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Business Cycle Fluctuations in Mirrlees Economies:

The case of i.i.d. shocks

Marcelo Veracierto*

Federal Reserve Bank of Chicago, U.S.A

December, 2019

Abstract: I consider a real business cycle model in which agents have private information

about the i.i.d. realizations of their value of leisure. For the case of logarithmic preferences I

provide an analytical characterization of the solution to the associated mechanism design problem.

Moreover, I show a striking irrelevance result: That the stationary behavior of all aggregate

variables are exactly the same in the private information economy as in the full information case.

Numerical simulations indicate that the irrelevance result approximately holds for more general

CRRA preferences.

Keywords: Risk sharing, business cycles, private information, social insurance, optimal con-

tracts, heterogeneous agents.

1 Introduction

At least since the seminal paper by Krusell et al. (1998) there has been a long literature analyzing

the effects of exogenous forms of market incompleteness on aggregate fluctuations (e.g. exogenous

*An earlier version of this paper circulated as ”Adverse selection, Risk Sharing and Business Cycles”. I thank

V.V. Chari, Chris Phelan, Venky Venkateswaran and participants at various seminars and conferences for useful

comments. The views expressed here do not necessarily reflect the position of the Federal Reserve Bank of Chicago

or the Federal Reserve System. Address: Federal Reserve Bank of Chicago, Research Department, 230 South

LaSalle Street, Chicago, IL 60604. E-mail: mveracie@frbchi.org. Phone: (312) 322-5695.
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borrowing constraints, exogenous collateral requirements, etc.). This paper takes a first step

towards building a more primitive approach: It explores the business cycle effects of restrictions

to perfect risk sharing, but when these restrictions arise optimally in response to information

frictions. In particular, the paper merges two basic benchmarks in the macroeconomics and private

information literatures: A standard real business cycle (RBC) model and a Mirrlees economy.

The mechanism design problem for the resulting economy is then solved for and its business cycle

fluctuations compared to those of the full information case. The paper is interested in evaluating

the effects of private information on aggregate fluctuations, in characterizing the cyclical behavior

of the optimal contracts, and in exploring the implications for the optimal amount of consumption

and employment inequality over the business cycle. While realism would require considering

persistent idiosyncratic shocks, the analysis of this type of shocks is significantly more complicated

(e.g. Fernandes and Phelan (2000)). For this reason, I consider the case of i.i.d. idiosyncratic

shocks as a first step and leave the analysis of persistent shocks for future research.

The model used in this paper is a simple RBC model with private information. Agents value

consumption and leisure and receive idiosyncratic shocks to their value of leisure. These shocks,

which are i.i.d. over time and across individuals, are assumed to be private information. The

production technology is standard. Output, which can be consumed or invested, is produced

using capital and labor. The aggregate production function is subject to aggregate productivity

shocks that follow a standard AR(1) process.

A social planner designs dynamic contracts for the agents in this economy. Following the

literature, a dynamic contract is given a standard recursive formulation where a promised value to

the agent describes its state. Given the current state, the contract specifies current consumption,

current hours worked, and next-period state-contingent promised values as a function of the value

of leisure reported by the agent. Since the model has a large number of agents and the shocks to the

value of leisure are idiosyncratic, the social planner needs to keep track of the whole distribution of

individuals across promised values as a state variable. Given this distribution, the aggregate stock

of capital, and the aggregate productivity level, the social planner seeks to maximize the present

discounted utility of agents subject to incentive compatibility, promise keeping, and aggregate

resource feasibility constraints.

For the case in which the utilities of consumption and leisure are both logarithmic (a benchmark

case in the RBC literature), I am able to provide a sharp analytical characterization of the solution
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to the mechanism design problem. In particular, I show that the utility of consumption, utility of

leisure, and next-period promised values are all linear, strictly increasing functions of the current

promised value. The slopes of these functions are all independent of the reported value of leisure

and, while the utilities of consumption and leisure have a common slope less than one, the slope

of next-period promised values is equal to one (as a consequence, promised values follow a random

walk). Over the business cycle, all of these functions shift vertically while keeping constant the

differences across reported values of leisure. In turn, the distributions of promised values and log-

consumption levels shift horizontally over the business cycle while maintaining their shapes. While

optimal consumption inequality is constant, the optimal dispersion of the distribution of log-hours

worked is countercyclical. In terms of aggregate dynamics, I find a striking irrelevance result: The

business cycle fluctuations of all macroeconomic variables (i.e., aggregate output, consumption,

investment, hours worked, and capital) are exactly the same under private information as under

full information. Once the information frictions are dealt with in an optimal way, they have no

implications for the aggregate dynamics of the economy.

For more general preferences, analytical results are no longer available and the model must

be solved for numerically. However, I obtain the same basic irrelevance result for all the CRRA

preferences that I consider: The stationary behavior of all macroeconomic variables in the econ-

omy with private information is numerically indistinguishable from the same economy with full

information. This is true even though the cross-sectional distributions of promised values, instead

of shifting horizontally over time, now changes its shape.

The basic reason why the irrelevance result holds exactly under logarithmic preferences is

that the Inverse Euler equations, which characterize the optimality conditions under private in-

formation, become linear. When these equations are then integrated across the cross-sectional

distribution of agents, the Euler equations of the full-information representative-agent economy

are obtained. As a consequence, all aggregate variables become the same under full and private

information. With more general preferences, this exact aggregation result does not hold because

Jensen’s inequality works against it. However, with i.i.d. idiosyncratic shocks, the cross-sectional

amount of heterogeneity generated is so small that the adjustments due to Jensen’s inequality

become negligible, and an approximate aggregation result is obtained.

The paper is organized as follows. Section 2 discusses the related literature. Section 3 builds

intuition for the main results in the paper by analyzing a simple static economy. Section 4 describes
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the results for the full dynamic economy. Finally, Section 5 concludes the paper.

2 Related Literature

This paper is closely related to previous work in the social insurance and dynamic public finance

literatures (e.g., Atkeson and Lucas (1992), Green (1987), Golosov et al. (2007), Farhi and Werning

(2012)). However, interactions with aggregate fluctuations have been mostly neglected in the

literature. Notable exceptions are Phelan (1994), da Costa and Luz (2018), Werning (2007),

and Scheuer (2013). Phelan (1994) considered a production economy without capital, hidden

actions, i.i.d. aggregate shocks, and unobservable i.i.d. idiosyncratic shocks. Under assumptions

of CARA preferences and agents facing a constant probability of dying, he characterized the model

analytically and found two main results: that the cross-sectional distribution of consumption

levels depends on the entire history of aggregate shocks, and that there is a well defined long-

run distribution over cross-sectional consumption distributions. The Mirrlees RBC model in this

paper differs from Phelan (1994), not only because it has hidden types instead of hidden actions,

but because it has CRRA preferences and a neoclassical production function with capital and

persistent aggregate shocks. In terms of results, an apparent similarity between the papers is that

even in my model with logarithmic preferences, the cross-sectional distributions of consumption

and leisure depends on the entire history of aggregate shocks. However, this is only due to the

presence of capital. Without it, the cross-sectional distribution would depend only on the current

realization of aggregate productivity.

In fact, this lack of memory in the case of no capital and logarithmic preferences has already

been shown by da Costa and Luz (2018). In that paper, da Costa and Luz consider a finite

horizon version of Phelan’s economy in which agents have CRRA preferences and live as long

as the economy. Contrary to Phelan (1994), their cross-sectional distribution of consumption

becomes degenerate as the time horizon of the economy becomes large. Interestingly, da Costa

and Luz find that when log preferences are used, the cross-sectional distribution of consumption

does not depend on the entire history of aggregate shocks but only on the current realization.

However, when the elasticity of intertemporal substitution is different from one, the cross-sectional

distribution of consumption has memory of the past history. Relative to da Costa and Luz (2018),

a major contribution of the analysis of the logarithmic Mirrlees economy in this paper is that,
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in addition to considering an economy with capital and persistent aggregate shocks, I am able to

provide a tight analytical characterization of the optimal contracts and an irrelevance result of the

information frictions for aggregate dynamics. Da Costa and Luz focus on the dependence of the

cross-sectional distribution on past aggregate shocks and they provide no comparisons of aggregate

dynamics under full and private information. For preferences different from the logarithmic case,

I am able to compute solutions for infinite horizon economies.

Werning (2007) considered an RBC Mirrlees economy with different permanent types of agents,

in which the types are private information. Assuming separable utility functions, he provided a

sharp characterization of the optimal savings and labor wedges over the business cycle. In particu-

lar, he showed that savings wedges are always zero in the cross-section and over the business cycle.

In contrast, labor wedges are positive in the cross-section and, if the distribution of labor produc-

tivity is fixed across types, constant over time. The RBC Mirrlees economy in this paper differs

from his in that the source of the private information is not permanent types but idiosyncratic i.i.d.

shocks that change over time. Consequently, instead of having incentive compatibility constraints

only at time zero, here they must hold at every time period and history of idiosyncratic and ag-

gregate shocks. In addition to this difference in environments, Werning focused on characterizing

optimal wedges and not on the effects of the private information on aggregate dynamics.

Scheuer (2013) considered a static economy with different types of agents subject to idiosyn-

cratic and aggregate shocks. Individual output levels depend on the realizations of the idiosyncratic

and aggregate shocks, probability distributions over idiosyncratic shocks depend on individual ef-

fort levels and on the aggregate shock, and preferences depend on consumption and effort levels.

All these dependencies differ across agent types. While the agent types are public information,

effort levels are hidden. Scheuer shows that in a constrained efficient allocation, the ratios of

expected inverse marginal utilities between different aggregate shocks must be equalized across

the different types of agents. The rest of the paper is devoted to implementing the efficient al-

location as a competitive equilibrium with transfers and taxes on financial markets. In addition

to corresponding to a dynamic economy with hidden types instead of a static economy with hid-

den actions, the optimal allocation of my Mirrlees RBC model is not characterized by Scheuer’s

intratemporal condition because the underlying economy has ex-ante identical agents instead of

heterogeneous types. I don’t address the issue of implementability, but focus instead on the conse-

quences of private information for aggregate dynamics and on characterizing the optimal amount
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of inequality over the business cycle (issues not considered by Scheuer).2

The irrelevance result in my RBC Mirrlees economy is related to others in the literature.

