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Abstract

In addition to being the world's greatest consumer and producer of industrial

metals, China now also features the most actively traded industrial metal fu-

tures contracts worldwide. To examine China's role in the global price for-

mation process of industrial metal futures markets, we use a sample of

29 futures contracts traded on exchanges in the United States, the United

Kingdom, India, and China. We estimate vector autoregressive models and

conduct variance decompositions, which are then visualized in the form of

networks. The results indicate that China, despite its role as key actor in both

real and financial industrial metal markets, is a price taker.
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1 | INTRODUCTION

China's rapid industrialization and rise as an economic power have been accompanied by a voracious appetite for
natural resources. This is particularly visible in the country's demand for industrial metals. As the country continues its
process of urbanization and investment in infrastructure, China has evolved into the world's top consumer of refined
aluminum, copper, nickel, steel, and zinc. In 1980, when China's policy of reform was just beginning, the country's
share in worldwide consumption of these metals ranged between 3% and 4%. Today, Chinese consumption makes up
40% of the world's demand for lead and nickel and 50% of the world's demand for aluminum, copper, and zinc (World
Bank, 2018). Similarly, the country has also developed into the top producer of these metals. In 2017, roughly half of all
steel, refined aluminum and zinc, and 40% of refined copper and lead were produced in China (World Bank, 2018).

Moreover, China's importance in the market for metals is not limited to the real side of the economy. Chinese
commodity futures exchanges have, over the years and following a series of regulatory changes, evolved into the world's
largest futures markets for numerous industrial metals. As documented by the Futures Industry Association's (FIA)
2018 volume survey, seven out of the ten most traded industrial metal futures contracts are traded on Chinese
exchanges (Acworth, 2019). Moreover, the Shanghai Futures Exchange's (SHFE) steel rebar futures contract has grown
into the most traded commodity futures contract worldwide.

In light of these developments, this paper investigates the role of Chinese price leadership in industrial metal futures
markets. We gather futures price data on 29 industrial metal contracts traded on six exchanges in the United States, the
United Kingdom, India, and China. Our study is the most comprehensive analysis of industrial metal futures conducted
to date. It includes futures contracts for copper, lead, nickel, iron, and several kinds of steel, and thus covers a much
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larger variety of commodities than earlier studies. To answer the question of whether China has become a price leader
in these markets, the network approach of Diebold and Yilmaz (2012, 2014) is used, which rests on variance decom-
positions of vector autoregressive (VAR) models' forecast errors. Based on these decompositions, so‐called con-
nectedness tables are compiled which summarize how shocks to a specific futures price travel through the system of all
prices of this commodity. These connectedness tables are then visualized in the form of graphical networks. Finally, we
explore, via regressions, whether we can identify some economic and financial determinants of connectedness.

We obtain two main findings. Chinese metal contracts are strongly interconnected with contracts traded on other
exchanges. Thus, there are significant information flows between Chinese and selected Western exchanges. However,
in these relationships, China is typically a net receiver of price shocks and not a large sender. Instead, price discovery is
roughly equally shared between the U.S.‐American, British, and Indian futures markets. This implies that China,
despite its role as leading consumer, producer, and trader of industrial metals, is a price taker in the corresponding
futures markets. Consequently, other factors hinder Chinese exchanges from playing a more important role in the
global price formation process. A key factor in this regard might be the investor structure of Chinese commodity futures
exchanges, which differs from its Western counterparts. First, government regulation largely excludes foreign investors
from participating in Chinese markets. Second, various news accounts document that Chinese metal futures are traded
by a large number of uninformed retail investors (see e.g., Financial Times, 2016a, 2016b).

The remainder of this paper is structured as follows. Section 2 summarizes important steps in the development of
Chinese commodity futures markets and earlier research on their role as price leader. Thereafter, Section 3 explains the
data used in this paper, while Section 4 introduces the methodology. Section 5 then presents the key results, and
Section 6 analyzes the determinants of connectedness. Section 7 concludes.

2 | INSTITUTIONAL BACKGROUND AND RELATED LITERATURE

Today, Chinese futures trading occurs on five futures exchanges. The Dalian Commodity Exchange (DCE) and the
Zhengzhou Commodity Exchange (ZCE) mainly focus on agricultural and chemical products, while the SHFE covers
various metal contracts. Financial and crude oil futures contracts are traded at the China Financial Futures Exchange
(CFX) and the Shanghai International Energy Exchange (INE).

Despite the fact that Chinese futures markets continue to be relatively closed to foreign investors, who must
generally rely on domestic intermediaries to conduct trades on their behalf,1 many Chinese futures contracts now
outstrip their Western counterparts in terms of trading volume. In international comparisons, Chinese metal futures
contracts trade in remarkably high trading volumes, which is not surprising given the stylized facts outlined in the
introduction. According to the FIA 2018 volume survey, seven out of the ten most traded industrial metal futures
contracts are all traded on Chinese exchanges (Acworth, 2019). Moreover, the SHFE steel rebar futures contract has
grown into the most traded commodity futures contract in the world.

