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Preface to ”Market Design for a High-Renewables

Electricity System”

Recent targets for tackling climate change proposed by most of the world’s governments 
envisage dramatic cuts to greenhouse gas emissions as well as increases in the share of renewable 
energy in total gross energy production. However, despite these developments, the electricity sector 
will continue to bear the most significant burden stemming from economy-wide decarbonization 
which will in turn require high shares of renewable energy sources (RES) in the electricity system. 
The good news is that technological progress in wind and solar energy coupled with the increased 
use of interconnection, hydro resources, and new battery technologies, and the growing importance 
of smart meters and smart grids might make the high-proportion renewables electricity system a 
realistic future scenario. Increasing the share of RES will be challenging without substantial 
modifications to the current market design. This book provides assessments and evaluations of the 
emerging trends in electricity markets, with a focus on high-renewables electricity systems. Various 
issues are analyzed, such as wind and solar energy, interconnection, smart meters, smart grids of the 
future (including their social implications), or the peer-to-peer (P2P) electricity trading, which is 
closely connected to the principle of sharing economy. One of the main issues this volume attempts to 
address is how the market design for a high-renewables electricity system would be different from 
the classical post-liberalization market design. The studies published in this book contemplate the 
problem of how to encourage penetration of RES in electricity markets with the help of policies 
targeted at promoting renewables on the supply and demand sides to address the external benefits of 
renewables. Support for RES should integrate public preferences and these can be addressed by 
assessing willingness-to-pay (WTP) for renewable energy sources. Policies to promote renewables 
closely interact with other climate change mitigation efforts in energy sector such as energy efficiency 
improvements on demand and supply and therefore should be developed considering energy and 
climate targets.

Wadim Strielkowski

Special Issue Editor
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Abstract: The growing importance of the Internet of Energy (IoE) brands the high-renewables
electricity system a realistic scenario for the future electricity system market design. In general,
the whole gist behind the IoE is developed upon a somewhat broader idea encompassing the so-called
“Internet of Things” (IoT), which envisioned a plethora of household appliances, utensils, clothing,
smart trackers, smart meters, and vehicles furnished with tiny devices. These devices would record
all possible data from all those objects in real time and allow for a two-way exchange of information
that makes it possible to optimize their use. IoT employs the Internet Protocol (IP) and the worldwide
web (WWW) network for transferring information and data through various types of networks
and gateways as well as sensor technologies. This paper presents an outline stemming from the
implications of the high-renewables electric system that would employ the Internet of Energy (IoE).
In doing so, it focuses on the implications that IoE brings into the high-renewables electricity market
inhabited by smart homes, smart meters, electric vehicles, solar panels, and wind turbines, such as the
peer-to-peer (P2P) energy exchange between prosumers, optimization of location of charging stations
for electric vehicles (EVs), or the information and energy exchange in the smart grids. We show
that such issues as compatibility, connection speed, and most notoriously, trust in IoE applications
among households and consumers would play a decisive role in the transition to the high-renewables
electricity systems of the 21st century. Our findings demonstrate that the decentralized approach
to energy system effective control and operation that is offered by IoE is highly likely to become
ubiquitous as early as 2030. Since it may be optimal that large-scale rollouts start in the early 2020s,
some form of government incentives and funding (e.g. subsidies for installing wind turbines or
solar panels or special feed-in-tariffs for buying renewable energy) may be needed for the energy
market to make early progress in embracing more renewables and in reducing the costs of later
investments. In addition, there might be some other alternative approaches aimed at facilitating this
development. We show that the objective is to minimize the overall system cost, which consists of the
system investment cost and the system operating cost, subject to CO2 emissions constraints and the
operating constraints of generation units, network assets, and novel carbon-free technologies, which is
quite cumbersome given the trend in consumption and the planned obsolescence. This can be done
through increasing energy efficiency, developing demand side management strategies, and improving
matching between supply and demand side, just to name a few possibilities.

Keywords: renewable energy sources; sustainability; Internet of Energy; smart meters; smart grid

Energies 2019, 12, 4790; doi:10.3390/en12244790 www.mdpi.com/journal/energies1
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1. Introduction

Smart grid technologies would make it possible to be more efficient in terms of using energy
sources and optimizing them, whenever necessary, with regard to the environmental or power system
limitations. With all that, various energy strategies can be implemented for creating benefits for all
system users and for providing them with clean and cheap energy at all times. As renewable energies
mature, prices fall, education improves, and competitiveness improves, the likelihood of technology
spreading across national borders increases.

Given the current state of technological development and the energy market, it is likely that
the high-renewables electricity system market design of the future would be based on smart grids
powered by the Internet of Energy (IoE) [1]. The term "smart grid" is characteristically used for
describing an electricity system that supports four basic operations encompassing electricity generation,
electricity transmission, electricity distribution, and electricity control [2–4]. A smart grid is based on
the bidirectional exchange of information and energy within the electricity networks. Using its unique
qualities, it is capable of optimizing, saving, and delivering energy precisely where it is needed [5].

Smart grids of the future would involve large shares of renewable energy sources (RES). Generating
electricity from renewable energy sources would provide direct and indirect economic benefits beyond
cost, as well as environmental benefits from reducing CO2 emissions. Moreover, generation of electricity
from renewable energy sources integrated into the smart grid system can be one of the best options for
future energy security. The smart grid system addresses the deterioration of the power source and the
modern information technology for communication and improves the efficiency of power distribution.

However, this renewable energy is likely to be generated not only at the industry level (e.g., by large
state or private companies) but also at the household or individual level. In the future, every energy
consumer would become a “prosumer” (an agent at the electric energy market that is simultaneously
buying, producing, and often selling electric energy) as described, for example, by Mengelkamp et
al. [6]. Thence, it would be very important to link all pro-active prosumers as well as large energy
producers and users into efficient networks that would allow a two-way flow of information and
energy [7]. To meet future energy needs, the smart grid system can be used as an efficient energy
security system. Nevertheless, this cannot be achieved without the profound use of information and
communication technologies (ICTs).

Here is where the Internet of Energy (IoE) comes in being the fastest in all current energy transfers
because the actual speed as well as the efficiency of the energy transfer [8]. Even though IoE might seem
like a very novel idea, it is largely based on the advancements, rules and the general architecture of the
“old-fashioned” information and communication technologies (ICTs) and Internet. Putting things very
simply, IoE consists of millions of energy-generating installations, as well as devices and household
appliances that report back to the power grid using peer-to-peer or server-based network for receiving
information, running an analysis, and sending commands [9–11]. Thence, in the nearest future,
high-renewables smart grids would enable the two-way flow of information and energy with a purpose
of providing power for all system users [12,13].

With regard to the above, for achieving the high-renewables electricity system market design it
would be crucial to move to the rapid energy transfer and planning in the future. Renewable energy
sources are being introduced in an unequal environment where their energy prices do not fully reflect
the externalities. The global subsidies for traditional fuels and nuclear energy remain high despite the
benefits of renewable energy and concerns about environmental quality. Much of the expansion of
renewable capacity occurs in countries with large subsidy systems that can compensate investors for
the relatively high cost of renewable energy technologies.

Many aspects, such as electromagnetics, materials science, information science, automation, and the
like are involved in the generation, conversion, transmission, distribution and power consumption of
the smart grids. Therefore, it requires a lot of talent to work together or to accompany [14,15]. With the
breakthrough of materials science and power electronics, the advantage of some advanced technologies
that would further boost the smart grids and high-renewables systems such as direct current (DC)
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transmission is obvious. It is highly likely that DC transmission would become the most important
type of energy transfer in the future. In the last ten years or so, several product categories more than
doubled, including home-based energy management systems, smart lighting controls, residential
demand response, and building information modelling, as pointed out by Luca de Tena et al. [16]. Led
by solar, wind and gas turbines, this segment represents more than a quarter of the advanced and
RES-focused energy market.

High-renewables electric smart grids of the future powered by the IoE would largely benefit from
the optimal solutions applied to smart homes, electric vehicles (EVs), solar panels, wind turbines,
as well as peer-to-peer (P2P) flow of electricity and information between prosumers. Nevertheless,
the transition to the high-renewables electricity systems of the 21st century would have to tackle many
technical issues such as compatibility, connection speed, as well as social acceptance.

This paper is structured as follows: Section 2 provides a thorough literature review focusing
on the innovative policies for promoting high-renewables smart electricity systems and smart grids.
Section 3 describes smart network technologies. Section 4 provides scenarios for the high-renewables
electricity system market design that would employ IoE. Finally, Section 5 concludes with outlaying
some final outcomes and policy implications.

2. Literature Review

IoE represents a global interconnected network that is comprised of various household and
industrial appliances, electric devices, large and small, as well as smart grids that interconnect them all
together. Another important element of IoE is, of course, the presence of smart meters, or sensors that
constantly monitor all processes within this network and send signals across the grid, helping the IoE
to understand the appliances schedule and the consumers to adjust their energy consumption patterns
and usage. [17–19]. All in all, it becomes quite apparent that IoE is capable of helping in achieving and
further increasing the sustainability for the smart grids through making the production, transmission,
and consumption of electric energy more efficient and economically feasible. With all that benefits smart
grids and IoE are offering, it is quite surprising that many agents at the contemporary energy market
(e.g., car producers, energy suppliers, or utility companies), still have certain troubles in adjusting
to the new technological advancements [20,21] (even though it is apparent that their deployment
requires substantial capital investments). However, it quite clear that new types of energy demand and
supply that would include more renewable energy sources and prosumers would inevitably lead to the
profound changes in world’s electrical networks. With regard to that, smart grids offer a whole scale
of opportunities how to tackle these changes depending on the concrete situation, business models,
regulation, and power infrastructure [22,23].

Figure 1 that follows, shows how the flexibility and innovations trends in IoE framework and
its applications to high renewables penetrations of electricity market are driving energy transition.
There are three main aspects to be considered that mark the transformation of the sector (digitalisation,
decentralisation, and electrification).

 

Figure 1. Flexibility and innovations in the Internet of Energy (IoE) and high renewables framework.
Source: Own results.
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With regard to the above, one can see how the aspects outlined above impact the transition to the
high renewables penetrations of electricity market: digitalisation includes ICT solutions to exchanging
data and energy in the framework of IoE, decentralisation embeds the distributed energy resources
(DERs) that would help to further decentralise the future power system, while electrification means
the increasing share of electric transport, industry, and buildings.

Furthermore, high penetration of renewables also makes the IoE an indispensable tool for the
dynamic demand response, when the utilities need to reschedule or delay the operation of the
appliances located in households and businesses during the periods when demand levels spike. This is
particularly useful due to the intermittent nature of RES.

In the future, high-renewables electricity system market design would encompass the new
concepts of energy consumers’ and producers’ relationships, market operations, as well as electric
energy trading [24–27]. IoE and the smart grid would allow for the two-way flow of information
and energy in the real time as we know it from the world wide web (WWW) and the Internet [28].
There would be many interesting and useful applications that might be helpful in mitigating power
system operation hurdles and natural challenges. For example, Pina et al. [29] analyze the impact
of demand side management strategies in the evolution of the electricity mix of Flores Island in the
Azores and conclude that IT solutions might improve the operation of the existing installed capacity.
Moreover, Strielkowski et al. [30] explain in greater detail how photovoltaic system owners can control
their use of electricity using the "power manager" gateways and battery storage for achieving the
economically effective outcome. Another interesting case study involving the IoE and its implications
for the smart grids is the autonomic power system (APS), that presents a novel concept of “self*”
(self-configuring, self-healing, self-optimizing, and self-protecting) system [31]. APS constituted a
system-wide approach with the decentralized intelligence making autonomous decisions required
for meeting the priorities of the system’s stakeholders, employing the integration of a vast number of
flexible, diverse, and independently controlled technologies in system operation and planning [4,32,33].

When it comes to the technical details and characteristics for the IoE applied to the electricity
market in terms of high variable renewable resources penetration, various layers of IoE in smart
grids covering management services (security control, data monitoring, customer or market data) and
applications (smart homes, electric vehicles, demand response, and demand side management) can be
considered: e.g., transport layer, physical layer, network layer, or application layer [34,35].

IoE and smart grids would allow system operators to promptly react to peaks or failures in electric
energy demand and also to forecast these issues well in advance and to adjust to these situations by
optimizing energy generation from, say, RES, accordingly. All these would increase energy market
efficiency and profitability [36–39]. In a way, it is quite similar to the so-called “cashless economy”,
when the Internet is used to optimize payments and money transfers, and banks, financial institutions,
as well as government regulators have an instant snapshot of all of those activities and transactions.

Energy companies operating on the future high-renewables and smart solutions-driven electricity
market would be involved into the generation of energy from renewable sources and natural gas,
energy trading and tailor-made energy services and developments for companies [40,41]. They would
offer their customers a reliable and environmentally friendly energy supply based on the sustainable
use of renewable energies.

Another important aspect is smart meters. Their numbers are increasing, and their usage
is becoming notorious in all aspects of energy generation and saving. However, in some cases,
as for example, Rausser et al. [42] demonstrate using a case study from the Republic of Ireland,
their deployment has little effect of the energy consumption behaviour of the households and
individuals. Nevertheless, smart meters would also be a very important pillar of the high-renewables
sustainable energy system [43,44]. In the future market design, the peak load shave would be achieved
by shifting the usage time of the energy without changing the total energy consumption [45]. It works
on the application of smart meters to collect data and optimize energy production [46]. Although this
strategy improves the conventional grid, the IoE framework is not considered a mathematical model
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and the inclusion of renewable energy sources is lacking. The introduction of smart meters and IoE
connected power supplies has allowed consumers to track and monitor their energy consumption and
save energy costs. This has many practical applications and technical solutions, in particular in Smart
Cities that represent a communication infrastructure offering a concise, unified and affordable access
to municipal services including energy supply [47].

Similar technology is expected to make aggressive progress in the areas of energy production and
transmission [48,49]. This massive and rapid growth is aimed at efficient use of resources in power
generation and higher operational efficiency to meet growing energy needs [50–52].

With limited participation of demand resources, the wholesale market functioned mainly with
network operators selling large central station equipment to meet the steady demand. Renewable
energy today is cheaper than coal and nuclear power in most parts of such advanced economies as,
for example, the United States and more cost-competitive with natural gas [53,54].

Furthermore, it becomes obvious that the targeted rapid increase in power supply from intermittent
renewable sources in many countries is a fundamental challenge to the smooth functioning of many
power systems. Wind and solar power are the fastest growing forms of renewable energy [55,56].
The supply of wind and solar energy is largely determined by wind speed and solar radiation which can
be correlated only slightly with the times of electricity demand [57–59]. It is this feature of renewable
energy intermittent power supply that adds cost to the entire generation system that is implicitly paid
for by either other producers, consumers or taxpayers [60,61]. With the constantly increasing size and
quantity, today’s generation and energy costs are often competitive with coal and nuclear without
taking into account the reserve capacity and complexity of grid connectivity that affect their value in a
system [62]. If it burns out and displaces electricity from other sources, it can reduce the profitability of
these sources and increase supply prices. It has been proposed to use all electricity from wind and
solar power which greatly simplifies the management of the electricity grid [63,64].

Effective wholesale electricity markets are crucial for rapid and affordable decarbonization, as they
demonstrably invest efficiently and rapidly in new technologies. However, the electricity markets will
only support massive investments in clean energy if they are able to send efficient price signals as
decarbonization increases [65,66]. The scale and pace of investment required to halt the climate crisis
means that wind and solar energy will almost certainly play an important role in future power systems
because of their low cost and speed of deployment. However, variable power and the marginal cost
of wind, solar and other forms of variable renewable energy (VRE) jeopardize the ability of current
market designs to send the required price signals [67,68]. New variable resources such as sun and wind
are one of the biggest drivers for more flexibility. There are many ways to unlock flexibility: new and
more flexible gas systems, storage of all sizes, power electronics to regulate wind and solar power,
and a constellation of connected devices ready to consume electricity smarter. Restructuring wholesale
electricity markets, which work best by avoiding specific technology revenues, must find new and
improved ways to assess flexibility and allow current and future market participants to provide them
at minimal cost. The uneven geographic distribution of wind and solar potential is likely to burden the
grid at some sites, resulting in transmission and distribution restrictions. Some electricity markets,
such as the California Independent System Operator (CAISO) in Germany and the United Kingdom,
have begun to recognize variable and resilient electrical resources to varying degrees [69,70]. In addition,
the Federal Energy Regulatory Commission (FERC) and Pennsylvania-New Jersey-Maryland (PJM)
Interconnection policy makers in the United States are also shifting their focus to the role that battery
energy storage and flexible resources such as distributed resource aggregators (DRAs) play in the
development of electricity markets [71]. However, regulatory, economic and technological barriers
have largely prevented the participation of demand resources such as batteries and smart thermostats
in the wholesale electricity market. With limited participation of demand resources, the wholesale
energy market functioned mainly with network operators selling large central station equipment to
meet the steady demand.
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3. Promoting High-Renewables Smart Grids

High-renewables smart grids would bring in many useful solutions to the existing energy market
problems. Flexible demand, micro-generation and energy storage technologies can reduce the emerging
demand peaks, while smart network technologies increase the utilization of existing network assets.
The concept represents a shift from asset redundancy to more intelligent operation through real-time
coordination of new flexible technologies. Figure 2 that follows offers the comparison of the costs of
electricity obtained from the renewable energy sources.

 

Figure 2. Comparison of the costs of electricity obtained from the renewable energy sources. Source: [72].

Overall, it becomes obvious that in spite of the popularity of RES-based technologies, the costs of
electricity are the lowest when it comes from the large hydropower plants, which is followed by the
geothermal energy and biomass. Photovoltaics and wind turbines are just starting to catch up in terms
of economic efficiency.

In general, it would be quite straightforward to simultaneously and holistically assess the impact
of high-renewables smart grid technologies across all timescales and system levels via capturing the
overall economic value of these technologies for three milestone dates (2020, 2030, and 2050). In the
current situation (2020) the value of flexibility is not that high, the deployment of energy storage
is not justified for a cost higher than €1100/kW with the optimal storage capacity of 2 GW, and its
overall economic value for the power system for the European country a size of the United Kingdom
or Germany being around €0.5 billion per year.

There have been recent developments—in the UK with electricity market reform, in Germany
with the Energiewende, and in the State of New York with its Reforming the Energy Vision—for ideas
from the new round of natural experiments in electricity market organization, currently underway in
jurisdictions with 80% or more low carbon electricity targets.

A fundamental feature of the high-renewables electricity system market design’s vision is the
integration of a vast number of flexible, diverse, and independently controlled technologies in system
operation and planning. Figure 3 that follows depicts the investments into smart grids by areas. It is
apparent that over the past few years the share of investments into the rest of the network is declining,
while the investments into the power equipment as well as to the smart grid infrastructure and smart
meters are slowly but steadily increasing.

Table 1 that follows shows the contrasting description of two market designs—namely the Internet
of Energy and high-renewables market design versus the current (state-of-the-art) design that employs
current technological advancements.
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Figure 3. Investments into smart grids by areas. Source: [73].

Table 1. IoE and high-renewables market design versus current state-of-the-art.

Major Issues Positive Attributes Negative Attributes

Flexible technologies

Flexible generation Inflexible generation

Interconnection and flexible network
technologies

Isolated and conventional generation
technologies

Demand side response Traditional distribution and consumption

Energy storage Obsolete energy storage

Market operation

Improving system control Inefficient and obsolete system control

Big Data “Old-style” approach to Big Data

Integration of transmission and distribution Isolated transmission and distribution

Decentralized control Centralized control

Market design

Revisiting the current design principles Existing design principle

Moving beyond “like-for-like” replacements Like-for-like replacements

Strategic investments No strategic investment or planning

Managing uncertainty Old-fashioned traditionalist approach

Improving resilience of high impact events Vulnerability of high impact events

Coordination and
implementation

Transmission coordination No harmonization of regimes

Whole systems approach Fragmented system approach

Coordination across energy vectors Single-energy system planning

Novel commercial
and regulatory outline

Altering the regulator’s role Traditional regulator’s role

Providing incentives for the smart grid Asset-based regulatory philosophy

Setting level playing field markets No level playing field markets

Merging the wholesale and retail markets
and cost-reflective charging

No integration of wholesale and retail
markets

Altering the role of system operators
Traditional roles of independent system
operators (ISO) and distribution system
operators (DSO)

Acknowledging the higher risk of smart
technologies

No recognition of risk from new
technologies

Deepening the EU integration Split-up of the EU

Source: Own results based on [74].
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With regard to the above, it appears important to consider how one can better balance supply and
demand, aiming towards an electricity market where prices are reflective of costs to the overall system.
For example, in the United Kingdom alone, smart power could save consumers up to £8 billion a year
by 2030 [75]. Moreover, it can also ensure that the UK meets its 2050 carbon targets and secures its
energy supply for generations to come. As a result, three major innovations can be identified as the
key drivers of success: interconnection, storage, and demand flexibility [76].

