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Abstract

We study an assignment market where multiple heterogenous objects
are sold to unit demand agents who have general preferences accommodat-
ing imperfect transferability of utility and income effects. In such a model,
there is a minimum price equilibrium. We establish the structural charac-
terizations of minimum price equilibria and employ these results to design
the “ Serial Vickrey mechanism,” that finds a minimum price equilibrium
in a finite number of steps. The Serial Vickrey mechanism introduces the
objects one by one, and requires agents to report finite-dimensional prices
in finitely many times. Besides, the Serial Vickrey mechanism also has nice
dynamic incentive properties.
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1 Introduction

In auction and matching theory, quasi-linearity of preferences is commonly as-
sumed.1 It means that utility can be perfectly transferred among agents or the
payment for a good exhibits no income effect for its demand. Quasi-linearity
largely simplifies analysis and makes the duality of linear programming techniques
applicable to auction and matching problems (Vohra, 2011).2 Nevertheless, the
frictionless world with perfectly transferred utility is rather ideal. Quasi-linearity
holds only in restricted environments such as those where payments are negligibly
small compared to incomes or there are no budget constraints.
In the spectrum license auctions in OECD countries, regarded as one of the

most important applications of the theory, bidders often borrow to pay for the
huge bids and face non-linearity of borrowing cost, which makes their preferences
non-quasi-linear (Klemperer, 2004). In practical housing markets, income effects
and budget constraints also prevail (Zhou and Serizawa, 2018). Distortional taxes
in transactions make utility imperfectly transferred (Fleiner et al. 2019).
These practical limitations motivate many researchers to generate new tech-

niques to extend the results and gain new insights for auction and matching theory
for general preferences that accommodate imperfect transferability of utility and
income effects. Such examples include:
• Properties of equilibria or stable outcomes in matching models (Crawford

and Knoer, 1981; Kelso and Crawford, 1982; Quinzi, 1984; Demange and Gale,
1985; Caplin and Leady, 2014; Alaei et al. 2016; Fleiner et al. 2019; Schlegel,
2020)
• Effi cient, strategy-proof, and fair rules in the assignment market (Sun and

Yang, 2003; Andersson and Svensson, 2014, 2018; Morimoto and Serizawa, 2015;
Kazumura et al. 2020a)
• Properties of equilibria or stable outcomes in matching models with price

controls or hierarchy constraints (Andersson and Svensson, 2014, 2018; Herings,
2018; Kojima et al. 2020)
• Mechanism design or optimal auction design without quasi-linearity (Baisa,

2017; Noldeke and Samuelson, 2018; Kazumura et al. 2020b)
• The theoretical foundation for empirical research (Galichon et al. 2019)
This paper works on one of most prominent models in the matching theory,

the assignment market: Multiple heterogenous objects are to be sold to several
agents where payments can continuously change, and agents have unit-demand
general preferences. We draw on the above first two bullet directions, but go

1See Myerson (1980) and Shapley and Shubik (1972) for example.
2The recent development of (discrete) convex analysis and tropical geometry techniques relies

on quasi-linearity, e.g., Murota (2003) and Baldwin and Klemperer (2019).
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beyond them by studying effi cient and dynamic incentive-compatible mechanisms
with finite-dimensional information revelation of agents.
In our settings, when general preferences satisfies standard assumptions of

monotonicity and finiteness, there is a minimum price equilibrium (MPE), whose
supporting price (vector) is coordinate-wise minimum among all equilibrium prices
(Demange and Gale, 1985). The MPE attracts particular attention since the MPE
rule, mapping each general preference profile to an MPE, is the only rule satisfy-
ing effi ciency and strategy-proofness, and also has desirable revenue-maximazation
property.3 However, the MPE rules unrealistically require agents to report their
whole general preferences, and have neither information of how an MPE is imple-
mented, nor any dynamic incentive property.
We design a dynamic mechanism that finds an MPE, by asking each agent

to report a finite-dimensional price whose coordinate is an “indifference price”in
finitely many times, instead of requiring each agent to report her full preference.
An agent’s indifference price of an object is her willingness to pay for the object,
evaluated from her provisionally assigned bundle (object-payment pair). A quasi-
linear preference is presented by an agent’s valuations of the objects, or simply a
finite-dimensional price. Thus, reporting indifference prices naturally generalizes
the information elicitation of quasi-linear preferences to general preferences.
We proceed the mechanism design by providing three structural characteri-

zations that show the inner connections between an (arbitrary) equilibrium and
an MPE. Proposition 1 establishes the first characterization, the “connectedness”
property of the MPE. It says the equivalence of the three conditions: (i) An equi-
librium price is an MPE price; (ii) each object is connected via agents’demands;
and (iii) each agent gets either a connected object or nothing.
To show the second and third characterizations, we also show as Lemma 1

that (i) to find an MPE from an equilibrium, the object reassignment and price
adjustment are within the unconnected objects and agents, i.e., objects and agents
without connectedness property, and (ii) the MPE prices of the unconnected ob-
jects are bounded below by the indifference prices of the connected agents. Then
we build a “I pay others’ indifference prices (IPOIP) process,” to find an MPE
from an equilibrium. Given a candidate of the MPE assignment, the IPOIP process
recursively raises the prices of objects in that assignment from their lower bounds.
Theorem 1 establishes the second characterization: (i) the price and assign-

ments of the connected objects in an equilibrium are the same as the MPE, and
(ii) the MPE price of the unconnected objects in an equilibrium is the coordinate-
wise minimum among the IPOIP prices of all candidate assignments. Theorem
2 establishes the third characterization that if IPOIP process stops raising the
prices at some point for a candidate assignment, then the candidate is an MPE

3See Morimoto and Serizawa (2015), and Kazumura et al. (2020a) for details.
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assignment, and the price at that point is the MPE price.
Then, we propose a “Serial Vickrey (SV) mechanism,”by exploring the above

structural results. The SV mechanism introduces objects sequentially, and based
on an MPE for k objects, it employs the “SV sub-mechanism,”to find an MPE
for k + 1 objects in a finite number of steps, established as Theorem 3. When
introducing the first object, the SV sub-mechansim coincides with the second-
price auction mechanism. In general, given an MPE for k objects, the SV sub-
mechanism contains two stages. Stage 1 uses the first structural result to construct
an equilibrium for k+1 by the “E-generating mechanism,”and identify the agents
and objects needed to adjust their assignments and prices in Stage 2, by the
“connected-agent identifying mechanism.”Stage 2 explores the second and third
structural results and their by-products to conduct object reassignment and price
adjustment by “the MPE-adjustment mechanism.”
Finally, we study the incentive compatibility of the SV mechanism. We observe

that the rule induced by the SV mechanism coincides with the MPE rule so it is
strategy-proof. We show as Proposition 5 that given an MPE for k objects under
the true preferences, revealing the true preferences is a dominant-strategy equilib-
rium in the normal game forms induced by both the E-generating mechanism and
MPE-adjustment mechanism. We establish as Theorem 4 that given an MPE for
k objects under the true preferences, revealing the true preferences is a dominant-
strategy equilibrium in the normal game form induced by the SV sub-mechanism
for k + 1 objects. Theorem 4 is neither implied by the strategy-proofness of the
MPE rule since the number of objects changes, nor by the aggregation of two
incentive-compatible mechanisms within an SV sub-mechanism. Besides, we re-
mark that in the SV mechanism, agents’welfare is always increasing with the
number of introduced objects.
All our results and the corresponding proof techniques are novel to the existing

works for general preferences. We leave the details of this point to the next section.
The remainder is organized as follows: Section 2 discusses the related litera-

ture. Section 3 defines the model and MPEs. Section 4 graphically illustrates the
indifference price and the MPE. Section 5 gives the structural characterizations.
Section 6 presents the SV mechanism. Section 7 analyzes the incentives. Section
8 discusses the SV mechanism as concluding remarks.

2 Related literature

The effi cient and incentive-compatible mechanism has been studied in the assign-
ment market for quasi-linear preferences. There are three remarkable results: (i)
The MPE price coincides with Vickrey-Clarkes-Groves (VCG) payment (Leonard,
1983); (ii) Assuming integer valuations of agents, the auction mechanisms of De-
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mange et al. (1986), Mishra and Parkes (2010), Andersson and Erlanson (2013),
and Liu and Bagh (2019), yield MPEs; (iii) The approximate auction mechanisms
of Crawford and Knoer (1981) and Demange et al. (1986) find a price that devi-
ates from the MPE price within certain boundary. For auctions in (ii) and (iii),
the increment\decrement is pre-fixed and agents reveal information of their de-
mand sets. However, insights in (i), (ii), and (iii) cannot be extended to general
preferences: There is no parallel VCG-type payment for the MPE price. In Ap-
pendix D, we exemplify that when conducted in the general preference settings,
auctions in (ii) and (iii) either largely overshoot or undershoot the MPE price be-
yond boundary estimated in the quasi-linear environments.4 These observations
justify the use of indifference prices as the information elicitation for general pref-
erences: it is almost impossible to propose a price adjustment process by pre-fixing
an increment/decrement and only eliciting the information of agents’demand sets.
For general preferences, the equivalence between equilibria and stable out-

comes, and the lattice property of equilibria are widely studied, e.g., Quinzi (1984),
Demange and Gale (1985), Fleiner et al. (2019), and Schlegel (2020). These prop-
erties are qualitatively different from our structural results. Exceptions are Caplin
and Leahy (2014, 2020) and Alaei et al. (2016), who also study the structural
properties of the equilibria.
In the same model as ours, Caplin and Leahy (2014) characterize the MPE

price by the graph-allocation structure, which initiates Caplin and Leahy (2020)
to employ the homotopy method to study the equilibrium changes in response to
parameter changes. Alaei et al. (2016) characterize the MPE price by a recursive
system that computes the minimum and maximum price equilibria in all smaller
markets with different numbers of agents and objects. These papers use their struc-
tural results to obtain the MPEs. In contrast, the SV mechanism iteratively finds
an MPE, which largely improves computations, and also has appealing dynamic
incentive properties. In Section 8, we show the models where the SV mechanism
effi ciently finds an MPE, but their results do not, and detail the applications where
the SV mechanism finds certain type of MPEs, but theirs do not.
The existence of equilibria for general preferences is commonly proved by two

methods. The first one is to operate the Keslo-Crawford type adjustment process
to get an approximate equilibrium with the discreteized payments and then take
the limit argument, the existence is shown, e.g., Kelso and Crawford (1982), Her-
ings (2018), and Kojima et al. (2020). The second one is to establish the existence
under the piece-wise linear functions, and show the existence for general utility
functions by the point-to-point convergence argument. This method is used by
Alkan and Gale (1990) and conveys the proof idea of using the “Scarf Lemma”,

4In our model, the cumulative offer process of Hatfield and Milgrom (2005) coincides with
the approximate auction mechanism, so it fails to approximate an MPE either.
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e.g., Quinzi (1984). The SV mechanism is different from these methods.
Finally, we discuss how our results differ from Andersson and Svensson (2018),

Noldeke and Samuelson (2018), and Galichon et al. (2019). In the assignment
market with price controls, Andersson and Svensson (2018) construct a finite
ascending-price sequence that finds an “minimum rationing price equilibrium.”
This sequence terminates at an MPE price in our model. It is not clear how to
identify two adjacent prices in the sequence in finitely many steps so their con-
struction is different from the SV mechanism. Noldeke and Samuelson (2018)
study the duality relationship without quasi-linearity in the one-to-one two-sided
matching model, and characterize the duality of implementable profiles and as-
signments via the Galois connection. The Galois connection is a pair of mappings,
with no information of how to find a stable outcome so it is different from the SV
mechanism. Galichon et al. (2019) provide the theoretical model with potential
application to structural estimation of imperfectly transferable utilities in the one-
to-one two-sided matching model. They define an aggregate equilibrium (AE) that
can be characterized by a system of equations in terms of matching pairs. Their
proposed AE is different from the MPE, and the corresponding characterization
does not hold for the MPE.

3 The model and minimum price equilibrium

There are a finite set of agents N and a finite set of heterogenous objectsM where
|N | = n and |M | = m.5 Not receiving an object is called receiving object 0. Let
L ≡M ∪ {0}.
Each agent has unit demand: She receives at most one object. The bundle

for agent i is a pair zi ≡ (xi, ti) ∈ L×R, in which agent i receives an object xi ∈ L
and pays ti ∈ R. Each agent i has a complete and transitive preference Ri over
L × R. Let Pi and Ii be the associated strict and indifference relations. Assume
the following properties of preferences.

Money monotonicity: For each xi ∈ L, each pair ti, tj ∈ R, if ti < t′i,
(xi, ti)Pi (xi, t

′
i).

Finiteness: For each ti ∈ R, each pair xi, xj ∈ L, there is tj ∈ R such that
(xi, ti) Ii (xj, tj).

Money monotonicity states that for a given object, a lower payment makes the
agent better off. Finiteness says that there is no object that is infinitely good or
bad. A preference Ri is general if it satisfies the above two properties. Let RG be
the class of general preferences and R ≡ (Ri)i∈N ∈ (RG)n be a preference profile.

5Let |·| denote the cardinality of a set.
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An assignment market is summarized by (N,M,R). We fix N and M through-
out the paper, and fix a preference profile below until we analyze the incentive issues
in Section 7.
An allocation z ∈ [L × R]n is a list of agents’bundles such that except for

object 0, no two agents receive the same object, i.e., z ≡ (zi)i∈N = ((xi, ti))i∈N
such that for each pair i, j ∈ N , if xi 6= 0 and i 6= j, then xi 6= xj. We denote the
set of allocations by Z.
Let p ≡ (px)x∈M ∈ Rm+ be a price (vector). Without loss of generality, assume

the price of object 0 and all reserve prices of objects are zero. Agent i′s demand
set at price p is defined as Di(p) ≡ {x ∈ L : (x, px)Ri (y, py), ∀y ∈ L}.
Definition 1: A pair (z, p) ∈ Z × Rm+ is an equilibrium if

for each i ∈ N , xi ∈ Di(p) and ti = pxi , (E-i)

for each y ∈ M , if for each i ∈ N , xi 6= y, then py = 0. (E-ii)

(E-i) says that each agent i receives a bundle zi consisting of a demanded object
xi and a payment ti equal to the price of xi. (E-ii) says that prices of unassigned
objects are zero. Let W and P be the sets of equilibria and equilibrium prices.

Fact 1 (Alkan and Gale, 1990; Demange and Gale, 1985): There is an equilibrium
and the set of equilibrium prices is a complete lattice.

Therefore, among all equilibrium prices, there is a unique coordinate-wise mini-
mum price pmin ∈ P. A minimum price equilibrium (MPE) is an equilibrium
supported by pmin. Let Wmin ⊆ W be the set of MPEs. Since indifferences
in preferences are admitted, MPE allocations may not be unique, but they are
welfare-equivalent: for each agent i, each MPE brings her the same welfare, i.e.,
for each pair (z, pmin), (z′, pmin) ∈ Wmin, zi Ii z′i.

4 Illustration of indifference price and MPE

The following graphic tools illustrate the “indifference price”defined below, and
an MPE. These illustrations also help us understand the concepts and results
presented in the next sections.

· The indifference price (IP)
By money monotonicity and finiteness, for each zi ∈ L × R, each y ∈ L,

there is a unique payment Vi(y; zi) ∈ R such that two bundles zi and (y, Vi(y; zi))

are welfare-equivalent, i.e., (y, Vi(y; zi)) Ii zi. We interpret Vi(y; zi) as agent i′s
indifference price (IP) of object y at bundle zi. The indifference price works
as the proxy for agents’preference elicitation.
Suppose that there are two agents i and j, and two objects, A and B. Figure

1 illustrates the indifference prices for two preferences.
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Figure 1: Illustration of IPs Vi(B; zi), and Vj(B; zj)

Three horizontal lines correspond to objects 0, A, and B. For each point on
one of the three lines, the distance between that point and the vertical line denotes
the payment, e.g., zi denotes the bundle consisting of object A and payment ti.
By money monotonicity, moving leftward along the same line makes the agent
better off, e.g., (0, A)Pi zi. The agent is indifferent between bundles connected by
an indifference curve, e.g., for agent i, zi Ii z′i, and for agent j, zj Ij (B, Vj(B; zj)).
The IP of object B at zi is Vi(B; zi) since (B, Vi(B; zi)) Ii zi. Similarly, the IP

of object B at zj is Vj(B; zj) since (B, Vj(B; zj)) Ij zj.

· The minimum price equilibrium (MPE) for general preferences
We illustrate an MPE for three agents, 1, 2, and 3, and two objects, A and B,

and a preference profile where the (real and dotted) lines in purple describe R1,
lines in red describe R2, and the line in black describes R3.

Figure 2: Illustration of an MPE (zmin, pmin) for general preferences

We show that (zmin, pmin) is an MPE. At pmin = (pmin
A , pmin

B ), D1(pmin) = {B},
D2(pmin) = {A,B}, and D3(pmin) = {0, A} so each agent i receives an object from

7



her demand set at zmin and no object is unassigned. Thus (E-i) and (E-ii) holds,
and (zmin, pmin) is an equilibrium.
To see why pmin is an MPE price, let p′ = (p′A, p

′
B) be an equilibrium price.

We show p′ ≥ pmin. Since there are three agents and two objects, by (E-i), one
agent must demand and be assigned object 0 at p′. Thus, p′A ≥ 2 = pmin

A or
p′B ≥ 2.5 = pmin

B . In case of p′A ≥ 2 and p′B < 2.5, D1(p′) = D2(p′) = {B},
contradicting (E-i). In case of p′A < 2 and p′B ≥ 2.5, D2(p′) = D3(p′) = {A},
contradicting (E-i). Thus p′A ≥ pmin

A and p′B ≥ pmin
B .

For quasi-linear preferences, any equilibrium allocation is an MPE allocation,
but this statement is not true for general preferences. Let p = (4, 4). It is easy to
see that (z, p) is an equilibrium where agent 1 gets A and 2 gets B. However, at
pmin, there is no equilibrium allocation such that 1 gets A and 2 gets B.

5 The structural characterizations

This section establishes structural characterizations of MPEs. The first result
studies when an equilibrium coincides with an MPE (Proposition 1). The sec-
ond and third results disclose a dynamic relation between an equilibrium and an
MPE (Theorems 1 and 2). These characterizations are fundamental to design the
mechanism that finds an MPE in Section 6.

5.1 Characterization by connectedness

First, we introduce two concepts: “connected object”and “connected agent.”

Definition 2: An object x ∈ M is connected at (z, p) ∈ Z × Rm+ if (i) x is
unassigned or (ii) there is a sequence {iλ}Λ

λ=1 of Λ distinct agents (Λ > 1) that
forms a demand connectedness path (DCP) such that
(ii-1) xi1 = 0 or pxi1 = 0,
(ii-2) xiΛ = x,
(ii-3) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0, and
(ii-4) for each λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1

} ∈ Diλ(p).

Definition 2 says that an object x is connected in two cases. In Case (i), object
x is unassigned. In Case (ii), there is a sequence of distinct agents such that
the first agent receives an object with zero price (ii-1); the last agent receives
object x (ii-2); each agent who is not the first agent gets an object with a positive
price (ii-3); each agent who is not the last agent demands his assigned object and
the object assigned to her successive agent (ii-4). These agents form a demand
connected path to object x. Example 1 illustrates.

Example 1 (Figure 2): At (zmin, pmin), object B is connected by a DCP formed
by agents 1, 2, and 3 where Λ = 3, i1 = 3, i2 = 2, and i3 = iΛ = 1: (i) xmin

3 = 0,

8



(ii) xmin
1 = B, (iii) xmin

2 = A, pmin
A = 2, and xmin

1 = B, pmin
B = 2.5, and (iv)

{0, A} ∈ D3(pmin) and {A,B} ∈ D2(pmin). (i) to (iv) corresponds to (ii-1) to (ii-4)
in Definition 2.

Definition 3: An agent i ∈ N is connected at (z, p) ∈ Z×Rm+ if xi is connected
or xi = 0.

Definition 3 says that an agent is connected if she gets either a connected object
or object 0. Let NC and MC be the sets of connected agents and objects. Let
NU ≡ N\NC and MU ≡ M\MC be the sets of unconnected agents and objects.
Example 2 illustrates.

Example 2 (Figure 2): At the MPE (zmin, pmin), N = NC = {1, 2, 3} and M =

MC = {A,B}. Let p = (4, 4). At the equilibrium (z, p), NC = {3}, NU = {1, 2},
and M = MU = {A,B}.
We give a further remark of connected objects and agents.

Remark 1: (i) Since unassigned objects are connected, the existence of connected
objects does not imply the existence of connected agents.
(ii) The connectedness of objects is not applicable to object 0. Thus the existence
of connected agents does not imply the existence of connected objects.
(iii) By Definition 2(ii-1), an agent who gets an object with zero price is connected.
(iv) A connected agent exists ⇐⇒ Some agent gets an object with zero price.6

Proposition 1 characterizes the MPE by connected agents and objects.