Against this backdrop, and given the fact that China has, over the years, evolved into the largest consumer and
producer of numerous industrial metals (World Bank, 2018), a sizable body of literature has investigated the role of
Chinese futures exchanges as potential price leaders in industrial metals. Being among the oldest industrial metal
futures contracts traded in China, the SHFE's copper contract has been analyzed in numerous studies. Fung, Leung,
and Xu (2003) use data from 1995 to 2001 and conduct a bivariate GARCH analysis of two copper futures contracts
traded at the SHFE and the New York Commodity Exchange (COMEX). They find that the American contract dom-
inates the information flow between the two markets. Liu and An (2011) study the same contracts but make use of a
VECM‐GARCH framework and a price discovery metric developed by Lien and Shrestha (2009). The authors use data
from 2004 to 2009 and conclude that the U.S. market generally leads its Chinese counterpart and is also dominant in the
price discovery process. Li and Zhang (2013) study the case of copper on a broader basis by considering, in addition to
the contracts traded at the SHFE and the COMEX, the contracts traded at the London Metal Exchange (LME) and the
Multi Commodity Exchange (MCX) in Mumbai, India. Employing an SVAR model and data ranging from 2005 to 2011,
the authors' results suggest that the LME contract is the key price maker. Conversely, the results of Rutledge, Karim,

1Exceptions pertain to the INE's crude oil contract, the DCE's iron ore contract and the ZCE's Purified Terephthalic Acid (PTA) contract, which,
following a new directive by the China Securities Regulatory Commission (2015), can be traded directly by qualified foreign brokerage firms without
the need for a domestic intermediary.
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and Wang (2013), who use a VECM estimation and Granger‐causality tests based on data from 2006 to 2011, reveal no
distinct leadership pattern between the copper contracts traded at the SHFE, LME, and COMEX.

Studies featuring multiple metal contracts include that of Hua and Chen (2007), who study the markets for copper
and aluminum. Using data from 1998 to 2002, the authors consider contracts traded at the SHFE and the LME. They
employ Granger‐causality tests and find that the LME contracts Granger‐cause those of the SHFE, which implies that
the Chinese contracts are price followers. Fung, Liu, and Tse (2010), who consider aluminum and copper contracts
traded at the SHFE and the COMEX, use data from 1999 to 2009 and employ a VECM which accounts for structural
breaks. They find that neither market dominates the information flow between them. Fung, Tse, Yau, and Zhao (2013)
investigate the case of Chinese price leadership on an even broader basis by considering 16 different commodities
including aluminum, copper, and zinc contracts traded at the SHFE and the LME. The authors' data range from
different starting dates for each contract until 2011 and are analyzed using various regression techniques including
error correction and GARCH models. Again, no clear pattern is found, as mixed and bidirectional results are obtained
for the different industrial metal contracts. Lastly, the study by Kang and Yoon (2016), which is closely related to our
work, uses the approach proposed by Diebold and Yilmaz (2012) to study the SHFE's and LME's futures contracts for
aluminum, copper, and zinc. Using data from 2007 to 2016, the authors find that price shocks typically originate in the
LME's contracts and then travel to those of the SHFE.2

The present paper extends this earlier research in three important ways: First, by analyzing 29 different contracts, some of
which were launched as recently as November 2015, it is the most comprehensive study of industrial metal futures conducted
to date. As our analysis covers futures contracts for copper, lead, nickel, iron, and several kinds of steel, we investigate a much
larger variety of commodities than earlier studies. Second, by conducting variance decompositions of the forecast errors of
various systems of different futures contracts, the network approach of Diebold and Yilmaz (2012, 2014) enables us to
graphically visualize the inter‐dependencies between the different contracts. Third, we go beyond reporting market con-
nectedness to consider the potential economic determinants of this phenomenon.

3 | DATA

To examine the role of Chinese price leadership in the market for industrial metal futures, we gather data on 29
industrial metal contracts at daily frequency beginning in November 2004 until August 2019. All price time series are
retrieved from Thomson Reuters Datastream, whereby continuous series are constructed by switching to the nearest
contract on the first day of each new trading month. The sample ranges for the individual commodity groups are
dictated by the availability of data for the youngest futures contract in that group. Table 1 lists the contracts used in the
analysis and details the different contract specifications such as notation and size.

Our sample covers five aluminum contracts, one cobalt contract, four copper contracts, one ferrosilicon contract,
two iron ore contracts, three lead and nickel contracts, one silicon manganese contract, five steel contracts, one tin
contract and three zinc contracts. The contracts are traded on six different exchanges, namely the COMEX, the LME,
the MCX (in Mumbai, India), the SHFE, the DCE, and the ZCE.3

Figure 1 displays the futures price time series of the commodity contracts included in our analysis. All prices have
been converted to USD per metric ton (USD/mt). In accordance with the law of one price, we observe relatively similar
price movements among the different contracts for each type of commodity. Nonetheless, Chinese prices are most of the
time noticeably higher for all commodities. This could be due to barriers to trade concerning the Chinese market.
Regarding the steel market, we observe the greatest price differences within one commodity. This is because of the
different types of steel included in our sample, which range from steel rebar to steel coils and steel scrap. The same
holds for the aluminum market, where one can see large price differences between the LME's aluminum alloy contract
and the other pure aluminum contracts. The unusual behaviour of the COMEX's aluminum price starting in late 2017
can be explained by the exceptionally low trading volumes of this contract.

Summary statistics of the daily logarithmic futures returns are displayed in Table 2. The daily returns range from
−0.32% to 0.33%. Standard deviations range from 0.01 to 0.02. Roughly two‐thirds of all return series exhibit a negative
skewness, suggesting that severe price drops are more common than large price increases. For all return series we

2Other applications of variance decompositions or the network approach of Diebold and Yilmaz (2012) to the case of Chinese commodity markets,
include the studies of Yang and Leatham (1999) and Zhang and Wang (2014) who consider the markets for wheat and crude oil.
3Note that the COMEX is since 2008 owned by the CME Group, while the LME is since 2012 owned by Hong Kong Exchanges and Clearing.
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observe kurtosis values well in excess of 3, which is the reference kurtosis value of the normal distribution. This implies
that none of the series follow a normal distribution but feature fat tails instead.