Another issue that has to be mentioned in connection with promoting and sustaining
high-renewables smart grids is the Big Data which can be used for many activities and innovations
within the IoE framework design. In the energy markets, Big Data represents a valuable asset and
a source of all possible information about the consumption and behaviour of users, households,
and companies [77]. Thanks to the smart meters, Internet and fast mobile technologies, all that
information can be collected and transferred quickly to be analysed. However, one has to realize that
due to the extensive sizes of such datafiles, traditional methods (e.g., econometric or statistical analysis)
are no longer applicable. Instead, computer algorithms and artificial intelligence (AI) are employed
which is similar to the recent developments in the “regular” Internet nowadays.

The applications of the Big Data might range from building more accurate predictions and
extrapolations that would forecast demand and output more precisely to minimizing asset failures of
the system. There is a need for system operators (SO) to become data led organizations (as distinct
from asset availability managers) which constitutes an important argument in the debate of the value
of independent system operators.

IoE and Big Data are also crucial for energy prosumers that are more entangled into peer-to-peer
(P2P) energy market arrangements through buying, selling, and producing their own energy from
the renewables. The sharing economy-type of high-renewables energy market that is being created
and would be likely to dominate in many countries in the nearest future calls for optimized and fast
collection and processing of all available data.

4. Smart Network Technologies

With all of the above explained, one also has to point out some noteworthy differences between the
smart grids and the Internet, to which they are often compared to. Similar to the Internet (although with
a wider diversity of resources), smart grids constitute an interconnected system of devices and controls,
nevertheless, all these systems are dynamically evolving and changing as the demand of electricity of
the different types of consumers is shifting due to the changing market conditions. The blockchain
technology that is used in Bitcoin, the world’s most popular cryptocurrency, might provide help in
dealing with this highly sophisticated environment for achieving cost-effective energy solutions.

One good example of this is the optimization systems that involve office and residential buildings
and electric vehicles (EVs). Managers of these buildings face the tasks of providing a logistically balanced
system of charging stations for the EVs parked or stationed on their premises. Another technical
solution associated with EVs is the possibility of some of them not only to absorb but also to inject
power back to the grid (a so-called “vehicle-to-grid” concept, or V2G). Without smart grids and IoE,
it would be quite cumbersome to come up with the optimal mix of accurate solutions due to supply
and demand uncertainties: e.g., inherent uncertainty of RES or load shifting for reducing peak power
consumption [78,79].

Thanks to IoE smart grids can achieve better efficiency and learn how to optimize the energy
needs for both prosumers operating at peer-to-peer (P2P) markets and industrial companies in the
production chain. All of that gives a boost for the new sectors such as the solar photovoltaics, intelligent
distribution networks, and electric vehicles charging, just to give a few examples. In addition, the rising
competition and technological advancements are slowly but gradually changing the current system of
distribution networks and old-fashioned grids.

At the planning timescale, flexible demand, micro-generation, and energy storage technologies
can reduce the emerging demand peaks, while smart network technologies increase the utilization of
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existing network assets; both these effects are translated in reduced requirements for capital-intensive
generation and network capacity investments in the future [80]. Moreover, dynamic demand response
shifts the amount of consumer electricity it to when it more optimal from the grid operation point of
view [81].

The shift towards carbon-free transport which aims at reducing car emissions and electrify both
personal and communal transportation introduced the concept of electric vehicles (EV). Currently, EVs
are becoming quite a mundane thing even though their costs and operation might be somewhat higher
than in the case of traditional vehicles. Comparing the number of EVs and internal combustion engine
(ICE) vehicles, one can find out that in 2019 there were about 5.6 million EVs all around the world
(including passenger cars and light commercial vehicles with battery-electric drive, range extender,
as well as plug-in hybrids) [82]. This is a steady increase from the 3.2 million EVs in 2018, 1.9 million
in 2017, and 1.1 million in 2016 [83]. However, EVs still constitute only a margin of all registered
internal ICE vehicles in the world which yielded around 1.4 billion in 2019 [84]. Nevertheless, IoE is
becoming one of the key concepts in the electrification of transport, since it promises to coordinate,
manage, and match the growing fleet of electric vehicles. For example, one of the pressing issues
with EVs today is the occurrence of the charging stations. Nowadays, there are about 160 thousand
charging stations worldwide with the expected number to be slightly above 200 thousand in the early
2020 [85,86] Not too frequent in comparison with their fuel counterparts, they often make it difficult to
plan a trip over large distances. One of the solutions might be charging EVs from one another in an
interconnected network of drivers who are also energy prosumers (the V2G concept described above).
Figure 4 that follows shows a graphic representation of V2G within IoE framework marked by the
high renewables penetrations of electricity market. It outlines the key role of the IoE that helps the
transition of the power sector through the monitoring the performance of its assets, maintaining more
precise operations and control in real time, setting up novel market designs, as well as defining new
business models and solutions.

 

Figure 4. Vehicle-to-grid (V2G) within IoE framework and high renewables penetrations of electricity
market. Source: Own results.
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One of the pioneers in introducing the electric transportation to the daily lives of the people is the
European Union that committed to having over 250 million EVs by 2025 all across its Member States,
which, although an impressive figure in itself, might not even be enough for the effective transition to
the climate targets of 2030 [87].

One can see that due to the existing economic and social constraints, electric vehicles might also
constitute a problem and distort the power system. They are still too expensive for the average citizen
to buy and operate, the charging options are rather limited, and the battery storage is quite modest
with the driving range being in a couple of hundreds of kilometres. Thence, technical operation and
market optimization need to be used in order for them to become a ubiquitous part of the future smart
grids [88].

With the increasing sales of EVs in United States, European Union, China, and India, the vehicle
charging issues would accumulate and would need to be solved [89]. For example, in the absence
of proper regulations, the majority EV owners would charge their vehicles during the day’s peaks,
thus placing a burden on the electricity system [90]. IoE might provide solutions for that offering
demand-side response and optimizing the charging times scheduling and planning. In addition,
the rising EV fleet might become a kind of a giant energy storage system that would be able not only
accumulate, but also to move large amounts of energy over distance. This might be an interesting
solution for the distributed renewable energy generation, even though strict and precise on-time
planning is needed, which should involve Big Data, smart meters of the latest generations, as well as
faster mobile networks.

Let us show this on a practical example using the data from the United Kingdom (UK). Table 2 that
follows shows an example of tariffs and metered import for the three selected UK regions represented
by the Northeast, Central Scotland, and East Midlands (chosen for the best geographical spread and
representativeness).

Table 2. Tariffs, distribution charges, and metered import in three selected UK regions.

Region F, £ v, £
Number of
Customers

Metered Import,
kWh

Northeast 0.0483 0.027 1,500,000 3400

Central Scotland 0.0373 0.04114 2,200,000 3800

East Midlands 0.0147 0.02266 2,400,000 3900

Source: Own calculations based on [30].

Furthermore, one might model the hypothetical household demand profile (expressed in GW)
with various levels of deployment of electric vehicles (EV)—from 0% to 100%. This is a rather simplified
model since it neglects some relevant benefits of the restructuring market, since more factors might be
needed, as well as the relationship between EV and charging stations. Some of the influential factors in
this case might be represented by the location of the charging facility, local subsidiary policies, as well
as the battery level of the EV. However, despite this limitation, we can draw the model framework that
would constitute an example of reorganizing the energy market.

The model in question is based on our methodology described in our earlier paper (for more
details see [87]).

(1 + x) F + (1 + x) v * (EC x n) = TR (1)

where:

x—energy tariffs and charges component;
F—household daily unit power fee (kW);
V—energy unit fee (kWh) for a given household connected to the network;
EC—energy consumption for a given household;

10



Energies 2019, 12, 4790

N—number of households in the system;
TR—total electricity revenues;

Table 3 that follows shows the differences in tariffs (per household per year) for residential EV and
non-EV households in the three UK regions presented above. It becomes apparent that the inclusion of
RES (represented here by solar panels) and most importantly EVs shift the balance and make profound
changes to the economic situation.

Table 3. Differences for residential solar photovoltaic (PV), non-PV, electric vehicle (EV) and non-EV
households in UK regions.

Region Northeast

(PV, EV), %
Tariff, £ (per household per year)

(no EV, no PV) (EV, no PV) (no EV, PV) (EV, PV)

(1, 1) 179.19 282.02 103.16 205.99

(1, 50) 140.82 219.24 82.85 161.26

(50, 1) 227.50 361.08 128.73 262.32

(50, 50) 165.84 260.18 96.09 190.43

Region Central Scotland

(PV, EV), %
Tariff, £ (per household per year)

(no EV, no PV) (EV, no PV) (no EV, PV) (EV, PV)

(1, 1) 122.42 172.93 65.15 115.67

(1, 50) 102.25 143.39 55.60 96.74

(50, 1) 160.27 228.35 83.08 151.16

(50, 50) 125.09 176.84 66.41 118.16

Region East Midlands

(PV, EV), %
Tariff, £ (per household per year)

(no EV, no PV) (EV, no PV) (no EV, PV) (EV, PV)

(1, 1) 112.28 157.90 54.71 100.33

(1, 50) 93.77 131.49 46.17 83.89

(50, 1) 160.27 228.35 83.08 15116

(50, 50) 117.80 165.78 57.26 105.24

Source: Own results.

In addition, let us show the changes in the household demand profile with various levels
of EV deployment stemming from the changes. Figure 5 that follows depicts some basic
(rather “back-of-the-envelope”) results of our calculations. Generally, it becomes apparent that
with the rising share of EV in day-to-day transportation decisions, the demand profile can increase by
40%–50% during the peaks. All of these might cause serious issues for the energy systems that are not
prepared for such scale of EV penetration.

Overall, there are two cases when EVs do not exhibit smart charging capability and when the
EVs exhibit smart charging capability and are scheduled through dynamic pricing. In the former case,
EVs are assumed to start charging immediately after returning home; given that most users return
home during late afternoon and/or evening hours [17–21] when the non-EVs demand peak occurs,
the system peak demand at these hours is significantly increased. In the latter case, the demand
response of smart-charging EVs is concentrated and creates a new demand peak at the late-night hours
of the day since the latter exhibit the lowest prices due to their low inflexible demand levels.
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Figure 5. Household demand profile with various levels of EV deployment. Source: Own results.

5. Conclusions and Implications

The commitment to tackle global warming and climate change, with profound decarbonisation of
the world’s economies, is going to have many economic and social impacts and we all should be ready
for them. Thence, political commitments that have an impact on the energy markets should also reflect
the existing state of technological development and social acceptance of this development. This social
acceptance is a serious issue because not all “traditional” energy providers and customers would be
willing to change the old ways. Rapid flow of information and AI-like solutions that allow to optimize
the flow of energy from producers to consumers and the flow of information the other way around
(and vice versa) might be an issue for some individuals and companies. Some might even bring up an
analogy to the “Big Brother” that is constantly monitoring each and every transaction and watching
over each and every agent in the grid.

However, the trend might be also quite different as it happened with the ascent of Internet
(which also served as an inspiration for the smart grids). Neglected and underestimated at first,
the Internet quickly marched into our daily lives and fundamentally changed many principles of the
world economy, quickly becoming a mundane issue for the majority of world’s population. Its social
acceptance is almost absolute, even though some people are starting to comprehend what threats it
might cause. Similar things might happen to IoE and smart grids—once their potential is apparent and
popularized, there will be no way back in reforming the current energy market design.

One would probably agree with the fact that the transition to the high-renewables electricity
markets is going to be accompanied by the increasing share of RES in electricity generation. This will
fundamentally alter the power markets within several decades and revert the existing rules that have
been obeyed by energy market players for years. Renewable energy sources are gaining in importance
with increasing power generation, and could easily cover half of the total energy demand by 2050.
The hope of accelerating the energy transition depends on the electrification of a larger part of the total
energy consumption. Renewable energy advocates have received much good news over the past few
years about falling solar and wind power prices and rapid growth rates in these industries.

With regard to the above, it is important for policymakers and stakeholders to understand the
potential and the power of the ongoing “RES revolution” (which, one can argue, still represents
an “evolution”) and to prepare for the new market reality with all its outcomes and consequences.
The profile of renewable energy development is becoming ever more diverse and in some regions
of the world more and more challenges will have to be overcome. While global new investments in
renewable energies are still relatively high, there has been some decline in recent years.
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In addition, it also appears that the deployment of different technologies and policy measures in
the high-renewables energy system that would involve IoE would lead to the decentralized approach
to system control and operation in the next few decades. Since it may be optimal that large-scale
roll-out starts in the early 2020s if one is to reduce the cost of later investments, some government
incentives may be needed for industry to make early moves.

Moreover, the concept of the “Internet of Energy” is very crucial for the demand flexibility
(i.e., the case when demand for the electricity is steered to the grid off-peak periods using, for example,
price incentives or reduced tariffs). Flexible energy revolution should be supported and implemented
due to the growing demand and wide usage of electric vehicles (EV) and electric heating in the future.
These technologies would help us to save carbon emissions, but they would be impossible to sustain
without the major changes in the smart grid.

All in all, IoE and high-renewables electricity system market design represent a shift from asset
redundancy to more intelligent operation through real-time coordination of new flexible technologies.
With flexible demand, micro-generation, and energy storage technologies being able to reduce the
emerging demand peaks, smart network technologies will increase the utilization of existing network
assets, all representing a shift from asset redundancy to more intelligent operation through real-time
coordination of new flexible technologies. Future demand and distributed generation connections
are increasingly hard to predict due to uncertainty in timing, volume, and location of new demand,
and connections of renewable generation due to their dependence on future technology developments,
government policies, and market arrangements. Flexible planning frameworks are required to account
for uncertainty in future development and identify investment strategies that are cost-efficient under
all possible future realisations. Given all that above, we nevertheless have to stress that the outcomes of
this paper mostly emerge from the energy policy aspects of high-renewables smart grids, and therefore
does not attribute too much attention to the technical issues of Internet of Energy technique and the
related framework applied to high renewables penetrations of electricity market.

Last but not least, high-renewables smart grids-focused electricity markets can increase economic
efficiency and profits throughout the whole energy sector. While grid operators today hold natural
monopolies, the shift to the high-renewables smart grids populated by millions and billions of
prosumers might change the rules of the game and create the new revenue stream that would be
beneficial for both energy suppliers (large and small) and energy consumers. Therefore, some forms of
government funding are appropriate nowadays in order to boost this positive and highly desirable
development towards the fundamental change of the existing energy system. This might include,
for example, subsidies to the households and businesses for shifting towards electric transport,
special preferential tariffs for renewable energy (feed-in-tariffs to buy out the “green” electricity),
or special programs to increase environmental awareness, and the learning of how to increase energy
efficiency by using advanced smart metering that would allow to constantly monitor the energy intake
for each individual appliance and to assess it in a concise and comprehensive way (similar to the health
data many of us assess using various fitness trackers and smart watches).

Supporting renewable energy demonstration projects to disseminate information in remote areas,
training microfinance leaders, and decentralizing the implementation of renewable energy projects
can promote the dissemination of renewable energy projects. Most of the support for renewable
energy strategies and technologies in developing countries comes from local governments or from
international donors, undermining their sustainability as funds vary with changing priorities and crises.
Finally, the introduction of innovative strategies and the sustainability of renewable energy markets
and technologies can benefit from the adoption of a comprehensive energy governance framework.

All in all, it appears that high-renewables electricity system market design would provide solutions
to many issues including the CO2 reduction of mitigating environmental solution and climate change,
however it needs more support from relevant stakeholders and policymakers aimed at securing its
economic viability and helping to support its social acceptance and awareness.
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Abstract: Rising levels of variable renewable energy (VRE) in Australia’s National Electricity Market
have been driven by a 20% renewable energy target by 2020. This certificated renewable portfolio
standard has successfully driven new investment, allocated risk amongst buy- and sell-side market
participants and met overall policy objectives. But a policy vacuum for achieving long-term CO2

emission targets post-2020 has led to sub-national and, potentially, national governments initiating
contract-for-differences (CfDs) to drive further investment activity in new plant—with virtually no
coordination between the jurisdictions. In a gross pool energy-only market setting, replacing on-market
transactions between retailers and generators with off-market transactions between governments and
generators may have unintended side-effects vis-à-vis market stability. In this article, an energy-only
gross pool is modeled with rising levels of off-market government-initiated CfDs, with a specific focus
on spot and forward contract market outcomes. Model results show that as VRE plant enters, coal
plant exit, and on-market firm hedge contracts historically supplied by coal plant are progressively
replaced by off-market CfDs. In the event, while a tractable equilibrium can be maintained in
the spot market, shortages of “primary issuance” hedge contracts emerge in the forward market.
Any shortage of hedge contract capacity is likely to raise forward contract price premiums above
efficient levels, force price-elastic customers into accepting unwanted spot market exposures and
may unintentionally foreclose non-integrated (2nd tier) energy retailers, all of which harms consumer
welfare. A wide-ranging program of government CfDs may therefore not be compatible with an
energy-only market design.

Keywords: renewable energy; energy policy; wholesale market design

1. Introduction

1.1. Background to Australia’s National Electricity Market

Australia’s National Electricity Market (NEM) is an energy-only gross pool in which all generators
bid into a central platform and are dispatched under a uniform first-price auction clearing mechanism.
Being a mandatory gross pool, all generators must sell their output in the spot market, and energy
retailers must buy all load from the spot market.

The volatility that accompanies organized energy-only spot markets, particularly those with
a high VoLL (NEM value of lost load at AUD $14,500/MWh is amongst the highest in the world)
creates the conditions necessary for active trade in forward contracts. While there is an almost endless
array of derivative instruments, the three most commonly traded contracts are swaps, $300 caps
and increasingly, run-of-plant power purchase agreements (PPAs). Swaps and caps are traded both
on-exchange and over-the-counter, generally over a 1–3 year tenor at quarterly resolution, with
market liquidity running at ~300% of physical trade and considerable variation in liquidity by season
and region. PPAs on the other hand tend to be long-dated (10–15 year), structured as run-of-plant
instruments and designed specifically to underwrite the entry of variable renewable energy (VRE),

Energies 2019, 12, 2566; doi:10.3390/en12132566 www.mdpi.com/journal/energies19



Energies 2019, 12, 2566

that is, wind or utility-scale solar PV, with the market characterized by a small number of buyers and a
large number of (potential) sellers/developers.

Australia’s 20% renewable energy target (RET) is a renewable portfolio standard that requires
energy retailers achieve a 20% renewable market share by 2020. The broad-based market scheme
is mobilized through the trade of renewable energy certificates, and has been highly successful in
facilitating VRE plant entry. The 20% RET is expected to be comfortably met by 2020.

Once the 20% RET has been met, the NEM faces a virtual policy vacuum in terms of future CO2

emissions reductions. The most recent attempt (in 2018) at designing a bipartisan approach to reduce
power sector CO2 emissions in a manner compatible with Australia’s international obligations and
the NEM’s energy-only market design involved a scheme known as the National Energy Guarantee.
This market-based scheme was comprised of a reliability obligation (plant capacity) and an emissions
obligation (CO2 emissions), with energy retailers being the liable parties. But landing a united energy
and climate change policy architecture to guide the NEM’s ongoing transition has proven to be a
complex political task [1,2]. Indeed, the politics of a two-decades-long climate change policy war has
underpinned the downfall of at least three sitting Australian Prime Ministers since 2010, including
Prime Minister Malcolm Turnbull (by his own party) whilst pursuing the National Energy Guarantee.

