on (yt, f̂t, f̂

′
t),

(vii) supy,f,f̂θ

∣∣∂2`(yt,f̂t,θ0)
∂θ∂y

∣∣ <∞; (viii) supy,f,f̂θ

∣∣∂2`(yt,f̂t,θ0)
∂θ∂f

∣∣ <∞;

(ix) supy,f,f̂θ

∣∣∂2`(yt,f̂t,θ0)
∂f2

∣∣ <∞; (x) supy,f,f̂θ

∣∣∂2`(yt,f̂t,θ0)
∂f∂y

∣∣ <∞;

(xi) supy,f,f̂θ

∣∣∂`(yt,f̂t,θ0)
∂f

∣∣ <∞.

Then, {̂̀′t(θ0)}t∈N is also NED of size −q on {et}t∈Z.

Example 17. (Robust location ψGAS models) Consider the location model yt =
ft + εt with Student’s t-innovations and the negative pseudo Huber loss function,

ft+1 = ω + α
(yt − ft)√

(yt − ft)2/δ2 + 1
+ βft.

Conditions (i)–(vi) hold since the ψ function and its derivatives are uniformly
bounded. Furthermore, the score ̂̀ is Lipschitz on (y, f̂t, f̂

′
t) since the uniform

bounds (vii)–(xi) hold for the Student’s t and log-likelihood scores. We thus conclude
that if {yt} is NED of size −q on some sequence {et}t∈Z, the score {̂̀′t(θ0)}t∈N is
also NED of size −q on {et}t∈Z.

Theorem 3 uses the stochastic properties discussed in Lemmas 4 and 6 to obtain
the asymptotic normality of the MLE in a setting where the model is allowed to be
misspecified; see White (1982), Domowitz and White (1982), White (1994), and
Potscher and Prucha (1997). In this theorem, we assume that the data are near
epoch dependent on an underlying φ-mixing sequence of size −r/(r−1). The same
result can, however, be obtained for α-mixing sequences of size −2r/(r − 2).

Theorem 3. (Asymptotic normality of MLE under possible misspecification) As-
sume that the conditions in Theorem 2 and Lemmas 4 and 6 are satisfied. Suppose
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further that θ∗0 ∈ int(Θ) and {yt}t∈Z is near epoch dependent of size −1 on a
φ-mixing sequence of size −r/(r − 1) for some r > 2, and that

E|`′(yt, ft, θ0)|r <∞, E sup
θ∈Θ
|`′(yt, ft, θ)| <∞ and E sup

θ∈Θ
|`′′(yt, ft, θ)| <∞.

Suppose further that Ề′′t (θ∗0) is invertible. Then
√
T (θ̂T − θ∗0)

d→ N
(
0,Σ(θ∗0)

)
as

T →∞, where

Σ(θ∗0) =
(
Ề′′t (θ∗0)

)−1(
Ề′t(θ0)Ề′t(θ0)>

)(
Ề′′t (θ∗0)

)−1

.

Example 18. (Robust location ψGAS models) For the location model yt = ft+εt,
with the negative pseudo Huber loss function, we have already seen that

`(yt, ft, θ) ∝ −
1

2
log(σ2)− λ+ 1

2
log
(

1 +
(yt − ft)2

λ2σ2

)
.

The conditions of Theorem 3 can be easily verified for this model since the filter and
its derivatives are smooth in the parameters and uniformly bounded with uniformly
bounded contractions.

Corollary 2. (Asymptotic normality of MLE under correct specification) Let
{yt}t∈Z be generated by (2) and (4) under some θ0 ∈ Θ, and let the conditions of
Corollary 1 hold and Lemma 4 hold. Suppose further that

E|`′(yt, ft, θ0)|2 <∞ E sup
θ∈Θ
|`′(yt, ft, θ)| <∞ and E sup

θ∈Θ
|`′′(yt, ft, θ)| <∞.

Then,
√
T (θ̂T − θ0)

d→ N(0, I(θ0)−1), where I(θ0) denotes the Fisher information
matrix.

Example 19. (Robust location ψGAS models) As seen above, the conditions in
Theorem 3 hold for this model when the data {yt}t∈Z are strictly stationary and
ergodic and satisfy E|yt|n < ∞ for n > 2. If the model is correctly specified, then
we can ensure the stationarity and ergodicity of yt by imposing that β0 < 1 since

ft+1(θ0) = ω0 + α0
εt√

(εt)2/δ2
0 + 1

+ β0ft(θ0),

and hence E log supf |∂ft+1/∂ft| = log(β) < 0. Additionally, we obtain E|yt|n <∞
by imposing λ > n since by the cn-inequality ∃0 < c <∞ such that

E|yt|n ≤ cE|ft(θ0)|n + E|εt|n ≤ cMn + E|εt|n <∞

as |ft| < M a.s. and εt ∼t(λ) and hence E|εt|n <∞ ⇐ λ > n.
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As a final result, we obtain the asymptotic distribution of the score (also called
Lagrange Multiplier) and log-likelihood ratio tests for testing r linear restrictions
on the p > r dimensional parameter vector θ0. The null hypothesis of interest is
H0 : Rθ0 = r, where R is a given full rank r × (p − r) matrix and r is a given
r-dimensional vector. Below, θ̂rT denotes the MLE of θ0 in the model constrained
by the null.

Theorem 4. (Score and Likelihood Ratio tests) Let the conditions of Theorem 2
hold. Then, under H0 : Rθ0 = r, we have that

LMT = T
∂̂̀T (θ̂rT )

∂θ>
Î−1∂

̂̀
T (θ̂rT )

∂θ

d→ χ2
r,

LRT = 2T
(̂̀

T (θ̂T )− ̂̀T (θ̂rT )
)

d→ χ2
r as T →∞,

where Î is a weakly consistent estimator of I(θ0). One can take, for instance,

Î = −∂
2̂̀
T (θ̂rT )

∂θ∂θ>
or Î =

1

T

T∑
t=1

̂̀′
t(θ̂

r
T )̂̀′>t (θ̂rT ). (25)

In the latter case, we have LMT = 1>L̂>
(
L̂>L̂

)−1

L̂1 where L̂ is a p × T matrix

whose row t is ̂̀′t(θ̂rT ) and 1> = (1, . . . , 1) ∈ RT . Note that LMT = T × R2, where
R2 denotes the coefficient of determination in the regression of 1 on ̂̀′t(θ̂rT ).

4 The ψTGAS − T example
In this section, we illustrate our general results on an extension of one of the most
popular score-driven volatility models.

4.1 An extension of the βTGAS

Assume the volatility model yt =
√
ftεt, where

ft+1 = ω + α
ν + 1

ν − 2 + ε2t
ε2tft + βft, (26)

where ω > 0, α > 0 and β ≥ 0 to ensure positivity and avoid triviality. Harvey and
Chakravarty (2008) show that (26) is the updating equation of a GAS model when
the i.i.d. sequence (εt) follows a standardized Student law Stν with ν > 2 degrees

26



of freedom (and variance 1). The model is often called Beta− t GARCH(1, 1) but
we call it βTGAS(1, 1) in this paper. Note that ν plays two roles in this model: it
determines the shape of the density of the innovations εt and bounds the effects of
large shocks εt on future values of the conditional variance (i.e., ft+1). Note also
that it is common to reparameterize (26) in terms of ξ = 1/ν, i.e.,

ft+1 = ω + α
1 + ξ

1− 2ξ + ξε2t
ε2tft + βft (27)

with 0 ≤ ξ < 1/2 so that the GARCH(1, 1) appears as a special case of (27) when
ξ = 0.

In the sequel, we keep the downweighting mechanism of the above βTGAS(1, 1)
model but disconnect the updating equation of the conditional variance and the
density of the innovations. To do so, we assume εt ∼ Stν as for the βTGAS, but we
introduce an additional parameter ζ in the updating equation that is not related
to ν (or its inverse). The model, called ψTGAS(1, 1) − T , is parameterized as
follows:1

ft+1 = ω + α
1 + ζ

1− 2ζ + ζε2t
ε2tft + βft, (28)

where εt
i.i.d.∼ St1/ξ with 0 ≤ ξ < 1/2. This model is identical to a βTGAS(1, 1)

when ξ = ζ. When ζ = 0, Equation (28) corresponds to a standard GARCH(1, 1)
model ft+1 = ω + αy2

t + βft with standardized Student’s t-innovations.
When ζ < 0 or ζ > 1/2, Equation (28) does not define a proper volatility model

because when ε2t ' 2− 1/ζ, ft+1 in (28) can be infinite or negative.
Note also that when ζ = 1/2, the volatility model is degenerated since ft+1 =

ω + 3αft + βft is then constant. The same remark holds when ζ = −1. To
ensure positivity and non-degeneracy of the volatility equation, one can impose
0 ≤ ζ < 1/2. However, to avoid ζ to be on the boundary of the parameter space
when testing the null hypothesis ζ = 0 (i.e., that the true model is a GARCH(1, 1)
model), we also consider the alternative specification

ft+1 = ω + αΨ

(
1 + ζ

1− 2ζ + ζε2t

)
ε2tft + βft (29)

with −1 < ζ < 1/2 and Ψ : R→ [0,∞) of class C2. To approximately recover (28)
when ζ ≥ 0, one can chose for Ψ a smooth approximation of the absolute value
function. For instance, one can set Ψ(x) =

√
x2 + c for some small c > 0 or

Ψ(x) = x
1− e−cx

1 + e−cx
(30)

1ψT in the name of the model refers to the score used in the updating equation, while −T
refers to the density of the innovations. However, in this model both the score and the density
of the innovations are taken from a standardized Student’s t-density, and the degrees of freedom
are not assumed to be the same as for the βTGAS model.