4 | METHODOLOGY

To investigate the price leadership in the metal futures market, we follow the financial market connectedness approach
of Diebold and Yilmaz (2012, 2014). Within this framework, the informational spillovers between different metal

TABLE 1 Industrial metal futures contracts

Contract Exchange Notation Size

Aluminum COMEX USD/mt 25mt

Aluminum LME USD/mt 25mt

Aluminum Alloy LME USD/mt 20mt

Aluminum MCX INR/kg 5mt

Aluminum SHFE RMB/mt 5mt

Cobalt LME USD/mt 1mt

Copper COMEX USD/lbs 25,000 lb

Copper LME USD/mt 25mt

Copper MCX INR/kg 1mt

Copper SHFE RMB/mt 5mt

Ferrosilicon ZCE RMB/mt 5mt

Iron Ore DCE RMB/mt 100mt

Iron Ore COMEX USD/mt 500mt

Lead LME USD/mt 25mt

Lead MCX INR/kg 5mt

Lead SHFE RMB/mt 5mt

Nickel LME USD/mt 6mt

Nickel MCX INR/kg 250 kg

Nickel SHFE RMB/mt 1mt

Silicon Manganese ZCE RMB/mt 5mt

Steel Scrap LME USD/mt 10mt

Steel Rebar LME USD/mt 10mt

Steel Coils COMEX USD/st 20 st

Steel Rebar SHFE RMB/mt 10mt

Steel Coils SHFE RMB/mt 10mt

Tin LME USD/mt 5mt

Zinc LME USD/mt 25mt

Zinc MCX INR/kg 5mt

Zinc SHFE RMB/mt 5mt

Note: Contract sizes are reported in “mt,” “kg,” “st,” and “lb” referring to metric tons, kilograms, short tons (equivalent to roughly 0.907 metric tons), and
pounds (equivalent to 0.453 kilograms), respectively.
Abbreviations: COMEX, New York Commodity Exchange; DCE, Dalian Commodity Exchange; INR, Indian rupee; LME, London Metal Exchange; MCX, Multi
Commodity Exchange (Mumbai, India); RMB, Chinese renminbi; SHFE, Shanghai Futures Exchange; USD, U.S. dollar; ZCE, Zhengzhou Commodity
Exchange.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIGURE 1 Futures price time series. COMEX contracts are highlighted in blue, LME contracts in red, MCX contracts in green, SHFE
contracts in orange, DCE contracts in cyan, ZCE contracts in purple. Steel rebar, aluminum alloy, and the silicon manganese contracts are
depicted using dashed lines. All prices have been converted to USD/mt. Subfigures (a) through (j) show the price time series for aluminum,
copper, lead, nickel, steel, iron, zinc, silicons, cobalt and tin, respectively [Color figure can be viewed at wileyonlinelibrary.com]
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futures contracts are studied using a network interpretation of a VAR model's variance decomposition. The starting
point of this approach is estimating the following covariance stationary VAR(p) model:

∑r r εΦ= + ,t

i

p

i t i t

=1

−
(1)

where the vector r r r r= ( , , …, )′t t t n t1, 2, , contains n logarithmic futures return time series, and εt is an n × 1 vector of
white noise disturbances with covariance matrix Ω.4

TABLE 2 Summary statistics of returns

Contract Exchange Obs. Min Mean Max SD Skew. Kurt.