Policy discontinuity has led to cyclical swings in VRE plant investment commitments. The
Commonwealth Government’s decision to review the 20% RET in early-2014 produced sufficient policy
uncertainty to induce a transient cessation in buy-side PPA activity—such instruments typically being
an essential ingredient to VRE project commitment in an energy-only market [2].

One response to the Commonwealth Government’s climate change policy discontinuity has been
the emergence of government-initiated contracts-for-differences (CfDs) undertaken unilaterally by
sub-national governments—first by the Australian Capital Territory (wind, 2015), then Queensland
(solar PV, 2016), South Australia (semi-CfD for battery storage, 2017) and Victoria (wind and solar
PV, 2018). These targeted, centrally planned CfD auctions have been successful at meeting their
policy objectives.

The Commonwealth election in mid-2019 gave rise to two distinct policy choices at the national
level. The incumbent conservative Liberal government sought to underwrite new “dispatchable” (i.e.,
coal, gas, pumped-hydro) generation in order to reduce energy prices by way of government-initiated
CfDs. The democratic Labor opposition on the other hand sought to revive the Liberal government’s
National Energy Guarantee in order to reduce CO2 emissions and provide the policy stability sought by
market participants to guide ongoing investment in on-market transactions. However, if bipartisan
support for the National Energy Guarantee could be achieved, Labor would default to a wide-ranging
program of centrally planned CfDs to ensure ongoing VRE investment continuity to meet a 50%
renewable target by 2030.

Government-initiated and taxpayer-funded CfDs are an interesting development [3,4]. CfDs can
play a legitimate role in dealing with energy market failures relating to missing policy, missing markets
and incomplete markets. As a policy mechanism, they represent a means by which to deliver generation
plant capacity that, for whatever reason, the market is failing to deliver. Government-initiated CfDs
have the effect of diversifying buy-side forward market liquidity and in doing so bring about certain
short run benefits. Holding all else constant, apart from reducing CO2 emissions, VRE CfDs facilitate
state/regional economic development and by adding new renewable supply can reduce spot prices, at
least on a transient basis.

Used modestly, the impact of government-initiated CfDs on an energy-only market is likely to
be benign at worst. However, a wide-ranging program of CfDs whereby material levels of on-market
transactions (i.e., between generators and retailers) are crowded-out by off-market CfD transactions (i.e.,
between governments and generators) is likely to give rise to unintended side effects, and this forms the
primary motivation of this article. To be clear, this article does not question the welfare implications of
introducing VRE plant, and forcing coal plant exit. The addition of VRE plant is taken as an exogenous
policy constraint to meet a legitimate and binding CO2 emissions reduction objective. The focus is
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whether as a policy instrument, government-initiated CfDs are compatible with the efficient operation
of an energy-only gross pool market.

In this article, a partial equilibrium model of an energy-only market is used to analyze the
effects of rising levels of VRE plant, facilitated by government-initiated CfDs rather than via on-market
transactions typically associated with a conventional renewable portfolio standard. The power system
model commences with a thermal plant stock (i.e., coal and gas plant), and then VRE plant enters
continuously until a 40% market share is reached.

Key results arising from the modeling are that (1) as VRE plant enters, coal plant exits, and spot
market equilibrium is maintained; however, (2) because VRE plant enters via government-initiated
CfDs and displaces on-market transactions, when coal plant exits, the forward market experiences
progressively rising shortages of “primary issuance” hedge contract capacity. This latter finding has
important implications for policymakers.

Structural shortages of hedge contract capacity may not matter in an energy+capacity market in
which overall price volatility remains within tight limits, or in highly meshed multi-regional power
grids where inter-regional trade can “prop-up” faltering market liquidity in an adjacent region. But
for an imperfectly interconnected energy-only market with an extremely high VoLL, policy-induced
hedge contract shortages present certain problems because falling liquidity is unlikely to be arrested by
proprietary traders. On the contrary, evidence from financial markets reveals that proprietary traders
and caught with unwanted inventory and irreversible forward positions [5]. Liquidity providers can
be expected to exit a market with sharply falling liquidity for fear of being.

A poorly functioning forward market in an energy-only market setting may increase operational
risks of incumbent market participants, produce excess contract price premiums, force the most
price-elastic (industrial) customers into unwanted spot market exposures, unintentionally foreclose
non-integrated 2nd tier retailers, and ultimately drive investment activity above efficient levels to
address hedge shortages—all of which must ultimately harm consumer welfare. In short, extensive
use of centralized CfDs appears inherently incompatible with the underlying design of an energy-only
gross pool market with a high VoLL. Whether the market design requires change to accommodate
CfDs, or renewable portfolio standards can be extended to avoid the need for centralized transactional
intervention, is an open question.

1.2. On the Importance of the Financial (Hedge Contract) Market and CfDs

Energy markets are never complete or free of market failures [6]. One of the more prominent
failures inherent in energy-only markets is their seeming inability to deliver the requisite mix of
derivative instruments required to facilitate efficient and timely plant entry [6–15].

Long-dated contracts are typically a pre-condition for the timely entry of project financed plant,
and while Australia’s NEM is noted for favorable forward market liquidity, the majority of activity
spans only 1–3 years—well short of contracts that deliver optimal financing and facilitate timely
and efficient ex-ante investment commitment. On reason why liquid forward markets have failed
to calibrate beyond 3 years is because competitive retailers cannot afford to hold hedge portfolios
dominated by inflexible long-dated contracts when large components of their customer book switch
supplier every 2–3 years [8,16–22].

Government-initiated CfDs have arisen due to a combination of missing or incomplete markets,
and form one of a number of policy mechanisms used by governments to meet a decarbonization
objective or reliability constraint [23,24]. Government-initiated CfD’s have been progressively gaining
prominence amongst policymakers [25–29] and amongst academics [3,23,30,31].

Typically, a government-initiated CfD will attempt to minimize the levelized cost of electricity
(LCoE) as a surrogate for maximizing value to taxpayers. At one level the use of LCoE as a prime metric
is understandable because forecasting market outcomes 10–15 years in advance is notoriously difficult.
But as a stand-alone metric, LCoE is flawed because it treats technology output as homogeneous
products as if governed by the law of one price [24,32–35]. That is, while the physical properties of

21



Energies 2019, 12, 2566

electricity are largely homogeneous over space and time, from a market perspective there is rich price
variation over time, space, and lead time-to-delivery, making the traded commodity a heterogeneous
good (i.e., due to an inability to arbitrage, the absence of a single dominant technology, and variations
in marginal costs) [6]. The economic value of plant output is not identical and assuming otherwise
introduces two biases; base plant is favored over peak, and stochastic plant is favored over dispatchable
plant [6].

In real-time, the law of one price applies; stochastic output from wind and solar PV are good
substitutes for thermal generation. However, each year there are 105,120 NEM dispatch intervals
and associated spot prices (i.e., every 5 min) and when demand is higher than forecast, all else equal,
dispatchable generators increase output and receive a higher average price. Conversely, stochastic
generators rarely reduce output in periods of oversupply, and hence sell disproportionately at lower
prices [6,24,34,35].

Furthermore, as VRE technologies move from niche to material market shares, deployment
success becomes a significant driver of market value which is amplified when thermal plant fails
to exit [24,32–38]. High levels of VRE shielded by CfDs and priority-dispatched will initially place
downward pressure on price [14,24,39,40]. Given negligible marginal running costs, these so-called
merit-order effects arising from policy-induced VRE plant entry became apparent in markets such
as Germany as early as 2008 [41] and had been prominent in the SA region of the NEM [42–45].
Consequently, market values of incumbent VRE (and future) plant will be adversely affected from
a stream of continual entry through a combination of production “correlation effects”, “merit-order
effects” and “price-impression effects” [24,35,37]. However, merit-order effects eventually unwind
when thermal plant is forced to exit [39,46]. This set of market dynamics has implications for a
wide-ranging program of government-initiated CfDs.

1.3. Government-Initiated CfDs: Motivation and Application

The policy objective of government-initiated CfDs is to introduce generation plant that energy
markets are failing to deliver. In this sense, CfDs have the effect of bringing forward future power
projects to today, with the benefits, costs, and risks of doing so allocated to electricity consumers,
taxpayers, and incumbent rivals.

There are many reasons why government intervention is legitimately required in energy markets.
As is well understood in economics, organized spot markets and their associated forward contract
markets fail to internalize known externalities. For example, energy-only spot markets may undervalue
reserve capacity until it is actually required. In the absence of an explicit price on carbon, energy markets
also undervalue CO2 emissions and will therefore only be produced at the efficient level by chance.
And as with many markets, research and development (R&D) is not valued; but this is compounded
in energy markets because participants are unable to capture the benefits of a first-of-a-kind plant
investment—in fact, the contrary is usually the case in that the market avoids costly mistakes of
the first iteration of a new technology. Absent some form of government intervention, R&D will be
under-supplied by the market.

Government-initiated CfDs can have the effect of “priming” a market by helping emerging
technologies overcome certain entry barriers. The Queensland government’s Solar150 program in 2016
awarded CfDs to four solar PV projects totalling 150 MW at a time when solar PV struggled to compete
with wind. The policy had the effect of kick-starting a wave of solar developments; by late-2018 a total
of 1945 MW of solar PV had been committed on-market including some projects on a purely merchant
basis (i.e., without a PPA). In South Australia, a policy to introduce a 100 MW utility-scale battery for
system stability similarly primed the market for storage—there are now 215 MW of commissioned
batteries, a further 155 MW have reached financial close, and 1897 MW are under active development
across Australia. In short, while there are many policy mechanisms available to remedy energy market
failures, CfD’s are indeed a viable policy option.
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1.4. CfDs: How They Work and Why They Work

In the classic case, a government-initiated CfD auction will specify a particular technology (e.g.,
solar PV) or technology set, output or rated capacity (e.g., up to 100 MW) and timing for delivery
(e.g., able to reach financial close within 6 months of being awarded a long-dated CfD). The CfD is in
turn a form of long-dated fixed price contract, usually expressed in $/MWh. In application, a CfD is a
derivative instrument because payouts are referenced against spot prices. In a two-way CfD with a
strike price of say $65/MWh, the contracting government (i.e., taxpayers) will pay the difference to the
renewable project proponent whenever spot prices fall below $65, and the renewable project proponent
pays the government whenever spot prices are above $65. CfDs are typically run-of-plant instruments
such that difference payments only apply when the renewable plant is producing—and the plant’s
variable output is bid into the market and dispatched whenever it is profitable to do so (i.e., spot price
> $0/MWh if the CfD has a settlement floor price of $0/MWh). Absent material plant failure, in which
case some form of liquidated damages may apply, the weather-related volume risks and forward price
risks associated with a VRE plant are effectively transferred to the contacting government (taxpayers).
After writing a CfD, plant output cannot be sold twice, and so the plant’s capacity is extracted from the
forward market and taxpayers in turn hold a speculative instrument (unless the government chooses
to on-sell the CfD in secondary markets).

A government-initiated CfD overcomes missing and incomplete markets and crucially in the
context of Australia, can successfully navigate carbon policy uncertainty because CfDs provide revenue
certainty (i.e., virtual market immunity) to the power project proponent.

Finally, because power projects are capital-intensive, the cost of debt and equity capital is an
important driver of overall plant unit costs ($/MWh). The direct involvement of a government through
long-dated CfDs enhances the credit quality of power projects, and this generally enables higher levels
of debt, a lower cost of debt capital, and makes the task of equity capital raising easier. Consequently,
holding all other variables constant, by transferring the price, volume, policy, and credit default risks
of power projects to taxpayers, government-initiated CfDs are capable of producing a lower LCoE for
entering projects.

1.5. The Impact of CfDs vs. Carbon Pricing and Renewable Certificate Markets

CO2 emissions reduction policies ultimately seek to alter the plant stock in a way that reduces
output from coal plant and increase output from renewable and cleaner (e.g., gas-fired) resources.
Regardless of the policy mechanism used (e.g., cap and trade emissions trading scheme, emissions
intensity scheme, carbon tax, renewable portfolio standard, clean energy target or government-initiated
CfD), wealth transfers amongst producers occur. Carbon-intensive forms of generation are adversely
affected, while low and zero emissions plant benefit from any explicit or implicit price on CO2 emissions.

Government-initiated CfDs differ from broad-based market schemes (e.g., carbon prices or
renewable portfolio standards) because of the direct involvement of government in the transaction
and the reallocation of market, credit, and policy risks to taxpayers. Project bankers and the
credit committees of Banks, which allocate scarce debt capital, have a strong preference for
long-dated government-initiated CfDs because from a credit perspective there is negligible risk of
counterparty default. By contrast to conventional NEM-based over-the-counter on-market transactions,
a government-initiated CfD re-orientates policy and credit risk away from buy-side energy market
participants, and vests this with taxpayers.

When deployed judiciously, the implications of CfDs are generally benign. In the case of the
Queensland Solar150 program for example, any distortionary impacts arising from 150 MW (0.4 GWh)
of solar-based CfDs in a 10,500 MW (54,000 GWh) regional market would be hard to detect. Taxpayers
have a collective financial exposure to CfDs that will ultimately prove to be out-of-the-money; but
this needs to be balanced with other policy objectives (e.g., state development, subsequent economic
and environmental benefits of the 1945 MW of on-market solar PV projects that immediately followed).
But what happens when CfDs are not used to “prime” a market, but rather, are used to “replace” the
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market; that is, replace broad-based market mechanisms and on-market transactions like those used in
renewable portfolio standards to drive VRE entry?

Holding all else constant, so-called merit-order effects can be expected. That is, adding more supply,
renewable or non-renewable, will reduce wholesale prices. But it will do this in the short- to medium
run. Because the purpose, and effect, of the entry of VRE plant at-scale is designed to replace coal plant
output, it will inevitably do so. Ultimately, the marginal coal plant will find it unprofitable, and will
therefore exit. At this point, prices can be expected to rebound—and in the context of the NEM this is
more than a theoretical observation. There is nothing inherently wrong with this policy objective, or the
course of events that follows per se. But government-initiated CfDs undertaken at-scale may adversely
impact the efficiency of an energy market (as distinct from “priming” a market) by comparison to an
on-market renewable porfolio standard for three reasons.

First, governments are remote from power system operations and power system contract and
risk management requirements. Government-initiated CfD auctions are therefore typically based
on simplified metrics such as minimizing LCoE by way of open-auction, or at discriminatory price
benchmark set by government bureaucrats to accommodate technological variations in production or
cost. But as noted in Section 1.2, LCoE is a flawed metric and an overreliance on it in CfD auctions
risks introducing an inefficient pattern of plant entry in a way that on-market transactions may have
avoided. In contrast, broad-based market schemes like the National Energy Guarantee or a well-designed
renewable portfolio standard require market participants to focus not on the LCoE, but on the timing,
location, and market value of new plant output [4,24,34,35]. And to the extent that market participants
introduce an inefficient pattern of plant entry vis-à-vis timing, location and market value, the risk and
consequence of such errors vest with shareholders, not taxpayers.

Second, government-initiated CfDs introduce quasi-market participants that, through the design
of the CfD, are almost completely sheltered from the NEM’s energy-only short and medium-run
locational, spot and forward price signals—the primary signals relied upon by market institutions and
policymakers to regulate system performance, system reliability, investment patterns, and long run
consumer prices. In contrast, on-market transactions undertaken by profit-maximizing firms under
a renewable portfolio standard requires that market participants assess the relative pattern of entry,
locational considerations, and absorb the risks of inadequate or excess entry relative to policy objectives.
Broad-based market schemes can therefore be expected to outperform a central buyer on a risk-adjusted
basis; and I must emphasize on a risk-adjusted basis—as one reviewer noted government-initiated CfDs
should produce better financing terms and a lower overall cost of capital by comparison to on-market
transactions. But this observation ignores risks transferred to taxpayers and the opportunity cost of
using scarce government balance sheet resources. In comparison to a central buyer, market schemes
are likely to accumulate a more optimal composition of assets and allocation of investment risks,
reflecting the combination of physical power system requirements, policy-related constraints, and the
risk appetite of participants to transactions.

Third, and by far the most adverse implication of a wide-ranging government-initiated CfD
program is the potential distortion to forward markets and therefore market efficiency more generally.
Unlike renewable portfolio standards, a wide-ranging policy of government-initiated CfD instruments
that form a progressively larger share of a forward market will ultimately damage the primary-issuance
of hedge contracts.

Following an initial or “primary loss” of on-market contract liquidity, the exit of proprietary
traders that invariably follows (i.e., through fear of being caught with an illiquid position and unwanted
inventory) will drive a “secondary loss” of market depth and liquidity. Combined, this is capable
of culminating in a structural shortage of hedge contracts (i.e., forward market liquidity dropping
below 100%).

There is, of course, nothing preventing market participants from writing their own CfDs with
VRE plant and other plant capacity in order to mitigate looming (or actual) hedge shortages. Indeed,
in the long run this may be the only way by which hedge shortages can be remedied in an energy-only
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market setting with government-initiated CfDs, noting that the end result is excess capacity. But a
wide-ranging program of government-initiated CfDs is likely to crowd-out on-market transactions
—neither of these alternatives would appear to produce efficient results.

In short, a well-intentioned wide-ranging program of government-initiated CfDs can be expected
to create hedge contract shortages and at best raise forward prices above the efficient level, and at worst
unintentionally foreclose 2nd tier retailers while replacing well-functioning forward markets with
quasi-market participants who are indifferent to the outcomes facing final electricity consumers—all
of which must ultimately harm welfare. Any response by market participants that might otherwise
logically follow risks being crowded-out by ongoing government CfDs, or may induce excess capacity.
How these shortages emerge can be demonstrated quantitatively, and this forms the focus of Sections 2
and 3.

2. Materials and Methods

In order to analyze the impact of government-initiated CfDs on forward markets, a power system
simulation model (NEMESYS) has been used [24]. NEMESYS is a dynamic, security-constrained,
unit-commitment model with 30-min resolution and price formation based on a uniform, first-price
auction clearing mechanism consistent with the NEM design. As with [47], this partial equilibrium
model assumes perfect competition, transmission and ramp-rates, free entry and exit to install
any combination of (indivisible) capacity that satisfies differentiable equilibrium conditions. The
modeled power system commences with a conventional thermal plant stock, with scenarios derived
by exogenously determining progressively higher levels of VRE output (i.e., by way of policy). And
as with [35], the focus of simulations is half-hour resolution over a single year. Model logic, drawn
from [24], is as follows.

2.1. NEMESYS Model Logic

Generation plant technologies and associated plant costs are essential inputs to the
security-constrained unit commitment model. Two key variables for each generation technology are
(unit) marginal running costs vi and plant fixed and sunk costs, ϕi. These inputs have been derived
from a power plant cost model (PF model—the logic of which appears in Appendix A). The PF model
derives generation technology (generalized) long run marginal costs piε and total revenues including
normal profit Ri for a given level of output oi.

(
vi·oi

)
+ ϕi ≡ Ri

∣∣∣∣ Ri = piε·oi (1)

NEMESYS orders plant capacity and dispatches the fleet of power generating units to satisfy
security constraints and differential equilibrium conditions given specified plant options available.

Let H be the ordered set of all half-hourly periods.

n ∈ {1 . . . |H|} ∧ hn ∈ H (2)

Let E be the set of all electricity consumers in the model.

k ∈ {1 . . . |E|} ∧ ek ∈ E (3)

Let Ck(q) be the valuation that consumer segments are willing to pay for quantity q MWh of
power. The model assumes that demand in each period n is independent of other demand periods. Let
qnk be the metered quantity consumed by customer en in each period hk expressed in MWh.

Let Ψ be the set of existing installed power plants and available augmentation options for each
relevant scenario.

i ∈ {1 . . . |Ψ|} ∧ψi ∈ Ψ (4)
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As outlined in Equation (1), let ϕi be the fixed operating and sunk capacity costs and vi be the
(unit) marginal running cost of plant ψi respectively. Let oi be the maximum continuous rating of
power plant ψi. Power plants are subject to scheduled and forced outages. F(n, i) is the availability of
plant ψi in each period hn. Annual plant availability is therefore:

|P|∑
j=0

F(n, i) ∀ψi (5)

Let oi
n be the quantity of power produced by plant ψi in each period hn.