Proposition 1: Let (z, p) be an equilibrium, and NC andMC be defined at (z, p).
Then, the following are equivalent:
(i) p = pmin, (ii) N = NC , and (iii) M = MC .

The proof of Proposition 1 is relegated to Appendix A.1. Proposition 1 gives
three equivalent conditions to judge whether an equilibrium is an MPE, i.e., (i)
the equilibrium price is an MPE price, or (ii) all the agents are connected, or (iii)
all the objects are connected. Example 2 also illustrates Proposition 1.

5.2 Characterizations by I-pay-others’-indifference-prices
process

In this section, we relate an MPE to an arbitrary equilibrium via a dynamic
process. First, we introduce the notation of “the ranking of indifference prices of
some object.”Consider an object x, an allocation z and a group N ′ of agents.

6“⇐”comes from Remark 1(iii). For “⇒”, by contradiction, suppose that for each i ∈ N ,
pxi > 0. Since NC 6= ∅, for each i ∈ NC , pxi > 0. Thus for an arbitrary connected agent i,
there is a sequence {iλ}Λλ=1 of distinct agents satisfying Definition 2, with xi1 = 0 or pxi1 = 0,
contradicting that for each i ∈ N , pxi > 0.

9



We ask each agent i ∈ N ′ to report her IP Vi(x; zi) of x at zi. Let Ch(x; zN ′)

be the h-th highest IP of x from z among N ′ agents. Let Ch
+(x; zN ′) ≡

max{Ch(x; zN ′), 0}. If N ′ = N , we write z instead of zN . In case of N ′ = ∅, let
Ch

+(x; zN ′) = 0. Example 3 illustrates.

Example 3 (Figure 2): Let N ′ = {1, 3}, x = A, and z = zmin. Since V3(A; zmin
3 ) =

2 > 0.5 = V1(A; zmin
1 ) > 0, then C2

+(A; zmin
{1,3}) = C2(A; zmin

{1,3}) = V1(A; zmin
1 ) = 0.5.

Lemma 1 shows what properties of an equilibrium can preserve at an MPE.

Lemma 1: Let (z, p) be an equilibrium and NU and MU be defined at (z, p). Let
(zmin, pmin) be an MPE. Then,
(i) |NU | = |MU |,
(ii) for each x ∈MU , C1

+(x; zNC ) ≤ pmin
x < px, and

(iii) for each i ∈ NU , xmin
i ∈MU .

The proof of Lemma 1 is relegated to Appendix A.2. Lemma 1(i) and 1(iii)
say that to obtain an MPE from an equilibrium, we only need to reallocate un-
connected objects among unconnected agents. Lemma 1(ii) says that for each
unconnected object x, its MPE price is upper bounded by its equilibrium price
px and lower bounded by the maximum value C1

+(x; zNC ) of reported indifference
prices of object x by connected agents at their equilibrium allocation zNC . Lemma
1(i) is confirmed by MU and NU at the equilibrium (z, p) in Example 2. Lemma
1(ii) and (iii) are confirmed by comparing (zmin, pmin) and (z, p) in Example 2.
Second, we define the “I-pay-others’-indifference-prices process.”Let µ be an

assignment or bijection, fromMU toNU , and µi be the associated object assigned
to agent i ∈ NU . Let Ω be the set of all such assignments.

Definition 4: Let (z, p) be an equilibrium and NU and MU be defined at (z, p).
Let µ ∈ Ω. The k−I pay-others’-indifference-prices (IPOIP) process for µ
is defined as follows: For each x ∈MU and each i ∈ NU ,
(i) p0

x ≡ C1
+(x; zNC ) and z0

i ≡ (µi, p
0
µi

), and
(ii) for each s = 1, · · · k,

psx ≡ C1(x; zs−1
NU

) and zsi ≡ (µi, p
s
µi

).

The k−IPOIP process for a given assignment µ contains k rounds. It updates
the prices and agents’bundles recursively: First, set the starting price of each
unconnected object x as p0

x = C1
+(x; zNC ). Each unconnected agent i is assigned an

unconnected object µi and gets the bundle z
0
i = (µi, p

0
µi

). Each unconnected agent
i reports her IP of each unconnected object x at z0

i , i.e., Vi(x; z0
i ). Then the price

of x is updated to the maximum value of all reported IPs, i.e., p1
x = C1

+(x; z0
NU

).
Each unconnected agent i keeps the same object µi but pays an updated price p

1
µi
,

i.e., z1
i = (µi, p

1
µi

). In the same manner, the price of each unconnected object x
is updated to p2

x = C1
+(x; z1

NU
) and so forth. The formation of agent’s tentative
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payment psx is in the spirit of the VCG payment. Example 4 illustrates a one-round
IPOIP process.

Example 4 (Figure 2): In Example 2, recall NC = {3}, NU = {1, 2}, and
MU = {A,B} at the equilibrium (z, p). Consider an assignment µ such that
agent 1 gets B and 2 gets A. In this case p0

A = C1
+(A; zNC ) = C1

+(A; z3) = 2,
p0
B = C1

+(B; z3) = 2, z0
1 = (B, 2) and z0

2 = (A, 2). Then p1
A = C1

+(x; z0
{1,2}) =

max{V1(A; z0
1);V2(A; z0

2)} = 2 and p1
B = max{V1(B; z0

1);V2(B; z0
1)} = 2.5.

Let ps(µ) be the price generated in round s in a k−IPOIP process for µ. It is
easy to see that prices in the process are non-decreasing. Formally, we have:

Fact 2: Let (z, p) be an equilibrium and NU and MU be defined at (z, p). Let
µ ∈ Ω. In the k−IPOIP process for µ, for each s = 1, · · · , k, we have p0(µ) ≤
p1(µ) ≤ · · · ≤ ps(µ).

Now we give the characterizations of MPEs in terms of IPOIP processes.

Theorem 1: Let (z, p) be an equilibrium, and NC , MC , NU , and MU be defined
at (z, p). Let pmin be the MPE price. Then the following holds.
(i) For each x ∈MC , pmin

x = px, and for each i ∈ NC , zi is an MPE bundle.
(ii) There is µ ∈ Ω such that
(ii-1) µ is an MPE assignment among unconnected agents, and
(ii-2) for each x ∈MU , pmin

x = p|MU |−1
x (µ) = min

µ′∈Ω
p|MU |−1
x (µ′).

The proof of Theorem 1 is relegated to Appendix A.3. The proof sketch is as
follows. First, we show Theorem 1(i). We argue that if the prices of connected
objects decrease, these objects will be “overdemanded”at the MPE price. Thus,
their MPE price should be the same as the given equilibrium prices. Then by
Lemma 1(ii), connected agents could keep the same equilibrium bundles as their
MPE bundles.
Second, we show Theorem 1(ii). For (ii-1), by Fact 1 and Theorem 1(i), there

must exist an MPE assignment that assign the unconnected objects to the uncon-
nected agents. For (ii-2), it contains two Steps.
Step 1 shows that if µ is an MPE assignment, then at each round of the IPOIP

process, at least one unconnected object’s price reaches its MPE price, and it never
increases in the later round. Since there are |MU | unconnected objects, starting
from round 0, the IPOIP process for µ finds the MPE price for unconnected
objects at most by |MU | − 1 rounds. Thus, for each unconnected object x, pmin

x =

p|MU |−1
x (µ). Step 2 shows that for any non-MPE assignment µ′, at each round
of the IPOIP process, at least one unconnected object’s price exceeds its MPE
price and by Fact 2, it never decreases in the later round. Since there are |MU |
unconnected objects, for each unconnected object x, pmin

x ≤ p|MU |−1
x (µ′).

If all the objects are connected at the given equilibrium, then Theorem 1
coincides with Proposition 1. The novelty of Theorem 1 deals with the case where
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there are unconnected agents at the given equilibrium.

Remark 2: Given µ′ ∈ Ω, p|MU |−1(µ′) is generally not an equilibrium price for
unconnected objects. Thus, Theorem 1(ii-2) is different from the meet operation of
equilibrium prices that generates a new equilibrium price, by their lattice property.

Intuitively, if µ is an MPE assignment and ps obtained at some round s in
the k−IPOIP process for µ is an MPE price, then in the later rounds, the price
remains unchanged, i.e., ps = · · · = pk. Theorem 2 surprisingly shows that for
any assignment µ, if the prices in two adjacent rounds s − 1 and s of the IPOIP
process for µ remain unchanged, i.e., ps−1 = ps, then ps−1 is an MPE price and µ
is an MPE assignment of unconnected objects and agents.

Theorem 2: Let (z, p) be an equilibrium, and NU and MU be defined at (z, p).
Let pmin be an MPE price. Let µ ∈ Ω. In the |MU | −IPOIP process for µ, the
following are equivalent:
(i) There is some s ≤ |MU | such that ps−1 = ps;
(ii) µ is an MPE assignment and ps−1 is the MPE price of unconnected agents and
objects.

The proof of Theorem 2 is relegated to Appendix A.4. The proof sketch is as
follows. First we show (ii)⇒ (i). As argued in Step 1 of the proof Theorem 1(ii-2),
when ps−1 is the MPE price of unconnected objects and µ is an MPE assignment
of unconnected agents, ps−1 remain unchanged in the later round of the IPOIP
process so ps−1 = ps.
Next, we show (i) ⇒ (ii). Since the outcome of the IPOIP process may not

assign unconnected agents bundles in their demand sets, we define weak connected
objects and agents by relaxing (ii-4) in Definition 2: Agents on the path are
indifferent between their bundles and the successive agents’bundles. The proof
contains five steps. Step 1 shows that all the unconnected objects are weakly
connected at (µ, ps−1). Steps 2 and 3 show that the price of unconnected objects
generated by the IPOIP process is bounded above by their MPE price. Step
4 shows that each unconnected agent i weakly prefer (µi, p

s−1
µi

) to the bundles
consisting of connected objects paired with their MPE price. Step 5 concludes
that (ii) holds.
In Example 4, for the assignment µ where agent 1 gets B and 2 gets A, it is

easy to see p1 = p2. By Theorem 2, p1 = pmin and µ is an MPE assignment.

6 Serial Vickrey mechanisms

6.1 Sketch of Serial Vickrey mechanisms

Based on the obtained structural characterizations in Section 5, we design a
“Serial Vickrey (SV) mechanism,” that finds an MPE in a finite number
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of steps. The SV mechanism introduces objects one by one and sequentially em-
ploys “SV sub-mechanism,”to find an MPE for k+1 objects, based on an MPE
for k objects.

Definition 5: The SV mechanism is defined as follows. Each agent is initially
assigned (0, 0). Introduce object sequentially by its index, 1, 2, · · · .
Step k(≥ 1) introduces object k, and run the SV sub-mechanism for k objects,

which is described in Definition 6. If k = m, stop at the output of the SV sub-
mechansim. Otherwise, go to Step k + 1.

Remark 3: By Fact 1, the MPE price for the assignment market (N,M,R) is
unique so how we index the objects in M does not matter in the SV mechanism.

The central part of the SV mechanism is the SV sub-mechanism. When the
first object is introduced, it coincides with the second-price auction mechanism.
Now we define the SV sub-mechanism for k + 1 objects where 0 ≤ k < m.

Definition 6: Let (zmin, pmin) be anMPE for k objects. The SV sub-mechanism
for k + 1 objects is defined as follows.
Stage 1: Operate the “E-generating mechanism,” (Definition 8, Section

6.2), to generate an equilibrium (z, p) for k + 1 objects from (zmin, pmin). Then
run the “NC-identifying mechanism,” (Definition 9, Section 6.2), to identify
the set of connected agents NC at (z, p). If all agents are connected, i.e., NC = N ,
then terminate at (z, p). Otherwise, identify MU and NU , and go to Stage 2.

Stage 2: Operate the “MPE-adjustment mechanism,”(Definition 11, Sec-
tion 6.3), to identify the MPE allocation of unconnected agents NU .

In the SV sub-mechanism, agents report finite-dimensional prices composed of
indifference prices in finitely many times. We will establish:

Theorem 3: Given an MPE for k objects, the SV sub-mechanism finds an MPE
for k + 1 objects via agents’reports of finite-dimensional prices in finitely many
times.

We prove Theorem 3 via Propositions 2 and 3 in Section 6.2, and Proposition
4 in Section 6.3, which shows the properties of the E-generating mechanism, NC-
identifying mechanism, and the MPE-adjustment mechanism, respectively. As a
direct outcome, we have:

Corollary 1: The SV mechanism finds an MPE in a finite number of steps via
agents’reports of finite-dimensional prices in finitely many times.

6.2 Stage 1 of SV sub-mechanism

We first introduce a process to identify the demand connected path for a given
object, which is key to establish the E-generating mechanism.
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Definition 7: Demand-connectedness-path-finding (DCP-finding) process
for object x Let x ∈ M be a connected object that is assigned to agent i,
i.e., xi = x, at (z, p) ∈ Z × Rm+ .
Phase 1: Round 1: Set N1 ≡ {i}.
If px = 0, stop the process.
If px > 0, set N2 ≡ {j ∈ N\N1 : x ∈ Dj(p)} and go to Round 2.
Round s(≥ 2): Set Ls ≡ {y ∈ L : xj = y for some j ∈ Ns}.
If there is y ∈ Ls s.t. y = 0 or py = 0, stop Phase 1 and go to Phase 2.
Otherwise, set Ns+1 ≡ {j ∈ N\∪sk=1Nk : Dj(p)∩Ls 6= ∅} and go to Round s+ 1.7

Phase 2: Let S be the final round of the process. Then, construct a sequence
{is}Ss=1 of distinct agents as follows: (i) Choose i1 ∈ NS such that xi1 = 0 or pxi1 =

0, and (ii) for each j ∈ {2, · · · , S}, choose ij ∈ NS+1−j such that xij ∈ LS+1−j and
xij ∈ Dij−1

(p).

The DCP-finding process works as follows: pick a connected object x that is
assigned agent i. In Phase 1, if the price of x is zero, we are done and it contains
a trivial DCP. If not, i.e., px > 0, we collect the demanders N2 of x by excluding
agent i. Since x is connected and px > 0, N2 6= ∅. If there is some agent in N2,
say, agent j, who obtains an object xj with zero price, then agent j is connected
to x by her demand, i.e., {x, xj} ∈ Dj(p) and we are done. Otherwise, we collect
the set L2 of objects assigned to agents in N2, and repeat the process till some
agent obtains an object with zero price. In Phase 2, we trace back from the agent
who gets an object with zero price to object x via the DCP. Example 5 illustrates.

Example 5 (Figure 2): Consider a DCP-finding process for objectB at (zmin, pmin).
Recall that agent 1 gets B, i.e., i = 1 and x1 = B.
In Phase 1, at Round 1, we set N1 = {1}. Since pmin

B > 0, we need to find all
the agents who demand B, except for agent 1. It is just the agent 2 so N2 = {2}.
Then we come to Round 2 and collect agent 2′s assigned object, i.e., L2 = {A}.
Since pmin

A > 0, we need to find all the agents who demand A, except for agents 1

and 2. It is just the agent 3 so N3 = {3}. Since xmin
3 = 0. We stop Phase 1 and

go to Phase 2.
In this case S = 3. Phase 2 constructs a DCP consisting of a sequence of

agents {3, 2, 1}, i.e., i1 = 3, i2 = 2, and i3(= iS) = 1.

The following result summarizes the property of DCP-finding process.

Lemma 2: Let (z, p) ∈ Z × Rm+ . Let x ∈M be an assigned connected object.
(i) Phase 1 of DCP-finding process stops in a finite number of rounds.
(ii) The sequence {is}Ss=1 of distinct agents of Phase 2 is a DCP for object x.

By the finiteness of N , Lemma 2(i) holds. By construction, the sequence
{is}Ss=1 in Lemma 2(ii) satisfies (ii-1) to (ii-4) in Definition 2. The demand sets

7In such a case, since for each y ∈ Ls, y is connected and py > 0, Ns+1 6= ∅.
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used to identify the DCPs can be derived from the agents’reported indifference
prices at the given allocation.
Now we are ready to propose the E-generating mechanism.

Definition 8: E-generating mechanism Let (zmin, pmin) be an MPE of k
objects. Introduce a new object y, i.e., the object indexed by number k + 1.
Phase 1: Each agent i reports Vi(y; zmin

i ), and compute C1(y; zmin).
If C1(R, y; zmin) ≤ 0, set (z, p) as

(a) py = 0, and p = (pmin, py), and (b) for each i ∈ N , zi = zmin
i .

Otherwise, go to Phase 2.
Phase 2: Arbitrarily select an agent i with the highest IP of y at zmin

i , i.e.,
Vi(y; zmin

i ) = C1(y; zmin). Run the DCP-finding process for xmin
i at (zmin, pmin),

and obtain a DCP {iλ}Λ
λ=1 for x

min
i . Set (z, p) as

(a) py = C2
+(y; zmin), and p = (pmin, py),

(b) ziΛ = (y, py),
(c) for each il ∈ {iλ}Λ−1

1 , zil = zmin
il+1
, and

(d) for each j ∈ N\{iλ}Λ
1 , zj = zmin

j .

The essence of E-generating mechanism is Phase 2. It works as follows. When
object y is introduced, each agent reports her IP of y at zmin

i , i.e., Vi(y; zmin
i ).

We assign the new object to an arbitrary agent i whose has the highest IP, but
ask her to pay the second highest IP (in the spirit of the second-price auction).
We identify a DCP for agent i′s assignment xmin

i at (zmin, pmin). After agent i is
assigned object y, we alternate the bundles of agents on the identified DCP from
the object with zero price. All other agents remain their bundles at zmin. Such an
construction generates an equilibrium for k + 1 objects. Example 6 illustrates.

Example 6 (Figures 2 and 3): Given (zmin, pmin) in Figure 2, we introduce object
C and illustrate the E-generating mechanism by Figure 3.

Figure 3: Illustration of an E-generating mechanism
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In Phase 1, each agent i reports her IP for C at zmin
i : V1(C; zmin

1 ) = 3,
V2(C; zmin

2 ) = 2.5, and V3(C; (0, 0)) = 1. Since C1(C; zmin) = V1(C; zmin
1 ) > 0,

go to Phase 2.
In Phase 2, we set pC = C2

+(C; zmin) = 2.5 and p = (pmin
A , pmin

B , pC). We
assign object C to agent 1, but ask her to pay C2

+(C; zmin). Thus, agent 1 is
assigned (C, 2.5). Recall Example 2 for the DCP of object B, which consists of
agents 3, 2, and 1. We alternate the bundles of agents 3 and 2 along this path:
z3 = zmin

2 = (A, 2) and z2 = zmin
1 = (B, 2.5).

In Example 6, the constructed (z, p) is an equilibrium. Formally, we can show:.

Proposition 2 (Property of E-generating mechanism): Let (zmin, pmin) be
an MPE for k objects. Introduce object y. Then the E-generating mechanism
finds an equilibrium (z, p) for k + 1 objects in a finite number of phases.

The proof of Proposition 2 is relegated to Appendix B.1. The following mech-
anism identifies the set of connected agents NC at some given equilibrium.

Definition 9: NC-identifying mechanism Let (z, p) be an equilibrium.
Round 1: Let N1 ≡ {i ∈ N : pxi = 0}. If N1 = ∅, set N∗ = ∅ and stop the process.
Otherwise, go to Round 2.
Round s(≥ 2): Let

M s−1 ≡ {y ∈M\{xi : i ∈ ∪s−1
k=1Nk} : py > 0, y ∈ Di(p)\{xi} for some i ∈ Ns−1}.

If M s−1 = ∅, set N∗ = ∪s−1
k=1Nk and stop the process.

Otherwise, let Ns ≡ {i ∈ N : xi = y for some y ∈M t−1}, and go to Round s+ 1.

In words, NC-identifying mechanism works as follows: at the equilibirum (z, p),
we collect a set N1 of the agents who get objects with zero prices. Then we collect
a set M1 of objects in the demand sets of agents in N1, except for their assigned
objects. Since objects in M1 have positive prices, they must be assigned to some
agents. Then we identify the set N2 of agents who are assigned objects from M1,
and repeat the process. The collection of the identified agents in N1, N2,..., are
connected agents. Formally, we get the result below.

Proposition 3 (Property of NC-identifying mechanism): Let (z, p) be an
equilibrium. Then the NC-identifying mechanism stops in a finite number of
rounds and N∗ is the set of connected agents at (z, p).

The proof of Proposition 3 is relegated to Appendix B.2. To confirm Proposi-
tion 3, in Figure 2, at (z, p), agent 3 is the only connected agent soN1 = N∗ = {3}.
Once NC is identified, MC , NU , and MU can be immediately obtained.

