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Abstract
In progressive censoring, items are removed at certain times during the life test.

Commonly, it is assumed that the removed items are used for further testing. In order

to take into account information about these additional testing in inferential proce-

dures, we propose a two-step model of stage life testing with one fixed stage-change

time which incorporates information about both the removed items (further tested

under different conditions) and those remaining in the current life test. We show that

some marginal distributions in our model correspond either to progressive censoring

with a fixed censoring time or to a simple-step stress model. Furthermore, assuming

a cumulative exposure model, we establish exact inferential results for the distribu-

tion parameters when the lifetimes are exponentially distributed. An extension to

Weibull distributed lifetimes is also discussed.

KEYWORDS
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1 INTRODUCTION

Reliability experiments are generally used to control the

lifetime of components as a relevant quality characteristic.

Suppose that an experimenter places n∈N identical objects

simultaneously on a life test. Then, due to unintentional

events, censoring, or the experimental design, it may happen

that not all failure times are observed during the monitor-

ing process. For instance, the experimenter may be inter-

ested in removing items intentionally because of restrictions

regarding, for example, experimental time, costs, and mate-

rial resources. The intentional withdrawing of objects from

an ongoing life test enables the release of units for other

experiments. In order to model such a situation, progressive

censoring schemes have been proposed where the most popu-

lar ones are progressive Type-II censoring introduced by Herd

(1956) and Cohen (1963) and progressive Type-I censoring

(see Cohen, 1963). A comprehensive discussion of proba-

bilistic properties and inferential results is provided by Bal-

akrishnan and Aggarwala (2000), Balakrishnan (2007), and

more recently by Balakrishnan and Cramer (2014). Recently,

Cohen’s progressive Type-I censoring with fixed censoring

times (for short, PC-FCT) has been extensively discussed

by Laumen and Cramer (2019) after falling into oblivion

for some time. A schematic representation of this model is

given in Figure 1 for censoring times 𝜏1 < · · · < 𝜏m and an

initially intended censoring plan (R0
1
, … ,R0

m). The experi-

mental design of a PC-FCT life test requires that, if possible,

R0
j objects are randomly withdrawn from the life test at time

𝜏 j, 1≤ j ≤ m. The life test is terminated when either the last

remaining object in the life test fails or the last item is removed

from the test. Notice that we do not assume that the exper-

iment is terminated at time 𝜏m as has been commonly done

in progressive Type-I censoring (for details, see Laumen &

Cramer, 2019). The PC-FCT model will be of great use in the

following discussion.

A common argument used to justify progressive censoring

is that the intentionally removed objects are utilized for other

tests (cf., eg, Balakrishnan & Aggarwala, 2000, p. 3, Balakr-

ishnan, Han, & Iliopoulos, 2011, p. 336). However, so far, it
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FIGURE 1 Design of a Type-I progressively censored life test with fixed censoring times 𝜏1 < · · ·<𝜏m and initially intended censoring plan (R0
1
, … ,R0

m)

FIGURE 2 Generation process of stage life testing order statistics (alternative representation) [Colour figure can be viewed at wileyonlinelibrary.com]

seems so that no model exists to incorporate information from

these additional tests in the analysis of the failure times. In

order to include such an information in the statistical analy-

sis, we connect the notion of progressive censoring with ideas

from accelerated life testing. We adapt the idea of step-stress

testing and assume that the “removed” objects are tested on

a different stage whereas the remaining items are still tested

under standard conditions. The basic situation with one cen-

soring time 𝜏1 and two stages s0, s1 is depicted in Figure 2. It

is inspired by simple step-stress testing (see below).

Therefore, the sample is split at change-time 𝜏1 in these

items which are tested with the initial conditions (state s0),

and those which are tested further on stage s1 under pos-

sibly different load (which may be higher or lower). This

new life testing model is called stage life testing (SLT). In

order to model the change in the load, we make use of the

commonly used cumulative exposure model introduced by

Sedyakin (1966). It connects the lifetime distributions of

the objects on the different stages of the life times. Further

discussions in this direction are provided by, for example,

Bagdonavičius (1978) and Nelson and Meeker (1978). For

comprehensive surveys on accelerated life testing, we refer to

Meeker and Hahn (1985), Meeker and Escobar (1998), Bag-

donavičius and Nikulin (2002), and Nelson (2004). It should

be noted that the term “stage life test” has previously been

used in another context by Fairbanks (1988). He presented a

two-stage life test for the exponential parameter using hybrid

censoring. A combination of a single-stage hybrid censoring

test (cf. Epstein, 1954) and a two-stage test (cf. Bulgren &

Hewett, 1973) have also been considered.

A special type of accelerated life testing is step-stress

testing proposed by DeGroot and Goel (1979), and Nelson

(1980). DeGroot and Goel (1979) introduced the tampered

random variable model, where a change to the higher stress

level results by multiplying the remaining lifetime of the unit

with an unknown factor. Furthermore, Nelson (1980) dis-

cussed the model of step-stress testing in the context of the

cumulative exposure model. The cumulative exposure model

relates the lifetime distribution of items at one stress level

to the lifetime distribution at the preceding stress level by

shifting the lifetime distribution. In step-stress testing, the

experimenter can choose different operating conditions at the

various stress levels of the life test. Before the life test starts,

the experimenter decides at which stress-change time the

stress will be increased. That is, the surviving items at each

stress-change time are put on a higher stress level.

The simple step-stress model is a special case of step-stress

testing with only two stress levels and one stress-change time.

Initially, n identical items are put on the initial stress level

s0. The stress level is changed to s1 (generally s1 > s0) at the

prefixed stress-change time 𝜏1. If all n failures are observed

before 𝜏1 on stress level s0 then the life test is terminated at

the nth failure time without changing the stress level. Other-

wise, all surviving items are put on the increased stress level

http://wileyonlinelibrary.com
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s1 at 𝜏1 until failure. The life test continues until all n items

have failed. Further work on simple step-stress testing has

been done by, for example, Miller and Nelson (1983), Bai,

Kim, and Lee (1989), Balakrishnan, Kundu, Ng, and Kannan

(2007), Balakrishnan and Xie (2007a, 2007b), Kateri and Bal-

akrishnan (2008), Kateri, Kamps, and Balakrishnan (2009),

Kateri, Kamps, and Balakrishnan (2011), Han and Ng (2013),

and Mitra, Ganguly, Samanta, and Kundu (2013). Reviews are

provided by Balakrishnan, Burkschat, Cramer, and Hofmann

(2008) and Kundu and Ganguly (2017).

In the following, we illustrate the cumulative exposure

model in the context of a simple step-stress test with stress

levels s0 and s1 and a stress-change time 𝜏1. The (absolutely

continuous) lifetime distribution functions on stress levels s0

and s1 are denoted by F0 and F1, respectively. Under the

cumulative exposure model, changing the stress from s0 to s1

entails the transition of the lifetime distribution on stress level

s1 from F0(t) to F1(t + v1 − 𝜏1) where v1 is the solution of the

equation

F0(𝜏1) = F1(v1). (1.1)

Hence, the cumulative distribution function of a test unit is

given by

F0,1(t) =

{
F0(t), 0 ≤ t ≤ 𝜏1

F1(t + v1 − 𝜏1), 𝜏1 < t < ∞
, (1.2)

and the corresponding probability density function is given by

f0,1(t) =

{
f0(t), 0 ≤ t ≤ 𝜏1

f1(t + v1 − 𝜏1), 𝜏1 < t < ∞
.

This paper is organized as follows. In Section 2, we intro-

duce the SLT model formally and provide a generation pro-

cedure for SLT order statistics (SLTOSs). Then, we establish

fundamental distributional results for SLTOSs in Section 3.

In Section 4, we address maximum likelihood estimation

(MLE) in the SLT model under various lifetime distributions.

We start with an exponential distribution on both stages in

Section 4.1. The MLEs are derived and the corresponding

density functions are established. Furthermore, exact con-

fidence intervals for the parameters are constructed after

verifying the required stochastic monotonicity of the esti-

mators. In Section 4.2, we consider the combination of a

Weibull and an exponential distribution for the stages of the

SLT model. In Section 5, we provide an illustrative example.

Finally, we present the results of a simulation study in Section

6. In Section 7, we summarize the present approach and sketch

some possible extensions for future work. The present work

is based on the PhD thesis by Laumen (2017).

2 SLT MODEL

First, we introduce the SLT model. The situation is depicted

in Figure 2. A formal definition of the random variables is

presented in Procedure 2.3.

Model 2.1 (SLT). Assume that n identical

objects are placed on a life test. The initial

conditions are called stage s0. At the prefixed

stage-change time 𝜏1, 0 ≤ R⋆
1
≤ n of the surviv-

ing items are randomly withdrawn (if possible)

and further tested on stage s1. Notice that this

may be regarded as a different life test with used

components. The testing of the remaining items

is continued on stage s0. The life test terminates

when all n objects have failed.

Let D1 and D2 denote the random number of

failures occurring on stage s0 before and after

𝜏1, respectively. Furthermore, M = D1 + D2 and

• Y1,D1
= (Y1∶M∶n, … ,YD1∶M∶n) denote the

(ordered) observations on stage s0 before 𝜏1

• Y2,D2
= (YD1+1∶M∶n, … ,YD1+D2∶M∶n) denote

the (ordered) observations on stage s0 after

𝜏1;

• ZR⋆
1

= (Z1∶R⋆
1
, … ,ZR⋆

1
∶R⋆

1
) denote the

(ordered) observations on stage s1 after 𝜏1

with YD1∶M∶n ≤ 𝜏1 < Z1∶R⋆
1
.