Aluminum COMEX 1,385 −0.20 −0.00 0.04 0.01 −6.22 130.07

Aluminum LME 1,386 −0.08 −0.00 0.05 0.01 0.18 5.91

Aluminum Alloy LME 1,386 −0.07 −0.00 0.06 0.01 −0.24 9.39

Aluminum MCX 1,386 −0.10 0.00 0.08 0.01 0.39 11.13

Aluminum SHFE 1,386 −0.04 −0.00 0.04 0.01 0.19 5.86

Cobalt LME 982 −0.16 0.00 0.12 0.02 −0.58 18.76

Copper COMEX 3,854 −0.12 0.00 0.12 0.02 −0.13 7.19

Copper LME 3,854 −0.10 0.00 0.12 0.02 −0.01 7.51

Copper MCX 3,853 −0.12 0.00 0.10 0.02 −0.10 7.68

Copper SHFE 3,854 −0.07 0.00 0.06 0.01 −0.28 6.27

Ferrosilicon ZCE 982 −0.28 0.00 0.20 0.02 −2.70 55.71

Iron Ore DCE 1,527 −0.32 −0.00 0.10 0.02 −2.91 32.73

Iron Ore COMEX 1,528 −0.09 −0.00 0.16 0.02 0.15 6.93

Lead LME 2,199 −0.08 −0.00 0.08 0.02 −0.01 5.17

Lead MCX 2,199 −0.09 −0.00 0.09 0.01 0.11 6.38

Lead SHFE 2,198 −0.05 −0.00 0.05 0.01 −0.17 7.59

Nickel LME 1,153 −0.09 0.00 0.07 0.02 −0.18 4.64

Nickel MCX 1,153 −0.08 0.00 0.07 0.02 −0.01 4.52

Nickel SHFE 1,152 −0.06 0.00 0.06 0.01 −0.08 5.29

Silicon Manganese ZCE 982 −0.28 0.00 0.33 0.02 0.42 68.77

Steel Scrap LME 981 −0.08 0.00 0.10 0.02 −0.22 7.06

Steel Rebar LME 981 −0.05 0.00 0.05 0.01 0.05 6.01

Steel Coils COMEX 982 −0.06 0.00 0.11 0.01 1.65 18.87

Steel Rebar SHFE 982 −0.09 0.00 0.10 0.02 −0.18 7.80

Steel Coils SHFE 982 −0.08 0.00 0.08 0.02 0.10 7.59

Tin LME 982 −0.07 0.00 0.04 0.01 −0.35 6.09

Zinc LME 3,242 −0.11 −0.00 0.10 0.02 −0.05 5.43

Zinc MCX 3,242 −0.09 −0.00 0.10 0.02 −0.07 5.68

Zinc SHFE 3,242 −0.06 −0.00 0.05 0.01 −0.39 5.71

Abbreviations: COMEX, New York Commodity Exchange; DCE, Dalian Commodity Exchange; LME, London Metal Exchange; MCX, Multi Commodity
Exchange (Mumbai, India); SHFE, Shanghai Futures Exchange; ZCE, Zhengzhou Commodity Exchange.

4As our empirical application includes 29 futures return time series, we use an elastic net shrinkage approach based on Zou and Hastie (2005) to
eliminate statistically superfluous variables and improve the performance of the VAR.
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4.1 | Forecast error variance decomposition

The VAR model above can be represented as a vector moving average (VMA) model of the form

∑
∞

r εΨ= ,t i t i

i

−

=0

(2)

where Ψi denotes the n n× moving average coefficient matrices. These are determined by Ψ Φ Ψ= +i i1 −1

⋯Φ Ψ Φ Ψ+ +i p i p2 −2 − for i > 0, while IΨ = n0 and Ψ 0=i if i < 0. Based on the VMA model in Equation (2), one can
compute the generalized H ‐step ahead forecast error variance decompositions dij

H of Koop, Pesaran, and Potter (1996)
and Pesaran and Shin (1998) as

∑

∑

e e

e e
d

σ Ψ Ω

Ψ ΩΦ
=

( )

( )
,

′

′ ′

i h j

i h h i
ij
H jj h

H

h

H

−1
=0

−1 2

=0

−1
(3)

where σjj is the standard deviation of εj t, , while ei is the n × 1 selection vector consisting of zeros only except for its i‐th
element, which is equal to one. This decomposition captures the contribution that shocks to variable j make to the H ‐
step‐ahead error variance when forecasting variable i. In the case of i j= , Diebold and Yilmaz (2012) refer to dij

H as the
own variance share. Correspondingly, if ≠i j, dij

H is called the cross variance share.
Note that this type of variance decomposition, unlike conventional variance decompositions, does not make use of a

Cholesky factorization ofΩ and is thus independent of the ordering of the time series in the system. However, as the shocks to
the model's variables are not orthogonalized, a variable i's different variance shares due to shocks in variable j generally do not
add up to one, that is∑ ≠d 1

j

n
ij
H

=1
. Therefore, to allow straightforward comparisons between the different shocks sent by a

variable j to another variable i, the variance decompositions are normalized and converted into percentages by computing

∑
⋅d

d

d
˜ = 100.ij
H ij

H

j

n
ij
H

=1

(4)

Thus, by construction,∑ d̃ = 100
j

n
ij=1

and∑ ⋅d n˜ = 100
i j

n
ij, =1

.5

4.2 | Measuring connectedness

Following Diebold and Yilmaz (2014), the variance decomposition computed above can be interpreted as a measure of
the H ‐step ahead gross pairwise directional connectedness from variable j to variable i, that is

←C d= ˜ .i j
H

ij
H (5)

As ←Ci j
H will generally not be equal to ←Cj i

H , the net flow of shocks between the two variables, or net pairwise directional
connectedness from variable j to variable i, is calculated as

C d d= ˜ − ˜ .ij
H

ji
H

ij
H (6)

To gauge a variable's relative importance as sender or receiver of shocks in the system, Diebold and Yilmaz (2014)
compute two measures of total directional connectedness. The first of these measures, ←Ci

H
•, summarizes all those parts

of a variable i's forecast error variance decomposition that are due to shocks from another variable j. Hence, this
measure is calculated as

∑←

≠

C d= ˜ .i
H

j

j i

n

ij
H

•
=1,

(7)

5An alternative forecast error variance decomposition is developed by Lanne and Nyberg (2016).
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Conversely, the second measure ←C j
H
• summarizes all the contributions that variable i makes to the forecast error

variance of another variable j. This measure is therefore given by

∑←

≠

C d= ˜ .j
H

i

i j

n

ij
H

•
=1,

(8)

The difference between these two metrics is the net total directional spillover

↔ ← ←C C C= − .i
H

i
H

i
H

• • •
(9)

If a market's net spillover is above zero, the market sends more shocks than it receives. Conversely, if the market's net
spillover is below zero, the market is a net receiver of price signals.

Lastly, to capture the system's total connectedness, Diebold and Yilmaz (2014) sum up all of the normalized cross
variance shares. To allow for comparing the total connectedness values of different variable systems, this measure CH is
also normalized by n:

∑

≠

C
n

d=
1 ˜ .H

i j

i j

n

ij
H

, =1,

(10)

It holds by construction that the system's total connectedness is equal to the (normalized) sum of all shocks sent or
equivalently all shocks received.

Given these measures of connectedness, a connectedness table for the VAR system of Equation (1) is constructed as
follows: Table 3.