6.3 Stage 2 of SV sub-mechanism

Theorems 1 and 2 imply that by conducting a IPOIP process for each assignment
in Ω, we can find an MPE from an equilibrium. However, it is possible to find
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an MPE (i) without conducting IPOIP processes for all assignments in Ω, and
(ii) while reducing the number of rounds during a IPOIP process. Such ideas are
embodied into Stage 2 of SV sub-mechanism.
Theorem 1 and Lemma 1(ii) imply that some assignments can be disqualified

as the MPE assignments before and after conducting the IPOIP process. They
reduce the number of assignments needed to be operated via the IPOIP processes.
As direct outcomes of Theorem 1 and Lemma 1(ii), we have:

Fact 3 (Disqualification before and after IPOIP process): Let (z, p) be an
equilibrium. Let agent i and object x be unconnected at (z, p).
(i) If Vi(x; zi) ≤ C1

+(x; zNC ) = p0
x, then no MPE assignment gives x to i.

(ii) Let µ ∈ Ω and z|MU |−1(µ) be the outcome of the (|MU | − 1)−IPOIP process
for µ. If Vi(x; z

|MU |−1
i (µ)) < C1

+(x; zNC ) = p0
x, no MPE assignment gives x to i.

The implication of Fact 3 is as follows. Given an equilibrium generated by
Stage 1 of SV sub-mechanism, if it is not an MPE, we use Fact 3(i) to examine
assignments in Ω. Let DQ0 be the set of initial disqualified assignments.8

We remove DQ0 from Ω and Ω∗0 = Ω\DQ0 be the initial candidate set.
After operating the IPOIP process for some µ, we obtain its outcome z|MU |−1(µ).

Using Fact 3(ii), we examine assignments in Ω again. Let DQ(µ) be the set of
disqualified assignments after the IPOIP process for µ.9 We remove DQ(µ)

from Ω. Whenever we conduct IPOIP process for some µ, we remove DQ(µ) from
the current candidate set of MPE assignments.
Example 7 illustrates Fact 3 by introducing agent 4 to Figure 3 in Example 6.

Example 7 (Figure 3): Suppose that V4(A; (0, 0)) = V4(B; (0, 0)) = 1, and
V4(C; (0, 0)) = 2. Let z′1 = z1 = (C, 2.5), z′2 = z2 = (B, 2.5), z′3 = z3 = (A, 2),
z′4 = (0, 0), and p′ = p where z and p are depicted in Example 6. It is easy to
see that (z′, p′) is an equilibrium for the assignment market with agents {1, 2, 3, 4}
and objects {A,B,C}. At (z′, p′), N ′U = {1, 2, 3}, N ′C = {4}, M ′

U = M .
In this case, Ω = {(A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A)}.

For each x ∈M ′
U , C

1
+(x; z′N ′C

) = V4(x; z′4).
By V1(A; z′1) < C1

+(A; z′NC ), V1(B; z′1) = C1
+(B; z′NC ), and Fact 3(i), agent 1

never gets A or B at any MPE so DQ0 = {µ ∈ Ω : µ1 = A,B}. We remove DQ0

from Ω.
Let µ = (C,A,B) and assume p|MU |−1(µ) = (2, 2, 2). Then, z|MU |−1

3 (µ) =

(B, 2). By V3(C; z
|MU |−1
3 (µ)) = 1 < 2 = C1

+(A; z′NC ) and Fact 3(ii), agent 3 never
gets C at any MPE. Since (B,A,C) ∈ DQ0 is removed, DQ(µ) = {(A,B,C)} is
further removed from a candidate set after the IPOIP process for µ.

8DQ0 ≡ {µ ∈ Ω : ∃i ∈ NU , Vi(µi; z) < p0
µi
} where p0

µi
= C1

+(x; zNC
).

9DQ(µ) ≡ {µ′ ∈ Ω : ∃i ∈ NU ,∃x ∈ MU s.t. µ′i = x and Vi(x; z
|MU |−1
i (µ)) < p0

x} where
p0
x = C1

+(x; zNC
)
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Before showing how to reduce the number of rounds during a IPOIP process,
we introduce the following concept.

Definition 10: Let µ ∈ Ω and p′ ∈ R|MU |. Assignment µ survives in the
k−IPOIP process against p′ if pk(µ) ≤ p′ and for some x ∈MU , pkx(µ) = p0

x.

In other words, an assignment µ does not survive in the k−IPOIP process
against p′ if there is some x ∈ MU whose price pk(µ) exceeds p′x or the price
pk(µ) is detached from the initial price p0 coordinate-wisely. By Lemma 1(ii) and
Theorems 1 and 2, we have:

Fact 4 (Disqualification during IPOIP process): If an assignment µ ∈ Ω

does not survive in the |MU | −IPOIP process against any equilibrium price p, then
µ is not an MPE assignment.

Putting Facts 3 and 4 together, we present the following mechanism.

Definition 11: MPE-adjustment mechanism Let (z, p) be an equilibrium,
and NU and MU be defined at (z, p).
Session 0: Identify Ω. Each unconnected agent i reports Vi(x; zi) of each uncon-
nected object x. Set Ω∗0 ≡ Ω\DQ0, µ∗0 ≡ (xi)i∈NU , and p

∗0 ≡ (px)x∈MU
. Then,

go to Session 1.
Session s(≥ 1): Choose µs ∈ Ω∗s and conduct the |MU | −IPOIP process for µs.
Set Ω∗1 ≡ Ω∗0, p∗1 = p∗0, µ∗1 = µ∗0, and choose µ1 = µ∗0. Then, one of following
three cases occurs:
Case 1 : If pr(µs) = pr−1(µs) at round r ≤ |MU |, then stop the process at

(z∗, p∗) such that µ∗ ≡ µs and p
∗ ≡ pr(µs).

Case 2: If Case 1 fails to hold, but µs survives the |MU | −IPOIP process
against p∗s, then set µ∗s+1 ≡ µs and p

∗s+1 ≡ p|MU |−1(µs). Collect the disqualified
set DQ(µs), and set Ω∗s+1 ≡ Ω∗s\(DQ(µs) ∪ {µs}). Then, go to Session s+ 1.
Case 3: If both Case 1 and Case 2 fail to hold, set µ∗s+1 ≡ µ∗s, p∗s+1 ≡ p∗s,

and Ω∗s+1 ≡ Ω∗s\{µs}. Then, go to Session s+ 1.

The MPE-adjustment mechanism works as follows. Given an equilibrium (z, p),
we identify the unconnected agents NU and objectsMU . In Session 0, each uncon-
nected agent i reports her IP Vi(x; zi) at zi to each unconnected object x. Using
Fact 3(i), we obtain the initially candidate set of assignments Ω∗0. Then we set
the equilibrium assignment and price at (z, p) as the initial reference assignment
and price, i.e., µ∗0 ≡ (xi)i∈NU and p

∗0 ≡ (px)x∈MU
.

In Session 1, set Ω∗1 ≡ Ω∗0, µ∗1 = µ∗0, and p∗1 = p∗0. We choose µ1 = µ∗0 and
run the |MU | −IPOIP process for µ1. We meet one of three cases. In Case 1, if at
round r ≤ |MU |, the price remain the same as round r− 1, i.e., pr(µ1) = pr−1(µ1),
by Theorem 2, µ1 and p

r(µ1) are the MPE for unconnected agents and objects.
Case 2 deals with the situation where Case 1 fails to hold, but µ1 survives against
p∗1. Then we update the reference assignment and price by µ∗2 ≡ µ1 and p

∗2 ≡
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p|MU |−1(µ1). Using Fact 3(ii), we collect the disqualified assignments DQ(µ1) for
µ1 and remove DQ(µ1) and µ1 from Ω∗1. Set Ω∗2 ≡ Ω∗1\(DQ(µ1) ∪ {µ1}) and
proceed to Session 2. If neither Case 1 nor Case 2 holds, using Fact 4, we keep the
reference assignment and price unchanged. We just remove µ1 from Ω∗1 and set
Ω∗2 ≡ Ω∗1\{µ1}. Then we proceed Session 2, and repeat above process. Formally,
we have the following result.

Proposition 4 (Property of MPE-adjustment mechanism): Let (z, p) be an
equilibrium. The MPE-adjustment mechanism generates a sequence {(µ∗t, p∗t}Tt=0

such that
(i) T < +∞, and for each t = 1, · · · , T , p∗t ≤ p∗t−1.
(ii) µ∗T and p∗T are MPE assignment and price of unconnected agents and objects
at (z, p).

The proof of Proposition 4 is relegated to Appendix B.3. Propositions 2, 3, and
4 together establish Theorem 3. Notably, if the assignment of a given equilibrium
(z, p) is just an MPE assignment, then the MPE-adjustment mechanism stops at
Session 1. This happens for certain classes of preferences detailed in Section 8.

7 Incentive compatibilities

In this section, we investigate the incentive properties of the SV mechanism. A
rule f is a mapping from the set of general preference profiles (RG)n to the set of
allocations Z. It assigns each agent i with a bundle fi(R) at each preference profile
R. A rule f is strategy-proof if no agent can gain from misreporting her preference,
i.e., for each R ∈ (RG)n, each i ∈ N , and each R′i ∈ RG, fi(Ri, R−i)Ri fi(R

′
i, R−i).

In our model, the MPE rule that assigns each general preference profile an
MPE is strategy-proof (Demange and Gale, 1985; Morimoto and Serizawa, 2015).
Let fSV be the rule that selects the outcome of the SV mechanism. By Theorem
3, fSV coincides with the MPE rule.

Fact 5: The rule fSV is strategy-proof on the set of general preference profiles.

Fact 5 says that in the normal game form induced by fSV where agents’ac-
tions are revealing their preferences, truthfully revealing is a dominant-strategy
equilibrium.
The SV mechanism is decomposed into m steps, i.e., m SV sub-mechanisms.

Each SV sub-mechanism is decomposed into two stages, i.e., the E-generating
and MPE-adjustment mechanisms. We show that these sub-mechanisms are also
incentive compatible. In other words, even if agents are not fully rational and
their perspectives are limited to the step or the stage where they are interact-
ing, agents have incentives to reveal true preferences. Stage-wise and step-wise
incentive compatibilities are remarkable properties of the SV mechanism.
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We first study the cases in which agents’perspectives are limited to stages,
and analyze the incentive properties of the E-generating and MPE-adjustment
mechanisms. Note that the outcomes of these mechanisms depend both on the
revealed preferences and allocations obtained from previous steps or stages. Thus,
we need to introduce some notations.
For each k ∈ N+, let Zk ≡ {z ∈ Z : ∀i ∈ N, xi ∈ {0, 1, . . . , k}} be the set of

allocations for k objects (together with object 0). If k = m, then Zk = Z.
Given k, k′ ∈ N+, an augmented rule from k to k′, gk→k

′
: (RG)n × Zk → Zk′ ,

associates each preference profile R and an allocation z with k objects, to an
allocation gk→k

′
(R, z) with k′ objects. Let gk→k

′
i (·; ·) be the bundle assigned to

agent i. Given an allocation z ∈ Zk, gk→k
′
(·; z) induces a normal game form. If all

agents’actions are revealing their preferences, (gk→k
′
, R) forms a revelation game.

Definition 12: Let k, k′ ∈ N+, R ∈ (RG)n, and z ∈ Zk. Revealing R is a (weakly)
dominant-strategy from z in gk→k

′
(·; z) if for each i ∈ N , each R′i ∈ RG, and

each R−i ∈ (RG)n−1, gk→k
′

i (Ri, R−i; z)Ri g
k→k′
i (R′i, R−i; z).

Consider the case of k = 0 and k′ = |M |. Then Z0 = {0} where 0 ≡(0, 0)i∈N .
Let g0→|M |(·;0) = fSV (·). Then revealing R is a dominant-strategy equilibrium
from 0 in g0→|M |(·;0) if and only if fSV (·) is strategy-proof.
Let gsub1(·; ·) be the augmented rule from k to k + 1 such that if z ∈ Zk

is an MPE allocation for R, gsub1(R; z) selects the outcome of the E-generating
mechanism in the SV sub-mechanism for k + 1 objects. Notice that gsub1(·; z)

depends on both the preferences revealed in the E-generating mechanism and
recorded DCPs at z ∈ Zk, which depends on the preferences revealed in Step k of
the SV mechanism.
Let gsub2(·; ·) be the augmented rule from k + 1 to k + 1 such that if z ∈

Zk+1 is an equilibrium allocation for R, gsub2(R; z) selects the outcome of the
MPE-adjustment mechanism in the SV sub-mechanism for k + 1 objects. Notice
that gsub2(·; z) depends both on the preferences revealed in the MPE-adjustment
mechanism and the recorded NC , NU , MC and MU at z ∈ Zk+1, which depends
on the preferences revealed in Stage 1 in the SV sub-mechanism for k + 1 objects

Proposition 5: Let 0 ≤ k < |M | and R ∈ (RG)n.
(i) For each z ∈ Zk, if z is an MPE allocation for R, then revealing R is a
dominant-strategy equilibrium from z in gsub1(·; z).
(ii) For each z ∈ Zk+1, if z is an equilibrium allocation for R, then revealing R is
a dominant-strategy equilibrium from z in gsub2(·; z).

The proof of Proposition 5 is relegated to Appendix C.1. Proposition 5 states
“stage-wise strategy-proofness” of the SV sub-mechanism. In Stage 1, when a
new object is introduced, no agent can gain by misreporting. In Stage 2, at the
equilibrium obtained in stage 1, no agent can gain by misreporting. Thus, even if
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agents’perspectives are myopic and limited to the stages where they are currently
interacting, agents have incentives to reveal their true preferences.
Finally, we investigate the cases in which agents’perspectives are beyond stages

but limited to steps, and show that the SV sub-mechanism, the composition of
above two mechanisms, is also incentive compatible. Let gsub(·; ·) be the aug-
mented rule from k to k + 1 such that if z ∈ Zk is an MPE allocation for R,
gsub(R; z) coincides with the outcome of the SV sub-mechanism for k + 1 objects.
Notice that gsub(·; z) depends on both the preferences revealed in the SV sub-
mechanism for k + 1 objects, and the recorded information on DCPs at z ∈ Zk

which depends on the preferences revealed in Step k in the SV mechanism.

Theorem 4: Let 0 ≤ k < |M | and R ∈ (RG)n. For each z ∈ Zk, if z is an MPE
allocation for R, then revealing R is a dominant-strategy equilibrium from z in
gsub(·; z).

The proof of Theorem 4 is relegated to Appendix C.2. Theorem 4 states “step-
wise strategy-proofness”of the SV sub-mechanism. Theorem 4 is not implied by
Fact 5, since at each step, the SV sub-mechanism involves a different number of
objects. As discussed below, it is not implied Proposition 5 either.
To see how Theorem 4 works, we discuss its sketch proof idea. We fix an agent

i and show that she cannot benefit from misreporting. We first give some facts
and then construct three lemmas, as the preliminary results. Fact C.1 extends
Fact 5 by introducing reserve price. Fact C.5 shows that given an MPE, the MPE
allocation of any subset of agents that includes all unconnected agents, is an MPE
with reserve price of the subeconomy that excludes the remaining agents and sets
the reserve price of each object as the maximum value of all reported IPs by those
excluded agents at the given MPE. Facts C.2 to C.4, Fact C.6, and three lemmas
show how prices are adjusted and objects are reallocated, and identify the set of
agents and objects that preserve the connectedness or unconnectedness properties
at the outcome of Stage 1, when agent i misreports.
We complete the proof by considering two cases. In Case I, agent i is connected

(at the outcome of Stage 1) under truthful reporting. We show that agent i is
always connected even if she misreports. By Proposition 5(i), this implies that
agent i never gains by misreporting in Stage 1. Thus, by Theorem 1(i), she cannot
gain from misreporting.
In Case II, agent i is unconnected under truthful reporting. By misreporting,

agent i can indirectly influence the outcome of Stage 2 by making the set of
unconnected agents unchanged, expanded or shrunk at the outcomes of Stage 1.
Such impacts invalidate Proposition 5(ii). We develop new techniques that employ
Fact C.5 so that Fact C.1 implies that agent i cannot gain from misreporting.
We end this section by discussing the welfare property of the SV mechanism.

First, agents’welfare is non-decreasing with the number of introduced objects in
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the SV mechanism. This result follows Proposition 4 and the fact that agents are
better offat the MPEs with a larger number of objects (Demange and Gale, 1985).
Second, agents’welfare is non-decreasing stage-wise within the SV sub-mechanism.
By construction, agents’welfare at the outcome of Stage 1 is bounded below by
that at the given MPE. By Lemma 1, agents’welfare at the outcome of Stage 2
is bounded below by that at the equilibrium obtained in Stage 1.

8 Concluding remarks

We conclude by providing some further discussions related to the applications,
generality, and dynamic incentive property of the SV mechanism.

• Application of the SV mechanism to restricted preference settings
Quasi-linearity is widely assumed in the multi-object auction models such as

Demange et al. (1986), Mishra and Parkes (2010), and Andersson and Erlanson
(2013). Assuming quasi-linearity simplifies Stage 2 of the SV sub-mechanism.
Any equilibrium assignment is an MPE assignment of unconnected objects, i.e.,
µ∗0 is just an MPE assignment so the MPE-adjustment mechanism stops only after
Session 1. Different from the above-mentioned three papers, the SV mechanism
does not require that agents have integer valuations and the increment/decrement
is unitary in the auctions. In contrast, agents are allowed to have arbitrary real
numbers as their valuations of objects.
The Alonso-type (discrete) housing market is well-studied in the urban eco-

nomics. In such a market, houses are identical but different only in locations.
Agents have the same utility functions and at each payment, agents commonly
prefer houses with shorter distance to the city center than those with longer dis-
tance. Agents are distinguished only by their incomes and consuming houses
exhibits positive income effects. In this model, all the equilibrium assignment is
positively assortative, i.e., agents with higher incomes obtain houses nearer to the
city center (Zhou and Serizawa, 2018). Such an equilibrium property simplifies
the SV sub-mechanism in the same way as the quasi-linearity.
However, there is no such simplification when we apply the structural results

in Caplin and Leahy (2014) and Alaei et al. (2016) to find an MPE in above
restricted settings.

• The assignment market without outside option
In the assignment market without outside option, there is no object 0 and each

agent is exactly assigned one object (|N | ≤ |M |). This model is also called the
task-assignment model analyzed by, e.g., Sun and Yang (2003), Andersson (2007),
and Noldeke and Samuelson (2018).
In such settings, equilibria and MPEs are defined as “envy-free allocations,”

and “fair and optimal allocations” (Sun and Yang, 2003). Theorems 1 and 2,
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together with MPE-adjustment mechanism, identify a fair and optimal allocation.
Andersson (2007) provides a continuous-time auction for the fair and optimal

allocation for quasi-linear preferences. However, when preferences are general, the
continuous-time auction may not be well defined (Crawford and Knoer, 1981). We
remark that the structural result in Alaei et al. (2016) to find an MPE depends
on the existence of object 0, so it fails to identify the fair and optimal allocation.

• Alternative incentive compatibility concepts
Li (2017) introduces a notion of “obvious strategy-proofness,”which requires

that in the game form induced by the mechanism, along the equilibrium path, by
comparing the maximum payoff among all deviations with the minimum payoffby
following the truth-telling strategy, no agent have incentive to deviate. Obvious
strategy-proofness implies that even if agents’cognitive powers or perspectives are
limited, they have incentives to reveal their true preferences. Li (2017) demon-
strates in an auction model with one object that the ascending auction is obvious
strategy-proof. However, nontrivial obvious strategy-proof mechanisms exist only
in limited environments. For example, Ashlagi and Gonczarowski (2018) show that
in matching models, no stable matching mechanisms is obviously strategy-proof
for any side of the market. The SV mechanism is not obvious strategy-proof, but
still incentivizes agents with limited perspectives to reveal their true preferences
(step-wise and stage-wise incentive strategy-proofness).
Ausubel (2006) and Sun and Yang (2014) study the auction mechanisms for

heterogenous objects where agents have multi-unit demand quasi-linear prefer-
ences. They show that sincere bidding forms an ex-post perfect equilibria (EXPE)
in the game form induced by their mechanisms. EXPE is stronger than step-wise
and stage-wise strategy-proofness in that it is off-path incentive compatible. On
the other hand, step-wise and stage-wise strategy-proofness is stronger than EXPE
in that it gives on-path dominant strategy of agents. Thus, our incentive notions
are independent of EXPE.

There are two promising venues for future research. The first is to study the
empirical implications of SV mechanism. The techniques developed by Galichon et
al. (2019) may help. The second is to extend the insights of the current structural
characterizations and SV mechanism to more general models such as the exchange
economy or the trading networks.
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Appendix
Part A gives the proofs of results in Section 5. Part B gives the proofs of

results in Section 6. Part C gives the proofs of results in Section 7.

Appendix A: Proofs of Proposition 1, Lemma 1, Theorems 1 and 2

Definition A.1: (i) A non-empty set M ′ ⊆ M of objects is overdemanded at
p if |{i ∈ N : Di(p) ⊆M ′}| > |M ′|.
(ii) A non-empty set M ′ ⊆M of objects is (weakly) underdemanded at p if

[∀x ∈M ′, px > 0]⇒ |{i ∈ N : Di(p) ∩M ′ 6= ∅}| (≤) < |M ′| .