The order statistics on stage s0 and the order

statistics on stage s1 are represented by the ran-

dom vectors Y = (Y1,D1
,Y2,D2

), and Z, respec-

tively. Figure 2 illustrates this representation for

the SLTOSs.

We consider two options to generate R⋆
1

.

1. First, at 𝜏1, a (fixed) proportion 𝜋1 of the sur-

viving objects is selected for testing on stage

s1. In the following, this option is called

Type-P.

2. The second way to generate R⋆
1

is similar to

the censoring procedure of PC-FCT. Given

a prefixed number R0
1
, it is intended to select

at 𝜏1 as many items as possible (at most R0
1
)

for testing on stage s1. This option is called

Type-M in the following.

Thus, the (random) number R⋆
1

is defined by

R⋆
1
= 𝜚(D1) with

𝜚(x) =

{⌊𝜋1 ⋅ ⌊n − x⌋⌋, Type-P

min{n − x,R0
1
}, Type-M

, x ∈ {0,… , n}, (2.1)

where the proportion 𝜋1 ∈ [0, 1] and the number

R0
1
∈ N are prespecified, respectively. Further-

more, the realization of R⋆
1

is defined by r⋆
1
=

𝜚(d1). Of course, there are other possibilities

conceivable to define 𝜚 as a function of D1 and

d1, respectively.

We use the following notation and

assumptions:

• Fi denotes the absolutely continuous cumu-

lative distribution function with density

function f i on stage si, i ∈ {0, 1}.
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• The cumulative exposure model holds, that

is, v1 is defined as the solution of the equation

F0(𝜏1) = F1(v1) (see (1.1)).

If D1 = n then the life test is terminated at

the nth failure time without changing the stage,

that is, all failures have occurred on stage s0.

Otherwise, at time 𝜏1, R⋆
1

of the n − D1 sur-

viving objects are randomly selected and put on

the next stage s1 until failure. The remaining

D2 = n − D1 − R⋆
1

objects are further tested on

the initial stage s0 until failure.

Remark 2.2

1. SLT is an extension of PC-FCT (ie, k = 2,

T1 = 𝜏1). However, the random removals are

not just withdrawn from the life test, they are

further tested on a different stage to get more

information.

2. In the context of simple step-stress testing,

the two stages s0 and s1 represent stress lev-

els. In the present formulation of SLT, the

stage levels are just denominations for the

stages. The stages are interpreted as cate-

gories where the life testing is conducted

under different conditions. However, as has

been done in simple step-stress testing, the

stages si may be connected to the model

parameters, for example, by a link function

(see (7.1)). But, the stage level need not

necessarily be increased, that is, one may

assume s0 > s1 if the testing conditions on

stage s1 reflect this load.

3. Notice that D2 is a (deterministic) function

of D1 (and R⋆
1

), that is, D2 = n − D1 − R⋆
1
=

n − D1 − 𝜚(D1).
4. Choosing 𝜋1 = 0 (R0

1
= 0) in the Type-P

(Type-M) scenario in (2.1) yields a complete

sample of order statistics based on the distri-

bution function F0. For 𝜋1 = 1 (Type-P) or

R0
1
= n (Type-M), we get a simple step-stress

model with stress change time 𝜏1.

Since these are well examined models, we

assume 𝜋1 ∈ (0, 1) and R0
1
∈ {1, … , n −

1} in the following. This will ensure for

instance that we observe at least one failure

on stage s0.

The following procedure provides an algorithm to generate

SLTOSs with cumulative distribution functions F0 and F1.

We use the quantile representation of order statistics which

can be found in, for example, Reiss (1989, Theorem 1.2.5 (i))

and Balakrishnan and Cramer (2014, Theorem 2.1.1):

(X1∶n, … ,Xn∶n)
d
= (F−1(U1∶n), … ,F−1(Un∶n)),

where U1:n, … , Un:n are order statistics based on inde-

pendent and identically distributed (iid) random variables

U1 … , Un from a standard uniform distribution U(0, 1)

(for short, U1, … ,Un
iid∼ U(0, 1)). F−1 denotes the quantile

function of the cumulative distribution function F.

Procedure 2.3 (Generation of SLTOSs) Let

U1 … , Un be standard uniformly distributed

random variables on a probability space

(Ω,𝔄,P). Let F−1
i be the quantile function of

the continuous cumulative distribution function

Fi (on stage si), i ∈ {0, 1}, with s0 ≠ s1. Further-

more, let R⋆
1

= 𝜚(D1) be the random number

of failures selected at stage-change time 𝜏1 for

testing on stage s1.

For 𝜔 ∈ Ω, the SLT sample

Y(𝜔) = (Y1,D1
(𝜔),Y2,D2

(𝜔)), Z(𝜔)

based on U1(𝜔) … , Un(𝜔), is generated as

follows:

1. Compute the order statistics

U1:n(𝜔)≤ · · · ≤ Un:n(𝜔);

2. Set V (0)
j∶n(𝜔) = F−1

0
(Uj∶n(𝜔)) and V (1)

j∶n(𝜔) =
F−1

1
(Uj∶n(𝜔)) − v1 + 𝜏1, 1 ≤ j ≤ n;

3. Define  = {𝛼 ∈ {1, … , n}| − ∞ <

V (0)
𝛼∶n(𝜔) ≤ 𝜏1} and c = {1, … , n} ⧵  ;

4. Let D1(𝜔) =∣  ∣ and compute r⋆
1

=
𝜚(D1(𝜔)) by (2.1);

5. Choose randomly a without-replacement

sample  ⊆ c with ∣  ∣ = r⋆
1

and set

 = c∖;

6. If d1 = D1(𝜔) = ∣  ∣> 0 and d2 = ∣  ∣> 0

and r⋆
1
=∣  ∣> 0, then m = d1 + d2 and

(Yh∶m∶n(𝜔))h=1,… ,d1
= (V (0)

h∶n(𝜔))h∈ ,
(Yd1+i∶m∶n(𝜔))i=1,… ,d2

= (V (0)
i∶n(𝜔))i∈, and

(Zj∶r⋆
1
(𝜔))j=1,… ,r⋆

1
= (V (1)

j∶n(𝜔))j∈. (2.2)

If d1, d2, or r⋆
1

are zero then the corresponding

vector in (2.2) has zero dimension meaning that

no failures occur in this particular part of the

life test.

Remark 2.4 In the context of simple

step-stress testing, one may use Procedure

2.3 to generate order statistics from a simple

step-stress test. In this case, step (4) is skipped

and  = c is defined in step (5) since all

remaining objects are put on stress level s1.

In step (6), only the first and the third vector

remain. Kateri and Balakrishnan (2008, p. 626)

presented an algorithm to simulate data from a

Type-II censored simple step-stress model with

Weibull lifetimes.
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In Procedure 2.3, the construction of SLTOSs does not

involve distributional assumptions on both the random vari-

ables U1, … , Un and the selection process in step (5).

By analogy with the assumptions imposed to define pro-

gressively Type-II censored order statistics (Type-II PCOSs)

(see Cramer & Lenz, 2010, Assumption 2.2, Balakrishnan &

Cramer, 2014, p. 5), one may postulate similar requirements

for the SLT model. Using the notation from Procedure 2.3,

they can be summarized as follows (for details, see Laumen,

2017):

1. U1, … ,Un
iid∼ U(0, 1);

2. the without-replacement sample  with

∣  ∣ = r⋆
1

is drawn from c according to a

(discrete) uniform distribution;

3. the random variables U1 … , Un and the SLT

assignment are independent.

Clearly, the model may be also be considered under dif-

ferent probabilistic assumptions. For instance, one may allow

for dependence of the underlying lifetimes by assuming

exchangeability or postulating a particular copula function of

U1 … , Un.

3 DISTRIBUTION THEORY

In this section, we present some fundamental distributional

results for SLTOSs. First, we establish the joint density

function of SLTOSs. Then, we obtain the conditional block

independence of SLTOSs.

Suppose first D1 = n. Thus, Y = (Y1,D1
,Y2,D2

) are order

statistics from a complete sample so that the joint density

function f Y,D1

1… n of Y and D1 is given by (cf. Arnold, Balakrish-

nan, & Nagaraja, 2008, p. 10)

f Y,D1

1… n(xn, n) = n!
n∏

i=1

f0(xi), x1 ≤ · · · ≤ xn ≤ 𝜏1.

Theorem 3.1 presents the joint density function of SLTOSs.

This density function is essential for the likelihood inference

discussed in Section 4. A proof is given in Appendix A.

Theorem 3.1 Let Y, Z be SLTOSs as gen-
erated by Procedure 2.3 and let Fi be an
absolutely continuous cumulative distribution
function with density function f i i ∈ {0, 1}.

Furthermore let 𝜏1 ∈R.

Then the joint density function f Y,Z,D1

1… n of (Y,

Z) and D wrt the product of the n dimensional
Lebesgue measure and the one dimensional
counting measure is given by

f Y,Z,D1

1… n (y1,d1
, y2,d2

, z, d1)

=
(

n
d1

)
d1!d2!r⋆1 !

d1+d2∏
h=1

f0(yh∶m∶n)
r⋆

1∏
j=1

f1(zj∶r⋆
1
+ v1 − 𝜏1),

(3.1)

for y1,d1
= (y1∶m∶n, … , yd1∶m∶n), y2,d2

=
(yd1+1∶m∶n, … , yd1+d2∶m∶n) and z =
(z1∶r⋆

1
, … , zr⋆

1
∶r⋆

1
), where d2 = n − d1 − r⋆

1
, and

r⋆
1
= 𝜚(d1).

