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Dynamic E↵ects of Monetary Policy Shocks on Macroeconomic

Volatility⇤

Haroon Mumtaz†

Queen Mary University of London

Konstantinos Theodoridis‡

Cardi↵ Business School

October 2018

Abstract

We develop a VAR that allows the estimation of the impact of monetary policy shocks on volatility.

Estimates for the US suggest that an increase in the policy rate by 1% is associated with a rise in

unemployment and inflation volatility of about 15%. Using a New Keynesian model, with search

and matching labour frictions and Epstein-Zin preferences we show that these volatility e↵ects are

driven by the coexistence of agents’ fears of unemployment and concerns about the (in) ability of

the monetary authority to reverse deviations from the policy rule with the impact magnified by the

agents’ preferences.

Keywords: DSGE, Non-Linear SVAR, New Keynesian, Search and Matching Frictions, Epstein-

Zin preferences, Stochastic Volatility

JEL Classification: E30, E40, E52, C11, C13, C15, C50

1 Introduction

Monetary authorities around the industrialised world are responsible for country’s price, growth,

employment and financial stability. They aim to meet these objectives via their instruments. This

suggests that their actions have a first order e↵ect on agents’ economic behaviour. For instance,

monetary authorities are able to alter households’ and firms’ consumption, investment and pricing

plans by adjusting the policy rate. The transmission of monetary policy actions to the economy and

their first order e↵ects have been extensively studied by the monetary economics literature. However,

the volatility implications – second order e↵ects – induced by these actions have received less attention.

The question that arises naturally is: “do we need to be concerned about the volatility e↵ects of

monetary policy shocks?”. A number of recent events suggest that the answer to this question is

in the a�rmative. For example, the “taper tantrum” in June 2013 was associated with an increase

in speculation that the Federal Reserve would start on a tapered end to quantitative easing (QE)

in 2014. This discussion increased financial market volatility, pushed up long-term interest rates

and induced heavy losses on bond investors. These anecdotal observations are further supported by

empirical results present below. Using a structural VAR with stochastic volatility (extended to allow

⇤We would like to thank Ferre De Graeve, Federico Di Pace, Riccardo Masolo, Ivan Paya, David Peel, Ricardo Reis
and Karl Walentin for their helpful discussions and comments.

†Email: h.mumtaz@qmul.ac.uk
‡Email: theodoridisk1@cardi↵.ac.uk
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for feedback from the endogenous variables to the volatility), we show that monetary policy shocks

increase macroeconomic volatility and the results are robust across identification schemes. It is also

shown here that the monetary policy shock is responsible for about 40% to 50% of the forecast error

variance contribution of all level shocks to the volatility of the endogenous variables. These volatility

contributions are substantially higher than monetary policy shock’s shares of explaining the level series

(as it is commonly found in the literature and illustrated again here).

To understand how volatility is a↵ected when monetary authorities decide to deviate unexpectedly

from their Taylor type reaction function, we employ a stylised New Keynesian DSGE model, with

search & matching labour frictions and Epstein-Zin preferences. The model is estimated using limited

information impulse response matching techniques. Although the literature has questioned the ability

of “simple” search and matching New Keynesian models to jointly replicate the dynamics of both

unemployment and inflation (Krause and Lubik (2007) and Gertler et al. (2008)), our estimated

model reproduces VAR responses remarkably well.

Simulations from the theoretical model suggest that the transmission of the policy shock to volatility

depends on three modelling features: (i) the presence of labour market real frictions, (ii) the monetary

authorities’ desire for gradual policy adjustments and (iii) the existence of Epstein-Zin preferences. It

is the coexistence of agents’ fears about being prolonged unemployment and policymakers’ preference

for interest rate smoothing that causes volatility to increase significantly. It is only in this scenario

that Epstein-Zin preferences have a quantitatively meaningful role. From an economic point of view,

households acknowledge the real risk of becoming unemployed and the fact that during the unemploy-

ment spells additional adverse shock may occur. However, it is the combination of these risks together

with the policy-rate smoothing parameter that causes monetary policy to have significant volatility

e↵ects and not the shock per-se. In other words, agents are not overly concerned that authorities are

able to deviate unexpectedly from their objective function but they significantly price the fact that

the central bank cannot fully undo such actions resulting in prolonged unemployment spells where

they are vulnerable to further adverse shocks and future uncertainty rises.

The analysis presented here goes some way in explaining why authorities have been extremely cau-

tious about when to initiate monetary policy normalisation as they may not be able to undo their

actions quickly. More importantly, the simulations below give full support to FED’s ‘unconventional’

policy actions undertaken during the Great Recession aiming to eliminate the ‘vicious circle’ of higher

uncertainty, higher unemployment, lower inflation and support the recovery.

As in the empirical and theoretical literature on the impact of uncertainty shocks (Bloom (2009) and

Fernandez-Villaverde et al. (2015)), our paper highlights the importance of these type of disturbances.

However, the focus and results of our analysis are novel in one key respect. Unlike the bulk of the

uncertainty literature, this paper attempts to model the transmission of monetary policy shocks to

economic volatility and thus takes a step towards treating economic volatility as endogenous.

Regarding our empirical contribution, the study of Ludvigson et al. (2015) is the closely related.

Ludvigson et al. (2015) develop a procedure that separates movements in volatility caused by primitive

(first order) shocks and by uncertainty shocks. However, crucially, they do not identify the source of

the primitive shocks. In contrast, our focus is on the impact of monetary policy shocks on volatility.

The papers closest to our theoretical work are the studies of Rudebusch and Swanson (2012) and

Swanson (2015), who use a similar theoretical setup to the one employed here to understand the asset
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pricing implications of volatility e↵ects caused by level shocks. Cacciatore and Ravenna (2016) develop

a real business cycle model, with labour search and matching frictions and an occasionally binding

constraint on downward wage adjustment to understand the e↵ect from a negative productivity shock

on volatility.1 Our paper is also related to the work of Bikbov and Chernov (2013) and Campbell et al.

(2014), who uses macro-finance models to understand the relationships between monetary policy and

bond risk premia. Petrosky-Nadeau et al. (2018) illustrate that when real business cycle models with

search & matching friction are calibrated and solved carefully, then they can generate endogenous

disasters. Our finding support fully their analysis, we illustrate below that only the version of the

model with these labour frictions can give rise to endogenous disasters.2

Finally, our work is related to the heterogeneous agents (HA) literature that introduces unemployment

into these incomplete markets models either to understand how di↵erent fiscal policies are transmitted

to the economy (McKay and Reis (2016)) or to develop models that can account for extreme economic

phenomena such as the Great Recession without employing large and persistent exogenous shocks

(Ravn and Sterk (2017), Den Haan et al. (2018)). Agents in these models cannot fully insure against

idiosyncratic unemployment risk and, therefore, they are concerned about their consumption level if

the become unemployed. So when an adverse shock takes place, they act in a precautionary manner

and increase savings. These concerns are more elevated in bad times as unemployment spells last longer

making the agents’ responses state dependent. In our setting, the specification of the utility function

leads to state-dependence of responses. However this feature is now driven by the di↵erence between

current and steady-state consumption with agents responding by more in states where consumption

is below the steady state.

The paper is organised as follows, Section 2 presents the empirical model and discusses the data and

empirical results. Section 3 reviews the theoretical model, its calibration and presents the impulse

response analysis. The final section concludes.

2 Empirical results

In order to estimate the impact of monetary policy shocks on second moments of key macroeconomic

variables, we estimate an extended structural VAR model with stochastic volatility. The observation

equation of the model is given by:

Zt = c+
PX

j=1

�jZt�j +
KX

k=1

bkh̃t�k + ⌦
1/2
t et, et ⇠ N(0, IN ) (1)

In equation (1) Zt is N ⇥ 1 vector of endogenous variables and h̃t denotes the N ⇥ 1 vector of log

stochastic volatilities. The coe�cients are denoted by the N ⇥ N matrices �j and bk while IN is a

N ⇥N identity matrix. The covariance matrix of the VAR residuals is time-varying and factored as:

⌦t = A
�1

HtA
�10 (2)

Ht = diag(exp
⇣
h̃t

⌘
) (3)

1Cacciatore and Ravenna (2016) also use their framework to understand the state dependent amplification mechanism
of exogenous uncertainty shocks.

2In our framework the endogenous disasters are caused by monetary policy shocks and not by productivity shocks as
it is the case in Petrosky-Nadeau et al. (2018). Endogenous disasters in our model illustrate that the monetary policy
could cause highly adverse economic conditions and this is why agents in the model: (i) are concerned and (ii) try to
insure against these outcomes.
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and the N ⇥N diagonal matrix Ht holds the stochastic volatility of the orthogonalised shocks on the

main diagonal
⇣
h̃t = [h1,t, h2,t, .., hN,t]

⌘
. The structure of the Amatrix is chosen by the econometrician

to model the contemporaneous relationship amongst the reduced-form shocks. We discuss our choice

of the structure of the A matrix in section 2.3 below.

The transition equation for the stochastic volatilities is given by the following VAR model:

h̃t = ↵+ ✓h̃t�1 +
KX

j=1

djZt�j + ⌘t, ⌘t ⇠ N(0, Q), E (et, ⌘t) = 0 (4)

The constants and coe�cients on lags are denoted by the N ⇥ 1 and N ⇥ N matrices ↵ and ✓,

respectively. Following standard practice in the literature on stochastic volatility models (see for e.g.

Kim et al. (1998)), we allow h̃t to depend on its first lag. However, the N ⇥ N coe�cient matrices

dj also allow lagged endogenous variables to a↵ect the log variances. If these coe�cients are non-

zero, then shocks to equation 1 have an impact on h̃t and consequently on ⌦t and measures of the

unconditional variance of Zt. Note also that the stochastic volatility in mean formulation of equation

1 allows feedback from lagged volatilities to the endogenous variables.

The model in equations 1 and 4 contains two innovations relative to the standard BVAR with stochas-

tic volatility (see Clark (2011)). First, it allows the elements of h̃t to co-move while most of the

previous literature assumes an independent AR or random walk process for each log variance. The

specification used here thus captures the possibility that volatility of shocks to macroeconomic and

financial variables may move together – a phenomenon that may be important during periods of re-

cession and financial stress. Secondly, unlike previous applications of this model (see Mumtaz and

Theodoridis (2015)), the terms
PK

k=1 bkh̃t�k and
PK

j=1 djZt�j in equations 1 and 4 allow a dynamic

relationship between the level and volatility of the endogenous variables.3One way to see this is to

re-write the observation and transition equations jointly as an expanded VAR system:

 
Zt

h̃t

!

| {z }
(2N⇥1)

=

 
c

↵

!

| {z }
(2N⇥1)

+

0

BBBB@

� (L)| {z }
(N⇥NP )

b (L)|{z}
(N⇥NK)

d (L)| {z }
(N⇥NK)

✓L|{z}
(N⇥N)

1

CCCCA

 
Zt

h̃t

!
+

 
ut

⌘t

!

| {z }
(2N⇥1)

(5)

var

  
ut

⌘t

!!
=

 
A

�1
HtA

�10 0

0 Q

!
(6)

where � (L) , b (L) and d (L) denote lag polynomials of order P , K and K respectively. As discussed

above, our interest lies in investigating the possible impact of monetary policy shocks on the second

moments of the endogenous variables. The specification above enables us to calculate the impulse

response of h̃t and thus var (Zt) to a monetary policy shock identified via an appropriate structure

for A.

Equation 5 reveals two restrictive features of the benchmark model. First, the coe�cient matrices

are time-invariant and the model does not directly account for structural change. Second, the error

covariance matrix (equation 6) is assumed to be block diagonal and level (volatility) shocks have a

lagged impact on volatility (levels). In the sensitivity analysis below (see Section 3.1.1), we relax these

assumptions and show that our main results are qualitatively similar in the extended versions of the

benchmark model.
3An exception is the univariate stochastic volatility in mean model of Chan (2017) that allows lagged e↵ects from the

data in the transition equation.
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2.1 Data

The model is estimated using US data on the civilian unemployment rate, annual CPI inflation, an

interest rate representing the policy instrument and the spread of 10 year government bonds over

the three month T-bill rate. The data is monthly and, in the benchmark case, runs from 1947m1 to

2007m12, with the last few years dropped as they represent the period of unconventional monetary

policy. The first ten years are used as a training sample with estimation carried out over the period

1957m1 to 2007m12. In the benchmark model, we use the three month T-bill rate as a proxy for the

policy instrument. In an additional model specification we identify the monetary policy shock using

an external instrument approach. As explained in section 2.3 below, this version of the model uses

a one year government bond yield as the policy instrument. The data on the unemployment rate,

CPI and the three month T-Bill rate is obtained from FRED, while the 1 and 10 year bond yield is

obtained from Global Financial Data.

2.2 Estimation and impulse responses

The model is estimated using Bayesian methods. In the on-line appendix we state in detail the

Gibbs sampling algorithm used to approximate the posterior distribution. In short, the algorithm

is an extension of the MCMC methods used to estimate Bayesian VARs with stochastic volatility,

presented for example in Cogley and Sargent (2005).4 The prior distribution for the VAR coe�cients

in equation 1 are based on existing studies and ‘shrink’ the VAR coe�cient matrix towards an AR

specification for each endogenous variable. We employ a similar prior for the transition equation and

thus assume apriori that each log stochastic volatility follows an AR process and that there is no

feedback from Zt�j .

The impulse responses of log var (Zt) to a monetary policy shock are calculated via Monte-Carlo

integration. In particular, the impulse responses are defined as the di↵erence between the following

conditional expectations

IRFt = E (ln var (Zt+k) \ t, Zt�1, µ)� E (ln var (Zt+k) \ t, Zt�1) (7)

where  t denotes the parameters and state variables of the model and µ is the monetary policy shock.

The first term in equation 7 denotes a forecast of the log volatility conditioned on one of the struc-

tural shocks µ. Note that, the volatility of the endogenous variables depends on the structural shocks

through equation 4 above. The second term is the baseline forecast of the log variance, i.e. condi-

tioned on the scenario where the shock equals zero. Koop et al. (1996) describe how to approximate

these conditional expectations via a stochastic simulation of the non-linear VAR model. We use 100

simulations to calculate IRFt repeating this for 500 retained Gibbs draws. In order to account for

history dependence of the non-linear responses, the calculation is done for t = 1, 12, ...T i.e. every 12th

month in the sample and the mean across time is reported in the figures below.

2.3 Model specification and identification

We set the lag length in the VAR model to 12 and use 3 lags of the endogenous variables in the

transition equation 4 and 3 lags of the stochastic volatilities in the observation equation 1. As shown

4We use a particle Gibbs sampler (see Andrieu et al. (2010). This is described in the technical appendix.
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in the sensitivity analysis, the main results are very similar for longer lag lengths.

We consider three schemes to identify the monetary policy shock. The schemes are implemented by

placing restrictions on the column of the A
�1 matrix corresponding to the equation for the policy

instrument. The remaining columns of the matrix correspond to a triangular structure.

The benchmark identification scheme uses contemporaneous sign restrictions to identify the monetary

policy shock. We assume that a contractionary policy shock increases the short-term interest rate on

impact and leads to a rise in unemployment and a fall in CPI inflation. The second scheme assumes

a recursive structure and implies that monetary policy shocks have no contemporaneous impact on

unemployment and inflation but can a↵ect the term spread immediately. Finally, we follow Gertler and

Karadi (2015) and identify the monetary policy shock using an external instrument. This version of

the model uses the 1 year government bond yield as the measure of the policy rate and the estimation

sample runs to 2012 m6. Gertler and Karadi (2015) argue that the use of the 1 year rate accounts

for unconventional policy such as forward guidance. We use the benchmark instrument employed in

Gertler and Karadi (2015) – i.e. surprise changes in three month ahead fed funds futures rate on

FOMC dates. As discussed in Mertens and Ravn (2013), under the assumption that the instrument

is relevant and uncorrelated with other structural shocks, the impulse vector to a unit shock can be

recovered by a regression of the reduced form residuals on the instrument.5

3 Results

3.1 Impulse response to a monetary policy shock

Figure 1 presents the impulse response to a contractionary monetary policy shock normalised to

increase the T-Bill rate by 100 basis points. The unemployment rate rises by about 0.2 percentage

points at the two year horizon. Inflation displays a persistent decline of about 0.3 percentage points.

Finally, the term spread falls by about 70 basis points on impact.

The last three rows of the figure present the response of the unconditional volatility to this shock. It

is clear from the figure that the volatility of all endogenous variables rises in response to this shock.

This is reflected in the measure of overall volatility, the log determinant of the covariance matrix of

the endogenous variables which shows a persistent increase. The response of volatility is persistent

lasting for about 2 years with the magnitude of the response of interest rate and inflation volatility

slightly larger than the remaining variables.

Figure 2 presents the response of the volatility of the endogenous variables estimated using the three

identification schemes discussed above. The second row of the figure shows the recursive identification

schemes produces results very similar to the benchmark case. Similarly, when the external instrument

is used to identify the monetary policy shock the impulse responses still suggest that volatility rises

after a monetary contraction.