The main diagonal elements, apart from CH , display how the variance of a specific return series is driven by the
series's own shocks. The off‐diagonal elements, except those at the margin of the connectedness table, represent the
fraction of a return series's variance that is due to shocks in the other return series. The bottom row elements
summarize the total impact that the return series have on the variance of the other return series, while the elements of
the right‐most column summarize the total of shocks that the return series receive from the other series in the system.
Thus, the greater a futures return series' total directional connectedness, the greater its role in price leadership.
Conversely, if a return series features a large row sum, it features a high total directional connectedness from others and
is therefore a strong recipient of price signals originating from other futures contracts.

Our analysis covers 29 different futures price time series, rendering an analysis of all impulse response functions
unfeasible. However, as shown by Diebold and Yilmaz (2014), the variance decompositions matrix described above can
be interpreted as a network. The nodes of this network are the different variables of the VAR system, that is, in our case
the different metal futures contracts, while the connections between the contracts are determined by the magnitudes of
the different variance decompositions. The advantage of interpreting the variance decompositions in this way is that it
allows for straightforward visualizations of market interdependencies and information flows using previously devel-
oped graph‐drawing algorithms, which are discussed below in greater detail.

TABLE 3 Concept of connectedness tables

r1 r2  rn From others

r1 ←CH
1 1 ←CH

1 2 ⋯ ←C n
H
1 ←CH

1 •

r2 ←CH
2 1 ←CH

2 2 ⋯ ←C n
H
2 ←CH

2 •

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

rn ←Cn
H

1 ←Cn
H

2 ⋯ ←Cn n
H

←Cn
H

•

To others ←C
H
• 1 ←C

H
• 2 ⋯ ←C

H
• 1 CH

Note: Connectedness table as proposed by Diebold and Yilmaz (2014).
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5 | VISUALIZING THE METAL NETWORK

We first consider the entire sample of industrial metal futures contracts explained in the data section. The resulting
system comprises 29 contracts across 11 different commodities traded on six futures exchanges in four countries. The
sample size is thereby limited by the contracts with the most recent starting dates. These are the SHFE's steel contracts,
which started trading in November 2015. The sample ends in August 2019. We implement the variance decomposition
procedure described above6 and, following Diebold and Yilmaz (2014), we interpret the resulting connectedness table as
a network. As explained before, each node in the network resembles one of the futures contracts.

Figure 2 visualizes this network based on the graph‐drawing algorithm developed by Fruchterman and Reingold
(1991). This algorithm draws networks by balancing attracting and repelling forces between its nodes. In our network
two nodes attract each other depending on their pairwise directional spillovers Cij

h. The net pairwise directional
spillovers, that is, the differences between the two shocks flowing between two contracts, are shown as arrows between
the nodes. They point in the direction of the larger shock between the two contracts and are thicker the greater the net
directional spillover. The nodes repel each other depending on their size, which is determined by the total directional
connectedness to others ←C j

H
• . Consequently, strong net senders of shocks will feature large nodes with numerous

FIGURE 2 Network representation of return spillovers. Node size depends on total directional spillovers, arrow thickness and direction
on net pairwise directional spillovers. Node placement is based on the graph‐drawing algorithm of Fruchterman and Reingold (1991). COMEX,
New York Commodity Exchange; DCE, Dalian Commodity Exchange; LME, London Metal Exchange; MCX, Multi Commodity Exchange;
SHFE, Shanghai Futures Exchange; ZCE, Zhengzhou Commodity Exchange [Color figure can be viewed at wileyonlinelibrary.com]

6Based on the Schwarz‐Bayes information criterion, we selected one lag for the VAR model and, following Diebold and Yilmaz (2012), we chose a
forecast horizon of H = 10 days. In a robustness exercise we altered this forecast horizon to 5 and 20 days, respectively, but did not obtain any
significantly different results. The results of this robustness exercise are available upon request.
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arrows pointing away from them. Conversely, strong recipients have smaller nodes and many arrows pointing toward
them. Lastly, the nodes are highlighted in different colors depending on the contracts' underlying commodities.

The network visualization reveals distinct clusters of contracts based on the underlying commodity groups to which
they belong. Copper contracts are located close to other copper contracts, aluminum contracts close to other aluminum
contracts, and so on. Only the steel contracts (highlighted in orange) are relatively spread out, but they still form a
cluster. The steel cluster partly surrounds the iron cluster (highlighted in cyan) reflecting the close relationship between
the two commodities, as iron is the key input factor in the steel production. This finding echoes the results of
Indriawan, Liu, and Tse (2019) who analyzed the market quality and connectedness of Chinese metal futures and found
that iron ore and steel rebar contracts are highly connected with another.

The center of the network is dominated by the different copper contracts (highlighted in red). Apart from their
placement in the center of the network, the nodes of these contracts are also considerably larger than those of other
commodity groups, underscoring their importance for the network. Similar results have been obtained in other network
analyses of copper spot and futures prices. For example, Wang, Zhang, Li, Chen, and Wei (2019), Xiao, Yu, Fang, and
Ding (2019), and Guhathakurta, Dash, and Maitra (2020) show that copper is highly interconnected with other com-
modities and an important transmitter of price and volatility shocks. This is in line with the fact that copper is one of
the most widely used industrial metals, featuring applications in construction, electrical and electronic products,
transportation and consumer products. Therefore, copper is often seen as an indicator for the state of the overall
economy. Moreover, Indriawan et al. (2019) show that, at least for the case of Chinese metal futures markets, copper
futures exhibit the greatest level of market quality in terms of low bid‐ask spreads, low pricing error, and a high
probability of informed trading.