Remark 3.2

1. The marginal density function f Y1,D1
,Y2,D2

,D1

of Y1,D1
,Y2,D2

and D1 corresponds to the

joint density function of order statistics from

PC-FCT with one censoring time 𝜏1 (see

Laumen & Cramer, 2019, Theorem 2.7).

Thus, SLT can be seen as an extension of

PC-FCT by considering only the observa-

tions on stage s0 (cf. Remark 2.2).

2. The marginal density function f Y1,D1
,Z,D1 of

Y1,D1
,Z, and D1 is the joint density function

of order statistics from a simple step-stress

model under progressive Type-I censoring

(cf. Balakrishnan & Cramer, 2014, p. 496;

Gouno, Sen, & Balakrishnan, 2004; Han,

Balakrishnan, Sen, & Gouno, 2006). Hence,

when we consider only the failures observed

on stage s0 before 𝜏1 and those on stage

s1 as in a usual simple step-stress model,

we obtain the connection between SLT and

simple step-stress testing (cf. Remark 2.2).

3. It can be seen from the proof of Theorem

3.1 given in Appendix A that the distribu-

tion function of (Y, Z, D1) and its marginals

are obtained without using the assumption

of absolute continuity. The cumulative dis-

tribution can be calculated under the weaker

assumption of continuity of F0 and F1 (see

Equation (A.2)). The assumption of absolute

continuity is only necessary to establish a

density function as given in Equation (3.1).

The conditional block independence of SLTOSs is pre-

sented in Lemma 3.3. It is directly obtained from the proof

of Theorem 3.1. The result is helpful for the derivation of the

density functions of the MLEs of the scale parameters when

the lifetimes are exponentially distributed (see Section 4.1.1).

Lemma 3.3 Let Y, Z be SLTOSs defined
by Procedure 2.3 with an absolutely continu-
ous cumulative distribution function Fi and a
density function f i on stage si i ∈ {0, 1}. Fur-
thermore let s≠ s and 𝜏1 ∈R.

Conditionally on D = d the SLTOSs are block
independent that is the random vectors

(Y1∶m∶n, … ,Yd1∶m∶n), (Yd1+∶m∶n, … ,Yd1+d2∶m∶n),
and (Z1∶r⋆

1
, … ,Zr⋆

1
∶r⋆

1
),
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are independent with

(Y1∶m∶n, … ,Yd1∶m∶n)
d
= (Y (1)

1∶d1
, … ,Y (1)

d1∶d1
),

(Yd1+1∶m∶n, … ,Yd1+d2∶m∶n)
d
= (Y (2)

1∶d2
, … ,Y (2)

d2∶d2
),

and

(Z1∶r⋆
1
, … ,Zr⋆

1
∶r⋆

1
)

d
= (Z(1)

1∶r⋆
1

, … ,Z(1)
r⋆

1
∶r⋆

1

),

with d2 = n − d1 − r⋆
1

and r⋆
1

= 𝜚(d1)
Y (1)

1∶d1
, … ,Y (1)

d1∶d1
and Y (2)

1∶d2
, … ,Y (2)

d2∶d2
denote

order statistics from an absolutely continuous
cumulative distribution function F but right
truncated and left truncated at 𝜏1 respectively
Furthermore Z(1)

1∶r⋆
1

, … ,Z(1)
r⋆

1
∶r⋆

1

denote order
statistics from an absolutely continuous cumu-
lative distribution function F but left truncated
at 𝜏1 and shifted by 𝜈1-𝜏1

Proof From the representation of the joint

density function given in Theorem 3.1 or rather

Equation (3.1) and the probability P(D1 = d1)

given in (A.3), we get

f Y,Z∣D1

1… n

(
y1,d1

, y2,d2
, z ∣ d1

)
=

f Y,Z,D1

1… n

(
y1,d1

, y2,d2
, z, d1

)
P (D1 = d1)

= d1!
d1∏

h=1

f0 (yh∶m∶n)
F0(𝜏1)

d2!
d2∏

i=1

f0
(
yd1+i∶m∶n

)
1 − F0(𝜏1)

× r⋆
1
!

r⋆
1∏

j=1

f1
(

zj∶r⋆
1
+ v1 − 𝜏1

)
1 − F1(v1)

,

for y1,d1
= (y1,1∶n, … , y1,d1∶n), y2,d2

=
(y2,1∶n, … , y2,d2∶n) and z = (z1∶r⋆

1
, … , zr⋆

1
∶r⋆

1
).

This proves the result. ▪

4 MLE IN SLT

First, it is worth mentioning that the MLEs of the parame-

ters on stage s0 always exist since d1 + d2 = n − r⋆
1
> 0 by

assumption in the SLT model. The MLEs of the parameters

on stage s1 do not exist when there are no failures observed on

stage s1 (ie, r⋆
1
= 0). In particular, the probability to observe

at least one failure on stage s1 is given in Lemma 4.1.

Lemma 4.1 Let

n⋆ =

{⌊
n − 1

𝜋1

⌋
, Type-P

n − 1, Type-M
. (4.1)

Then P(R⋆
1

> 0) = P(𝜚(D1) > 0) =∑n⋆
d1=0 P(D1 = d1) where P(D1 = d1) is given in

(A.3). In particular

PType-P(R⋆
1
> 0) ≤ PType-M(R⋆

1
> 0) = 1 − Fn

0
(𝜏1). (4.2)

Proof The condition R⋆
1

= 𝜚(D1) > 0 is

equivalent to⎧⎪⎪⎨⎪⎪⎩

⌊𝜋1 ⋅ ⌊n − D1⌋⌋ ≥ 1 ⇐⇒

D1 ≤ ⌊
n − 1

𝜋1

⌋
, Type-P

n − D1 ≥ 1 ⇐⇒

D1 ≤ n − 1, Type-M

⇐⇒ D1 ≤ n⋆. (4.3)

The inequality in (4.2) follows directly since

n⋆(Type - P)≤ n⋆(Type-M). ▪

4.1 Exponential distributions

The probability density function and the cumulative distribu-

tion function of the exponential distribution Exp(𝜗) are given

by

f (x) = 1

𝜗
e−x∕𝜗 1(0,∞)(x), F(x) = (1 − e−x∕𝜗) 1(0,∞)(x),

𝜗 > 0, x ∈ R.

Suppose that the lifetime distributions on stages s0 and s1

are exponentials with means 𝜗0 and 𝜗1, respectively. Then,

v1 = 𝜏1
𝜗1

𝜗0

. Furthermore, from (3.1), the likelihood function

for the data (y1,d1
, y2,d2

) = (y1∶m∶n, … , yd1+d2∶m∶n) and z =
(z1∶r⋆

1
, … , zr⋆

1
∶r⋆

1
) is given by

L(𝜗0, 𝜗1 ∣ y1,d1
, y2,d2

, z) = c1

𝜗m
0
𝜗

r⋆
1

1

exp

{
− r⋆

1
𝜏1

(
1

𝜗0

− 1

𝜗1

)

− 1

𝜗0

m∑
i=1

yi∶m∶n −
1

𝜗1

r⋆
1∑

j=1

zj∶r⋆
1

}
, (4.4)

with c1 =
(

n
d1

)
d1!d2!r⋆1 !, where m = d1 + d2 and d2 = n −

d1−r⋆
1

. Notice that d1 is implicitly known from the data. This

yields the log-likelihood function

𝓁(𝜗0, 𝜗1 ∣ y1,d1
, y2,d2

, z) = log(c1) − m log(𝜗0)

− 1

𝜗0

( m∑
i=1

yi∶m∶n + r⋆
1
𝜏1

)
− 1

𝜗1

⎛⎜⎜⎝
r⋆

1∑
j=1

zj∶r⋆
1
− r⋆

1
𝜏1

⎞⎟⎟⎠ .
The MLEs can be obtained by standard derivations which, for

brevity, are omitted. Therefore, the MLE of 𝜗0 is given by

𝜗0 = 1

D1 + D2

(D1+D2∑
i=1

Yi∶m∶n + R⋆
1
𝜏1

)
. (4.5)

Given R⋆
1
> 0, the MLE of 𝜗1 is obtained as

𝜗1 = 1

R⋆
1

⎛⎜⎜⎝
R⋆

1∑
j=1

Zj∶R⋆
1
− R⋆

1
𝜏1

⎞⎟⎟⎠ . (4.6)

It should be noted that the MLE 𝜗0 depends only on the

observations on stage s0 whereas the MLE 𝜗1 depends only

on the observations on stage s1. Hence, from Lemma 3.3, the

MLEs 𝜗0 and 𝜗1 are independent given D1 = d1.
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4.1.1 Density functions of the MLEs
In the SLT model, we consider two options to generate the

number of objects r⋆
1

that are effectively put on stage s1 at

stage-change time 𝜏1 (cf. Remark 2.2). This means that we

get two different representations for the density functions of

the MLEs 𝜗0 and 𝜗1, respectively, depending on the way of

generating r⋆
1

. These density functions are given in Theorem

4.2. We use the following notation

𝛾(t; a, b) = 1

abΓ(b)
tb−1e−t∕a1(0,∞)(t), t ∈ R, (4.7)

for the density function of a gamma distribution with param-

eters a,b> 0 where Γ(⋅) denotes the gamma function.

Theorem 4.2 Let n⋆ be defined as in (4.1).