5Gertler and Karadi (2015) present a detailed evidence that suggests that three month ahead fed funds futures rate
innovations provide a strong instrument to identify monetary policy shocks.
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3.1.1 Robustness checks

Time variation As noted above, the benchmark model restricts the VAR coe�cients to be fixed over

time. To check the structural stability of the estimated impulse responses we extend the benchmark

model to allow the coe�cients to be time-varying. In particular, we estimate the following version of

the model:

Zt = ct +
PX

j=1

�t,jZt�j +
KX

k=1

bt,kh̃t�k + ⌦
1/2
t et (8)

⌦t = A
�1

HtA
�10 (9)

h̃t = ↵t + ✓th̃t�1 +
KX

j=1

dt,jZt�j + ⌘t (10)

where var (⌘t) = Q. Letting ⇥t|{z}
N(NP+NK+1)⇥1

= vec
�⇥
ct,�t,1, ..,�t,P , bt,1, .., bt,K

⇤�
and  t|{z}

N(N+NK+1)⇥1

=

vec ([↵t, ✓t, dt,1, .., dt,K ]) the evolution of the coe�cients is determined by the additional transition

equations:

⇥t = ⇥t�1 + Q̃
1/2
1 v1t (11)

 t =  t�1 + Q̃
1/2
2 v2t (12)

where (e0t, v
0
1t, v

0
2t)

0 ⇠ N (0, IN̄ ) with N̄ = N (NP +NK + 1)+N (N +NK + 1)+N . The model can

be estimated using an extended version of the Gibbs algorithm summarised above. The extension is

described in the technical appendix.

The time-varying impulse responses of volatility to a 1 unit monetary contraction are shown in Figure

3. As in the benchmark case, sign restrictions are used to identify the policy shock. As noted in

previous studies, there is some evidence suggesting that the impact of monetary policy on the real

economy has declined over time (see Boivin and Giannoni (2006)). As in Boivin and Giannoni (2006)

the inflation response becomes positive at medium horizons in the earlier part of the sample. While

there is some weak evidence to suggest that the response of volatility may have been slightly larger

during the 1970s and the first half of the 1980s, the impact on volatility remains positive and persistent

throughout the sample period.

Further sensitivity checks The technical appendix provides a range of further checks. The bench-

mark model in equations 5 and 6 does not allow a contemporaneous relationship between level and

volatility shocks. Following Alessandri and Mumtaz (2018), we extend the model and relax this as-

sumption. Impulse responses from this version of the model (see Section 4.1, pages 14-17 in the

appendix) support the conclusion that volatility rises after a monetary contraction.6 In addition,

we show that the results survive if a longer lag length is used in the benchmark model. Similarly,

versions of the model that include the Federal Funds rate, industrial production or stock returns pro-

duce results similar to the benchmark case. Finally, positioning the short-term interest rate first in

the recursive order or using the Romer and Romer (2004) measure of monetary policy shocks as an

6In the technical appendix we present results using the proxy VAR of Gertler and Karadi (2015) extended to include the
measure of uncertainty developed by Jurado et al. (2015). Results from this model, which allows for a contemporaneous
impact of monetary policy shock on uncertainty, support our key conclusions.
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instrument produces responses of volatility that support the results depicted in the second and third

rows of Figure 2.

3.2 Variance decomposition

To investigate the importance of the monetary policy shock we construct the forecast error variance

(FEV) decomposition for the benchmark model using the method described in Lanne and Nyberg

(2016) for non-linear models. Table 1 presents the contribution of the monetary policy shock and

compares it with the contribution of all 4 level shocks in the VAR model. The third and fourth

columns of the table display the contribution to the FEV of volatility of the variables while the final

two columns display the contribution to the FEV of the level. The final column of the table shows that,

as highlighted by several previous studies, the monetary policy shock makes a modest contribution

to future movements in the unemployment rate and inflation. As in Bernanke et al. (2005), the

contribution to the FEV of the unemployment rate is about 10 percent while the contribution to

inflation FEV does not exceed 5 percent. The contribution to the interest rates is higher, especially

at shorter horizons. When compared to the contribution of all level shocks jointly (column 5 of the

table), the monetary policy shock does not appear to be the most important component.

Column four of table 1 shows that the contribution of the monetary policy shock to the volatility of

the variables is also modest in absolute terms and ranges from about 5 to 7 percent. However, in

relative terms, the monetary policy shock appears to be important, especially at the one year horizon.

For example, the total contribution of the level shocks to the FEV of unemployment volatility at

this horizon is 16 percent. Almost half of this contribution comes from the monetary policy shock.

Similarly, the monetary policy component in the contribution of level shocks to the FEV of inflation,

interest rate and spread volatility accounts for 40 to 50 percent at the one year horizon. However,

the relative importance of this shock declines at the 60 month horizon suggesting that other level or

second moment shocks may play a role in the long run.

To investigate the economic importance of monetary policy transmission via volatility, we estimate

a version of the benchmark model that restricts the e↵ects of level shocks on second moments to be

equal to zero (by setting dj = 0 in equation 4).7 In Figure 4, we compare the impulse response to

a monetary policy shock in the restricted and the benchmark model. It is clear from the figure that

the response of unemployment and inflation is less persistent in the restricted case. This implies that

the cumulated change in these variables is estimated be much smaller if the e↵ect of policy shocks on

volatility is assumed away.

4 Theoretical Analysis

In order to investigate the transmission of monetary policy shocks to volatility, we build and estimate

a New Keynesian DSGE model. We first describe the building blocks of the key sectors of the DSGE

model and consider how time-varying volatility arises in this set-up. We then use an estimated version

7Based on the deviance information criterion (DIC) of Spiegelhalter et al. (2002) the benchmark model is preferred to
this restricted model. The DIC for the restricted model is -4526.68, while the corresponding estimate for the benchmark
model is smaller (-4560.82) indicating an improved fit.
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of the model to calculate the response of the key variables and their volatility to monetary policy

shocks.

4.1 DSGE Model

Households: The economy is populated by a continuum of households (h 2 [0, 1]) that attain utility

from consumption C̃t (h) and leisure 1 � Lt (h), where Lt (h) denotes the fraction of the household

that is employed. Household’s preferences are separable

u

⇣
C̃t (h) , Z̃t, Lt (h)

⌘
=

⇣
C̃t (h)� bC̃t�1

⌘1��C

1� �C
� �0Z̃

1��C
t

Lt (h)
1+�L

1 + �L
(13)

where �L is the inverse of the Frisch elasticity, �C stands for the inverse of intertemporal elasticity

of substitution and Z̃t = ZZ̃t�1

⇣
Z̃t�1

Z̃t�2

⌘⇢z
e
�z!z,t denotes the non-stationary productivity process (the

tilde indicates that the variable is non-stationary) where Z is the steady-state value of the productivity

growth, ⇢z indicates the degree of persistence and �z is the standard deviation of the productivity

growth process.

The empirical analysis above illustrates convincingly that the changes in the policy instrument have

an impact on the level and volatility of endogenous variables. This evidence points to the existence of

important non-linearities in the data that give rise to these e↵ects. Given our stylised facts are related

to volatility, it seems a natural starting point to investigate whether these non-linearities are due

to agents’ preferences. The analysis of Rudebusch and Swanson (2012) and Swanson (2015) suggest

that when agents form recursive preferences (Epstein and Zin (1989)) then a productivity level shock

induces the stochastic volatility of the series in the model to vary. We proceed, therefore, by assuming

that agents have preferences of this form:

Vt (h) = u

⇣
C̃t (h) , Z̃t, Lt (h)

⌘
+ �

⇣
EtVt+1 (h)

1��
⌘ 1

1��
(14)

The attractive feature of Epstein-Zin preferences is that the coe�cient of relative risk aversion decou-

ples from the intertemporal elasticity parameter. The parameter � illustrates the degree of agents’

desire for an early resolution of uncertainty over future consumption. Household maximises its utility

function subject to its budget constraint which is:

P̃tC̃t (h) +
D̃t (h)

Rt
+ Tt (h) = P̃tW̃tLt (h) + (1� Lt (h)) P̃tB̃t + D̃t�1 (h) + ⌅̃t (h) (15)

where P̃t is the price index, D̃t (h) is the one period risk free government debt, Rt is the return on

investing on the government debt, W̃t stands for the real wage, Tt (h) is the lump sum taxes, B̃t is the

unemployment benefit and ⌅̃t (h) denotes firms’ profits.

The budget constraint reveals the existence of real labour market frictions that lead some members

of the household to become unemployed. However, they enjoy the same consumption levels as the

employed members due to our complete markets assumption. The structure of the labour market is

discussed below. Here we mention two pieces of evidence supporting the argument that search and

matching frictions could be a vital part of the mechanism relating monetary policy shocks and second

moments. Firstly, the empirical exercise undertaken in Section 3.2 (Figure 4) reveals that the impact

of monetary policy on unemployment is enhanced by the impact of this shock on volatility. This is

indicative of the existence of frictions in the labour market that re-enforce the e↵ects of volatility.

Secondly, there are a growing number of studies employing heterogeneous agents models that argue
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in favour of including unemployment into these incomplete market models in order to better under-

stand extreme economic episodes such as the Great Recession (Ravn and Sterk (2017), Den Haan

et al. (2018)). The outcome of these studies is further supported by the work of Petrosky-Nadeau

et al. (2018) that illustrates search and matching frictions in a real business cycle could give rise to

endogenous disasters when the model is calibrated and solved carefully. These two di↵erent type of

approaches seems to indicate that these labour frictions may have very rich nonlinear implications.

Finally, during the ZLB period and the introduction of the forward guidance policy by the FED and

Bank of England, unemployment became the primary policy variable in terms of monetary authorities

communicating the end date of the excess stimulus in the economy.8

Labour Market: The existence of a real – search and matching – friction in the labour mar-

ket (Mortensen and Pissarides (1994)) prevents all job-seekers (Ut = 1� (1� �N )Lt�1) from being

matched with vacancies (⌥t) posted by firms and they end up unemployed (ut = 1� Lt). The match-

ing technology is described by the following Cobb-Douglas (expression 16)

Mt = µ̄U
µ
t ⌥

1�µ
t (16)

Lt = (1� �N )Lt�1 +Q
⌥
t ⌥t (17)

 t = Z̃t⌥t (18)

While employment evolves according to equation 17, where �N is the separation probability. This

formulation incorporates the assumption that new hires start working in the same period they are

hired (Blanchard and Gali (2010)). Furthermore, firms in order to be able to hire a worker they

need to post a vacancy and this incurs a cost (expression 18, see Mortensen and Pissarides (1994)).

In other words, the cost is a linear function of the vacancies posted. This is di↵erent set-up than

the cost of hiring function used in Gertler et al. (2008). However, this particular formulation implies

that the cost is paid after the vacancy is filled and it reflects internal costs of adjusting the number of

employees (such as training). This specification, thus, minimises the exposure of entrepreneur’s profits

unsuccessful matches and, consequently, to uncertainty, since the cost is only paid after the vacancy

is filled. This feature makes this formulation less suitable in our setting.

Final Good Producer: The next two paragraphs discuss the price Phillips curve. The set-up is

quite standard and the nominal rigidities are introduced as a simple way to make output demand

driven in the short run and to allow monetary policy to be able to a↵ect the economic cycles. The

final good is produced via the following production function

Ỹt =

Z 1

0
Ỹt (f)

"�1
" df

� "
"�1

(19)

Ỹt (f) =

✓
Pt (f)

Pt

◆�"

Yt (20)

where " denotes the elasticity of substitution between di↵erentiated intermediate goods (f 2 [0 1]).

The demand for intermediate goods (expression 20) results from profit maximisation and the assump-

tion that the final good producer operates under perfect competition.

8In August 2013, the Bank of England augmented its policy toolkit with (state dependent) forward guidance. Un-
employment became a forward guidance threshold variable and the Bank of England started publishing its fan chart in
order to better communicate with public its projection about real economy.
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Intermediate Good Producers: Similar to Krause and Lubik (2007) and Krause et al. (2008) we

assume that there is a continuum of firms (f 2 [0, 1]) that post vacancies, combine employment, fixed

capital and employ the following technology:

Ỹt (f) = Z̃t (Lt (f))
1��

K
� (21)

to produce the intermediate good, where � is the capital share in the production function. These

producers solve a two-stage problem. In the first stage, taking the wage and the cost of filling a

vacancy as given they decide how many vacancies to post and people to employ, these choices result

from the maximisation of their profit function:

Et

1X

j=0

Mt+j�
j

(
MCt+j (f) Ỹt+j (f)� W̃t+jLt+j (f)�R

K
K � Z̃t+j⌥t+j (f)

+⇥̃t+j (f)
⇣
(1� �N )Lt+j�1 (f) +Q

⌥
t+j (f)⌥t+j (f)� Lt+j (f)

⌘
)

(22)

where MCt (the marginal cost), ⇥̃t (the shadow value of hiring an additional worker) are the Lagrange

multipliers associated with the goods’ production function and the employment’s law of motion, re-

spectively. Finally, Mt denotes the stochastic discount factor

Mt+1 =

2

64
Vt+1

⇣
EtV

1��
t+1

⌘ 1
1��

3

75

��  
C̃t (h)� bC̃t�1

C̃t+1 (h)� bC̃t

!�C

In the second stage, producers set the price of the intermediate good that maximises their profits.

The optimisation problem in this case reflects that prices are set in a staggered manner. This means

that every period a fraction (1� ⇠) of firms receive a random signal and set prices optimally
⇣
P̆t (f)

⌘
,

while those firms who miss the signal set prices based on a rule of thumb backward looking indexation

scheme
⇣
P̆t (f) = ⇧◆

t�1P̆t�1 (f)
⌘
. As explained in Christiano et al. (2005), this pricing setup allows us

to replicate the hump shaped response of inflation to the monetary policy observed in the empirical

section. The pricing problem is summarised by the following profit maximisation

max
P̆t(f)

Et

1X

j=0

Mt,t+j (�⇠)
j

"(
P̆t (f)⇧◆

t+j�1

P̃t+j
�MCt+j (f)

)
Ỹt+j (f)

#
(23)

subject to

Ỹt+j (f) =

 
jY

s=0

⇧◆
t+s�1

Pt (f)

Pt+j

!�"

Yt+j

Wage Determination: The wage is determined by solving a Nash bargaining problem between

workers and firms that takes place in order to decide how to split the surplus produced by a match

(see Mortensen and Pissarides (1994) and Krause et al. (2008) amongst others). This simple framework

is commonly used in the literature and assumes that newly hired workers get the existing wage, an

assumption that is also supported by some empirical evidence (Galuscak et al. (2012)). To set the

problem we need to define the value of the firm:

J̃
F
t = MCt

(1� �) Ỹt
Lt

� W̃t + �EtMt+1 (1� �N ) J̃F
t+1 (24)
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On the other hand, the value of an employed and unemployed worker is given by:

J̃
W
t = W̃t � �0Z̃

1��C
t L

�L
t

⇣
C̃t � bC̃t�1

⌘�C

+�EtMt+1

n⇥
1� �N

�
1�Q

U
t+1

�⇤
J̃
W
t+1 + �N

�
1�Q

U
t+1

�
J̃
U
t+1

o
(25)

J̃
U
t = B̃t + �EtMt+1

n
Q

U
t+1J̃

W
t+1 +

�
1�Q

U
t+1

�
J̃
U
t+1

o
(26)

and the wage results from the following bargaining problem:

W̃
Nash
t = argmax

W̃t

⇣
J̃
W
t � J̃

U
t

⌘⌘ ⇣
J̃
F
t

⌘1�⌘
(27)

Similarly to Krause and Lubik (2007) and Leduc and Liu (2016), we allow for real wage rigidity via

the following norm:

W̃t = W̃
◆w
t�1

⇣
W̃

Nash
t

⌘1�◆w
(28)

Government and Aggregation: The government in this economy runs a balanced budget:

P̃tG̃t +Dt�1 + (1� Lt) P̃tB̃t = Tt +
Dt

Rt
(29)

where G̃t = gtỸt is government consumption and gt = g

⇣
gt�1

g

⌘⇢g
e
�g!g,t is the of the government

share in the economy. Monetary policy is set based on Taylor Type rule:

log (Rt) = rt = ⇢Rrt�1 + (1� ⇢R)

⇢
⇣⇧ log

✓
⇧t

⇧

◆
+ ⇣u log

⇣
ut

u

⌘�
+ !R,t (30)

where ⇧ is the inflation target, ⇢R is the interest rate smoothing parameter, ⇣⇧ and ⇣Y d are the policy

reaction coe�cients to inflation and demand growth, respectively, and !R,t = ⇢✏R!R,t�1 + �R✏R,t is

the monetary policy shock. Finally, the market clearing condition is derived after a number of simple

substitutions (see the Section 5.1, pages 21-22):

Z̃tL
1��
t K

�

�t
= C̃t + G̃t +  ̃t (31)

The de-trended and steady-state calculations are discussed in the technical appendix (Section 5.1,

pages 21-22).

4.2 Heteroscedasticity

The novel part of our analysis is that we focus on the volatility implications of the monetary policy

shock. With the term volatility or measured uncertainty we refer to the heteroscedastic response of a

variable, say xt, defined as in Basu and Bundick (2017) and Swanson (2015)

�̂x,t = 100 ln

✓
�x,t

�x

◆
(32)

where

�x,t = var (xt) = Et(xt+1 � Etxt+1)
2 (33)

and �x is the stochastic steady-state standard deviation of the variable xt.9 It is perhaps important

to highlight that equation (33) coincides with the definition of volatility studied by Jurado et al.

(2015). As explained in Rudebusch and Swanson (2012) and Swanson (2015), the higher moments

of economy’s endogenous state vector are time-varying (�x,t) due to (i) the additive separability of

consumption in the period utility function and (ii) the Epstein-Zin preferences. According to these

9In the text below, we use the term uncertainty to refer to ‘measured uncertainty’.
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authors the additive separability property of consumption makes the model non-homogeneous and this

is what induces a small degree of heteroscedasticity, which is further enhanced by the risk aversion

parameter (�).

The economic intuition behind these two technical conditions is actually quite simple. The additive

separability property of consumption makes agents’ responses to economic shocks depend on the

current level of on the state of the economy. For instance, when the current level of consumption is low

(or the marginal utility of consumption is high) then consumption uncertainty is higher (relative to the

case where the initial level of consumption/output is high) and this reflects agents’ elevated concerns

about future shocks. As an adverse shock that lowers output further is going to induce a proportionally

a larger reduction in utility relative to the case where the initial level of consumption/output was high.