Objective Function

Optimal welfare will be reached by maximizing the sum of producer and consumer surplus, given
by the integral of the aggregate demand curve less power production costs. The objective function is
therefore expressed as:

Obj =
|H|∑

n=1

|E|∑
i=k

ek∫
q=0

Ck(q)dq−
|H|∑

n=1

|Ψ|∑
ψ=1

(
oψi ·vi

)
−
|Ψ|∑
ψ=1

(
ϕi

)
(6)

Subject to
|E|∑

i=1

qkn ≤
|Ψ|∑
ψ=1

oψî 0 ≤ oi
n ≤ F(n, i)ˆ0 ≤ oi

n ≤ oi

2.2. Model Inputs

Salient features of the present modeling exercise are as follows. There are five generation plant
technologies available for deployment in the power system, including incumbent coal plant, combined
cycle gas turbines (CCGT), open cycle gas turbines (OCGT), and VRE plant, specifically wind and
Solar PV. Coal, CCGT and OCGT plant are all modeled as balance sheet-financings (gearing ca.
30%–36% to maintain BBB credit metrics). In contrast, VRE plant are assumed to be project financed
(ca. 65%–70% debt), all of which are assumed to be underpinned by government-initiated CfDs (i.e.,
there are no on-market PPAs).

Table 1 sets out generation plant technology cost input assumptions and Table A1 in Appendix A
outlines all relevant corporate and project financing assumptions. When combined, these inputs
provide the data necessary to produce generalized estimates of average total cost (for incumbent coal
plant) and generalized long run marginal costs (for new entrant plant). Crucially, with VRE plant—a
strict annualized cost/price is used in all modeling; i.e., there is no “two-step pricing” assumed. Recent
VRE transactions in the NEM have been struck in the low-$50s/MWh, and appear to reflect either of
(i) unique sites with excellent resource and network connection characteristics; or more commonely,
(ii) what [48] have labelled two-step pricing. Two-step pricing involves a low cost 15-year PPA followed
by assumed elevated market prices in years 16–30 based on externally-provided market forecasts. The
combination of the low contracted PPA price (years 1–15) and high expected future spot prices (years
16–30) appear to collectively meet threshold equity returns, but the implication of two-step pricing is
that average total cost of such projects is higher than recent PPA pricing suggests.
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Table 1. Plant cost assumptions.

Technology
Installed
Capacity

Generating
Units

Unit Heat
Rate

Capacity
Factor

Auxillary
Load

Capex
Unit Fuel

Cost

Fixed
O&M
Cost

Variable
O&M

Capital
Works

(MW) (MW) (kJ/kWh) (%) (%) ($/kW) ($/GJ) ($/MW/a) ($/MWh) (%)

Incumbent
Coal 1000 2 10,000 50–90 7.1 1486 3.00 50,500 4.00 0.25

CCGT 400 1 6930 30–70 3.0 1500 8.50 10,000 7.00 0.05

OCGT 500 2 11,300 1–10 1.0 1050 10.00 7000 10.00 0.05

Wind 450 118 - 39 0.0 1975 - 45,000 3.00 0.05

Solar PV 100 - - 26 0.0 1550 - 30,000 - 0.05

2.3. Plant Costs

Plant cost results are presented in Figure 1. These results are a high-resolution LCoE, refined
through co-optimized debt-finance and taxation variables. Note in Figure 1 that Incumbent Coal plant
has a generalized average total cost of $64/MWh comprising fuel ($30/MWh), Operations & Maintenance
(O&M) of ($8.71/MWh), debt ($4.17/MWh), taxation ($5.44/MWh) and equity ($15.74/MWh). The OCGT
cost structure focuses on the “carrying cost” of capacity (at $14/MWh), and has a marginal running cost
of $123/MWh (including variable O&M). Finally, results in Figure 1 are based on static capacity factors,
but in the NEMESYS model, plant costs arise on a dynamic basis with capacity factors determined by
the dispatch necessary to meet final demand.

Figure 1. Generalized plant costs.

3. Model Results and Discussion

3.1. Overview of Power System

The NEMESYS Model has been populated with the plant cost results from Section 2.3, and half-hour
load data (using Queensland power system final demand from 2016). From this, multiple scenarios are
simulated. A long run (own-price) demand elasticity of −0.30 is applied to all variation cases [49–51].
To keep modeling results tractable, the power system is modeled as a single, non-interconnected
gross-pool energy-only market. Recall also that the level of government-initiated CfDs are exogenously
determined and designed to achieve a certain VRE market share. The base scenario is calibrated with
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0% VRE plant (i.e., the power system commences as a thermal system with zero renewable plant), and
variation scenarios span up to 40% VRE market share.

Consistent with Equation (6), the objective of the power system model is to minimize resource costs
and maximize consumer welfare whilst meeting a reliability constraint of no more than 0.002% unserved
energy (i.e., the NEM’s long-standing reliability criteria). To assist interpretation of subsequent results,
critical outputs for the two bookend scenarios (i.e., 0% and 40% VRE market share) are presented
in Table 2.

Table 2. Overview of key model results.

VRE Market Share 0% 40% Change

Energy Demand (GWh) 54,717 56,386 1669

Maximum Demand (MW) 9118 9393 275

Demand Elasticity −0.30

Plant Capacity

Coal (MW) 6720 4200 −2520

CCGT (MW) 400 1200 800

OCGT (MW) 3000 3750 750

Wind (MW) 0 3797 3797

Solar (MW) 0 2711 2711

Supply of Primary Hedges (MW) 9100 7900 −1200

Power System Cost ($/MWh) $78.74 $82.37 $3.63

Underlying System Price * ($/MWh) $82.53 $65.84 −$16.68

CO2 Emissions (Mt) 53.4 32.0 −21.4

Imputed Carbon Price ($/t) n/a $25–$35/t

Unserved Energy (%) 0.001 0.001

* Dispatch-weighted price, excludes any implicit or explicit value of CO2.

Note from Table 2 that the single-region power system has an initial final Energy Demand of
54,717 GWh per annum with peak or Maximum Demand of 9118 MW. Given demand elasticity of
−0.30 and the variation in wholesale prices with 40% VRE market share, energy demand and maximum
demand rise to 56,386 GWh and 9393 MW, respectively. The opening plant stock is dominated by
6720 MW of coal plant, and in order to meet the reliability constraint (given plant outages) a reserve
plant margin of ~11% is necessary. In order to meet a 40% VRE market share, about 3800 MW of wind
and 2700 MW of solar PV capacity is added to the plant stock, and given optimal conditions, 2520 MW
of coal plant retires. To meet reliability constraints, 800 MW of CCGT plant and 750 MW of OCGT
plant is added—albeit operating at relatively low annual capacity factors.

Note also from Table 2 that the power system commences with a dispatch-weighted spot
market price of $82.53/MWh and a system average cost of $78.74/MWh. With VRE market share
of 40%, total system cost increases to $82.37/MWh whereas the underlying power system price
falls to $65.84/MWh—components of this gap being underwritten by government-initiated CfDs
with an imputed CO2 value in the range of $25–$35/t. Note that each technology earns a different
dispatch-weighted price according to their production profile. In any scenario, OCGT plant earns
the highest average spot price (i.e., they increase output at times of high spot prices, and turn off in
low spot price periods). Wind plant on the other hand earns a lower average spot price than thermal
plant (i.e., coal, CCGT, and OCGT plant) since the stochastic production profile of Australian wind
generators has a slight off-peak bias, and in addition, as more wind plant is added to the power system
it has an impressing effect on wind’s earned price [6,24,35]. It is worth noting that the dispatch-weighted
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price of Solar PV plant falls below wind once the technology reaches 7% market share due to the
relatively tight correlation amongst all solar PV plant output.

Modeled power system CO2 emissions fall from 53.4 Mt pa to 32.0 Mt pa between the 0% and 40%
VRE market share scenarios. Unserved energy in both scenarios is ~0.001% of total load, and thus the
plant stock in both scenarios meet the reliability criteria.

3.2. Spot Market Results

Recall that the objective of the current exercise is to analyze the implications of a wide-ranging CfD
program on the functioning of an energy-only market, and the hedge market in particular. To model a
wide-ranging CfD policy, the installed capacity of wind and solar PV is exogenously increased such that
the market share of VRE plant progressively rises to 40% (with model results simulating in 5 percentage
point increments). CfD’s are assumed to be initiated by way of auction in order to minimize LCoE
outcomes. Based on modeled results, this means that wind and solar PV dominate entry.

Given perfect entry, exit, and exogenously determined levels of government-initiated CfD’s to
drive VRE market share, all scenarios are implicitly “long-run dynamic” as measured by the time taken
for the capital stock to adjust, rather than specifying a notional time period per se as in [24,35]. The
thermal plant stock is therefore assumed to adjust perfectly in that VRE plant entry is accommodated
by coal plant retirements (“to make room”, and in line with coal plant financial distress arising from
policy-induced VRE plant entry), while moderate levels of CCGT and OCGT plant enter to ensure
reliability constraints are met given the intermittent nature of wind and solar PV.

Figure 2 presents the dynamic supply-side adjustment of plant capacity given a policy objective
of a 40% VRE market share by way of government-initiated CfDs. Notice in Figure 2 that coal plant
capacity reduces from 6720 MW to 4200 MW. Gas-fired capacity increases; CCGT plant commences at
400 MW and rises to 1200 MW while OCGT capacity commences at 3000 MW and rises by a further
750 MW. Consistent with the CfD policy objective, VRE plant increases from 0 MW to 6500 MW,
comprising 2700 MW of solar (~15% market share) and 3800 MW of wind (~25% market share).

Figure 2. Installed plant capacity (MW).

Figure 3 shows how plant output adjusts with the addition of wind and solar PV plant gradually
reaching a 40% market share. Given limited variations in final demand, supply-side adjustment from
VRE plant entry primarily comes from the exit of coal plant. Gas-fired plant capacity continuously rises
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(see Figure 2) but output responds to both the entry of VRE plant and the exit of coal plant. That is, gas
generation (presented as a bar series on the LHS y-axis, and a line series on the RHS y-axis with higher
axis resolution to emphasize the variation) provides system flexibility, rising as coal plant exits, and
falling as VRE plant increases in output.

Figure 3. Plant output (GWh).

With perfect plant entry and exit, NEMESYS model results confirm the CfD policy objective can be
met with the power system’s spot market producing tractable results. However, what such modeling
fails to reveal is an emerging structural shortage in the power system’s financial market, viz. the
market for forward hedge contracts used by participants to manage financial risk.

3.3. Financial (Contract) Market Results

Identifying the aggregate supply of hedge contracts within a NEM region is inherently difficult
because in a well-functioning power system financial market, there are cross-border trades, and,
more than just asset-backed portfolio managers on the sell-side. Proprietary (i.e., non-asset-backed)
traders can add substantially to market depth and liquidity. The anonymity of trade makes this
notoriously difficult to model (i.e., risk management of market exposures also arises from activity in
tangential markets such as the market for weather derivatives, which is similarly excluded from the
present analysis).

However, modeling a structural shortage of forward hedge contracts in a single (i.e.,
non-interconnected) region by is an easier task. The reason for this is that proprietary traders,
who add to forward market liquidity, “do not appear out of thin air”. A necessary condition for
proprietary trading is an inherent level of forward market liquidity to begin with. Consequently, hedge
market analysis need only focus on contract supply from asset-backed traders, which is bounded.

To be perfectly clear on this, if a forward market is illiquid, non-asset-backed traders cannot be
relied upon to enter and make-up any shortfall arising from asset-backed traders. Indeed, if forward
liquidity begins to contract, proprietary traders will close out their positions and exit the market, thus
accelerating any decline in liquidity. The reason for this is axiomatic; as [5] explain, holding-times of
various securities is strongly correlated to market liquidity. Again to emphasize, in a forward market
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characterized by falling liquidity, proprietary traders can be expected to close-out positions, not open
new positions, to avoid being caught with unwanted inventory.

Consequently, understanding the total primary supply (i.e., “primary issuance”) of asset-backed
forward contracts provides a basis for identifying inherent market liquidity. If the underlying supply
or primary issuance of swaps and caps (nominally represented by coal and gas plant respectively)
are sufficient relative to maximum demand, then the conditions necessary for trade at “multiples of
physical” would appear to exist.

Conversely, if an absolute shortage of primary issuance hedge contracts progressively emerges, then
total market liquidity will decelerate, first through the loss of primary supply (i.e., exiting dispatchable
coal plant which no longer offers hedges), and then as this initial loss of liquidity becomes obvious,
through the progressive exit of proprietary traders as they seek to avoid being caught with unwanted
inventory. The combination of this may lead to total financial markets turnover less than 100%, implying
some positions are virtually un-hedgeable from within the energy market.

In the analysis that follows, the plant stock outlined in Figure 2 is notionally separated into three
rival oligopoly generator portfolios (two at 3520 MW, one at 3080 MW). In the NEMESYS model,
individual generation plant availability is determined according to a stochastic binomial distribution
with half-hour resolution given plant forced outage rates of ~5%–6%. These generating unit-level
data were collated and assembled into joint probability duration curves for each of the three generator
portfolios, and from there a 90th percentile confidence limit was identified as the maximum credible
supply of asset-backed hedges in a manner consistent with the methodology in [24]. In essence, some
plant capacity is withheld from the hedge market for self-insurance against forced plant outages, and
to retain some nominal exposure to spot price outcomes. The modeled results that emerge are in turn
consistent with the applied hedge market research findings in [20].

Results for Generation Portfolio #1 and Generation Portfolio #3 are presented in Figure 4. Notice
that for the 3520 MW Generation Portfolio #1 (and by implication, Generation Portfolio #2 which has an
identical plant portfolio) the total potential supply of hedges at the 90th percentile is about 3150 MW,
and for the 3080 MW Generation Portfolio #3, total potential supply of hedges is about 2700 MW.

Figure 4. Primary supply of hedge contracts at 0% renewable market share.
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In the model, as VRE plant enters via government-initiated CfDs, various coal generating units exit
due to merit-order effects and financial distress. As coal plant exit, some level of gas-fired generation
plant enters but as Figures 2 and 3 indicate, the aggregate coal and gas-fired fleet form a shrinking
resource vis-à-vis aggregate final demand. Consequently, when the modeling process is undertaken
for each of the three Generation Portfolios on a dynamic basis (i.e., as outlined in Figure 2 for VRE
= 0%–40%), primary issuance hedge supply begins to decline, and this accelerates as VRE plant entry
(by way of CfDs) approaches 40%. The dynamic analysis is presented in Figure 5, which reveals a
growing structural shortage of primary issuance hedge contract capacity:

Figure 5. Primary supply of hedge contracts vs maximum demand (0%–40% VRE).

In Figure 5, the x-axis measures VRE plant market share noting that all plant has been facilitated
by government-initiated CfDs (i.e., there are no on-market PPAs). The solid black line series depicts
maximum demand, and the solid red line series presents aggregate primary issuance hedge contracts.
The gap between the black and red lines highlights the magnitude of any hedge shortfall, also
illustrated by solid blue line series—culminating in a hedge market shortfall of ~1500 MW or 16%
of final market demand at 40% VRE market share. Note that even with a 5% VRE market share, the
impact of government-initiated CfDs produces a non-trivial hedge shortfall if the thermal plant stock
adjusts perfectly.

In Figure 5, the dynamic change in plant capacity is also captured by the area chart (grey for coal,
dark blue for CCGT plant, and light blue for OCGT plant—essentially a reproduction of Figure 2).
In response to the wide-ranging policy of government-initiated CfDs, coal plant contracts from 6700 MW
to 4200 MW, while CCGT and OCGT plant capacity expands by 800 MW and 750 MW, respectively.
Note that overall there is a net loss of dispatchable plant, and when combined with the extraction of
hedge contract capacity from government-initiated CfDs, combines and drives the shortage of primary
issuance hedge contracts.

3.4. Hedge Contract Shortages in an Energy-Only Market

The quantitative analysis in Figure 5 in particular revealed that pursuing a wide-ranging program
of government-initiated CfDs is likely to produce an “unstable zone” in the forward market for hedge
contracts. That is, while the spot market is consistently able to reach equilibrium for any level of
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VRE output up to 40% market share (given certain dispatch constraints), with government-initiated
CfDs the forward hedge market becomes increasingly intractable as thermal plant exits and adjusts.
Remaining coal and gas plant are unable to originate sufficient hedge contracts in their own right—as
Figure 5 illustrates (recall that coal and gas generators do not hedge 100% of installed capacity due to
outage rates and their own desire to maintain some nominal exposure to spot price).

Once a government initiates a wide-ranging program of CfDs, it will have the effect of adding
capacity to the spot market which in the short run will lower prices and force coal plant out (consistent
with underlying policy objectives), but in the long run will extract 100% of the CfD plant output from
the power system’s financial market. Crucially, VRE projects cannot sell their output twice in the
forward market.

Consequently, results suggest that a wide-ranging program of government-initiated CfDs is not
compatible with the NEM’s energy-only market design. On the contrary, such a policy is likely to
collide with the systemic stability of the market. NEM market participants operate in one of the world’s
most volatile commodity markets, and access to forward hedge contracts is essential for managing
operating risk exposures to sustained critical event price spikes.

Hedge shortage events in energy-only markets with a high VoLL are far more than theory. The
South Australian (SA) region of the NEM was known to enter an episode of hedge contract shortages
(i.e., hedge contracts <100% of physical) in 2016 and 2017 soon after the final SA coal plant exited
(i.e., Northern Power Station during 2016). The surprising sophistication, and level of energy market
literacy now displayed by large industrial customers in South Australia explains how the SA market
temporarily adjusted. In the short run when hedge contract prices and premiums rose sharply, contract
volumes and premiums appear to have been allocated and rationed across the SA power system given
segment-level elasticities of demand. That is, prices in the residential consumer segment rose in line
with elevated contract premiums. Through discussions with senior NEM policymakers and various
industrial customers in SA, it would appear that hedge market shortages were largely absorbed by
industrial customers in the short run, with a typical strategy being to secure some minimum level of
hedging and run the balance of manufacturing load to the spot market (while keeping a close eye on
exposed load to pre-dispatch prices).

The SA hedge market shortage was ultimately caused by the sudden and uncoordinated exit
of coal plant—replacement hedge capacity is slowly being rebuilt through various new entrant VRE
plant, battery storage, and gas turbines. But if the new VRE entrants were underwritten by way of
government-initiated CfDs, it is not immediately obvious how such a shortfall could be rebuilt.

A wide-ranging program of government-initiated CfDs may adversely impact the residential and
SME business market. The effect of extracting hedge contract capacity from the forward market may, in
time, weigh heavily on retail competition. Large vertical retailers can be expected to manage positions
using a combination of physical plant and forward markets—and these large utility firms have the
financial capacity to allocate resources seamlessly between the two. But 2nd tier non-integrated
retailers do not have the same financial resources and may in the event be inadvertently foreclosed
by a wide-ranging government policy of CfDs as financial market liquidity deteriorates and hedge
shortages bind. At this point, retail-level consumer pricing can also be expected to be adversely
impacted through less competition.

And, un-hedgeable positions may introduce risks to the systemic stability of power market more
generally. If a sufficiently large utility experienced financial distress due to excessive exposure to
VoLL events because they were not able to allocate resources between physical plant and forward
markets quickly enough, it could lead to cascading failures across the power market economy; unlike
Australian financial institutions which can access lender of last resort facilities with the Commonwealth
Government, there is no centralized financial backstop for Australia’s organized energy markets.
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3.5. Are Hedge Shortages Inevitable with Rising VRE Plant?