Then

1. The density function f 𝜗0

𝜗0
of 𝜗0 is given by

f 𝜗0

𝜗0
(t) =

n∑
d1=0

f𝜗0,d1
(t), (4.8)

where

f𝜗0,d1
(t) =

d1∑
i=0

(−1)i
(

n
d1

)(
d1

i

)
e−(n−d1+i)𝜏1∕𝜗0

× 𝛾

(
t − (n − d1 + i)𝜏1

n − 𝜚(d1)
; 𝜗0

n − 𝜚(d1)
, n − 𝜚(d1)

)
,

for t∈R with 𝜚 as in (2.1).

2. The conditional density function f 𝜗1∣R⋆
1
>0

𝜗0,𝜗1
of

𝜗1 is given by

f 𝜗1∣R⋆
1
>0

𝜗0,𝜗1
(t) =

n⋆∑
d1=0

q𝜗0,d1

n⋆∑
i=0

q𝜗0,i

𝛾

(
t; 𝜗1

𝜚(d1)
, 𝜚(d1)

)
, t ∈ R,

(4.9)

with

q𝜗0,j =
(

n
j

)
[1 − e−𝜏1∕𝜗0]j[e−𝜏1∕𝜗0]n−j, j = 0, … , n⋆, and

(4.10)

r⋆
1
= 𝜚(d1) =

{⌊𝜋1 ⋅ (n − d1)⌋, Type-P
min{n − d1,R0

1
}, Type-M

, d1 = 0,…, n⋆.

(4.11)

Note that the density function f 𝜗0

𝜗0
is a generalized mixture

of shifted gamma densities whereas the conditional density

function f 𝜗1∣R⋆
1
>0

𝜗0,𝜗1
is a mixture of gamma densities.

Proof

1. The MLE 𝜗0 in (4.5) has the same structure

as the MLE 𝜗 established in Laumen and

Cramer (2019, equation (3.2)) for PC-FCT.

Its distribution can be directly taken from

Theorem 3.1 in Laumen and Cramer (2019)

(with k = 2, T1 = 𝜏1) since it depends

only on the random variables Y1,D1
,ZR⋆

1
, and

D1 which are progressively censored fail-

ure times with one fixed censoring time 𝜏1.

Therefore, we find directly the density func-

tion f 𝜗0

𝜗0
of 𝜗0 given in (4.8) for the two

scenarios Type-P and Type-M, respectively.

2. First, using Equation (A.3), we see that q𝜗0,j
has the representation given in (4.10). Then,

with (4.3), we get for t∈R

P𝜗1

𝜗0,𝜗1
(𝜗1 ≤ t,R⋆

1
> 0)

=
n⋆∑

d1=0

P𝜗0,𝜗1

⎛⎜⎜⎝
R⋆

1∑
j=1

(Zj∶R⋆
1
− 𝜏1) ≤ R⋆

1
t|D1 = d1

⎞⎟⎟⎠ q𝜗0,d1
.

Recalling (2.1), we have that R⋆
1

given D1 = d1

equals r⋆
1
= 𝜚(d1) as specified in (4.11). Hence,

using Lemma 3.3, we know that

(Z1∶r⋆
1
− 𝜏1, … ,Zr⋆

1
∶r⋆

1
− 𝜏1) ∣ D1 = d1

d
= (Z(1)

1∶r⋆
1

, … ,Z(1)
r⋆

1
∶r⋆

1

),

where Z(1)
1∶r⋆

1

, … ,Z(1)
r⋆

1
∶r⋆

1

are order statistics

based on the exponential distribution Exp(𝜗1).

Notice that, due to the cumulative exposure

model,

f1(x + v1 − 𝜏1)
1 − F1(v1)

=
f1(x + v1 − 𝜏1)

1 − F0(𝜏1)
=

f1(x)
1 − F1(𝜏1)

= 1

𝜗1

e−(x−𝜏1)∕𝜗1 , x > 𝜏1.

Thus, we get with r⋆
1
= 𝜚(d1)

P𝜗1

𝜗0,𝜗1
(𝜗1 ≤ t,R⋆

1
> 0) =

n⋆∑
d1=0

q𝜗0,d1 ∫
𝜚(d1) t

0

𝛾(s; 𝜗1, 𝜚(d1))𝑑𝑠.

Dividing this expression by the probability

P𝜗0
(R⋆

1
> 0) = P𝜗0

(D1 ≤ n⋆) =
n⋆∑
i=0

P𝜗0
(D1 = i) =

n⋆∑
i=0

q𝜗0,i

we arrive at the desired conditional density

function f 𝜗1∣R⋆
1
>0

𝜗0,𝜗1
given in (4.9). ▪

Corollary 4.3

1. The mean and variance of 𝜗0 are given by

E𝜗0
(𝜗0) = 𝜗0 + bias𝜗0

(𝜗0) and

Var𝜗0
(𝜗0) = MSE𝜗0

(𝜗0) − (bias𝜗0
(𝜗0))2,
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where

bias𝜗0

(
𝜗0

)
=

n∑
d1=0

d1∑
i=0

(−1)i
(

n
d1

)(
d1

i

)
× e−(n−d1+i)𝜏1∕𝜗0

(n − d1 + i)𝜏1

n − 𝜚(d1)
,

MSE𝜗0

(
𝜗0

)
=

n∑
d1=0

d1∑
i=0

(−1)i
(

n
d1

)(
d1

i

)

× e−(n−d1+i)𝜏1∕𝜗0

(
𝜗2

0

n − 𝜚(d1)
+

(n − d1 + i)2𝜏2
1

(n − 𝜚(d1))2

)

are bias and mean squared error of 𝜗0 respec-
tively with 𝜚 as in 2.1

2. The conditional mean and conditional vari-
ance of 𝜗1 are given by

E𝜗0,𝜗1

(
𝜗1 ∣ R⋆

1
> 0

)
= 𝜗1 and

Var𝜗0,𝜗1

(
𝜗1 ∣ R⋆

1
> 0

)
= 𝜗2

1

n⋆∑
d1=0

q𝜗0,d1∑n⋆
i=0 q𝜗0,i

1

𝜚(d1)

with 𝜚 as in 2.1 Notice that conditionally on
R⋆

1
> 0, 𝜗1 is an unbiased estimator of 𝜗 for

any 𝜗> 0

4.1.2 Confidence intervals for the scale parameters
In order to construct confidence intervals for the scale param-

eters 𝜗0 and 𝜗1 by the method of pivoting the survival

function (cf. Casella & Berger, 2002, pp. 430–435, Balakrish-

nan, Cramer, & Iliopoulos, 2014, Hahn, Meeker, & Escobar,

2017), we need the survival functions of 𝜗0 and 𝜗1, respec-

tively. These survival functions are given in Corollary 4.4 for

both options Type-P and Type-M. We present alongside with

the survival functions the limits that are also necessary for

the construction of the confidence intervals. The proofs of the

following results are straightforward using elementary calcu-

lations. Γ(⋅; a, b) denotes the survival function of a gamma

distribution with density function 𝛾(⋅;a,b) given in (4.7).

Corollary 4.4

1. The survival function of 𝜗0 is given by

P𝜗0

(
𝜗0 > t

)
=

n∑
d1=0

d1∑
i=0

(−1)i
(

n
d1

)(
d1

i

)
e−(n−d1+i)𝜏1∕𝜗0

× Γ
(

t − (n − d1 + i)𝜏1

n − 𝜚(d1)
; 𝜗0

n − 𝜚(d1)
, n − 𝜚(d1)

)
,

for t∈R with

lim
𝜗0→0+

P𝜗0
(𝜗0 > t) = 0 and lim

𝜗0→+∞
P𝜗0

(𝜗0 > t) = 1, t ∈ R.

2. The conditional survival function of 𝜗1 is
given by

P𝜗0,𝜗1
(𝜗1 > t ∣ R⋆

1
> 0)

=
n⋆∑

d1=0

q𝜗0,d1∑n⋆
i=0 q𝜗0,i

Γ
(

t; 𝜗1

𝜚(d1)
, 𝜚(d1)

)
, t ∈ R,

with

lim
𝜗1→0+

P𝜗0,𝜗1
(𝜗1 > t ∣ R⋆

1
> 0) = 0 and

lim
𝜗1→+∞

P𝜗0,𝜗1
(𝜗1 > t ∣ R⋆

1
> 0) = 1, t ∈ R.

Notice that the conditional survival function of 𝜗1 in Corol-

lary 4.4(2) depends on 𝜗0 since the conditional density func-

tion f 𝜗1∣R⋆
1
>0

𝜗0,𝜗1
of 𝜗1 depends on 𝜗0.

The stochastic monotonicity of an estimator is an essential

condition to construct exact confidence intervals by the pivot-

ing method. Hence, we establish the stochastic monotonicity

of 𝜗0 and 𝜗1 in Theorem 4.6. Before we can prove the stochas-

tic monotonicity of 𝜗1 (given R⋆
1
> 0), we need the following

auxiliary result which can be found in, for example, Marshall

and Olkin (2007, pp. 310, 311).

Lemma 4.5 The survival functionΓ(t; 𝜗, 𝛽) of
a gamma distribution is increasing in 𝜗> 0 for
every fixed 𝛽t> 0

Theorem 4.6

1. The MLE 𝜗0 in 4.5 is stochastically increas-
ing in 𝜗> 0 that is for all t> 0

P𝜗0
(𝜗0 > t) ≤ P𝜗′

0
(𝜗0 > t), 𝜗0 < 𝜗′

0
.