Krueger and Lustig (2010) considered an incomplete markets endowment economy with idiosyn-

cratic and aggregate shocks. The economy has a Lucas tree that yields a fraction of an aggregate

stochastic endowment, and a continuum of agents that receive idiosyncratic shocks to their shares

on the non-tree part of the aggregate endowment. Agents cannot insure against their idiosyn-

cratic shocks: They can only trade in a risk-free bond and on the Lucas tree, subject to solvency

constraints. Krueger and Lustig show that if preferences are CRRA, the aggregate endowment

follows a random walk, and the distribution of idiosyncratic endowment shares is independent of

the aggregate endowment shock, then there is no trade in the bonds market and only the stock

market operates. Moreover, the cross-sectional distributions of wealth and consumption are in-

dependent of the aggregate shocks, and the absence of insurance markets is completely irrelevant

for the aggregate risk premium. On the surface, these results are closely related to the irrelevance

result for the Mirrlees economy in this paper.3 However, while Krueger and Lustig consider an

endowment economy, I consider a production economy. Thus, while the incomplete markets in

Krueger and Lustig (2010) cannot affect aggregate dynamics by assumption, I am able to address

the effects of information frictions on aggregate dynamics. Furthermore, the structure of equilib-

ria with incomplete markets is very different from those of constrained-efficient allocations under

private information, in which incentive compatibility constraints must be satisfied.

This difference is most clearly seen when comparing this paper with Werning (2015). Most of

Werning’s paper focuses on the demand side of a deterministic Bewley-Huggett-Aiyagari incom-

plete markets model with a fixed outside asset, and shows that under certain conditions, aggregate

consumption and interest rates are related by the Euler equation of a representative agent. How-

ever, this representative agent does not correspond to the one obtained under complete markets

(in particular his discount factor depends on the amount of idiosyncratic uncertainty while the

complete markets representative agent does not). As a result, aggregate consumption levels dif-

2In principle, the implementation with non-linear taxes in Albanesi and Sleet (2006) could be extended to the

stochastic optimal allocation of my Mirrlees economy.

3However, my irrelevance result does not require aggregate consumption to follow a random walk, only log

preferences.
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fer under incomplete and complete markets.4 By comparison, in this paper I provide conditions

under which aggregate allocations are identical under private or full information.5 In the last

section of his paper, Werning introduces capital accumulation and aggregate shocks, and provides

a full irrelevance result for an RBC economy that is closely related to the one in this paper. In

his economy agents value consumption, dislike working, and receive idiosyncratic shocks to their

labor productivity. Agents can save in capital but cannot borrow. There are spot markets for

labor and capital that are used by firms as inputs to a production function, subject to aggregate

productivity shocks. For this economy, Werning shows that if agents value consumption according

to log preferences, their disutility of labor supply is isoelastic, the depreciation rate of capital

is equal to one, and the production function is Cobb-Douglas, then the aggregate dynamics of

capital and labor are identical to their counterparts under complete markets. In this equilibrium,

aggregate hours worked are constant over time. Moreover, if the initial distribution of wealth is at

an invariant steady state, the cross-sectional distributions of consumption and hours worked are

also constant over time. In contrast, the irrelevance result in my paper is obtained under any neo-

classical production function and depreciation rate of capital; and it holds even though aggregate

hours worked and the cross-sectional distribution of hours worked fluctuate over time. The only

requirement is that preferences be logarithmic with respect to consumption and leisure. The sharp

differences between the conditions needed to obtain the irrelevance results in Werning (2015) and

in this paper point to the fundamentally different structures of equilibria with incomplete mar-

kets and of constrained-efficient allocations under private information. Neither irrelevance result

reduces to the other.

The work that is most closely related to the irrelevance result in my paper is Farhi and Wern-

ing (2012). Fahri and Werning consider a very similar Mirrlees economy, except that it has no

aggregate productivity shock, idiosyncratic shocks are persistent, and the social planner is only

4However, if the amount of idiosyncratic uncertainty is constant over time, Werning argues that the responses

of aggregate consumption to changes in interest rates are the same under incomplete and complete markets. This

is a potentially useful result that could greatly simplify the analysis of aggregate dynamics in different contexts.

5The aggregate allocations under private and full information coincide with those of a common representative

agent. If the social planner uses a different social discount factor than the private discount factor, then this

representative agent has time varying discount factors (even though the amount of idiosyncratic uncertainty is

constant over time). However, this is completely unimportant for the irrelevance result.
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allowed to optimize with respect to the consumption allocations (labor allocations are taken to

be beyond the planner’s control). Starting from the steady state of a Bewley economy, Fahri and

Werning perform the dynamic public finance experiment of evaluating the welfare gains associated

with moving to an optimal consumption plan. They show that when preferences are logarithmic in

consumption, along the transitionary dynamics of the model all aggregate variables behave exactly

the same as in the representative agent of the full information case. Thus, my irrelevance result

in this paper can be seen as extending Fahri and Werning’s result to allow the social planner to

optimize with respect to labor as well as consumption and to do so in an environment subject to

aggregate uncertainty.6

3 A static economy

This section analyzes the optimal provision of social insurance and incentives in a simple static

economy. The purpose is to build intuition towards one of the main results in the paper: The

irrelevance of private information for aggregate allocations in the case of logarithmic preferences.

The economy is populated by a unit measure of agents with preferences given by

E {u (c) + α n (1− h)}

where c is consumption, h is hours worked, α is the idiosyncratic value of leisure and u and

n are continuously differentiable, strictly increasing and strictly concave utility functions. The

idiosyncratic value of leisure α takes two possible values: αL and αH , with αL < αH . Realizations of

α are i.i.d. across individuals and are distributed according to a distribution function ψ = (ψL, ψH).

A key assumption is that α is private information of the individual.

Output is produced according to the following production function:

Y = ezF (H),

where Y is aggregate output, H is aggregate hours worked and F is continuously differentiable,

strictly increasing, concave and satisfies the Inada conditions.

6Contrary to Farhi and Werning (2012), the transitionary dynamics in my Mirrlees RBC economy coincide with

those of a representative agent economy only if the agent’s preferences shift over time in a particular way. This

is due to the overlapping generations structure (introduced to obtain a stationary distribution of agents) and only

happens if the social planner discounts the future with a discount rate that is different from the agents’.
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A social planner decides utilities of consumption us and utilities of leisure ns as functions of

the reported value of leisure αs.
7 The mechanism design problem is the following:

max
∑
s

[us + αsns]ψs (3.1)

subject to ∑
s

u−1 (us)ψs ≤ ezF (H), (3.2)

H ≤
∑
s

[
1− n−1 (ns)

]
ψs, (3.3)

uL + αLnL ≥ uH + αLnH , (3.4)

where equation (3.2) is the aggregate feasibility constraint for the consumption good, equation

(3.3) is the aggregate feasibility constraint for hours worked and equation (3.4) is the binding

incentive compatibility constraint.8

The unique solution to this problem satisfies equations (3.2)-(3.4) and the following first order

conditions:

0 = ψL − λ
1

u′ (cL)
ψL + λξ, (3.5)

0 = ψH − λ
1

u′ (cH)
ψH − λξ, (3.6)

0 = αLψL − λq
1

n′ (1− hL)
ψL + αLλξ, (3.7)

0 = αHψH − λq
1

n′ (1− hH)
ψH − αLλξ, (3.8)

q = ezF ′(H), (3.9)

where λ, λq, and λξ are the Lagrange multipliers of equations (3.2), (3.3) and (3.4), respectively,

and where cs = u−1 (us) and 1− hs = n−1 (ns).

Observe that from equations (3.6) and (3.8) we have

q
1

n′ (1− hH)
= αH

1

u′ (cH)
+

(αH − αL)λξ

λψH
.

7I formulate the planning problem in terms of utilities of consumption and leisure (instead of consumption and

leisure levels) in order to obtain a convex feasible set, which is crucial for characterizing the solution using first

order conditions.

8It can be shown that the truth-telling constraint for an agent with the high value of leisure will not be binding

under the optimal allocation.
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Hence,

q > αH
n′ (1− hH)

u′ (cH)
. (3.10)

Since the marginal rate of substitution of leisure for consumption is less than the shadow wage

rate q, it follows that under an optimal plan agents with the high value of leisure are “taxed” their

labor supply. On the contrary, from equations (3.5) and (3.7) we have that

q = αL
n′ (1− hL)

u′ (cL)
. (3.11)

That is, the labor supply decision of agents with the low value of leisure is undistorted.

Consider now the social planner problem of this same economy but under full information.

This problem is to maximize equation (3.1) subject to equations (3.2) and (3.3). Setting ξ = 0 in

equations (3.5)-(3.9) we get that the optimal allocation under full information satisfies:

C∗ = ezF (H∗), (3.12)

H∗ = h∗LψL + h∗HψH , (3.13)

λ∗ = u′ (C∗) , (3.14)

0 = αL − λ∗q∗
1

n′ (1− h∗L)
, (3.15)

0 = αH − λ∗q∗
1

n′ (1− h∗H)
, (3.16)

q∗ = ezF ′(H∗). (3.17)

That is, under full information agents’ consumption is fully insured and h∗H < h∗L.

A crucial question is under what conditions the aggregate allocation of the full information

economy (C∗, H∗) is identical to that of the private information economy. To see this, lets try to

seek a solution to equations (3.2)-(3.9) that satisfy that H = H∗. In fact, in doing so it will be

convenient to rewrite those equations as follows:

cLψL + cHψH = C∗ (3.18)

hLψL + hHψH = H∗ (3.19)

u (cL) + αLn (1− hL) = u (cH) + αLn (1− hH) (3.20)

0 = ψL − λ
1

u′ (cL)
ψL + λξ, (3.21)
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1 = λ

[
1

u′ (cL)
ψL +

1

u′ (cH)
ψH

]
(3.22)

0 = αLψL − λq∗
1

n′ (1− hL)
ψL + αLλξ, (3.23)

ᾱ

[
1

u′ (cL)
ψL +

1

u′ (cH)
ψH

]
= q∗

[
1

n′ (1− hL)
ψL +

1

n′ (1− hH)
ψH

]
(3.24)

where ᾱ = αLψL + αHψH and where, using equations (3.9) and (3.17), q has already been substi-

tuted by q∗. Observe that equation (3.22) is obtained by adding equations (3.5) and (3.6), and

that equation (3.24) is obtained by adding equations (3.7) and (3.8) and using (3.22).

Equations (3.18)-(3.24) form a system of 7 equations in 6 unknowns: cL, cH , hL, hH , λ and

ξ. As a consequence, a solution will generally not exist. In particular, suppose that we have a

solution (cL, cH , hL, hH , λ, ξ) to equations (3.18)-(3.23). Then, generally equation (3.24) will not

be satisfied. However, there is an exception: when 1/u′ is a linear function of c and 1/n′ is a linear

function of 1− h. Observe that in this case equation (3.24) reduces to

ᾱ
1

u′ (cLψL + cHψH)
= q∗

1

n′ (1− hLψL − hHψH)
(3.25)

and, using equations (3.18) and (3.19), to the following:

ᾱ
1

u′ (C∗)
= q∗

1

n′ (1−H∗)
. (3.26)

But this equation is guaranteed to hold since C∗ and H∗ correspond to a solution of the full

information planning problem. To see this, multiply equation (3.15) by ψL and equation (3.16)

by ψH , add them and use equation (3.14) to get:

ᾱ
1

u′ (C∗)
= q∗

[
1

n′ (1− h∗L)
ψL +

1

n′ (1− h∗H)
ψH

]
. (3.27)

Equation (3.26) now follows from equation (3.27) and the linearity of 1/n′.