Modeling results in Section 3.3 explicitly assume VRE plant enters exclusively by way of
government-initiated CfDs, and that these CfDs crowd-out on-market (bilateral) private sector PPAs.
The result was a shortage of hedges. A logical question that follows is whether hedge contract
shortages are inevitable in a world of rising VRE market share and coal plant exit regardless of how
entry occurs—whether by government-initiated CfDs or by on-market PPAs amongst NEM market
participants? The short answer is no. Results in Figure 5 would look different if VRE plant was able
to provide its output, in spite of intermittency, into the hedge books of market participants (as is
the case under a certificate-based renewable portfolio standard). That is, participants and portfolio
traders can synthetically (or physically) reconstruct firm hedge contract positions by combining
run-of-plant PPAs with dispatchable plant (e.g., incumbent coal, and existing or new, CCGT, OCGT,
pumped-hydro, battery storage) and rely on gains from exchange in the spot market to balance positions
on a risk-adjusted basis. Whether forward hedge market demand ultimately clears without materially
higher reserve plant margins in the long run is an open question.

3.6. Not A Short-Run Problem

The use of government-initiated CfDs will not create hedge contract shortages in the short run.
It is a long run problem [24,35]. If thermal plant fails to exit or thermal plant capacity remains
above efficient levels, shortages in the hedge market are unlikely to appear. Indeed, in the short run
government-initiated CfDs may well result in consumers benefiting from a surplus of hedge contract
capacity (i.e., if thermal plant does not exit they are still available to supply hedge contracts), and
short-run prices will be lower reflecting merit-order effects of adding VRE plant to the power system.

However, and to be clear, as coal plant exits the opposite occurs as evidenced by the South
Australian NEM region in 2016–2017. Thermal plant must exit due to inevitable financial distress
caused by VRE plant entry at-scale. And the exit of coal plant causes spot prices to rebound.
Furthermore, in such a CfD scenario spot prices will rebound just as hedge contract shortages appear;
thus, consumers would be unable to hedge against the very reason for hedging in the first place—viz.
the risk of sharply rising wholesale market prices. And in the modeling results in Section 3.3, the
reason consumers cannot fully hedge in forward markets is because hedge capacity has been extracted
through a wide-ranging program of government-initiated CfDs.

3.7. Validity of Government-Initiated CfD Reallocation Mechanisms

One reviewer queried whether, to remain consistent with the energy-only market design,
government-initiated CfD “receipts and payments” could be allocated to energy retailers on a
pro-rata basis as is done in Great Britain’s net pool market. The line of reasoning would be that energy
retailers could impute a hedge position based on the output of the VRE plant portfolio contracted by
the government.

This would represent a poor outcome. When energy retailers enter into bilateral PPAs under
a renewable portfolio standard or emissions obligation, the terms and conditions are invariably
non-vanilla and designed to suit the allocation of risk between VRE producer and energy retailer, and,
with a known project, project location and real-time project-specific output and associated constraints.
Under a government reallocation, the shareholders of energy retailers would be forced to digest a
“blind hedge book” and simultaneously lose control over the timing, cost, location, and magnitude of
VRE plant commitments. How this could add to market efficiency is not immediately obvious.

Another reviewer queried whether governments could initiate CfDs, and then on-sell the CfD on a
project-by-project basis in the open market at market rates (i.e., effectively creating a secondary market
to recycle CfD’s as a PPA, and in the process crystalize taxpayer profits or losses on each transaction).
This is a plausible solution to the modeling results outlined in Section 3.3. But apart from adding
a layer of transaction costs into the NEM and using scarce government balance sheet resources for
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needless intermediation, such a policy strategy implicitly presumes a central government agency will
purchase more efficiently than an entire energy market comprising no less than 50 highly sophisticated
organizations. A key reason energy markets exist is government failures in the central planning of
power systems. The better view is for government to set the policy objective and policy targets (i.e.,
renewable portfolio standard or emissions obligation), and let the market deliver the policy objective
and allocate the various power system financial and operating risks to those best able to manage them.

4. Conclusions

Australia has an international obligation to reduce its CO2 emissions under the Paris Agreement,
and Australia’s NEM is a CO2-intensive power system by OECD standards [52]. In this article,
a requirement to lower the CO2 intensity of the NEM has been taken as an exogenous policy constraint
in the form of a 40% VRE market share. The purpose of this modeled constraint was not to test optimal
levels or the composition of VRE plant, nor the structural adjustment task and welfare implications of
exiting coal plant at-scale. The specific line of inquiry was to determine whether the wide-spread use
of off-market government-initiated CfDs to achieve higher VRE and lower CO2 emissions is compatible
with the NEM’s energy-only market design.

Australia’s renewable energy target (i.e., renewable portfolio standard) required that energy
retailers meet a 20% renewable market share by 2020. The certificated scheme will be comfortably
met—by 2018 the NEM had 8000 MW of new VRE plant (5000 MW wind, 2800 MW solar) and a
further 5500 MW was under construction as at the start of 2019 (2500 MW wind and 3000 MW solar).
On-market transactions had delivered more than $20 billion of investment without any need for
government involvement or intermediation beyond setting the policy framework. The market was
given a target, and market participants (i.e., utilities, investors, and customers) delivered the capacity.

Used carefully, CfDs present policymakers with a reliable tool which can be used to overcome an
array of market failures, including those associated with missing or incomplete markets (including
emergency plant for security of supply reasons, certain positive, or negative externalities including
CO2 emissions, R&D and externalities arising from first-of-a-kind commercialization investments).
In the NEM, CfDs have been used selectively and effectively by state governments to “prime”
emerging markets, navigate Commonwealth Government policy discontinuity, with material on-market
transactions following. The Australian Capital Territory government CfDs pioneered nominal-price
transactions, the Queensland government’s CfDs led to more than 1900 MW of follow-on solar PV
projects, and the SA government’s semi-CfD for battery storage in has since resulted in more than
a dozen battery projects either under active development or commitment. From a project execution
perspective, the effectiveness of government-initiated CfDs are unquestionable.

But in an energy-only market setting, government-initiated CfDs must be used judiciously because
they introduce “quasi-market participants” who do not respond to spot market signals, and do not
participate in forward markets at all. Quasi-market participants are indifferent or substantially immune
from future outcomes in spot and forward markets. This can result in plant entry that is poorly timed,
poorly sized, poorly located, and above all, poorly motivated to respond to the electricity and frequency
control ancillary service spot price signals which keep the power system operating in a stable manner.

CfD plant also benefits from otherwise unachievable credit metrics owing to a taxpayer-financed
and credit-wrapped CfD instrument—with the risks transferred to taxpayers. Prima facie this may
deliver lower project specific LCoE’s, but this is only because risk has been transferred to taxpayers
(which is not costless), and whether this is an efficient allocation and use of government balance sheet
capacity is, in my opinion, questionable. A wide-ranging program of government-initiated CfDs can
be expected to crowd-out on-market rival merchant/bilateral investments.

If there is an upside to the present analysis, it is that the number of alternate policy instruments
available to government to achieve policy objectives has expanded very rapidly [53]. A wide array of
policy instruments exist to deal with the market failures which CfDs are intended to remedy; renewable
energy policy objectives can be achieved by an emissions obligation or well-designed renewables
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portfolio standard [48]; the need for emergency capacity can be (and in the NEM recently has been)
dealt with by establishing minimum exit notification periods for plant intending to exit the system;
resource adequacy (i.e., adequate plant capacity including an appropriate reserve plant margin) can be
maintained by ensuring the level of VoLL remains appropriate or by pursuing reliability obligations if
this becomes necessary. All of these options work with an energy-only market design, including the
forward market for contracts.

Throughout most of 2018, Australian policymakers developed a policy known as the National
Energy Guarantee which had two embedded policy mechanisms for energy retailers to comply with; (i)
an emissions obligation which was consistent with Australia’s international CO2 commitments under
the Paris Agreement, and (ii) a reliability obligation which was consistent with the NEM’s reliability
criteria and was designed to ensure resource adequacy. The former was designed to encourage hedge
contract activity with new renewable projects, and the latter was designed to be acquitted via ensuring
adequate forward contracts were committed—both mechanisms were thus designed to add to liquidity
rather than detract from it.

In contrast, as quantitative results and analysis in this article explain, a wide-ranging program
of government-initiated CfDs can be expected to impair market efficiency in an energy-only market
setting. While adding to buy-side liquidity, government-initiated CfDs replace on-market transactions
and thus subtract from sell-side liquidity, and this matters in loosely-interconnected energy-only
markets because as coal plant exits, primary issuance hedge contract shortages become predictable.
Shortages in the forward markets may harm consumer welfare by raising contract premiums—the
primary input into consumer tariffs—and by forcing the most price-elastic industrial customers into
accepting spot market exposures, which at best disrupts manufacturing efficiency. Further, CfD-driven
hedge market shortages may unintentionally foreclose non-integrated 2nd tier retailers—deeming
such a program of government-initiated CfDs to be (unintentionally) anti-competitive. Consequently,
the National Energy Guarantee or an equivalent suite of policies seems a better place for Australian
policymakers to focus on.
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Abbreviations

The following abbreviations are used in this manuscript:

AUD Australian Dollars
CCGT Combined Cycle Gas Turbine
CfD Contract for Differences
CO2 Carbon Dioxide
LCoE Levelized Cost of Electricity
NEM National Electricity Market
OCGT Open Cycle Gas Turbine
O&M Operations & Maintenance
PV Photovoltaic
RET Renewable Energy Target
VoLL Value of Lost Load
VRE Variable Renewable Energy (i.e., wind and solar PV)

Appendix A

The purpose of the PF model is to produce plant cost estimates for various generating technologies.
The PF model is essentially a dynamic, multi-period post-tax discounted cash flow optimization model
which solves for multiple generating technologies, business combinations, and revenue possibilities
through simultaneous convergent price, debt-sizing, taxation and equity return variables. These
outputs are similar in nature to levelized cost estimates but with a level of detail beyond the typical LCoE
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model because corporate or project financing, credit metrics and taxation constraints are co-optimized.
Model logic, derived in [48,54], is as follows:

Costs increase annually by a forecast general inflation rate (CPI). Prices escalate at a discount
to CPI. Inflation rates for revenue streams πR

j and cost streams πC
j in period (year) j are calculated

as follows:

πR
j =

[
1 +

(CPI × αR

100

)] j
, and πC

j =
[
1 +

(CPI × αC
100

)] j
(A1)

Energy output oi
j from each plant (i) in each period (j) is a key variable in driving revenue streams,

unit fuel costs and variable operations and maintenance costs. Energy output is calculated by reference
to installed capacity ki, capacity utilisation rate CFi

j for each period j. Plant auxiliary losses Auxi arising
from on-site electrical loads are deducted.

oi
j = CFi

j · ki ·
(
1−Auxi

)
(A2)

Electricity price for the ith plant
(
piε

)
is calculated in year one and escalated per Eq. (A1). Thus

revenue for the ith plant in each period j is defined as follows:

Ri
j =

(
oi

j · piε · πR
j

)
(A3)

As outlined above, plant marginal running costs are a key variable and used extensively in
NEMESYS-PF. In order to define marginal running costs, the thermal efficiency for each generation
technology ζi needs to be defined. The constant term “3600” is divided by ζi to convert the efficiency
result from % to kJ/kWh (i.e., the derivation of the constant term 3600 is: 1 Watt = 1 Joule per second
and hence 1 Watt Hour = 3600 Joules). This is then multiplied by raw fuel commodity cost f i. Variable
operations and maintenance costs vi, where relevant, are added which produces a pre-carbon short
run marginal cost. Under conditions of externality pricing CPj, the CO2 intensity of output needs
to be defined. Plant carbon intensity gi is derived by multiplying the plant heat rate by combustion
emissions

.
gi and fugitive CO2 emissions ĝi. Marginal running costs in the jth period is then calculated

by the product of short run marginal production costs by generation output ρi
j and escalated at the rate

of πC
j .

ϑi
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝
(

3600
ζi

)
1000

· f i + vi

⎞⎟⎟⎟⎟⎟⎟⎠+ (
gi ·CPj

)⎤⎥⎥⎥⎥⎥⎥⎦ · oi
j ·πC

j

∣∣∣∣∣∣∣∣gi =
( .
gi
+ ĝi

)
·
(

3600
ζi

)
1000

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A4)

Fixed operations and maintenance costs FOMi
j of the plant are measured in $/MW/year of installed

capacity FCi and are multiplied by plant capacity ki and escalated.

FOMi
j = FCi · ki ·πC

j (A5)

Earnings before interest tax depreciation and amortization (EBITDA) in the jth period can therefore
be defined as follows:

EBITDAi
j =

[
Ri

j − ϑi
j − FOMi

j

]
(A6)

Capital costs
(
Xi

)
for each plant i are overnight capital costs and incurred in year 0. Ongoing

capital spending for each period j is determined as the inflated annual assumed capital works program.

xi
j = ci

j · πC
j (A7)
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Plant capital costs Xi
0 give rise to tax depreciation (di

j) such that if the current period was greater

than the plant life under taxation law (L), then the value is 0. In addition, xi
j also gives rise to tax

depreciation such that:

di
j =

(
Xi

L

)
+

⎛⎜⎜⎜⎜⎜⎜⎝
xi

j

L + 1− j

⎞⎟⎟⎟⎟⎟⎟⎠ (A8)

From here, taxation payable
(
τi

j

)
at the corporate taxation rate (τc) is applied to EBITDAi

j less

interest on loans
(
Ii

j

)
later defined in (16), less di

j. To the extent
(
τi

j

)
results in non-positive outcome, tax

losses
(
Li

j

)
are carried forward and offset against future periods.

τi
j = Max

(
0,

(
EBITDAi

j − Ii
j − di

j − Li
j−1

)
· τc

)
(A9)

Li
j = Min

(
0,

(
EBITDAi

j − Ii
j − di

j − Li
j−1

)
· τc

)
(A10)

The debt financing model computes interest and principal repayments on different debt facilities
depending on the type, structure, and tenor of tranches. There are two types of debt facilities—(a)
corporate facilities (i.e., balance-sheet financings) and (2) project financings. Debt structures include
semi-permanent amortizing facilities and bullet facilities.

Corporate facilities involve 3- and 7-year money raised with an implied “BBB” credit rating.
With project financings, two facilities are modeled. The first facility is nominally a 3-year bullet
requiring interest-only payments after which it is refinanced with consecutive amortizing facilities and
fully amortized over a 25-year period. The second facility commences with a tenor of 7 years as an
amortizing facility, again set within a semi-permanent structure with a nominal repayment term of
25 years. The decision tree for the two tranches of debt is the same, so for the debt tranche where T = 1
or 2, the calculation is as follows:

i f j

⎧⎪⎪⎨⎪⎪⎩ > 1, DTi
j = DTi

j−1 − Pi
j−1

= 1, DTi
1 = Di · S (A11)

Di refers to the total amount of debt raised for the project. The split (S) of the debt between each
facility refers to the manner in which debt is apportioned to each tranche. In the model, 35% of debt is
assigned to Tranche 1 and the remainder to Tranche 2. Principal Pi

j−1 refers to the amount of principal
repayment for tranche T in period j and is calculated as an annuity:

Pi
j =

⎛⎜⎜⎜⎜⎜⎜⎝DTi
j/

⎡⎢⎢⎢⎢⎢⎢⎣1−
(
1 +

(
Rz

T + Cz
T

))−n

Rz
T + Cz

T

⎤⎥⎥⎥⎥⎥⎥⎦
∣∣∣∣∣∣∣∣z
{

= VI
= PF

⎞⎟⎟⎟⎟⎟⎟⎠ (A12)

In (A12), RT is the relevant interest rate swap (3 yrs or 7 yrs) and CT is the credit spread or margin

relevant to the issued debt tranche. The relevant interest payment in the jth period
(
Ii

j

)
is calculated as

the product of the (fixed) interest rate on the loan by the amount of loan outstanding:

Ii
j = DTi

j ×
(
Rz

T + Cz
T

)
(A13)

Total debt outstanding Di
j, total Interest Ii

j and total principle Pi
j for the ith plant is calculated as

the sum of the above components for the two debt tranches in time j. For clarity, loan drawings are
equal to Di in year 1 as part of the initial financing and are otherwise 0.

One of the key calculations is the initial derivation of Di. This is determined by the product of the
gearing level and the overnight capital cost

(
Xi

)
. Gearing levels are formed by applying a cash flow
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constraint based on credit metrics applied by project banks and capital markets. The variable γ in the
PF model relates specifically to the legal structure of the business and the credible capital structure
achievable. The two relevant legal structures are vertically integrated (VI) merchant utilities (using
“BBB” rated corporate facilities) and independent power producers using project finance (PF).

i f γ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
= VI, Min

(
FFOi

j

Ii
j

)
≥ δVI

j ˆMin
(

FFOi
j

Di
j

)
≥ ωVI

j ∀ j
∣∣∣∣∣FFOi

j =
(
EBITDAi

j − xi
j

)

= PF, Min
(
DSCRi

j, LLCRi
j

)
≥ δPF

j , ∀ j

∣∣∣∣∣∣∣ DSCRj =

(
EBITDAi

j−xi
j−τi

j

)
Pi

j+Ii
j

∣∣∣∣∣∣∣LLCRj =

∑N
j=1

[(
EBITDAi

j−xi
j−τi

j

)
·(1+Kd)

− j
]

Di
j

(A14)

The variables δVI
j and ωVI

j are exogenously determined by credit rating agencies. Values for δPF
j

are exogenously determined by project banks and depend on technology (i.e., thermal vs. renewable)
and the extent of energy market exposure, that is whether a power purchase agreement exists or not.
For clarity, FFOi

j is “funds from operations” while DSCRi
j and LLCRi

j are the debt service cover ratio
and loan life cover ratios. Debt drawn is:

Di = Xi −
N∑

j=1

[
EBITDAi

j − Ii
j − Pi

j − τi
j

]
· (1 + Ke)

−( j) −
N∑

j=1

xi
j · (1 + Ke)

−( j) (A15)

At this point, all of the necessary conditions exist to produce estimates of generalized long run
marginal costs of the various power generation technologies. The relevant equation to solve for the
price

(
piε

)
given expected equity returns (Ke) whilst simultaneously meeting the binding constraints of

δVI
j and ωVI

j or δPF
j given the relevant business combinations. The primary objective is to expand every

term which contains piε. Expansion of the EBITDA and tax terms is as follows:

−Xi +
N∑

j=1

[(
piε · oi

j ·πR
j

)
− ϑi

j − FOMi
j − Ii

j − Pi
j

−
((

piε · oi
j ·πR

j

)
− ϑi

j − FOMi
j − Ii

j − di
j − Li

j−1

)
· τc

]
· (1 + Ke)

−( j)

− N∑
j=1

xi
j · (1 + Ke)

−( j) −Di

(A16)

The terms are then rearranged such that only the piε term is on the left-hand side of the equation:
Let IRR ≡ Ke

N∑
j=1

(1− τc) · piε · oi
j ·πR

j · (1 + Ke)
−( j)

= Xi

− N∑
j=1

[
−(1− τc) · ϑi

j − (1− τc) · FOMi
j − (1− τc) ·

(
Ii

j

)
− Pi

j + τc · di
j

+τcLi
j−1) · (1 + Ke)

−( j)
]
+

N∑
j=1

xi
j · (1 + Ke)

−( j) + Di

(A17)

The model then solves for piε such that:

piε

= Xi∑N
j=1(1−τc)·Pε·oi

j·πR
j ·(1+Ke)

−( j)

+

∑N
j=1

(
(1−τc)·ϑi

j+(1−τc)·FOMi
j+(1−τc)·

(
Ii

j

)
+Pi

j−τc·di
j−τcLi

j−1)·(1+Ke)
−( j)

)
∑N

j=1(1−τc)·piε·oi
j·πR

j ·(1+Ke)
−( j)

+

∑N
j=1 xi

j·(1+Ke)
−( j)+Di

∑N
j=1(1−τc)·piε·oi

j·πR
j ·(1+Ke)

−( j)

(A18)
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Table A1. Corporate Finance Assumptions.