2. Conditionally on R⋆
1
> 0 the MLE 𝜗1 in 4.6

is stochastically increasing in 𝜗> 0 for all
𝜗> 0 that is for all t> 0 and 𝜗> 0

P𝜗0,𝜗1
(𝜗1 > t ∣ R⋆

1
> 0) ≤ P𝜗0,𝜗

′
1
(𝜗1 > t ∣ R⋆

1
> 0),

𝜗1 < 𝜗′
1
.

Proof

1. The result follows directly from Theorem 3.5

in Laumen and Cramer (2019) with k = 2 and

T1 = 𝜏1.

2. Let t > 0 and 0<𝜗1 <𝜗′1 Then, for all 𝜗0 > 0,

we get by Lemma 4.5

P𝜗0,𝜗1
(𝜗1 > t ∣ R⋆

1
> 0) =

n⋆∑
d1=0

q𝜗0,d1∑n⋆
i=0 q𝜗0,i

Γ
(

t; 𝜗1

𝜚(d1)
, 𝜚(d1)

)

≤
n⋆∑

d1=0

q𝜗0,d1∑n⋆
i=0 q𝜗0,i

Γ
(

t;
𝜗′

1

𝜚(d1)
, 𝜚(d1)

)
=P𝜗0,𝜗

′
1
(𝜗1 > t ∣ R⋆

1
> 0).

▪
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The results established in Corollary 4.4 and Theorem 4.6

enable us to construct exact confidence intervals for 𝜗0. Thus,

in order to get an exact confidence interval CI𝜗0
= [𝜗0,L,𝜗0,U]

for 𝜗0 with level of significance 𝛼 ∈ (0, 1), we have to solve

the equations

P𝜗0,L (𝜗0 > 𝜗0,𝑜𝑏𝑠) =
𝛼

2
and

P𝜗0,U (𝜗0 > 𝜗0,𝑜𝑏𝑠) = 1 − 𝛼

2
(4.12)

for 𝜗0,L and 𝜗0,U , respectively. Furthermore, its not possi-

ble to construct exact confidence intervals for 𝜗1 using this

method since the conditional survival function of 𝜗1 depends

on 𝜗0, too. However, proceeding as in Kundu, Kannan, and

Balakrishnan (2004), approximate confidence intervals can

be established by replacing 𝜗0 by the value of its MLE 𝜗0,𝑜𝑏𝑠.

Hence, we get approximate confidence intervals CI𝜗1
= [𝜗1,L,

𝜗1,U] for 𝜗1 with 𝛼 ∈ (0, 1) by solving the equations

P𝜗0,𝑜𝑏𝑠,𝜗1,L
(𝜗1 > 𝜗1,𝑜𝑏𝑠|R⋆

1
> 0) = 𝛼

2
and

P𝜗0,𝑜𝑏𝑠,𝜗1,U
(𝜗1 > 𝜗1,𝑜𝑏𝑠|R⋆

1
> 0) = 1 − 𝛼

2
(4.13)

for 𝜗1,L and 𝜗1,U , respectively. As can be seen from the

simulations presented in Section 6, this construction yields

confidence intervals with a coverage probability close to the

desired level of significance.

4.2 Cumulative exposure model with Weibull
and exponential distribution

In this section, we consider a cumulative exposure model

for Weibull and exponential lifetimes. The probability den-

sity function and the cumulative distribution function of the

Weibull distribution Wei(𝜗, 𝛽) are given by

f (x) = 𝛽

𝜗
x𝛽−1e−x𝛽∕𝜗 1(0,∞)(x), F(x) = (1 − e−x𝛽∕𝜗) 1(0,∞)(x),

𝜗 > 0, 𝛽 > 0, x ∈ R.

We assume that the lifetimes on stage s0 are

Wei(𝜗0, 𝛽)-distributes whereas they are Exp(𝜗1)-distributed

on stage s1. Therefore, v1 = 𝜏
𝛽

1

𝜗1

𝜗0

.

Using Equation (3.1), the likelihood function for the

observed data (y1,d1
, y2,d2

) = (y1∶m∶n, … , yd1+d2∶m∶n) and z =
(z1∶r⋆

1
, … , zr⋆

1
∶r⋆

1
) is given by

L(𝜗0, 𝛽, 𝜗1 ∣ y1,d1
, y2,d2

, zr⋆
1
)

= c1

𝛽m

𝜗m
0

1

𝜗
r⋆

1

1

exp

{
−r⋆

1

{
𝜏
𝛽

1

𝜗0

− 𝜏1

𝜗1

− 1

𝜗0

m∑
i=1

yi∶m∶n

}𝛽

− 1

𝜗1

r⋆
1∑

j=1

zj∶r⋆
1

⎫⎪⎬⎪⎭
×

m∏
i=1

(yi∶m∶n)𝛽−1,

where m = d1 + d2, d2 = n−d1−r⋆
1

, and c1 =
(

n
d1

)
d1!d2!r⋆1 !.

The corresponding log-likelihood function is given by

𝓁(𝜗0, 𝛽, 𝜗1 ∣ y1,d1
, y2,d2

, z1,r⋆
1
) = log(c1)+m log(𝛽) − m log(𝜗0)

−r⋆
1

log(𝜗1) − r⋆
1

(
𝜏
𝛽

1

𝜗0

− 𝜏1

𝜗1

)
− 1

𝜗0

m∑
i=1

(yh,i∶n)𝛽 −
1

𝜗1

r⋆
1∑

j=1

zj∶r⋆
1

+(𝛽 − 1)
m∑

i=1

log(yi∶m∶n).

Notice that the MLEs of 𝜗0 and 𝛽 always exist by construction

of the SLT model and that the MLE of 𝜗1 does not exist when

r⋆
1
= 0. Given R⋆

1
> 0, the MLE of 𝜗1 is given by

𝜗1 = 1

R⋆
1

⎛⎜⎜⎝
R⋆

1∑
j=1

Zj∶R⋆
1
− R⋆

1
𝜏1

⎞⎟⎟⎠ (4.14)

as in (4.6). The MLE of 𝜗0 is given by

𝜗0(𝛽) =
1

M

( M∑
i=1

(Yi∶M∶n)𝛽 + R⋆
1
𝜏
𝛽

1

)
, (4.15)

depending on the MLE of 𝛽. The MLE 𝛽 can be determined

by solving the equation

1

𝛽
−

r⋆
1
𝜏
𝛽

1
log(𝜏1) +

∑m
i=1 (yi∶m∶n)𝛽 log(yi∶m∶n)

r⋆
1
𝜏
𝛽

1
+
∑m

i=1 (yi∶m∶n)𝛽

+ 1

m

m∑
i=1

log(yi∶m∶n) = 0 (4.16)

for 𝛽. This equation can only be solved numerically, for

example, with the Newton–Raphson method (cf. Ortega &

Rheinboldt, 1970, pp. 181–189). A simple option to choose

an initial value is given by 𝛽 = 1. It should be noted that it fol-

lows directly from Balakrishnan and Kateri (2008, eq. (3.11);

case progressive Type-I censoring) that Equation (4.16) has a

unique solution for 𝛽 > 0.

Note that the MLEs 𝜗0 and 𝛽 depend only on the obser-

vations on stage s0. Hence, analogously to the case of two

exponential distributions, the MLEs on each stage can be

obtained only with the observed data on the corresponding

stage. The MLE 𝜗1 given in (4.14) has the same form as in

Section 4.1 (Equation (4.6)). However, the density function of

𝜗1 is slightly different from that one given in Theorem 4.2(2)

since F0 is the cumulative distribution function of a Weibull

distribution.

Theorem 4.7 The conditional density func-
tion f 𝜗1∣R⋆

1
>0

𝜗0,𝛽,𝜗1
of 𝜗1 is given by

f 𝜗1∣R⋆
1
>0

𝜗0,𝛽,𝜗1
(t) =

n⋆∑
d1=0

q𝜗0,𝛽,d1∑n⋆
i=0 q𝜗0,𝛽,i

𝛾

(
t; 𝜗1

𝜚(d1)
, 𝜚(d1)

)
, t ∈ R,
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TABLE 1 Two samples from an exponential distribution with n = 16, 𝜗0 = 40, 𝜗1 = 20, and 𝜏1 = 15

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v(0)j∶16
2.55 7.77 9.01 9.23 12.34 18.61 19.39 27.54 34.03 39.67 43.25 46.47 58.76 91.46 95.53 115.78

v(1)j∶16
8.78 11.39 12.00 12.11 13.67 16.81 17.19 21.27 24.51 27.34 29.12 30.73 36.88 53.23 55.26 65.39

with r⋆
1
= 𝜚(d1) as in (4.11) and

q𝜗0,𝛽,j =
(

n
j

)
[1 − e−𝜏

𝛽

1
∕𝜗0]j[e−𝜏

𝛽

1
∕𝜗0 ]n−j, j = 0, … , n⋆.

As in Corollary 4.3, it can be shown that, conditionally on

R⋆
1
> 0, the MLE 𝜗1 is an unbiased estimator for both options

Type-P and Type-M.