This argument has established that logarithmic functional forms for both u and n are gener-

ally needed to get identical aggregate allocations under private and full information. Moreover,

equation (3.26) indicates that under logarithmic preferences the aggregate allocation of the private

information economy coincides with the aggregate allocation of a representative agent model with

preferences given by

ln (C) + ᾱ ln (1−H) .
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Furthermore, from equations (3.12), (3.17) and (3.26) it can be verified that aggregate hours

worked H∗ are independent of aggregate productivity z (a standard result under separable and

log of consumption preferences). In addition, equations (3.2)-(3.9) imply that hL and hH are

independent of z while cL and cH vary proportionately with it. It follows that the cross sectional

variances of log-hours worked and of log-consumption levels are independent of z.

It is also useful to observe from equations (3.14), (3.18) and (3.22) that under logarithmic

preferences λ = λ∗. From equations (3.5), (3.6), (3.14) and the concavity of u we then see that

cH < C∗ < cL. From equations (3.7), (3.8), (3.15), (3.16), the concavity of n and the fact that

q = q∗ we also see that 1−hL < 1−h∗L and that 1−h∗H < 1−hH . Since, 1−h∗L < 1−h∗H if follows

that under private information agents not only receive less insurance in terms of consumption levels

but also in terms of leisure. Thus, while under logarithmic preferences aggregate allocations are

identical in the private and full information cases, there are key differences in terms of individual

allocations.

4 The dynamic economy

The previous section showed that when preferences are logarithmic (both in consumption and in

leisure), that the presence of private information becomes irrelevant for the optimal aggregate al-

location of a static economy. In what follows I explore if this irrelevance result can be extended to

a dynamic setting. There are three reasons for doing this. First, a static economy with logarithmic

preferences is quite uninteresting from a macroeconomic point of view since, as was previously men-

tioned, aggregate hours are not affected by the realization of aggregate productivity. Second, in a

dynamic setting the social planner uses intertemporal rewards and punishments to induce truthful

revelation in addition to the intratemporal elements already present in a static environment. It is

unclear whether logarithmic preferences will be able to jointly aggregate these intertemporal and

intratemporal margins into those of a representative agent economy with full information. Third,

even if private information under logarithmic preferences plays no role for aggregate allocations

it seems important to characterize the cyclical behavior of the optimal amount of cross-sectional

inequality in consumption and hours worked within the realm of a realistic business cycle model.

The reason is that the presence of private information may be able to shed light on certain cross-

sectional cyclical observations that a representative agent model is not able to address. For these
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reasons, this section incorporates the private information structure of the previous section into a

standard real business cycle model and characterizes its optimal allocation.

The economy is populated by a unit measure of agents subject to stochastic lifetimes. Whenever

an agent dies he is immediately replaced by a newborn, leaving the aggregate population level

constant.9 The preferences of an individual born at date T are given by

ET

{
∞∑
t=T

βt−Tσt−T [u (ct) + αtn (1− ht)]

}
, (4.1)

where σ is the survival probability, 0 < β < 1 is the discount factor, αt ∈ {α1, ..., αS} is the

idiosyncratic value of leisure, and u and n are continuously differentiable, strictly increasing and

strictly concave utility functions. Realizations of αt are assumed to be i.i.d. both across individuals

and across time, and private information. The probability that αt = αs is given by ψs.

Output, which can be consumed or invested, is produced with the following production func-

tion:

Yt = eztF (Kt−1, Ht),

where Yt is output, zt is aggregate productivity, Kt−1 is capital, Ht is hours worked, and F is a

neoclassical production function. The aggregate productivity level zt follows a standard AR(1)

process given by:

zt+1 = ρzt + εt+1,

where 0 < ρ < 1 and εt+1 is normally distributed with mean zero and standard deviation σε.

Capital is accumulated using a standard linear technology given by

Kt = (1− δ)Kt−1 + It,

where It is gross investment and 0 < δ < 1. The initial values of z0 and K−1 are given.

4.1 Recursive mechanism design problem

This section provides a recursive formulation to the problem of a social planner that seeks to

maximize utility subject to incentive compatibility, promise keeping and resource feasibility con-

straints. In order to do this it will be important to distinguish between two types of agents: young

9As in Phelan (1994), the stochastic lifetime guarantees that there will be a stationary distribution of agents

across individual states.
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and old. A young agent is one that has been born at the beginning of the current period. An old

agent is one that has been born in some previous period. The social planner must decide recursive

plans for both types of agents. The state of a recursive plan is the value (i.e., discounted expected

utility) that the agent is entitled to at the beginning of the period. Given this promised value,

the recursive plan specifies the current utility of consumption, the current utility of leisure, and

next-period promised values as functions of the value of leisure currently reported by the agent.

The social planner is fully committed to the recursive plans they choose and agents have no outside

opportunities available.

A key difference between the young and the old is in terms of promised values. Since during the

previous period the social planner has already decided on some recursive plan for a currently old

agent, the planner is restricted to delivering the corresponding promised value during the current

period. In contrast, the social planner is free to deliver any value to a currently young agent

since this is the first period they are alive. Reflecting this difference, I will specify the individual

state of an old agent to be their promised value v and their current value of leisure s (similarly to

Section 3, I will refer to the value of leisure αs by its subindex s). At date t, their current utility

of consumption, utility of leisure, and next-period promised value are denoted by uost (v), nost (v)

and wos,t+1 (v), respectively, where wos,t+1 (v) is a random variable contingent on the realization

of zt+1.10 In turn, the individual state of a young agent is solely given by their current value of

leisure s. At date t, the agent’s current utility of consumption, utility of leisure, and next-period

promised value are denoted by uyst, nyst and wys,t+1 respectively, where wys,t+1 is also contingent

on the realization of zt+1.

The aggregate state of the economy is given by the triplet (zt, Kt−1, µt), where zt is the aggregate

productivity level, Kt−1 is the stock of capital, and µt is a measure describing the number of old

agents across individual promised values v. The social planner seeks to maximize the weighted

sum of welfare levels of current and future generations of young agents (the welfare levels of old

agents are predetermined by their promised values at the beginning of the period). In recursive

10I follow the convention that a variable is dated t if it becomes known at date t.
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form, the planner’s problem at t ≥ 1 is given by11

Vt (zt, Kt−1, µt) = max

{
(1− σ)

∑
s

[uyst + αsnyst + βσEt (wys,t+1)]ψs + θEt [Vt+1 (zt+1, Kt, µt+1)]

}
(4.2)

subject to:

(1− σ)
∑
s

c (uyst)ψs +

∫ ∑
s

c (uost (v))ψsdµt +Kt − (1− δ)Kt−1 ≤ eztF (Kt−1, Ht), (4.3)

Ht ≤ (1− σ)
∑
s

h (nyst)ψs +

∫ ∑
s

h (nost (v))ψsdµt, (4.4)

uyst + αsnyst + βσEt [wys,t+1] ≥ uyjt + αsnyjt + βσEt [wyj,t+1] , (4.5)

uost (v) + αsnost (v) + βσEt [wos,t+1 (v)] ≥ uojt (v) + αsnojt (v) + βσEt [woj,t+1 (v)] , (4.6)

v =
∑
s

{uost (v) + αsnost (v) + βσEt [wos,t+1 (v)]}ψs, (4.7)

µt+1 (B) = σ
∑
s

∫
{v: wos,t+1(v)∈B}

ψsdµt + (1− σ)σ
∑

s: wys,t+1∈B

ψs, (4.8)

where Et denotes expectation conditional on zt and βσ < θ < 1 is the welfare weight of the

next-period generation relative to the current-period generation. Equation (4.3) describes the

aggregate feasibility constraint for the consumption good. It states that the total consumption of

young and old agents, plus aggregate investment cannot exceed aggregate output.12 Equation (4.4)

is the aggregate labor feasibility constraint. It states that the input of hours into the production

function cannot exceed the total hours worked by young and old agents. Equations (4.5) and (4.6)

are the incentive compatibility constraints of young and old agents, respectively, and must hold for

every (s, j). Equation (4.7) is the promise keeping constraint. It states that the recursive plan for

an old agent with promised value v must provide him an expected utility equal to that promised

value. Finally, equation (4.8) is the law of motion for the measure of old agents across promised

values. It states that the number of old agents that at the beginning of the following period will

have a promised value in the Borel set B is given by the sum of two terms. The first term sums

11Actually, the planning problem described here has a recursive structure and, therefore, the time subscripts of

all variables could be removed. The advantages of leaving them explicitly will become apparent below.

12Observe that, given the constant probability of dying 1 − σ and the immediate replacement with newborns,

the number of young agents in the economy is always equal to 1− σ.
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all currently old agents that receive a next-period promised value in the set B and do not die.

The second term does the same for all currently young agents. Observe that since next-period

promised values wos,t+1 (v) and wys,t+1 are contingent on the realization of next-period aggregate

productivity zt+1, that the same is true for the measure µt+1.

Since the objective function in equation (4.2) is linear and increasing and equations (4.3)-(4.8)

define a convex feasible set, the solution to the social planning problem starting from any initial

(z1, K0, µ1) is unique. This solution satisfies equations (4.3)-(4.8) and the following first order

conditions:

0 =
1

λt
ψs −

1

u′ (cyst)
ψs +

∑
j

ξysjt −
∑
j

ξyjst, (4.9)

0 =
αs
λt
ψs − qt

1

n′ (1− hyst)
ψs +

∑
j

αsξysjt −
∑
j

αjξyjst, (4.10)

0 =
βσ

λt
ψs − θσ

λt+1

λt
ηo,t+1 (wys,t+1)ψs + βσ

∑
j

ξysjt − βσ
∑
j

ξyjst, (4.11)

0 = − 1

u′ [cost (v)]
ψs +

∑
j

ξosjt (v)−
∑
j

ξojst (v) + ηot (v)ψs, (4.12)

0 = −qt
1

n′ [1− host (v)]
ψs +

∑
j

αsξosjt (v)−
∑
j

αjξojst (v) + ηot (v)αsψs, (4.13)

0 = −θσλt+1

λt
ηo,t+1 [wos,t+1 (v)]ψs + βσ

∑
j

ξosjt (v)− βσ
∑
j

ξojst (v) + βσηot (v)ψs, (4.14)

0 = eztFH (Kt−1, Ht)− qt, (4.15)

0 = −1 + θEt

{
λt+1

λt
[ezt+1FK (Kt, Ht+1) + 1− δ]

}
, (4.16)

where λt, λtqt, λtξysjt, λtξosjt (v) and λtηt (v) are the Lagrange multipliers of equations (4.3)-(4.7),

respectively.