This channel is the further enhanced by Epstein-Zin preferences as the risk parameter reflects how

much agents dislike elevated uncertainty (Rudebusch and Swanson (2012)).

Loosely speaking, agents in this economy price adverse shocks more heavily in ‘bad times’ when

compared to ‘good times’. This behaviour induces a wedge between the mode of the distribution xt

and its mean as the latter captures these elevated concerns. Figures 5 illustrates this phenomenon. We

use the model developed in this study (and the estimates discussed below) to simulate the data. Panel

A of Figure 5 shows the probability density function of unemployment rate, unemployment expected

duration, labour income, GDP and annual inflation as deviations from their stochastic steady states

when the monetary policy shock is drawn from its estimated distribution.10 It is apparent that even

under one standard deviation monetary policy shocks the probability density functions displays a

‘downward risk’, meaning that the average unemployment rate and the average expected duration

of being unemployed are higher than their modes. Similarly, the average labour income, GDP and

inflation fall to left of their modes. We repeat the same exercise in Panel B of Figure 5, however,

we apply larger shocks this time (two times their standard deviation). As expected, the asymmetry

becomes more pronounced indicating that agents economic behaviour is also a function of the state of

the economy.

The above simulations illustrate that under certain conditions monetary policy actions can have quite

dramatic implications for the economy; for instance, unemployment rate could rise 6 percentage points

(pps) above the stochastic steady state, while inflation, GDP and labour income could fall 10% below

the stochastic steady state, respectively. These adverse economic conditions are taken into account by

agents when they form their decisions optimally and try to minimise their exposure to these downward

risks.

Table 3 compares a set of data estimated disaster statistics reported by Petrosky-Nadeau et al. (2018),

with those predicted by the model that is subject to a monetary policy shock. The aim of this second

exercise is to use data evidence to quantify the risks to which the agents in this economy are exposed

and, consequently, to understand why they want to hedge against them. As in Petrosky-Nadeau

et al., we apply the peak-to-trough method discussed in Barro and Ursua (2008) to to identify rare

disasters.The disasters are defined as cumulative fractional declines in per capita output of at least

10%.
10Both the non-stationary productivity and government spending shocks are switched o↵ for the rest of the analysis.

To be precise, although the values of the latter two shocks are set to zero, their standard deviations are not. This a↵ects
peoples average behaviour as their expectations are based on the distribution of the two shocks and not just on their
realisation.
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When the economy is exposed to one standard deviation policy shocks, then the disaster probability is

significantly less than 1%. However, if this highly unlikely event ever takes place then it lasts for almost

7 years and growth reduces by almost 12%.11 Not surprisingly, when the economy is perturbed with

larger policy shocks, then the disaster probability and the size of output collapse increase significantly

and non-linearly, while the duration of disaster state decreases: The probability of disaster and its

size rise to 5% and 14% respectively, while the duration of the disaster shortens to 4 years. Unlike in

the case of one standard deviation shocks these estimates are significant closer to those obtained using

actual data. Finally, the comparison of the second and third columns of Table 3 illustrates again that

agents’ responses to monetary policy shocks are di↵erent at di↵erent stages of the cycle.

4.3 Calibration

The model is estimated using limited information impulse response matching techniques (Christiano

et al. (2005), Christiano et al. (2010)). However, the value of a small number of parameters is decided

prior to the estimation. To be precise, the share of capital in the production (�) and its depreciation

rate have been calibrated to 0.36 and 0.025, numbers typically used in the literature (Christiano

et al. (2005)). The steady-state unemployment (u) is set equal to 5.8% (the sample mean), while

the steady-state value of output (y) to 1. The time discount factor (�) equals 0.995, while the both

the steady-state value of inflation and productivity growth have been set to 2%. The last three

parameters imply that the non-stochastic steady-state of the annual policy rate is 6%. Similar to

Smets and Wouters (2007), the government spending and investment to GDP ratios are calibrated to

0.18 and 0.2, respectively. Finally, the steady-state value of the probability filling the vacancy is 70%

(Hagedorn and Manovskii (2008)).

The parameters �C , �L, b, �, ⇠, ◆, ⇣⇧, ⇣u, ⇣R, ", µ, ⌘, �N , B̄ = B
WL , ◆w,

�
Y , ⇢✏Z , ⇢✏G , ⇢✏R , �✏Z , �✏G and

�✏R are selected to match the nonlinear VAR responses to an identified monetary policy shock using

the benchmark identification scheme. The model is solved using third-order perturbation methods and

the impulse responses are calculated relative to the stochastic steady state (Cacciatore and Ravenna

(2016)).12

The objective of the estimation is for the model to be able to replicate not only the empirical responses

to a monetary policy shock illustrated in Figure 1 but the also the contribution of the ‘uncertainty

channel’ to these responses. This is defined as the di↵erence between the unrestricted and restricted

responses plotted in Figure 4 and discussed in Section 3.2. The latter set of targets ensures that the

parameters that control the size of the uncertainty channel in the model are calibrated carefully and

the predictions of the model about the importance of that channel are in line with those observed

in the data.13 As it will become apparent later in our analysis, the last set of moments acts also

a natural metric that allows us to assess which part of the transmission mechanism is responsible

for the existence of the endogenous uncertainty channel. The process used to estimate the DSGE

11In the online Appendix (Section 5.3) we develop a version of the model without search and matching real labour
frictions but with sticky nominal wages. Although, this version of the model replicates the cyclical dynamics remarkably
well, it fails to produce an endogenous disaster even when the economy is hit with 2 standard deviation policy shocks.

12No pruning is applied in our calculations, which have been implemented using Dynare 4.4.3. The model and
replication files can be downloaded from authors’ webpages. We also check if our results are robust if we apply Koop
et al. (1996) methodology to calculate the IRFs and we find that our results are almost identical. We choose to employ
the first method to calculate the IRFs as it dramatically reduces the estimation time.

13We would like to thank an anonymous referee for proposing this exercise.
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contributions of uncertainty follows closely the steps employed for the empirical models. To be precise,

the uncertainty contribution is defined as the di↵erence between the responses obtained using the third

order solution model minus those by using only the first order component of the solution.

4.4 Estimation Results

Figure 6 illustrates the ability of the theoretical model to replicate the identified empirical responses

(Panel A) as well as the contribution of the uncertainty channel to these responses (Panel B), re-

spectively. Even though the literature has questioned ability of a “simple” search and matching New

Keynesian model to jointly replicate the dynamics of both unemployment and inflation (see the dis-

cussion in Krause and Lubik (2007) and Gertler et al. (2008)), our estimated model seems to be robust

to this criticism as it reproduces the data dynamics remarkably well.

In this study, however, our results go further. The model is capable of replicating: (i) the VAR based

stochastic volatility responses to a level monetary policy shock and, (ii) the empirically identified

contribution of the uncertainty channel.14 This is a new set of results that further supports the

analysis of Petrosky-Nadeau et al. regarding the aptitude of DSGE models with search and matching

labour market frictions of reproducing highly non-linear dynamics seen in the data.

Returning to the discussion of the estimated parameters, Table 2 illustrates that the model can

replicate the data features mentioned in the previous paragraph by relying on a set of parameter

values that have been extensively used in the literature. Perhaps the less common parameter estimate

is that for the Epstein-Zin risk coe�cient (� = 115.57) with the estimated value indicating that agents

dislike future uncertainty. This value is similar to the one used in the Rudebusch and Swanson (2012)

and Swanson (2015). As explained in Swanson (2015) – and it is further illustrated in the next section

– this parameter only has a small e↵ect on the stochastic volatility of macroeconomic variables and

therefore the large magnitude is innocuous.15

In terms of the utility kernel, the model demands some curvature (�C = 2.15, Chen et al. (2012))

and (�L = 4.00, Christiano et al. (2010)) in order to reconcile the predicted dynamics with those in

the data. The degree of consumption smoothing (b = 0.57), is close to the estimates reported by

Christiano et al. (2005).

The parameters that govern the labour market block of the model, the Cobb-Douglas matching pa-

rameter (µ = 0.40), the job separation rate (�N = 0.18), the income replacement ratio (100B̄ = B
WL =

54%) and the steady-state, the bargaining power for workers (⌘ = 0.50) search and matching friction

(100�
Y = 1%) are again consistent with those in the literature (see for instance, Krause and Lubik

(2007) and Krause et al. (2008), Gertler et al. (2008) and Hagedorn and Manovskii (2008) among

others).

Consistent with the analysis Krause and Lubik (2007) and Leduc and Liu (2016) (among others),

the model requires a high degree of real wage rigidity (◆w = 0.89) in order to be able to match the

14While the VAR-based volatility responses are all hump shaped, this feature is less evident in the model. This is
likely to be because the model incorporates simplifying assumptions and does not capture all aspects of the data.

15This is not the case for asset price variables as the they are functions of the stochastic discount factor. The risk
parameter has a great influence on the second term of the stochastic discount factor that captures how agents ‘trade’
uncertainty across time. As it is discussed briefly in the next section, we discovered that the risk parameter variations
have perhaps a larger impact on the stochastic steady-state than the cyclical dynamics regarding the macro variables.
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volatility of unemployment in the data (Figure 5, Panel A, page 30, online appendix). As explained

by these authors and it can be seen from equation (28), under this calibration paid wages decouple

from productivity and this leads to high surplus for firms (relative to the situation of no real wage

rigidity) stimulating vacancy creation.

Similar to Christiano et al. (2005) a high degree of price indexation (◆ = 0.72) and a small probability

of resetting prices optimally (1� ⇠ = 0.03) are needed for the model to match the response of inflation

after a monetary policy shock. Furthermore, the steady-state value of firms’ markup is 50% (" = 3.0)

a value similar to Smets and Wouters (2007) and Gertler et al. (2008). Finally, the estimates of the

policy reaction coe�cients are similar to those reported in the literature (Krause et al. (2008), Gertler

et al. (2008), Leduc and Liu (2016)).

4.5 Impulse Response Analysis

The aim of this section is to discuss the transmission mechanism of monetary policy shocks to macroe-

conomic volatility. We illustrate this via impulse response analysis. We first describe the results in

the benchmark model and then investigate the features of the model that drive the transmission of

the shock.

4.5.1 Benchmark results

The blue solid line in Panel A of Figure 7 shows the agents’ responses to a monetary policy shock

estimated using the benchmark version of the model.

Households: Starting from the household side, as consumption moves away from its steady-state

level due to the adverse policy shock, agents start becoming concerned about the fact that another

adverse economic shock is going to take their current consumption even further away from its steady-

state. For the agents, this is more costly in utility terms than if consumption had been above its

steady-state prior to the adverse shock (see Rudebusch and Swanson (2012) and Swanson (2015)). To

insure themselves against this downward risk they act in a precautionary manner and reduce current

consumption by a larger amount (Basu and Bundick (2017) and Fernandez-Villaverde et al. (2015)).

Furthermore, in an economy with search and matching frictions, the agents face additional risks:

i.e. the risk of job separation and unemployment. This enhances households’ concerns about their

expected consumption plan and intensifies their desire to hedge against this uncertainty. An adverse

shock that reduces consumption when the latter is already below its steady state would have a larger

detrimental impact when agents are unemployed. We consider the importance of these risks below.

Firms: Firms are owned by households and so they use the same stochastic discount factor to weight

expected profits. This means that a profit reduction is more costly when the previous period profits

had been below rather than above their steady-state. As it is explained carefully in Swanson (2015),

these preferences induce entrepreneurs to devote more attention to generating profits in bad times.

However, firms who face adverse economic conditions are exposed to: (i) paying a wage higher than
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worker’s productivity (taking into account future forgone costs of hiring) due to high wage rigidity

and to, (ii) low expected demand for their output.

To mitigate these exposures firms pause hiring. As explained in Bloom (2009) and Leduc and Liu

(2016) filling a vacancy is an irreversible decision that has long-term implications. Therefore, en-

trepreneurs act more cautiously and post even less vacancies pushing up unemployment.

Moreover, the firm recognises that a lower price could lead to a higher demand for its output and,

consequently, more profits. Despite the fall in the marginal cost (caused by the fact that supply

exceeds labour demand), the firm has an incentive to a set an even lower price during bad times in

order to secure more demand and, consequently, hedge itself against future more adverse economic

outcomes.

As inflation falls and monetary authorities reduce the policy rate only gradually (due to their prefer-

ences of avoiding injecting too much interest rate volatility) the real interest rate remains persistently

positive and this enhances the desire for saving.

Impact on volatility: As shown in the last row of Panel A of Figure 7, volatility increases after a

monetary policy shock. As discussed in Section 4.2 above, the volatility of a variable can be viewed as

a wedge between the mean and the mode of the distribution. When the adverse monetary policy shock

occurs, agents in the economy form expectations about future events. Households take into account the

probability of longer unemployment spells during which they may be exposed to additional negative

shocks. Similarly, firms’ expectations about profits are skewed downwards. However, as the time

evolves and no further shocks are realised this wedge between expectations and what actually happens

eases, and so does the volatility in the economy.

Contribution of uncertainty: The blue circle line in Panel B of Figure 7 isolates the contributions

of uncertainty in the transmission of monetary policy. The uncertainty contribution is defined as the

di↵erence between the response derived by using the full third order solution of the model minus the

responses produced using only the first term of that solution. For instance, unemployment increases

0.3 pps after one standard deviation monetary policy shock (Panel A of Figure 7, blue solid line/left

y-axis) and 1/3 (30%) of this increase is due to the uncertainty (Panel B of Figure 7, blue circle

line/left y-axis). Furthermore, uncertainty seems to account for almost 50% of the output, labour

income and inflation fall. This exercise reveals that: (i) the endogenous uncertainty channel plays a

sizeable role in the transmission of the monetary policy shock and (ii) it manifests itself as a demand

type shock (Leduc and Liu (2016)).

4.5.2 Key Features of the model

It is interesting to consider the features of the model that drive the impact of monetary policy on

second moments. In particular, the model contains three ingredients that play a role: (1) Search

and Matching labour market frictions, (2) interest rate smoothing by the monetary authorities and

(3) Epstien-Zin preferences. In order to gauge the role of these features of the model, we derive the

impulse responses under the counterfactual scenario where these channels are switched o↵ one by one.
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Labour Market Frictions We pursue two exercises: (i) we consider what happens when non-

stochastic steady-state probability of finding a job (QU ) is (almost) equal to one (or the non-stochastic

steady-state of unemployment is almost equal to zero) and (ii) what happens when the friction is

removed completely but nominal wages adjust only gradual (sticky nominal wages, Christiano et al.

(2005), Smets and Wouters (2007)). Due to the space required for the development of the second

model, the latter exercise is conducted in the online Appendix (Section 5.3), but the intuition of the

results coincides with the first experiment and it is, therefore, discussed here briefly.

Panel A of Figure 7 compares the agents’ responses to a monetary policy shock derived by the bench-

mark version of the model (blue solid line) against the responses when implicitly there is no risk that

agents will ever become unemployed (QU = 1, red dashed line).16 Panel B of Figure 7 on the other

hand identifies the contribution of the uncertainty channel for both versions of the model. Without

the search and matching labour market real friction the contribution of the endogenous uncertainty

channel to the economy is substantially smaller (red cross line/right y-axis). This evidence seems to

indicate that households fear that they can remain unemployed for an extended period of time (the

expected average duration is given by 1
1�(1�QU )

). Their fear is magnified by the possibility that, during

this period, another adverse shock that moves their consumption away from its steady-state might

arrive. To insure themselves against this uncertainty, they reduce consumption by more (relative to

the situation where they move from unemployment to employment almost instantaneously) when the

monetary shock takes place.

We develop in the online appendix (Section 5.3) a version of the model without search and matching

frictions but with sticky nominal wages (Christiano et al. (2005), Smets and Wouters (2007)) and

Epstein-Zin preferences (SW). The estimated version of the SW model again replicates the cyclical

responses remarkably well. However, the steady-state value of the output stochastic volatility is almost

zero and the model fails to produce distribution skewness and endogenous disasters.

These two quite di↵erent exercises seems to converge to the same conclusion that search and matching

frictions are important. This is a result that seems to go hand in hand with the finding of the

heterogenous agents literature. To be precise, Ravn and Sterk (2017) and Den Haan et al. (2018)

(amongst others) argue convincingly about the necessity of incorporating search and matching friction

(along with nominal price or/and wage rigidities) into these incomplete markets model in order to

produce quantitative sizeable results without replying on large and very persistent shocks. It also

coincides with the analysis of Petrosky-Nadeau et al. (2018), who argue that DSGE models with

search and matching frictions can generate endogenous disasters.

Interest Rate Smoothing Taking the real labour frictions as given, we consider how discretionary

monetary actions could cause uncertainty to increase endogenously and significantly. The systematic

part of the monetary policy consists of the two parts: (i) the response to deviation from FED’s inflation

and unemployment gap objectives and (ii) the interest rate smoothing. Our investigation seems to

suggest that it is the policymaker’s desire to ‘smooth’ changes in the policy rate that actually causes

uncertainty to rise after a monetary policy shock.17 To be precise, when the interest rate smoothing

16This is implemented in the model by lowering the non-stochastic steady-state unemployment rate to 0.01%
17In the online Appendix (Section 5.1) we illustrate that if the reaction coe�cient to unemployment gap is increased

beyond empirically plausible values (such as greater than one) then the uncertainty channel diminishes significantly.
Although, this simulation lacks empirical support (as we do not observed such high values for ⇣u in the literature) the
results further enforce the message of this paragraph. The higher policy response to unemployment countervails the
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coe�cient is set to zero (⇢R = 0), the uncertainty channel disappears and the impact of monetary

policy on second moments is close to zero. (Figure 8). This happens as the lack of preference for

interest rate smoothing allows authorities to loosen policy very quickly in order to restore both the

inflation and unemployment targets. In other words, agents do not seem to be particularly concerned

about the ability of monetary authorities to discretionary deviate from their objective function as long

as they can reverse their actions and restore economy’s steady-state.