Fact A.1 (Mishra and Talman, 2010; Morimoto and Serizawa, 2015). p is an
equilibrium price vector⇐⇒ no set is overdemanded and no set is underdemanded
at p.
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Fact A.2 (Alkan and Gale, 1990; Morimoto and Serizawa, 2015). p is an MPE
price ⇐⇒ no set is overdemanded and no set is weakly underdemanded at p.

Fact A.3: Let (z, p) ∈ W andMC be defined at (z, p). LetM ′ ⊆MC be such that
M ′ 6= ∅ and for each x ∈M ′, px > 0. Then, |{i ∈ N : Di(p) ∩M ′ 6= ∅}| > |M ′|.
Proof : Since (z, p) ∈ W , and for each x ∈M ′, px > 0, then by Fact A.1,
|{i ∈ N : Di(p) ∩M ′ 6= ∅}| ≥ |M ′|. To show “>”, we proceed by contradiction.
Suppose that |{i ∈ N : Di(p) ∩M ′ 6= ∅}| = |M ′|. Then, by M ′ ⊆MC ,

for each i ∈ N such that Di(p) ∩M ′ 6= ∅, xi ∈M ′, and i ∈ NC . (∗)

Let i ∈ N such that xi ∈M ′. Then by (∗), i ∈ NC . By xi ∈M ′, pxi > 0. By
Definition 2, there is a sequence {iλ}Λ

λ=1 of Λ distinct agents such that
(a) xi1 = 0 or pxi1 = 0,
(b) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0,
(c) xiΛ = xi, and
(d) for each λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1

} ∈ Diλ(p).
Claim: Let l = 1, · · · ,Λ−1 andN(l) ≡ {iΛ−1, · · · , iΛ−l}. Then, for each j ∈ N(l),
xj ∈M ′.
Step 1: The Claim holds for l = 1.
By (c), xiΛ = xi ∈M ′. By (d), DiΛ−1

(p) ∩M ′ 6= ∅. Thus by (∗), xiΛ−1
∈M ′.

Induction hypothesis: The Claim holds for s such that 1 ≤ s < Λ− 1.
Step 2: The Claim holds for l = s+ 1.
By induction hypothesis, xiΛ−s ∈ M ′. By (d), xiΛ−s ∈ DiΛ−(s+1)

(p). Thus
DiΛ−(s+1)

(p) ∩M ′ 6= ∅. Thus by (∗), xiΛ−(s+1)
∈M ′.

Let l = Λ − 1. The above Claim implies that for each j ∈ {i1, · · · , iΛ−1},
xj ∈M ′. If |Λ| > |M ′|, then the feasibility condition is violated. If |Λ| ≤ |M ′|, then
by xi1 ∈M ′, pxi1 > 0 and (a) is violated. Thus |{i ∈ N : Di(p) ∩M ′ 6= ∅}| = |M ′|
does not hold. Q.E.D.

Given p ∈ Rm+ and M ′ ⊆M , let pM ′ ≡ (px)x∈M ′ and pM\M ′ ≡ (px)x∈M\M ′ .

A.1 Proof of Proposition 1
Proof : We prove Proposition 1 by showing (i)=⇒(ii)=⇒(iii)=⇒(i).
Step 1: (i)=⇒(ii), i.e., p = pmin =⇒ N = NC

Obviously NC ⊆ N . For each i ∈ N , if pxi = 0, by Definition 3 and Remark
1(iii), xi is connected so i ∈ NC . If pxi > 0, by Corollary 2 in Morimoto and
Serizawa (2015) and Definition 3, i ∈ NC . Thus N ⊆ NC . Thus N = NC .
Step 2: (ii)=⇒(iii), i.e., N = NC =⇒M = MC .
Obviously MC ⊆ M . For each x ∈ M , if x is assigned, by N = NC and

Definition 3, x ∈MC . If x is unassigned, by Definition 2, x ∈MC . ThusM ⊆MC .
Thus M = MC .
Step 3: (iii)=⇒(i), i.e., M = MC =⇒ p = pmin.
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Since (z, p) ∈ W , then p ≥ pmin. To prove p = pmin, by contradiction,
suppose that there is a non-empty set M ′ ⊆ M such that for each x ∈ M ′,
px > pmin

x ≥ 0. Since M = MC , then M ′ ⊆ MC . Since (z, p) ∈ W , by Fact A.3,
|{i ∈ N : Di(p) ∩M ′ 6= ∅}| > |M ′|. Thus, for each i ∈ N such thatDi(p)∩M ′ 6= ∅,
by pmin

M ′ < pM ′ , Di(p
min) ⊆M ′. Thus∣∣{i ∈ N : Di(p

min) ⊆M ′}
∣∣ > |M ′| .

Thus M ′ is overdemanded at pmin, violating Fact A.2. Thus p = pmin. Q.E.D.

A.2 Proof of Lemma 1

Proof : Part (i): By Definition 2, for each x ∈ MU , px > 0. By (z, p) ∈ W , for
each x ∈ MU , there is i ∈ N such that xi = x. By Definition 3, i ∈ N\NC = NU .
Thus |MU | ≤ |NU |.
If there is i ∈ NU such that xi = 0, then by Definition 3 and Remark 1(iii),

i ∈ NC , a contradiction. Thus, for each i ∈ NU , xi ∈ M , and by Definition 2,
xi /∈MC . Thus xi ∈M\MC = MU . Thus |NU | ≤ |MU |. Thus |MU | = |NU |.
Part (ii): Step 1: For each x ∈MU , pmin

x < px.
We proceed by contradiction. Suppose that there is a non-empty setM ′ ⊆MU

such that for each x ∈ M ′, pmin
x = px. By Definition 2, for each x ∈ M ′, pmin

x =

px > 0.
If there is i ∈ NC such that Di(p) ∩M ′ 6= ∅, then by Definition 3, for j ∈ N

such that xj ∈ Di(p)∩M ′, j ∈ NC . Thus, for each i ∈ NC , Di(p)∩M ′ = ∅. Thus
by Definition 2, xj ∈ MC , contradicting xj ∈ M ′ ⊆ MU . Thus, by p ≥ pmin and
pmin
M ′ = pM ′ ,

for each i ∈ NC , Di(p
min) ∩M ′ = ∅. (∗)

Since pmin
MU\M ′ < pMU\M ′ and p

min
M ′ = pM ′ , then

for each i ∈ NU such that xi ∈MU\M ′, Di(p
min) ∩M ′ = ∅. (∗∗)

Thus, ∣∣{i ∈ N : Di(p
min) ∩M ′ 6= ∅}

∣∣
=

∣∣{i ∈ N\NC : Di(p
min) ∩M ′ 6= ∅}

∣∣ by (∗)
=

∣∣{i ∈ NU : Di(p
min) ∩M ′ 6= ∅}

∣∣
≤ |NU | − |{i ∈ NU : xi ∈MU\M ′}| by (∗∗)
= |{i ∈ NU : xi ∈M ′}| = |M ′| .

Thus M ′ is weakly underdemanded, violating Fact A.2.
Step 2: For each x ∈MU , pmin

x ≥ C1
+(x; zNC ).
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We proceed by contradiction. Suppose that there is a non-empty setM ′ ⊆MU

such that for each x ∈M ′, 0 ≤ pmin
x < C1

+(x; zNC ).

Case 1: For each x ∈MC , pmin
x = px.

For each i ∈ NU and each x ∈MC ∪ {0},

zmin
i Ri

Def of Equilibrium
(xi, p

min
xi

) Pi
Step 1

zi Ri
Def of Equilibrium

(x, px) = (x, pmin
x ).

Thus, for each i ∈ NU , Di(p
min) ∩ (MC ∪ {0}) = ∅ and thus Di(p

min) ⊆MU .
Since for each x ∈ M ′, 0 ≤ pmin

x < C1
+(x; zNC ), then there is i ∈ NC such that

Vi(x; zi) = C1
+(x; zNC ) > 0, and so by pMC

= pmin
MC
, Di(p

min) ⊆MU . Thus,∣∣{i ∈ N : Di(p
min) ⊆MU}

∣∣ ≥ 1 + |NU | >
(i)
|MU | .

Thus M ′ is overdemanded, violating Fact A.2.
Case 2: There is a non-empty set M ′′ ⊆MC such that 0 ≤ pmin

x < px.
For each i ∈ NU , since pmin

MC\M ′′ = pMC\M ′′ , by the same reasoning as in Case 1,
Di(p

min) ∩ (MC ∪ {0}\M ′′) = ∅ and thus Di(p
min) ⊆MU ∪M ′′.

By the construction ofM ′′ ⊆MC and Fact A.3, |{i ∈ NC : Di(p) ∩M ′′ 6= ∅}| >
|M ′′|. For each i ∈ NC with Di(p) ∩M ′′ 6= ∅, by pmin

MC\M ′′ = pMC\M ′′ and for each
x ∈M ′′, px > pmin

x , Di(p
min) ⊆M ′′ ∪MU . Thus,∣∣{i ∈ N : Di(p

min) ⊆M ′′ ∪MU}
∣∣ ≥ |NU |+ |{i ∈ NC : Di(p) ∩M ′′ 6= ∅}|

>
Lemma 1(i)

|MU |+ |M ′′| = |{M ′′ ∪MU}|

Thus M ′′ ∪MU is overdemanded, violating Fact A.2.
Part (iii) First, we show the following claim:
Claim A.1: For each x ∈MC , px = pmin

x .
By contradiction, suppose that there is a non-empty set M ′ ⊆ MC such that

for each x ∈M ′, px > pmin
x ≥ 0.

For each i ∈ NC and each x ∈ MU , ziRi (x,C
1
+(x; zNC )) Ri

Lemma 1(ii)
(x, pmin

x ).

Thus, for each i ∈ NC with Di(p) ∩M ′ 6= ∅, by pM ′ > pmin
M ′ , Di(p

min) ∩MU = ∅.
By Fact A.3, |{i ∈ NC : Di(p) ∩M ′ 6= ∅}| > |M ′| . Thus, for each i ∈ NC with

Di(p) ∩ M ′ 6= ∅, by Di(p
min) ∩ MU = ∅, pM ′ < pmin

M ′ , and pMC\M ′ = pmin
MC\M ′ ,

Di(p
min) ⊆M ′. Thus

∣∣{i ∈ NC : Di(p
min) ⊆M ′}

∣∣ > |M ′|, violating Fact A.2.
Thus, for each i ∈ NU and each x ∈MC ∪ {0},

zmin
i Ri

Def of Equilibrium
(xi, p

min
xi

) Pi
Step 1 in (ii)

zi Ri
Def of Equilibrium

(x, px) =
Claim A.1

(x, pmin
x ) .

Thus, for each i ∈ NU , xmin
i ∈MU . Q.E.D.
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A.3 Proof of Theorem 1

First, we propose two lemmas.

Lemma A.1: Let (z, p) ∈ W , and (zmin, pmin) ∈ Wmin. Let NC andMU be defned
at (z, p).Then there is x ∈MU such that pmin

x = C1
+(x; zNC ).

Proof : LetMC andNU be the sets of connected objects and unconnected agents at
(z, p), respectively. We proceed by contradiction. Suppose that for each x ∈MU ,
pmin
x > C1

+(RNC , x; z). By Lemma 1(ii), for each i ∈ NC , Di(p
min)∩MU = ∅. Thus,∣∣{i ∈ N : Di(p

min) ∩MU 6= ∅}
∣∣

=
∣∣{i ∈ NU : Di(p

min) ∩MU 6= ∅}
∣∣

≤ |NU | =
Lemma 1(i)

|MU | .

Thus, MU is weakly underdemanded, contradicting Fact A.2. Thus there is
x ∈MU such that pmin

x = C1
+(RNC , x; z). Q.E.D.

Lemma A.2: Let µ be an MPE assignment. In the IPOIP process for µ,
(i) for each x ∈MU and each s = 1, · · · , psx(µ) ≤ pmin

x , and
(ii) for each x ∈MU and each s = 1, · · · , if ps−1

x (µ) = pmin
x , then psx(µ) = ps−1

x (µ).

Proof : Part (i) We prove by induction.
Step 1: For each x ∈MU , p1

x(µ) ≤ pmin
x .

For each x ∈ MU , by Lemma 1(ii), p0
x ≡ C1

+(RNC , x; z0) ≤ pmin
x . Thus, for

each x ∈ MU and each i ∈ NC , Vi(y; zi) ≤ p0
x ≤ pmin

x . For each x ∈ MU and each
j ∈ NU ,

Vj(x; z0
j(µ)) ≤

p0
µ(j)
≤pmin

µ(j)

Vj(x; (µ(j), pmin
µ(j))) ≤

Def of EquilibRIum
pmin
x .

Thus, for each x ∈MU , p1
x(µ) = C1

+(x; z0
NU

(µ)) ≤ pmin
x .

Induction hypothesis: For some s ≥ 1, and for each x ∈MU , psx(µ) ≤ pmin
x .

Step 2: For each x ∈MU , ps+1
x (µ) ≤ pmin

x .
For each x ∈MU , by Lemma 1(ii), p0

x = C1
+(RNC , x; z0) ≤ pmin

x . Thus, for each
x ∈MU and each i ∈ NC , Vi(y; zi) ≤ p0

x ≤ pmin
x .

For each x ∈MU and each j ∈ NU ,

Vj(x; zsj(µ)) ≤
ps
µ(j)
≤pmin

µ(j)

Vj(x; (µ(j), pmin
µ(j))) ≤

Def of Equilibrium
pmin
x .

Thus, for x ∈MU , ps+1
x (µ) ≡ C1

+(x; zsNU (µ)) ≤ pmin
x .

(ii) Let x ∈ MU and s ∈ N+ be such that ps−1
x (µ) = pmin

x . By Lemma A.1 and
Fact 2, ps−1

x (µ) ≤ psx(µ) = pmin
x . Thus, psx(µ) = ps−1

x (µ). Q.E.D.
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Part (i) of Theorem 1: We only show that for each i ∈ NC , zi = zmin
i . With

Claim A.1 in the proof of Lemma 1(iii), we establish Theorem 1(i).
For each i ∈ NC and each x ∈MU ,

ziRi (x,C
1
+(x; zNC )) Ri

Lemma 1(ii)
(x, pmin

x ).

and for each y ∈MC ∪ {0},

zi Ri
Def of Equilibrium

(y, py) = (y, pmin
y ).

Thus for each i ∈ NC and each x ∈ L, ziRi (x, p
min
x ) and thus ziRi z

min
i . Note that

zmin
i Ri (xi, p

min
xi

) Ii (xi, pxi) = zi.

Thus zmin
i Ii zi. By Lemma 1(iii), for each i ∈ NC , xmin

i ∈ MC ∪ {0}. Thus, for
each i ∈ NC , we can set zi = zmin

i while let unassigned objects at (z, p) remain
unassigned at (zmin, pmin).
Part (ii) of Theorem 1: Step 1: Let µ be an MPE assignment. Then
p|MU |−1(µ) = pmin

MU
.

First, we show Claim A.2.
Claim A.2: For each s = 0, 1, · · · , let Ms ≡ {x ∈ MU : psx(µ) = pmin

x } and
Ns ≡ {i ∈ NU : µi ∈Ms}. Then, for each s = 0, 1, · · · ,
(a) |Ms| = |Ns|, and (b) if MU\Ms 6= ∅, then Ms+1 )Ms.
By Definition, for each s = 0, 1, · · · , (a) holds. Thus, we show only (b).
Let MU\Ms 6= ∅. By Step 1-2, Ms+1 ⊇ Ms. Suppose that Ms+1 = Ms. By

Lemma A.2(i), for each x ∈ MU\Ms, pmin
x > psx(µ) ≥ p0

x. Thus, by Ms+1 = Ms,
for each x ∈ MU\Ms, p0

x ≤ ps+1
x (µ) < pmin

x . By Lemma 1(ii), for each i ∈ NC ,
Di(p

min) ∩ (MU\Ms) = ∅.
If i ∈ Ns, then for each x ∈MU\Ms,

Vi(x, z
min
i ) =

i∈Ns
Vi(x, z

s
i (µ)) ≤ C1

+(x; zsNU (µ)) = ps+1
x (µ) < pmin

x .

Thus, for each i ∈ Ns, Di(p
min) ∩ (MU\Ms) = ∅.

Since for each i ∈ NC ∪Ns, Di(p
min) ∩ (MU\Ms) = ∅, then

{i ∈ N : Di(p
min) ∩ (MU\Ms) 6= ∅} = {i ∈ NU\Ns : Di(p

min) ∩ (MU\Ms) 6= ∅}.

and so∣∣{i ∈ NU\Ns : Di(p
min) ∩ (MU\Ms) 6= ∅}

∣∣ ≤ |NU\Ns| =
Lemma 1(i) and (a)

|MU\Ms| .

Thus MU\Ms is weakly underdemanded, contradicting Fact A.2.
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Now we complete the proof of Step 1. If MU\M0 = ∅, then for each x ∈ MU ,
p0
x(µ) = pmin

x , and so Lemma A.2(ii) implies that for each x ∈ MU , p|MU |−1
x (µ) =

pmin
x . Thus, assume MU\M0 6= ∅. Then, Claim A.2 says that as s increases, Ms

expands strictly until {x ∈ MU : psx(µ) = pmin
x } = MU . Since Lemma A.1 implies

M0 6= ∅, Ms expands strictly at most |MU | − 1 times. Thus, {x ∈ MU : pmin
x =

p|MU |−1
x (µ)} = MU , i.e., for x ∈MU , p|MU |−1

x (µ) = pmin
x .

Step 2: Let µ′ ∈ Ω be a non-MPE assignment. Then, pmin
MU
≤ p|MU |−1(µ′).

Definition A.2: Let xmin
NU

be an MPE assignment, µ′ ∈ Ω, and i ∈ NU . A
sequence {σl(i)}dl=1 of distinct agents (1 ≤ d ≤ n) is called a trading cycle from
i in µ′ if (i) σ1(i) = i, and (ii) for each l ∈ {1, · · · , d − 1}, µ′

σl+1(i)
= xmin

σl(i)
and

µ′σ1(i) = xmin
σd(i)

.

Step 2-1: Let i ∈ NU , and {σl(i)}dl=1 be a trading cycle from i in µ′ and s ≥ 0.
If ps

xmin
µ′(i)

(µ′) ≥ pmin
xmin
µ′(i)
, then for each j ∈ {σ1(i), · · · , σd(i)}, ps+d

xmin
j

(µ′) ≥ pmin
xmin
j
.

If d = 1, then Step 2-1 trivially holds. In the following, let d ≥ 2. In the proof,
without loss of generality, we assume that i = σ1(i) = 1, σ2(i) = 2, · · · , σd(i) = d.
Then, µ′2 = xmin

1 , µ′3 = xmin
2 , · · · , µ′d = xmin

d−1, µ
′
1 = xmin

d and ps
xmin
d

(µ′) ≥ pmin
xmin
d
. We

inductively show that for each j ∈ {1, · · · , d}, ps+dj (µ′) ≥ pmin
j . Note that

ps+1
xmin

1
(µ′) = C1

+(xmin
1 ; zsNU (µ′))

≥ V1(xmin
1 , zs1(µ′)) (1)

= V1(xmin
1 , (xmin

d , psxmin
d

(µ′))) by µ′(1) = xmin
d

≥ V1(xmin
1 , (xmin

d , pmin
xmin
d

(µ′))) by ps
xmin
d

(µ′) ≥ pmin
xmin
d

(µ′)

≥ pmin
xmin

1
. Def of Equilibrium

Thus, ps+1
xmin

1
(µ′) ≥ pmin

xmin
1
.

Let j ∈ {1, · · · , d}, and assume that ps+jj (µ′) ≥ pmin
j . Then, by similar

reasoning as above but replacing µ′1 = xmin
d and ps

xmin
d

(µ′) ≥ pmin
xmin
d

by µ′j+1 =

xmin
j and ps+jj (µ′) ≥ pmin

j , respectively, ps+j+1
j+1 (µ′) ≥ pmin

j+1 holds. Thus, for each
k ∈ {1, · · · , d}, ps+k

xmin
k

(µ′) ≥ pmin
xmin
k
. Thus, by Fact 2, for each j ∈ {1, · · · , d},

ps+dj (µ′) ≥ pmin
j .

Step 2-2: Let xmin
NU

be an MPE assignment and µ′ ∈ Ω. Let {Nl(µ
′)}l∈K be a

partition of NU such that K ≡ {1, · · · , k}, and for each l ∈ K, agents in Nl(µ
′)

form a trading cycle.10 Let L0 ≡ {l ∈ K : there is i ∈ Nl(µ
′) s.t. pmin

xmin
i

= p0
xmin
i
}

and M0 ≡ {x ∈ MU :there is i ∈ ∪
r∈L0

Nr(µ
′) s.t. µ′i = x}. For each s = 1, 2, · · · ,

10Precisely, there is i ∈ Nl(µ′) such that there is a sequence {σl(i)}
|Nl(µ

′)|
l=1 of distinct agents

forming a trading cycle from i in µ′
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let Ls ≡ {l ∈ K :there are i ∈ Nl(µ
′) and j ∈ ∪

r∈Ls−1

Nr(µ
′) s.t. zmin

j Ij z
min
i } and

Ms ≡ {x ∈MU :there is i ∈ ∪
r∈Ls

Nr(µ
′) s.t. µ′i = x}. Then, for each s = 0, 1, · · · ,

(a)

∣∣∣∣ ∪r∈LsNr(µ
′)

∣∣∣∣ = |Ms| , and (b) if K\Ls 6= ∅, then Ls+1 ! Ls.