The nickel and zinc clusters (highlighted in green and yellow, respectively) also feature relatively large nodes that
are also placed toward the center of the network. This reflects their great importance in the real metal market, where
nickel and zinc are highly connected to other metals, as they are used for the galvanization and production of stainless
steel and other ferro‐alloys. The aluminum and lead clusters (highlighted in blue and gray, respectively) tend toward
the periphery of the network but are not as distant from the center as the contracts for cobalt, ferrosilicon, silicon
manganese, and tin. In the network, lead is closely connected to zinc, reflecting the fact that lead is a common
byproduct in the zinc mining process.

Concerning the Chinese futures contracts, we find that these contracts are, despite their large trading volumes,
generally of minor importance to the network, as indicated by their relatively small node sizes and the high number of
arrows pointing toward them. Conversely, Western and Indian markets are of greater importance. Interestingly, we find
no strong difference between Western and Indian markets in their ability to contribute to the price discovery process as
indicated by the same size of their nodes in the network. For example, concerning the copper contracts, we find that the
total directional spillovers originating from the COMEX, the LME and the MCX toward other exchanges amount to
129.67, 140.58, and 125.10, respectively, while the spillovers of the SHFE amount to only 51.91.7

Possible reasons for this are the fact that Chinese financial markets, as documented by Liu, Tse, and Zhang (2018),
remain relatively closed to foreign investors. In addition, the same authors also detail that Chinese markets are heavily
driven by financial speculation and retail investors instead of large institutional investors. Consequently, Chinese
markets might not utilize new information about market fundamentals as efficiently as their Western and Indian
counterparts. Compared to one another, these markets are approximately of equal importance in the global price
formation process.

In a second step, we now consider the financial connectedness within the different clusters of commodities observed
above. In this regard, we examine six clusters, namely those of aluminum, copper, lead, nickel, zinc, and the combined
cluster of iron and steel. As before, the sample sizes are limited by the youngest contract in each cluster.8 The resulting
subnetworks are shown in Figure 3. The subnetworks confirm the earlier impression that Chinese market participants
are price takers. In all of the six clusters, the Chinese contracts feature the smallest nodes. Despite their placement,
often in the center of the networks, they are major recipients of shocks from the others markets, as shown by the net
pairwise directional spillovers pointing toward them.

7Similar results are obtained for the nickel (zinc) contracts, where the total directional spillovers from the LME and the MCX toward other exchanges
amount to 115.07 (118.55), 107.71 (117.01), while the SHFE's spillover only amounts to 23.27 (43.90). The full connectedness Table A1, which is the
basis for the network depicted in Figure 2, is provided in the appendix.
8The aluminum sample starts on May 6, 2014, the copper sample on November 18, 2004, the lead sample on March 24, 2011, the nickel sample on
March 27, 2015, the iron and steel sample on November 23, 2015, and the zinc sample on March 26, 2007. All samples end on August 27, 2019.
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To study the subnetworks over time, we employ rolling window estimations of the underlying VAR models with a
window size of 250 trading days, which is equal to one trading year. In each step, we follow the variance decomposition
procedure as before. Thereafter, we advance the window by 1 day for the subsequent estimation. Consequently, we
obtain for each day and futures contract the total directional spillovers to others and from others. While the former
spillover indicator measures the amount of shocks sent by the different markets, the latter captures the amount of
shocks received by each of them. As explained earlier, computing the differences between these two metrics yields the
net total directional spillovers (see Equation (9)). Figure 4 displays these time‐varying net total directional spillovers of
each futures contract.

The graphs show that for most of the commodity clusters, the net spillovers range between −60 and 30. However,
the steel market exhibits far smaller net spillovers ranging from only −20 to 10. This suggests that the iron and steel
market is less integrated than the other commodity groups, which is not surprising given the varied composition of

(a) (b)

(c) (d)

(e) (f)

FIGURE 3 Individual commodity networks. Node size depends on total directional spillovers, arrow thickness, and direction on net
pairwise directional spillovers. Node placement is based on the graph‐drawing algorithm of Fruchterman and Reingold (1991). COMEX,
New York Commodity Exchange; DCE, Dalian Commodity Exchange; LME, London Metal Exchange; MCX, Multi Commodity Exchange;
SHFE, Shanghai Futures Exchange; ZCE, Zhengzhou Commodity Exchange [Color figure can be viewed at wileyonlinelibrary.com]
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

FIGURE 4 Time‐varying net spillovers. The graphs show monthly averages of the time‐varying net total directional spillovers of each
futures contract. Values above zero indicate that a contract sends more price signals than it receives, whereas values below zero suggest the
opposite [Color figure can be viewed at wileyonlinelibrary.com]
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these contracts (rebar, coils, etc.). This corresponds to what was shown in Figure 2, where the steel and iron contracts
were relatively spread out. The net spillovers of Chinese contracts are almost always below zero and relatively stable
over time, consistent with our earlier finding that the Chinese exchanges are net receivers of shocks.