27



for some large c > 0. The latter function is equivalent to |x| when |x| or c is large
and is equivalent to cx2/2 when |x| is small. More generally, assume that

Ψ(x) ≤ c1(|x|+ 1), Ψ(x) ≥ c2|x|c3 , |Ψ′(x)| ≤ c4 (31)

for some positive constants ci, i = 1, . . . , 4. In the simulations and the empirical
application, we rely on (30) with c = 1, 000.

4.2 Stationarity and positivity conditions

Let us consider the stationarity of the general ψTGAS model (28) without assuming
a particular distribution for (εt). For the moment, we just assume that (εt) is
stationary and ergodic with Eε2t = 1. By the Cauchy root test, it is easy to
show that there exists a stationary (ergodic) solution to this ψTGAS(1, 1) model,
explicitly given by

ft = ω

{
1 +

∞∑
i=1

a(εt−1) · · · a(εt−i)

}
, a(z) = αΨ

(
1 + ζ

1− 2ζ + ζz2

)
z2 + β,

when
E log

(
αΨtε

2
t + β

)
< 0, Ψt = Ψ

(
1 + ζ

1− 2ζ + ζε2t

)
. (32)

Note that (28) corresponds to (4) with

ψ (g(f, εt), f, θ) = Ψtε
2
tf,

∂ψ(g(f, εt), f, θ)

∂f
= Ψtε

2
t .

Using the first two inequalities of (31), it can be seen that condition (i) of Lemma 1
is satisfied when

E log− |1− 2ζ + ζε2t | <∞ (33)

and that (ii) is equivalent to (32). Note that the moment condition (33) is very mild
and is always satisfied when ζ ≥ 0, or when the distribution of ε2t has a bounded
density. On the other hand, (33) for ζ < 0 precludes a distribution of ε2t with a mass
at 2− 1/ζ. Note also that (32) is also a necessary condition for stationarity when
(εt) is i.i.d., which shows that Lemma 1 provides sharp stationarity conditions, at
least in this framework.

4.3 Invertibility of the filter

We now assume that (εt) is an i.i.d. sequence and that conditions (31)-(32) hold
true. The conditions of Lemma 2 are satisfied, which shows that the stationary
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solution of the ψTGAS(1, 1)−T volatility model is such that E|yt|s <∞ for some
s > 0. Since we have (6) and (7) with

ψ(yt, ft, θ) = Ψ

 1 + ζ

1− 2ζ + ζ
y2t
ft

 y2
t ,

∂ψ(yt, ft, θ)

∂f
= Ψ′

 1 + ζ

1− 2ζ + ζ
y2t
ft

 1 + ζ(
1− 2ζ + ζ

y2t
ft

)2 ζ
y4
t

f 2
t

,

condition (i) of Lemma 3 is satisfied (using (31) and Lemma 2, which entails
the existence of a small moment for yt). Assume that Θ is such that, for all
θ = (ω, α, β, ζ)> ∈ Θ we have 0 ≤ ζ ≤ ζ < 1/2. The uniform invertibility
condition (ii) is then satisfied when

E log

c4α
1 + ζ(

1− 2ζ + ζ
y2t
f

)2 ζ
y4
t

f
+ β

 < 0, (34)

where ω, α, β and ω, α, β are, respectively, upper and lower bounds for ω, α
and β over Θ, and f = ω/(1− β) is a lower bound for the time-varying volatility.
Note that the expectation of the left-hand side of (34) cannot be computed exactly
because the stationary distribution of (yt) is generally unknown, but it can be easily
evaluated by means of simulations. To relax the constraint ζ ≥ 0 or to obtain a
more stringent identifiability condition (in particular, to account for a non-cubic
parameter space Θ), the supremum involved in condition (ii) of Lemma 3 can be
computed numerically.

4.4 Derivatives of the filter

Setting θ = (ω, α, β, ν)′, (9) holds with

At =


1
ψt
ft
α∂ψt
∂ζ

 ,
∂ψt
∂ζ

= y2
tΨ
′

 1 + ζ

1− 2ζ + ζ
y2t
ft

 3− y2t
ft(

1− 2ζ + ζ
y2t
ft

)2 .

Assume 0 ≤ ζ ≤ ζ < 1/2. We thus have 1 − 2ζ + ζ
y2t
ft
≥ 1 − 2ζ > 0. Since

ft ≥ ω > 0, Lemma 3 entails that E ‖At‖s < ∞ for some s > 0. Therefore,
E log+ ‖At‖ < ∞ and (i) of Lemma 4 is satisfied. Similarly, it can be seen that
the other conditions of that lemma hold true.
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4.5 Estimating the parameters

We now consider the estimation of the ψTGAS(1, 1)− T model. We thus assume
the standardized Student’s conditional distribution

p(y | f, θ) =
1

√
f
√

ν−2
ν

pν

 y
√
f
√

ν−2
ν

 , (35)

pν(y) =
1√
νπ

Γ
(
ν+1

2

)
Γ
(
ν
2

) (1 +
y2

ν

)− ν+1
2

,

with ν > 2. To allow the Gaussian distribution, set ξ = 1/ν and impose 0 ≤
ξ < 1/2, the case ξ = 0 corresponding to the N (0, 1) conditional distribution. Let
θ = (ω, α, β, ζ, ξ)′, Θ a compact subset of (0,∞)2× [0, 1]× (−1, 1/2)× [0, 1/2) and
the MLE

θ̂T = arg max
θ∈Θ

1

T

T∑
t=t0+1

`(yt, f̂t(θ), θ),

where `(y, f, θ) = log p(y | f, θ) and

f̂t+1(θ) = ω + αΨ

 1 + ζ

1− 2ζ + ζ
y2t
f̂t(θ)

+ βf̂t(θ),

with the initial value f̂1(θ) =
∑t0

t=1 y
2
t /t0 and t0 = 5, for instance.

4.5.1 Testing the βTGAS

The standard βTGAS is obtained when 0 < ζ = ξ < 1/2 and Ψ(x) = x. It is
thus of interest to test the null H0 : ξ0 = ζ0. This hypothesis can be written as
H0 : Kθ0 = 0 with K = (0, 0, 0, 1,−1). Let the Wald test statistic be

W ζ,ξ
T = T θ̂>TK

>
(
KΣ̂K>

)−1

Kθ̂T ,

where Σ̂ is a consistent estimator of the matrix I−1(θ0) defined in Corollary 2. A
direct consequence of that corollary is that W ζ,ξ

T asymptotically follows a χ2
1 under

H0. The test of critical region {W ζ,ξ
T > χ2

1(1 − α)} thus has the asymptotic level
α.

Alternatively, one can use Theorem 4 and replace the Wald statistic by the
score and likelihood ratio (LR) test statistics

LMζ,ξ
T = T

∂̂̀T (θ̂rT )

∂θ>
Î−1∂

̂̀
T (θ̂rT )

∂θ
, LRζ,ξ

T = 2T
(̂̀

T (θ̂T )− ̂̀T (θ̂rT )
)
.

For the Wald statistics, it is natural to take Σ̂ = Î−1 where Î is defined by (25),
replacing θ̂rT by θ̂T .
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4.5.2 Testing the GARCH − T

The standard GARCH(1, 1) volatility model with Student’s t-innovations is ob-
tained when ζ = 0 and Ψ(x) = x. It is thus of interest to test the null H0 : ζ0 = 0
in the ψTGAS(1, 1) − T model defined by (35) and (29), with −1 < ζ < 1/2 and
Ψ satisfying (31). Another possibility would be to test ζ0 = 0 in the model defined
by (35) and (29) constrained by 0 ≤ ζ < 1/2. The drawback of the latter test is
that, because the parameter stands at the boundary of the parameter space under
the null, the asymptotic distribution of the Wald statistic is non-standard (see
Pedersen and Rahbek, 2019 and the reference therein).

By considering model (29), we afford to have −1 < ζ < 1/2, and thus the
parameter belongs to the interior of Θ under H0 : ζ0 = 0. Corollary 2 then entails
that the Wald test of critical region {W ζ

T > χ2
1(1− α)} with

W ζ
T = T θ̂>T e4

(
e>4 Σ̂be4

)−1

e>4 θ̂T , e>4 = (0, 0, 0, 1, 0),

has asymptotic level α.