From equations (4.12)-(4.13) we have, for every s, that

qt
1

n′ [1− host (v)]
= αs

1

u′ [cost (v)]
+

1

ψs

∑
j

(αs − αj) ξojst (v) . (4.17)

Since the last term of this equation is generally different from zero and qt satisfies equation (4.15),

it follows that the labor supply decision of old agents is generally distorted (i.e. there is a wedge

between the marginal product of labor and the marginal rate of substitution of old agents).
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From equations (4.12), (4.14), and (4.16) we get, for every s, that

u′ [cost (v)] = βEt

[ezt+1FK (Kt, Ht+1) + 1− δ]

[∑
s

1

u′ [cos,t+1 (v)]
ψs

]−1
 , (4.18)

a relation known in the Dynamic Public Finance literature as the Inverse Euler equation. Applying

Jensen’s inequality to equation (4.18) we get that

u′ [cost (v)] ≤ βEt

{
(ezt+1FK (Kt, Ht+1) + 1− δ)

∑
s

u′ [cos,t+1 (v)]ψs

}
, (4.19)

with strict inequality whenever cos,t+1 (v) varies across s. That is, in general there is a wedge in

the intertemporal Euler equations of old agents. Using equations (4.9)-(4.11) we derive similar

relations to equations (4.17) and (4.18) but for young agents. We conclude that, irrespective of

being young or old, under an optimal allocation agents have their intratemporal and intertemporal

margins distorted. Therefore, individual allocations differ from the full information case.

4.2 An irrelevance result under logarithmic preferences

The previous section described the mechanism design problem in recursive form. However, date

0 is special because it has no ongoing recursive plans in place on which promised values must be

delivered. As a consequence, all agents at date 0 must be treated as young. The date-0 mechanism

design problem is thus given by

max

{∑
s

[uys0 + αsnys0 + βσEt (wys1)]ψs + θE0V1 (z1, K0, µ1)

}
(4.20)

subject to ∑
s

c (uys0)ψs +K0 − (1− δ)K−1 ≤ ez0F [K−1, H0] , (4.21)

H0 ≤
∑
s

h (nys0)ψs, (4.22)

uys0 + αsnys0 + βσE0 [wys,1] ≥ uyj0 + αsnyj0 + βσE0 [wyj,1] , for every (s, j) , (4.23)

µ1 (B) = σ
∑

s: wys1∈B

ψs, (4.24)

where V1 is the value function in equation (4.2) at t = 1, and (z0, K−1) are taken as given. The

solution to this problem satisfies equations (4.3)-(4.16) for t ≥ 1, equations (4.21)-(4.24), and

equations (4.9)-(4.11) and (4.15)-(4.16) for t = 0.
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By contrast, consider the following non-stationary representative agent planning problem:

maxE0

{
∞∑
t=0

φtθ
t [u (Ct) + ᾱn (1−Ht)]

}
(4.25)

subject to:

Ct +Kt − (1− δ)Kt−1 ≤ eztF (Kt−1, Ht) . (4.26)

where φt > 0 is a deterministic preference shifter with positive limit and (z0, K−1) is taken as

given. Its solution is characterized by equation (4.26) and the following first order conditions:

ᾱn′ (1−Ht) = u′ (Ct) e
ztFH (Kt−1, Ht) , for t ≥ 0, (4.27)

1 = θ
φt+1

φt
Et

{
u′ (Ct+1)

u′ (Ct)
[ezt+1FK (Kt, Ht+1) + 1− δ]

}
, for t ≥ 0. (4.28)

In what follows I show that when u and n are both logarithmic, the optimal aggregate allocation

of the economy with private information coincides with the solution to the representative agent

planning problem (4.25) under a particular sequence {φt}∞t=0.

Adding equation (4.9) across all s (which cancels all the Lagrange multipliers ξysjt), adding

equation (4.10) across all s (which cancels all terms αsξysjt) and equating gives the following

intratemporal condition:

qt
∑ 1

n′ (1− hyst)
ψs = ᾱ

∑
s

1

u′ (cyst)
ψs (4.29)

Also, adding equations (4.12) across all s (which cancels all the Lagrange multipliers ξosjt (v)),

adding equation (4.13) across all s (which cancels all the terms αsξosjt (v)) and equating gives the

following intratemporal condition:

qt
∑
s

1

n′ [1− host (v)]
ψs = ᾱ

∑
s

1

u′ [cost (v)]
ψs (4.30)

Under logarithmic u and n, the intratemporal condition (4.29) becomes linear and we have for

t ≥ 0 that

qt (1−Hy
t ) = ᾱCy

t , (4.31)

where Hy
t =

∑
s hystψs is the average hours worked of young agents and Cy

t =
∑

s cystψs is

the average consumption of young agents. Also, under logarithmic u and n, the intratemporal

condition (4.30) becomes linear. Integrating across old agents we have for t ≥ 1 that

qt (1−Ho
t ) = ᾱCo

t (4.32)
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where Ho
t = 1

σ

∫ ∑
s host (v)ψsdµt is the average hours of old agents and Co

t = 1
σ

∫ ∑
s cost (v)ψsdµt

is the average consumption of old agents.

Since aggregate consumption is given by

Ct =

 (1− σ)Cy
t + σCo

t , for t ≥ 1,

Cy
0 , for t = 0,

and aggregate hours worked are given by

Ht =

 (1− σ)Hy
t + σHo

t , for t ≥ 1,

Hy
0 , for t = 0,

from equations (4.31) and (4.32) we have that

qt (1−Ht) = ᾱCt (4.33)

which is the representative agent intratemporal condition (4.27) under logarithmic preferences,

once equation (4.15) is used.

Deriving the representative agent intertemporal Euler equation (4.28) is somewhat more in-

volved. First, observe that adding equations (4.9) and (4.11) across all s gives

1

λt
=
∑
s

1

u′ (cyst)
ψs (4.34)

βσ

λt
= θσ

λt+1

λt

∑
s

ηo,t+1 (wys,t+1)ψs (4.35)

and that adding equations (4.12) and (4.14) across all s gives

ηot (v) =
∑
s

1

u′ [cost (v)]
ψs (4.36)

βσηot (v) = θσ
λt+1

λt

∑
s

ηo,t+1 [wos,t+1 (v)]ψs (4.37)

From equations (4.8), (4.35) and (4.37) we then have that∫
ηo,t+1 (v) dµt+1 = σ

∫ ∑
s

ηo,t+1 [wos,t+1 (v)]ψsdµt + (1− σ)σ
∑
s

ηo,t+1 (wys,t+1)ψs

=
λtβσ

θλt+1

∫
ηot (v) dµt + (1− σ)

βσ

θλt+1

, for t ≥ 1 (4.38)
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and from equations (4.24) and (4.35) we have that∫
ηo1 (v) dµ1 = σ

∑
s

ηo1 (wys,1)ψs =
βσ

θλ1

. (4.39)

Let {ρt}∞t=1 be defined as follows:

ρ1 =
βσ

θ
,

ρt+1 =
βσ

θ
ρt + (1− σ)

βσ

θ
, for t ≥ 1. (4.40)

From equations (4.38) and (4.39) it follows that

ρt = λt

∫
ηot (v) dµt, for t ≥ 1.

Under logarithmic u, from equations (4.34) and (4.36) we have

Cy
t =

1

λt
, for t ≥ 0,

Co
t =

1

σ

∫
ηt (v) dµt, for t ≥ 1.

Then, the ratio of the average consumption of old agents to the average consumption of young

agents is given by
Co
t

Cy
t

=
1
σ

∫
ηt (v) dµt

1
λt

=
1

σ
ρt, for t ≥ 1,

and, consequently,

Ct
Ct+1

=
(1− σ)Cy

t + σCo
t

(1− σ)Cy
t+1 + σCo

t+1

=
(1− σ) + ρt

(1− σ) + ρt+1

Cy
t

Cy
t+1

=
(1− σ) + ρt

(1− σ) + ρt+1

λt+1

λt
, for t ≥ 1. (4.41)

Also, observe that

C0

C1

=
Cy

0

(1− σ)Cy
1 + σCo

1

=
1

(1− σ)Cy
1 + ρ1C

y
1

1

λ0

=
1

(1− σ) + ρ1

λ1

λ0

. (4.42)

Defining {φt}∞t=0 as

φt =

 1, for t = 0

(1− σ) + ρt, for t ≥ 1,
(4.43)

equations (4.41) and (4.42) can then be written as

Ct
Ct+1

φt+1

φt
=
λt+1

λt
, for t ≥ 0. (4.44)

From equations (4.16) and (4.44) it follows that, when u is logarithmic, the intertemporal Euler

equation of the representative agent (4.28) holds for t ≥ 0. Since equations (4.3) and (4.21) imply

equation (4.26), I have thus established the following Lemma:
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Lemma 1 Suppose that u and n are logarithmic. Define φ = {φt}∞t=0 as in equations (4.43) and

(4.40). Then, the optimal aggregate allocation of the economy with private information is

identical to the optimal allocation of the representative agent economy with preference shifters φ.

Observe that the optimal allocation of the full information economy can be obtained by drop-

ping the incentive compatibility constraints (4.5), (4.6) and (4.23), and setting ξysjt and ξosjt (v)

to zero in all first order conditions. Also observe that none of those incentive compatibility con-

straints or positive values for ξysjt or ξosjt (v) were used in the derivations of equations (4.33) and

(4.44). I thus have a second important result:

Lemma 2 Suppose that u and n are logarithmic. Define φ = {φt}∞t=0 as in equations (4.43) and

(4.40). Then, the optimal aggregate allocation of the economy with full information is identical

to the optimal allocation of the representative agent economy with preference shifters φ.

In addition, since the optimal aggregate allocations of the economy with private information

and the economy with full information are equal to the same object, I have the following Corollary.

Corollary 3 Suppose that u and n are logarithmic. Then, the optimal aggregate allocation of the

economy with private information is identical to the optimal aggregate allocation of the economy

with full information.

This Corollary provides a strong irrelevance result: Under logarithmic preferences and i.i.d.

shocks, the information frictions play no role for aggregate dynamics. The information frictions

affect individual allocations since agents are not fully insured and suffer from the lack of insurance.

However, this has no effect whatsoever on aggregate variables.