Epstein-Zin Risk Coe�cient Figure 9 compares the responses (Panel A) and the uncertainty

contributions (Panel B) in the benchmark case and the counterfactual case where the risk coe�cient

is set to zero (� = 0). With � = 0 the importance of the endogenous uncertainty channel declines

and the uncertainty contributions are substantially smaller. Moreover, the response of volatility in

the counterfactual case is smaller than the benchmark case.

However, these results also suggest that in relative terms the dramatic reduction in � from 115 to

0 does not lead to e↵ects that are extreme. As the economies’ agents have a high desire of early

resolution of future uncertainty, the central bank is expected to keep policy expansionary for longer

to meet its objectives. As a result, the long-term interest rate falls by more than 30 bps and stays

below its stochastic steady-state for more than a year. Finally, this exercise is an additional evidence

in favour of endogenous uncertainty acts as a demand channel (shock).18

5 Conclusion

This study investigates the response of macroeconomic volatility to an unexpected increase in the

policy rate. For this purpose we develop an empirical model that allows us to estimate the response

of macroeconomic volatility to a monetary policy shock. To investigate the transmission channel of

the shock, we build a simple New Keynesian model, with search and matching labour frictions and

Epstein-Zin preferences.

The empirical model suggests that a 100 basis points increase in the policy rate causes unemployment

and inflation volatility to rise by around 10% above its unconditional value. The theoretical model has

been calibrated to match the SVAR responses. Simulations from the theoretical model suggest that

it is the coexistence of agents’ fears about being prolonged unemployment and monetary authorities’

desire for gradual policy adjustments that causes volatility to increase to levels observed empirically.

In other words, households understand the risks of becoming unemployed and the fact that during

the unemployment spells additional adverse shock may occur. However, it is the combination of

these risks together with the policy-rate smoothing parameter that causes monetary policy to have

significant volatility e↵ects and not the shock per-se. When these two conditions pre-exist, only then

the Epstein-Zin preferences play a significant role.

smoothing parameter and the policy rate is decreased faster in order to support the recovery of the economy.
18In the online appendix (Section 5.1) we investigate what happens to the economy when the inflation target increases

from 2% to 4%. We find that the uncertainty e↵ects from this policy change are small.
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Table 2: Structural Parameters

Parameters Description Values

Calibrated Parameters

u Steady State Unemployment Rate 0.06
G
Y Government Spending to GDP Ratio 0.18
I
Y Investment to GDP Ratio 0.20

400ln(⇧) Inflation Target 2.00
400ln(Z) Steady State Value of Productivity Growth 2.00

Q
⌥ Steady State Job Filling Probability 0.70
� Capital Production Share 0.36
�K Capital Depreciation Rate 0.03
� Time Discount Factor 0.995

Estimated Parameters

100�
Y Post Vacancy Resource Cost relative to GDP 1.00

B̄ = B
WL Income Replacement Ratio 0.54

� Epstein-Zin Preference Risk 115.57
�C Inverse of Intertemporal Elasticity of Substitution 2.15
b Habit Smoothing 0.57
�L Inverse of Frisch Elasticity 4.00
" Intermediate Goods Elasticity of Substitution 3.00
⇠ Calvo Probability 0.97
◆ Price Indexation 0.72
�N Job Separation Rate 0.18
µ Cobb-Douglas Matching 0.40
⌘ Bargain Parameter 0.50
◆w Real Wage Rigidity 0.89
⇣⇧ Inflation Monetary Policy Response 1.05
⇣u Unemployment Monetary Policy Response 0.40
⇢R Interest Rate Smoothing 0.71
⇢✏R Policy Shock Persistence 0.93
⇢✏Z Productivity Growth Shock Persistence 0.53
⇢✏G Government Spending Shock Persistence 0.59

100�✏R Policy Shock Standard Deviation 0.53
100�✏Z Productivity Growth Shock Standard Deviation 1.58
100�✏G Government Spending Shock Standard Deviation 0.01

Table 3: Disaster Statistics
Metrics Data 1 Standard Deviation 2 Standard Deviation

Probability 7.83 0.30 4.55
Size 21.99 11.84 14.46
Duration 3.72 6.35 3.76

Notes: The data disaster statistic estimates are those reported by Petrosky-Nadeau et al. (2018) (Table 4, pp. 2227).

Starting from the stochastic steady state, the model is simulated for 50000 periods. Similar to Petrosky-Nadeau et al.

(2018) , we time-aggregate output into annual observations, and apply the peak-to-trough method to identify disasters

as cumulative fractional declines in output of at least 10%. The disaster probabilities and average size are in percent,

and the average duration is in terms of years.
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Figure 4: Impulse response to a monetary policy shock from the benchmark and restricted models

Notes: The light shaded area is the 68% error band while the dark shaded area is the 90% error band from the

benchmark model. The thick black line shows the median response from the restricted model.
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Figure 5: Downward Risk

Panel A: 1 Standard Deviation Shocks

Panel B: 2 Standard Deviation Shocks

Notes: Starting from the stochastic steady state, the model is simulated for 50000 periods. The histogram illustrates the

distribution of xt as deviation from its stochastic steady-state. Unemployment and inflation are expressed in percentage

points (x-axis), expected unemployment duration is measured in quarters, while the GDP and labour income are defined

as percentage deviations.
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Figure 6: The Fit of the DSGE Model

Panel A: Impulse Responses

Panel B: Uncertainty Contribution

Notes: The responses from the empirical model have been adjusted to match the quarterly frequency of the DSGE

model. The posterior distribution of the uncertainty contribution (shadow area) is obtained by subtracting the posterior

distribution between the unrestricted and restricted empirical responses. The back dashed line illustrates the DSGE

response to the policy shock. The policy rate and inflation are expressed in annual terms. The DSGE responses are

calculated relative to the stochastic steady state. Panel B: The DSGE uncertainty contribution is calculated as the

di↵erence between the response derived by using the third order solution of the model minus the responses produced

using first order solution.
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Figure 7: Search and Matching Frictions

Panel A: Impulse Responses

Panel B: Uncertainty Contribution

Notes: The blue solid (Panel A) and blue circle (Panel B) line (left y-axis) represents the benchmark version of the

model (u = 5.8% or QU = 63%), while the red dashed (Panel A) and red cross (Panel B) line (right y-axis) is the

responses of the model when the unemployment rate is set to (almost) zero or the probability of finding a job is (almost)

one (u = 0 or QU = 100%). Rates are reported in annual basis points, inflation in annual percentage rates, the job

filling probability in percentage points, unemployment duration in quarters. The responses are calculated relative to the

stochastic steady state. Panel B: The uncertainty contribution is defined as the di↵erence between the response derived

by using the third minus the responses produced using only the first order solution of the model.
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Figure 8: Policy Rate Smoothing Preferences

Panel A: Impulse Responses

Panel B: Uncertainty Contribution

Notes: The blue solid (Panel A) and blue circle (Panel B) line (left y-axis) represents the benchmark version of the

model (⇢R = 0.71), while the red dashed (Panel A) and red cross (Panel B) line (right y-axis) denotes the responses of

the model when the interest rate smoothing parameter is set to zero (⇢R = 0). Rates are reported in annual basis points,

inflation in annual percentage rates, the job filling probability in percentage points, unemployment duration in quarters.

The responses are calculated relative to the stochastic steady state. Panel B: The uncertainty contribution is defined

as the di↵erence between the response derived by using the third minus the responses produced using only the first order

solution of the model.
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Figure 9: Epstein-Zin Risk Coe�cient

Panel A: Impulse Responses

Panel B: Uncertainty Contribution

Notes: The blue solid (Panel A) and blue circle (Panel B) line (left y-axis) represents the benchmark version of the

model (� = 115.6), while the red dashed (Panel A) and red cross (Panel B) line (right y-axis) denotes the responses

of the model when the Epstein-Zin Risk Coe�cient is set to zero (� = 0). Rates are reported in annual basis points,

inflation in annual percentage rates, the job filling probability in percentage points, unemployment duration in quarters.

The responses are calculated relative to the stochastic steady state. Panel B: The uncertainty contribution is defined

as the di↵erence between the response derived by using the third minus the responses produced using only the first order

solution of the model.
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Online Appendix: Dynamic E↵ects of Monetary Policy Shocks on

Macroeconomic Volatility

Haroon Mumtaz
⇤

Queen Mary University of London

Konstantinos Theodoridis
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1 Model Estimation

Consider the VAR model

Zt = c +
PX

j=1

�jZt�j +
KX

k=1

bkh̃t�k + ⌦1/2
t

et, et ⇠ N(0, 1) (1)

⌦t = A
�1

HtA
�10 (2)

h̃t = ↵+ ✓h̃t�1 +
KX

j=1

djZt�j + ⌘t, ⌘t ⇠ N(0, Q), E (et, ⌘t) = 0 (3)

where h̃t = [h1t, h2t, ..hN,t], Ht = diag

⇣
exp

⇣
h̃t

⌘⌘
.

1.1 Prior distributions and starting values

1.1.1 VAR coe�cients

Let � = vec
�
[c;�j ; bk]

�
. Following Banbura et al. (2007), we employ a Normal prior implemented via

dummy observations. The priors are implemented by the dummy observations yD and xD that are

defined as:

yD =

2

66664

diag(�1s1...�nsn)
⌧

0N⇥(P�1)⇥N

..............

0EX⇥N

3

77775
, xD =

2

66664

JP⌦diag(s1...sn)
⌧

0NP⇥EX

0N⇥(NP )+EX

..............

0EX⇥NP IEX ⇥ 1/c

3

77775
(4)

where �1 to �n denote the prior mean for the parameters on the first lag obtained by estimating

individual AR(1) regressions, ⌧ measures the tightness of the prior on the VAR coe�cients, and c is

the tightness of the prior on the exogenous and pre-determined regressors. EX denotes the number of

exogenous and pre-determined regressors in each equation. N denotes the total number of endogenous

⇤
Email: h.mumtaz@qmul.ac.uk

†
Email: theodoridisk1@cardi↵.ac.uk
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variables and P is the lag length. We set ⌧ = 0.1. We use a di↵erent value of c for the coe�cients on

the lagged volatilities and For the coe�cients on the lagged volatilities c is set equal to 0.1. A flat prior

is used for the intercept terms and the corresponding tightness is set equal to c = 1000. Note that

these dummies do not directly implement a prior belief on the VAR error covariance matrix which is

time-varying in our setting.

The priors for the coe�cients are thus: N (�0, P0) where �0 = (x0
D
xD)�1 (x0

D
yD) and P0 = S ⌦

(x0
D
xD)�1 where S is a diagonal matrix with an estimate of the variance of Zt (obtained using the

training sample described below) on the main diagonal.

1.1.2 Elements of Ht

Following Cogley and Sargent (2005) we use a training sample (of 120 pre-sample observations from

1947M1 to 1957M12 ) to set the prior for the elements of the transition equation of the model. Let v̂ols

denote the OLS estimate of the VAR covariance matrix estimated on the pre-sample data. The prior

for h̃t at t = 0 is defined as lnh0 ⇠ N(lnµ0, I4) where µ0 are the diagonal elements of the Cholesky

decomposition of v̂ols.

1.1.3 Elements of A

The prior for the o↵-diagonal elements A is A0 s N
�
â
ols

, V
�
â
ols
��

where â
ols are the o↵-diagonal

elements of v̂
ols, with each row scaled by the corresponding element on the diagonal. V

�
â
ols
�

is

assumed to be diagonal with the elements set equal to 100. We employ a tighter prior for elements

where sign restrictions are imposed.

1.1.4 Parameters of the transition equation

The prior on the coe�cients and error covariance of the transition equation 3 is implemented via

dummy variables (see Banbura et al. (2007)), shrinking each equation towards an AR process. This

set of artificial data also includes dummy variables to implement the inverse Wishart prior on Q

and the coe�cients on the predetermined regressors. The prior tightness parameter controlling the

strength of the prior on the coe�cients on the lagged volatilities is set equal to 0.05. The parameter

that controls the prior tightness on the lagged pre-determined variables is also set to 0.05.

1.2 Simulating the posterior distributions

1.2.1 VAR coe�cients

The distribution of the VAR coe�cients � conditional on all other parameters ⌅ and the stochastic

volatility h̃t is linear and Gaussian: �\Zt, h̃t,⌅ s N
�
�T\T , PT\T

�
where �T\T = E

⇣
�T \Zt, h̃t,⌅

⌘
, PT\T =

Cov

⇣
�T \Zt, h̃t,⌅

⌘
. Following Carter and Kohn (2004) we use the Kalman filter to estimate �T\T and

PT\T where we account for the fact that the covariance matrix of the VAR residuals changes through

time. Note that since we condition on h̃t and A, the form of the heteroscedasticity is known. To use

2



the Kalman filter we write the VAR in state space form as

yt = xt�t +
⇣
A

�1
HtA

�10
⌘1/2

et

�t = �t�1

The Kalman filter is initialised at �0 and P0 and the recursions are given by the following equations

for t = 1, 2..T

�t\t�1 = �t�1\t�1

Pt\t�1 = Pt�1\t�1

⌘t\t�1 = yt � xt�t\t�1

ft\t�1 = xtPt\t�1x
0
t +
⇣
A

�1
HtA

�10
⌘

Kt = Pt\t�1x
0
tf

�1
t\t�1

�t\t = �t\t�1 + Kt⌘t\t�1

Pt\t = Pt\t�1 � KtxtPt\t�1

The final iteration of the Kalman filter at time T delivers �T\T and PT\T . This application of the Carter

and Kohn (2004) algorithm to this heteroscedastic VAR model is equivalent to a GLS transformation

of the model.

1.2.2 Element of At

Given a draw for � and h̃t the VAR model can be written as A
0
⇣
Z̃t

⌘
= et where Z̃t = Zt � c +

P
P

j=1 �jZit�j = vt and V AR (et) = Ht. This is a system of linear equations with a known form

of heteroscedasticity. The conditional distributions for a linear regression apply to each equation of

this system after a simple GLS transformation to make the errors homoscedastic. The ith equation

of this system is given as vit = �↵v�it + eit where the subscript i denotes the ith column while �i

denotes columns 1 to i�1. Note that the variance of eit is time-varying and given by exp
⇣
h̃it

⌘
. A GLS

transformation involves dividing both sides of the equation by

r
exp

⇣
h̃it

⌘
to produce v⇤

it
= �↵v⇤�it

+e
⇤
it

where * denotes the transformed variables and var (e⇤
it

) = 1. The conditional posterior for ↵ is normal

with mean and variance given by M
⇤ and V

⇤ :

M
⇤ =

✓
V

⇣
â
ols

⌘�1
+ v

⇤0
�itv

⇤
�it

◆�1✓
V

⇣
â
ols

⌘�1
â
ols + v

⇤0
�itv

⇤
it

◆

V
⇤ =

✓
V

⇣
â
ols

⌘�1
+ v

⇤0
�itv

⇤
�it

◆�1

1.2.3 Elements of Ht

Conditional on the VAR coe�cients and the parameters of the transition equation, the model has a

multivariate non-linear state-space representation. Following recent developments in the seminal paper

by Andrieu et al. (2010), we employ a particle Gibbs step to sample from the conditional posterior of

3



h̃t. Andrieu et al. (2010) show how a version of the particle filter, conditioned on a fixed trajectory

for one of the particles can be used to produce draws that result in a Markov Kernel with a target

distribution that is invariant. However, the usual problem of path degeneracy in the particle filter

can result in poor mixing in the original version of particle Gibbs. Recent development, however,

suggest that small modifications of this algorithm can largely alleviate this problem. In particular,

Lindsten et al. (2014) propose the addition of a step that involves sampling the ‘ancestors’ or indices

associated with the particle that is being conditioned on. They show that this results in a substantial

improvement in the mixing of the algorithm even with a few particles.1As explained in Lindsten et al.

(2014), ancestor sampling breaks the reference path into pieces and this causes the particle system to

collapse towards something di↵erent than the reference path. In the absence of this step, the particle

system tends to collapse to the conditioning path. We employ particle Gibbs with ancestor sampling

in this step.

Let h̃
(i�1)
t

denote the fixed the fixed trajectory, for t = 1, 2, ..T obtained in the previous draw of the

Gibbs algorithm. We denote the parameters of the model by ⌅, and j = 1, 2, ..M represents the

particles. The conditional particle filter with ancestor sampling proceeds in the following steps:

1. For t = 1

(a) Draw h̃
(j)
1 \h̃(j)0 ,⌅ for j = 1, 2, ..M � 1. Fix h̃

(M)
1 = h̃

(i�1)
1

(b) Compute the normalised weights p
(j)
1 =

w
(j)
1P

M

j=1 w
(j)
1

where w
(j)
1 denotes the conditional likeli-

hood:
���⌦(j)

1

���
�0.5

�0.5 exp

✓
ẽ1

⇣
⌦(j)
1

⌘�1
ẽ
0
1

◆
where ẽ1 = Zt�

⇣
c +

P
P

j=1 �jZt�j +
P

K

k=1 bkh̃
(j)
1,[�k]

⌘

and ⌦(j)
1 = A

�1
H

(j)
1 A

�10 with H
(j)
1 = diag

⇣
exp

⇣
h̃
(j)
1,[0]

⌘⌘
. The subscript [0] denotes the

contemporaneous value in the state vector while [�k] denote the k lagged states.