By definition, for each s = 0, 1, · · · , (a) holds. Thus, we show only (b).
Let K\Ls 6= ∅. By Definition, Ls+1 ⊇ Ls. Suppose that Ls+1 = Ls. By

K\Ls 6= ∅, and Lemma 1(i), MU\Ms 6= ∅. For each x ∈ MU\Ms, by Ls+1 = Ls,
x /∈M0 and so by Lemma 1(ii), pmin

x > p0
x. Thus, by Lemma 1(ii), for each i ∈ NC ,

Di(p
min) ∩ (MU\Ms) = ∅.
Let i ∈ ∪

r∈Ls
Nr(µ

′) and x ∈ MU\Ms. Let j ∈ NU be such that µ′(j) = x,

i.e., zmin
j = (x, pmin

x ). By x ∈ MU\Ms and Ls+1 = Ls, j /∈ ∪
r∈Ls+1

Nr(µ
′). Thus,

by i ∈ ∪
r∈Ls

Nr(µ
′), zmin

i Ii z
min
j does not hold. By the definition of equilibrium,

zmin
i Ri z

min
j and so zmin

i Pi z
min
j , i.e., x /∈ Di(p

min). Thus for each i ∈ ∪
r∈Ls

Nr(µ
′),

Di(p
min) ∩ (MU\Ms) = ∅.
Since for each i ∈ ∪

r∈Ls
Nr(µ

′) ∪NC , Di(p
min) ∩ (MU\Ms) = ∅, then

{i ∈ N : Di(p
min)∩(MU\Ms) 6= ∅} = {i ∈ NU\ ∪

r∈Ls
Nr(µ

′) : Di(p
min)∩(MU\Ms) 6= ∅},

and so ∣∣∣∣{i ∈ NU\ ∪
r∈Ls

Nr(µ
′) : Di(p

min) ∩ (MU\Ms) 6= ∅}
∣∣∣∣

≤
∣∣∣∣NU\ ∪

r∈Ls
Nr(µ

′)

∣∣∣∣ =
Lemma 1(i) and (a)

|MU\Ms| .

Thus, MU\Ms is weakly underdemanded, contradicting Fact A.2. Thus, (b)
Ls+1 ! Ls holds.

Now we complete the proof of Step 2. By the finiteness of NU , Step 2-2 implies
that there is q ∈ {0, · · · , k} such that Lq = K. Let d0 ≡ max

l∈L0

|Nl(µ
′)| and for each

r = 1, · · · , q, dr ≡ max
l∈Lr\Lr−1

|Nl(µ
′)|. By Fact B.4, L0 6= ∅.

If q = 0, then d0 ≤ |NU | = |MU |. Thus, by Step 2-1 and Fact 2, at round
d0 − 1, for each x ∈ MU , pmin

x ≤ pd0−1
x (µ′) ≤ p|MU |−1

x (µ′). If q > 0, by Step 2-1,
at round d0 − 1, for each x ∈ M0, pmin

x ≤ pd0−1
x (µ′) and there is y ∈ M1\M0 such

that pmin
y ≤ pd0−1

y (µ′). By Step 2-1, at round d0 + d1 − 1, for each x ∈ M1\M0,
pmin
x ≤ pd0+d1−1

x (µ′). By Fact 2, for each x ∈ M0, pmin
x ≤ pd0+d1−1

x (µ′). Thus for

each x ∈M1, pmin
x ≤ pd0+d1−1

x (µ′). By induction argument, at round D ≡
q∑
i=0

di−1,

33



for each x ∈ MU , pmin
x ≤ pDx (µ′). Since D ≡

q∑
i=0

di ≤ |NU | = |MU |, then for each

x ∈MU , pmin
x ≤ pd0−1

x (µ′) ≤ p|MU |−1
x (µ′). Thus Step 2 holds.

Step 3: Completion of the proof
By Fact 1, there is µ ∈ Ω such that µ is an MPE assignments. By Step 1,

for each x ∈ MU , pmin
x = p|MU |−1

x (µ). By Step 2, for each µ′ ∈ Ω\{µ} and each
x ∈MU , pmin

x ≤ p
|MU |−1
x (µ′). Thus Theorem 1(ii-2) holds. Q.E.D.

A.4 Proof of Theorem 2
By Lemma A.2(ii), (ii) implies (i). Thus, we only show that (i) implies (ii).

Let µ ∈ Ω and s ≤ |MU | be such that ps−1
MU

(µ) = psMU
(µ).

First, we introduce a weak variant of connectedness.

Definition A.3: Let (z, p) ∈ Z × Rm. An agent i ∈ N is weakly connected at
p if there is a sequence {iλ}Λ

λ=1 of Λ distinct agents such that
(i) xi1 = 0 or pxi1 = 0,
(ii) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0,
(iii) xiΛ = xi, and
(iv) for each λ ∈ {1, · · · ,Λ− 1}, ziλ Iiλ ziλ+1

.

Definition A.3 is weaker than Definition 3 since the weak connectedness does
not require that for each λ ∈ {1, · · · ,Λ − 1}, {xiλ , xiλ+1

} ⊆ Diλ(p), but instead
only ziλ Iiλ ziλ+1

.

Definition A.4: Let (z, p) ∈ Z × Rm. An object x ∈ M is weakly connected
at p if (i) x is assigned to a weakly connected agent or (ii) x is unassigned.

Let (z, p) ∈ W , and NC and MC be defined at (z, p). Then agents in NC and
objects in MC are all weakly connected.

Step 1: For each x ∈MU , x is a weakly connected object at (ps−1(µ), pMC
).

Let M ′ be the set of weakly connected objects in MU at (ps−1(µ), pMC
). To

prove M ′ = MU , we proceed by contradiction. Suppose that MU\M ′ 6= ∅. Let
N ′ ≡ {i ∈ NU : µi ∈ M ′}. Then, N ′ is the set of weakly connected agents in
NU at (ps−1(µ), pMC

), and |M ′| = |N ′|. Then by Lemma 1(i) and |M ′| = |N ′|,
NU\N ′ 6= ∅.
If there is x ∈MU\M ′ such that ps−1

x (µ) = C1
+(x; zNC ), then either ps−1

x (µ) = 0

or there is some j ∈ NC such that (x, ps−1
x (µ)) Ij zj, contradicting x ∈ MU\M ′.

Thus, for each x ∈ MU\M ′, ps−1
x (µ) 6= C1

+(x; zNC ). Thus, by Fact 2, for each
x ∈MU\M ′, ps−1

x (µ) ≥ C1
+(x; zNC ) and so ps−1

x (µ) > C1
+(x; zNC ) ≥ 0.

Let x ∈ MU\M ′. Note that ps−1
x (µ) ≡ C1

+(x; zs−1
NU

(µ)) ≥ C1(x; zs−1
N ′ (µ)).

Suppose ps−1
x (µ) = C1(x; zs−1

N ′ (µ)). Then, there is i ∈ N ′ such that ps−1
x (µ) =

Vi(x; zs−1
i (µ)). By i ∈ N ′ and ps−1

x (µ) = Vi(x; zs−1
i (µ)), x is a weakly connected

object at (ps−1(µ), pMC
), contradicting x ∈ MU\M ′. Thus, for each x ∈ MU\M ′,

ps−1
x (µ) > C1(x; zs−1

N ′ (µ)).
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Let s′ be the earliest round in the IPOIP process such that there is x ∈MU\M ′

such that ps
′
x (µ) = ps−1

x (µ). Then, by Fact 2 and s′ ≤ s− 1,

for each s′′ < s′ and each y ∈MU\M ′, ps
′′

y (µ) < ps
′

y (µ) ≤ ps−1
y (µ). (∗)

Since for each y ∈MU\M ′, ps−1
y (µ) > C1

+(x; zNC ), then s′ ≥ 1.
To derive a contradiction to (∗), we first show the following claim.

Claim A.3: Let i ∈ NU , x ∈MU , s′ ≤ s− 1, and Vi(x, zs
′−1
i (µ)) = ps−1

x (µ). Then
ps
′−1
µi

(µ) = ps−1
µi

(µ).
Note that

ps−1
x (µ) = Vi(x, z

s′−1
i (µ)) ≤

Fact2 & s′≤s−1
Vi(x, z

s−1
i (µ)) ≤

i∈NU
C1

+(x; zs−1
NU

(µ)) = psx(µ).

Thus, by ps−1(µ) = ps(µ), Vi(x, zs
′−1
i (µ)) = Vi(x, z

s−1
i (µ)). Since zs

′−1
i (µ) =

(µi, p
s′−1
µi

(µ)) and zs−1
i (µ) = (µi, p

s−1
µi

(µ)), then ps
′−1
µi

(µ) = ps−1
µi

(µ).
By the definition of IPOIP process and s′ ≥ 1, there is i ∈ NU such that

Vi(x, z
s′−1
i (µ)) = ps

′
x (µ) = ps−1

x (µ). Note that for each x ∈ MU\M ′, ps−1
x (µ) >

C1(x; zs
′′
N ′(µ)). By Fact 2, for each s′′ ≤ s − 1, ps−1

x (µ) > C1(x; zs
′′
N ′(µ)). Thus,

i /∈ N ′ and so i ∈ NU\N ′, and µi ∈ MU\M ′. By Claim A.3, ps
′−1
µi

(µ) = ps−1
µi

(µ),
contradicting (∗).
Thus MU\M ′ 6= ∅ fails to hold, i.e., MU = M ′.

Step 2: Let M0 ≡ {x ∈MU : ps−1
x (µ) = C1

+(x; zNC )}. Then M0 6= ∅.
By Definitions A.3 and A.4 and Step 1, there is no x ∈MU\M0 that is weakly

connected to some y ∈MC at (ps−1(µ), pMC
). Thus, M0 6= ∅ just follows Step 1.

Step 3: For each x ∈MU , ps−1
x (µ) ≤ pmin

x .
If MU = M0, by Lemma 1(ii), Step 3 trivially holds. Thus, let MU\M0 6= ∅.
Let M ′ ≡ {x ∈ MU : ∀ x ∈ M ′, ps−1

x (µ) > pmin
x }. To show M ′ = ∅, we proceed

by contradiction. Suppose that M ′ 6= ∅.
Let N ′ ≡ {i ∈ NU : µi ∈ M ′}. By Definition, |N ′| = |M ′|. By Lemma 1(i)

and |M ′| = |N ′|, |NU\N ′| = |MU\M ′| 6= ∅. By Step 2, MU\M ′ ⊇ M0 6= ∅ and so
NU\N ′ 6= ∅.
For each i ∈ NU and each x ∈ L\MU ,

zmin
i Ri (xi, p

min
xi

) Pi
Lemma 1(ii)&(iii)

(xi, pxi) = zi Ri
Def of Equilibrium

(x, px) =
Theorem 1(i)

(x, pmin
x ).

and so Di(p
min) ⊆MU .

For each i ∈ NU and each y ∈MU\M ′,

zs−1
i (µ) Ri (y, ps−1

y (µ)) by ps−1
y (µ) = psy(µ) ≥ Vi(y, z

s−1
i (µ))

Ri (y, pmin
y ). by ps−1

y (µ) ≤ pmin
y
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For each i ∈ N ′ and each y ∈MU\M ′,

zmin
i Ri

Def of Equilibrium
(µi, p

min
µi

) Pi
pmin
µi

<ps−1
µi

(µ)

zs−1
i (µ) Ri

N ′⊆NU
(y, pmin

y ).

Thus, for each i ∈ N ′, by Di(p
min) ⊆MU , Di(p

min) ⊆M ′. Thus,∣∣{i ∈ NU : Di(p
min) ⊆M ′}

∣∣ ≥ |N ′| = |M ′| .

By Step 1, for each x ∈ M ′, x is weakly connected at (ps−1(µ), pMC
) and

ps−1
x (µ) > pmin

x ≥ 0. Then by NU\N ′ 6= ∅, there is i ∈ NU\N ′ and x′ ∈ M ′ such
that zs−1

i (µ) Ii (x
′, ps−1

x′ (µ)). Thus for each y ∈MU\M ′,

zmin
i Ri

Def of Equilibrium
(x′, pmin

x′ ) Pi
pmin
x′ <p

s−1
x′ (µ)

(x′, ps−1
x′ (µ)) Ii z

s−1
i (µ) Ri

i∈NU\N ′
(y, pmin

y ).

Thus y /∈ Di(p
min). By Di(p

min) ⊆MU , Di(p
min) ⊆M ′ so

|M ′| < |N ′|+ 1 ≤
∣∣{i ∈ NU : Di(p

min) ⊆M ′}
∣∣ ,

contradicting Fact A.2.

Step 4: For each i ∈ NU and each x ∈ L\MU , Vi(x; zs−1
i (µ)) ≤ pmin

x .
Let i ∈ NU and x ∈ L\MU . By Lemma 1(iii), xmin

i ∈MU . Thus,

Vi(x
min
i ; zs−1

i (µ)) ≤ C1
+(xmin

i ; zs−1(µ)) = psxmin
i

(µ) =
ps−1(µ)=ps(µ)

ps−1
xmin
i

(µ).

Thus, zs−1
i (µ)Ri (x

min
i , ps−1

xmin
i

(µ)). Note

(xmin
i , ps−1

xmin
i

(µ)) Ri
Step 3

(xmin
i , pmin

xmin
i

) = zmin
i Ri

Def. of Equilibrium
(x, pmin

x ).

Thus, by zs−1
i (µ)Ri (x

min
i , ps−1

xmin
i

(µ)), zs−1
i (µ)Ri (x, p

min
x ), i.e., Vi(x; zs−1

i (µ)) ≤ pmin
x .

Step 5: ((zs−1(µ), zNC ), (ps−1(µ), pMC
)) ∈ Wmin

By Lemma 1(ii) and Theorem 1(i), for each i ∈ NC , (E-i) holds. For each
i ∈ NU and each x ∈MU , Vi(x; zs−1

i (µ)) ≤ C1
+(x; zs−1(µ)) = psx(µ) = ps−1

x (µ), and
for each x ∈ L\MU ,

Vi(x; zs−1
i (µ)) ≤

Step 5
pmin
x =

Theorem 1(i)
px.

Thus (E-i) holds. (E-ii) holds obviously. Thus ((zs−1
NU

(µ), zNC ), (ps−1
MU

(µ), pMC
)) ∈

W . By Theorem 1(i), Step 3, and Fact 1, pmin = (ps−1
MU

(µ), pMC
). Thus Step 5

holds. Q.E.D.

Appendix B: Proofs of Propositions 2, 3, and 4
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B.1 Proof of Proposition 2

Proof : Let (z, p) be the output of the E-generating mechanism. We prove that
(z, p) is an equilibrium. LetM(k) be the set of k objects and let L(k) = M(k)∪{0}.
Mechanism stops at Phase 1: In this case, C1(y; zmin) ≤ 0 and z = zmin. Since
z = z∗, then for each i ∈ N and each x ∈ L(k),

zi = zmin
i Ri

Def of Equilibrium
(x, pmin

x ) = (x, px)

and for y, by C1(y; zmin) ≤ 0 and py = 0, zi = zmin
i Ri (y, C

1(y; zmin))Ri (y, py).
Thus, (z, p) satisfies (E-i). It is straightforward that (z, p) satisfies (E-ii).
Mechanism stops at Phase 2: In this case, C1(y; zmin) > 0, and there is i ∈ N ′
such that z∗i = (y, C2

+(y; zmin)). For each x ∈ L(k) ∪ {y},

zi Ri
C2

+(y;zmin)≤C1
+(y;zmin)

zmin
i Ri

Def of Equilibrium
(x, pmin

x ) = (x, px).

For each j ∈ N\{i} and each x ∈ L(k), by Definition 8

zj Rj z
min
j Rj

Def of Equilibrium
(x, pmin

x ) = (x, px),

and for y, by Vj(y; zmin
j ) ≤ C2

+(y; zmin) = py, zj Rj z
min
j Rj (y, py).

Thus, (z, p) satisfies (E-i). Unassigned objects at M(k) remain unassigned
with zero prices, and pxi1 = pmin

xi1
= 0. Thus (z, p) satisfies (E-ii). Q.E.D.

B.2 Proof of Proposition 3

Let T be the final round of the process. By the finiteness of agents and objects,
T < +∞.
In the following, we show N∗ = NC . If NC = ∅, by Remark 1(iii), there is

no agent i ∈ N such that pxi = 0. Thus, the mechanism stops at N ′1 = ∅, i.e.,
NC = ∅. Let NC 6= ∅.
First, we show that

T
∪
k=1

N ′k ⊆ NC . By Remark 1(iii), there is some i ∈ N

such that pxi = 0. Thus, N ′1 6= ∅ and N ′1 ⊆ NC . If T = 2, i.e., N ′T = ∅, then
2
∪
k=1

N ′k ⊆ NC . Let T > 2. Thus N ′2 6= ∅. By the definition of N ′2, for each i ∈ N ′2,
pxi > 0 and there is j ∈ N1 such that xi ∈ Dj(p). By Definition 3, N ′2 ⊆ NC . By
induction argument, for each t = 1, · · · , T − 1, N ′t 6= ∅ and N ′t ⊆ NC . Recall that

N ′T = ∅. Thus
T
∪
k=1

N ′k ⊆ NC .

Then, we show that
T
∪
k=1

N ′k = NC . We proceed by contradiction. Suppose that

there is i ∈ NC\
T
∪
k=1

N ′k. Then i /∈ N ′1 and pxi > 0. By Definition 2, there is a
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sequence {iλ}Λ
λ=1 of Λ(Λ ≥ 2) distinct agents such that (a) xi1 = 0 or pxi1 = 0,

(b) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0, (c) xiΛ = xi, and (d) for each
λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1

} ∈ Diλ(p).
By Definition 6, (a) implies i1 ∈ N ′1. By (d), there is i ∈ {i2, · · · , iΛ} such

that xi ∈ Dj(p) for some j ∈ N ′1, e.g., i = i2. Thus, i ∈ N ′2 and N
′
2 6= ∅. Let

il1 ∈ {i2, · · · , iΛ} be such that there is no l′ > l1 such that il′ ∈ N ′2, i.e., agent il1
is the agent who belongs to N ′2 with the largerst index in {iλ}Λ

λ=2. By (d), there
i ∈ {il1+1, · · · , iΛ} such that xi ∈ Dj(p) for some j ∈ N ′2, e.g., i = il1+1. Thus
i ∈ N ′3 and N ′3 6= ∅. By same reasoning, we can select il2 ∈ {il1+1, · · · , iΛ} such
that il2 ∈ N ′3 with the largest index in {iλ}Λ

λ=l1+1. Repeating such argument, we

can show i = iΛ ∈
T
∪
k=1

N ′k, contradicting i ∈ NC\
T
∪
k=1

N ′k. Q.E.D.

B.3 Proof of Proposition 4

Proposition 4 trivially holds for MU = ∅. In the following, let MU 6= ∅.
Part (i): T < +∞ comes from the finiteness of MU and Ω. By the construction
of the MPE-adjustment mechanism, for each t = 1, · · · , T , p∗t ≤ p∗t−1.
Part (ii): Claim B.1: (a) for each t < T , µ∗t is not an MPE assignment and (b)
µ∗T is an MPE assignment.
(a): By contradiction, suppose there is t < T such that µ∗t is an MPE assign-

ment. W.o.l.g. assume that there is no t′ < t such that µ∗t
′
is an MPE assignment.

By Fact 4, for each t′ < t, µ∗t can succeed in the |MU | −IPOIP process for µ∗t
against p∗t

′
. Thus the MPE-adjustment mechanism terminates at t < T , a con-

tradiction. (b): A direct outcome of Theorem 2.
By Claim B.1, and Theorems 1 and 2, (ii) holds. Q.E.D.

Appendix C: Proofs of Proposition 5 and Theorem 4

Let r ∈ Rm+ be the reserve price vectors. A pair (z, p) ∈ Z × Rm+ is an equi-
librium with reserve price r if (i) (E-i) holds and (ii) for each y ∈M , py ≥ ry,
and if py > ry then there is some agent i ∈ N such that y = xi.
By Demange and Gale (1985), there is an equilibrium with reserve price r

and the set of equilibrium prices with reserve price r is a complete lattice. Thus,
there is an MPE with reserve price r. Let the MPE rule with reserve price r be a
mapping from each preference profile to an MPE with reserve price r.

Fact C.1 (Demange and Gale, 1985): The MPE rule with reserve price r is
strategy-proof on the set of general preference profiles.