Furthermore, a confidence interval for 𝜗1 can be obtained

by proceeding as in Section 4.1.2 for exponentially distributed

lifetimes. In particular, the conditional survival function

P𝜗0,𝛽,𝜗1
(𝜗1 > t ∣ R⋆

1
> 0)

=
n⋆∑

d1=0

q𝜗0,𝛽,d1∑n⋆
i=0 q𝜗0,𝛽,i

Γ
(

t; 𝜗1

𝜚(d1)
, 𝜚(d1)

)
, t ∈ R,

is seen to be stochastically increasing in 𝜗1 with limits as in

Corollary 4.4. Notice that the conditional survival function of

𝜗1 depends on 𝜗0 and 𝛽, too. In order to compute an approx-

imate confidence interval CI𝜗1
= [𝜗1,L,𝜗1,U] for 𝜗1 with level

𝛼 ∈ (0, 1), we have to solve the equations

P𝜗0,𝑜𝑏𝑠,𝛽𝑜𝑏𝑠,𝜗1,L
(𝜗1 > 𝜗1,𝑜𝑏𝑠 ∣ R⋆

1
> 0) = 𝛼

2
,

P𝜗0,𝑜𝑏𝑠,𝛽𝑜𝑏𝑠,𝜗1,U
(𝜗1 > 𝜗1,𝑜𝑏𝑠 ∣ R⋆

1
> 0) = 1 − 𝛼

2

for 𝜗1,L and 𝜗1,U , respectively.

5 ILLUSTRATIVE EXAMPLE

To get a better understanding of the SLT model, we present

a detailed illustrative example by using the generation pro-

cedure for SLTOSs (cf. Procedure 2.3). In Table 1, we show

two samples generated according to step (2) of Procedure

2.3 when the lifetimes are exponentially distributed. Further-

more, the resulting SLTOSs for the two scenarios Type-P and

Type-M are given in Tables 2 and 3, respectively. The sets

 , , and  occurring in the generation process for both

options (Type-P and Type-M) are given by

Type-P ∶  = {1, 2, 3, 4, 5}, = {6, 7, 8, 10, 11, 14},
and  = {9, 12, 13, 15, 16}

so that d1 = ∣  ∣ = 5, d2 = ∣  ∣ = 6, and r⋆
1
= ∣  ∣ = 5,

Type-M ∶  = {1, 2, 3, 4, 5}, = {10, 11, 15}, and

 = {6, 7, 8, 9, 12, 13, 14, 16}
so that d1 = ∣  ∣ = 5, d2 = ∣  ∣ = 3, and r⋆

1
= ∣  ∣ = 8.

TABLE 2 Stage life testing sample with p1 = 0.5 (Type-P)

j 1 2 3 4 5 6

yj:11:16 2.55 7.77 9.01 9.23 12.34

y5+j:11:16 18.61 19.39 27.54 39.67 43.25 91.46

zj:5 24.51 30.73 36.88 55.26 65.39

TABLE 3 Stage life testing sample with R0
1
= 8 (Type-M)

j 1 2 3 4 5 6 7 8

yj:8:16 2.55 7.77 9.01 9.23 12.34

y5+j:8:16 39.67 43.25 95.53

zj:8 16.81 17.19 21.27 24.51 30.73 36.88 53.23 65.39

Based on these values (cf. Tables 2 and 3), the MLEs are given

by

Type-P ∶ 𝜗0 = 1

5 + 6
(280.82 + 5 ⋅ 15) = 32.35

and 𝜗1 = 1

5
(212.77 − 5 ⋅ 15) = 27.55,

Type-M ∶ 𝜗0 = 1

5 + 3
(219.35 + 8 ⋅ 15) = 42.42

and 𝜗1 = 1

8
(266.01 − 8 ⋅ 15) = 18.25.

The corresponding densities (with true values 𝜗0,𝜗1) are

depicted in Figure 3. The confidence intervals with level of

significance 𝛼 = 0.05 are obtained as

Type-P ∶ 𝐶𝐼𝜗0
= [19.23, 63.74]

and 𝐶𝐼𝜗1
= [13.08, 92.61],

Type-M ∶ 𝐶𝐼𝜗0
= [23.53, 98.25]

and 𝐶𝐼𝜗1
= [10.11, 42.40].

6 SIMULATION STUDY

6.1 Exponential distributions

6.1.1 MLEs
For illustration, we simulated N = 106 samples from the expo-

nential distribution with 𝜗0 = 1.0 on stage s0 and 𝜗1 = 0.5 on

stage s1, and sample size n = 12. The same samples were then

used to generate the SLTOSs with option Type-P and Type-M,

respectively. Based on the generated samples, we derived the

mean of the estimates
̄̂
𝜗0 and

̄̂
𝜗1 via

̄̂
𝜗 = 1

N

∑N
i=1 𝜗

(i) and the

sample coefficient of variation 𝐶𝑉 𝜗0
and 𝐶𝑉 𝜗1

defined by

𝐶𝑉 𝜗 = 𝐶𝑉 ( ̄̂𝜗) =
𝑆𝐷𝜗

̄̂
𝜗

, where
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FIGURE 3 Plots of density functions f 𝜗0

𝜗0
(left) and f 𝜗1 ∣R⋆

1
>0

𝜗0 ,𝜗1
(right) and for Type-M (solid blue line) and Type-P (dashed red line) with true values 𝜗0 = 40

and 𝜗1 = 20 (see caption of Table 1) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Maximum likelihood estimations for 𝜗0 = 1.0 and 𝜗1 = 0.5 with 𝜏1 = 0.5, n = 12, and N = 106 (stage life testing for exponential distributions)

Model 𝝅1 R0
1

̄̂
𝝑0

̄̂
𝝑1 E𝝑0

𝑪𝑽
𝝑0

𝑪𝑽
𝝑1

𝑪𝑽 𝝑0
𝑪𝑽 𝝑1

m r⋆1 N1

Type-P 0.25 1.0089 0.4996 1.0087 0.3073 0.8766 0.3073 0.8764 10.55 1.45 986,446

0.50 – 1.0253 0.5001 1.0250 0.3426 0.5677 0.3424 0.5672 8.61 3.39 999,701

0.75 1.0611 0.5001 1.0609 0.3964 0.4630 0.3971 0.4621 6.91 5.09 999,701

Type-M 3 1.0004 0.5000 1.0002 0.3327 0.5783 0.3329 0.5778 9.00 3.00 999,982

— 6 1.0179 0.5001 1.0177 0.3811 0.4197 0.3818 0.4193 6.21 5.79 999,982

9 1.1438 0.5000 1.1433 0.4640 0.3852 0.4645 0.3848 4.83 7.17 999,982

𝑆𝐷𝜗 =

√√√√ 1

N − 1

N∑
i=1

(𝜗(i) − ̄̂
𝜗)2

denotes the standard deviation. Furthermore, we calculated

the mean number of the observed objects on each stage

(ie, m, r⋆
1

). Moreover, we computed the expectation E𝜗0
=

E𝜗0
(𝜗0) and the coefficient of variation CI𝜗0

and CI𝜗1
defined

by

𝐶𝑉 𝜗 =

√
𝑉 𝑎𝑟𝜗(𝜗)

E𝜗

.

Since 𝜗1 is unbiased, we omit the expectation E𝜗1
(𝜗1) =

𝜗1. Furthermore, the counter N1 ≤ N denotes the number

of samples where at least one failure has been observed on

stage s1, that is, N1 is the number of samples with r⋆
1

>

0. Note that we used the same samples for each design

of the life test. From the results presented in Table 4, we

conclude:

• The expectations E𝜗0
are close to the means

̄̂
𝜗0;

• The values 𝐶𝑉 𝜗0
and 𝐶𝑉 𝜗1

are close to the

theoretical values CI𝜗0
and CI𝜗1

, respectively;

• The higher the means m, the closer the means
̄̂
𝜗0 are to the true value 𝜗0 = 1.0 and the

TABLE 5 Probabilities from Lemma 4.1 and respective
frequencies in the setting of Table 4

Model 𝝅1 R0
1 n⋆ P(R⋆

1 > 0) Frequency

Type-P 0.25 — 8 0.9864756680 0.986446

0.50 — 10 0.9997315155 0.999701

0.75 — 10 0.9997315155 0.999701

Type-M — 3, 6, 9 11 0.9999862301 0.999982

smaller are the values of 𝐶𝑉 𝜗0
for both

options;

• The higher the means r⋆
1

, the smaller are the

values of 𝐶𝑉 𝜗1
for both scenarios;

• The means
̄̂
𝜗1 are more or less identical to the

true value 𝜗1 = 0.5. This underlines that 𝜗1 is

an unbiased estimator for both options;

• The difference between the two options

Type-P and Type-M is reflected by the dif-

ferent means m and r⋆
1

on stage s0 and s1,

respectively;

• The values of N1 show that the MLE 𝜗1 exists

more often for Type-M than for Type-P. This

illustrates Lemma 4.1. The theoretical prob-

abilities as well as the respective frequencies

are given in Table 5.

http://wileyonlinelibrary.com
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TABLE 6 Confidence intervals (“nleqslv”) for 𝜗0 = 1.0 and 𝜗1 = 0.5 with 𝜏1 = 0.5, n = 12, 𝜋1 = 0.50, R0
1
= 6, and

N = 104 (stage life testing for exponential distributions)

Model 𝜶 𝑪𝑰𝝑0
CP𝝑0

̄̂
𝝑0 𝑪𝑰𝝑1

CT𝝑1

̄̂
𝝑1 m r⋆1 N1

Type-P 0.01 [0.4798,3.0407] 99.06 1.0241 [0.1562,7.9395] 99.48 0.4988 8.61 3.39 9,998

0.05 [0.5686,2.2806] 94.98 1.0241 [0.2066,2.9087] 95.84 0.4988 8.61 3.39 9,998

0.10 [0.6226,1.9868] 89.75 1.0241 [0.2389,2.0071] 90.97 0.4988 8.61 3.39 9,998

Type-M 0.01 [0.4323,3.8828] 99.02 1.0195 [0.1996,2.6256] 99.33 0.4977 6.21 5.79 10,000