4.5.3 Testing the standard GARCH

The parameter of main interest is often the volatility ft = f(θ0) with θ0 =
(ω0, α0, β0, ζ0)′ and Θ changed accordingly. It is then desirable to estimate θ0

without assuming (35) or any other particular conditional distribution.
The benchmark estimator in this framework is the QMLE

θ̂QMLE = arg min
θ∈Θ

1

T

T∑
t=t0+1

y2
t

f̂t(θ)
+ log f̂t(θ). (36)

As discussed in Section 3.1, one can also use an alternative QLE based on the
estimating functions theory:

θ̂T = arg min
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=t0+1

y2
t − f̂t(θ)
σ̂2
t (θ)

∂f̂t(θ)

∂θ

∥∥∥∥∥ (37)

for some function σ̂2
t (θ) > 0 ∈ Ft−1. If σ̂2

t (θ) is chosen proportional to f̂ 2
t (θ), then

the two estimators (36) and (37) are equivalent, but they are not if, for instance,
one takes σ̂2

t (θ) = f̂t(θ).

5 Small Sample Properties and empirical applica-
tion

In this section, we present a Monte Carlo experiment that studies the finite-sample
properties of the ψTGAS − T model as well as an application on real data.
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5.1 Monte Carlo Simulation

In the simulation study, we consider three data generating processes (DGPs) cor-
responding to particular cases of the following ψTGAS(1, 1)− T model:

yt = µ+
√
ftεt (38)

εt ∼ T (0, 1, 1/ξ) (39)

ft+1 = ω + α
1 + ζ

1− 2ζ + ζε2t
ε2tft + βft (40)

with 0 < ξ < 1/2 and −1 < ζ < 1/2. Recall that this model is a βTGAS(1, 1)
when ξ = ζ and a GARCH(1, 1)− T model when ζ = 0.

In all simulations, we set µ = 0, ω = 0.03, α = 0.13 and β = 0.84. In the first
simulation (i.e., Table 1), we set ξ = ζ = 0.2 so that the model is a βTGAS(1, 1)
model with a degree of freedom of ξ−1 = 5. In the second simulation (i.e., Table
2), we set ξ = 0.2 and ζ = 0.1 so that the model is a ψTGAS − T with a higher
degree of freedom in the conditional variance equation than for the density of the
innovations. Finally, in the third simulation (i.e., Table 3), ξ = 0.2 while ζ = 0 so
that the true model is a GARCH(1, 1)− T model.

In all cases, four models are estimated. Three models (i.e., ψTGAS(1, 1) − T ,
βTGAS(1, 1) and GARCH(1, 1) − T ) are estimated by ML. The fourth model is
the ψTGAS(1, 1) estimated by Gaussian QML (and therefore ξ is not estimated).
Note that during the optimization, the positivity of the conditional variance of the
ψTGAS models is imposed by replacing (40) by (29), as discussed in Section 4.

In all the cases considered in this section, σ2
t is proportional to f 2

t so that the
optimal QLE corresponds to the Gaussian QMLE, which is the reason why specific
results for the QLE are not reported below.

Each of the three tables is divided in two major parts. The top panels corre-
spond to the results for a sample size of 3,000 observations, while the bottom panels
are for 4,000 observations. Each panel is again divided in two parts. The first one
contains summary statistics on the estimated parameters, while the second reports
rejection frequencies of two LR tests (LRT). Figures at the right of the name of
the models are the empirical biases over 1,000 replications. Figures in parenthesis
correspond to RMSEs, while those in squared brackets are the 95% coverage prob-
abilities (i.e., percentage of 95% confidence intervals drawn from the asymptotic
distribution containing the true parameter). The second part contains rejection
frequencies of two LR tests computed from the ML estimates. The first one is for
the null hypothesis that the true model is a βTGAS(1, 1), i.e., ξ = ζ, while the
second test is for the null hypothesis that the model is a GARCH(1, 1) − T , i.e.,
ξ = 0. Note that some of the figures reported in this part correspond to empirical
sizes or powers depending on the DGP.

Some comments are in order.
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• The most important result is that the bias of the MLEs of the ψTGAS(1, 1)−
T is negligible for the two considered sample sizes and the three DGPs.

• When the true model is a βTGAS(1, 1) (see Table 1), the (inverse of) the
degree of freedom of innovations ξ is slightly more precisely estimated with
the βTGAS(1, 1) model than with the ψTGAS(1, 1)−T , but the difference is
marginal. Indeed, the RMSE is only 0.001 higher for the latter. Furthermore,
while the biases of ξ and ζ are small, the RMSE of ζ is between three and
four times higher than for ξ. This is a consequence of the fact that the
identification of ζ is only possible from the observations for which the shocks
are truncated, whereas all observations can be used to identify ξ. Testing
the null hypothesis that ξ = ζ is therefore desirable to gain efficiency by
imposing this restriction when the null hypothesis is not rejected.

• As expected, some of the parameters of the GARCH(1, 1)− T model (espe-
cially α) are biased when wrongly imposing the assumption that ζ = 0, as
shown in Tables 1 and 2.

• Similarly, some of the parameters of the βTGAS(1, 1) model are biased when
the true model is a ψTGAS(1, 1) − T with ξ 6= ζ, as shown in Tables 2 and
3.

• As expected again, the QML of the ψTGAS(1, 1) − T is less precise than
its ML version. The bias is higher than for the ML, while the RMSE is
approximately 20-25% higher.

• The coverage probabilities of the parameters of the ψTGAS(1, 1) − T are
satisfactory except for ζ. For a sample size of 3,000 observations, the true
value of ζ belongs to the 95% confidence interval drawn from the asymptotic
distribution in approximately 85 to 89% of the cases either for the MLE
or the QMLE estimators. The results are slightly better for a sample size
of 4,000 observations. Unreported simulation results suggest that a sample
size of at least 15,000 observations is needed to perform correct statistical
inference on ζ on the basis of t-tests and confidence intervals relying on the
asymptotic distribution. For the sample sizes considered in Tables 1 to 3,
standard errors of ζ are on average too small compared to the RMSE of the
estimated ζ parameter.

• While statistical inference on ζ relying on its standard error (e.g., t-tests and
Wald tests) requires a very large sample, the LRT on ζ has good finite sample
properties. Indeed, when the sample size is 4,000, the rejection frequencies
of the null hypothesis H0 : ξ = ζ in Table 1 (where ξ = ζ = 0.2 in the DGP)
and of the null hypothesis H0 : ζ = 0 in Table 3 are close their nominal
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sizes. The rejection frequencies for the other tests correspond to empirical
powers. Interestingly, the LRT of the null hypothesis H0 : ζ = 0 has very
high power to reject the GARCH for which the squared shocks drive the
dynamic of the conditional variance (see Tables 1 and 2), while the LRT of
the null hypothesis H0 : ξ = ζ has very high power when the true model
is a GARCH(1, 1) (see Table 3) and decent power when the true model is
a ψTGAS(1, 1) − T with ξ = 0.2 and ζ = 0.1 (approximately 43% for a
nominal size of 5% and a sample size of 4,000 observations). The power of
course increases with the distance between ξ and ζ.

Finally, to help visualize the impact of a misspecification of the conditional
variance, Figure 1 plots 50 observations around a large shock. The DGP is a
ψTGAS(1, 1) − T with ξ = 0.2 and ζ = 0.1 (as in Table 2), and the models are
estimated by ML on 4,000 observations. This figure plots the absolute value of
the simulated log-returns (thin solid red line) as well as the estimated conditional
volatilities of the ψTGAS − T (thick solid pink line), βTGAS (thin green dashed
line), GARCH-T (thin blue line with long dashes) and the true conditional volatil-
ity (black solid line). It is clear from this graph that unlike the ψTGAS − T , the
GARCH model overestimates the volatility during approximately two weeks (i.e.,
approximately 15 observations) following the large shock (occurring at observation
1475), while the βTGAS underestimates the volatility during the same period.

5.2 Empirical Application

In the empirical application, we consider all stocks belonging to the S&P500 index
for the period spanning from 03-01-1995 (or later) to 28-02-2019. All stocks for
which less than 4,000 observations are available have been discarded so that we
are left with 408 stocks. The four volatility models used in the previous section
are considered in this empirical application, i.e., the ψTGAS−T estimated by ML
and QML and the βTGAS and GARCH − T estimated by ML.