For each R ∈ (RG)n, let W (R) and Wmin(R) be the set of equilibria and
that of MPEs for R. For each 0 ≤ k ≤ m, let W (k,R) and Wmin(k,R) be the
corresponding notions and M(k) be the set of objects in the assignment market
with k objects. Fact C.2 follows Definition 6 of E-generating mechanism.
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Fact C.2: Let R ∈ (RG)n and (zmin, pmin) ∈ Wmin(k,R). Let i ∈ N , R′i ∈
RG, and R′ = (R′i, R−i) ∈ (RG)n. Let (z′, p′) be the outcome of E-generating
mechanism for R′. Let i∗ ∈ N\{i} be such that x′i∗ = y. Then
(i) z′i∗ Ri∗ z

min
i∗ and for each j ∈ N\{i∗}, z′j Ij zmin

j ,
(ii) p′M(k) = pmin, and
(iii) for each x ∈M(k) such that pmin

x > 0, there is j ∈ N\{i∗} such that x′j = x.

C.1 Proof of Proposition 5

Part (i) Let R ∈ (RG)n, (zmin, pmin) ∈ Wmin(k,R), and i ∈ N . Let (z, p) and
(z′, p′) be the outcomes of E-generating mechanism for R and R′ = (R′i, R−i), i.e,
z = gsub1(R; zmin) and z′ = gsub1(R′; zmin). We show ziRi z

′
i.

By contradiction, suppose that z′i Pi zi. By Fact C.2(i), x
′
i = y and so p′k+1 =

C1
+(y; zmin

N\{i}). In case of xi = y, by Vi(y; zmin
i ) = C1

+(y; zmin), pk+1 = C2
+(y; zmin) =

C1
+(; zmin

N\{i}). Thus z′i = zi, contradicting z′i Pi zi. In case of xi ∈ M(k), by
Vi(y; zmin

i ) ≤ C2
+(y; zmin) ≤ C1

+(; zmin
N\{i}) = p′k+1, zi Ii z

min
i Ri (y, p

′
y) = z′i, con-

tradicting z′i Pi zi. Thus, ziRi z
′
i.

Part (ii) Let R ∈ (RG)n and z ∈ Zk+1 be an equilibirum allocation. Let NC

and NU be defined at z for R. If i ∈ NC , then agent i does not participate in the
MPE-adjustment mechansim and keeps the same allocation as zi, and so incentive
property holds trivially. Thus, let i ∈ NU .
Let zNU = gsub2(R; z) and z′NU = gsub2(R′; z) be outcomes of MPE-adjustment

mechanism for R and R′ = (R′i, R−i). Since zNU is an MPE for (NU ,MU , RNU )

with r′ = (C1
+(x; zmin

NC
))x∈MU

, and that z′NU is an MPE for (NU ,MU , R
′
NU

) with r′,
by Fact C.1, ziRi z

′
i. Q.E.D.

C.2 Proof of Theorem 4

The proof contains three steps. Step 1 gives additional four facts. Step 2
establishes three lemmas based on the above facts, together with Facts C.1 and
C.2. Step 3 completes the proof.

Step 1: Construction of Facts C.3 to C.6

Fact C.3: Let R ∈ (RG)n, (z, p) ∈ W (R), N ′ ⊆ N , and M ′ ⊆ M . Let NC be
defined at (z, p).
(i) Let (zN ′ , pM ′) be an MPE in (N ′,M ′, RN ′). Then N ′ ⊆ NC .
(ii) Let i ∈ N , R′i ∈ RG, R′ = (R′i, R−i) ∈ (RG)n and (z, p) ∈ Wmin(R′). Then
i ∈ NC .

Proof : (i) Let x ∈ M ′ be such that px > 0 for (N ′,M ′, RN ′). Since (zN ′ , pM ′) is
an MPE in (N ′,M ′, RN ′), there is a DCP {iλ}Λ

λ=1 of agents to x in (N ′,M ′, RN ′).
Note that for each λ = 1, . . . ,Λ,

{y ∈M ′ : ∀y′ ∈M ′, (y, py)Rλ (y′, py′)} ⊆ {y ∈M : ∀y′ ∈M, (y, py)Rλ (y′, py′)}.
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Thus, the DCP {iλ}Λ
λ=1 of agents to x is also a DCP in (N,M,R). Thus x ∈ NC .

Thus, M ′ ⊆MC and so N ′ ⊆ NC .
(ii) If xi = 0 or pxi = 0, by definition, i ∈ NC . Thus, let pxi > 0. By (z, p) ∈
Wmin(R′), there is a DCP {iλ}Λ

λ=1 of agents to xi at (z, p) in (N,M,R′). By
R−i = R′−i and i /∈ {iλ}Λ−1

λ=1 , the agents in {iλ}Λ−1
λ=1 have the same demands at p in

(N,M,R) as in (N,M,R′). Thus, {iλ}Λ
λ=1 is also a DCP to xi at the same pair

(z, p) in (N,M,R). Thus i ∈ NC . Q.E.D.

Fact C.4 follows the definition of DCP (Definition 2).

Fact C.4: For x ∈ MC such that px > 0 and each DCP {iλ}Λ
λ=1 of agents to x,

{iλ}Λ
λ=1 ⊆ NC .

Given N ′ ⊆ N , M ′ ⊆ M , R′N ′ ∈ (RG)N
′
and r ∈ R|M

′|
+ , let Z(N ′,M ′, R′N ′ , r)

and Zmin(N ′,M ′, R′N ′ , r) denote the sets of equilibrium and MPE allocations for
(N ′,M ′, R′N ′) with reserve price r, respectively. Let W (·, ·, ·, ·) and Wmin(·, ·, ·, ·)
be the sets of equilibria and MPEs similarly defined for (N ′,M ′, R′N ′) with reserve
price r. When r = 0 or N ′ = N or M ′ = M , we just omit writing r or N ′ or M ′.
Recall that Z(R) is the set of equilibrium allocations for (N,M,R) with r = 0.
Given N ′ ⊆ N , denote

Zmin
N ′ (R) ≡ {zN ′ : ∃zN\N ′ such that (zN ′ , zN\N ′) ∈ Zmin(R)}.

The following fact is easy to see.

Fact C.5: Let R ∈ (RG)n and (z, p) ∈ W (R). Let NC be defined at (z, p) for R.
Let N ′ ⊆ NC , N ′′ = N\N ′ and M ′′ = {xi : i ∈ N ′′}. Then

Zmin
N ′′ (R) = Zmin(N ′′,M ′′, RN ′′ , r) where rx = C1

+(R, x; zN ′) for each x ∈M ′′.

Fact C.6: Let R ∈ (RG)n and (z, p) ∈ W (R). Let NU be defined at (z, p). Let
N ′ ⊆ {i ∈ N : xi ∈M and pxi > 0}. If for each j ∈ N\N ′, Dj(p)∩{xi : i ∈ N ′} =

∅, then N ′ ⊆ NU .

Proof : By contradiction, suppose that there is k ∈ N ′ ∩NC . Then, by xk ∈MC ,
pxk > 0 and Definition 2, there is a DCP of agents {iλ}Λ

λ=1 to xk satisfying (a)
pxi1 = 0, iΛ = k, and xiΛ = xk, and (b) for each λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1

} ⊆
Diλ(p). By (b), for agent iΛ−1, {xk, xiΛ−1

} ⊆ DiΛ−1
(p). Since k ∈ N ′, xk ∈ DiΛ−1

(p)

and Dj(p) ∩ {xi : i ∈ N ′} = ∅ for each j ∈ N\N ′, we have iΛ−1 /∈ N\N ′, ie.,
iΛ−1 ∈ N ′. Repeating the same argument, we can show {iλ : λ = 1, ...,Λ} ⊆ N ′.
By (a), we have pxi1 = 0, contradicting that for each i ∈ N ′, xi ∈M and pxi > 0.
Q.E.D.
Step 2: Construction of Lemmas C.1 to C.3
Lemma C.1: Let R ∈ (RG)n and (z∗, pmin) ∈ Wmin(k,R). Let (z, p) be the
outcome of E-generating mechanism for R. Let NC , NU , MC , and MU be defined
at (z, p) for R. Let i∗ ∈ N be such that xi∗ = k + 1.
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(i) (zNC\{i∗}, pMC\{k+1}) ∈ W (NC\{i∗},MC\{k + 1}, RNC\{i∗}) and (zNC , pMC
) ∈

Wmin(NC ,MC , RNC ).
(ii) If (a) C1

+(R, k + 1; z∗) > C2
+(R, k + 1; z∗), or

(b)
∣∣{j ∈ NC\{i∗} : Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗)}
∣∣ ≤ 1,

then (zNC\{i∗}, pMC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k + 1}, RNC\{i∗}).

Proof : Part (i): By Facts C.2(i) and C.2(ii), (E-i) holds for (NC\{i∗},MC\{k+

1}, RNC\{i∗}). By Fact C.2(iii), (E-ii) holds for (NC\{i∗},MC\{k + 1}, RNC\{i∗}).
Thus (zNC\{i∗}, pMC\{k+1}) ∈ W (NC\{i∗},MC\{k + 1}, RNC\{i∗}). By the same
reasoning, (zNC , pMC

) ∈ W (NC ,MC , RNC ).
Let x ∈ MC be such that px > 0 and {iλ}Λ

λ=1 be a DCP {iλ}Λ
λ=1 of agents

to x. Then by Fact C.4, {iλ}Λ
λ=1 ⊆ NC . Thus, each x ∈ MC such that px >

0 is also connected in (NC ,MC , RNC ). Thus by Proposition 1, (zNC , pMC
) ∈

Wmin(NC ,MC , RNC ).
Part (ii) Let x ∈MC\{k+ 1} be such that px > 0 and {iλ}Λ

λ=1 be a DCP {iλ}Λ
λ=1

of agents to x. Then by Fact C.4, {iλ}Λ
λ=1 ⊆ NC . Note that to establish that

(zNC\{i∗}, pMC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k + 1}, RNC\{i∗}), by Proposition 1
and Part (i), we only need to show i∗ /∈ {iλ}Λ

λ=1, which implies {iλ}Λ
λ=1 ⊆ NC\{i∗},

in each of Case (a) and Case (b). In the following, we show {iλ}Λ
λ=1 ⊆ NC\{i∗} in

Case (a).
Assume C1

+(R, k+1; z∗) > C2
+(R, k+1; z∗). Then by Vi∗(k+1; z∗i∗) = C1

+(R, k+

1; z∗) and xi∗ = k + 1, we have: Vi∗(k + 1; z∗i∗) > C2
+(R, k + 1; z∗) = ti∗ and

zi∗ = (k+1, ti∗)Pi∗ z
∗
i∗. Thus, Di∗(p) = {k+1}. By Definition 2(ii-4), i∗ /∈ {iλ}Λ

λ=1.
For Case (b), if

∣∣{j ∈ NC\{i∗} : Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗)}

∣∣ = 0. it is
straightforward to see i∗ /∈ {iλ}Λ

λ=1. For the other case, the same reasoning of
Case (a) works. Q.E.D.

Lemma C.2: Let R ∈ (RG)n and (z∗, pmin) ∈ Wmin(k,R). Let i ∈ N , R′i ∈ RG

and R′ = (R′i, R−i) ∈ (RG)n. Let (z, p) and (z′, p′) be the outcomes of E-generating
mechanism for R and R′. Let NC , NU , MC , and MU be defined at (z, p) for R.
Let i∗ ∈ N be such that xi∗ = k + 1.
(i) For each j ∈ NC\{i∗}, x′j ∈MC ∪ {0, k + 1}.
(ii) For each x ∈MU\{k + 1}, there is j ∈ NU ∪ {i∗} such that x′j = x.
Proof : Part (i): Let j ∈ NC\{i∗}. By contradition, suppose that x′j /∈ MC ∪
{0, k + 1}. By x′j 6= k + 1, we have x′j ∈ MU\{k + 1}. By x′j 6= k + 1 and
Fact C.2(ii), px′j = pmin

x′j
= p′x′j

. Thus, by Lemma 1(ii), and x′j ∈ MU , we have

Vj(x
′
j; z
∗
j ) < px′j = p′x′j

. On the other hand, by Fact C.2(i), (x′j, p
′
x′j

) = z′j Rj z
∗
j .

Thus, Vj(x′j; z
∗
j ) ≥ p′x. This is a contradiction.

Part (ii): Let x ∈ MU\{k + 1}. By Lemma 1(ii) and x ∈ MU , px > 0. By Fact
C.2(ii) and x 6= k + 1, px = pmin

x = p′x. Thus, p
′
x > 0. By Fact C.2(iii) and Part

(i), there is j ∈ NU ∪ {i∗} such that x′j = x. Q.E.D.
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Lemma C.3: Let R ∈ (RG)n and (z∗, pmin) ∈ Wmin(k,R). Let i ∈ N , R′i ∈ RG

and R′ = (R′i, R−i) ∈ (RG)n. Let (z, p) and (z′, p′) be respectively the outcomes
of some E-generating mechanisms for R and R′. Let NC , NU , MC , and MU be
defined at (z, p) for R. Let N ′C , N

′
U , M

′
C , and M

′
U be defined at (z′, p′) for R′. Let

i∗ ∈ N be such that xi∗ = k + 1.
(i) Let i∗ 6= i, k + 1 ∈ MC and pk+1 = C1

+(R, k + 1; z∗) > 0. Then (z, p) ∈
Wmin(M(k + 1), R).
(ii) Let i ∈ NC and i∗ 6= i.
(ii-1) Let V ′i (k + 1; z∗i ) = C1

+(R, k + 1; z∗) > 0. Then

V ′i (k + 1; z∗i ) = p′k+1 = C1
+(R, k + 1; z∗) = C1

+(R′, k + 1; z∗) = Vi∗(k + 1; z∗i∗) > 0.

(ii-2) Let V ′i (k + 1; z∗i ) = C1
+(R, k + 1; z∗) > 0. Then (z′, p′) ∈ Wmin(N,M(k +

1), R′).
(ii-3) Let V ′i (k + 1; z∗i ) > C1

+(R, k + 1; z∗) > 0. Let R′′i ∈ RG be such that for
each x ∈ M(k), V ′′i (x; ·) = V ′i (x; ·) and V ′′i (k + 1; z∗i ) = C1

+(R, k + 1; z∗). Let
R′′ ≡ (R′′i , R−i). Then (z′, p′) ∈ Wmin(N,M(k + 1), R′′).
(iii) Let i∗ ∈ NU and p′k+1 > C1

+(RNC , k + 1; z∗). Then NC = N ′C , MC = M ′
C ,

MU = M ′
U , and NU = N ′U .

Proof : Part (i-1) By Proposition 2, (z, p) ∈ W (M(k + 1), R). To establish
(z, p) ∈ Wmin(M(k + 1), R), by Proposition 1, we only need to show NC = N .
By Fact C.2(ii), we have: (1) pM(k) = pmin. Since z is generated by E-generating

mechanism for R and xi∗ = k+ 1, there is a sequence {iλ}Λ
λ=1 to x

∗
i∗ such that (2)

iΛ = i∗, (3) x∗i1 = 0 or pmin
x∗i1

= 0, and (4) for each λ ∈ {1, ...,Λ− 1}, {x∗iλ , x
∗
iλ+1
} ∈

Diλ(pmin) and xiλ = x∗iλ+1
. By xi∗ = k+1, Vi∗(k+1; z∗i∗) = C1

+(R′, k+1; z∗) = pk+1.
Thus by (2), we have: (5) xi∗ = xiΛ = k + 1 and (6) ViΛ(k + 1; z∗iΛ) = pk+1. In the
next two paragraphs, we show that {iλ}Λ

λ=1 ⊆ NC .
By k + 1 ∈MC , iΛ ∈ NC , and there is a DCP {i′λ}Λ′

λ=1 to k + 1 in (z, p). Note

(k + 1, pk+1) IiΛ
(6)
z∗iΛ = (x∗iΛ , p

min
x∗iΛ

) =
(1) & (4)

(xiΛ−1
, pxiΛ−1

).

Thus, by (1), (4) and (5), we have {xiΛ−1
, xiΛ} ⊆ DiΛ(p). Thus, {i′λ}Λ′

λ=1 ∪ {iΛ−1}
is a DCP to xiΛ−1

= x∗i∗ in (z, p). Thus, iΛ−1 ∈ NC .
By (4), we have: {x∗iΛ−1

, x∗iΛ} ⊆ DiΛ−1
(pmin), x∗iΛ−1

= xiΛ−2
and x∗iΛ = xiΛ−1

.
Thus, by (1), {xiΛ−2

, xiΛ−1
} ∈ DiΛ−1

(p). Thus, {i′λ}Λ′
λ=1 ∪ {iΛ−1, iΛ−2} is a DCP

to xiΛ−2
= x∗iΛ−1

in (z, p). Thus, iΛ−2 ∈ NC . Similarly, we have that for each
λ = Λ− 3, . . . , 1, iλ ∈ NC . Thus, {iλ}Λ

λ=1 ⊆ NC .
Finally, we show that for each j /∈ {iλ}Λ

λ=1, j ∈ NC . Let j /∈ {iλ}Λ
λ=1. Note

that xj = x∗j , and so by (z∗, pmin) ∈ Wmin(k,R) and Proposition 1, there is a
DCP {i′′λ}Λ′′

λ=1 to xj = x∗j in (z∗, pmin). If {i′′λ}Λ′′
λ=1 ∩ {iλ}Λ

λ=1 = ∅, since for each λ,
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xi′′λ = x∗i′′λ
6= k+1, by (1), {i′′λ}Λ′′

λ=1 is also a DCP to xj = x∗j in (z, p) and so j ∈ NC .

Thus, assume {i′′λ}Λ′′
λ=1∩{iλ}Λ

λ=1 6= ∅. Then, there is λ′ ∈ {1, . . . ,Λ′′} such that i′′λ′ ∈
{iλ}Λ

λ=1 and for any λ
′′ > λ′, i′′λ′′ /∈ {iλ}Λ

λ=1. Let λ
′′ be such that iλ′′ = i′′λ′ . Note

that for any λ′′′ > λ′, xi′′
λ′′′

= x∗i′′
λ′′′
, and that xiλ′′ = xi′′

λ′
Ii′′
λ′
x∗i′′
λ′
Ii′′
λ′
x∗i′′
λ′+1

= xi′′
λ′+1
,

and {xi′′
λ′+1

, xiλ′′} ⊆ Di′
λ′

(p). Thus, the sequence {i′λ}Λ′
λ=1 ∪{iλ}Λ

λ=λ′′ ∪{i′′λ}Λ′

λ=λ′+1 is
a DCP to xj in (z, p) and so j ∈ NC .

Part (ii-1): By xi∗ = k+1, Vi∗(k+1; z∗i∗) = C1
+(R, k+1; z∗). By V ′i (k+1; z∗i ) =

C1
+(R, k + 1; z∗) > 0,

V ′i (k + 1; z∗i ) = C1
+(R′, k + 1; z∗) = C1

+(R, k + 1; z∗) = Vi∗(k + 1; z∗i∗) > 0,

and so by i 6= i∗, p′k+1 = C2
+(R′, k + 1; z∗) = C1

+(R, k + 1; z∗). Thus, we have:

V
′

i (k + 1; z∗i ) = p′k+1 = C1
+(R, k + 1; z∗) = C1

+(R′, k + 1; z∗) = Vi∗(k + 1; z∗i∗) > 0.

Part (ii-2): By Proposition 2, (z′, p′) ∈ Z(N,M(k + 1), R′). Thus, if p′ is
an MPE price for (N,M(k + 1), R′), (z′, p′) ∈ Wmin(N,M(k + 1), R′). Let z′′

be such that z′′i∗ = (k + 1, p′k+1) and for each j ∈ N\{i∗}, z′′j = zj. We show
(z′′, p′) ∈ Wmin(N,M(k + 1), R′).
First, we show (z′′, p′) ∈ W (N,M(k + 1), R′). By Part (ii-1) and Fact C.2(ii),

we have: (1) p′M(k) = pmin = pM(k) and p′k+1 ≥ pk+1. By construction, unassigned
objects at (z, p) remain unassigned at (z′′, p′). Thus (E-ii) holds. By (1), for each
j ∈ N\{i∗}, x′′j = xj ∈ Dj(p

′). By Part (ii-1) and z′′i∗ = (k + 1, p′k+1), z′′i∗ Ii∗ z
∗
i∗.

Thus x′′i∗ = k+1 ∈ Di∗(p
′). Thus (E-i) holds. Thus, (z′′, p′) ∈ W (N,M(k+1), R′).

Next, we show that (z′′, p′) ∈ Wmin(N,M(k + 1), R′). Let N ′′C , N
′′
U , M

′′
C , and

M ′′
U be defined at (z′′, p′) for R′. Note that we only need to show x′′i∗ = k+1 ∈M ′′

C ,
which, by Part (i) and Part (ii-1), implies (z′′, p′) ∈ Wmin(N,M(k + 1), R′).
By i ∈ NC , there is a DCP {iλ}Λ

λ=1 of agents to xi at (z, p) forR. By i∗ ∈ N\{i}
and iΛ = i, i∗ 6= iΛ. Thus, there are the two cases below.
Case 1: i∗ /∈ {iλ}Λ−1

λ=1 Since R′−i = R−i, iΛ = i 6= i∗, i∗ /∈ {iλ}Λ−1
λ=1 , and z

′′
j = zj

for each j ∈ N\{i∗}, by (1), {iλ}Λ
λ=1 is also a DCP to xi at (z′′, p′) for R′. Thus

i ∈M ′
C . By i 6= i∗, zi I ′i z

∗
i . Thus, by Part (ii-1), z

′′
i = zi I

′
i z
∗
i I
′
i (k + 1, p′k+1) = z′′i∗.