0.05 [0.5233,2.7213] 94.70 1.0195 [0.2473,1.5352] 95.89 0.4977 6.21 5.79 10,000

0.10 [0.5802,2.2978] 89.89 1.0195 [0.2767,1.2429] 91.16 0.4977 6.21 5.79 10,000

TABLE 7 Maximum likelihood estimations (“nleqslv”) for 𝜗0 = 2.0, 𝛽 = 4.0 and 𝜗1 = 0.5 with 𝜏1 = 1.1, n = 24, and N = 106 (stage life
testing for Weibull and exponential distribution)

Model 𝝅1 R0
1

̄̂
𝝑0

̄̂
𝜷

̄̂
𝝑1 𝑪𝑽

𝝑0
𝑪𝑽 𝜷 𝑪𝑽

𝝑1
𝑪𝑽 𝝑1

m r⋆1 N1

0.25 2.1726 4.2748 0.4994 0.3285 0.1819 0.6602 0.6596 21.49 2.51 999,741

Type-P 0.50 — 2.1720 4.3180 0.5002 0.3361 0.1999 0.4385 0.4385 18.48 5.52 999,997

0.75 2.1708 4.3629 0.5000 0.3444 0.2272 0.3581 0.3578 15.72 8.28 999,997

6 2.1605 4.3691 0.5003 0.3370 0.2034 0.4086 0.4086 18.01 5.99 999,999

Type-M — 12 2.1584 4.4384 0.5000 0.3435 0.2666 0.3091 0.3089 13.21 10.79 999,999

18 2.1858 4.3375 0.5000 0.3758 0.2880 0.3022 0.3020 12.46 11.54 999,999

TABLE 8 Confidence intervals (“nleqslv”) for 𝜗1 = 0.5, where 𝜗0 = 2.0 and 𝛽 = 4.0 with 𝜏1 = 1.1, n = 24, and N = 104

(stage life testing for Weibull and exponential distribution)

Model 𝜶 𝝅1 R0
1 𝑪𝑰𝝑1

L𝝑1
𝑪𝑷𝝑1

̄̂
𝝑1 m r⋆1 N1

Type-P 0.01 [0.1957,2.8419] 2.6462 99.33 0.4986 18.47 5.53 10,000

0.05 0.50 — [0.2445,1.6216] 1.3771 95.64 0.4986 18.47 5.53 10,000

0.10 [0.2745,1.2942] 1.0197 90.74 0.4986 18.47 5.53 10,000

Type-M 0.01 [0.2451,1.4533] 1.2082 99.50 0.4976 13.21 10.79 10,000

0.05 – 12 [0.2900,1.0663] 0.7763 96.20 0.4976 13.21 10.79 10,000

0.10 [0.3163,0.9308] 0.6145 91.30 0.4976 13.21 10.79 10,000

6.1.2 Exact confidence intervals
The results of a simulation study are presented in Table 6.

Based on the generated samples, we determined the con-

fidence intervals by solving the equations in (4.12) and in

(4.13) using the Newton–Raphson method with initial val-

ues 0.5 ⋅ 𝜗(i)h and 1.5 ⋅ 𝜗(i)h , h ∈ {0, 1}, i ∈ {1 ,… , N}.

We use the package “nleqslv” from the statistical software

R (cf. Hasselman, 2017). The implemented procedure is also

called “nleqslv.” This procedure is always used with default

options (ie, method = “Newton,” xtol = 10−8, ftol = 10−8).

We derived the “mean” of the confidence intervals 𝐶𝐼𝜗0
and

𝐶𝐼𝜗1
via 𝐶𝐼𝜗 = [𝜗L, 𝜗U]. Moreover, we present the empirical

coverage probabilities CP𝜗0 and CP𝜗1 which, in general, are

close to the desired level of significance. Recall that we used

the same samples for each design of the life test.

6.2 Weibull distribution and exponential distribution

To illustrate the MLEs and the constructed confidence inter-

vals, we conducted a simulation study. We applied the

Newton–Raphson method by using the procedure “nleqslv”

with initial value 𝛽 = 1 to solve Equation (4.16). With the

numerical results for 𝛽, we determined the estimates of 𝜗0

with (4.15). The estimates of 𝜗1 are obtained from (4.14). The

results for the MLEs are presented in Table 7 whereas the

results for the confidence intervals are presented in Table 8.

7 CONCLUSION AND OUTLOOK

The present SLT model is the first approach to incorporate the

idea of further testing of withdrawn objects in a progressive

Type-I censored life test. As a starting point, we have dis-

cussed this model for the case of a single stage-change time

𝜏1. It has been illustrated that the model can be seen as a uni-

fied approach to either progressive censoring or simple-step

stress testing which are seen to be marginal cases of the

present model ignoring some information. Moreover, the pre-

sented findings illustrate that exact and approximate inferen-

tial results can be obtained for exponentially and Weibull dis-

tributed lifetimes. An adaption to other lifetime distributions

will be possible.

Clearly, the present model can be developed in various

direction. First, it is evident that an extension to more than one

stage-change times 𝜏1 < · · ·< 𝜏k is an interesting option. This

k-step SLT is currently under study. Furthermore, it would be

possible to consider a link function relating the parameters
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𝜗0 and 𝜗1 to the SLT levels s0,s1 as it has been extensively

discussed in simple-step stress testing, for example,

𝜗j = 𝜂j(a, b), j = 0, 1, (7.1)

with an appropriate link functions 𝜂j, j = 0, 1, and (unknown)

parameters a,b. As an example, one might consider a

log-linear link relationship 𝜗j = ea+𝑏𝑠j , j = 0, 1 (see, eg,

Kundu and Ganguly (2017, p. 76)). Moreover, additional cen-

soring (Type-I, Type-II, or kinds of hybrid censoring) can be

imposed on the data. For instance, one may introduce a thresh-

old T that terminates the complete life test. On the other hand,

the experimenter may stop the observation after observing a

prefixed number ki of failures on each stage. This would intro-

duce a Type-II censoring to the data. Of course, such models

can also be extended to situation of k-step SLT where, due

to the complexity of the model, even more options will be

conceivable.

Furthermore, other inferential approaches like Bayesian

inference or the study of alternative lifetime distributions may

be possible.
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APPENDIX (PROOFS)

In the proof of Theorem 3.1, we utilize the distributional

assumptions sketched in Section 2 as well as the result pre-

sented in Lemma A.1. For integers 1 ≤ d < 𝓁 < k, we need the

set <
d … k,𝓁 of all permutations 𝜋 on the set {d ,… , k} with

𝜋(d)< · · · < 𝜋(k − 𝓁) and 𝜋(k − 𝓁 + 1)< · · · < 𝜋(k).

Lemma A.1 Let U1, … ,Uk
iid∼ U(0, 1)

and 2≤𝓁 ≤ k −1 Then,∑
𝜋∈<

1… k,𝓁

P
(
U𝜋(j)∶k ≤ tj, 1 ≤ j ≤ k − 𝓁,

U𝜋(j)∶k ≤ tj, k − 𝓁 + 1 ≤ j ≤ k
)

=
(

k
𝓁

)
P
(
Uj∶k−𝓁 ≤ tj, 1 ≤ j ≤ k − 𝓁

)
×P

(
Uj−k+𝓁∶𝓁 ≤ tj, k − 𝓁 + 1 ≤ j ≤ k

)
.

Proof of Lemma A.1 Let Bk =
{(u1, … , uk) ∈ [0, 1]k ∣ ∃𝜋 ∈ k ∶ u𝜋(1) <

· · · < u𝜋(k)} where k denotes the set of all

permutations of {1 ,… , k}. Furthermore, for

(u1 ,… , uk) ∈ Bk, denote by u1:k < · · · < uk:k
the respective ordered values. Then, for tj ∈R,

1 ≤ j ≤ k, we get∑
𝜋∈<

1… k,𝓁

P(U𝜋(j)∶k ≤ tj, 1 ≤ j ≤ k − 𝓁,

U𝜋(j)∶k ≤ tj, k − 𝓁 + 1 ≤ j ≤ k)

=
∑

𝜋∈<
1… k,𝓁

∫Bk

P(u𝜋(j)∶k ≤ tj, 1 ≤ j ≤ k − 𝓁,

u𝜋(j)∶k ≤ tj, k − 𝓁 + 1 ≤ j ≤ k)d(u1, … , uk)

Let (u1 ,… , uk) ∈ Bk be fixed but arbi-

trary. Then, for every 𝜋 ∈ <
1… k,𝓁 , there

exists exactly one permutation 𝜋∗ ∈ <
1… k,𝓁

with (u𝜋(j)∶k)1≤j≤k−𝓁 = (u𝜋∗

j∶k−𝓁)1≤j≤k−𝓁 and

(u𝜋(j)∶k)k−𝓁+1≤j≤k = (u𝜋∗

j−k+𝓁∶𝓁)k−𝓁+1≤j≤k. Here,

u𝜋∗

1∶k−𝓁 , … , u𝜋∗

k−𝓁∶k−𝓁 and u𝜋∗

1∶𝓁 , … , u𝜋∗

𝓁∶𝓁 denote

the ordered values of u𝜋∗(1), … , u𝜋∗(k−𝓁) and

u𝜋∗(k−𝓁+1), … , u𝜋∗(k), respectively.