Coal & Gas Wind & Solar

Debt Sizing Constraints Debt Sizing Constraints

FFO/I (times) 5 DSCR (times) 1.35

FFO/D (times) 3 LLCR (times) 1.35

Gearing Limit (%) 40.0 Gearing Limit (%) 70.0

Default (times) 1.10

Corporate “BBB” Bonds Project Finance Facilities

Tranche 1 (Bullet) (Yrs) 5 Tranche 1 (Bullet) (Yrs) 5

Tranche 1 Refi (Yrs) 13–20 Tranche 1 Refi (Yrs) 13–20

Tranche 2 (Amort.) (Yrs) 7 Tranche 2 (Amort.) (Yrs) 7

Notional amortization (Yrs) 18–25 Notional amortization (Yrs) 18–25

BBB Bond Pricing
Project Finance
Facilities-Pricing

Tranche 1 (%) 3.60 Tranche 1 Swap (%) 2.55

Tranche 1 Margin (bps) 105 Tranche 1 Margin (bps) 200

Tranche 2 (%) 3.97 Tranche 2 Swap (%) 2.68

Tranche 2 Margin (bps) 129 Tranche 2 Margin (bps) 220

Tranche 1 (%) 3.60 Tranche 1 (%) 4.55

Tranche 2 (%) 3.97 Tranche 2 (%) 4.88

Tranche 1&2 Refi (%) 3.97 Tranche 1&2 Refi (%) 4.88

Post Tax Equity Coal (%) 12.0 Post Tax Equity (%) 10.0

Post Tax Equity Gas (%) 12.0
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Abstract: The Emissions Trading System in the European Union was introduced to achieve the
climate goal of reducing emissions by around 43% between 1990 and 2030. Accordingly, the costs
of emission allowances are part of power generation and, by extension, the price of electricity.
Theoretical works thus suggest a positive relationship between the price of emission allowances
and electricity. However, this has not been validated empirically for phase III of the Emissions
Trading System in the short run as part of the price setting mechanism of electricity producers. Our
evidence suggests an opposite effect: According to our empricial results, both European Power
Exchange (EPEX) day-ahead and intraday markets are negatively affected during phase III. We
further test for a potentially asymmetric influence with the help of quantile regressions. Altogether,
the outcome has implications for policy-makers and calls for further attention by academics and
policy-makers in the future design of the Emissions Trading System, especially under larger amount
of renewables in the electricity system.

Keywords: emissions trading; electricity price; econometric modeling; time series analysis; emission
allowance

1. Introduction

The European Union introduced the first and largest trading system for greenhouse gases in
the world, the Emissions Trading System (EU ETS). Its launch in 2005 came as a direct consequence
of the Kyoto Protocol as a means of achieving the climate objective of reducing emissions by 43 %
between 1990 and 2030 [1]. The design is based on a cap and trade system, which allows only a fixed
amount of emissions for various greenhouse gases such as carbon dioxide (CO2), nitrous oxide (N2O),
and perfluorocarbons (PFCs). In the past, the annual limit of greenhouse gases has been decreased in
order to reduce greenhouse gases and to thus achieve climate goals.

The actual design of the cap and trade system represents a challenging task for policy-makers.
On the one hand, the price for emission allowances needs to be fairly high in order to provide
an incentive to reduce emissions [2]. On the other hand, the price should not threaten economic
development. Therefore, policy-makers need to combine social, economic, and environmental
considerations. For example, the European Commission has broadened the number of industries
that are subject to the trade mechanism as part of the modifications when transitioning from phase
II to III of the Emissions Trading System. Nowadays, about 11,000 heavy energy-using installations
are part of the EU ETS, accounting for approximately 45 % of all emissions in Europe. In particular,
the entire power production sector in Germany is obligated to participate in the EU ETS. Accordingly,
every power company must hold a sufficient number of European Emission Allowances (EUA) by the
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end of the year, whereby each EUA entitles the energy producer to emit one ton of carbon dioxide or
its equivalents.

Since 2013, phase III of the EU ETS represents the status quo. It differs from phase II
(years 2008–2012) in the following key dimensions [1]:

1. Reduction of free allocation. Most notably, policy-makers reduced the free allocation
of emission allowances once again. This has led to 40 % of allowances being sold at
auction. For instance, the entire power production sector is forced to buy allowances at
auction. As such, electricity producers must buy emission allowances on the energy
exchange when they have exceeded their allowance, e.g., due to higher-than-expected
emissions. Additionally, in the period of 2014–2016, they reduced the number of
certificates by 900 million. These certificates will be used as a market stability reverse
mechanism to match demand and supply.

2. Expansion to more industries and further greenhouse gases. The EU ETS now
accounts for additional greenhouse gases that were not part of phase II, such as nitrous
oxide (N2O) and perfluorocarbons (PFCs). In addition, it adds a wider array of industry
sectors, such as manufacturing industries and aircraft operators.

3. EU registry. While national registries collected the names of companies qualified
for emissions trading during phase II, these were replaced in phase III by a registry
encompassing the full European Union, which now includes 31 countries participating
in the EU ETS. The European registry was introduced in order to establish a better
control mechanism throughout the member states.

Based on the changes between phase II and III of the ETS, one would expect a stronger influence
of the carbon price on electricity prices. In theory, the necessary expenditures on emission allowances
should increase costs for operators of power plants and it is thus likely to be linked to the price of
electricity. For example, lignite-fired power plants emit about 0.984 tons of carbon dioxide per 1 MWh
energy, while power plants fired by natural gas produce about 0.548 tons of carbon dioxide per 1 MWh
energy. (Retrieved from http://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11 on 11 June 2019.) In
other words, one can assume an influence of emission allowances on electricity prices if the underlying
pass-through rate is nonzero [3,4]. Consequently, the price of EUA is incorporated in the price
setting algorithms of electricity producers, thus resulting in electricity price fluctuations in the short
run [5]. Policy-makers demand such evaluations, which allow them to assess whether emissions
trading encourages high amounts of sustainable sources of electricity generation on a national or
international scale.

Our literature survey later reveals that the link between carbon and European Power
Exchange (EPEX) electricity prices has been studied for phase II of the EU ETS but not for phase III.
Here, we follow earlier research which has focused on the short-run relationship between EUA prices
and electricity prices as a means to study the price setting mechanisms of electricity firms (e.g.,
References [5,6]). It is thus the key contribution of this paper to quantify the impact of carbon prices on
EPEX electricity prices during phase III of the EU ETS. For this purpose, we specifically compare the
effect across day-ahead and intraday markets. We additionally calculate the distributional properties
of the pass-through rate by means of quantile regression to test whether a price premium for EUA is
only added for a certain threshold price.

Our results suggest a negative relationship between emission allowances and electricity prices.
The corresponding implications are discussed by considering the intentions of policy-makers when
designing phase III of the EU ETS. Especially, the findings are later set in relation to the context of
various proposed changes to the EU ETS that are currently under consideration by policy-makers.
Altogether, these insights can help to improve the future market design for emissions trading in order
to achieve the desired climate objectives. Our findings should be seen as a starting point for future
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research as they call for further attention to better understand the consequences for price setting that
result from the introduction of the EU ETS.

2. Related Work

This section reviews related works concerning the influence of carbon prices on the price
of electricity.

2.1. Long Run vs. Short Run Relationship

Previous works have analyzed the relationship between carbon prices and the price of electricity
as part of an empirical study. These reveal statistical evidence of such a relationship across several
markets in both the long and short run yet not for phase III of the EU ETS.

In regard to the long run, Bunn and Fezzi [7] find a positive relationship between the carbon price
and the price of electricity in the U. K. during phase I of the EU ETS. Their analysis reveals that a 1 %
change in the carbon price results in an increase in electricity prices by 0.42 % in the equilibrium case.
In the short run, this study observes a visible shock in electricity prices after a few days. A similar,
positive relationship in the long run is observed in the Spanish market [8,9]. However, the effect here
is of a lesser magnitude; i.e., a 1 % change in the carbon price yields a 0.24 % increase in the long run
during phase II and in the first year of the third phase [9]. In addition, the findings suggest a smaller
impact for a lower carbon price than for a higher one.

On the other hand, there is also strong evidence in favor of a short-run relationship. For example,
in the Nordic electricity market, the price of EUA tends to considerably influence the electricity price in
the short run [10,11]. Cotton and Mello [5] examined the Australian approach to reducing greenhouse
gas emissions. The authors found no impact in the long run but did in the short run. Analogously,
our analysis is concerned foremost with the short-run relationship, since we not only investigate
the day-ahead market but also the price setting mechanism in the intraday market, where empirical
evidence is especially limited.

According to Bannoer et al. [12], the relatively small impact may result from the almost constant
carbon price, at least during the period from 2010 until 2013, and conclude, therefore, that the carbon
price has only a very small effect. However, this work only studies phase II and cannot assess whether
the additional adjustments from phase III have been effective.

2.2. Asymmetric Pass-Through Rate

The ratio of costs passed on to customers has been extensively discussed in the literature. From a
theoretical point of view, this pass-through rate should account for 100 % in perfect markets [3].
However, the condition of perfect markets seldom holds in reality, thus resulting in a lower
pass-through rate [4]. The pass-through rate depends on additional factors, such as the energy
mix, the demand, as well as the supply of energy [13]. In addition, recent works [14,15] find a less than
100% but asymmetric pass-through of costs in the German market. In particular, a pass-through rate of
at least 84%, ranging from 98% to 104%, is found for different load periods [14]. As a consequence,
increasing the carbon price is supposed to influence the electricity price more strongly than decreasing
carbon prices. As a result, the price setting mechanism might be only affected by carbon prices
exceeding a certain price threshold. In Section 4.3, we control for this effect by utilizing quantile
regressions in order to compute the distributional properties of the carbon effect on electricity prices.

2.3. Directional Influence

Previous research reports contradictory evidence regarding the direction of the influence. Jouvet
and Solier [4] revealed significant positive as well as negative effects of EUA prices in each year
from 2005 through 2011 (except 2009) for all European markets, with the negative impact mostly
occurring in the Italian market. For the German and Austrian electricity markets, the effects are not
consistent. Furthermore, Aatola et al. [16] found a positive but asymmetric influence of the carbon
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price on European electricity prices—such as U. K., France, Netherlands, Germany, Spain, and the
Nordic countries. However, in the short run, they did not find a clear pattern. A work by Woo et
al. [17] also points to a strong regional dependency of the emission price effect. The author’s found
a short-run price effect between 0.15 dollar and 0.59 dollar in Western USA with respect to a 1 dollar
carbon price change.

The unclear patterns regarding the direction of the influence remain in different phases of the
EU ETS, revealing mixed effects. Phase II evinces a significant positive effect of the carbon price on
the hourly electricity price in the short run [6]. Paraschiv et al. [18] estimate a state space model with
time-varying coefficients between 2010 and 2012 to correct the variance, finding both a positive and
negative influence of the EUA price on the day-ahead electricity price. However, none of the above
papers has focused on the EPEX electricity prices of both the intraday and day-ahead auction market
or, on top of that, studied the changes in the relationship between EU ETS phases II and III. One of the
reasons is that the introduction of phase III occurred only recently and, therefore, empirical evidence
relating to it is still scarce. As a remedy, this paper examines the impact of carbon prices in phases II
and III on German and Austrian day-ahead and intraday electricity prices.

3. Methods and Materials

In the following, we present our autoregressive model, as well as the underlying dataset.
Additional materials and robustness checks can be found in the Supplementary Materials.

3.1. Modeling of Electricity Prices

Electricity entails several unique characteristics that differentiate it from other commodities, such
as the need to instantaneously match the electricity demand and supply, the diverse array of electricity
sources, as well as the lack of available storage capability. As a result, electricity prices are highly
volatile and driven by seasonality [19–22], which makes the modeling of electricity prices challenging.
In this respect, recent literature has yielded two dominant approaches to modeling electricity prices.
First, co-integration models such as vector autoregressive (VAR) and vector error correction (VEC)
models (e.g., References [6,8,9,23]). These are especially suited to research questions that seek to
investigate interdependencies between multiple variables. For example, one can use them to quantify
the impact of load on electricity prices and vice versa. Second, autoregressive models and their variants
(e.g., with a moving-average term) are commonly used when studying the impact of several covariates
on a single price variable (e.g., References [21,24–26]). For this reason, we follow the latter approach
by modeling electricity prices as an autoregressive process. Specifically, we define one model for
each hour, since we therefore can better capture the daily fluctuation of electricity prices [27]. This is
beneficial as it allows us to focus on the short-run relationship and thus the price setting of electricity
producers, i.e., how EUA is actually incorporated by decision-makers. This is also motivated by earlier
research that concentrated on the short-run relationship when studying the pricing power of EUA [5,6].

Besides the choice of the model, we need to carefully consider the inclusion of covariates since a
variety of exogenous factors might influence electricity prices. Common examples are fuel prices
(e.g., References [10,18,28,29]), power generation (e.g., References [8,30]), feed-ins from renewables
(e.g., References [8,9,31–34]), and economic factors (e.g., Reference [8]). Given the broad spectrum of
considered covariates, there seems to be no consistent recommendation as to which variables to insert,
especially as the significance of the impact varies from study to study. We thus follow a two-pronged
approach, which first chooses the control factors that are most common in the previous literature,
namely, load (as a proxy for power demand) and solar/wind power generation [29]. Moreover, we
additionally use a set of additional covariates (coal price, gas price, oil price, and foreign exchange
rate) as part of a robustness check.
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3.2. Autoregressive Time Series Model

We now present the method by which we empirically measure the impact of EUA on electricity
prices. For this purpose, we follow previous research and use autoregressive models with
exogenous variables (ARX). We specifically estimate separate models for each hour of the day [18,27].
This introduces additional degrees of freedom that can reflect, e.g., differences in the electricity
mix between peak and off-peak hours. Our online appendix lists robustness checks with additional
covariates and a global model with de-seasonalization [35], resulting in similar findings.

Our key independent variable of interest is given by the price for EUA. We additionally
incorporate the infeeds of wind farms and photovoltaic power plants, as well as the grid load, since
they serve as standard control variables when studying electricity prices [22,23]. These also cover most
factors that are specific to the demand and supply sides. In case of the latter, the short-term dynamics
of prices are mostly affected not by power generation from fossil fuels but by variable sources of
power generation, of which wind and solar power represent the largest shares in the German market.
Moreover, we incorporate dummy variables for the weekday and the month in order to adjust for
seasonal variations.

3.3. Asymmetric Influence Via Quantile Regressions

Previous research argues in favor of a nonlinear pass-through of emission costs [15]. Accordingly,
the influence on electricity prices is stronger at the upper end of the merit order curve conditional on a
large infeed from expensive sources of power generation. The influence of carbon prices on electricity
prices is thus likely to be asymmetric [9,36]. For instance, we expect a large effect when all power
plants produce electricity, since this might include carbon-intensive forms of power generation. As a
consequence, increasing the carbon price is supposed to impact the electricity price more strongly than
decreasing carbon prices. This suggests that the coefficient β is subject to variations and thus attains
values that are dependent on the electricity price. In other words, the estimated free parameters of
each quantile regression cover the quantiles of the distribution of electricity prices. Therefore, our later
analysis also addresses the distributional influence of carbon prices on electricity prices.

For this purpose, we use quantile regressions, which differ from ordinary least squares (OLS).
Whereas the latter measures the impact of predictor variables on the mean of an outcome variable,
quantile regressions incorporate the entire distribution of electricity prices by estimating the influence
of carbon prices at different percentiles of the dataset [37]. Therefore, we can shed light upon potential
variations in the effect across different percentiles.

Mathematically, the OLS regression estimates global coefficients β1, . . . , β4 that quantify the effect
of regressors X on the electricity price P̃t at the mean. This is given by E

[
P̃t ‖ X

]
= X [β1, . . . , β4]

T .
Quantile regression, by contrast, allows us to estimate the effect of predictor variables X on a selected
quantile of outcome variable P̃t [37]. Hence, we obtain separate coefficients β̂τ

1, . . . , β̂τ
4 for different

quantiles τ of P̃t, given by Qτ [Pt ‖ X] = X
[
β̂τ

1, . . . , β̂τ
4
]T

. This thus yields the full impact of carbon
prices across the full (conditional) distribution of electricity prices. For mathematical details of this
estimation procedure, we refer to Reference [37].

3.4. Dataset

An overview of our dependent variables and the covariates is presented in Table 1. The dependent
variable is given by the electricity prices in the day-ahead, as well as intraday spot market. Here,
delivery of electricity for a certain hour h of day d can be traded continuously from 3 p.m. on day
d − 1 until 30 min before hour h on day d. Hence, we follow previous research and perform our
analysis based on the average hourly price [29]. The prices originate from the European Power
Exchange (EPEX), which is a joint venture of the Energy Exchange (EEX) and the French Powernext.
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Table 1. Overview of variables taken into account in the subsequent evaluation.

Variable, Unit Symbol Frequency Description Data Source

Day-ahead spot
price, e/MWh

PA
t Hourly Electricity price of day-ahead auction

with delivery in Germany and Austria:
The auction price is set at 12 a.m. for each
hour of the next day

European Power
Exchange

Intraday spot
price, e/MWh

PI
t Hourly Continuous intraday electricity price

with delivery in Germany and (partially)
Austria, where trading is possible up to 30
min before delivery

European Power
Exchange

Wind infeed,
MW

Windt Hourly Aggregated total wind infeed from the
four transmission system operators
(TransnetBW, Tennet, Amprion, and 50
Hertz) in Germany

Energy Exchange
(EEX) Transparency

Solar infeed,
MW

PVt Hourly Aggregated total photovoltaic infeed from
the four transmission system operators
(TransnetBW, Tennet, Amprion, and 50
Hertz) in Germany

EEX Transparency

Load, MW Loadt Hourly Total hourly electricity consumption in
Germany

ENTSO-E

Price of EUA,
e/tCO2

EUAt Daily Setting price of EEX European Emission
Allowance (EUA) future that is
continuously traded on the Intercontinal
Exchange (ICE): one EUA entitles its
holder to emit one ton of carbon dioxide
or its equivalents

Thomson Reuters
Datastream

Note: ENTSO-E is the European Network of Transmission System Operations for Electricity.

Here, our main variable of interest is the price of European Emission Allowance (EUA). Table 2
reports the descriptive statistics. As part of the switch from phase II to III in the EU ETS, the price
of EUA has undergone major changes. As such, the mean price per EUA dropped by −54.26 % from
e 11.61 to e 5.23. Furthermore, the standard deviation declined by −71.35 % from 3.56 to 1.02.

Table 2. Descriptive statistics for the price of European Emission Allowance (in e/tCO2) in phases II
and III.

Phase II Phase III Relative Change

Time Period Jan 2010–Dec 2012 Jan 2013–Dec 2014
Observations 782 522

Mean 11.61 5.23 −54.26%
Median 12.71 5.13 −59.64%

Min. 5.74 2.70 −52.96%
Max. 17.03 7.37 −56.72%

Std. dev. 3.56 1.02 −71.35%

Skew. −0.16 0.01 106.25%
Kurt. −1.57 −0.67 57.32%

4. Results

This section analyzes the influence of the carbon prices on electricity prices. We first test the
stationarity of our time series and, afterwards, estimate the autoregressive models and the quantile
regressions for the hours h = 8, 16, 24.
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4.1. Stationarity

We need to validate whether our time series are stationary in order to rule out a spurious
regression [35]. Here, the augmented Dickey–Fuller (ADF) tests find stationary time series in levels
for both electricity prices, the load, as well as for feed-ins from solar and wind power for each hour
separately. The hourly EUA price is stationary in levels during phase II and phase III but not over
the entire period. Therefore, in order to obtain stationary time series, we take the first differences of
EUA when studying the entire sample. Due to the extensive nature of the ADF test for each hour and
covariates (504 ADF tests), the values are omitted for brevity.

4.2. Influence of Carbon Price during the EU ETS Regimes

We now estimate the impact of the EUA price on both day-ahead and intraday electricity prices.
Section 4.1 has already established that the price of EUA is integrated of order one during the entire
sample. Therefore, we instead consider the first differences in order to ensure the absence of a spurious
regression [35]. Detailed results are reported in the online appendix, while we restrict our presentation
to key findings in the following.

We perform a series of diagnostic tests: First, we find only stationary residuals and thus eliminate
the risk of analyzing a spurious regression. Second, the p-value belonging to the F-statistics of each
model is zero and, thus, the combination of model variables has an influence on the dependent
variable. Furthermore, we find autocorrelation of the residuals by using the Durbin–Watson test, while
a Breusch–Pagan test reveals heteroscedastic residuals. To adjust the test values for both autocorrelation
and heteroscedasticity, we use the Newey–West procedure (e.g., Reference [35,38]). Its advantage is
that we yield t-statistics that are robust to a general form of serial correlation and heteroscedasticity
but let the regression coefficients be unaffected [35].