The reason why the allocations of the private information and full information economy do not

aggregate to a representative agent economy with stationary preferences (and preference shifters

are generally needed) is because the social planner is allowed to discount the welfare of future

generations at a different rate than private agents discount future utility. In fact, if we set the

relative Pareto weight θ to the private discount factor β we see from equation (4.40) that ρt = σ for

all t ≥ 1 and from equation (4.43) that φt = 1 for all t ≥ 0. That is, in this case the representative

agent economy has standard stationary preferences.
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Observe that independently of the value of θ, from equation (4.40) we verify that ρt converges

to a positive value and, therefore, that φt converges to a positive value as well.13 Since it is well

known that the solution to the representative agent economy with stationary preferences (constant

φt) converges to a stationary stochastic process, I can say the same about the aggregate optimal

allocations of the economies with private and full information (using Lemmas 1 and 2). Thus, I

have the following result.

Corollary 4 Suppose that u and n are logarithmic. Then, the aggregate optimal allocations of the

economies with private and full information converge to a stationary stochastic process. Moreover,

this stationary process is the one associated with a representative agent economy with stationary

preferences (zero preference shifters).

4.3 Cross-sectional heterogeneity under log preferences

The previous section showed that private information is irrelevant for aggregate business cycle

fluctuations when preferences are logarithmic. However, even in this case the lack of perfect

insurance generates endogenous heterogeneity across individual agents that may help understand

cross-sectional features of the business cycle that economies with full information cannot address.

This is particularly interesting since logarithmic preferences represent a benchmark case in the

RBC literature (e.g. Cooley and Prescott (1995)).

In order to study cross-sectional properties of the business cycle we need a sharper character-

ization of the private information optimal stationary allocation. The next Lemma provides such

characterization.

Lemma 5 Suppose that u and n are logarithmic. Define ∆ lnλt = lnλt − lnλ∗ and ∆ ln qt =

ln qt − ln q∗, where λ∗ and q∗ are the deterministic steady state values of λt and qt, respectively.

Then, the stationary solution to the private information planning problem satisfies, for every s,

13Recall that θ was assumed to be greater than βσ.
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that

uyst = u∗ys −∆ lnλt (4.45)

nyst = n∗ys −∆ lnλt −∆ ln qt (4.46)

wys,t+1 = w∗ys −
1

b
(∆ lnλt+1 + ∆πt+1) (4.47)

uost (v) = u∗os + bv + ∆πt (4.48)

nost (v) = n∗os + bv + ∆πt −∆ ln qt (4.49)

wos,t+1 (v) = w∗os + v − 1

b
(∆ lnλt+1 + ∆πt+1 −∆ lnλt −∆πt) (4.50)

where 0 < b = 1−βσ
1+ᾱ

< 1 and ∆πt is given by

∆πt = −βσ∆ lnλt + (1− βσ)
∞∑
k=1

(βσ)k Et [∆ lnλt+k] + bᾱ
∞∑
k=0

(βσ)k Et [∆ ln qt+k] .

Proof: These functional forms satisfy all constraints and first-order conditions.�14

Equations (4.45)-(4.47) indicate that for young agents the utility of consumption, the utility

of leisure, and next-period promised values shift over the business cycle by amounts that are inde-

pendent of the reported type. Equation (4.48) states that all uost (v) are linear parallel functions

that shift vertically over the business cycle by amounts that are independent of the reported type.

While equations (4.49) and (4.50) show that the same is true for the utility of leisure and next-

period promised values, the slopes of all wos,t+1 (v) are equal to one. Thus, promised values follow

a random walk process with innovations that depend on the realization of the idiosyncratic and

aggregate shocks.15

I now turn to characterize the behavior of the cross-sectional distributions of promised values,

consumption levels and hours worked implied by the optimal allocation rules described in Lemma

5. Observe, from equations (4.8) and (4.50) that for every interval (a1, a2) the steady state

14See the Technical Appendix for a complete proof.

15Even with no aggregate fluctuations, promised values follow a random walk. However, contrary to Atkeson

and Lucas (1992), an immizerizing result is not obtained because of the stochastic lifetimes. As people die and are

replaced by young agents, there is enough “reversion to the mean” in promised values that an invariant distribution

is obtained (see Phelan 1994). The immizerizing result actually applies within each cohort of agents: Within each

cohort the distribution of promised values spreads out over time.
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distribution µ∗ satisfies that:

µ∗ [(a1, a2)] = σ
∑
s

ψsµ
∗ [(a1 − w∗os, a2 − w∗os)] + (1− σ)σ

∑
s: w∗

ys∈(a1,a2)

ψs. (4.51)

Define

∆t =
∆ lnλt + ∆πt

b
. (4.52)

From equations (4.8), (4.47) and (4.50) we have that for every interval (a1 −∆t+1, a2 −∆t+1):

µt+1 [(a1 −∆t+1, a2 −∆t+1)] = σ
∑
s

ψsµt [(a1 −∆t − w∗os, a2 −∆t − w∗os)]

+ (1− σ)σ
∑

s: w∗
ys∈(a1,a2)

ψs. (4.53)

From equations (4.51) and (4.53) it then follows that for every interval (a1, a2):

µt [(a1 −∆t, a2 −∆t)] = µ∗ [(a1, a2)] . (4.54)

That is, µt is merely a ∆t horizontal translation of the steady state distribution µ∗. In particular,

since promised values increase during a boom, µt shifts to the right during such an episode. We

thus have the following Lemma.

Lemma 6 The dispersion of the cross-sectional distribution of promised values is constant over

the business cycle.

Now let’s consider the associated behavior of the cross-sectional distribution ϕt of utilities of

consumption ut. From equations (4.45) and (4.48) we have that ϕt satisfies that for every Borel

set B,

ϕt (B) =
∑
s

∫
{v: u∗os+bv+∆πt ∈ B}

ψsdµt +
∑

s: u∗ys−∆ lnλt ∈ B

ψs.

It follows that for every interval (a1, a2),

ϕ∗ [(a1, a2)] =
∑
s

ψsµ
∗
[(

a1 − u∗os
b

,
a2 − u∗os

b

)]
+

∑
s: u∗ys ∈ (a1,a2)

ψs

and

ϕt [(a1 −∆ lnλt, a2 −∆ lnλt)]

=
∑
s

ψsµt

[(
a1 −∆ lnλt − u∗os −∆πt

b
,
a2 −∆ lnλt − u∗os −∆πt

b

)]
+

∑
s: u∗ys ∈ (a1,a2)

ψs.
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From equations (4.52) and (4.54) we then have that

ϕt [(a1 −∆ lnλt, a2 −∆ lnλt)] = ϕ∗ [(a1, a2)] . (4.55)

Thus, ϕt is also a ∆ lnλt horizontal translation of the steady state distribution ϕ∗. Since u is

logarithmic, we then have the following Lemma.

Lemma 7 The dispersion of the cross-sectional distribution of log-consumption levels is constant

over the business cycle.

Finally, let’s turn to characterizing the behavior of the cross-sectional distribution ζt of utilities

of leisure nt. From equations (4.45) and (4.46) we have that cyclical shifts in nyst differ from the

cyclical shifts in uyst by the amount −∆ ln qt. From equations (4.48) and (4.49) we also see that

nost (v) is parallel to uost (v) and that its vertical shifts differ from those in uost (v) by the amount

−∆ ln qt. Following the same steps as those used to derive equation (4.55) we thus have that,

ζt [(a1 −∆ lnλt −∆ ln qt, a2 −∆ lnλt −∆ ln qt)] = ζ∗ [(a1, a2)] .

That is, ζt is a ∆ lnλt + ∆ ln qt horizontal translation of the steady state distribution ζ∗. Since

the utilities of leisure decrease during a boom, it follows that ζt shifts to the left during such an

episode.

Observe that the log of hours worked are related to utilities of leisure according to ln(h) =

ln(1−en). Since this is a strictly decreasing and strictly concave function of n it follows that when

the distribution of utilities of leisure shifts to the left, that the dispersion of the distribution of

log hours decreases. Thus, we have our last Lemma.

Lemma 8 The dispersion of the cross-sectional distribution of log-hours worked is countercyclical.

There is a considerable empirical literature analyzing the behavior of consumption and labor

income inequality over time. While most of the literature has focused on trends a few studies have

considered business cycle frequencies as well. Heathcote et al. (2010) is a recent example. A key

finding in that paper is that U.S. labor earnings inequality widens sharply in recessions and that

this is driven by an increase in labor supply inequality (since the cross-sectional distribution of

wages is not much affected). Krueger et al. (2010) reported similar findings for eight other countries
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considered in their study. This empirical evidence is broadly in line with the theoretical results

obtained in this section. In particular, Lemma 8 indicates that the model’s labor supply inequality

increases during recessions and, since all agents earn the same wage rate q, that this translates

into an increase in labor income inequality.16 The empirical evidence on the cyclical behavior

of consumption inequality is less clear. Summarizing the international evidence, Krueger et al.

(2010) reported that most recessions are accompanied by an uptick in consumption inequality that

is much smaller than the associated increase in earnings inequality. Focusing on the U.S. Great

Recession of 2007-2009, Krueger et al. (2016) found that consumption inequality increased during

that recession as well. However, using a structural factor model Giorgi and Gambetti (2017)

found that TFP shocks generate pro-cyclical movement in U.S. consumption inequality. Given

these opposing results it seems that the acyclical consumption inequality described in Lemma 7

represents a rough compromise between the different empirical studies.

4.4 General CRRA preferences

So far I have been able to provide an analytical characterization of the solution to the mecha-

nism design problem by assuming that preferences are logarithmic. However, when preferences

differ from this case such characterization is no longer possible and the model must be solved for

numerically. This is a challenging task: Not only one of the state variables to the social planner

problem, µt, is infinite dimensional but it is state-contingent (since next-period promised values

are contingent on the realization of the aggregate shock). This non-standard feature of the social

planner problem makes previous computational methods unsuitable for the task. Fortunately, in

Veracierto (2019) I introduce a general computational method that can handle this case without

difficulty, making it particularly useful for solving aggregate fluctuations of economies with pri-

vate information.17 It turns out that when this method is applied to the Mirrlees economy with

16Discussing labor income and wages actually requires specifying a decentralization. To fix concepts it may be

useful to consider a simple decentralization in which households have a continuum of members and all the dynamic

contracting is done within the family. Output is produced by competitive firms and the market structure consists

of spot markets for labor and capital, and a complete set of Arrow securities.

17Aside for being able to solve equilibria of economies with private information, three other features that make

this computational method particularly attractive relative to other alternatives are the following: 1) it keeps track
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logarithmic preferences analyzed above, it reproduces all the analytical results exactly, providing

considerable confidence about its accuracy. In what follows, I use it to solve the case of more

general CRRA preferences. In particular, I consider preferences of the following form:

ET

{
∞∑
t=T

βt−Tσt−T

[
c1−κ
t − 1

1− κ
+ αt

(1− ht)1−π − 1

1− π

]}
,

where κ 6= 1 and π 6= 1. In terms of the production function, I assume a Cobb-Douglas specification

F (Kt−1, Ht) = Kγ
t−1H

1−γ
t ,

where 0 < γ < 1.