=
∑

𝜋∗∈<
1… k,𝓁

∫Bk

P(u𝜋∗

j∶k−𝓁 ≤ tj, 1 ≤ j ≤ k − 𝓁,

u𝜋∗

j−k+𝓁∶𝓁 ≤ tj, k − 𝓁 + 1 ≤ j ≤ k)d(u1, … , uk)

=
∑

𝜋∗∈<
1… k,𝓁

P(U𝜋∗

j∶k−𝓁 ≤ tj, 1 ≤ j ≤ k − 𝓁,

U𝜋∗

j−k+𝓁∶𝓁 ≤ tj, k − 𝓁 + 1 ≤ j ≤ k)

Since (U𝜋∗

j∶k−𝓁)1≤j≤k−𝓁 and (U𝜋∗

j−k+𝓁∶𝓁)k−𝓁+1≤j≤k
depend on different random variables, we get

=
∑

𝜋∗∈<
1… k,𝓁

P
(

U𝜋∗

j∶k−𝓁 ≤ tj, 1 ≤ j ≤ k − 𝓁
)

× P
(

U𝜋∗

j−k+𝓁∶𝓁 ≤ tj, k − 𝓁 + 1 ≤ j ≤ k
)

Applying the iid assumption, that is,

U1, … ,Uk
iid∼ U(0, 1), and ∣ <

1… k,𝓁 ∣=
(

k
𝓁

)
,

we arrive finally at the desired representation

=
(

k
𝓁

)
P
(
Uj∶k−𝓁 ≤ tj, 1 ≤ j ≤ k − 𝓁

)
× P

(
Uj−k+𝓁∶𝓁 ≤ tj, 1 ≤ j ≤ 𝓁

)
.

▪

Proof of Theorem 3.1 The case d1 = n
has been discussed above. Hence, let d1 < n
and U1, … ,Un

iid∼ U(0, 1). We consider the
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probability

q(x1, … , xn) = P(Y1∶m∶n ≤ x1, … ,Yd1∶m∶n ≤ xd1
,

Yd1+1∶m∶n ≤ xd1+1, … ,Yn−r⋆
1
∶m∶n ≤ xn−r⋆

1
,

Z1∶r⋆
1
≤ xn−r⋆

1
+1, … ,Zr⋆

1
∶r⋆

1
≤ xn,D1 = d1), (A.1)

for x1 ≤ · · · ≤ xd1
≤ 𝜏1 < xd1+1 ≤ · · · ≤ xn−r⋆

1

and 𝜏1 < xn−r⋆
1
+1 ≤ · · · ≤ xn, where either r⋆

1
=⌊𝜋1 ⋅ (n − d1)⌋ or r⋆

1
= min{n − d1,R0

1
}. From

the definition of D1, D2, and r⋆
1

, it follows that.

1. a. d1 ordered observations are

located in the interval (−∞,𝜏1]

on stage s0;

b. n − d1 − r⋆
1

ordered observations

are located in the interval (𝜏1,∞)

on stage s0;

2. r⋆
1

ordered observations are located in the

interval (𝜏1,∞) on stage s1.

Inspired by Procedure 2.3, we model the

selection process in step (5) by a random permu-

tation of the integers d1 + 1 ,… , n. In particular,

Υ denotes the random variable selecting one

particular permutation from <
d1+1… n,r⋆

1

accord-

ing to a discrete uniform distribution, that is,

P(Υ = 𝜋) = 1∕
(

n − d1

r⋆
1

)
, 𝜋 ∈ <

d1+1… n,r⋆
1

.

Then,

q(x1, … , xn) = P(F−1
0
(Uj∶n) ≤ xj,

1 ≤ j ≤ d1,F−1
0
(UΥ(j)∶n) ≤ xj, d1 + 1 ≤ j ≤ n − r⋆

1
,

F−1
1
(UΥ(j)∶n) − v1 + 𝜏1 ≤ xj, n − r⋆

1
+ 1 ≤ j ≤ n,D1 = d1)

=
∑

𝜋∈<

d1+1… n,r⋆
1

P(F−1
0
(Uj∶n) ≤ xj, 1 ≤ j ≤ d1,

F−1
0
(U𝜋(j)∶n) ≤ xj, d1 + 1 ≤ j ≤ n − r⋆

1
,

F−1
1
(U𝜋(j)∶n) − v1 + 𝜏1 ≤ xj, n − r⋆

1
+ 1 ≤ j ≤ n,

D1 = d1 ∣ Υ = 𝜋)P(Υ = 𝜋)

Now, P(Υ = 𝜋) = 1∕
(

n − d1

r⋆
1

)
and

U1:n ,… , Un:n are independent of Υ by

assumption. Thus, we get

= 1(
n − d1

r⋆
1

) ∑
𝜋∈<

d1+1… n,r⋆
1

P(F−1
0
(Uj∶n) ≤ xj, 1 ≤ j ≤ d1,

F−1
0
(U𝜋(j)∶n) ≤ xj, d1 + 1 ≤ j ≤ n − r⋆

1
,

F−1
1
(U𝜋(j)∶n) − v1 + 𝜏1 ≤ xj, n − r⋆

1
+ 1 ≤ j ≤ n,D1 = d1)

Using that U1:n ,… , Ud1∶n and

Ud1+1∶n ,… , Un:n are (conditionally)

independent given D1 = d1, we find

= 1(
n − d1

r⋆
1

)P(Uj∶n ≤F0(xj), 1≤ j ≤ d1 ∣D1 = d1)P(D1 = d1)

×
∑

𝜋∈<

d1+1… n,r⋆
1

P(U𝜋(j)∶n ≤ F0(xj), d1 + 1 ≤ j ≤ n − r⋆
1
,

U𝜋(j)∶n ≤ F1(xj + v1 − 𝜏1), n − r⋆
1
+ 1 ≤ j ≤ n ∣ D1 = d1)

According to Iliopoulos and Balakr-

ishnan (2009), Ud1+1∶n ,… , Un:n |

D1 = d1 are distributed as order statis-

tics U∗
1∶n−d1

, … ,U∗
n−d1∶n−d1

from a uniform

distribution U(F0(𝜏1), 1). Thus, we arrive at

= 1(
n − d1

r⋆
1

)P(Uj∶n ≤F0(xj), 1 ≤ j ≤ d1 ∣D1= d1)P(D1= d1)

×
∑

𝜋∈<

1… n−d1 ,r
⋆
1

P(U∗
𝜋(j)∶n−d1

≤ F0(xj+d1
), 1 ≤ j ≤ n − d1 − r⋆

1
,

U∗
𝜋(j)∶n−d1

≤ F1(xj+d1
+ v1 − 𝜏1), n − d1 − r⋆

1
+ 1 ≤ j ≤ n − d1)

Interpreting U∗
1∶n−d1

, … ,U∗
n−d1∶n−d1

as order

statistics of the iid sample U∗
1
, … ,U∗

n−d1

iid∼
U(F0(𝜏1), 1), we get with Uj = (U∗

j −
F0(𝜏1))∕(1 − F0(𝜏1)) ∼ U(0, 1)

= 1(
n − d1

r⋆
1

)P
(
Uj∶n ≤ F0(xj), 1 ≤ j ≤ d1 ∣ D1 = d1

)

× P(D1 = d1)
∑

𝜋∈<

1… n−d1 ,r
⋆
1

P
(

U𝜋(j)∶n−d1
≤ F0(xj+d1

) − F0(𝜏1)
1 − F0(𝜏1)

,

1 ≤ j ≤ n − d1 − r⋆
1
,

U𝜋(j)∶n−d1
≤ F1(xj+d1

+ v1 − 𝜏1) − F0(𝜏1)
1 − F0(𝜏1)

,

n − d1 − r⋆
1
+ 1 ≤ j ≤ n − d1

)
.

Applying Lemma A.1 and using that

(U1∶n∕F0(𝜏1), … ,Ud1∶n∕F0(𝜏1)) ∣ D1 = d1

d
=

(U1∶d1
, … ,Ud1∶d1

) (see Iliopoulos & Balakr-

ishnan, 2009) and ∣ <
1… n−d1,r⋆1

∣ =
(

n − d1

r⋆
1

)
,

this yields

q(x1, … , xn) = P(D1 = d1)P
(

Uj∶d1
≤ F0(xj)

F0(𝜏1)
, 1 ≤ j ≤ d1

)
×P

(
Uj∶n−d1−r⋆

1
≤ F0(xd1+j) − F0(𝜏1)

1 − F0(𝜏1)
, 1 ≤ j ≤ n − d1 − r⋆

1

)
×P

(
Uj∶r⋆

1
≤ F1(xn−r⋆

1
+j + v1 − 𝜏1) − F0(𝜏1)

1 − F0(𝜏1)
, 1 ≤ j ≤ r⋆

1

)
.

(A.2)

Obviously, q can be written as an integral so that

the joint density function of Y, Z, D1 is given by

f Y,Z,D1 (t1, … , tn, d1) = P(D1 = d1)d1!

×
d1∏

j=1

f0(tj)
F0(𝜏1)

(n − d1 − r⋆
1
)!
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×
n−r⋆

1∏
j=d1+1

f0(tj)
1 − F0(𝜏1)

r⋆
1
!

n∏
j=n−r⋆

1
+1

f1(tj + v1 − 𝜏1)
1 − F0(𝜏1)

where t1 ≤ · · · ≤ td1 ≤ 𝜏1, 𝜏1 < td1+1 ≤ · · · ≤
tn−r⋆

1
, and 𝜏1 < tn−r⋆

1
+1 ≤ · · · ≤ tn. Using

that

P(D1 = d1) =
(

n
d1

)
Fd1

0
(𝜏1)(1 − F0(𝜏1))n−d1 , (A.3)

we arrive at the desired expression given in

(3.1). ▪