The stationarity and invertibility conditions seem to be satisfied for all series
according to conditions (ii) of Lemma 1 and (ii) of Lemma 3 evaluated at the MLE
estimates of the parameters. Interestingly, the null hypothesis ζ = 0 is rejected
in 94.4% of the cases using an LRT (at the 5% nominal size), suggesting that
downweighting of large shocks that estimate the conditional variance of these US
stocks is empirically relevant. These results naturally call for the use of a GAS-
type model rather than a GARCH dynamic. However, the null hypothesis ξ = ζ is
rejected in 36.8% of the cases (again at the 5% nominal level) suggesting that the
additional flexibility of the ψTGAS − T over the βTGAS is needed in more than
one-third of the cases. Furthermore all the estimated ζs are positive except for
two stocks; however, in these two cases, the null hypothesis ζ = 0 is not rejected,
so that a GARCH(1,1) dynamic is preferable for these two series.
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Figure 1: Fifty observations around a large shock for a DGP corresponding to a
ψTGAS(1, 1) − T with ξ = 0.2 and ζ = 0.1 (as in Table 2). The ψTGAS − T ,
βTGAS and GARCH-T models are estimated by ML on 4,000 observations.

The difference ξ̂ − ζ̂ is plotted in Figure 2 for the 408 US stocks (sorted in
alphabetical order of the ticker’s name). A full (resp. empty) circle corresponds to
a significant (resp. insignificant) difference (according to an LRT at the 5% nominal
level). For all stocks for which ξ̂ 6= ζ̂, ξ̂ > ζ̂, suggesting that the downweighting of
the βTGAS is too strong.

To visualize the added value of the ψTGAS − T model over the GARCH and
βTGAS models, we randomly selected a stock for which both the null hypotheses
H0 : ξ = ζ and H0 : ζ = 0 are rejected. We choose CenterPoint Energy (whose
ticker is CNP), a domestic energy delivery company that includes electric trans-
mission and distribution, natural gas distribution and energy services operations.

The MLEs of the GARCH-T , βT GAS and ψTGAS − T obtained on daily
log-returns of CNP during the period spanning from January 1995 to the end
of February 2019 (i.e., 6081 observations) are reported in Table 4 together with
the log-likelihood value and the outcome of the two LRT tests presented above
(with the corresponding p-values in squared brackets). Interestingly, the esti-
mated ξ parameters of the GARCH-T and βT GAS do not differ much and are
at approximately 0.17, which corresponds to a degree of freedom of the Student’s
t-distribution just below 6. However, the log-likelihood of the βT GAS is 4.5 points
below the one of the GARCH-T model. Given that the two models have the same
number of parameters and are not nested, LRT cannot be employed to discriminate
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Table 1: Bias, RMSE and 95% coverage probabilities and LRT. The DGP is a
βTGAS(1, 1). Sample size T = 3, 000 or 4, 000.

T = 3, 000
µ ω α β ξ ζ
0 0.03 0.13 0.84 0.2 0.2

ψTGAS − T ML 0.000 0.002 -0.001 -0.004 -0.001 0.002
(0.014) (0.009) (0.018) (0.027) (0.018) (0.065)
[0.963] [0.940] [0.942] [0.942] [0.951] [0.899]

ψTGAS − T QML 0.000 0.002 0.001 -0.008 0.012
(0.017) (0.013) (0.027) (0.040) (0.082)
[0.951] [0.917] [0.928] [0.915] [0.846]

βTGAS ML 0.000 0.002 0.001 -0.003 -0.000
(0.014) (0.010) (0.018) (0.023) (0.017)
[0.965] [0.948] [0.948] [0.949] [0.956]

GARCH − T ML 0.000 0.009 -0.038 0.032 0.005
(0.014) (0.010) (0.018) (0.023) (0.017)
[0.962] [0.871] [0.313] [0.519] [0.928]

1% 5% 10%
H0 : ξ = ζ 1.403 7.014 13.627
H0 : ζ = 0 96.894 98.998 99.499

T = 4, 000
µ ω α β ξ ζ
0 0.03 0.13 0.84 0.2 0.2

ψTGAS − T ML 0.000 0.002 -0.001 -0.003 -0.000 0.005
(0.012) (0.008) (0.016) (0.023) (0.016) (0.057)
[0.965] [0.948] [0.936] [0.946] [0.952] [0.907]

ψTGAS − T GARCH 0.000 0.002 -0.000 -0.007 0.013
(0.015) (0.012) (0.023) (0.034) (0.074)
[0.959] [0.930] [0.928] [0.933] [0.861]

βTGAS ML 0.000 0.002 0.000 -0.002 0.000
(0.012) (0.008) (0.016) (0.020) (0.015)
[0.964] [0.953] [0.942] [0.943] [0.953]

GARCH−T ML 0.000 0.007 -0.039 0.035 0.005
(0.012) (0.008) (0.016) (0.020) (0.015)
[0.963] [0.881] [0.195] [0.414] [0.936]

1% 5% 10%
H0 : ξ = ζ 1.300 6.100 12.400
H0 : ζ = 0 99.100 99.700 99.900

Note: Monte Carlo simulation results for T = 3, 000 (top panel) and T = 4, 000 (bottom
panel). Each panel is divided into two parts. The first part is for the estimated parameters
of 4 models. Figures at the right of the name of the models are the empirical biases over
1,000 replications. Figures in parenthesis correspond to RMSEs, while those in squared
brackets are the 95% coverage probabilities. The second part contains rejection frequencies
of two LR tests computed from the ML estimates. Some of the figures reported in this
part correspond to empirical sizes or powers depending on the DGP.

between these two models, but this result suggests that the βT GAS underperforms
with respect to the GARCH-T model. Importantly, while ξ̂ is also close to 0.17 for
the ψTGAS − T model, ζ̂ is approximately 0.04 (and therefore 1/ζ̂ is close to 25),
suggesting that the βT GAS downweights the large shocks far too much. To help
visualize the difference between the three models, the news impact curve (NIC) of
each estimated model is plotted in Figure 3. The NIC measures how new infor-
mation is incorporated into the conditional variance. Since the ψTGAS − T nests
the other two models, we can write the NIC of the three models as the function
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Table 2: Bias, RMSE and 95% coverage probabilities and LRT. The DGP is a
ψTGAS(1, 1). Sample size T = 3, 000 or 4, 000.

T = 3, 000
µ ω α β ξ ζ
0 0.03 0.13 0.84 0.2 0.1
µ ω α β ξ ζ

ψTGAS − T ML 0.000 0.002 -0.001 -0.005 -0.001 0.009
(0.012) (0.009) (0.020) (0.027) (0.018) (0.058)
[0.966] [0.951] [0.937] [0.944] [0.951] [0.867]

ψTGAS − T QML 0.000 0.002 0.001 -0.010 0.025
(0.015) (0.012) (0.030) (0.041) (0.081)
[0.954] [0.908] [0.922] [0.918] [0.837]

βTGAS ML 0.000 0.002 0.009 -0.021 -0.006
(0.012) (0.009) (0.021) (0.033) (0.018)
[0.964] [0.942] [0.942] [0.903] [0.927]

GARCH-T ML 0.000 0.006 -0.029 0.015 0.002
(0.012) (0.009) (0.021) (0.033) (0.018)
[0.964] [0.903] [0.527] [0.786] [0.949]

1% 5% 10%
H0 : ξ = ζ 18.838 38.577 49.900
H0 : ζ = 0 74.649 87.074 91.182

T = 4, 000
µ ω α β ξ ζ
0 0.03 0.13 0.84 0.2 0.1

ψTGAS − T ML 0.000 0.001 -0.001 -0.004 -0.001 0.008
(0.010) (0.007) (0.018) (0.023) (0.016) (0.050)
[0.966] [0.955] [0.932] [0.942] [0.952] [0.895]

ψTGAS − T QML 0.000 0.002 0.001 -0.007 0.021
(0.013) (0.011) (0.025) (0.034) (0.070)
[0.953] [0.939] [0.927] [0.950] [0.871]

βTGAS ML 0.000 0.001 0.008 -0.019 -0.006
(0.010) (0.007) (0.019) (0.029) (0.017)
[0.965] [0.942] [0.931] [0.884] [0.922]

GARCH-T ML 0.000 0.005 -0.030 0.017 0.002
(0.010) (0.007) (0.019) (0.029) (0.017)
[0.966] [0.908] [0.412] [0.738] [0.949]

1% 5% 10%
H0 : ξ = ζ 24.400 44.200 57.200
H0 : ζ = 0 88.200 95.300 96.900

Note: see Table 1

mapping the shocks εt to 1+ζ
1−2ζ+ζε2t

ε2t , where ζ = 0 for the GARCH model and ζ = ξ

for the βT GAS. We see from Figure 3 that the NIC of the ψTGAS − T for the
CNP stock lies between the NIC of the other two models.

Finally, to see the impact of different NICs on the estimated conditional volatil-
ities, the absolute value of the daily log-returns of CNP (thin solid red line) as well
as the estimated conditional volatilities of the ψTGAS − T (thick solid pink line),
βTGAS (thin green dashed line) and GARCH-T (thin blue line with long dashes)
estimated by ML (on the full period) are plotted for the sub-period spanning from
January 2002 to December 2002 in Figure 4. The three boxes highlight periods
between 3 and 6 weeks around very large shocks (i.e., high absolute returns in %).