Thus, {x′′i , x′′i∗} ∈ DiΛ(p′), and {iλ}Λ
λ=1 ∪ {i∗} is a DCP to k + 1 at (z′′, p′) for R′.

Thus k + 1 ∈M ′′
C .

Case 2: i∗ ∈ {iλ}Λ−1
λ=1 Let Λ′ ≤ Λ − 1 be such that i∗ = iΛ′ . Then, the

subsequence {iλ}Λ′
λ=1 of {iλ}Λ

λ=1 is a DCP to xi∗ = k + 1 at (z, p) for R. For each
λ ∈ {1, . . . ,Λ′ − 1}, by iλ 6= i∗, z′′iλ = ziλ . Thus by (1), {iλ}Λ′

λ=1 is also a DCP to
x′′i∗ = xi∗ = k + 1 at (z′′, p′) for R′. Thus k + 1 ∈M ′′

C .

Part (ii-3): By V ′′i (k + 1; z∗i ) = C1
+(R, k + 1; z∗), there is an outcome (z′′, p′′)

of E-generating mechanism for R′′ such that x′′i = k + 1. By V ′′i (k + 1; z∗i ) =

C1
+(R, k + 1; z∗) > 0 and Part (ii-2), (z′′, p′′) ∈ Wmin(N,M(k + 1), R′′). To show
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(z′, p′) ∈ Wmin(N,M(k + 1), R′′), we need to show that p′ = p′′, z′′i = z′i, and for
each j ∈ N\{i}, z′j Ij z′′j .
By i 6= i∗ and V ′i (k + 1; z∗i ) > C1

+(R, k + 1; z∗) > 0,

p′k+1 = C2
+(R′, k + 1; z∗) = C1

+(R, k + 1; z∗).

By Part (ii-1) and V ′′i (k+1; z∗i ) = C1
+(R, k+1; z∗), p′′k+1 = C1

+(R, k+1; z∗). Thus,
p′k+1 = p′′k+1. By Fact C.2(ii), p

′
M(k) = pmin = p′′M(k). Thus, p

′ = p′′.
By V ′i (k+ 1; z∗i ) > C1

+(R, k+ 1; z∗) = C2
+(R′, k+ 1; z∗), x′i = k+ 1 = x′′i . Thus,

z′i = z′′i . By Fact C.2(i), for each j ∈ N\{i}, z′j Ij z∗j Ij z′′j .
Part (iii): By Fact C.2(ii), pM(k) = pmin = p′M(k). Since p

′
k+1 > C1

+(RNC , k +

1; z∗), we have: (1) there is some i′ ∈ NU such that x′i′ = k + 1.
By Lemma C.2(i), i∗ ∈ NU , and (1), we have: (2) for each j ∈ NC , x′j ∈

MC ∪ {0}.
By Lemma C.1(i), i∗ ∈ NU , and xi∗ = k+1, (zNC , pMC

) ∈ Wmin(NC ,MC , RNC ).
By pMC

= p′MC
, (2), Fact C.2(i) and C.2 (iii), (z′NC , p

′
MC

) ∈ Wmin(NC ,MC , R
′
NC

).
Thus, by Proposition 1 and Fact C.3, we have: (3) NC ⊆ N ′C and MC ⊆M ′

C .
By Fact C.2(ii), Lemma 1(ii), and Lemma C.2(ii), for each x ∈MU , p′x > 0 and

x is assigned to some j ∈ NU at (z′, p′) for R′. Since p′k+1 > C1
+(RNC , k + 1; z∗)

and p′M(k) = pM(k), {i ∈ N : Di(p
′) ∩MU 6= ∅)} = NU . Thus, NU ⊆ N ′U and

MU ⊆M ′
U . By (3), NC = N ′C , MC = M ′

C , MU = M ′
U , and NU = N ′U . Q.E.D.

Step 3: Completion of the proof

Let R ∈ (RG)n, (z∗, pmin) ∈ Wmin(k,R), and i ∈ N . Let (z, p) and (z′, p′) be the
outcomes of E-generating mechanism for R and R′ ≡ (R′i, R−i). Let NC , NU , MC ,
andMU be defined at (z, p) for R, and N ′C , N

′
U , M

′
C , andM

′
U be defined at (z′, p′)

for R′. Let (ẑ, p̂) and (z̃, p̃) be the outcomes of MPE-adjustment mechanism for
R and R′ from (z, p) and (z′, p′), respectively. Thus ẑ = fSV (R; z; k + 1) and
z̃ = fSV (R′; z; k + 1).
Assume for each j ∈ N , Vj(k + 1; z∗j ) ≤ 0. Then pk+1 = 0 and (z∗, p) ∈

Wmin(M(k+1), R) where p = (pmin, 0). In case V ′i (k+1; z∗i ) ≤ 0, z′i = z∗i = zi holds.
By Theorem 1(i) and Definition 11, z̃i = z′i = zi = ẑi. In case V ′i (k + 1; z∗i ) > 0,
z′i = (k + 1, 0) and i ∈ N ′C hold. Thus, by Vi(k + 1; z∗i ) ≤ 0, ẑi = ziRi z

′
i = z̃i.

In the following, assume C1
+(R, k + 1; z∗) > 0. Then there is i∗ ∈ N such that

xi∗ = k+ 1. We show ẑiRi z̃i by considering two cases where i ∈ NC in Case I and
i ∈ NU in Case II.

Case I: i ∈ NC

By Theorem 1(i) and Definition 11, for agent i, ẑi = zi. We conclude that
i ∈ N ′C at (z′, p′) for R′ for each subcase. This implies that i does not participate
the MPE-adjustment mechanism from (z′, p′) so that by ẑi = zi and Fact C.2(i),
ẑi = ziRi z

∗
i Ii z

′
i = z̃i.
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Case I-1: i 6= i∗.

Case I-1-1: V ′i (k + 1; z∗i ) < C1
+(R, k + 1; z∗)

Case I-1-1-1-1: C1
+(R, k + 1; z∗) > C2

+(R, k + 1; z∗) or∣∣{j ∈ NC\{i∗, i} : Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗)}

∣∣ = 0.

Since V ′i (k + 1; z∗i ) < C1
+(R, k + 1; z∗) and since C1

+(R, k + 1; z∗) > C2
+(R, k +

1; z∗) or
∣∣{j ∈ N\{i, i∗} : Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗)}
∣∣ = 0, we have: (1) for

each j ∈ NC\{i∗}, x′j 6= k+1. By Lemma C.1(ii), we have: (2) (zNC\{i∗}, pMC\{k+1}) ∈
Wmin(NC\{i∗},MC\{k + 1}, RNC\{i∗}). By Lemma C.2(ii) and (1), we have: (3)
for each j ∈ NC\{i∗}, x′j ∈ (MC\{k + 1}) ∪ {0}.
By Fact C.2(i) and (ii), pMC\{k+1} = p′MC\{k+1} and for each j ∈ NC\{i∗},

z′j Ij zj. By RNC\{i∗} = R′NC\{i∗}, (2), (3), and Fact C.2(iii), (z′NC\{i∗}, p
′
MC\{k+1}) ∈

Wmin(NC\{i∗},MC\{k + 1}, R′NC\{i∗}). Thus, by i 6= i∗, Proposition 1 and Fact
C.3, i ∈ N ′C at (z′, p′) for R′.

Case I-1-1-2: C1
+(R, k + 1; z∗) = C2

+(R, k + 1; z∗) and∣∣{j ∈ NC\{i∗, i} : Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗)}

∣∣ ≥ 1.

Since pk+1 = C2
+(R, k+ 1; z∗) = C1

+(R, k+ 1; z∗) > 0, i∗ ∈ NC , and xi∗ = k+ 1,
by Lemma C.3(i), (z, p) ∈ Wmin(M(k + 1), R). Thus, by Proposition 1, N = NC .
By
∣∣{j ∈ N\{i, i∗} : Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗)}
∣∣ ≥ 1, there is j ∈ NC =

N\{i, i∗} such that Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗). Thus, p′k+1 = C2

+(R′, k +

1; z∗) = C2
+(R, k + 1; z∗). By Fact C.2(i) and (ii), p′M(k) = pM(k). Thus p = p′. By

V ′i (k + 1; z∗i ) < C1
+(R, k + 1; z∗), x′i 6= k + 1. Since for each j ∈ N\{i}, z′j Ij zj,

by p′ = p, (z′, p′) ∈ Wmin(M(k + 1), R). Since (z′, p′) ∈ W (M(k + 1), R), by Fact
C.3, i ∈ N ′C at (z′, p′) for R′.

Case I-1-2: V ′i (k + 1; z∗i ) = C1
+(R, k + 1; z∗)

Since i 6= i∗, i ∈ NC , and V ′i (k + 1; z∗i ) = C1
+(R, k + 1; z∗) > 0, by Lemma

C.3(ii-2), (z′, p′) ∈ Wmin(N,M(k + 1), R′). Thus, i ∈ N ′C at (z′, p′) for R′.

Case I-1-3: V ′i (k + 1; z∗i ) > C1
+(R, k + 1; z∗)

Let R′′i be such that for each x ∈M(k), V ′′i (x; ·) = V ′i (x; ·) and V ′′i (k+ 1; z∗i ) =

C1
+(R, k + 1; z∗). Let R′′ ≡ (R′′i , R−i). Since i 6= i∗, i ∈ NC , and V ′i (k + 1; z∗i ) >

C1
+(R, k+1; z∗) > 0, by Lemma C.3(ii-3), (z′, p′) ∈ Wmin(N,M(k+1), R′′). Thus,
by (z′, p′) ∈ Z(R′), and Fact C.3(ii), i ∈ N ′C at (z′, p′) for R′.

Case I-2: i = i∗ ∈ NC .

Assume C2
+(R, k+ 1; z∗) = 0. If V ′i (k+ 1; z∗i ) ≤ 0, by Definition 8, z′ = z∗ = z̃.

Since Vi(k + 1; z∗i ) > 0, then ẑi = zi Pi z
′
i = z̃i. If V ′i (k + 1; z∗i ) > 0, then z′i = zi =

(k + 1, 0). Thus i ∈ N ′C at (z′, p′) for R′.
In the following, assume C2

+(R, k + 1; z∗) > 0. Then there is j ∈ NC\{i} such
that Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗).

Case I-2-1: V ′i (k + 1; z∗i ) > C2
+(R, k + 1; z∗)
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Case I-2-1-1: Vi(k + 1; z∗i ) = C2
+(R, k + 1; z∗)

Since xi = k+ 1, Vi(k+ 1; z∗i ) = C1
+(R, k+ 1; z∗) = C2

+(R, k+ 1; z∗) > 0. Since
j ∈ NC , by Lemma 3(ii-2), (z, p) ∈ Wmin(R).
Next we show (z′, p′) ∈ Wmin(R). By Proposition 2, (z′, p′) ∈ W (R′). Since

V ′i (k + 1; z∗i ) > C2
+(R, k + 1; z∗), p′k+1 = C2

+(R, k + 1; z∗) = pk+1. By Fact C.2(ii),
p′M(k) = pmin = pM(k). Thus p′ = p. By Fact C.2(i), for each j ∈ N\{i}, zj Ij z′j.
Together with z′i = zi, we have (z′, p′) ∈ W (R). Since p = p′ is an MPE price for
R, (z′, p′) ∈ Wmin(R).
By (z′, p′) ∈ Wmin(R), (z′, p′) ∈ W (R), and Fact C.3(ii), i ∈ N ′C at (z′, p′) for

R′.

Case I-2-1-2: Vi(k + 1; z∗i ) > C2
+(R, k + 1; z∗)

Since V ′i (k + 1; z∗i ) > C2
+(R, k + 1; z∗), we have: (1) x′i = k + 1. By xi =

k + 1, j ∈ NC\{i}, and Lemma C.1(i), we have: (2) (zNC\{i∗}, pMC\{k+1}) ∈
Wmin(NC\{i∗},MC\{k + 1}, RNC\{i∗}). By Lemma C.2(i) and (1), we have: (3)
for each j ∈ NC\{i}, x′j ∈ (MC\{k + 1}) ∪ {0}.
By Fact C.2(i) and (ii), pMC\{k+1} = p′MC\{k+1} and for each j ∈ NC\{i},

z′j Ij z
∗
j Ij zj. By RNC\{i} = R′NC\{i}, (2), (3), Fact C.2(iii), (z′NC\{i}, p

′
MC\{k+1}) ∈

Wmin(NC\{i},MC\{k+1}, R′NC\{i}). By Fact C.3(i), NC\{i} ⊆ N ′C . Thus j ∈ N ′C .
By j ∈ N ′C , Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗), and z′j Ij z
∗
j , i ∈ N ′C at (z′, p′) for R′.

Case I-2-2: V ′i (k + 1; z∗i ) = C2
+(R, k + 1; z∗)

In this case, Vj(k+1; z∗j ) = C2
+(R, k+1; z∗) = C1

+(R′, k+1; z∗). Since j 6= i, j ∈
NC , and xi = k+ 1 at (z, p) for R, by Lemma C.3(ii-2), (z′, p′) ∈ Wmin(N,M(k+

1), R′). Thus i ∈ N ′C at (z′, p′) for R′.

Case I-2-3: V ′i (k + 1; z∗i ) < C2
+(R, k + 1; z∗)

Let R′′i be such that for each x ∈M(k), V ′′i (x; ·) = Vi(x; ·) and V ′′i (k+ 1; z∗i ) =

C2
+(R, k + 1; z∗). Let R′′ ≡ (R′′i , R−i).
First we show that (z, p′′) ∈ Z(R′′) where p′′k+1 = C2

+(R′′, k+1; z∗) and p′′M(k) =

pM(k). Since V ′′i (k + 1; z∗i ) = Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗), we have p′′k+1 =

C2
+(R′′, k + 1; z∗) = C2

+(R, k + 1; z∗) = pk+1. Thus p′′ = p. Since R−i = R′′−i and
j ∈ NC , then j is connected at (z, p′′) for R′′. By Vj(k + 1; z∗j ) = C2

+(R, k + 1; z∗)

and xi = k+1, i and k+1 are also connected at (z, p′′) for R′′. Since V ′′i (k+1; z∗i ) =

C1
+(R′′, k + 1; z∗), by Lemma C.3(ii-3), (z, p′′) ∈ Wmin(R′′).
Then we consider the following two scenarios.

Case I-2-3-1:
∣∣{k ∈ N\{i, j} : Vk(k + 1; z∗k) ≥ C2

+(R, k + 1; z∗)}
∣∣ ≥ 1

We show (z′, p′) ∈ Wmin(R′′). By Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗), V ′i (k +

1; z∗i ) < C2
+(R, k+1; z∗), and

∣∣{k ∈ N\{i, j} : Vk(k + 1; z∗k) ≥ C2
+(R, k + 1; z∗)}

∣∣ ≥
1, p′k+1 = C2

+(R′, k + 1; z∗) = C2
+(R, k + 1; z∗). Thus p′k+1 = pk+1. By Fact

C.2(ii) and p = p′′, p′M(k) = pM(k) = p′′M(k). Thus, p
′ = p′′. By Proposition 2,
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(z′, p′) ∈ W (R′). Thus for each k ∈ N\{i}, x′k ∈ Dk(p
′). Since V ′i (k + 1; z∗i ) <

C2
+(R, k+ 1; z∗), x′i 6= k+ 1 and by Fact C.2(i), z′i Ii z

∗
i . By the construction of R

′′
i ,

x′i ∈ D′′i (p′). Thus, (z′, p′) ∈ W (R′′). Since p′′ is an MPE price for R′′ and p′′ = p′,
(z′, p′) ∈ Wmin(R′′). Since (z′, p′) ∈ W (R′), by Fact C.3(ii), i ∈ N ′C at (z′, p′) for
R′.

Case I-2-3-2:
∣∣{k ∈ N\{i, j} : Vk(k + 1; z∗k) ≥ C2

+(R, k + 1; z∗)}
∣∣ = 0

Let ẑ′′ such that ẑ′′j = (k + 1, p′′k+1) and for each i′ ∈ N\{j}, ẑ′′i′ = z′i′ . By
Fact C.2(i), for each i′ ∈ N\{j}, z∗i Ii z′i′ = ẑ′′i′ . Since Vj(k + 1; z∗j ) = C2

+(R, k +

1; z∗) = p′′k+1, (ẑ′′, p′′) ∈ W (R′′). Thus, (ẑ′′, p′′) ∈ Wmin(R′′). Note that for
each i′ ∈ N\{i, j}, Vi′(k + 1; z∗i′) < C2

+(R, k + 1; z∗) = p′′k+1. By Lemma C.1(ii)
and (1), (ẑ′′N\{j}, p

′′
M(k)) = (z′N\{j}, p

′
M(k)) ∈ Wmin(N\{j},M(k), R′′N\{j}). By the

construction of R′′i , (z′N\{j}, p
′
M(k)) ∈ Wmin(N\{j},M(k), R′N\{j}). By Fact C.3(ii),

i ∈ N ′C at (z′, p′) for R′.

Case II: i ∈ NU

Case II-1: i∗ ∈ NC

By i ∈ NU and i∗ ∈ NC , i 6= i∗. Thus, by Vi∗(k + 1; z∗i ) = C1
+(R, k + 1; z∗), we

have: (∗1) Vi(k+1; z∗i ) ≤ C2
+(R, k+1; z∗). By i∗ ∈ NC and z∗i∗ = (k+1, C2

+(R, k+

1; z∗)), we have: (∗2) there is j ∈ NC such that Vj(k + 1; z∗j ) = C2
+(R, k + 1; z∗).

By i ∈ NU and R−i = R′−i, we have: RNC = R′NC and R
′
NU

= (R′i, RNU\{i}).
By contradiction, suppose C2

+(R, k + 1; z∗) = C1
+(R, k + 1; z∗). Then pk+1 =

C1
+(R, k+1; z∗) > 0. By i∗ ∈ NC , k+1 ∈MC . Thus, by i 6= i∗ and Lemma C.3(i),

(z, p) ∈ Wmin(M(k + 1), R) and so by Proposition 1, N = NC , contradicting
i ∈ NU . Thus we have: (∗3) C2

+(R, k + 1; z∗) < C1
+(R, k + 1; z∗) = Vi∗(k + 1; z∗i∗).

Case II-1-1: V ′i (k + 1; z∗i ) ≤ C2
+(R, k + 1; z∗)

By Fact C.5 and Theorem 1, we have ẑNU ∈ Zmin(NU ,MU , RNU , r̂) where for
each x ∈ MU , r̂x = C1

+(RNC , x; z∗), and z̃N ′U ∈ Zmin(N ′U ,M
′
U , R

′
NU
, r̃) where for

each x ∈M ′
U , r̃x = C1

+(RN ′C
, x; z∗).

Thus if NU = N ′U and MU = M ′
U , then NC = N ′C and r̂ = r̃, and so by

i ∈ NU = N ′U , R
′
NU

= (R′i, RNU\{i}), and Fact C.1, ẑiRi z̃i. Thus we need to show
NU = N ′U and MU = M ′

U .
By i ∈ NU , (∗1), (∗2) and V ′i (k + 1; z∗i ) ≤ C2

+(R, k + 1; z∗),

p′k+1 = C2
+(R′, k + 1; z∗) = C2

+(R, k + 1; z∗) = pk+1.

Thus, by (∗3), x′i∗ = xi∗ = k + 1 ∈ MC and z′i∗ = zi∗. By Fact C.2(ii), p′M(k) =

pmin
M(k) = pM(k). Thus, by p′k+1 = pk+1, we have: (1) p = p′.
By Lemma C.2(i) and x′i∗ = k + 1 ∈ MC , we have: (2) {x′j}j∈NC ⊆ MC ∪ {0}.

By zi∗ = z′i∗ and Fact C.2(i), we have: (3) for each j ∈ NC , z′j Ij z
∗
j Ij zj. Thus, by
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(1), we have: (4) for each j ∈ NC , {xj, x′j} ⊆ Dj(p) = Dj(p
′). Thus,

Lemma C.1(i) ⇒ (zNC , pMC
) ∈ Wmin(NC ,MC , RNC )

⇒ (zNC , p
′
MC

) ∈ Wmin(NC ,MC , R
′
NC

) by (1), RNC = R′NC
⇒ (z′NC , p

′
MC

) ∈ Wmin(NC ,MC , R
′
NC

) by (2), (4)

Thus, by NC ⊆ N , MC ⊆ M and Fact C.3(i), we have: NC ⊆ N ′C , which implies
(5) NU ⊇ N ′U .
In the following, we show NU ⊆ N ′U .
By Lemma C.2(ii) and xi∗ = x′i∗ = k + 1 ∈ MC , we have MU ⊆ {x′j}j∈NU .