2. For t = 2 to T

(a) Resample h̃
(j)
t�1 for j = 1, 2, ..M � 1 using indices a

(j)
t

with Pr
⇣
a
(j)
t

= j

⌘
/ p

(j)
t�1

(b) Draw h̃
(j)
t

\h̃(a
(j)
t

)
t�1 ,⌅ for j = 1, 2, ..M �1 using the transition equation of the model (equation

3). Note that h̃
(a

(j)
t

)
t�1 denotes the resampled particles in step (a) above.

(c) Fix h̃
(M)
t

= h̃
(i�1)
t

(d) Sample a(M)
t

with Pr
⇣
a
(M)
t

= j

⌘
/ p

(j)
t�1 Pr

⇣
h̃
(i�1)
t

\h̃(j)
t�1,↵, ✓, d,Q

⌘
where the density Pr

⇣
h̃
(i�1)
t

\h̃(j)
t�1,↵, ✓, d,Q

⌘

is computed as |Q|�0.5�0.5 exp
⇣
⌘̃
(j)
t

(Q)�1
⌘̃
(j)
t

⌘
where ⌘̃t = h̃

(i�1)
t

�
⇣
↵+ ✓h̃

(j)
t�1 +

P
K

j=1 djZt�j

⌘
.

This constitutes the ancestor sampling step. If a(M)
t

= M then the algorithm collapses to

the simple particle Gibbs.

(e) Update the weights p(j)
t

= w
(j)
tP

M

j=1 w
(j)
t

where w(j)
1 denotes the conditional likelihood:

���⌦(j)
t

���
�0.5

�

0.5 exp

✓
ẽt

⇣
⌦(j)
t

⌘�1
ẽ
0
t

◆
where ẽt = Zt �

⇣
c +

P
P

j=1 �jZt�j +
P

K

k=1 bkh̃
(j)
t,[�k]

⌘
and ⌦(j)

t
=

A
�1

H
(j)
1 A

�10 with H
(j)
t

= diag

⇣
exp

⇣
h̃
(j)
t,[0]

⌘⌘
.

3. End
1
See Nonejad (2015) for a recent application of this algorithm.
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4. Sample h̃
(i)
t

with Pr
⇣
h̃
(i)
t

= h̃
(j)
t

⌘
/ p

(j)
T

to obtain a draw from the conditional posterior distri-

bution

We use M = 50 particles in our application. The initial values µ0 defined above are used to initialise

step 1 of the filter.

1.2.4 Parameters of the transition equation

Conditional on the draw for the volatilities, the conditional posterior for B̄ = vec ([↵, ✓, d1, ..dj ]) the

parameters of the VAR in equation 2 is Normal. Letting y and x denote the left and the right hand

side of the VAR in 2, the conditional posterior of the coe�cients is defined as

G
�
B̄\⌅

�
˜N(B⇤

, Q ⌦
�
x
⇤0
x
⇤��1

)

where B
⇤ = (x⇤0x⇤)�1 (x⇤0y⇤) and x

⇤ and y
⇤ denote x and y appended with dummy observations.

The conditional posterior for Q is inverse Wishart and is given by

G (Q\⌅) ˜IW (S⇤
, T

⇤)

where T
⇤ denote the number of actual observations plus the number of dummy observations and

S
⇤ = (y⇤ � x

⇤
b
⇤)0 (y⇤ � x

⇤
b
⇤)

The MCMC algorithm is applied using 100,000 iterations discarding the first 95,000 as burn-in.

We conduct a small Monte-Carlo experiment to test the algorithm. We generate data from the

following DGP

 
y1t

y2t

!
=

 
0.5 0.2

�0.2 0.5

! 
y1t�1

y2t�1

!
+

 
�0.2 �0.2

0.2 0.2

! 
lnh1t�1

lnh2t�1

!
+

 
1 0

�1 1

!�1 
h1t 0

0 h2t

!1/2 
e1t

e2t

!

 
lnh1t

lnh2t

!
=

 
0.5 �0.1

�0.01 0.5

! 
lnh1t�1

lnh2t�1

!
+

 
0.1 0.01

�0.1 �0.1

! 
y1t�1

y2t�1

!
+

 
0.6 �0.5

�0.5 0.6

!1/2 
v1t

v2t

!

where eit, vit˜N(0, 1) for i = 1, 2. We generate 500 observations and discard the first 100 to remove

the e↵ect of initial conditions. The experiment is repeated 100 times. At each iteration we calculate

the impulse response to the two level shocks using an MCMC run of 5000 iterations.

A comparison of the true and estimated responses in figure 1 shows that the true response lies within

the 95th percentile obtained from the simulation. This shows that the algorithm provides a satisfactory

performance. Note that a previous version of the paper (see Mumtaz and Theodoridis (2015)) employs

a single-move algorithm to draw from the conditional posterior distribution of the stochastic volatilties.

The bias in the impulse responses in this previous version of the algorithm is larger and for this DGP

the use of the particle Gibbs leads to a substantial improvement in estimation accuracy.
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2 Model with time-varying coe�cients

We also estimate the following version of the model:

Zt = ct +
PX

j=1

�t,jZt�j +
KX

k=1

bt,kh̃t�k + ⌦1/2
t

et (5)

⌦t = A
�1

HtA
�10 (6)

h̃t = ↵t + ✓th̃t�1 +
KX

j=1

dt,jZt�j + ⌘t (7)

Letting ⇥t|{z}
N(NP+NK+1)⇥1

= vec
�⇥
ct,�t,1, ..,�t,P , bt,1, .., bt,K

⇤�
and  t|{z}

N(N+NK+1)⇥1

= vec ([↵t, ✓t, dt,1, .., dt,K ])

the evolution of the coe�cients is determined by the additional transition equations:

⇥t = ⇥t�1 + Q̃
1/2
1 v1t (8)

 t =  t�1 + Q̃
1/2
2 v2t (9)

The prior for Q̃1 and Q̃2 is inverse Wishart and is set following studies that employ VARs with

time-varying parameters (see for e.g. Benati and Mumtaz (2007)).

p

⇣
Q̃1

⌘
˜IW

⇣
Q̃1,0, T̃1,0

⌘

p

⇣
Q̃2

⌘
˜IW

⇣
Q̃2,0, T̃2,0

⌘

where T̃1,0 = dim
⇣
Q̃1,0

⌘
+ 1, T̃2,0 = dim

⇣
Q̃2,0

⌘
+ 1. The scale matrices are calculated as Q̃1,0 =

V1,0 ⇥ T0 ⇥  and Q̃2,0 = V2,0 ⇥ T0 ⇥  where V1,0 and V2,0 denote the covariance matrices of the

coe�cients ⇥ and  obtained by estimating a time-invariant VAR via OLS using the training sample

T0 = 120 and the initial value of h̃t. We set the scaling parameter  = 0.0001

The Gibbs algorithm requires a change to draw the VAR coe�cients and the coe�cients of the transi-

tion equations. Conditional on the remaining parameters, the model has a linear state-space represen-

tation and the Carter and Kohn (2004) algorithm can be used to draw ⇥t and  t. Given ⇥t and  t, the

covariances Q̃1 and Q̃2 can be drawn from the inverse Wishart distributions: IW
⇣

(⇥t �⇥t�1)
0 (⇥t �⇥t�1) , T̃1,0 + T

⌘

and IW

⇣
( t � t�1)

0 ( t � t�1) , T̃2,0 + T

⌘
.

3 Model that allows for correlation between the residuals of obser-

vation and transition equation

The Gibbs algorithm is taken from Mumtaz (2018). Consider the VAR model

7



h̃t = ↵+ ✓h̃t�1 +
QX

j=1

djZt�j + S
1/2
⌘t (10)

Zt = c +
PX

j=1

�jZt�j +
KX

k=1

bkh̃t�k + H
1/2
t

et (11)

where Zt is a matrix of endogenous variables, h̃t = [h1t, h2t, ..hN,t], Ht = diag

⇣
exp

⇣
h̃t

⌘⌘
and s̃ =

[s1, s2, .., sN ] , S = diag(s̃). The M = 2N disturbances "t =

 
⌘t

et

!
are distributed normally

N(0,⌃),⌃ =

 
⌃⌘ ⌃0

⌘
e

⌃⌘
e
⌃e

!
where the diagonal elements of ⌃ are restricted to equal 1. For example

for M = 4, N = 2 : ⌃ =

0

BBBB@

1 ⌃12 ⌃13 ⌃14

⌃21 1 ⌃23 ⌃24

⌃31 ⌃32 1 ⌃34

⌃41 ⌃42 ⌃43 1

1

CCCCA
.

3.1 Prior distributions and starting values

3.1.1 VAR coe�cients

Let � = vec
�
[c;�j ; bk]

�
. Following Banbura et al. (2007), we employ a Normal prior. The priors are

implemented by the dummy observations yD and xD that are defined as:

yD =

2

66664

diag(�1s1...�nsn)
⌧

0N⇥(P�1)⇥N

..............

0EX⇥N

3

77775
, xD =

2

66664

JP⌦diag(s1...sn)
⌧

0NP⇥EX

0N⇥(NP )+EX

..............

0EX⇥NP IEX ⇥ 1/c

3

77775
(12)

where �1 to �n denote the prior mean for the parameters on the first lag obtained by estimating

individual AR(1) regressions, ⌧ measures the tightness of the prior on the VAR coe�cients, and c is

the tightness of the prior on the exogenous and pre-determined regressors. EX denotes the number of

exogenous and pre-determined regressors in each equation. N denotes the total number of endogenous

variables and P is the lag length. We set ⌧ = 0.1. We use a di↵erent value of c for the coe�cients on

the lagged volatilities and the remaining pre-determined regressors. For the coe�cients on the lagged

volatilities c is set equal to 0.1. A flat prior is used for the intercept terms and the corresponding

tightness is set equal to c = 1000. Note that these dummies do not directly implement a prior belief

on the VAR error covariance matrix which is time-varying in our setting.

The priors for the coe�cients are thus: N (�0, P0) where �0 = (x0
D
xD)�1 (x0

D
yD) and P0 = S ⌦

(x0
D
xD)�1 where S is a diagonal matrix with an estimate of the variance of Zt (obtained using the

training sample described below) on the main diagonal.
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3.1.2 Elements of Ht

Following Cogley and Sargent (2005) we use a training sample (of 120 pre-sample observations) to set

the prior for the elements of the transition equation of the model. Let v̂ols denote the OLS estimate of

the VAR covariance matrix estimated on the pre-sample data. The initial value h̃0 is set to µ0 where

µ0 denotes the diagonal elements of the Cholesky decomposition of v̂ols.

3.1.3 Elements of ⌃

? decompose ⌃ as ⌃ = L
�1

DL
�10 with the diagonal elements of D denoted by �k and akj denoting

the lower triangular elements of L�1. The prior for akj is assumed to be N(0, 1) while the prior on D

is implicit via the restriction that ⌃ have diagonal elements that equal 1.

3.1.4 Parameters of the transition equation

The prior for VAR coe�cients �̃ = vec ([↵; ✓; dj ]) is set as above for �. We assume an inverse Gamma

prior for s̃ : IG(v0, T0), v0 = 0.001, T0 = 1.

3.2 Simulating the posterior distributions

3.2.1 Coe�cients

Conditional on S,Ht and ⌃, the model can be written as a SUR system with heteroscedasticity

Yt = Xt⇧t + Et (13)

var (Et) = Gt⌃G
0
t

where Gt = diag

✓
[s̃1/2, exp

⇣
h̃t

⌘1/2
]

◆
, Yt =

0

BBBB@

h1t

h2t

.

Zt

1

CCCCA
, Xt =

0

BBBB@

x1t 0 0 0

0 x2t 0 0

0 0 . 0

0 0 0 .

1

CCCCA
, Et =

0

BBBB@

⌘1t

⌘2t

.

et

1

CCCCA

where xit denotes the regressors in the ith equation of the system. Given a draw for the time-varying

error covariance matrix, the coe�cients have a conditional posterior that is normal: N
�
⇧T\T , PT\T

�
.

Following ? we use the Kalman filter to estimate the mean and variance of the conditional posterior

where we account for the fact that the covariance matrix of the VAR residuals changes through time.

To use the Kalman filter we define the transition equation as

⇧t = ⇧t�1

The Kalman filter is initialised at ⇧0 and P0|0 which are based on the priors for the coe�cients

introduced above and the recursions are given by the following equations for t = 1, 2..T

9



⇧t\t�1 = ⇧t�1\t�1

Pt\t�1 = Pt�1\t�1

⌘t\t�1 = Yt � Xt⇧t\t�1

ft\t�1 = XtPt\t�1X
0
t +
�
Gt⌃G

0
t

�

Kt = Pt\t�1X
0
tf

�1
t\t�1

⇧t\t = ⇧t\t�1 + Kt⌘t\t�1

Pt\t = Pt\t�1 � KtXtPt\t�1

The final iteration of the Kalman filter at time T delivers ⇧T\T and PT\T .

3.3 Element of S

Given the residuals et, and ⌃ the transition equations can be written as a VAR:

h̃t � S
1/2

µ⌘
t
|et = ↵+ ✓h̃t�1 +

QX

j=1

djZt�j + ⌘
⇤
t (14)

var (⌘⇤t ) = S
1/2⌃⌘

t
|etS

1/20

µ⌘
t
|et = et⌃

�1
e ⌃⌘e

⌃⌘
t
|et = ⌃⌘ � ⌃0

⌘
e
⌃�1
e ⌃

0
⌘
e

Note that ⌘⇤t is uncorrelated with the residuals of the observation equation. The proposal density q (.)

is defined as:

Sj = {IG (v1, T1) + (1 � {)IG
�
v (Sj�1) , T

�
V̄
��

where the parameter v1 is set to ⌘̃0
it
⌘̃it +v0 and T1 = T0 +T where T is the sample size and ⌘̃it denotes

the residuals of the ith transition equation. Letting the mean of the IG distribution equal Sj�1 and

standard deviation V̄ , the implied parameters of the second component of q (.) are defined as:

v (Sj�1) = 2Sj�1

 
1 +

S
2
j�1

V̄ 2

!

T
�
V̄
�

= 2

 
2 +

S
2
j�1

V̄ 2

!

In the benchmark model, we set { = 0.5 and V̄ is chosen to obtain a satisfactory acceptance rate.

The draws accepted with probability:

↵ =
g (Et|Sj) q (Sj�1)

g (Et|Sj�1) q (Sj)

where g (Et|Sj) denotes the posterior distribution evaluated at the jth draw of S given all other

parameters at their values drawn in previous steps. With the model in the form of a VAR (equation

14), the likelihood can be evaluated easily.
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3.3.1 Elements of ⌃

? describe how to sample covariance matrices with restrictions on some of the elements and we

follow their method in implementing the draw from this conditional posterior. ? decompose ⌃ as

⌃ = L
�1

DL
�10. They show that when the diagonal elements of ⌃ are restricted to equal 1, then the

diagonal elements of D (denoted by �k) satisfy:

�1 = 1 (15)

�k = 1 �
k�1X

j=1

⇣
a
kj

⌘2
�j , k = 2, 3, ..N

where a
kj are lower diagonal elements of L

�1. They propose an independence Metropolis step to

sample a
kj with a proposal density of the form:

f

⇣
a
kj |"t

⌘
= N (µk, ⌧Vk)

where V =
⇣
A

�1
0 +

P
T

t=1 UtD̂
�1

Ut

⌘
and µ = V

⇣
A

�1
0 a0 +

P
T

t=1 UtD̂
�1
"t

⌘
. Here Ut is defined as the

matrix:

Ut = �

0

BBBBBBBBBBBBBB@

0 . . . 0

"t,1 0 . . .

0 "t,1 "t,2 . . .

0 . . "t,1 "t,2 "t,3 0 .

. . . .

. . . .

. . . 0

0 . . . 0 0 "t,1 . "t,N

1

CCCCCCCCCCCCCCA

and the diagonal elements of D̂ can be obtained by iterating between the equation for µ and equation

15. The draw is accepted with probability:

↵ =
g ("t|⌃new) f (aold|"t)
g ("t|⌃old) f (anew|"t)

with �k restricted to be greater than zero to ensure that ⌃ is positive definite. The expression for the

likelihood function used to construct the posterior g ("t|⌃) is given in equation 2.7 in ?.

3.3.2 Elements of Ht

Conditional on the VAR coe�cients and the parameters of the transition equation, the model has a

multivariate non-linear state-space representation. It is convenient to express the state-space as:

Ft = C + Ft�1 + Nt (16)

Zt � H
1/2
t

µet|⌘t = c +
PX

j=1

�jZt�j +
KX

k=1

bkh̃t�k + ẽt

var (ẽt) = ⌦t = H
1/2
t
⌃et|⌘tH

1/20
t

11



where:

Ft =

0

BBBBBB@

⌘t+1

⌘t

h̃t

.

h̃t�k

1

CCCCCCA
(17)

C =

0

BBBBBB@

0

0

↵+
P

Q

j=1 djZt�j

.

0

1

CCCCCCA
(18)

 =

0

BBBBBB@

0 0 . . 0

1 0 . . .

S
1/2 0 ✓ . 0

0 1 . . 0

. . 1 . 0

1

CCCCCCA
(19)

Nt =

0

BBBBBB@

⌘t+1

0

0

0

0

1

CCCCCCA

µet|⌘t denotes the conditional mean of et while ⌃et|⌘t is the conditional variance. These can be easily

calculated using results for multi-variate normal distributions. Partitioning ⌃ as:

⌃ =

 
⌃⌘ ⌃0

⌘
e

⌃⌘
e
⌃e

!

the conditional mean and variance are given by:

µet|⌘t = ⌘t⌃
�1
⌘ ⌃

0
⌘
e

⌃et|⌘t = ⌃e � ⌃⌘
e
⌃�1
⌘ ⌃

0
⌘
e

Moreover:

var (Nt) = Q̃ =

0

BBBBBB@

⌃⌘ . . . 0

0 . . .