37



Table 3: Bias, RMSE and 95% coverage probabilities and LRT. The DGP is a
GARCH(1, 1)− T . Sample size T = 3, 000 or 4, 000.

T = 3, 000
µ ω α β ξ ζ
0 0.03 0.13 0.84 0.2 0
µ ω α β ξ ζ

ψTGAS − T ML 0.000 0.001 -0.000 -0.002 -0.001 0.003
(0.012) (0.007) (0.019) (0.021) (0.018) (0.015)
[0.962] [0.938] [0.939] [0.941] [0.948] [0.852]

ψTGAS − T QML 0.000 0.002 0.003 -0.006 0.009
(0.015) (0.010) (0.029) (0.032) (0.028)
[0.953] [0.920] [0.926] [0.918] [0.845]

βTGAS 0.000 0.001 0.045 -0.051 -0.015
(0.012) (0.007) (0.050) (0.057) (0.023)
[0.959] [0.927] [0.387] [0.395] [0.825]

GARCH-T ML 0.000 0.001 0.000 -0.002 -0.001
(0.012) (0.007) (0.050) (0.057) (0.023)
[0.962] [0.941] [0.943] [0.950] [0.947]

1% 5% 10%
H0 : ξ = ζ 97.998 99.800 99.900
H0 : ζ = 0 2.102 9.109 14.114

T = 4, 000
µ ω α β ξ ζ
0 0.03 0.13 0.84 0.2 0

ψTGAS − T ML 0.000 0.001 -0.001 -0.001 -0.001 0.002
(0.010) (0.006) (0.017) (0.017) (0.016) (0.012)
[0.965] [0.946] [0.932] [0.948] [0.947] [0.883]

ψTGAS − T QML 0.000 0.002 0.002 -0.004 0.005
(0.012) (0.009) (0.025) (0.026) (0.018)
[0.957] [0.931] [0.933] [0.946] [0.880]

βTGAS 0.000 0.000 0.045 -0.050 -0.014
(0.010) (0.006) (0.049) (0.055) (0.021)
[0.962] [0.931] [0.274] [0.302] [0.805]

GARCH-T ML 0.000 0.001 -0.001 -0.001 -0.001
(0.010) (0.006) (0.049) (0.055) (0.021)
[0.965] [0.948] [0.941] [0.951] [0.944]

1% 5% 10%
H0 : ξ = ζ 99.700 99.900 99.900
H0 : ζ = 0 1.802 5.606 11.311

Note: see Table 1

Regarding the NICs, the conditional volatility of the ψTGAS− T lies between the
one of the other two models and, importantly, is closer to the absolute returns
following the large peaks. It is also clear from this graph that, for this series, the
GARCH model over-estimates the volatility following the large shocks.

6 Conclusion
GAS models have received considerable attention in the time series literature. In
this paper, we point out a major limitation of this general class of models that
imposes a strong link between the conditional distribution of yt and the updating
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Figure 2: ξ̂ − ζ̂ for the ψTGAS(1, 1) − T estimated on the 408 US stocks. A full
(resp. empty) circle corresponds to a significant (resp. insignificant) difference
(according to an LRT at the 5% nominal level).
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Figure 3: New impact curve for the MLEs of the ψTGAS−T , βTGAS and GARCH-
T for the ticker CNP (CenterPoint Energy).
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Table 4: MLEs of the GARCH-T , βT GAS and ψTGAS − T for CNP during
the period spanning from January 1995 to the end of February 2019 (i.e., 6,081
observations).

GARCH-T βT GAS ψTGAS − T
µ 0.0888 0.0914 0.0894

(0.0152) (0.0150) (0.0151)
ω 0.0606 0.0428 0.0497

(0.0094) (0.0084) (0.0088)
α 0.0951 0.1272 0.1069

(0.0089) (0.0102) (0.0113)
β 0.8817 0.8573 0.8791

(0.0097) (0.0115) (0.0113)
ξ 0.1703 0.1677 0.1722

(0.0095) (0.0088) (0.0094)
ζ 0.0400

(0.0124)
Log-Likelihood -10732.7 -10737.2 -10726.6
H0 : ξ = ζ 21.2

[0.00000]
H0 : ζ = 0 12.2

[0.00047]

Note: The figures at the right of H0 : ξ = ζ and H0 : ζ = 0
are the values of the LRT corresponding to the specified null
hypothesis (with the p-value below in squared brackets).

equation of ft. We therefore propose a more general family of models called ψGAS
that overcomes this problem.

We study the statistical properties of the ψGAS filter as well as the QLE,
QMLE and MLE of the parameters of this model. We show how to test the
relevance of some of the constraints in the GAS models, linking ft to pt(yt|ft, θ).

We study in detail the ψTGAS − T model, a volatility model extending the
βTGAS model of Harvey and Chakravarty (2008). This model relies on a stan-
dardized Student’s t-density for the innovations and the score of a standardized
Student’s t-density in the updating equation of the conditional variance but does
not restrict the degrees of freedom to be the same. The additional flexibility of
this model (over the βTGAS) is found to be significant at the 5% significance level
using a standard LRT in more than one-third of the cases (out of more than 400
stocks).
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Figure 4: Absolute value of log-returns and estimated conditional volatility of the
ψTGAS − T , βTGAS and GARCH-T estimated by ML for the ticker CNP (Cen-
terPoint Energy). The graph only shows the sub-period spanning from January
2002 to December 2002.
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A Proofs

Proof of Proposition 1

The first claim follows trivially by noting that

ρ(yt, ft+1, θ)− ρ(yt, ft, θ) = ψ(yt, f
∗
t , θ)(ft+1 − ft)

= αψ(yt, f
∗
t , θ)ψ(yt, ft, θ) + o(1)

= αψ(yt, ft, θ)
2 + o(1) > 0,

where the first equality is an application of the mean value theorem, the second
equality is obtained since ft+1−ft = ω+αψ(yt, ft, θ)+(β−1)ft with ω+(β−1)ft =
o(1), the third equality follows by continuity of ψ and hence writing ψ(yt, f

∗
t , θ)

2 =
ψ(yt, ft, θ)

2 + o(1) as ft → f ∗t . Finally, the inequality is obtained by setting ω,
β − 1 and ft+1 − ft small enough such that the inequality holds.

The second claim is easily achieved since

ρ(yt+1, ft+1, θ)− ρ(yt, ft, θ) = ρ(yt+1, ft+1, θ)− ρ(yt, ft+1, θ)

+ ρ(yt, ft+1, θ)− ρ(yt, ft, θ)

= ρ′η(yt+1, ft+1, θ)(η(yt+1)− η(yt))

+ ψ(yt+1, f
∗
t , θ)(ft+1 − ft)

= ρ′η(yt+1, ft+1, θ) · o(1) + αψ(yt, f
∗
t , θ)ψ(yt, ft, θ) + o(1)

= αψ(yt, ft, θ)
2 + o(1) > 0,

where in the first equality we add and subtract ρ(yt, ft+1, θ), the second equality
uses the mean-value theorem twice, and the final inequality is obtained by setting
η(yt+1)− η(yt), ω, β − 1 and ft+1 − ft small enough.

Proof of Lemma 1

For all t ∈ Z and n ∈ N, let

f
(n)
t+1 = ϕ(zt, f

(n−1)
t ) (41)

with f (0)
t = f 0. Note that

f
(n)
t+1 = ϕn(zt, zt−1, . . . , zt−n+1),
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for some measurable function ϕn : En → F . For all fixed n, the sequence (f
(n)
t )t∈Z

is stationary and ergodic. If for all t, the limit ft = limn→∞ f
(n)
t exists a.s., then

by taking the limit of both sides of (41), it can be seen that the process (ft) is
solution of (5). When it exists, the limit is a measurable function of the form ft =
ψ∞(zt−1, zt−2, . . . ), and is therefore stationary and ergodic. To show the existence
of limn→∞ f

(n)
t , it sufficies to prove that, a.s., (f

(n)
t )n∈N is a Cauchy sequence in the

complete space F .
By the mean value theorem we have

sup
f,f̃∈F, f 6=f̃

∣∣∣∣∣ϕ(zt, f)− ϕ(zt, f̃)

f − f̃

∣∣∣∣∣ ≤ Λt := sup
f∈F

∣∣∣∣∂ϕ(zt, f)

∂f

∣∣∣∣
= sup

f∈F

∣∣∣∣α∂ψ(g(f, εt), Xt, f, θ)

∂f
+ β

∣∣∣∣ .
It follows that∣∣∣∣∣ f (n)

t+1 − f
(n−1)
t+1

f
(n−1)
t − f (n−2)

t

∣∣∣∣∣ =

∣∣∣∣∣ϕ(zt, f
(n−1)
t )− ϕ(zt, f

(n−2)
t )

f
(n−1)
t − f (n−2)

t

∣∣∣∣∣ ≤ Λt,

and thus∣∣∣f (n)
t+1 − f

(n−1)
t+1

∣∣∣ ≤ Λt

∣∣∣f (n−1)
t − f (n−2)

t

∣∣∣ ≤ ΛtΛt−1 · · ·Λt−n+2

∣∣ϕ(zt−n+1, f
0)− f 0

∣∣ .
For n < m, we then have∣∣∣f (m)

t+1 − f
(n)
t+1

∣∣∣ ≤ m−n−1∑
k=0

∣∣∣f (m−k)
t+1 − f (m−k−1)

t+1

∣∣∣
≤

m−n−1∑
k=0

ΛtΛt−1 · · ·Λt−m+k+2

∣∣ϕ(zt−m+k+1, f
0)− f 0

∣∣
≤

∞∑
j=n

ΛtΛt−1 · · ·Λt−j+1

∣∣ϕ(zt−j, f
0)− f 0

∣∣ . (42)

Note that (i) implies that E ln+ |ϕ(zt, f
0)− f 0| <∞. Therefore

lim sup
t→∞

ln |ϕ(zt, f
0)− f 0|
t

≤ 0 a.s.