One concern with these result is the issue of nonsynchronous trading, as our analysis features futures contracts
traded in four different time zones, each 3 to 5 hr apart from the next. A practical solution to this problem is the use of
lower frequency data such as weekly or even monthly data. However, this solution is not feasible as many of the
contracts in our analysis are relatively young. Hence, there are insufficient observations available to properly estimate
the VAR model, even when using weekly data. Also, the equations of the VAR model include the lags of all other prices
in the system which controls for previous price movements at the other exchanges.9

6 | DETERMINANTS OF CONNECTEDNESS

In this section, we analyze which factors determine if a market is a sender or a receiver of price signals. To do so, we
regress the pairwise directional spillovers ← ≠Ci j i j,

10 (see Equation (5)) between contracts j and i on several exogenous
variables. In particular we estimate for each of the commodity subnetworks the following dynamic panel fixed effects
regression:

← ←C β β C β VOLA β ILLIQ

β SPMAT β IM β EX

β TED β VIX β EPU ε

= + + +

+ + +

+ + + + .

i j t i j t j t j t

j t ij t ij t

j t j t j t j t

,
10

0 1 , −1
10

2 , 3 ,

4 , 5 , 6 ,

7 , 8 , 9 , ,

(11)

(s) (t) (u)

(v) (w)

(y)

(x)

FIGURE 4 (Continued)

9Alternatively, one might consider the use of intra‐day data and an event study approach. However, reliance on this kind of data raises other
challenges that are beyond the scope of this paper.
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Apart from the lagged spillover variable ←Ci j t, −1
10 , we consider three groups of exogenous variables, namely financial

variables, variables related to real economic activity and variables measuring credit risk and market uncertainty. The
financial group includes the variables VOLAj t, and ILLIQj t, . VOLAj t, refers to the relative market volatility of contract j,
which is based on the conditional volatility estimates of an AR(1)‐GARCH(1,1) model of contract j's returns. ILLIQj t, is
a proxy for market illiquidity proposed by Amihud (2002), which relates the absolute value of a market's return to its
trading volume. High values of this ratio indicate illiquid market environments, whereas low values of this measure
suggest high levels of liquidity. It is generally expected that liquidity increases a market's ability to process new
information.

The second group of variables, which capture economic activity, comprise the regressors SPMATj t, , IMij t, , and
EXij t, . To control for regional supply and demand shocks, we consider the S&P 500 Materials SPMATj t, for the
United States, Europe, India, and China. IMij t, and EXij t, refer to the imports and exports flowing between country
i and country j, whereby IMij t, represents the amount of the underlying commodity that country j imports from i,
while EXij t, denotes exports from j to i. Another important economic variable is the exchange rate. We consider
the dollar exchange rate of the currency the contract is denominated in. If a contract is denominated in dollars,
which is the case for contracts traded at the COMEX and the LME, we use the inverse of the trade‐weighted U.S.
dollar index, called the broad index.

However, given the interdependencies between exports, imports and the exchange rate and the resulting en-
dogeneity problem, we do not add the exchange rate in the main regression. Instead we follow an instrumental
variables approach using a two‐stage least square estimation. In the first stage we regress imports and exports on the
lagged values of imports, exports, and the exchange rate. The fitted values of this first stage regression are then used to
estimate Equation (11).

The third group comprises the variablesTEDj t, ,VIXj t, , and EPUj t, . The TED‐spreadTEDj t, is a measure for credit risk
and is calculated as the difference between the benchmark interbank lending rates and the interest rates of the
corresponding government securities. The volatility index VIXj t, captures the volatility of the countries' major stock
exchange indices and is a common proxy for market uncertainty. The variable EPUj t, is an index measuring the
economic policy uncertainty of the country in which contract j is traded. Lastly, β0 denotes a constant and εj t, the
error term.

We obtain data from three sources. Price and volume data are taken from Thomson Reuters Datastream to compute
VOLAj t, and ILLIQj t, . Similarly, interest rate data for the TEDj t, as well as the VIXj t, , and data for the SPMATj t, and the
exchange rates are all retrieved from Thomson Reuters Datastream. Lastly, the economic policy uncertainty indices
EPUj t, are developed by Baker, Bloom, and Davis (2016)10, while IMij t, and EXij t, are obtained from the International
Trade Centre (ITC).

The results of the regressions are presented in Table 4. The lagged spillovers are significantly positive in all
subnetworks indicating that there is persistence in spillover effects. The relative volatility has a significantly
negative impact for copper and lead. This indicates that in these commodity groups, contracts with higher
volatility send less information to other contracts than contracts with lower levels of volatility. The Amihud‐
ratio, which captures market illiquidity, is associated with a significantly negative sign in the lead market, which
implies that liquidity improves this market's ability to transmit information. Concerning the other real‐economy
variables, we find that imports and exports show significantly positive influences in the iron and steel and the
zinc markets. This suggests that in these subnetworks, real‐economy flows drive informational spillovers be-
tween the different markets. The impact of the S&P 500 Materials index is significantly positive in the iron and
steel network. The results regarding the VIX indices suggest that its impact is market‐specific with different signs
obtained for the different subnetworks. The EPU indices exhibit a significantly positive influence in the copper
and iron and steel networks consistent with the notion that rising policy uncertainty raises spillovers. This is
likely also a reflection of how greater uncertainty enhances market interconnectedness. As noted earlier, the
markets investigated here are truly global in nature. Finally, the TED‐spread is never statistically significant.
Nonetheless, many of the estimated coefficients are small and are not as economically significant as, say, own
lags though it must be remembered that the data are daily. For example, a one point increase in economic policy
uncertainty, raises the pairwise directional spillover in copper by only 0.001 index points, while own con-
nectedness is raised by almost 1 index point.

10Data for the economic policy uncertainty indices by Baker et al. (2016) are available at http://www.PolicyUncertainty.com
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7 | CONCLUSION

Over the past two decades, China has become the greatest consumer and producer of numerous industrial metals. Moreover,
China has recently launched a number of futures contracts for these metals, and these have become some of the most highly
traded futures contracts worldwide. This paper investigates the question of whether these new markets are important in the
formation of international metal prices. We follow the network approach by Diebold and Yilmaz (2012, 2014) and consider
29 metal contracts, traded on six exchanges in the United States, the United Kingdom, India, and China. Despite their large
trading volumes, our results indicate that the Chinese futures contracts are not price leaders.