0 . . .

0 . .

0 . 0 0

1

CCCCCCA
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Following recent developments in the seminal paper by Andrieu et al. (2010), we employ a particle

Gibbs step to sample from the conditional posterior of Ft. Andrieu et al. (2010) show how a version

of the particle filter, conditioned on a fixed trajectory for one of the particles can be used to produce

draws that result in a Markov Kernel with a target distribution that is invariant. However, the usual

problem of path degeneracy in the particle filter can result in poor mixing in the original version of

particle Gibbs. Recent development, however, suggest that small modifications of this algorithm can

largely alleviate this problem. In particular, Lindsten et al. (2014) propose the addition of a step that

involves sampling the ‘ancestors’ or indices associated with the particle that is being conditioned on.

They show that this results in a substantial improvement in the mixing of the algorithm even with a

few particles.2As explained in Lindsten et al. (2014), ancestor sampling breaks the reference path into

pieces and this causes the particle system to collapse towards something di↵erent than the reference

path. In the absence of this step, the particle system tends to collapse to the conditioning path. We

employ particle Gibbs with ancestor sampling in this step.

Let F
(i�1)
t

denote the fixed the fixed trajectory, for t = 1, 2, ..T obtained in the previous draw of the

Gibbs algorithm. We denote all the parameters of the model by ⌅, and j = 1, 2, ..M̃ indexes the

particles. The conditional particle filter with ancestor sampling proceeds in the following steps:

1. For t = 1

(a) Draw F
(j)
1 \F (j)

0 ,⌅ for j = 1, 2, ..M̃ � 1. Fix F
(M̃)
1 = F

(i�1)
1

(b) Compute the normalised weights p
(j)
1 =

w
(j)
1P

M̃

j=1 w
(j)
1

where w
(j)
1 denotes the conditional like-

lihood:
���⌦(j)

1

���
�0.5

� 0.5 exp

✓
ẽ1

⇣
⌦(j)
1

⌘�1
ẽ
0
1

◆
where ⌦(j)

1 = H
(j)
1 ⌃et|⌘tH

(j)0
1 with H

(j)
1 =

diag

⇣
exp

⇣
h̃
(j)
1,[0]

⌘⌘
and ẽ1 = Z1 � (H(j)1/2

1 µet|⌘t + c +
P

P

j=1 �jZt�j +
P

K

k=1 bkh̃
(j)
1,[�k]) The

subscript [0] denotes the contemporaneous value in the state vector while [�k] denote the

k lagged states.

2. For t = 2 to T

(a) Resample F
(j)
t�1 for j = 1, 2, ..M̃ � 1 using indices a

(j)
t

with Pr
⇣
a
(j)
t

= j

⌘
/ p

(j)
t�1

(b) Draw F
(j)
t

\F (a
(j)
t

)
t�1 ,⌅ for j = 1, 2, ..M̃ � 1 using the transition equation of the model. Note

that F
(a

(j)
t

)
t�1 denotes the resampled particles in step (a) above.

(c) Fix F
(M̃)
t

= F
(i�1)
t

(d) Sample a(M̃)
t

with Pr
⇣
a
(M̃)
t

= j

⌘
/ p

(j)
t�1 Pr

⇣
F

(i�1)
t

\F (j)
t�1, C, , Q̃

⌘
where the density Pr

⇣
F

(i�1)
t

\F (j)
t�1, C, , Q̃

⌘

is computed as
���Q̃
���
�0.5

�0.5 exp

✓
N

(j)
t

⇣
Q̃

⌘�1
N

(j)
t

◆
. This constitutes the ancestor sampling

step. If a(M̃)
t

= M̃ then the algorithm collapses to the simple particle Gibbs.

(e) Update the weights p(j)
t

= w
(j)
tP

M̃

j=1 w
(j)
t

where w(j)
1 denotes the conditional likelihood:

���⌦(j)
t

���
�0.5

�

0.5 exp

✓
ẽt

⇣
⌦(j)
t

⌘�1
ẽ
0
t

◆

3. End
2
See Nonejad (2015) for a recent application of this algorithm.
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4. Sample F
(i)
t

with Pr
⇣
F

(i)
t

= F
(j)
t

⌘
/ p

(j)
T

to obtain a draw from the conditional posterior distri-

bution

We use M̃ = 20 particles in our application. The initial values µ0 defined above are used to initialise

step 1 of the filter.

4 Sensitivity Analysis

Figure 2 presents some additional robustness analysis. Each row of the figure presents the response

of the volatilities in the alternate models. The top row of the figure shows results from a version of

the model when the lag length K in transition equation 3 is increased to 12, the key results remain

similar to the benchmark case. The second row assumes that the transition equation takes the form:

h̃t = ↵+
KX

j=1

✓j h̃t�1 +
KX

j=1

djZt�j + ⌘t,K = 3

Again, the key results survive. The third row of the figure shows that the main results are preserved

when S&P 500 stock returns are added to the model in place of the term spread. When the T-bill rate

is replaced by the Federal Funds rate in the benchmark model, the key results survive (fourth row).

The fifth row presents results from a version of the model that replaces unemployment with industrial

production growth. The monetary policy shock is identified by assuming that a contractionary shock

that raises rates also leads to a fall in industrial production and a decrease in inflation on impact.

The policy shock leads to an increase in the volatility of the endogenous variables. The second last

row considers the version of the model identified using an external instrument. While in the text we

use the shock based on fed funds futures, the results in the figure are based on the Romer and Romer

(2004) index. These responses support the main conclusions. When the monetary policy shock is

identified recursively, ordering the short-term rate first produces responses of volatility that are close

to the benchmark case (final row of Figure 2).

Figure 3 reports a check on the main results using an alternative methodology. We augment the proxy

VAR used in Gertler and Karadi (2015) to include the measure of economic uncertainty built by

Jurado et al. (2015). This model suggests that a monetary contraction is accompanied by an increase

in economic uncertainty. This supports the results obtained using our non-linear VAR model.

4.1 Correlation between level and volatility shocks

The benchmark model in equations 5 and 6 does not allow a contemporaneous relationship between

level and volatility shocks. In this section we follow Mumtaz (2018) and Alessandri and Mumtaz

(2018) and relax this assumption. This extended model is defined as:

Zt = c +
PX

j=1

�jZt�j +
KX

k=1

bkh̃t�k + H
1/2
t

et (20)
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h̃t = ↵+ ✓h̃t�1 +
KX

j=1

djZt�j + Q
1/2
⌘t (21)

where Ht = diag(exp
⇣
h̃t

⌘
) and

 
et

⌘t

!
˜N (0,⌃) with:

⌃ =

 
⌃et ⌃0

et⌘t

⌃et⌘t
⌃⌘

t

!
(22)

The diagonal elements of the covariance matrix ⌃ are restricted to equal 1. With this specification,

the covariance matrix between the residuals of equations 20 and 21 is given by:

⌦t =

 
H

1/2
t

0

0 Q
1/2

! 
⌃et ⌃0

et⌘t

⌃et⌘t
⌃⌘

t

! 
H

1/2
t

0

0 Q
1/2

!0

(23)

We use the MCMC algorithm introduced in Mumtaz (2018) to approximate the posterior distribution

and identify the monetary policy shock using contemporaneous sign restrictions used in the benchmark

model. The impulse responses to the shock shown in Figure 4 suggest that, as in the benchmark case,

volatility rises after a monetary contraction. However, Figure 4 also shows that the impulse responses

are less precisely estimated. This is not surprising as several conditional posterior distributions in

the extended model are non-standard and estimation is more complex and demanding. Nevertheless,

based on the 68 percent highest posterior density intervals, the volatility responses are di↵erent from

zero over the first year of the horizon. This provides moderately strong support to the conclusions

reached using the benchmark analysis.3

3
In the technical appendix we present results using the proxy VAR of Gertler and Karadi (2015) extended to include the

measure of uncertainty developed by Jurado et al. (2015). Results from this model, which allows for a contemporaneous

impact of monetary policy shock on uncertainty, support our key conclusions.

17



F
ig

u
re

4:
Im

p
u
ls

e
re

sp
on

se
to

a
m

on
et

ar
y

p
ol

ic
y

sh
oc

k
u
si

n
g

th
e

ex
te

n
d
ed

m
od

el
in

eq
u
at

io
n
s

20
an

d
21

N
o
te

s:
T
h
e
s
o
li
d
li
n
e
is

t
h
e
m
e
d
ia
n
.
T
h
e
li
g
h
t
s
h
a
d
e
d
a
r
e
a
is

t
h
e
6
8
%

e
r
r
o
r
b
a
n
d
w
h
il
e
t
h
e
d
a
r
k
s
h
a
d
e
d
a
r
e
a
is

t
h
e
9
0
%

e
r
r
o
r
b
a
n
d
.

18



5 DSGE Model Analysis

5.1 A Model with Epstein-Zin Preferences and Search & Matching Frictions

(Benchmark)

In this section we describe the building blocks of the key sectors of the DSGE model.

Households: The economy is populated by a continuum of households (h 2 [0, 1]) that attain utility

from consumption C̃t (h) and leisure 1 � Lt (h), where Lt (h) denotes the fraction of the household

that is employed. Household’s preferences are separable

u

⇣
C̃t (h) , Z̃t, Lt (h)

⌘
=

⇣
C̃t (h) � bC̃t�1

⌘1��C

1 � �C
� �0Z̃

1��C

t

Lt (h)1+�L

1 + �L
(24)

where �L is the inverse of the Frisch elasticity, �C stands for the inverse of intertemporal elasticity

of substitution and Z̃t denotes the non-stationary productivity process (the tilde indicates that the

variable is non-stationary)

Zt =
Z̃t

Z̃t�1
= Z (Zt�1)

⇢
z e

�z!z,t (25)

where Z is the steady-state value of the productivity growth, ⇢z indicates the degree of persistence

and �z is the standard deviation of the productivity growth process. Furthermore, households have

recursive preferences (Epstein and Zin (1989), Weil (1989, 1990))

Vt (h) = u

⇣
C̃t (h) , Z̃t, Lt (h)

⌘
+ �

⇣
EtVt+1 (h)1��

⌘ 1
1��

(26)

The attractive feature of Epstein-Zin preferences is that the coe�cient of relative risk aversion decou-

ples from the intertemporal elasticity parameter. The parameter � illustrates the degree of agents’

desire for an early resolution of uncertainty over future consumption. Household maximises its utility

function subject to its budget constraint which is:

P̃tC̃t (h) +
D̃t (h)

Rt

+ Tt (h) = P̃tW̃tLt (h) + (1 � Lt (h)) P̃tB̃t + D̃t�1 (h) + ⌅̃t (h) (27)

where P̃t is the price index, D̃t (h) is the one period risk free government debt, Rt is the return on

investing on the government debt, W̃t stands for the real wage, Tt (h) is the lump sum taxes, B̃t is

the unemployment benefit and ⌅̃t (h) denotes firms’ profits. This optimisation problem delivers (after

some substitutions) the labour supply

�0Z̃
1��C

t
(Lt (h))�L

⇣
C̃t (h) � bC̃t�1

⌘
�C

+ B̃t = W̃t (28)

and the consumption Euler equation

1

Rt

= �Et

 
C̃t (h) � bC̃t�1

C̃t+1 (h) � bC̃t

!
�C

P̃t

P̃t+1

⇣
EtV

1��
t+1

⌘ �

1��

V
��
t+1 (29)
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If the stochastic discount factor is defined as:

Mt+1 =

2

64
Vt+1

⇣
EtV

1��
t+1

⌘ 1
1��

3

75

��  
C̃t (h) � bC̃t�1

C̃t+1 (h) � bC̃t

!
�C

, (30)

then the former equation becomes:

1

Rt

= �Et

Mt+1

⇧t+1
(31)

Labour Market: The existence of a real – search and matching – friction in the labour mar-

ket (Mortensen and Pissarides (1994)) prevents all job-seekers (Ut = 1 � (1 � �N )Lt�1) from being

matched with vacancies (⌥t) posted by firms and they end up unemployed (ut = 1 � Lt). The match-

ing technology is described by the following Cobb-Douglas function:

Mt = µ̄U
µ

t
⌥1�µ

t
(32)

while the probability of filling the vacancy is given by

Q
⌥
t =

Mt

⌥t

(33)

and the probability of finding a job by

Q
U

t =
Mt

Ut

(34)

employment evolves according to

Lt = (1 � �N )Lt�1 + Q
⌥
t ⌥t (35)

where �N is the separation probability. Furthermore, firms in order to be able to hire a worker they

need to post a vacancy and this incurs a cost

 t = Z̃t⌥t (36)

Similar to Krause et al. (2008) and Di Pace and Villa (2016) we assume that the cost of posting a

vacancy is non-linear, however, for �⌥ = 1 collapses to the one commonly used by the literature (see

Mortensen and Pissarides (1994)).

Final Good Producer: The final good is produced via the following production function

Ỹt =

Z 1

0
Ỹt (f)

"�1
" df

� "

"�1

(37)
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where " denotes the elasticity of substitution between di↵erentiated intermediate goods (f 2 [0 1]).

The demand for intermediate goods

Ỹt (f) =

✓
Pt (f)

Pt

◆�"
Yt (38)

results from profit maximisation and the assumption that the final good producer operates under

perfect competition.

Intermediate Good Producers: Similar to Krause and Lubik (2007) and Krause et al. (2008) we

assume that there is a continuum of firms (f 2 [0, 1]) that post vacancies, combine employment, fixed

capital and employ the following technology:

Ỹt (f) = Z̃t (Lt (f))1��K� (39)

to produce the intermediate good, where � is the capital share in the production function. These

producers solve a two-stages problem. In the first stage, taken the wage and the cost of filling a

vacancy as given they decide how many vacancies to post and people to employ, these choices result

from the maximisation of their profit function:

Et

1X

j=0

Mt+j�
j

(
MCt+j (f) Ỹt+j (f) � W̃t+jLt+j (f) � R

K
K � Z̃t+j⌥t+j (f)

+⇥̃t+j (f)
⇣

(1 � �N )Lt+j�1 (f) + Q
⌥
t+j

(f)⌥t+j (f) � Lt+j (f)
⌘
)

(40)

with respect to employment delivers the relative price of good Ỹt (f) summarised by the following

equations:

MCt (f) =
Lt (f)

(1 � �) Ỹt+j (f)

h
W̃t + ⇥̃t (f) � �EtMt+1⇥̃t+1 (f) (1 � �N )

i
(41)

and

⇥̃t (f) = Z̃t

(⌥t (f))

Q
⌥
t

�⌥�1

(42)

In the second stage, producers set the price of the intermediate good that maximises their profits. The

optimisation problem in this case reflects that prices are set in a staggered manner. This means that

every period a fraction (1 � ⇠) of firms receive a random signal and set prices optimally
⇣
P̆t (f)

⌘
, while

those firms who miss the signal set prices based on a rule of thumb backward looking indexation scheme⇣
P̆t (f) = ⇧◆

t�1P̆t�1 (f)
⌘

. The pricing problem is summarised by the following profit maximisation

max
P̆t(f)

Et

1X

j=0

Mt,t+j (�⇠)j
"(

P̆t (f)⇧◆
t+j�1

P̃t+j

� MCt+j (f)

)
Ỹt+j (f)

#
(43)
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subject to

Ỹt+j (f) =

 
jY

s=0

⇧◆t+s�1
Pt (f)

Pt+j

!�"

Yt+j

and this results in a system of equations that describe firms’ optimal pricing decisions

K̃P,t (f) = MCt (f) Ỹt (f) + �⇠EtMt+1

✓
⇧t+1

⇧◆
t

◆
"

K̃P,t+1 (f) (44)

F̃P,t (f) = Ỹt (f) + �⇠EtMt+1

✓
⇧t+1

⇧◆
t

◆
"�1

F̃P,t+1 (f) (45)

⇧̄P,t (f) =
"

"� 1

KP,t (f)

FP,t (f)
(46)

1 = ⇠

✓
⇧t

⇧◆
t�1

◆
"�1

+ (1 � ⇠)
�
⇧̄P,t (f)

�1�"
(47)

Wage Determination: The wage is determined by solving a Nash bargaining problem between

workers and firms that takes place in order to decide how to split the surplus produced by a match

(see Mortensen and Pissarides (1994) and Krause et al. (2008) among others). To set the problem we

need to define the value of the firm, which can be derived from (41) after we use the value of an open

vacancy and the free entry condition:

J̃
F

t = MCt

(1 � �) Ỹ d
t

Lt

� W̃t + �EtMt+1 (1 � �N ) J̃F

t+1 (48)

where Ỹ
d
t = Ỹt

�t
and �t is defined below. On the other hand the value of an employed and unemployed

worker is given by:

J̃
W

t = W̃t � �0Z̃
1��C

t
L
�L

t

⇣
C̃t � bC̃t�1

⌘
�C

+�EtMt+1

n⇥
1 � �N

�
1 � Q

U

t+1

�⇤
J̃
W

t+1 + �N

�
1 � Q

U

t+1

�
J̃
U

t+1
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and the bargaining problem is described by:

max
W̃t

⇣
J̃
W

t � J̃
U

t

⌘
⌘
⇣
J̃
F

t

⌘1�⌘
(51)

The total surplus is defined as:

S̃t = J̃
F

t + J̃
W

t � J̃
U

t (52)

and the solution to the problem is given by:

J̃
F

t = (1 � ⌘) S̃t (53)
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J̃
W

t � J̃
U

t = ⌘S̃t (54)

Which can be used to derive the Nash wage:

W̃
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n
�0Z̃

1��C

t
L
�L
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(
MCt

(1 � �) Ỹ d
t

Lt

+ �EtMt+1⇥̃t+1 (1 � �N )

)
(55)

Similarly to Hall (2005) and Krause and Lubik (2007), we allow for real wage rigidity via the following

norm:

W̃t = W̃
◆w

t�1

⇣
W̃

Nash

t

⌘1�◆w
(56)

Government: The government in this economy runs a balanced budget:

P̃tG̃t + D̃t�1 + (1 � Lt) P̃tB̃t = T̃t +
D̃t

Rt

(57)

where Gt is government consumption and gt is the of the government share in the economy:

G̃t = gtỸt (58)

that evolves in a stochastic manner:

ĝt = g + ⇢g (ĝt�1 � g) + �g!g,t (59)

Monetary policy is set based on Taylor Type rule:

log (Rt) = rt = ⇢Rrt�1 + (1 � ⇢R)

⇢
⇣⇧ log

✓
⇧t

⇧

◆
+ ⇣u log

⇣
ut

u

⌘�
+ !R,t (60)

!R,t = ⇢✏R
!R,t�1 + �R✏R,t (61)

where ⇧ is the inflation target, ⇢R is the interest rate smoothing parameter, ⇣⇧ and ⇣Y d are the policy

reaction coe�cients to inflation and demand growth, respectively.