The process (Λt) being stationary and ergodic, (ii) then entails

lim sup
j→∞

ln
(
ΛtΛt−1 · · ·Λt−j+1

∣∣ϕ(zt−j, f
0)− f 0

∣∣)1/j

= lim sup
j→∞

1

j

j∑
k=1

ln Λt−k+1 +
ln |ϕ(zt−j, f

0)− f 0|
j

≤ E ln Λ1 < 0.
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By the Cauchy rule, the right-hand side of (42) tends almost surely to zero as
n→∞. The existence of a stationary and ergodic solution to (5) follows.

Assume that there exists another stationary process (f ∗t ) such that f ∗t+1 =
ϕ(zt, f

∗
t ). For all N ≥ 0 we have

|ft+1 − f ∗t+1| ≤ ΛtΛt−1 · · ·Λt−N |ft−N − f ∗t−N |. (43)

Since ΛtΛt−1 · · ·Λt−N → 0 a.s. as N →∞, and |ft−N − f ∗t−N | = OP (1) by station-
arity, the right-hand side of (43) tends to zero in probability. Since the left-hand
side does not depend on N , we have P (|ft+1 − f ∗t+1| > ε) = 0 for all ε > 0, and
thus P (ft+1 = f ∗t+1) = 1, which establishes the uniqueness.

Proof of Lemma 2

By (42) we have

∣∣ft+1 − f 0
∣∣ ≤ ∣∣ϕ(zt, f

0)− f 0
∣∣+

∞∑
j=1

ΛtΛt−1 · · ·Λt−j+1

∣∣ϕ(zt−j, f
0)− f 0

∣∣ .
Note that the variables Λt are independent, E log Λt < 0, E |ϕ(zt, f

0)− f 0|r <∞
and EΛr

t <∞. The arguments of the proof of Lemma 2.3 in Berkes, Horváth and
Kokoszka (2003) (see also Corollary 2.3 in Francq and Zakoian, 2019) then entail
that there exists s ∈ (0, r ∧ 1), such that EΛs

t < 1, and thus E |ft+1 − f 0|s < ∞
and the conclusion follows.

Proof of Lemma 3

The filter satisfies the SRE

ft+1(θ) = ςθ(yt, Xt, ft(θ))

for some function ς = ςθ such that E ln+ |ς(yt, Xt, f
0)− f 0| <∞ and E log Λt(θ) <

0 with
Λt(θ) = sup

f∈F

∣∣∣∣∂ς(yt, Xt, f)

∂f

∣∣∣∣ = sup
f∈F

∣∣∣∣α∂ψ(yt, Xt, f, θ)

∂f
+ β

∣∣∣∣ .
As in the proof of Lemma 1, the solution of the SRE is obtained by taking the
almost sure limit, as n→∞, of

f
(n)
t+1(θ) = ς(yt, Xt, f

(n−1)
t (θ))

with f (0)
t (θ) = f 0. Now, note that

sup
θ∈Θ
|ft+1(θ)− f̂t+1(θ)| ≤ ΛtΛt−1 · · ·Λ1 sup

θ∈Θ
|f1(θ)− f̂1(θ)|,
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where Λt = supθ∈Θ Λt(θ). By (ii) one can choose % such that

1 > % > eE ln supθ Λ1 > 0,

so that
lim
t→∞

1

t
ln %−tΛtΛt−1 · · ·Λ1 = − ln %+ E ln Λ1 < 0

and the conclusion follows.

Proof of Lemma 4

Let θ be a fixed value of the parameter. Under the conditions of Lemma 3, the
process Zt = (εt, X

>
t , ft(θ))

> is stationary and ergodic. The processes (At) and
(bt) are thus also stationary and ergodic. The sequence {f ′t(θ)}t satisfies the linear
stochastic difference equation

f ′t+1(θ) = At + btf
′
t(θ),

where (At, bt) is strictly stationary and ergodic, and under (i) E log+ ‖A1‖ < ∞
and E log+ |b1| <∞. By Brandt (1986) and Bougerol and Picard (1992), or simply
by applying the Cauchy rule, it is known that there exists a stationary, ergodic
and non anticipative solution

{
f ′t+1(θ)

}
t
to the stochastic difference equation if

γ := E log |bt| < 0,

which is implied by (ii) of Lemma 3.
In the sequel, % denotes a generic constant of the interval (0, 1), and K denotes

a positive constant or a random variable measurable with respect to {zt, t ≤ 0}.
Let

∂ψ̂t
∂θ

=
∂ψ(y,X, f, θ)

∂θ

∣∣∣∣
(y,X,f,θ)=(yt,Xt,f̂t(θ),θ)

and similar notations for the other derivatives. For i = 1, . . . , p, Taylor expansions
show that

∂ψt
∂θi

=
∂ψ̂t
∂θi

+
∂2ψ(y,X, f, θ)

∂θi∂f

∣∣∣∣
(y,X,f,θ)=(yt,Xt,f∗,θ)

{
ft(θ)− f̂t(θ)

}
,

where f ∗ is between ft(θ) and f̂t(θ). By Lemma 3, we have |ft(θ)− f̂t(θ)| ≤ K%t.
Dropping "(θ)" in the notations, other similar Taylor expansions thus show that∥∥∥At − Ât + (bt − b̂t)f ′t

∥∥∥ ≤ K%t,
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where %t = ut%
t with E log+ ut <∞, using (ii). We thus have∥∥∥f ′t+1 − f̂ ′t+1

∥∥∥ =
∥∥∥At − Ât + (bt − b̂t)f ′t + b̂t

(
f ′t − f̂ ′t

)∥∥∥ ≤ K%t + ct

∥∥∥f ′t − f̂ ′t∥∥∥ ,
where

ct = |bt|+K%t ≥ |bt|+ |̂bt − bt| ≥ |̂bt|.
We obtain∥∥∥f ′t+1 − f̂ ′t+1

∥∥∥ ≤K {%t + ct%t−1 + · · · + ct · · · c2%1 + ct · · · c1‖f ′1 − f̂ ′1‖
}
.

Now note that, by the dominated convergence theorem, limτ→0E log(|b1| + τ) =
γ < 0. Therefore, there exists τ > 0 such that

% < eE log(|b1|+τ) < 1,

and then
%i∏i

j=1 cj + τ
≤ %i∏i

j=1 |bj|+ τ
≤ K

( %

eE log(|b1|+τ)

)i
≤ K a.s.

We thus have ∥∥∥f ′t+1 − f̂ ′t+1

∥∥∥ ≤K t∑
i=1

%i

∏t
j=1(cj + τ)∏i
j=1(cj + τ)

+K
t∏

j=1

(cj + τ)

≤K
t∏

j=1

(cj + τ)

{
1 +

t∑
i=1

%i

}
.

Note also that E log(|b1|+ τ̃) < 0 implies

(|b1|+ τ̃) · · · (|bt|+ τ̃) ≤ K%̃t a.s., when eE log(|b1|+τ̃) < %̃ < 1.

Since lim supt→∞(log %t)/t ≤ log ρ+lim supt→∞(log ut)/t < 0, using E log+ ut <∞,
it follows that %t converges almost surely to 0 as t → ∞. When τ < τ̃ we then
have 0 ≤ ct + τ < |bt|+ τ̃ for t large enough, and thus

(c1 + τ) · · · (ct + τ) ≤ K%̃t a.s.