According to Table 3, the influence of the EUA price on electricity prices is as follows. In the
day-ahead market, the coefficient of the EUA time series (in the form of first differences) is
non-significant at common statistical significance levels for each hour of the day (Table 3 exemplary
reports the hours 8, 16, and 24). These findings change when we split the dataset into phase II and
III. While in phase II, the EUA price has an impact in hours 13 to 16, in phase III the EUA price has
an significant negative impact in each hour of the day, even in nighttime. Controversially, the impact
remains negative over the entire day. We observe a quite similar picture with regard to the intraday
market. In this case, the price of emission allowances shows a negative impact in phase III, being
highly significant.

The relative impact on the dependent variable subsequent to a one standard deviation increase
in the EUA price enables us to compare the strength of the effect independent of the scaling and
thus across both the day-ahead and intraday markets. In the day-ahead market, the corresponding
coefficient is negative ranging from −0.32 to −0.13. This means that a one standard deviation increase
in the price of EUA results in a −0.32 to −0.13 standard deviation decrease in the electricity price
variable depending on the hour of the day. In the intraday market, the significant negative impact lies
between −0.36 to −0.28, revealing that the intraday market is more strongly affected by EUA prices.

Consistent with previous literature, we find that demand- and supply-side factors show a
statistically significant impact on electricity prices, though the results differ across markets. In the
day-ahead market, the impact of solar and wind feed-ins on the price of electricity is weaker than in
the intraday market. Additionally, load governs the intraday market to a larger extent. Several other
studies discuss the influence of external variables, such as load and feed-ins from renewables, in more
detail (cf. References [23,29,33,39]).

According to the goodness-of-fit, all models in the day-ahead market as well as in the intraday
market reveal a strong explanatory power with an adjusted R2 above 0.94.

49



Energies 2019, 12, 2894

Table 3. Estimated coefficients of separate autoregressive models belonging to different hours (h =

8, 16, 24) of the day: These measure the influence of the EUA price on electricity prices of the EU ETS.
Dependent variables are the hourly day-ahead and intraday electricity prices.

Dependent Variable: Hourly Day-Ahead Electricity Price P̂A
t

Phase II (2010–2012) Phase III (2013–2014) Phases II & III (2010–2014)

Hour 8 Hour 16 Hour 24 Hour 8 Hour 16 Hour 24 Hour 8 Hour 16 Hour 24

Windt−1 −0.13 −0.11 −0.08 −0.09 −0.08 −0.04 −0.11 −0.10 −0.08
t-value (−11.07) (−12.97) (−7.55) (−4.74) (−4.11) (−3.22) (−9.41) (−9.60) (−7.55)
PVt−1 −0.01 −0.02 −0.08 −0.11 −0.05 −0.07
t-value (−1.86) (−2.21) (−3.11) (−3.99) (−4.28) (−5.93)

Loadt−1 0.85 0.67 0.30 1.00 0.92 0.40 0.72 0.63 0.30
t-value (13.77) (15.20) (0.71) (6.67) (9.20) (7.06) (12.39) (14.97) (0.71)

ΔEUAt−1 −0.05 0.05 0.00 −0.32 −0.26 −0.13 −0.01 −0.01 0.00
t-value (−1.68) (2.56) (0.71) (−3.45) (−4.54) (−3.00) (−0.86) (1.42) (0.71)

PA
t−1 0.16 0.22 0.42 0.19 0.27 0.50 0.21 0.27 0.42

t-value (7.45) (8.32) (13.86) (4.41) (7.52) (16.22) (10.48) (12.14) (13.86)
PA

t−2 0.17 0.15 0.23 0.18 0.20 0.22 0.20 0.19 0.23

t-value (6.18) (6.61) (10.74) (4.06) (5.45) (5.95) (8.13) (10.31) (10.74)
PA

t−7 0.15 0.12 0.15 0.21 0.17 0.12 0.21 0.19 0.15

t-value (4.11) (3.98) (5.75) (3.12) (4.28) (3.80) (5.57) (7.38) (5.75)

Observations 1089 1089 1089 716 716 716 1819 1819 1819
Adjusted R2 0.98 0.98 0.99 0.94 0.95 0.98 0.96 0.97 0.98

F-statistic 4661.56 7564.34 883.99 1148.79 1659.21 3809.93 4669.10 7051.32 22148.95

Dependent Variable: Hourly Intraday Electricity Price P̂I
t

Phase II (2010–2012) Phase III (2013–2014) Phases II & III (2010–2014)

Hour 8 Hour 16 Hour 24 Hour 8 Hour 16 Hour 24 Hour 8 Hour 16 Hour 24

Windt −0.16 −0.14 −0.14 −0.18 −0.25 −0.24 −0.17 −0.18 −0.16
t-value (−8.94) (−11.79) (−7.08) (−14.26) (−13.94) (−14.40) (−13.02) (−16.51) (−11.07)
PVt −0.02 −0.05 −0.05 −0.28 −0.04 −0.14

t-value (−2.68) (−4.00) (−5.44) (−11.06) (−5.24) (−9.07)
Loadt 1.04 0.86 0.49 1.16 1.54 0.97 0.87 0.88 0.43

t-value (18.20) (16.10) (8.12) (20.42) (19.70) (13.46) (20.38) (20.84) (9.55)
ΔEUAt −0.07 0.05 0.05 −0.36 −0.42 −0.28 −0.00 −0.00 0.00
t-value (−1.85) (1.74) (1.88) (−6.25) (−5.86) (−5.15) (−0.48) (−0.07) (0.66)

PI
t−1 0.13 0.21 0.27 0.11 0.15 0.16 0.17 0.23 0.30

t-value (4.44) (7.66) (8.25) (4.00) (6.33) (4.92) (8.07) (12.77) (11.11)
PI

t−2 0.07 0.07 0.14 0.13 0.01 0.14 0.12 0.09 0.20

t-value (3.03) (3.11) (4.01) (4.97) (0.49) (4.52) (6.45) (4.88) (6.51)
PI

t−7 0.05 0.04 0.13 0.20 0.09 0.11 0.15 0.14 0.19

t-value (1.74) (1.43) (3.63) (6.04) (3.35) (3.91) (6.04) (6.57) (6.66)

Observations 1089 1089 1089 716 716 716 1819 1819 1819
Adjusted R2 0.97 0.95 0.97 0.97 0.95 0.97 0.95 0.96 0.96

F-statistic 2359.96 3526.41 3940.32 2277.76 1485.25 2852.08 3959.73 4505.73 6164.12

Dummies: weekday, month; Stated: standardized coefficients (because of different units); robust t-statistics in
parenthesis; t − 1 refers to the same hour the day before, due to price-setting time points; Bold highlighting:
coefficients with a p-value of below 0.05.

4.2.1. Robustness Checks

As part of our robustness checks, we estimate an analysis in accordance
to Wolff and Feuerriegel [29] by incorporating additional control variables in order to ensure that their
inclusion does not confound our results. These variables concern the daily coal price (Credit Suisse
Commodity Benchmark for coal API 2 spot return price index at the Amsterdam-Rotterdam-Antwerp
Hub in USD/t.) Coalt, the gas price (Setting price of natural gas first near future at the virtual gas
trading hub Title Transfer Facility (TTF) in EUR/MWh.) Gast, the oil price (Brent crude oil spot price
in USD per barrel.) Oilt, and the closing price of the USD-EUR exchange rate FXt. We again take the
first differences where time series are integrated of order one. As earlier, we only report the t-statistics
that are robust to heteroscedasticity and serial correlation. The results are given in Table 4 for the
impact of the EUA price on both the day-ahead and intraday electricity price.

The estimation results reveal the same picture as our earlier analysis: The EUA shows a
significantly negative impact in the day-ahead market during phase III. Interestingly, the EUA price
positively affects the electricity price for the hour 24 when the solar feed-in is zero, while in the main
model, we find a small positive impact for hour 16. In the case of the intraday market, the price of
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emission allowances shows a negative impact in phase III that is statistically highly significant. Hence,
a one standard deviation increase in the price of EUA results in a −0.79 to −2.53 standard deviation
decrease in the electricity price variable.

Table 4. Estimated coefficients of separate autoregressive models belonging to different hours (h =

8, 16, 24) of the day as part of a robustness check: These measure the influence of the EUA price on
electricity prices of the EU ETS incorporating control variables. Dependent variables are the hourly
day-ahead and intraday electricity prices.

Dependent Variable: Hourly Day-Ahead Electricity Price P̂A
t

Phase II (2010–2012) Phase III (2013–2014) Phases II & III (2010–2014)

Hour 8 Hour 16 Hour 24 Hour 8 Hour 16 Hour 24 Hour 8 Hour 16 Hour 24

Windt−1 −0.28 −0.20 −0.21 −0.15 −0.12 −0.05 −0.22 −0.16 −0.13
t-value (−11.56) (−14.51) (−9.39) (−5.09) (−5.37) (−3.36) (−10.39) (−11.75) (−8.14)
PVt−1 −0.69 −0.07 −1.07 −0.10 −1.07 −0.11)
t-value (−3.68) (−3.59) (−2.90) (−4.66) (−5.17) (−7.81)
Loadt−1 0.68 0.51 0.32 0.66 0.47 0.20 0.55 0.41 0.21
t-value (14.09) (12.86) (7.88) (5.59) (5.60) (3.20) (12.09) (13.65) (8.16)

ΔEUAt−1 −0.12 −0.15 1.86 −2.20 −1.25 −0.34 −1.03 −1.37 0.38
t-value (−0.15) (−0.20) (2.38) (−2.82) (−2.36) (−0.84) (−0.97) (−1.41) (0.54)

ΔCoalt−1 −0.16 −0.13 −0.09 −0.57 −0.02 0.25 −0.14 −0.02 0.07
t-value (−0.71) (−0.73) (−0.60) (−0.83) (−0.03) (0.60) (−0.72) (−0.10) (0.51)

ΔOilt−1 0.03 −0.02 0.05 −0.08 −0.06 −0.04 0.05 0.04 0.02
t-value (0.30) (−0.22) (0.68) (−0.33) (−0.32) (−0.29) (0.53) (0.50) (0.38)
Gast−1 0.40 0.26 0.25 0.46 0.48 0.28 0.41 0.38 0.23
t-value (3.74) (2.60) (3.89) (3.35) (3.81) (3.49) (5.80) (5.68) (4.41)

ΔFXt−1 16.74 −13.82 10.15 67.93 45.04 11.23 27.65 3.24 13.60
t-value (26.84) (−0.64) 0.69 (0.89) (0.75) 0.26 (1.03) (0.14) (0.88)

PA
t−1 0.17 0.22 0.27 0.19 0.26 0.49 0.20 0.26 0.40

t-value (7.84) (8.31) (7.73) (4.76) (8.21) (16.13) (10.80) (12.24) (13.30)
PA

t−2 0.15 0.15 0.21 0.17 0.17 0.21 0.18 0.17 0.22

t-value (6.50) (6.34) (9.92) (4.32) (6.00) (5.58) (8.33) (10.13) (10.69)
PA

t−7 0.12 0.13 0.12 0.16 0.12 0.09 0.18 0.17 0.13

t-value (3.40) (4.08) (2.92) (3.03) (3.04) (2.89) (5.50) (6.43) (4.97)

Observations 1089 1089 1089 716 716 716 1819 1819 1819
Adjusted R2 0.97 0.99 0.99 0.94 0.96 0.98 0.96 0.97 0.98

F-statistic 3610 6066 6919 857.3 1282 2739 3548 5430 7760

Dependent Variable: Hourly Intraday Electricity Price P̂I
t

Phase II (2010–2012) Phase III (2013–2014) Phases II & III (2010–2014)

Hour 8 Hour 16 Hour 24 Hour 8 Hour 16 Hour 24 Hour 8 Hour 16 Hour 24

Windt −0.35 −0.26 −0.25 −0.29 −0.31 −0.26 −0.33 −0.28 −0.23
t-value (−9.44) (−12.94) (−7.41) (−13.82) (−14.25) (−14.95) (−13.81) (−17.07) (−11.14)

PVt −0.96 −0.14 −0.64 −0.23 −0.95 −0.20
t-value (−3.84) (−5.35) (−4.84) (−11.16) (−6.94) (−10.53)
Loadt 0.86 0.65 0.42 0.78 0.87 0.45 0.70 0.59 0.32

t-value (17.16) (15.26) (7.62) (15.75) (14.44) (8.95) (18.06) (17.30) (8.01)
ΔEUAt −0.88 −0.69 1.25 −2.53 −2.37 −0.79 −0.58 −0.24 0.62

t-value (−0.82) (−0.59) (1.13) (−5.17) (−4.68) (−2.28) (−0.62) (−0.21) (0.75)
ΔCoalt 0.01 −0.04 −0.43 −0.39 −0.59 −0.14 −0.03 −0.09 −0.30
t-value (0.02) (−0.16) (−2.10) (−0.78) (−0.88) (−0.39) (−0.08) (−0.39) (−1.81)
ΔOilt −0.03 0.01 0.02 −0.07 0.29 0.05 0.12 0.18 0.11
t-value (−0.26) (0.06) (0.27) (−0.37) (1.34) (0.38) (1.14) (1.44) (1.51)
Gast 0.41 0.44 0.25 0.38 0.28 0.31 0.33 0.37 0.11

t-value (2.55) (3.13) (3.16) (4.97) (2.88) (5.66) (4.65) (5.04) (2.45)
ΔFXt −2.99 34.27 22.80 84.03 −10.93 −3.62 15.34 25.36 14.47

t-value (−0.08) (1.18) (0.83) (1.12) (−0.14) (−0.09) (0.46) (0.86) (0.58)

PA
t−1 0.14 0.21 0.27 0.12 0.15 0.14 0.17 0.23 0.30

t-value (4.80) (8.00) (7.69) (4.30) (6.45) (4.02) (8.41) (12.48) (10.95)
PA

t−2 0.06 0.07 0.14 0.12 0.01 0.13 0.12 0.08 0.20

t-value (2.98) (2.86) (4.41) (4.90) (0.37) (4.29) (6.41) (4.61) (6.57)
PA

t−7 0.04 0.04 0.13 0.16 0.07 0.09 0.13 0.12 0.18

t-value 1.19 (1.43) (4.00) (4.66) (2.88) (3.29) (5.67) (5.94) (6.75)

Observations 1089 1089 1089 716 716 716 1819 1819 1819
Adjusted R2 0.95 0.97 0.97 0.97 0.95 0.97 0.96 0.96 0.97

F-statistic 1719 2687 2923 1713 1084 2005 3034 3622 4816

Dummies: weekday, month; Stated: standardized coefficients (because of different units); robust t-statistics in
parenthesis; t − 1 refers to the same hour the day before, due to price-setting time points; Bold highlighting:
coefficients with a p-value of below 0.05.
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4.3. Asymmetric Influence of the Carbon Price on Electricity Prices

As previous research suggests [3,9,36], the carbon price may have an asymmetric impact on
electricity prices. Therefore, we perform quantile regressions for the 25 %, 50 %, and 75 % quantiles.
Figures 1 and 2 present the estimation results across different phases of the EU ETS.

Interestingly, we observe different results for the day-ahead and intraday markets compared to
the results from Section 4.2. First of all, we find that the impact of the price of EUA on electricity
prices appears predominantly in phase III of the EU ETS. However, we see a considerable impact in
the day-ahead market in phase III, with a diverging influence for the 25 % and 75 % quantiles. In the
25 % quantile, a one standard deviation increase in the price of EUA results in an low impact with
values around zero. By contrast, in the 75 % quantile, the price of EUA links to a decrease by up
to −0.165 standard deviations in the day-ahead electricity price for hour 8. In the intraday market,
the relationship remains stronger with statistically significant standardized coefficients up to 0.320 in
the 75 % quantile for hour 24. All in all, our results indicate an asymmetric influence of the EUA price.

Figure 1. Results of the quantile regression for the day-ahead electricity market indicating an
asymmetric influence of the EUA price on day-ahead electricity prices: Here, separate regressions are
analyzed belonging to different hours (h = 8, 16, 24); see different rows. We first obtained difference
EUA prices for the entire period to ensure stationary time series.
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Figure 2. Results of the quantile regression for the intraday electricity market indicating an asymmetric
influence of the EUA price on intraday electricity prices: Here, separate regressions are analyzed
belonging to different hours (h = 8, 16, 24); see different rows.

5. Discussion of Findings

This section discusses our findings regarding the relationship between carbon and electricity
prices. Our abovementioned findings from the autoregressive models deserve attention. According to
expectation, the price of electricity is supposed to rise with a higher carbon price, thus giving rise to
a positive relationship, since spending on emission allowances introduces an additional cost driver.
We thus shed light on the potential reasons for the nature of the relationship:

• Excess supply of emission allowances. Since we find a weak and inconsistent influence of the
emission allowance prices on the electricity price, the price must be too low to play a significant
role in power generation. This is particularly evident in our autoregressive model during phase II,
where we observe no direct effect. The same model evinces a statistically significant negative
impact only for the day-ahead and intraday market in phase III. These findings are consistent
with previous research, suggesting that the impact of low carbon prices is rather moderate [9,15]
and becomes observable only above certain thresholds. Surprisingly, even though more industries
are forced to engage in emissions trading in phase III of the EU ETS, actual power generation and
the corresponding electricity price seem unaffected by carbon trading. Consequently, the presence
of nonsignificant influences partially originate from an excess supply of emission allowances.

• Changing energy mix. The Emissions Trading System functions in a highly intricate
interplay with other policies, especially the incentivized introduction of renewable energy
sources. Renewables account for a growing portion of the total electricity supply. (Retrieved
from http://www.bmwi-energiewende.de/EWD/Redaktion/Newsletter/2015/1/Meldung/
infografik-strommix-2014-erneuerbare-auf-rekordhoch.html on 9 June 2019.) As these electricity
sources replace fossil-fuel power plants, the demand for emission allowances (relative to the
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total electricity demand) must decrease at the same pace. Otherwise, the burgeoning share of
renewables inherently results in an excess supply of emission allowances, thus counteracting one
of the main advantages of renewable energies.

• Merit order effect. Large carbon prices are also linked to larger marginal costs for carbon-intensive
power plants as opposed to renewable energies. This explains the differential influence of carbon
prices as revealed by our quantile regressions. An additional reason is given by support schemes
for renewables that sometimes grant preferential treatment. That is, wind and solar power must be
consumed before power is generated via other means. Hence, carbon prices have a less significant
effect on electricity prices when renewables produce a high amount of electricity, i.e., when
electricity prices are low.

6. Conclusions

The European Union has established a market for trading emission allowances of greenhouse
gases. Its objective is to contribute to sustainability goals and to reduce emissions. The spending
on emission allowances represents an integral cost driver of power generation affecting operational
decision-making and thus price setting. It is therefore of interest to investigate the relationship between
carbon and electricity prices across different phases of the Emissions Trading System.

6.1. Summary of the Findings

This paper contributes to the existing literature by analyzing the (asymmetric) impact of carbon
prices on EPEX electricity prices, with a special focus on the intraday market. We thus use an
autoregressive model with exogenous variables. The results show a behavior of the model contradictory
to the intentions of policy-makers. We find a statistically highly significant negative impact in the
intraday market during phase III of the European Union Emissions Trading System. Here, a one
standard deviation change in the price of emission allowances decreases the price of electricity by up
to −0.44 standard deviations. Moreover, the effect is weaker in the day-ahead market during phase III,
while throughout phase II, we do not observe any measurable effect. Among the reasons are a growing
share of renewable energy resources and an excess supply of emission allowances.

Most notably, we observe differences between the day-ahead and intraday markets. While our
autoregressive model detects a weaker (negative) short-run impact of the EUA price in the day-ahead
market, we find a stronger significant negative impact of the EUA price on the intraday electricity
prices during phase III of the EU ETS. This outcome partially contradicts empirical studies into other
markets, which mostly measure a positive impact [9]. Similarly, further research cannot find a short-run
impact of the carbon prices on electricity prices [5]. Paraschiv et al. [18] provides evidence of both a
positive and negative influence.