Aggregation: The aggregated labour quantity demanded by firms is:

Lt =

Z 1

0
Lt (f) df (62)

and it is equal to the quantity supplied by household due the flexibility of wages. Using the latter

equation and the intermediate good producer’s production function, we obtain:

Ỹt =
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t
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R 1
0

⇣
P̃t(h)
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⌘� "

1��
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�t

(63)
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where �t denotes the price dispersion and it evolves over time as follows:

�
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Finally, using the expression about the aggregate profits:

⌅̃t = P̃tỸt �
Z 1

0
P̃t (h) Ỹt (h) +

Z 1

0
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⌅̃t = P̃tỸt � P̃tW̃tLt � Pt�̃t (66)

and households budget constraint we derive the market clearing condition:

Z̃tL
1��
t

K
�

�t

= C̃t + G̃t +  ̃t (67)

Long-Term Interest Rate: As in Rudebusch and Swanson (2012) and Swanson (2015) the nominal

consol price is given by:

P
L

t = 1 + Et�
Mt+1

⇧t+1

L
P

L

t+1 (68)

where B denotes the rate of decay of the coupon on the consol and also controls the maturity of the

asset. The long-term interest rate is then defined as:

r
L

t = log
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L
t

P
L
t

� 1

◆
(69)

5.1.1 Stationary Equations
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Y
d

t = CH,t + Gt + I + ⌥t (83)

Yt = �tY
d

t (84)

5.1.2 Steady States

We set L = 1 � 0.058 and we use the capital accumulation equation to

�KK = I (85)
�KK

Y
=

I

Y
(86)
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We also set

I

Y
= 0.2 (87)

The from the production function we derive
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From the stochastic discount factor we obtain

M = ���C

From the Philips curve equations we obtain
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Then from the price dispersion equation
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From the marketing clearing condition we also know that

Y
d =

Y

�
(94)

We use  and the following expression to match the steady-state search and matching output loss

 =
⌥

Y d
(95)
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Similarly

C = (1 � g)Y d � I � G + ⌥�⌥ (96)
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From the demand for labour
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From the labour supply
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5.2 Calibration

The model is estimated using limited information impulse response matching techniques (Christiano

et al. (2005), Christiano et al. (2010)). However, the value of a small number of parameters is decided

prior to the estimation. To be precise, the share of capital in the production (�) and its depreciation

rate have been calibrated to 0.36 and 0.025, numbers typically used in the literature (Christiano

et al. (2005)). The steady-state unemployment (u) is set equal to 5.8% (the sample mean), while

the steady-state value of output (y) to 1. The time discount factor (�) equals 0.995, while the both

the steady-state value of inflation and productivity growth have been set to 2%. The last three

parameters imply that the non-stochastic steady-state of the annual policy rate is 6%. Similar to

Smets and Wouters (2007), the government spending and investment to GDP ratios are calibrated to

0.18 and 0.2, respectively. Finally, the steady-state value of the probability filling the vacancy is 70%

(Hagedorn and Manovskii (2008)).

The parameters �C , �L, b, �, ⇠, ◆, ⇣⇧, ⇣u, ⇣R, ", µ, ⌘, �N , B̄ = B

WL
, ◆w, �

Y
, ⇢✏Z , ⇢✏G , ⇢✏R , �✏Z , �✏G and

�✏R are selected to match the nonlinear VAR responses to an identified monetary policy shock using

the benchmark identification scheme. The model is solved using third-order perturbation methods and

the impulse responses are calculated relative to the stochastic steady state (Cacciatore and Ravenna

(2016)).4

The objective of the estimation is for the model to be able to replicate not only the empirical responses

to a monetary policy shock illustrated in Figure 1 (page 35 in the main text) but the also the contri-

bution of the ‘uncertainty channel’ to these responses. This is defined as the di↵erence between the

unrestricted and restricted responses plotted in Figure 4 (page 38 in the main text) and discussed in

Section 3.2 (in the main text). The latter set of targets ensures that the parameters that control the

size of the uncertainty channel in the model are calibrated carefully and the predictions of the model

about the importance of that channel are in line with those observed in the data.5 As it will become

4
No pruning is applied in our calculations, which have been implemented using Dynare 4.4.3. The model and

replication files can be downloaded from authors’ webpages. We also check if our results are robust if we apply Koop

et al. (1996) methodology to calculate the IRFs and we find that our results are almost identical. We choose to employ

the first method to calculate the IRFs as it dramatically reduces the estimation time.
5
We would like to thank an anonymous referee for proposing this exercise.
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apparent later in our analysis, the last set of moments acts also a natural metric that allows us to

assess which part of the transmission mechanism is responsible for the existence of the endogenous

uncertainty channel. The process used to estimate the DSGE contributions of uncertainty follows

closely the steps employed for the empirical models. To be precise, the uncertainty contribution is

defined as the di↵erence between the responses obtained using the third order solution model minus

those by using only the first order component of the solution.

5.3 Estimation Results

Figure 5 illustrates the ability of the theoretical model to replicate the identified empirical responses

(Panel A) as well as the contribution of the uncertainty channel to these responses (Panel B), re-

spectively. Even though the literature has questioned ability of a “simple” search and matching New

Keynesian model to jointly replicate the dynamics of both unemployment and inflation (see the dis-

cussion in Krause and Lubik (2007) and Gertler et al. (2008)), our estimated model seems to be robust

to this criticism as it reproduces the data dynamics remarkably well.

In this study, however, our results go further. The model is capable of replicating: (i) the VAR based

stochastic volatility responses to a level monetary policy shock and, (ii) the empirically identified

contribution of the uncertainty channel.6 This is a new set of results that further supports the

analysis of Petrosky-Nadeau et al. regarding the aptitude of DSGE models with search and matching

labour market frictions of reproducing highly non-linear dynamics seen in the data.

Returning to the discussion of the estimated parameters, Table 6 shows that the model can replicate

the data features mentioned in the previous paragraph by relying on a set of parameter values that

have been extensively used in the literature. Perhaps the less common parameter estimate is that for

the Epstein-Zin risk coe�cient (� = 115.57) with the estimated value indicating that agents dislike

future uncertainty. This value is similar to the one used in the Rudebusch and Swanson (2012) and

Swanson (2015). As explained in Swanson (2015) – and it is further illustrated in the next section

– this parameter only has a small e↵ect on the stochastic volatility of macroeconomic variables and

therefore the large magnitude is innocuous.7

In terms of the utility kernel, the model demands some curvature (�C = 2.15, Chen et al. (2012))

and (�L = 4.00, Christiano et al. (2010)) in order to reconcile the predicted dynamics with those in

the data. The degree of consumption smoothing (b = 0.57), is close to the estimates reported by

Christiano et al. (2005).

The parameters that govern the labour market block of the model, the Cobb-Douglas matching pa-

rameter (µ = 0.40), the job separation rate (�N = 0.18), the income replacement ratio (100B̄ = B

WL
=

54%) and the steady-state, the bargaining power for workers (⌘ = 0.50) search and matching friction

(100�
Y

= 1%) are again consistent with those in the literature (see for instance, Krause and Lubik

(2007) and Krause et al. (2008), Gertler et al. (2008) and Hagedorn and Manovskii (2008) among

others).

6
The empirical volatility responses are all hump shaped, while these hump is less pronounced in the theoretical

responses. Due to the simplicity of the model, this feature is expected.
7
This is not the case for asset price variables as the they are functions of the stochastic discount factor. The risk

parameter has a great influence on the second term of the stochastic discount factor that captures how agents ‘trade’

uncertainty across time. As it is discussed briefly in the next section, we discovered that the risk parameter variations

have perhaps a larger impact on the stochastic steady-state than the cyclical dynamics regarding the macro variables.
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Consistent with the analysis Krause and Lubik (2007) and Leduc and Liu (2016) (among others), the

model requires a high degree of real wage rigidity (◆w = 0.89) in order to be able to match the volatility

of unemployment in the data (Figure 5, Panel A). As explained by these authors and it can be seen

from equation (28, in the main text), under this calibration paid wages decouple from productivity

and this leads to high surplus for firms (relative to the situation of no real wage rigidity) stimulating

vacancy creation.

Similar to Christiano et al. (2005) a high degree of price indexation (◆ = 0.72) and a small probability

of resetting prices optimally (1� ⇠ = 0.03) are needed for the model to match the response of inflation

after a monetary policy shock. Furthermore, the steady-state value of firms’ markup is 50% (" = 3.0)

a value similar to Smets and Wouters (2007) and Gertler et al. (2008). Finally, the estimates of the

policy reaction coe�cients are similar to those reported in the literature (Krause et al. (2008), Gertler

et al. (2008), Leduc and Liu (2016)).
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Figure 5: The Fit of the DSGE Model

Panel A: Impulse Responses

Panel B: Uncertainty Contribution

Notes: The responses from the empirical model have been adjusted to match the quarterly frequency of the DSGE

model. The posterior distribution of the uncertainty contribution (shadow area) is obtained by subtracting the posterior

distribution between the unrestricted and restricted empirical responses. The back dashed line illustrates the DSGE

response to the policy shock. The policy rate and inflation are expressed in annual terms. The DSGE responses are

calculated relative to the stochastic steady state. Panel B: The DSGE uncertainty contribution is calculated as the

di↵erence between the response derived by using the third order solution of the model minus the responses produced

using first order solution.
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Table 1: Structural Parameters

Parameters Description Values

Calibrated Parameters

u Steady State Unemployment Rate 0.06
G

Y
Government Spending to GDP Ratio 0.18

I

Y
Investment to GDP Ratio 0.20

400ln(⇧) Inflation Target 2.00
400ln(Z) Steady State Value of Productivity Growth 2.00

Q
⌥ Steady State Job Filling Probability 0.70
� Capital Production Share 0.36
�K Capital Depreciation Rate 0.03
� Time Discount Factor 0.995

Estimated Parameters

100�
Y

Post Vacancy Resource Cost relative to GDP 1.00
B̄ = B

WL
Income Replacement Ratio 0.54

� Epstein-Zin Preference Risk 115.57
�C Inverse of Intertemporal Elasticity of Substitution 2.15
b Habit Smoothing 0.57
�L Inverse of Frisch Elasticity 4.00
" Intermediate Goods Elasticity of Substitution 3.00
⇠ Calvo Probability 0.97
◆ Price Indexation 0.72
�N Job Separation Rate 0.18
µ Cobb-Douglas Matching 0.40
⌘ Bargain Parameter 0.50
◆w Real Wage Rigidity 0.89
⇣⇧ Inflation Monetary Policy Response 1.05
⇣u Unemployment Monetary Policy Response 0.40
⇢R Interest Rate Smoothing 0.71
⇢✏R

Policy Shock Persistence 0.93
⇢✏Z

Productivity Growth Shock Persistence 0.53
⇢✏G

Government Spending Shock Persistence 0.59
100�✏R Policy Shock Standard Deviation 0.53
100�✏Z Productivity Growth Shock Standard Deviation 1.58
100�✏G Government Spending Shock Standard Deviation 0.01
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5.3.1 Additional Simulations

Unemployment Gap Policy Reaction Coe�cient In this paragraph we investigate how the

monetary policy shock is transmitted when monetary authorities have elevated preferences to stabilise

the output gap (⇣u = 1.25).

Inflation Target: It was mentioned in the main text that the ZLB could restrict policy maker’s

ability to generate loose monetary policy expectations and this would cause volatility to increase by

more after a contractionary policy shock. One of the counter measures proposed to circumvent this

constrain is to increase the inflation target. Figure 8 investigates further the link between the non-

zero steady-state inflation and the macroeconomic volatility. The simulation seem to suggest that

the e↵ect from this policy change on the endogenous uncertainty is small; the channel is actually

marginally reduced. As explained by Ascari and Sbordone (2014) the slope of the Phillips curve is a

function of the steady-state inflation and when this is not zero then the Phillips curve becomes flatter.

This reflects that agents become more forward looking since expected inflation is going to erode their

average markup (King and Wolman (1999)). This makes inflation less responsive to the monetary

policy, so it falls by less but it also rises by less to the changes to the policy rate. As a results, the

long-term interest rate falls by less but it less lower for longer time than in the economy with a 2%

inflation target.
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Figure 6: Unemployment Gap Policy Reaction Coe�cient

Notes: The blue solid line (left y-axis) represents the benchmark version of the model (⇣
u
= 0.40), while the red dashed

line (right y-axis) denotes the responses of the model when the policy reaction coe�cient to unemployment gap is set to

1.25 (⇢
R
= 1.25). Rates are reported in annual basis points, inflation in annual percentage rates, the job filling probability

in percentage points, unemployment duration in quarters. The responses are calculated relative to the stochastic steady

state.

Figure 7: Unemployment Gap Policy Reaction Coe�cient: Uncertainty Contribution

Notes: The blue solid line (left y-axis) represents the benchmark version of the model (⇣
u
= 0.40), while the red dashed

line (right y-axis) denotes the responses of the model when the policy reaction coe�cient to unemployment gap is set to

1.25 (⇣
u
= 1.25). Rates are reported in annual basis points, inflation in annual percentage rates, the job filling probability

in percentage points, unemployment duration in quarters. The responses are calculated relative to the stochastic steady

state. The uncertainty contribution is defined as the di↵erence between the response derived by using the third minus

the responses produced using only the first order solution of the model.
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Figure 8: Inflation Target

Notes: The blue solid line (left y-axis) represents the benchmark version of the model (400 ⇤ log(⇧) = 2), while

the red dashed line (right y-axis) denotes the responses of the model when the inflation target is set to four percent

(400 ⇤ log(⇧) = 4). Rates are reported in annual basis points, inflation in annual percentage rates, the job filling

probability in percentage points, unemployment duration in quarters. The responses are calculated relative to the

stochastic steady state.

Figure 9: Inflation Target: Uncertainty Contribution

Notes: The blue solid line (left y-axis) represents the benchmark version of the model (400 ⇤ log(⇧) = 2), while

the red dashed line (right y-axis) denotes the responses of the model when the inflation target is set to four percent

(400 ⇤ log(⇧) = 4). Rates are reported in annual basis points, inflation in annual percentage rates, the job filling

probability in percentage points, unemployment duration in quarters. The responses are calculated relative to the

stochastic steady state. The uncertainty contribution is defined as the di↵erence between the response derived by using

the third minus the responses produced using only the first order solution of the model.
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5.4 A Two Agents Model with Epstein-Zin Preferences and Search & Matching

Frictions (Incomplete Markets)

We develop in this section a two agents version of the model with Epstein-Zin preferences that di↵er

in terms of their labour skills. The separation rate for high labour skilled (HLS) jobs is lower than

the separation rate of low labour skill (LLS) jobs ((Bruckner and Pappa (2012), Pappa et al. (2015))),

while the HLS workers have a higher bargain power than LLS workers. Labour markets are segmented

meaning that HLS employees cannot apply for LLS jobs and vice versa. Finally, the HLS workers own

the majority of the government debt assets in the economy. We use this model to illustrate how the

uncertainty induced by the monetary policy shock a↵ects the labour income inequality across the two

groups, as well as their consumption levels.

5.4.1 Model

Households: We assume that the economy is populated by two types of (high and low labour

skilled) households have the same utility kernel. The job separation rate determines the type of skills

as high skilled jobs get destructed less frequently (Bruckner and Pappa (2012), Pappa et al. (2015)).