I calibrate the model under different values of κ and π. In order to simplify computations,

I select the model time period to be one year and consider only two values for the idiosyncratic

shocks: αL and αH , with αL < αH . Following the RBC literature, I select a labor share 1 − γ of

0.64, a depreciation rate δ of 0.10, a private discount factor β of 0.96, a persistence of aggregate

productivity ρ of 0.95, and a variance of the innovations to aggregate productivity σ2
ε equal to

4 × 0.0072. The social discount factor θ is chosen to be the same as the private discount factor

β. The values of leisure αL and αH are chosen to satisfy two criteria: Aggregate hours worked H

equal 0.31 (a standard target in the RBC literature) and that the hours worked by old agents with

the high value of leisure and the highest possible promised value be a small but positive number.18

The rationale for this second criterion is that I want to maximize the relevance of the information

frictions while keeping an internal solution for hours worked.19 The probability of drawing a high

value of leisure ψH is chosen to maximize the standard deviation of the invariant distribution of

promised values. It turns out that a value of ψH = 0.50 achieves this. In terms of the life-cycle

structure, I choose σ = 0.975 to generate an expected lifespan of 40 years.

Before turning to the business cycle results, I describe different steady state features of interest.

In order to streamline the presentation I focus on the κ = 2 and π = 2 case as an illustration

throughout most of the discussion, but present results for other cases when needed.

of the full distribution of agents across individual states as a state variable (no summary statistics), 2) it handles

irregular shapes for this distribution, and 3) it incorporates the distribution’s exact law of motion.

18The computational method requires working with promised values that lie in a closed interval.

19Table 1 describes the values for αL and αH corresponding to the different combinations of (κ, π) considered in

this section.
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In computations I represent the allocation rules uost, nost and wos,t+1 as spline approximations

defined over 20 grid points for the promised value v. Figure 1 shows the invariant distribution

of promised values across the 19 intervals defined by the corresponding consecutive grid points.

While it is hard to see at this coarseness level, the distribution is approximately symmetrical.

More importantly, we see that the invariant distribution puts very little mass at extreme values.

In consequence, in what follows I report allocation rules only between the 6th and 16th grid points.

The reason is not only that there are too few agents at the tails of the distribution for them to

matter, but also that being close to the extremes greatly distorts the shape of the allocation rules.

While not apparent in Figure 1, the invariant distribution of promised values generates too

little heterogeneity. The standard deviations of the cross-sectional distribution of log-consumption

levels and log-hours worked are 0.04 and 0.41, respectively. This compares with values of 0.50 and

0.82 reported by Heathcote et al. (2010) for 1981 (the year of lowest consumption heterogeneity in

their sample).20 The reason for the small amount of heterogeneity is that there is no persistence

in the idiosyncratic shocks: The only way that the model can generate large deviations from the

mean is through long streams of repeated bad shocks or good shocks, and these are unlikely to

happen. Unsurprisingly, an unrealistic idiosyncratic shock process generates an unrealistic amount

of cross-sectional heterogeneity.21

Figure 2.A reports the utilities of consumption for old agents uoL (v) and uoH (v) across

promised values v, as well as those of young agents uyL and uyH (which are independent of

v). Figures 2.B and 2.C do the same for the utilities of leisure and next-period promised values,

respectively. The basic economics behind these Figures is quite intuitive: When an agent (young

or old) reports a high value of leisure, the planner allows them to enjoy more leisure but, in com-

pensation, they receive less consumption and are promised worse treatment in the future. What

I am particularly interested here is in functional forms. We see that, similarly to the logarithmic

preferences case, the allocation rules are approximately linear over the relevant range of promised

values.22 However, contrary to the logarithmic case, the allocation rules are not parallel across

20See their Figures 10 and 13.

21For this reason, there is no point in reporting other features of the cross section, such as optimal labor and

capital wedges.

22Although extending the domain of these functions to much lower values of v happens to make the existence of
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reported types. This is shown in Figure 2.D, which depicts the vertical differences across reported

types. We see that only for the utilities of consumption the differences uoH (v)− uoL (v) are con-

stant: The differences noH (v)− noL (v) are decreasing in v while the differences woH (v)−woL (v)

are increasing in v. Thus, the allocation rules do not have the same properties as in the logarithmic

case.

Although the allocation rules have different properties from the logarithmic case, the irrele-

vance result of private information for steady state dynamics is still obtained. This is shown in

Table 2, which reports for different values of (κ, π) the deterministic steady state values of all

macroeconomic variables for the economies with private information and full information. We see

that in each parametrization, all variables are nearly identical in both information scenarios.

The discussion of business cycle dynamics that follows centers on the analysis of the impulse

responses of different variables to a one standard deviation increase in aggregate productivity. For

simplicity, I once again focus on the κ = 2 and π = 2 case.23 Before turning to the behavior of

macroeconomic variables, I establish that the cyclical behavior of the cross-sectional allocation

rules is significantly different from the logarithmic case. For parsimony, I only do this for the

utilities of leisure (however, the utilities of consumption and next-period promised values are also

affected). Figure 3.A shows the impulse responses of the utility of leisure of young agents nyL and

nyH . Far from being identical as in the logarithmic case, we see that the response of nyH is much

smaller than that of nyL. Figure 3.B shows the impulse response of the utility of leisure of old

agents with a low value of leisure noL (v), at each of the eleven grid points (vj)
16
j=6. While in the

logarithmic case these impulse responses overlap perfectly, we see that in the κ = 2 and π = 2 case

the response of noL (v) is larger at low values of v. As a consequence, noL (v) increases its slope

as it shifts down on impact, and then slowly reverts to its steady-state shape. Figure 3.B shows

the same for noH (v). However, differently from the logarithmic case, we see that the response of

noH (v) is smaller than that of noL (v).

Since the cyclical behavior of the cross-sectional allocation rules are significantly different from

the logarithmic case, it is not surprising that the cyclical behavior of the cross-sectional amount of

inequality is also quite different. This is shown in Figure 4.A. Similarly to the logarithmic case, we

non-linearities quite evident.

23Similar results are obtained in all the other cases.
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see that the amount of consumption inequality is constant. However, contrary to the logarithmic

case, the amount of hours inequality now increases with the aggregate shock and the dispersion

of the cross-sectional distribution of promised values decreases. Despite this, the information

frictions remain irrelevant for aggregate dynamics. Figure 4.B reports the impulse responses of all

macroeconomic variables in the economy with private information while Figure 6.C does the same

for the economy with full information. We see that both sets of impulse responses are identical.

Thus, similar to the log-log case, the stationary behavior of the aggregate variables of the economy

is not affected by the presence of information frictions.

The basic reason why the irrelevance result holds under more general CRRA preferences is

the small amount of heterogeneity that the model with i.i.d. shocks is able to generate. To see

this recall the proof of Lemmas 1 and 2 in Section 4.2. The proof showed that, under logarithmic

preferences, the inverse Euler equations that characterize the optimal allocation under private

information become linear. This allowed me to integrate the inverse Euler equations across all

individuals and obtain a relation between aggregate variables that coincides with the direct Euler

equation of the representative agent. When preference are CRRA, Jensen’s inequality breaks the

integration of the inverse Euler equations into an elemental relation between aggregate variables.

However, under i.i.d. shocks, the amount of cross-sectional heterogeneity is so small that the

correction from Jensen’s inequality becomes negligible.

5 Conclusions

The paper analyzed the effects of restrictions to risk sharing on macroeconomic dynamics when

these restrictions are not exogenously imposed but arise endogenously as the optimal response to

the presence of private information. For this purpose, the paper brought together two benchmark

models in the macroeconomics and information economics literatures, respectively: A real business

cycle model and a Mirrlees economy. In particular, the paper considered a RBC model in which

agents are subject to i.i.d. idiosyncratic shocks to their value of leisure and these shocks are private

information. In this framework the paper analyzed the mechanism design problem of maximizing

utility subject to incentive compatibility, promise keeping and aggregate feasibility constraints.

For the case of log-log preferences, which is a standard case in the RBC literature, the paper

obtained a sharp analytical characterization. In particular, the utility of consumption, the utility
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of leisure and next-period promised values are all linear functions of current promised values. Over

the business cycle these functions shift vertically in such a way that the distributions of promised

values and log-consumption shift horizontally while maintaining their shapes. However, consis-

tent with empirical evidence, the cross-sectional dispersion of log-hours worked is countercyclical.

A striking result of the paper is that under logarithmic preferences the business cycle fluctua-

tions of all macroeconomic variables are exactly the same under private information as under full

information.

For preferences other than the log-log case analytical results are no longer available. However,

numerical simulations indicate that the irrelevance result for aggregate dynamics still holds under

more general CRRA preferences: While the cross-sectional distribution of promised values now

changes its shape, the business cycle fluctuations of all macroeconomic variables are still unaffected

by the presence of private information.

The paper opens wide possibilities for future research. The analysis was done under i.i.d.

shocks, which admittedly are highly unrealistic. Considering the case of persistent shocks would

be essential for giving richer empirical content to the analysis. From a theoretical point of view it

would also be extremely interesting to see if the irrelevance result found in this paper extends to

that case.

Also, the paper compared the constrained-efficient aggregate fluctuations under private infor-

mation with those of the full information counterpart. This isolated the importance of the private

information for aggregate dynamics. However, it would be interesting to compare them with ver-

sions of the model with realistic financial markets and public policy in order to see how far from

their socially optimum fluctuations actual economies may be. One could also compare them to the

aggregate fluctuations obtained under optimal policy instruments restricted to belong to a certain

class, to see how close to achieving constrained-efficient outcomes those policy instruments may

be.
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Table 1

Idiosyncratic shock values

(κ, π) (1, 1) (1, 2) (2, 1) (2, 2)

αL 1.643 1.394 1.471 1.051

αH 2.177 2.426 2.349 2.770
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Table 2

Steady state macroeconomic variables

(κ, π) Information Y C I H K

(1, 1) Private 0.52381 0.39070 0.13311 0.30999 1.3311

Full 0.52381 0.39070 0.13311 0.31074 1.3311

(1, 2) Private 0.42990 0.32065 0.10925 0.25441 1.0924

Full 0.42995 0.32069 0.10926 0.25444 1.0926

(2, 1) Private 0.75151 0.56054 0.19097 0.44474 1.9097

Full 0.75168 0.56066 0.19101 0.44483 1.9101

(2, 2) Private 0.64229 0.47907 0.16322 0.38010 1.6322

Full 0.64261 0.47931 0.16330 0.38029 1.6330
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Figure 1: Invariant distribution of promised values
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Figure 2: Steady state allocation rules
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Figure 3: Impulse responses for leisure utilities
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Figure 4: Cross-sectional distributions and macro variables
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6 Proof of Lemma 5

6.1 Representative agent economy with stationary preferences

For future reference it will be useful to characterize the solution to the representative agent plan-

ning problem given by equations (4.25)-(4.26), with φt = 1 and log preferences. In terms of our

redefined variables, this problem is the following:

maxE0

{
∞∑
t=0

θt [ut + ᾱnt]

}

subject to

eut + It ≤ eztF (Kt−1, Ht)

Ht ≤ 1− ent

Kt ≤ (1− δ)Kt−1 + It

with (z0, K−1) given.