For any %∗ ∈ (%̃, 1) we then have

1

%t∗

∥∥∥f ′t+1 − f̂ ′t+1

∥∥∥ ≤K ( %̃

%∗

)t(
1 +

∞∑
i=1

%i

)
→ 0

a.s. as t→∞.
The second-order derivatives are treated in the same way, and the conclusion

follows.
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Proof of Theorem 1

By compactness of Θ, the strong consistency is obtained by showing that for any
θ 6= θ0, there exists a neighbourhood V (θ) of θ such that

lim inf
T→∞

inf
θ∗∈V (θ)∩Θ

∥∥∥ĜT (θ∗)
∥∥∥ > 0, a.s. (44)

and that for any neighbourhood V (θ0) of θ0

lim sup
T→∞

inf
θ∗∈V (θ0)∩Θ

∥∥∥ĜT (θ∗)
∥∥∥ = 0, a.s. (45)

Let

GT (θ) =
1

T

T∑
t=t0+1

gt(θ).

For any neighbourhood V (θ) of θ, we have

inf
θ∗∈V (θ)∩Θ

∥∥∥ĜT (θ∗)
∥∥∥ ≥ inf

θ∗∈V (θ)∩Θ
‖GT (θ∗)‖ − sup

θ∈Θ

∥∥∥GT (θ)− ĜT (θ)
∥∥∥ .

By (15), (16) and (17), we have

sup
θ∈Θ
|gt(θ)− ĝt(θ)| ≤ K%tut, ut = sup

θ∈Θ

(
|yt|k + |ft(θ)|+ 1

)(
1 +

∥∥∥∥∂ft(θ)∂θ

∥∥∥∥) .
Since E log+ ut <∞ under the log-moment conditions and % < 1, the Cauchy root
test shows that

∞∑
t=1

sup
θ∈Θ
|gt(θ)− ĝt(θ)| <∞ a.s.,

which entails that, almost surely, supθ∈Θ

∥∥∥GT (θ)− ĜT (θ)
∥∥∥ → 0 as T → ∞. Now

note that

inf
θ∗∈V (θ)∩Θ

‖GT (θ∗)‖ ≥ ‖GT (θ)‖ − sup
θ∗∈V (θ)∩Θ

‖GT (θ∗)−GT (θ)‖ ,

with

sup
θ∗∈V (θ)∩Θ

‖GT (θ∗)−GT (θ)‖ ≤ 1

T

T∑
t=t0+1

sup
θ∗∈V (θ)∩Θ

‖gt(θ∗)− gt(θ)‖ .

Let Vm(θ) be the ball of center θ and radius 1/m. By the ergodic theorem applied
to
{

supθ∗∈Vm(θ)∩Θ ‖gt(θ∗)− gt(θ)‖
}
t
, we have

lim sup
T→∞

sup
θ∗∈Vm(θ)∩Θ

‖GT (θ∗)−GT (θ)‖ ≤ E sup
θ∗∈Vm(θ)∩Θ

‖gt(θ∗)− gt(θ)‖ .
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By Fatou’s lemma, the continuity of gt(·) and (20), the expectation of the right-
hand side of the inequality tends to 0 asm→∞. By (21) and the ergodic theorem,
we have

lim
T→∞

‖GT (θ)‖ = ‖G(θ)‖ > 0

when θ 6= θ0. We thus have shown (44).
To show (45), it suffices to use the same arguments, noting that

lim sup
T→∞

inf
θ∗∈V (θ0)∩Θ

∥∥∥ĜT (θ∗)
∥∥∥ ≤ lim

T→∞

∥∥∥ĜT (θ0)
∥∥∥ = ‖G(θ0)‖ = 0.

The proof of the consistency is complete.
By already given arguments, Lemma 4 and (23) show that, almost surely,

sup
θ∈Θ

∥∥∥∥∥∂GT (θ)

∂θ
− ∂ĜT (θ)

∂θ

∥∥∥∥∥ = O(T−1) a.s. (46)

Now note that the ergodic theorem and Et−1ht(θ0) = 0 imply that

ĠT := ∂GT (θ0)/∂θ> → −J

almost surely as T →∞. In view (24), we can thus assume that ĠT is invertible.
The mapping fT : Θ→ Θ then defined by

fT (θ) = θ − Ġ−1
T ĜT (θ)

satisfies ∥∥∥∥∂fT (θ)

∂θ

∥∥∥∥ ≤ ∥∥∥Ġ−1
T

∥∥∥∥∥∥∥∥ĠT −
∂ĜT (θ)

∂θ>

∥∥∥∥∥ < 1

for T large enough on some neighborhood of θ0, using (46), the ergodic theorem
and the continuity of ∂G(θ)/∂θ>. The contraction fT thus admits a unique fixed-
point θT on this neightborhood, for which ĜT (θT ) = 0. See Jacod and Sørensen
(2017) and the references therein for examples of applications of the fixed-point
theorem to show the asymptotic existence of an estimator. In view of (19), we
have θT = θ̂T , and thus

ĜT (θ̂T ) = 0.

The rest of the proof follows by Taylor expansions, using standard arguments.

Proof of Theorem 2

The desired result follows from the classical consistency argument found e.g. in
White (1994, Theorem 3.4) or Potscher and Prucha (1997, Lemma 3.1). First we
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show that the sample log-likelihood converges uniformly to a deterministic limit
criterion. Next we show that θ∗0 is the identifiably unique maximizer of the limit
criterion.

The uniform convergence of the criterion follows from

sup
θ∈Θ

∣∣∣ 1

T

T∑
t=2

`(yt, f̂t(θ), θ)− E`(yt, ft(θ), θ)
∣∣∣

≤ 1

T

T∑
t=2

sup
θ∈Θ

∣∣∣`(yt, f̂t(θ), θ)− `(yt, ft(θ), θ)∣∣∣
+ sup

θ∈Θ

∣∣∣ 1

T

T∑
t=2

`(yt, ft(θ), θ)− E`(yt, ft(θ), θ)
∣∣∣

≤ 1

T

T∑
t=2

sup
θ∈Θ

sup
f

∣∣∣∂`(yt, f, θ)
∂f

∣∣∣ sup
θ∈Θ
|f̂t(θ)− ft(θ)|

+ sup
θ∈Θ

∣∣∣ 1

T

T∑
t=2

`(yt, ft(θ), θ)− E`(yt, ft(θ), θ)
∣∣∣,

where
1

T

T∑
t=2

sup
θ∈Θ

sup
f

∣∣∣∂`(yt, f, θ)
∂f

∣∣∣ sup
θ∈Θ
|f̂t(θ)− ft(θ)|

as→ 0 as T →∞

by the uniform invertibility obtained in Lemma 3,

and sup
θ∈Θ

∣∣∣ 1

T

T∑
t=2

`(yt, ft(θ), θ)− E`(yt, ft(θ), θ)
∣∣∣ as→ 0 as T →∞

by application of Rao’s (1962) uniform law of large numbers. The identifiable
uniqueness of θ∗0 ∈ Θ is implied by the uniqueness assumption E`(yt, ft, θ) <
E`(yt, ft, θ∗0) for every θ 6= θ∗0, θ ∈ Θ, the continuity of the limit criterion and the
compactness of Θ (Potscher and Prucha, 1997). The interpretation of θ∗0 as the
minimizer of the expected KL is well known and available e.g. in White (1994).

Proof of Lemma 5

Immediate under the assumptions of Theorem 2 as long as the level sets of the
limit log-likelihood function are regular. In our case, the regularity of the level
sets is easily implied by continuity (see Lemma 4.2 in Postcher and Prucha, 1997).
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Proof of Corollary 1

The proof is the same as for Theorem 2 after showing that the data {yt}t∈Z is
strictly stationary and ergodic. This follows by application of Lemma 1 at θ0 ∈ Θ
and by continuity of yt in ft and εt.

Proof of Lemma 6

The first claim of Lemma 6 is obtained by noting that Conditions (i) and (ii)
imply

|ft+1 − f ∗t+1| ≤ a|yt − y∗t |+ b|ft − f ∗t |

with a := |α| sup
f,y

∣∣∣∂ψ(y, f, θ)

∂y

∣∣∣ <∞ and b := sup
f,y

∣∣∣α∂ψ(y, f, θ)

∂f
+ β

∣∣∣ < 1.

Since {yt} is NED of size−q on some process {et}t∈Z and has two bounded moments
supt E|yt|2 <∞, we conclude by Theorem 6.10 of Potscher and Prucha (1997) that
{f̂t} is also NED of size −q on {et}t∈Z.