For simplicity, we assume that the preference parameters are the same across both types.

u
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The budget constraint defined as in the benchmark version of the model, however, an adjustment

portfolio cost has been added in order to ensure that the non-stochastic steady state of the model and

the dynamics around it are well defined (see Schmitt-Grohe and Uribe (2003)).
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Both types of households have recursive preferences
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Also both types of households decide optimally how much to consume, to work and save by solving

the following problem
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The marginal utility of consumption is give by:

µj,t

⇣
C̃j,t (h) � bC̃j,t�1

⌘��C

= �̃j,t

2

41 �  D

1

R
A
t

 
D̃j,t

C̃
j,t

� Dj

Cj

! 
D̃

j,t

C̃
j,t

!2
3

5 (102)

The supply of labour is based on
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While the allocation of consumption across time is decided using
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The first order condition with respect to preferences is
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After some simple transformation we obtain the stochastic discount factor

Mj,t+1 =

2

64
Vj,t+1

⇣
EtV

1��
j,t+1

⌘ 1
1��

3

75

��  
C̃j,t � bC̃j,t�1

C̃j,t+1 � bC̃j,t

!
�C

(106)

From the last two equation we obtain
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Labour Market: Every firm posts two type of vacancies (high and low skilled type vacancies) and

agents from each households can apply only to one type of jobs. As it was explained earlier, some

households pose high and some low labour skills. This implies that low labour skilled agents cannot

apply for high skilled jobs and vice versa (segmentation). The matching technology for both labour

markets is the same

Mj,t = µ̄jU
µ
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j,t
⌥

1�µ
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(108)

As in the benchmark economy the probability of filling the vacancy and finding a job in each market

are given respectively by:

Q
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The number of unemployed workers in each market equals

Uj,t = 1 � (1 � �j,N )Nj,t�1 (111)

and the degree of market tightness for each type skilled jobs is
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(112)

Intermediate Good Producers: The technology employed for the production of the intermediate

good is
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While the number of employed people in each market evolves according to
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U
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The profit function is given by
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The maximisation of the above objective function determines the demand for low and high skilled

workers
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The intermediate good producers after they decided how many employer to recruit and new jobs to

post, they set prices. Namely, prices are chosen to maximises profits. Only a function (1 � xi) of

producers receive a random signal and set prices optimally. The remaining (⇠) producers miss this

signal and set prices based on a backward looking indexation rule.
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The price Philip curve is described by the following four equations, while the last equation describes
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the evolution of price dispersion
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Labour Market and Wage Bargaining: As in the benchmark version of the model the surplus

created by the match is split between the employee and the employer
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This is done via a Nash bargain problem
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and this process determines the wage paid to high and low skilled workers respectively
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Retailers: The final good production function is CES aggregator

Ỹt =

Z 1

0
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While the demand for intermediate good is give by
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Market Clearing Conditions: The market clearing condition are some simple substations
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denotes the price dispersion.

Government: Unlike the benchmark version, the government relies on both lump-sum taxes and

debt to finance its consumptions and transfers. Government budget constraint is given by

P̃tG̃t + D̃t�1 + (1 � LH,t) P̃tB̃H,t + (1 � LL,t) P̃tB̃L,t = T̃t +
D̃t

Rt

where the lump sum taxes are described by the following debt targeting rule

T̃t = T̃H,t + T̃L,t = T̄ D̃
⌧D

t�1 (130)

The debt reaction coe�cient has been calibrated ⌧D = 0.025 to ensure that debt is a slow moving

variable. Gt is government consumption and gt is the of the government share in the economy:

G̃t = gtỸt (131)

that evolves in a stochastic manner:

ĝt = g + ⇢g (ĝt�1 � g) + �g!g,t (132)

5.4.2 Calibration

This version of the model gives rise to a number of new parameters that do not exist in benchmark

version of the model. As we do not want this version of the model to move far away from the estimated

benchmark model, its calibration is carried out as follows:

1. We use the same values for the calibrated parameters that overlap between the two version.

Furthermore:

(a) The total unemployment steady-state value is set equal to its data average value 5.8, how-

ever, the share of low and high labour skilled workers is estimated

(b) The steady-state government debt to GDP ratio is equal to 40% to match the average in

the data

2. We use the benchmark estimates for the preference coe�cients and the Phillip curve parameters

3. Similarly, we use the same estimates for the parameters that control the high labour skilled

labour market block.
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Table 2: Calibrated Parameters

Parameters Description Values

u Steady State Unemployment Rate 0.06
uL Steady State Unemployment Rate High Labour Skilled Workers u � uH
G

Y
Government Spending to GDP Ratio 0.18

I

Y
Investment to GDP Ratio 0.20

B

Y
Government Debt to GDP Ratio 0.40

400ln(⇧) Inflation Target 2.00
400ln(Z) Steady State Value of Productivity Growth 2.00

Q
⌥ Steady State Job Filling Probability 0.70
� Capital Production Share 0.36
�K Capital Depreciation Rate 0.03
� Time Discount Factor 0.995

 D,H Portfolio Adjustment Cost High Labour Skilled Workers 0.00

4. A small set of parameters described in Table 4 is estimated

Figures 10 and 11 display the fit of the model. Again, it could be argued that the incomplete version

of the model fits the empirical stylised facts very well, despite the restrictive calibration process

undertaken here.
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Table 3: Benchmark Model Parameter Estimates

Parameters Description Values

100�
Y

Post Vacancy Resource Cost relative to GDP 1.00
B̄ = B

WL
Income Replacement Ratio 0.54

� Epstein-Zin Preference Risk 115.29
�C Inverse of Intertemporal Elasticity of Substitution 2.15
b Habit Smoothing 0.57
�L Inverse of Frisch Elasticity 4.00
" Intermediate Goods Elasticity of Substitution 3.00
⇠ Calvo Probability 0.97
◆ Price Indexation 0.72

�N,H Job Separation Rate High Labour Skilled Workers 0.05
µH Cobb-Douglas Matching High Labour Skilled Workers 0.40
µL Cobb-Douglas Matching Low Labour Skilled Workers 0.40
⌘H Bargain Parameter High Labour Skilled Workers 0.50
◆W,H Real Wage Rigidity High Labour Skilled Workers 0.89
⇣⇧ Inflation Monetary Policy Response 1.05
⇣u Unemployment Monetary Policy Response 0.40
⇢R Interest Rate Smoothing 0.71

Table 4: Estimated Parameters

Parameters Description Values

�S Share of High Labour Skilled Workers in the Production Function 0.28
 D,L Portfolio Adjustment Cost Low Labour Skilled Workers 0.02
BL

B
Share of Government Debt Assets Owned by Low Labour Skilled Workers 0.10

�N,L Job Separation Rate Low Labour Skilled Workers 0.25
⌘L Bargain Parameter Low Labour Skilled Workers 0.09
◆W,L Real Wage Rigidity Low Labour Skilled Workers 0.91
⇢✏Z

Productivity Growth Shock Persistence 0.57
⇢✏G

Government Spending Shock Persistence 0.54
⇢✏R

Policy Shock Persistence 0.94
100�✏Z Productivity Growth Shock Standard Deviation 1.44
100�✏G Government Spending Shock Standard Deviation 0.03
100�✏R Policy Shock Standard Deviation 0.58
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Figure 10: The Fit of the DSGE Model with Incomplete Markets

Notes: The responses from the empirical model have been adjusted to match the quarterly frequency of the DSGE

model. The back dashed line illustrates the DSGE response to the policy shock. The policy rate and inflation are

expressed in annual terms. The DSGE responses are calculated relative to the stochastic steady state.

Figure 11: The Fit of the DSGE Model with Incomplete Markets: Uncertainty E↵ect

Notes: The responses from the empirical model have been adjusted to match the quarterly frequency of the DSGE

model. The posterior distribution of the uncertainty contribution (shadow area) is obtained by subtracting the posterior

distribution between the unrestricted and restricted empirical responses. The back dashed line illustrates the DSGE

response to the policy shock. The policy rate and inflation are expressed in annual terms. The DSGE responses are

calculated relative to the stochastic steady state. The DSGE uncertainty contribution is calculated as the di↵erence

between the response derived by using the third order solution of the model minus the responses produced using first

order solution.
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5.4.3 Simulations & IRFs

The first row of Figure 12 displays agents’ responses to a monetary policy shock when the structural

parameters are set equal to the values reported in Tables 2, 3 and 4. Not surprisingly, the labour income

inequality (defined as the di↵erence between the HLS and LLS labour income) increases by almost

2% and this is mostly driven by the fall of LLS labour income (the HLS consumption reduces only

marginally). Uncertainty, drives more than 50% of this income inequality increase. When it comes to

consumption, the results are even more interesting. Uncertainty, contributes about 1.2% to the fall of

the LLS consumption and this explains almost 80% of the reduction of the consumption of this group.

However, uncertainty turns out to have a positive e↵ect on the HLS consumption. In this environment,

the two type households not only can smooth consumption by allocating it across time but also trading

it between the groups. The LLS group is more exposed after an adverse monetary policy and as a such

it forms stronger precautionary motives. This implies that they reduce consumption and supply labour

by a lot more than the HLS employeed. For the HLS group the inflation fall (which also boosts the

real value of their assets) together with their smaller exposure future risk (relative to the LLS workers)

makes their current consumption cheaper. The increase in the HLS consumption only mitigates some

of the adverse e↵ect of uncertainty in the aggregate consumption (which fall by 0.15%).

In the second row, we illustrate how the responses are altered (relative to the first row) when the

share of government debt assets owned by the LLS group increases to 50%. The income inequalities

opens up by significantly less (relative to the first), while the contribution of the uncertainty to the

LLS consumption has been reduced dramatically. Qualitatively, similar results are obtained when the

bargain power of the LLS workers increases to 0.5 (third row). However, the results are significantly

smaller quantitatively. In the final exercise (fourth row), it is investigate what happens when the

policy reaction coe�cient (⇣u) increase to one (⇣u = 1). Again both the labour income inequality

increase by less and the contribution of the uncertainty is smaller than in the first exercise.

Finally, Figure 13 plots the volatility responses of all variables discussed in this exercise for all four

exercises.
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Figure 12: Incomplete Markets Simulations

Notes: The blue solid line (left y-axis) represents the responses of the state variables to the system, while the red dashed

line (right y-axis) denotes the uncertainty contribution to these responses. The uncertainty contribution is defined as the

di↵erence between the response derived by using the third minus the responses produced using only the first order solution

of the model. Rates are reported in annual basis points, inflation in annual percentage rates, the job filling probability

in percentage points, unemployment duration in quarters. The responses are calculated relative to the stochastic steady

state. HLS and LLS stand for high and low labour skilled workers. The first row displays the responses of the version

of the model that uses the parameters reported in Tables 2, 3 and 4. The second row shows what happens when the

non stochastic steady-state low skilled workers’ share of assets increases to 50%. The third row illustrates how agents

respond to a monetary policy when the low skilled workers increases to 0.5. The last row presents the transmission of

the shock when the policy reaction coe�cient increases to one (⇣
u
= 1).
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Figure 13: Incomplete Markets Simulations: Volatility Responses

Notes: The volatility responses are presented in levels. HLS and LLS stand for high and low labour skilled workers.

The first row displays the responses of the version of the model that uses the parameters reported in Tables 2, 3 and 4.

The second row shows what happens when the non stochastic steady-state low skilled workers’ share of assets increases

to 50%. The third row illustrates how agents respond to a monetary policy when the low skilled workers increases to

0.5. The last row presents the transmission of the shock when the policy reaction coe�cient increases to one (⇣
u
= 1).
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5.5 A with Epstein-Zin Preferences and Sticky Nominal Wages (Sticky Wages)

Households: As in the benchmark version of the model the household receives utility from con-

sumption while they dislike labour
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Their budget constraint has been modified slightly as there are not unemployed agents in this economy
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Again households’ preferences have a recursive format
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The following Lagrangian problem allows them to select optimally how much to consume and save
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The marginal utility of consumption is given
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The allocation of consumption across time is based on the following Euler equation
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While from the first order condition with respect to Vt
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And some substitutions we obtain the stochastic discount factor
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And the Euler equation becomes
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Wages: We follow Erceg et al. (2000) and assume that each monopolistically competitive household

supplies a di↵erentiated labour service to the production section. They set their nominal wage and

supply any amount of labour demanded by the firms at that wage rate. For convenience, we assume

that there exists a representative firm that combines households’ labour inputs into a homogeneous

input good - Ld
t - using a CES production function
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(142)

where �w denotes the mark-up in the labour market. Taking W̃t and W̃{,t as given, the aggregator’s

demand for the labour hours of household { results from profit maximisation
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The aggregate wage arises from the profit condition and the demand curve
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In each period, a fraction – 1�⇠w – of households receive a random signal and they are allowed to reset

wages optimally – W̃
⇤
t . All other households can only partially index their wages by past inflation.

The problem of setting wages can be described as follows
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The labour supply is determined by the following four equations that describe the wage Phillips curve
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Wage dispersion evolves according to
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Intermediate Good Producers: The technology given for the production of the intermediate good

is given by

Ỹt (h) = Z̃t

⇣
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⌘1��

K̃
�

t�1 (148)

Firstly, intermediate good producers act as price takers and demand the amount of labour that max-

imises their profits
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Namely, the labour demand is

P
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Next they set prices in order againg to maximises profits. Only a function (1�xi) of producers receive

a random signal and set prices optimally. The remaining (⇠) producers miss this signal and set prices

based on a backward looking indexation rule.
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The price Philip curve is described by the following four equations, while the last equation describes

the evolution of price dispersion

K̃p,t = P
W

t Ỹ
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Final Good Producers: Use combine the output produced in the previous stage and the following

CES technology
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To produce the final good. Finally, the demand for intermediate good is given by
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Market Clearing Conditions:
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Government:
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5.5.1 Stationary Equations
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5.5.2 Steady-States

We assume that L
d = 1/3, we know
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We also assume that

I
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The from the Production function
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From the stoschastic discount factor we obtain
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Then from the price dispersion equation
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From the marketing clearing condition we also know that
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Similarly
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From the demand for labour
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From the labour supply schedule
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5.5.3 Calibration

Table 5: Calibrated Parameters

Parameters Description Values

L Steady State of Average Hours 1/3
G

Y
Government Spending to GDP Ratio 0.18

I

Y
Investment to GDP Ratio 0.20

400ln(⇧) Inflation Target 2.00
400ln(Z) Steady State Value of Productivity Growth 2.00

� Capital Production Share 0.36
�K Capital Depreciation Rate 0.03
� Time Discount Factor 0.995
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Table 6: Estimated Parameters

Parameters Description Values

� Epstein-Zin Preference Risk 24.73
�C Inverse of Intertemporal Elasticity of Substitution 1.00
b Habit Smoothing 0.93
�L Inverse of Frisch Elasticity 1.15
" Intermediate Goods Elasticity of Substitution 12.94
⇠ Calvo Price Probability 0.82
◆ Price Indexation 0.00
"w Wages Elasticity of Substitution 3.84
⇠w Calvo Wage Probability 0.53
◆w Wage Indexation 0.78
⇣⇧ Inflation Monetary Policy Response 2.29
⇣Y Output Monetary Policy Response 0.30
⇢R Interest Rate Smoothing 0.71
⇢✏R

Policy Shock Persistence 0.18
⇢✏z Productivity Growth Shock Persistence 0.83
⇢✏g Government Spending Shock Persistence 0.13

100�R Policy Shock Standard Deviation 0.22
100�z Policy Productivity Growth Standard Deviation 5.00
100�g Government Spending Shock Standard Deviation 0.01
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5.5.4 Simulations & IRFs

Table 7: Disaster Statistics
Metrics Data 1 Standard Deviation 2 Standard Deviation

Probability 7.83 - 0.02
Size 21.99 - 10.85
Duration 3.72 - 3.67

Notes: The data disaster statistic estimates are those reported by Petrosky-Nadeau et al. (2018) (Table 4, pp. 2227).

Starting from the stochastic steady state, the model is simulated for 50000 periods. Similar to Petrosky-Nadeau et al.

(2018), we time-aggregate output into annual observations, and apply the peak-to-trough method to identify disasters

as cumulative fractional declines in output of at least 10%. The disaster probabilities and average size are in percent,

and the average duration is in terms of years.
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Figure 14: The fit of the DSGE model with Sticky Wages

Notes: The responses from the empirical model have been adjusted to match the quarterly frequency of the DSGE

model. The back dashed line illustrates the DSGE response to the policy shock. The policy rate and inflation are

expressed in annual terms.

Figure 15: Uncertainty E↵ect DSGE model with Sticky Wages: Uncertainty Contribution

Notes: The responses from the empirical model have been adjusted to match the quarterly frequency of the DSGE

model. The back dashed line illustrates the DSGE response to the policy shock. The policy rate and inflation are

expressed in annual terms. The DSGE response is the di↵erence between the response derived by using the third order

solution of the model and the one obtained by using the first order solution.
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Figure 16: Downward Risk

Notes: Starting from the stochastic steady state, the model is simulated from 50000 periods. The histogram illustrates

the distribution of xt as deviation from its stochastic steady-state. For the simulation in the first row we use the standard

deviation value that results from the estimation, while we use two times this estimate for the second row.
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Figure 17: Epstein-Zin Risk Coe�cient

Notes: The red solid line represents the benchmark version of the model (� = 24.73), while the blue dashed line is

the responses of the model when agents in the economy form expected utility preferences (� = 0). Rates are reported

in annual basis points, inflation in annual percentage rates and Job finding and filling probability in percentage points.

The responses are calculated relative to the stochastic steady state.

Figure 18: Epstein-Zin Risk Coe�cient: Uncertainty Contribution

Notes: The red solid line represents the benchmark version of the model (� = 24.73), while the blue dashed line is

the responses of the model when agents in the economy form expected utility preferences (� = 0). Rates are reported

in annual basis points, inflation in annual percentage rates and Job finding and filling probability in percentage points.

The responses are calculated relative to the stochastic steady state. The uncertainty contribution is calculated as the

di↵erence between the response derived by using the third order solution of the model minus the responses produced

using first order solution.
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Figure 19: Policy Rate Smoothing Preferences

Notes: The red solid line represents the benchmark version of the model (⇢
R
= 0.71), while the blue dashed line is the

responses of the model when authorities have no preferences for interest rate smoothing (⇢
R

= 0). Rates are reported

in annual basis points, inflation in annual percentage rates and Job finding and filling probability in percentage points.

The responses are calculated relative to the stochastic steady state.

Figure 20: Policy Rate Smoothing Preferences: Uncertainty Contribution

Notes: The red solid line represents the benchmark version of the model (⇢
R
= 0.71), while the blue dashed line is the

responses of the model when authorities have no preferences for interest rate smoothing (⇢
R

= 0). Rates are reported

in annual basis points, inflation in annual percentage rates and Job finding and filling probability in percentage points.

The responses are calculated relative to the stochastic steady state.The uncertainty contribution is calculated as the

di↵erence between the response derived by using the third order solution of the model minus the responses produced

using first order solution.
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