Our analysis comprised three steps. First, we analyzed the overall network structure across all industrial metal
futures contracts included in our sample. Unsurprisingly, futures contracts of the same underlying commodities were
grouped closely together. Of these clusters, the copper and zinc clusters were found to be the most important ones
regarding the transmission of price signals. Furthermore, the Chinese contracts appeared to play a minor role within
the different commodity clusters. In a second step, we repeated the earlier analysis, but for each of the different
commodity clusters separately. The results of this step confirm those of the first one: Chinese contracts were again
found to be net recipients of price shocks. Next, we conducted time‐varying network analyses to study how China's
role of price leadership varies over time. The results suggest that China's passive role in the price discovery process is
relatively stable over time. Lastly, we used a dynamic fixed effects panel regression to study the determinants of
connectedness. Apart from lagged spillovers, relative volatility and real sector flows are the strongest determinants of
connectedness.

TABLE 4 Regression results

Aluminum Copper Lead Iron & steel Zinc

←Ci j t, −1
10 1.007*** 0.952*** 0.919*** 0.927*** 0.931***

(0.013) (0.013) (0.016) (0.011) (0.016)

VOLAj t, 0.007 −0.032*** −0.023*** 0.013* −0.027

(0.009) (0.007) (0.005) (0.007) (0.015)

ILLIQj t, 0.006 −1.033 −1.034*** 0.000 −9.420

(0.006) (0.881) (0.160) (0.000) (8.013)

SPMATj t, −0.000 −0.000 −0.000 0.001** −0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

IMij t, −0.008 0.000 0.012 0.016** 0.013***

(0.007) (0.001) (0.022) (0.008) (0.002)

EXij t, −0.009 0.000 0.104 0.004*** 0.014***

(0.011) (0.001) (0.188) (0.001) (0.002)

TEDj t, 0.152 0.038 −0.097 0.270 −0.084

(0.177) (0.024) (0.076) (0.171) (0.046)

VIXj t, −0.008 −0.006 −0.041** −0.000 0.018**

(0.014) (0.005) (0.011) (0.009) (0.006)

EPUj t, −0.000 0.001** 0.000 0.001** 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Const. 0.804 1.956*** 3.778*** −1.214** 2.713**

(0.763) (0.544) (0.517) (0.504) (1.049)

R̄2 0.943 0.920 0.876 0.873 0.905

Note: The table displays the results of the two‐stage panel fixed effects regressions for the different commodity subnetworks. The aluminum sample starts on
May 6, 2014, the copper sample on November 18, 2004, the lead sample on March 24, 2011, the nickel sample on March 27, 2015, the iron and steel sample on
November 23, 2015, and the zinc sample on March 26, 2007. All samples end on August 27, 2019. Standard errors are displayed in parentheses.
*p< .1.
**p< .05.
***p< .01.
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In conclusion, our results provide strong evidence that metal prices are currently not made in China. Price lea-
dership, however, does not appear to be limited to Western markets, as India also appears to be an important trans-
mitter of price signals. Over the past years, Chinese regulators have been able to develop active futures markets for
many different commodities including various industrial metals. However, further steps have to be taken to strengthen
the role of Chinese markets in terms of price leadership. Most importantly, Chinese markets must become more
accessible to foreign investors. But unless such measures are extended to additional markets, price differentials between
Chinese and Western markets will continue to exist, since no arbitrage trading will be possible between these two
trading venues. A first step in this direction might be the opening of the DCE iron ore futures contract to overseas
investors in May 2018. This will allow foreign investors to provide additional liquidity and exploit price differentials
between Western and Chinese futures markets.

Moreover, Chinese regulators should aim for greater participation of institutional investors to dampen the effects of
retail investors and noise traders. This will improve the ability of Chinese markets to more accurately pick up new
fundamental information and become an important price maker in industrial metals. Finally, it is also likely that, as
markets in China mature while opening up to foreign investors, the performance of Chinese markets will change.
Together with the impending slowdown of China's economy, there is greater scope for a shift away from behavior
associated with price taking.

Future research, using event studies or structural break tests, may reveal whether this policy change alters the
importance of this contract in the global price formation process of iron ore.11 Moreover, if Chinese market regulators
become more transparent and provide greater information about the investor structure in Chinese commodity futures
markets, future work will also be able to examine the role of Chinese retail investors and their impact on Chinese price
leadership. Such an extension will also provide useful insights to policy makers and regulators.
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APPENDIX A

This appendix shows the connectedness table for the entire network of industrial metal markets considered in this
article. The following numbers are used to refer to the different futures markets:

1. Aluminum–COMEX
2. Aluminum–LME
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3. Aluminum Alloy LME
4. Aluminum–MCX
5. Aluminum–SHFE
6. Cobalt–LME
7. Copper–COMEX
8. Copper–LME
9. Copper–MCX
10. Copper–SHFE
11. Ferrosilicon–ZCE
12. Iron Ore–DCE
13. Iron Ore–COMEX
14. Lead–LME
15. Lead–MCX
16. Lead–SHFE
17. Nickel–LME
18. Nickel–MCX
19. Nickel–SHFE
20. Silicon Manganese–ZCE
21. Steel Scrap–LME
22. Steel Rebar–LME
23. Steel Coils–COMEX
24. Steel Rebar–SHFE
25. Steel Coils–SHFE
26. Tin–LME
27. Zinc–LME
28. Zinc–MCX
29. Zinc–SHFE
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