The first order conditions are:

qt = eztFH (Kt−1, Ht) (6.1)

λt = θEt {λt+1 [ezt+1FK (Kt, Ht+1) + 1− δ]} (6.2)

1 = λte
ut (6.3)

ᾱ = λtqte
nt (6.4)

For any variable xt define ∆xt = xt − x, where x is its deterministic steady state value. The

solution to the representative agent planning problem can then be characterized as follows:

qt = eztFH (Kt−1, Ht) (6.5)

e∆ lnλt = θEt
{
e∆ lnλt+1 [ezt+1FK (Kt, Ht+1) + 1− δ]

}
(6.6)

Kt = (1− δ)Kt−1 + It (6.7)

e−∆ lnλteu + It = eztF (Kt−1, Ht) (6.8)

Ht ≤ 1− e−∆ lnλt−∆ ln qten (6.9)

where u and n are deterministic steady state values for ut and nt, respectively.
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6.2 First-order conditions for the private information economy

Under logarithmic preferences, the first order conditions become the following:

uyst + αsnyst + βσEt [wys,t+1] ≥ uyjt + αsnyjt + βσEt [wyj,t+1] , (6.10)

0 = ξysjt [uyst + αsnyst + βσEt [wys,t+1]− uyjt − αsnyjt − βσEt [wyj,t+1]] (6.11)

0 = ψs − λteuyst +
∑
j

λtξysjt −
∑
j

λtξyjst (6.12)

0 = αsψs − λtqtenyst +
∑
j

αsλtξysjt −
∑
j

αjλtξyjst (6.13)

0 = βσψs − θσλt+1ηo,t+1 (wys,t+1) + βσ
∑
j

λtξysjt − βσ
∑
j

λtξyjst (6.14)

uost (v) + αsnost (v) + βσEt [wos,t+1 (v)] ≥ uojt (v) + αsnojt (v) + βσEt [woj,t+1 (v)] , (6.15)

0 = ξosjt (v) [uost (v) + αsnost (v) + βσEt [wos,t+1 (v)]− uojt (v)− αsnojt (v)− βσEt [woj,t+1 (v)]]

(6.16)

v =
∑
s

{uost (v) + αsnost (v) + βσEt [wos,t+1 (v)]}ψs, (6.17)

0 = −euost(v)ψs +
∑
j

ξosjt (v)−
∑
j

ξojst (v) + ηot (v)ψs (6.18)

0 = −qtenost(v)ψs +
∑
j

αsξosjt (v)−
∑
j

αjξojst (v) + ηot (v)αsψs (6.19)

0 = −θσλt+1ηo,t+1 [wos,t+1 (v)]ψs + βσ
∑
j

λtξosjt (v)− βσ
∑
j

λtξojst (v) + βσλtηot (v)ψs (6.20)

0 = eztFH (Kt−1, Ht)− qt (6.21)

0 = θEt [λt+1 (ezt+1FK (Kt, Ht+1) + 1− δ)]− λt (6.22)

Kt = (1− δ)Kt−1 + It, (6.23)

(1− σ)
∑
s

euystψs +

∫ ∑
s

euost(v)ψsdµt + It = eztF (Kt−1, Ht) , (6.24)

Ht = (1− σ)
∑
s

(1− enyst)ψs +

∫ ∑
s

(
1− enost(v)

)
ψsdµt, (6.25)

µt+1 (B) = σ
∑
s

∫
{v: wos,t+1(v)∈B}

ψsdµt + (1− σ)σ
∑

s: wys,t+1∈B

ψs, (6.26)

ii



where, from Corollary 4, we know that the stationary stochastic process for the aggregate variables

Kt−1, Ht and It is the stationary solution to the social planner’s problem of the representative

agent economy in Section 6.1.

6.3 Linear allocation rules

In what follows, I will find it convenient to write ξysjt as

ξysjt =

 egysjt , if ICysjt = 0

0, otherwise

where

ICysjt = uyst + αsnyst + βσEt [wys,t+1]− uyjt − αsnyjt − βσEt [wyj,t+1] .

Guess that the allocation rules for old agents have the following functional forms:

uost (v) = uost + bv

nost (v) = nost + bv

wos,t+1 (v) = wos,t+1 + v

ηot (v) = eπt+bv

ξosjt (v) =

 egosjt+bv, if ICosjt = 0

0, otherwise

where

0 < b =
1− βσ
1 + ᾱ

< 1, (6.27)

and

ICosjt = uost + αsnost + βσEt [wos,t+1]− uojt − αsnojt − βσEt [woj,t+1] .

It is straightforward to verify that this guess satisfies equations (6.10)-(6.26) and that these

equations take the following simplified form:

uyst + αsnyst + βσEt [wys,t+1] ≥ uyjt + αsnyjt + βσEt [wyj,t+1] , (6.28)

0 = ψs − λteuyst +
∑

j:ICysjt=0

λte
gysjt −

∑
j:ICyjst=0

λte
gyjst (6.29)

0 = αsψs − λtqtenyst +
∑

j:ICysjt=0

αsλte
gysjt −

∑
j:ICyjst=0

αjλte
gyjst (6.30)

iii



0 = βσψs − θσλt+1e
πt+1+bwys,t+1 + βσ

∑
j:ICysjt=0

λte
gysjt − βσ

∑
j:ICyjst=0

λte
gyjst (6.31)

uost + αsnost + βσEt [wos,t+1] ≥ uojt + αsnojt + βσEt [woj,t+1] (6.32)

0 =
∑
s

{uost + αsnost + βσEt [wos,t+1]}ψs, (6.33)

0 = −euostψs +
∑

j:ICosjt=0

egosjt −
∑

j:ICojst=0

egojst + eπtψs (6.34)

0 = −qtenostψs +
∑

j:ICosjt=0

αse
gosjt −

∑
j:ICojst=0

αje
gojst + eπtαsψs (6.35)

0 = −θσλt+1e
πt+1+bwos,t+1ψs + βσ

∑
j:ICosjt=0

λte
gosjt − βσ

∑
j:ICojst=0

λte
gojst + βσλte

πtψs (6.36)

0 = eztFH (Kt−1, Ht)− qt (6.37)

0 = θEt [λt+1 (ezt+1FK (Kt, Ht+1) + 1− δ)]− λt (6.38)

Kt = (1− δ)Kt−1 + It, (6.39)

(1− σ)
∑
s

euystψs + Vt
∑
s

euostψs + It = eztF (Kt−1, Ht) , (6.40)

Ht = (1− σ)
∑
s

(1− enyst)ψs + σ − Vt
∑
s

enostψs, (6.41)

Vt+1 = σVt
∑
s

ebwos,t+1ψs + (1− σ)σ
∑
s

ebwys,t+1ψs (6.42)

where

Vt =

∫
ebvdµt (6.43)

and where equation (6.42) has been derived as follows:

Vt+1 =

∫
ebvdµt+1

= σ
∑
s

∫
ebwos,t+1(v)ψsdµt + (1− σ)σ

∑
s

ebwys,t+1ψs

= σ
∑
s

∫
ebwos,t+1+bvψsdµt + (1− σ)σ

∑
s

ebwys,t+1ψs

= σ
∑
s

ebwos,t+1ψs

∫
ebvdµt + (1− σ)σ

∑
s

ebwys,t+1ψs

= σVt
∑
s

ebwos,t+1ψs + (1− σ)σ
∑
s

ebwys,t+1ψs

iv



6.4 Deterministic steady state

From equations (6.28)-(6.42) we have that a deterministic steady state (with zt ≡ 0) is character-

ized by the following conditions:

uys + αsnys + βσwys ≥ uyj + αsnyj + βσwyj (6.44)

0 = ψs − λeuys +
∑

j:ICysj=0

λegysj −
∑

j:ICyjs=0

λegyjs (6.45)

0 = αsψs − λqenys +
∑

j:ICysj=0

αsλe
gysj −

∑
j:ICyjs=0

αjλe
gyjs (6.46)

0 = βσψs − θσλeπ+bwys + βσ
∑

j:ICysj=0

λegysj − βσ
∑

j:ICyjs=0

λegyjs (6.47)

uos + αsnos + βσwos ≥ uoj + αsnoj + βσwoj (6.48)

0 =
∑
s

{uos + αsnos + βσwos}ψs, (6.49)

0 = −euosψs +
∑

j:ICosj=0

egosj −
∑

j:ICojs=0

egojs + eπψs (6.50)

0 = −qenosψs +
∑

j:ICosj=0

αse
gosj −

∑
j:ICojs=0

αje
gojs + eπαsψs (6.51)

0 = −θσλeπ+bwosψs + βσ
∑

j:ICosj=0

λegosj − βσ
∑

j:ICojs=0

λte
gojs + βσλeπψs (6.52)

0 = FH (K,H)− q (6.53)

0 = θ [FK (K,H) + 1− δ]− 1 (6.54)

0 = δK − I (6.55)

(1− σ)
∑
s

euysψs + V
∑
s

euosψs + I = F (K,H) (6.56)

H = (1− σ)
∑
s

(1− enys)ψs + σ − V
∑
s

enosψs, (6.57)

V = σV
∑
s

ebwosψs + (1− σ)σ
∑
s

ebwysψs (6.58)

v



6.5 Fluctuations of optimal decision rules

We will guess and verify the following: 1) that ∆ lnλt and ∆ ln qt are exactly the same as in the

representative agent economy, 2) that for every s

∆uyst = −∆ lnλt (6.59)

∆nyst = −∆ lnλt −∆ ln qt (6.60)

∆wys,t+1 = −1

b
∆ lnλt+1 −

1

b
∆πt+1 (6.61)

∆gysjt = −∆ lnλt (6.62)

∆uost = ∆πt (6.63)

∆nost = ∆πt −∆ ln qt (6.64)

∆wos,t+1 = −1

b
∆ lnλt+1 −

1

b
∆πt+1 +

1

b
∆ lnλt +

1

b
∆πt (6.65)

∆gosjt = ∆πt (6.66)

and 3) that

∆ lnVt = −∆ lnλt −∆πt, (6.67)

where ∆πt is given by:

∆πt = −βσ∆ lnλt + (1− βσ)
∞∑
k=1

(βσ)k Et [∆ lnλt+k] + bᾱ
∞∑
k=0

(βσ)k Et [∆ ln qt+k] . (6.68)

Lemma 9 Under this guess

∆uost + ᾱ∆nost + βσEt [∆wos,t+1] = 0, for every s,

Proof: From equations (6.63), (6.64) and (6.65),

∆uost + ᾱ∆nost + βσEt [∆wos,t+1]

= ∆πt + ᾱ∆πt − ᾱ∆ ln qt + βσEt

[
−1

b
∆ lnλt+1 −

1

b
∆πt+1 +

1

b
∆ lnλt +

1

b
∆πt

]
=

(
1 +

βσ

b
+ ᾱ

)
∆πt − βσEt

[
1

b
∆πt+1

]
− ᾱ∆ ln qt + βσEt

[
−1

b
∆ lnλt+1 +

1

b
∆ lnλt

]

vi



Using equation (6.27) we have that

1 +
βσ

b
+ ᾱ = 1 + βσ

1 + ᾱ

1− βσ
+ ᾱ

=
1− βσ + βσ + βσᾱ + ᾱ− ᾱβσ

1− βσ

=
1 + ᾱ

1− βσ

=
1

b

Hence,

∆uost + ᾱ∆nost + βσEt [∆wos,t+1]

=
1

b
∆πt − βσEt

[
1

b
∆πt+1

]
− ᾱ∆ ln qt + βσEt

[
−1

b
∆ lnλt+1 +

1

b
∆ lnλt

]
Using equation (6.68) we have that

∆πt − βσEt [∆πt+1]

= −βσ∆ lnλt + (1− βσ)
∞∑
k=1

(βσ)k Et [∆ lnλt+k] + bᾱ
∞∑
k=0

(βσ)k Et [∆ ln qt+k]

−βσEt

[
−βσ∆ lnλt+1 + (1− βσ)

∞∑
k=1

(βσ)k ∆ lnλt+1+k + bᾱ
∞∑
k=0

(βσ)k ∆ ln qt+1+k

]

= −βσ∆ lnλt + (1− βσ)
∞∑
k=1

(βσ)k Et [∆ lnλt+k] + bᾱ
∞∑
k=0

(βσ)k Et [∆ ln qt+k]

−βσEt

[
−βσ∆ lnλt+1 + (1− βσ)

∞∑
k=2

(βσ)k−1 ∆ lnλt+k + bᾱ
∞∑
k=1

(βσ)k−1 ∆ ln qt+k

]
= −βσ∆ lnλt +

[
(1− βσ) βσ + (βσ)2]Et [∆ lnλt+1] + bᾱ∆ ln qt

= −βσ∆ lnλt + βσEt [∆ lnλt+1] + bᾱ∆ ln qt

Therefore,

∆uost + ᾱ∆nost + βσEt [∆wos,t+1]

=
1

b
{−βσ∆ lnλt + βσEt [∆ lnλt+1] + bᾱ∆ ln qt}

−ᾱ∆ ln qt + βσEt

[
−1

b
∆ lnλt+1 +

1

b
∆ lnλt

]
= −βσ1

b
∆ lnλt + βσ

1

b
Et [∆ lnλt+1] + ᾱ∆ ln qt

−ᾱ∆ ln qt − βσEt
[

1

b
∆ lnλt+1

]
+ βσEt

[
1

b
∆ lnλt

]
= 0
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Under the guess given by equations (6.59)-(6.68), equations (6.28)-(6.42) become the following:

uys −∆ lnλt + αs (nys −∆ lnλt −∆ ln qt) + βσEt

[
wys −

1

b
∆ lnλt+1 −

1

b
∆πt+1

]
≥ uyj −∆ lnλt + αs (nyj −∆ lnλt −∆ ln qt) + βσEt

[
wyj −

1

b
∆ lnλt+1 −

1

b
∆πt+1

]
(6.69)

0 = ψs − elnλ+∆ lnλteuys−∆ lnλt +
∑

j:ICysjt=0

elnλ+∆ lnλtegysj−∆ lnλt

−
∑

j:ICyjst=0

elnλ+∆ lnλtegyjs−∆ lnλt (6.70)

0 = αsψs − elnλ+∆ lnλteln q+∆ ln qtenys−∆ lnλt−∆ ln qt

+
∑

j:ICysjt=0

αse
lnλ+∆ lnλtegysj−∆ lnλt −

∑
j:ICyjst=0

αje
lnλ+∆ lnλtegyjs−∆ lnλt (6.71)

0 = βσψs − θσelnλ+∆ lnλt+1eπ+∆πt+1+b(wys− 1
b
∆ lnλt+1− 1

b
∆πt+1)

+βσ
∑

j:ICysjt=0

elnλ+∆ lnλtegysj−∆ lnλt − βσ
∑

j:ICyjst=0

elnλ+∆ lnλtegyjs−∆ lnλt (6.72)

uos + ∆πt + αs (nos + ∆πt −∆ ln qt) + βσEt

[
wos +

1

b
(−∆ lnλt+1 −∆πt+1 + ∆ lnλt + ∆πt)

]
(6.73)

≥ uoj + ∆πt + αs (noj + ∆πt −∆ ln qt) + βσEt

[
woj +

1

b
(−∆ lnλt+1 −∆πt+1 + ∆ lnλt + ∆πt)

]
0 =

∑
s

{uos + ∆πt + αs (nos + ∆πt −∆ ln qt)

+ βσEt

[
wos +

1

b
(−∆ lnλt+1 −∆πt+1 + ∆ lnλt + ∆πt)

]}
ψs, (6.74)

0 = −euos+∆πtψs +
∑

j:ICosjt=0

egosj+∆πt −
∑

j:ICojst=0

egojs+∆πt + eπ+∆πtψs (6.75)

0 = −eln q+∆ ln qtenos+∆πt−∆ ln qtψs +
∑

j:ICosjt=0

αse
gosj+∆πt −

∑
j:ICojst=0

αje
gojs+∆πt + eπ+∆πtαsψs (6.76)

0 = −θσelnλ+∆ lnλt+1eπ+∆πt+1+b(wos− 1
b
∆ lnλt+1− 1

b
∆πt+1+ 1

b
∆ lnλt+

1
b
∆πt)ψs (6.77)

+βσ
∑

j:ICosjt=0

elnλ+∆ lnλtegosj+∆πt − βσ
∑

j:ICojst=0

elnλ+∆ lnλtegojs+∆πt + βσelnλ+∆ lnλteπ+∆πtψs
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0 = eztFH (Kt−1, Ht)− qt (6.78)

0 = θEt
[
e∆ lnλt+1 (ezt+1FK (Kt, Ht+1) + 1− δ)

]
− e∆ lnλt (6.79)

Kt = (1− δ)Kt−1 + It, (6.80)

(1− σ)
∑
s

euys−∆ lnλtψs + e
lnV−∆ lnλt−∆πt

∑
s

euos+∆πtψs + It = eztF (Kt−1, Ht) , (6.81)

Ht = (1− σ)
∑
s

(
1− enys−∆ lnλt−∆ ln qt

)
ψs + σ − elnV−∆ lnλt−∆πt

∑
s

enos+∆πt−∆ ln qtψs, (6.82)

e
lnV−∆ lnλt+1−∆πt+1

= σe
lnV−∆ lnλt−∆πt

∑
s

eb(wos−
1
b
∆ lnλt+1− 1

b
∆πt+1+ 1

b
∆ lnλt+

1
b
∆πt)ψs

+ (1− σ)σ
∑
s

eb(wys−
1
b
∆ lnλt+1− 1

b
∆πt+1)ψs (6.83)

From equations (6.69) and (6.73) we can readily verify that ICysjt = 0 ⇔ ICysj = 0 and that

ICosjt = 0⇔ ICosj. Using Lemma 9, equations (6.69)-(6.83) thus become the following:

uys + αsnys + βσEt [wys] ≥ uyj + αsnyj + βσEt [wyj] (6.84)

0 = ψs − elnλeuys +
∑

j:ICysj=0

elnλegysj −
∑

j:ICyjs=0

elnλegyjs (6.85)

0 = αsψs − elnλeln qenys +
∑

j:ICysj=0

αse
lnλegysj −

∑
j:ICyjs=0

αje
lnλegyjs (6.86)

0 = βσψs − θσelnλeπ+bwys + βσ
∑

j:ICysj=0

elnλegysj − βσ
∑

j:ICyjs=0

elnλegyjs (6.87)

uos + αsnos + βσwos ≥ uoj + αsnoj + βσwoj (6.88)

0 =
∑
s

{uos + αsnos + βσwos}ψs, (6.89)

0 = −euosψs +
∑

j:ICosj=0

egosj −
∑

j:ICojs=0

egojs + eπψs (6.90)

0 = −eln qenosψs +
∑

j:ICosj=0

αse
gosj −

∑
j:ICojs=0

αje
gojs + eπαsψs (6.91)

0 = −θσelnλeπ+bwosψs + βσ
∑

j:ICosj=0

elnλegosj − βσ
∑

j:ICojs=0

elnλegojs + βσelnλeπψs (6.92)

0 = eztFH (Kt−1, Ht)− qt (6.93)

0 = θEt
[
e∆ lnλt+1 (ezt+1FK (Kt, Ht+1) + 1− δ)

]
− e∆ lnλt (6.94)
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Kt = (1− δ)Kt−1 + It, (6.95)

e−∆ lnλt

{
(1− σ)

∑
s

euysψs + e
lnV
∑
s

euosψs

}
+ It = eztF (Kt−1, Ht) , (6.96)

Ht = 1− e−∆ lnλt−∆ ln qt

{
(1− σ)

∑
s

enysψs + e
lnV
∑
s

enosψs

}
, (6.97)

e
lnV

= σe
lnV
∑
s

ebwosψs + (1− σ)σ
∑
s

ebwysψs (6.98)

Observe that equations (6.84)-(6.92) are identical to equations (6.44)-(6.52) and that equation

(6.98) is identical to equation (6.58). As a consequence those equations hold by the definition of a

deterministic steady state. Only equations (6.93)-(6.97) need to be verified to hold. However, by

Corollary 4 we know that at a stationary equilibrium all aggregate variables coincide with those

of the representative agent economy of Section 6.1. Thus, the term within brackets in equation

(6.96) equals the deterministic steady state aggregate consumption eu in the representative agent

economy and the term within brackets in equation (6.97) equals the deterministic steady state

aggregate leisure en in the representative agent economy. As a consequence, equations (6.93)-

(6.97) are identical to equations (6.5)-(6.9) and they do hold since they hold in the representative

agent economy.

This establishes that the guess given by equations (6.59)-(6.68) is correct.

x