Thus, by |MU | = |NU | (Lemma 1(i)), we have: (6) MU = {x′j}j∈NU .
Let j ∈ NC . By Lemma 1(ii), for each x ∈ MU , zj Pj (x, px). By (1) and (3),

for each x ∈ MU , z′j Ij zj Pj (x, px) = (x, p′x). Thus, we have: (7) for each j ∈ NC ,
Dj(p

′) ∩MU = ∅.
For each j ∈ NU , by (1) and (6), p′x′j = px′j > 0. Thus, by (6), (7) and Fact

C.6, we have NU ⊆ N ′U .
Thus, by (5), NU = N ′U , and so by (6), MU = M ′

U .

Case II-1-2: V ′i (k + 1; z∗i ) > C2
+(R, k + 1; z∗)

By i∗ ∈ NC , k + 1 ∈ MC , Fact C.5, and Theorem 1, ẑNU∪{i∗} ∈ Zmin(NU ∪
{i∗},MU ∪ {k + 1}, RNU∪{i∗}, r̂) where r̂x = C1

+(RNC\{i∗}, x; z∗) for each x ∈MU ∪
{k + 1}, and z̃N ′U ∈ Zmin(N ′U ,M

′
U , R

′
NU
, r̃) where r̃x = C1

+(RN ′C
, x; z∗) for each

x ∈M ′
U .

Thus if NU ∪ {i∗} = N ′U and MU ∪ {k + 1} = M ′
U , then NC\{i∗} = N ′C and

r̂ = r̃, and so by i ∈ NU ∪{i∗} = N ′U , R
′
NU∪{i∗} = (R′i, RNU ), and Fact C.1, ẑiRi z̃i.

Thus we need to show NU ∪ {i∗} = N ′U and MU ∪ {k + 1} = M ′
U .

By (∗3), and V ′i (k + 1; z∗i ) > C2
+(R, k + 1; z∗),

p′k+1 = C2
+(R′, k+1; z∗) ≥ min{V ′i (k+1; z∗i ), Vi∗(k+1; z∗i∗)} > C2

+(R, k+1; z∗) = pk+1.

Thus we have: (1) for each j ∈ NC\{i∗}, Vj(k + 1; z∗j ) ≤ pk+1 < p′k+1. Thus, by
Fact C.2(ii), we have: (2) p′k+1 > pk+1 and p′M(k) = pmin = pM(k).
By Lemma C.2(i), for each j ∈ NC\{i∗}, x′j ∈ MC ∪ {0, k + 1}. By (1) and

Definition 8, for each j ∈ NC\{i∗}, x′j 6= k+ 1. Thus we have: (3) {x′j}j∈NC\{i∗} ⊆
(MC\{k+1})∪{0}. By Fact C.2(i), we have: (4) for each j ∈ NC\{i∗}, z′j Ij z∗j Ij zj.
Thus, by (2) and (4), we have: (5) for each j ∈ NC\{i∗}, {xj, x′j} ⊆ Dj(p

′) ⊆
Dj(p). Recall RNC\{i∗} = R′NC\{i∗}. Thus,

Lemma C.1(ii) (by (∗3), condition (a) holds)

⇒ (zNC\{i∗}, pMC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k + 1}, RNC\{i∗})

⇒ (zNC\{i∗}, p
′
MC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k + 1}, R′NC\{i∗}) by (2)

⇒ (z′NC\{i∗}, p
′
MC\{k+1}) ∈ Wmin(NC\{i∗},MC\{k + 1}, R′NC\{i∗}) by (3), (5)
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Thus, by NC\{i∗} ⊆ N , MC\{k + 1} ⊆ M and Fact C.3(i), we have: NC\{i∗} ⊆
N ′C , which implies (6) NU ∪ {i∗} ⊇ N ′U .
In the following, we show NU ∪ {i∗} ⊆ N ′U .
By p′k+1 > pk+1, k + 1 must be assigned. Thus by (3) and Lemma C.2(ii), for

each x ∈ MU ∪ {k + 1}, there is j ∈ NU ∪ {i∗} such that x′j = x, which implies
MU ∪ {k + 1} ⊆ {x′j}j∈NU . Thus, by |MU | = |NU | (Lemma 1(i)), i∗ ∈ NC , and
k + 1 ∈ MC , |MU ∪ {k + 1}| = |NU ∪ {i∗}|. Thus we have: (7) MU ∪ {k + 1} =

{x′j}j∈NU∪{i∗}.
Let j ∈ NC\{i∗}. Then by Lemma 1(ii), for each x ∈ MU , zj Pj (x, px). Thus,

by (2) and (3), for each x ∈ MU ⊆ M(k), z′j Ij zj Pj (x, px) = (x, p′x) and by (1),
z′j Pj (k + 1, p′k+1). Thus, we have: (8) for each j ∈ NC\{i∗}, Dj(p

′) ∩ (MU ∪ {k +

1}) = ∅.
For each j ∈ NU ∪ {i∗}, by (2) and (7), p′x′j = px′j > 0. By (7), (8) and Fact

C.6, we have NU ∪ {i∗} ⊆ N ′U .
Thus, by (6), NU ∪ {i∗} = N ′U , and so by (7), MU ∪ {k + 1} = M ′

U .

Case II-2: i∗ ∈ NU .

By i∗ ∈ NU and xi∗ = k + 1, there is i′ ∈ NU\{i∗} such that

Vi′(k + 1; z∗i′) = C2
+(R, k + 1; z∗) ≤ Vi∗(k + 1; z∗i∗) (∗4)

By i∗ ∈ NU and xi∗ = k+1, we have: (∗5) C2
+(R, k+1; z∗) > C1

+(RNC , k+1; z∗). To
see (∗5), by contradiction, suppose not, i.e., C2

+(R, k+1; z∗) = C1
+(RNC , k+1; z∗).

In case of C2
+(R, k + 1; z∗) = 0, by Definition 3, i∗ ∈ NC , contradicting i∗ ∈

NU . In case of C2
+(R, k + 1; z∗) > 0, there is j ∈ NC such that Vj(k + 1; z∗j ) =

C1
+(RNC , k + 1; z∗). Thus, k + 1 is connected by agent j’s demand and so by

j ∈ NC , i∗ ∈ NC , contradicting i∗ ∈ NU . By (∗4) and (∗5), we have: (∗6)

Vi∗(k + 1; z∗i∗) ≥ Vi′(k + 1; z∗i′) > C1
+(RNC , k + 1; z∗).

The proof are divided into four cases, Cases II-2-1, II-2-2, II-2-3, and II-2-4.
We group them in two parts. Part A treats Cases II-2-1, II-2-2, and II-2-3. Part
B treats Case II-2-4.
Part A: By Fact C.5 and Theorem 1, ẑNU ∈ Zmin(NU ,MU , RNU , r̂) where r̂x =

C1
+(RNC , x; z∗) for each x ∈ MU , and z̃N ′U ∈ Zmin(N ′U ,M

′
U , R

′
NU
, r̃) where r̃x =

C1
+(RN ′C

, x; z∗) for each x ∈M ′
U .

Thus if NU = N ′U and MU = M ′
U , then NC = N ′C and r̂ = r̃, and so by

i ∈ NU = N ′U , R
′
NU

= (R′i, RNU\{i}), and Fact C.1, ẑiRi z̃i. Thus we need to show
NU = N ′U and MU = M ′

U .
By i∗ ∈ NU and xi∗ = k + 1, if p′k+1 > C1

+(RNC , k + 1; z∗), then by Lemma
C.3(iii), NU = N ′U and MU = M ′

U . Thus, in Cases II-2-1, II-2-2, and II-2-3, we
show that p′k+1 > C1

+(RNC , k + 1; z∗), respectively.
Case II-2-1: i 6= i∗ and i 6= i′
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By i′ ∈ NU\{i∗}, i′ 6= i∗. Thus,

p′k+1 = C2
+(R′, k + 1; z∗) ≥

i′ 6=i∗,i 6=i∗, i 6=i′
min{Vi′(k + 1; z∗i′), Vi∗(k + 1; z∗i∗)}

>
(∗6)

C1
+(RNC , k + 1; z∗).

Case II-2-2: (a) i = i∗ or i = i′, and
(b)

∣∣{j ∈ NU\{i′, i∗} : Vj(k + 1; z∗j ) > C1
+(RNC , k + 1; z∗)}

∣∣ ≥ 1

By (b), there is j ∈ NU\{i′, i∗} such that (1) Vj(k+1; z∗i∗) > C1
+(RNC , k+1; z∗).

In case of i = i∗, by i′ ∈ NU\{i∗}, we have i 6= i′, and

p′k+1 = C2
+(R′, k + 1; z∗) ≥

j 6=i′,i′ 6=i, j 6=i
min{Vi′(k + 1; z∗i′), Vj(k + 1; z∗i∗)}

>
(1),(∗6)

C1
+(RNC , k + 1; z∗).

We can treat the case of i = i′ by the same way, and so we omit it.
Case II-2-3: (a) and (c) V ′i (k + 1; z∗i ) > C1

+(RNC , k + 1; z∗).
In case of i = i∗, by i′ ∈ NU\{i∗}, we have i 6= i′ and i′ 6= i∗, and

p′k+1 = C2
+(R′, k + 1; z∗) ≥

i′ 6=i∗,i 6=i∗,i 6=i′
min{Vi′(k + 1; z∗i′), Vi∗(k + 1; z∗i )}

>
(c),(∗6)

C1
+(RNC , k + 1; z∗).

We can treat the case of i = i′ by the same way, and so we omit it.
Part B: This part treats Case II-2-4.
Case II-2-4: (a), (d)

∣∣{j ∈ NU\{i′, i∗} : Vj(k + 1; z∗j ) > C1
+(RNC , k + 1; z∗)}

∣∣ =

0,
and (e) V ′i (k + 1; z∗i ) ≤ C1

+(RNC , k + 1; z∗).
By (a), i = i′ or i = i∗. We consider only the case of i = i′ here. We can treat

the case of i = i∗ by the same way, and so we omit it.
By Fact C.5 and Theorem 1, ẑNU ∈ Zmin(NU ,MU , RNU , r̂) where for each

x ∈ MU , r̂x = C1
+(RNC , x; z∗), and if i∗ ∈ N ′C and x

′
i∗ = k + 1, then z̃N ′U∪{i∗} ∈

Zmin(N ′U ∪ {i∗},M ′
U ∪ {k + 1}, R′N ′U∪{i∗}, r̃) where for each x ∈ M ′

U ∪ {k + 1},
r̃x = C1

+(RN\[N ′U∪{i∗}], x; z∗).
Thus if i∗ ∈ N ′C , x

′
i∗ = k + 1, NU = N ′U ∪ {i∗} and MU = M ′

U ∪ {k + 1},
then NC = N\[N ′U ∪ {i∗}] and r̂ = r̃, and so by i ∈ NU = N ′U ∪ {i∗}, R′N ′U∪{i∗} =

(R′i, RN ′\{i}), and Fact C.1, ẑiRi z̃i. Thus, we show that i∗ ∈ N ′C , x
′
i∗ = k + 1,

NU = N ′U ∪ {i∗} and MU = M ′
U ∪ {k + 1}.

By (d), we have: (1) Vj(k+1; z∗j ) ≤ C1
+(RNC , k+1; z∗) for each j ∈ NU\{i′, i∗}.

By i′ ∈ N\{i∗}, i = i′ 6= i∗. Thus,

V ′i (k + 1; z∗i ) ≤
(e)
C1

+(RNC , k + 1; z∗) <
(∗6),i 6=i∗

Vi∗(k + 1; z∗i∗),
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and so by (1),

Vi∗(k + 1; z∗i∗) = C1
+(R′, k + 1; z∗) > C1

+(RNC , k + 1; z∗) = C2
+(R′, k + 1; z∗).

By Vi∗(k + 1; z∗i∗) = C1
+(R′, k + 1; z∗) > C2

+(R′, k + 1; z∗), we have: (2) xi∗ =

x′i∗ = k+ 1. By C2
+(R′, k+ 1; z∗) = C1

+(RNC , k+ 1; z∗), p′k+1 = C1
+(RNC , k+ 1; z∗).

Thus by (2), we have: (3) i∗ ∈ N ′C and k+1 ∈M ′
C . By p

′
k+1 = C1

+(RNC , k+1; z∗),

p′k+1 = C1
+(RNC , k + 1; z∗) <

(∗5)
C2

+(R, k + 1; z∗) = pk+1.

Thus, by Fact C.2(ii), we have: (4) p′M(k) = pmin = pM(k) and p′k+1 < pk+1.

By (2), (3), and Lemma C.2(i), we have: (5) {x′j}j∈NC ⊆MC∪{0}. By i∗ ∈ NU

and Fact C.2(i), we have: (6) for each j ∈ NC , z′j Ij z
∗
j Ij zj. Thus, by (4), we have:

(7) for each j ∈ NC , {xj, x′j} ⊆ Dj(p) ⊆ Dj(p
′). By i ∈ NU , RNC = R′NC . By

i∗ ∈ NU , xi∗ = k + 1 ∈MU and (4), pMC
= p′MC

. Thus,

Lemma C.1(i)

⇒ (zNC , pMC
) ∈ Wmin(NC ,MC , RNC )

⇒ (zNC , p
′
MC

) ∈ Wmin(NC ,MC , R
′
NC

) pMC
= p′MC

, RNC = R′NC
⇒ (z′NC , p

′
MC

) ∈ Wmin(NC ,MC , R
′
NC

) (5), (7)

Thus, by NC ⊆ N , MC ⊆ M(k) and Fact C.3(i), we have: NC ⊆ N ′C . Thus by
(3), NC ∪ {i∗} ⊆ N ′C , which implies (8) N

′
U ∪ {i∗} ⊆ NU .

In the following we show NU\{i∗} ⊆ N ′U , which implies N
′
U ∪ {i∗} ⊇ NU .

By Lemma C.2(ii) and (2), we have MU\{k + 1} ⊆ {x′j}j∈NU\{i∗}. Thus, by
|MU | = |NU | (Lemma 1(i)), i∗ ∈ NU , and xi∗ = k + 1 ∈ MU , we have: (9)
MU\{k + 1} = {x′j}j∈NU\{i∗}.
Note that for each j ∈ NC and each x ∈MU\{k + 1},

z′j Ij
(6)
zj Pj
Lemma 1(ii)

(x, px) =
(4)

(x, p′x).

Also note that for each x ∈MU\{k + 1},

z′i∗ =
(2)

(k + 1, p′k+1)Pi∗
(4)

(k + 1, pk+1) =
xi∗=k+1

zi∗ Ri∗ (x, px) =
(4)

(x, p′x).

Thus we have: (10) for each j ∈ NC ∪ {i∗}, Dj(p
′) ∩ (MU\{k + 1}) = ∅.

By (2), (4) and (9), for each j ∈ NU\{i∗}, p′x′j = px′j > 0. Thus, by (9), (10)

and Fact C.6, NU\{i∗} ⊆ N ′U . Thus by (8), NU = N ′U ∪ {i∗}, and so by (9),
MU = M ′

U ∪ {k + 1}. Q.E.D.

Appendix D: Diffi culties with DGS auctions under general preferences
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We construct two examples below to show that the “exact DGS auction”and
“approximate DGS auction”substantially overshoot the MPE prices when general
preferences are considered. Examples can be similarly constructed to show that
when the price increment is larger than the measurement of agents’valuation, the
auction in Mishra and Parkes (2009) substantially undershoots the MPE price,
and the auctions in Andersson and Erlanson (2013) and Liu and Bagh (2019)
either substantially overshoots or undershoots the MPE price.

The exact DGS auction:

The exact DGS auction finds the MPE price in a finite number of steps if
(i) agents have quasi-linear preferences and (ii) the price increment is equal to
the measurement unit of agents’valuations, e.g., both are integers (Demange et
al. 1986). The following example shows that even if only (ii) fails, i.e., the price
increment is larger than the measurement unit of agents’valuations, the exact
DGS auction generates an outcome whose prices are higher than the MPE price
and fail to approximate it. Note that (ii) often fails to hold for general preferences.
Consider the case of two agents, 1 and 2, and two objects, A and B. Receiving

object 0 means receiving nothing. Agents have quasi-linear preferences. Let V i(x)

denote agent i’s valuation over x = 0, A,B. Let

V1(0) = 0, V1(A) = 9.2, V1(B) = 9.8,

V2(0) = 0, V2(A) = 9.1, V2(B) = 9.6.

Let pA and pB be the prices of A and B, and p ≡ (pA, pB). The price of object 0 is
zero. Agent i’s demand set at p is: Di(p) ≡ {x ∈ {0, A,B} : Vi(x)−px ≥ Vi(y)−py,
y ∈ {0, A,B}}. Since the MPE price for this value profile coincides with the
Vickrey payment, the MPE price is pmin = (0, 0.5).
The DGS auction starts from p = (0, 0), the reserve prices, with an integer

increment. At p = (0, 0), both agents demand only object B. Since only object
B is overdemanded (also MOD), then increase only pB by one unit. At p =

(0, 1), both agents demand only object A (A is overdemanded, also MOD), and
so increase only pA by one unit. Again, at p = (1, 1), both agents demand only
object B. Similarly, the price of each object alternatively increases at least to
(9, 9) and the auction terminates at (10, 10). The price (9, 9) could be possibly
treated as the outcome of the auction since (9, 9) is an approximate equilibrium
price11 that is coordinate-wisely closest to (10, 10), given the unit increment. Still
(9, 9) substantially overshoots pmin = (0, 0.5).

11Let ε be the increment in the auction. Agent i’s ε−demand set at p is given by Dε
i (p) ≡

{x ∈ L : (x, px)Ri (0, 0) and (x, px)Ri (y, py + ε), l′ ∈ M}. When ε = 0, Di(p) = Di(p
′). A

pair (z, p) ∈ Z ×Rm+ is an approximate equilibrium (for ε) if (i) for each i ∈ N , xi ∈ Dε
i (p) and

pxi = ti, and (ii) for each y ∈M , if for each i ∈ N , xi 6= y, then py = 0.
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The approximate DGS auction:

The approximate DGS auction works as follows. Agents are called bid on
objects one by one, according to some exogenously given queue. If an agent bids
on an unassigned object, she becomes committed to that object at the reserve
price. If an agent bids on an assigned object at some price, the price of that
object is increased by a price increment, and the agent becomes committed to
that object at the increased price. Simultaneously, the agent to whom the object
had been assigned becomes uncommitted and occupies the first position among
the remaining uncommitted agents. If an agent bids on no object, she drops out
of the auction. The auction terminates when all uncommitted agents drop out.
The approximate DGS auction obtains an outcome where the prices derive from

the (exact) MPE price, coordinate-wise, by at most k · δ (δ: the price increment;
k: the minimum of the numbers of agents and objects), if agents have quasi-linear
preferences (Demange et al. 1986). The following example shows that if agents
have general preferences, the outcome prices of an approximate DGS auction lie
outside the estimation in the quasi-linear setting.
Consider the case of three agents, 1, 2, and 3, and two objects, A and B.

Agents are called in the order 1, 2, and 3. Let δ ≡ 1 and agents’preferences
satisfy the standard assumptions (See Section 3), and in addition:
For agent 1, (0, 0) I1 (A, 0.3) I1 (B, 20.4);
For agent 2, (A, 0) I2 (B,−1), (0,−20) I2 (A, 5) I2 (B, 20.4) and
(0, 0) I2 (A, 20.2) I2 (B, 20.6);
For agent 3, (0,−21) I3 (A, 0.5) I3 (B, 20.4) and (0, 0) I3 (A, 20.6) I3 (B, 20.8),
For the above preference profile, the MPE price is pmin = (0.5, 20.4).
The approximate DGS auction starts from p = (0, 0), the reserve prices. First,

agent 1 is called on and demands object B, and committed to B at price 0. Second,
agent 2 is called, and since agent 2 demands object A at p = (0, 1), she then bids
A and is committed to A at price 0. Third, agent 3 is called on, and since agent 3
demands object B at p = (1, 1), she then bids B and is committed to B at price 1.
Then, agent 1 becomes uncommitted. Since she is the only uncommitted bidder,
agent 1 is called on, and since she demands object B at p = (1, 2), agent 1 then
bids B and is committed to B at price 2. Agent 3 thus becomes uncommitted.
Since she is the only uncommitted bidder, agent 3 is called on to bid. Note that
agents 1 and 3 alternatively bid on object B until its price reaches 20. Since agent
1 is committed to object B at price 20, agent 3 is called on; because agent 3
demands object A at p = (1, 21), he then bids A and is committed to it at price
1. By similar reasoning, agents 2 and 3 alternatively bid on object A until its
price reaches 20 but stop bidding at 21. The outcome price of object A, i.e., 20,
overshoots its pmin

A = 0.5, much more than k · δ = 2. Given k and δ, the set of
preference profiles for such undesirable deviations is non-negligible.
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