The second claim is obtained by noting that the filter f̂t(θ0) and its derivative
are both uniformly bounded supt |f ′t(θ0)| < M <∞,

sup
t
‖f̂ ′t+1(θ0)‖ ≤ sup

t

t−1∑
j=0

|B(yt, f̂t, θ0)|j‖A(yt, f̂t, θ0)‖+ sup
t
|B1(yt, f̂t, θ0)|t|f̂ ′1(θ0)|

≤ (1− sup
y,f
|B(y, f, θ0)|)−1 sup

y,f
‖A(y, f, θ0)‖

+ sup
y,f
|B1(y, f, θ0)||f̂ ′1(θ0)| ≤ M < ∞

because A(yt, f̂t, θ0) =
∂ω0

∂θ
+
∂α0

∂θ
ψ(yt, f̂t, θ0) + α

∂ψ(yt, f̂t, θ0)

∂θ
+
∂β0

∂θ
f̂t ,

and B(yt, f̂t, θ0) = α0
∂ψ(yt, f̂t, θ0)

∂f
+ β0

with supy,f ‖A(yt, f̂t, θ0)‖ < ∞ and supy,f |B(yt, f̂t, θ0)| < 1. Next, we verify that
the derivative filter satisfies

‖f̂ ′t+1 − f̂
′∗
t+1‖ ≤ ay|yt − yt|+ af |f̂t − f̂ ∗t |+ b‖f̂ ′t − f̂

′∗
t ‖,

where ay :=
∥∥∥∂α
∂θ

∥∥∥ sup
y,f

∣∣∣∂ψ(y, f, θ)

∂y

∣∣∣+ |α| sup
y,f

∥∥∥∂2ψ(y, f, θ)

∂θ∂y

∥∥∥
+ |α| sup

y,f

∣∣∂2ψ(y, f, θ)

∂f∂y

∣∣M <∞,
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af :=
∥∥∥∂α
∂θ

∥∥∥ sup
y,f

∣∣∣∂ψ(y, f, θ)

∂f

∣∣∣+ |α| sup
y,f

∥∥∥∂2ψ(y, f, θ)

∂θ∂f

∥∥∥+
∥∥∥∂β
∂θ

∥∥∥
+ |α| sup

y,f

∣∣∣∂2ψ(y, f, θ)

∂f 2

∣∣∣M <∞,

and |b| := sup
y,f

∣∣α∂ψ(y, f, θ)

∂f
+ β

∣∣ < 1.

Since {(yt, f̂t)} id NED of size −q on some process {et}t∈Z with supt E|yt|2 < ∞
and supt |f̂t| < ∞, we conclude again by Theorem 6.10 of Potscher and Prucha
(1997) that {f̂ ′t} is also NED of size −q on {et}t∈Z.

Finally, we conclude that the score {̂̀′t(θ0)}t∈N is also NED of size −q on {et}t∈Z
by the Lipschitz assumption and Theorem 6.7 and Corollary 6.8 of Potscher and
Prucha (1997).

Proof of Theorem 3

For convenience, we adopt the following notation

`T (θ) :=
1

T

T∑
t=2

`(yt, ft(θ), θ)

and furthermore, we let ̂̀′T (θ) := ∂̂̀T (θ)/∂θ, `′T (θ) := ∂`T (θ)/∂θ and `′′T (θ) :=
∂`T (θ)/(∂θ∂θ′).

Below, we first obtain the asymptotic normality of the estimator θ̃T which
maximizes the criterion `T , i.e.,

θ̃T ∈ arg max
θ∈Θ

`T (θ),

and also show that θ̂T has the same asymptotic distribution as θ̃T .
We use the usual mean-value theorem expansion

`′T (θ̃)− `′T (θ∗0) = `′′T (θ∗T )(θ̃T − θ∗0),

to obtain √
T (θ̃T − θ∗0) = −

(
`′′T (θ∗T )

)−1√
T`′T (θ∗0). (47)

By Lemma 6, we have that the score sequence {`′t(θ∗0)}t∈Z is near epoch dependent
of size −1 on a φ-mixing sequence of size −r/(r − 1) for some r > 2. Given the
moment bounds E|`′(yt, ft, θ0)|2 <∞, we can thus appeal to the central limit the-
orem for near epoch dependent sequences in Potscher and Prucha (1997, Theorem
10.2) to show that

√
T`′T (θ∗0)

d→ N(0, V (θ∗0)) as T →∞. (48)
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Additionally, by the stationary and ergodic behavior of the limit filter and its
derivatives obtained in Lemma 4 and the uniform moment bound on the Hessian,

E sup
θ∈Θ
|`′′(yt, ft, θ)| <∞.

The uniform convergence of the Hessian over Θ is obtained by Rao’s (1962) uniform
law of large numbers (i.e., supθ∈Θ ‖`′′T (θ)− E`′′t (θ)‖

as→ 0, which implies

`′′T (θ∗T ) =
1

T

T∑
t=2

`′′t (θ
∗
T )

as→ E`′′t (θ∗0) as T →∞, (49)

since θ∗T
as→ θ∗0. The asymptotic distribution of θ̃T is obtained by combining (47),

(48) and (49), i.e., √
T (θ̃T − θ∗0)

d→ N
(
0,Σ(θ∗0)

)
,

where the asymptotic variance is given by

Σ(θ∗0) =
(
Ề′′t (θ∗0)

)−1(
Ề′t(θ0)Ề′t(θ0)>

)(
Ề′′t (θ∗0)

)−1

.

We now expand the score using a mean value theorem

`′T (θ̃T )− `′T (θ̂T ) = `′′T (θ∗T )(θ̃T − θ̂T )

and notice that `′T (θ̃T ) = ̂̀′T (θ̂T ) = 0 to obtain
√
T
(̂̀′

T (θ̂T )− `′T (θ̂T )
)

= `′′T (θ∗T )
√
T (θ̃T − θ̂T ). (50)

We use again the uniform convergence of the Hessian to conclude that

`′′T (θ∗T )
as→ E`′′t (θ∗0). (51)

Finally, we use the uniform bounded moment on the score E supθ∈Θ |`′(yt, ft, θ)| <
∞ and Lemma 4 to obtain,

√
T sup

θ∈Θ

∣∣̂̀′
T (θ)− `′T (θ)

∣∣ as→ 0 as T →∞

which in turn implies that
√
T
∣∣̂̀′
T (θ̂T )− `′T (θ̂T )

∣∣ as→ 0 as T →∞. (52)

Combining (50), (51) and (52), we conclude that
√
T |θ̃T − θ̂T |

as→ 0 as T → ∞.
This delivers the desired result

√
T (θ̂T − θ∗0)

d→ N
(
0,Σ(θ∗0)

)
.
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Proof of Corollary 2

The proof is the same as for Theorem 3 with the exception that the score satisfies
a central limit theorem for martingale difference sequences at θ0 and hence does
not need the NED property. Additionally, the stationarity the data {yt}t∈Z follows
by application of Lemma 1 at θ0 ∈ Θ and by continuity of yt in ft and εt.

Proof of Theorem 4

Recall that the constrained estimator (θ̂rT ) is such that (θ̂rT , λ̂T ) is a critical point
of the Lagrangian function

L(θ, λ) = ̂̀T (θ)− λ>(Rθ − r).

The first order conditions yield

Rθ̂rT − r = 0, R>λ̂T =
∂̂̀T (θ̂rT )

∂θ
. (53)

First recall that from Corollary 2

R
√
T (θ̂T − θ0)

d→ N
(
0, RI−1R>

)
, (54)

where I = −E`′′t (θ0).
We know that θ̂T → θ0 a.s., and it can be shown that θ̂rT → θ0 a.s. under H0.

A Taylor expansion then entails

√
T
∂̂̀T (θ̂rT )

∂θ
+ oP (1) =

√
T
∂̂̀T (θ̂T )

∂θ
− I
√
T (θ̂rT − θ̂T ) = −I

√
T (θ̂rT − θ̂T ). (55)

Using (53), it follows that under H0

R
√
T (θ̂T − θ0) = R

√
T (θ̂T − θ̂rT ) = RI−1R>

√
T λ̂T + oP (1). (56)

Using (54) we then obtain

√
T λ̂T =

(
RI−1R>

)−1
R
√
T (θ̂T − θ0) + oP (1)

d→ N
{

0,
(
RI−1R>

)−1
}

and thus, using again (53),

T λ̂>TRI−1R>λ̂T = T
∂̂̀T (θ̂rT )

∂θ>
I−1∂

̂̀
T (θ̂rT )

∂θ

d→ χ2
r. (57)

The first convergence follows.
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To derive the asymptotic distribution of LRT we use the usual argument which
involves expanding ̂̀T (θ̂T ) around θ̂rT to obtain

LRT := 2T
(̂̀

T (θ̂T )− ̂̀T (θ̂rT )
)

= 2T
(∂̂̀T (θ̂rT )

∂θ>
(θ̂T − θ̂rT )− 1

2
(θ̂T − θ̂rT )>I(θ̂T − θ̂rT )

)
+ oP (1)

=
√
T (θ̂T − θ̂rT )>

√
T
∂̂̀T (θ̂rT )

∂θ
+ oP (1)

=
√
T (θ̂T − θ̂rT )>

√
TR>λ̂T + oP (1)

= T λ̂>TRI−1R>λ̂T + oP (1)
d→ χ2

q

noting ∂̂̀T (θ̂rT )/∂θ = 0 and using (53), (55), (56) and (57).
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