Altogether, various factors explain the relationship between emission allowances and electricity
generation. Among them, we identify a combination of an excess supply of emission allowances,
a growing share of renewable energy source, and the merit order effect. Since we are not aware of
previous literature examining the price of emission allowances in the intraday market, we cannot
compare these results to the findings of others.

To conclude, the transition from phase II to phase III of the EU ETS was motivated by
policy-makers in order to reduce emissions from electricity generation. This is in correspondence
to our results, according to which the price of European Emission Allowance was not linked to
electricity prices at common statistical significance thresholds during phase II. It is also in line with
expectations, as one was not required to hold EUA for carbon-intensive power generation during
this phase. For phase III, however, we find evidence that counteracts the intention of policy-makers.
Based on our model, we see that a higher EUA price is not reflected in higher electricity prices. Prior
literature discussing the general design of the EU ETS has already suggested that the influence of
carbon prices is fairly low, particularly due to a large supply. This is also seen in our analysis: The
average price for EUA dropped extensively during the move from phase II to phase III of the EU ETS,
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i.e., from more than 11 e /tCO2 to a little more of 5 e /tCO2. This eases the pressure for electricity
providers to incorporate carbon prices in their pricing models and to thus adapt their generation
accordingly (e.g., they could be incentivized to use existing carbon-intensive capacities for electricity
generation before an increase in carbon prices takes place).

6.2. Limitations and Call for Future Research

We focused on the short-run relationship of the EUA price and electricity prices since our aim is
to investigate the price setting mechanism of electricity providers in both the day-ahead and intraday
market. By following a short-run view, we were able to address the intraday variation of electricity
prices for each hour of the day, which corresponds to the price setting mechanisms in the markets.
As a results, future studies could built upon our research and analyze the impact of EUA prices on
electricity prices, focusing on the long run. This would allow a deeper understand of how EUA prices
are reflected in electricity prices. While a strength of our work is the focus on the price setting decisions,
another limitation of this study originates from the circumstance that, as in other research, the actual
trading models of energy firms are proprietary and thus not available for research. Nevertheless, our
approach by studying ex post prices is able to shed light on the underlying price setting mechanism.

Our findings deserve attention by academics and policy-makers who should critically reflect
whether this matches their intention. Hence, we regard this paper as a starting point for future research
in analyzing the functioning of EU ETS with respect to electricity producers. The design of appropriate
markets for emissions trading can considerably benefit from further research as many questions are still
left unanswered. First of all, it is worthwhile to extensively investigate interactions between different
regulations in order to derive policy implications. Here, one could even consider studying distinct
price setting mechanisms, especially under increased shares of renewables in the system. These might
better pass-through costs of emission allowances and thus help establish real incentives to reduce
greenhouse gases. Second, further effort is necessary to understand how the price and trading volume
of emission allowances impacts other commodities. With the upcoming advances in the Emissions
Trading System, future research should continuously monitor the effect of carbon prices on electricity
prices in order to evaluate all impending policy changes.
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Abstract: Climate change and awareness of the need to care for the environment have resulted in a
global increase in the interest in renewable energy sources. The European Union (EU) is active in
this respect and requires Member States to fulfill specific plans in the transformation of their energy
systems. We employed hierarchical cluster analysis in an attempt to distinguish those countries
among the new EU Member States that increased their electrical capacity from renewable energy
sources to the greatest extent while paying attention to their energy intensity. The analyses were
conducted in two scenarios for both 2004 and 2016. The first scenario assumed an analysis of all
known renewable energy sources, whereas in the second scenario, only renewable energy sources
from wind and solar power plants were included. The division of analyses into these two variants
showed the importance of the differences in the energy assessment of individual countries, depending
on classification of renewable energy sources. We identified groups of countries where electrical
capacity from renewable energy sources increased the most. Conducting analyses using two variants
allowed distinguishing countries that based most of their renewable energy on modern renewable
energy sources, such as solar and wind power plants. The inclusion of gross domestic product in the
analyses allowed us to identify countries with the worst energy efficiency value.

Keywords: renewable energy; sustainable development; gross domestic product; GDP; electrical
capacity; energy intensity; hierarchical cluster analysis

JEL Classification: Q01; Q40; Q48; Q56; Q48; Q20; R11; O10

1. Introduction

Electricity is the basis for the functioning of the modern world, but its acquisition is often not
environmentally friendly. Nearly 200 years have passed since the beginning of the industrial revolution,
but many countries still base their energy on fossil fuels [1–3]. Along with an increase in ecological
awareness, many countries are aiming to reduce human interference in the natural environment and
obtain energy from renewable sources. Wind energy, solar radiation, precipitation, tides, sea waves,
and geothermal energy are considered renewable energy sources [4,5]. Biofuels, biomass, and biogas
are also considered renewable energy sources if their origin is ecological, but their conversion into
energy through combustion is not [6,7]. Similarly, the qualification of hydroelectric power plants as
renewable energy sources is controversial. Large hydroelectric plants have a negative impact on the
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environment [8–16], and for this reason, as in case of biofuels, they are often not included in studies on
renewable energy sources [17–22].

Many factors impact the introduction of pro-ecological solutions into the energy policy of states.
Apart from the most obvious, such as the level of economic development and the volume of energy
production, there are also important geographical determinants [23,24] or social acceptance factors of
renewable energy prices must be considered [25–27]. In the literature, these factors are often analyzed
in pairs or groups, e.g., gross domestic product (GDP) and CO2 emissions [28–33].

Regardless of the region of the world, the majority of energy demand forecasts show that demand
will grow in the within several years or even a few decades [3,34–42]. Various studies show a relationship
between economic development and energy demand. Most of the papers indicate that economic
growth determines energy demand, which is referred to as the “conservation hypothesis” [43–49].
The “growth hypothesis” states that economic growth depends on energy production, but, as research
shows, economic growth happens when a government policy leads to an excessive reduction of energy
consumption [38,50–53]. Regardless of which of the listed factors is a determinant, individual countries
need to implement a sustainable growth policy that maintains a balance between the development of
countries and regions and the demand for energy [24,54–60]. International commitments and growing
environmental awareness result in the same countries often deciding to subsidize investments in
renewable energy sources to ensure uninterrupted energy supply to customers, and to simultaneously
to provide green energy [2,61–65]. Notably, subsidies do not include hydroelectric power plants
because they cannot always be considered environmentally friendly and, due to the need to diversify
energy sources, do not fit into sustainable development policy [10,17,18,66].

In Europe, the need to reduce energy consumption and care for the environment started being
widely discussed in the late 1960s [67–69]. The oil crises of 1973–1974 and 1979–1982 contributed
to discussions on the common energy market, which was reflected in the Treaty of Lisbon in 1992.
The four main assumptions of the common energy policy were contained in Article 194 of the Treaty on
the Functioning of the European Union (TFEU) and they concerned: guaranteeing the functioning of
the energy market; guaranteeing energy supplies to European Union (EU) countries; promoting energy
efficiency and development of new, renewable energy sources of energy; and promoting inter-state
energy connections.

In subsequent years, further documents and directives were published, e.g., Green Paper, White
Paper, and Directives 96/92/EC and 98/30/EC, aimed at regulating the common energy market in the
EU, considering the specific energy markets of individual Member States. The low effectiveness in the
implementation of new laws in the Member States and the largest enlargement of the EU in history
in 2004 created a need to develop a new law that would effectively regulate the common energy
market. The Directive of 2009 imposed an obligation on Member States to reduce greenhouse gas
emissions considering the structure of energy systems of individual countries and the level of their
economic development.

The presented legal regulations are reflected in data on renewable energy sources in EU. The data
show that at the beginning of the 21st century, the energy infrastructure was modernized to a greater
extent so that it would be less harmful to the environment [1]. This is visible for the entire EU and
even more so among its new Member States, as shown in Figure 1. This chart includes the aggregated
capacity of renewable energy sources from wind and solar power plants.
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Figure 1. Joint electrical capacity in the European Union (EU). Source: Own visualizations based on [70].

As mentioned above, the EU, while regulating the common energy market, pays special attention
to caring for the natural environment, but simultaneously understands that the energy markets and
economies of individual countries differ. It is important to consider these differences in requirements for
individual countries as, for example, in Central and Eastern European countries, (CEECs) rapid growth
of energy production from renewable sources to the level in richer countries of Western Europe cannot
be expected. Germany, for example, produces 42% of electricity from renewable sources [25]. Not only
is the level of wealth of a given country significant, as measured by GDP, but also the initial structure
of renewable energy shares in all types of energy sources. The ratio of energy to gross domestic
product (E/GDP), i.e., energy intensity, is also important [35,54,71–76]. This factor describes the energy
efficiency of the state’s economy and indicates the cost of converting energy to GDP. The values of
these factors differ significantly between the countries of Western Europe and Central and Eastern
Europe and change dynamically over time. The best example for comparison is Germany and Romania.
In 1992, energy intensity in Romania was four times higher than in Germany, and in 2013, it was only
twice as much [35]. Countries that joined the EU in 2004 and subsequent years [77,78] are significantly
different from the older Member States of the EU. Differences are related to many aspects, among which
the most important from the point of view of this paper are the level of economic development and the
structure of energy sources. The GDP of new Member States of the EU was much lower than that of
the Member States of the EU from Western Europe [79,80], and with few exceptions, combustible fuels
were the main sources of energy for new EU Member States [81–83]. For this reason, we focused on
analyzing renewable energy sources against the background of economic growth only among new
Member States of the EU. The sources of renewable energy were analyzed using two variants. In the
first, all officially recognized renewable energy sources were considered as renewable energy sources.
In the second variant, to remove the impact of the hydroelectric power stations built several dozens of
years ago, only wind and solar power plants were accepted as renewable sources. Both options for
the classification of renewable energy sources were analyzed for 2004 and 2016 to determine the level
of change. The tests were performed with an application of cluster analysis [84–87], enabling us to
create groups of countries similar to each other in terms of renewable energy sources and GDP in 2004
and 2016.

In the literature, many publications have separately analyzed renewable energy sources as a
whole or individually. A novelty in our article is a comparative analysis that considered the different
classifications of renewable energy sources. As such, we were able to determine the differences in
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the energy assessment of individual countries, depending on the classification of renewable energy
sources. Separation of modern energy sources from all energy sources in comparison with the GDP
also enabled an assessment of the energy efficiency from these renewable energy sources.

2. Materials and Methods

2.1. Data

We analyzed the changes in the capacity of the electrical infrastructure with a special focus on
renewable energy sources and their relationship with GDP. The analysis included countries that have
been Member States of the EU since 2004. The largest number of countries joined the EU on May 1,
2004: Cyprus, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia,
and Slovenia. On January 1, 2007, Bulgaria and Romania joined, as did Croatia on July 1, 2013.
Since 2004, the EU expanded by 13 countries; the main ones were from Central and Eastern Europe,
as presented in Figure 2.

Figure 2. Map of the studied countries with the year they joined the EU.

The analyzed data included the capacity of the electrical infrastructure and the GDP of the
aforementioned countries, and they were collected from Eurostat websites [70,88]. We are aware of
possible errors during the process of data sampling [89]; therefore, the data were collected and verified
again after a few weeks. The data have annual periodicity. Recent data on electrical infrastructure
(accessed on June 14, 2018) were from 2016, and GDP data were from 2017. Therefore, the surveys
included a 13-year period from 2004 to 2016. The data on the capacity of the electrical infrastructure
are expressed in megawatts (MW), and GDP at current prices in million euro.
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2.2. Methodology

For data sets that contain different features, clustering can be used to compare them [84].
A taxonomic analysis was used to designate groups of countries similar in terms of the capacity of
the electrical infrastructure and share in the GDP [85] using Ward’s clustering, which is a hierarchical
method [86]. This method, which is an agglomerative clustering method, is one of the best, through
which homogeneous aggregates can be obtained.

In this method, at the beginning, it is assumed that each observation vector is a separate cluster.
Then, between all pairs of vectors in Equations (1) and (2), using the squared Euclidean distance (SED)
in Equation (3), a distance matrix is determined, using Equation (4), which describes their similarity.

a = [a1, . . . , ai] (1)

b = [b1, . . . , bi] (2)

where a and b are the observation vector

d(a, b) =

√√√ p∑
i=1

(ai − bi)
2 (3)

where p denotes the number of variables (vector length).

d(a, b) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 d12 · · · d1n
d21 0 · · · d2n

...
...

. . .
...

dn1 dn2 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where dij is the distance between the ith and the jth observation
The above distance matrix is based on physical space. This is reminiscent of the topological

distance matrix based on network structures [90,91]. Clusters (groups) are created by applying one of
several available grouping methods on the distance matrix [92–94]. In Ward’s method, the distance
between clusters is estimated by an analysis of variance. It is assumed that each cluster is represented
by a centroid, as shown in Figure 3.

Figure 3. Centroids of clusters.

At each stage of the agglomeration hierarchical grouping process into a new cluster, the two most
similar clusters are combined, e.g., A and B (Figure 4), for which there is the smallest increase in the
sum of the squared error (SSE):

d(A, B) = SSEA∪B − (SSEA + SSEB) (5)

SSEA∪B =

nAB∑
i=1

(yi − yAB)
′(yi − yAB) (6)
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SSEA =

nA∑
i=1

(ai − a)′(ai − a) (7)

SSEB =

nB∑
i=1

(
bi − b

)′(bi − b
)

(8)

where ai represents the ith observation vector in cluster A, a is the centroid of cluster A, bi represents
the ith observation vector in cluster B, b the centroid of cluster B, yi represents the ith observation
vector in cluster AB, and yAB the centroid of newly formed cluster AB.

Figure 4. Hierarchical clustering.

The minimize function using the Ward minimal variance method can also be written as:

d(A, B) =
nAnB

nA + nB

(
a− b

)′(a− b
)

(9)

where a and b represent the centroids of clusters A and B, respectively.
The process of determining the distance between clusters and joining them ends when all clusters

are combined into one large cluster, e.g., ABCDEF in Figure 4.
Variables analyzed with the use of the Ward’s method should have a coefficient of variation

greater than 10% and should not be very strongly correlated. However, leaving variables out that do
not meet these criteria for an analysis is allowed if these variables are significant from the point of view
of the studied phenomenon.

3. Results

3.1. Cluster Analysis

As mentioned above, the data used for the analyses included the electrical capacity and GDP in the
new EU Member States. Their short forms are introduced for the analysis: EC is the Electrical Capacity,
which is the sum of the capacity of all types of electricity sources; ECR is the Electrical Capacity
Renewable, which is the total capacity of the renewable energy sources by the most commonly used
divisions, i.e., hydro, geothermal, wind, and solar; and ECRN denotes Electrical Capacity Renewable
New, which is the total capacity of only new types of renewable energy sources, i.e., wind and solar.

Cluster analysis was conducted for the data from the beginning and end of the analyzed period,
i.e., 2004 and 2016. For this purpose, the variable designations introduced above were additionally
determined for the relevant year: EC2004, ECR2004, ECRN2004, GDP2004, EC2016, ECR2016, ECRN2016,
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and GDP2016. These variables were used to create indicators describing the ratio of electrical capacity
from renewable sources to total electric capacity and the ratio of electrical capacity from renewable
sources and all sources in the ratio of GDP, which is referred to in the literature as energy intensity.
The developed indicators were divided into those concerning the analysis of all renewable energy
sources (indicators renewable energy; IRE) and those that concern only renewable energy sources of new
type (indicators renewable energy new; IREN) for both 2004 and 2016, as presented in Tables 1 and 2.

Table 1. Indicators of renewable energy.

IRE 2004 IRE 2016

ECR2004/EC2004 ECR2016/EC2016
EC2004/GDP2004 EC2016/GDP2016

ECR2004/GDP2004 ECR2016/GDP2016

Table 2. Indicators of new renewable energy.

IREN 2004 IREN 2016

ECRN2004/EC2004 ECRN2016/EC2016
EC2004/GDP2004 EC2016/GDP2016

ECRN2004/GDP2004 ECRN2016/GDP2016

The above division of indicators allowed us to perform four cluster analyses (two for each of the
analyzed years) to check how these groups changed over the period, but also to determine how the
type of selected energy influenced the formation of these groups. The coefficients of variation of all
indicators presented in Table 3 are 10% above the criterion, which means that they could be used for
the cluster analysis.

Table 3. Coefficients of variation of the indicators.

Indicator Coefficient of Variation (%)

ECR2004/EC2004 104.3
ECR2010/EC2010 78.8
ECR2016/EC2016 54.0

ECRN2004/EC2004 240.0
ECRN2010/EC2010 85.4
ECRN2016/EC2016 41.9
EC2004/GDP2004 65.2
EC2010/GDP2010 40.8
EC2016/GDP2016 36.8

ECR2004/GDP2004 104.4
ECR2010/GDP2010 90.4
ECR2016/GDP2016 74.7

ECRN2004/GDP2004 227.0
ECRN2010/GDP2010 100.7
ECRN2016/GDP2016 67.8

Correlation coefficients between indicators are presented in Table 4.
The coefficient of correlation only exceeded 90% for the pairs of ECRN2004/GDP2004—ECRN2004/

EC2004. However, due to the high volatility of ECRN2004/GDP2004 of 227.0%, ECRN2004/EC2004 of
240.0%, and the need to examine this indicator, it was not rejected. The need to maintain the same set of
variables to ensure comparability of results was also an argument for including these indicators. When
analyzing the source data for 2004, we confirmed that the resulting correlation is apparent because
it resulted from the lack of renewable energy sources of a new type in almost all studied countries,
which further affected the almost zero value of the discussed factors. In subsequent years, the electrical
capacity from new types of renewable energy sources increased, which confirms the need to retain all
indicators to ensure the comparability of groups.
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Table 4. Coefficients of variation of indicators.

Indicator i—Indicator j Coefficient of Variation (%)

ECR2004/EC2004—EC2004/GDP2004 7.3
ECR2004/GDP2004—EC2004/GDP2004 63.0
ECR2004/GDP2004—ECR2004/EC2004 77.5
ECR2010/EC2010—EC2010/GDP2010 20.6

ECR2010/GDP2010—EC2010/GDP2010 62.2
ECR2010/GDP2010—ECR2010/EC2010 85.6
ECR2016/EC2016—EC2016/GDP2016 39.7

ECR2016/GDP2016—EC2016/GDP2016 80.9
ECR2016/GDP2016—ECR2016/EC2016 83.9
ECRN2004/EC2004—EC2004/GDP2004 −4.4

ECRN2004/GDP2004—EC2004/GDP2004 −0.8
ECRN2004/GDP2004—ECRN2004/EC2004 99.4

ECRN2010/EC2010—EC2010/GDP2010 25.4
ECRN2010/GDP2010—EC2010/GDP2010 69.5

ECRN2010/GDP2010—ECRN2010/EC2010 85.2
ECRN2016/EC2016—EC2016/GDP2016 23.9

ECRN2016/GDP2016—EC2016/GDP2016 82.3
ECRN2016/GDP2016—ECRN2016/EC2016 73.6

Countries were grouped separately for each year: once for the indicators including all renewable
energy sources (IRE), and the second for the indicators where only wind and solar power plants
(IRENs) were accepted as renewable energy sources. In total, four analyses were performed, where the
division of the optimal number of clusters was determined [40,41]. Statistica 12.5 (TIBCO Software
Inc., Palo Alto, CA, USA) was used as a tool to develop clusters.

3.1.1. Groups for IRE Indicators in 2004

In 2004 (and many years before), hydroelectric and geothermal power plants were the most
frequently used renewable sources of electricity in the world, and the main source of energy in the
Central and Eastern European countries (CEES) was hydroelectric power plants. While grouping such
data in 2004, a tree diagram was developed, as shown in Figure 5.

Figure 5. Tree Diagram for IRE in 2004.
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Cutting off the tree diagram at a distance of 10 resulted in three clusters containing countries
(Table 5) with the averages of the groups shown in Table 6. The analysis of variance (ANOVA) for
the indicators from Table 6 was completed at the 0.05 significance level. The P-value for each of
the indicators is smaller than the assumed level of significance, which means statistically significant
differences exist between the groups of countries listed in Table 5.

Table 5. Clusters for IRE in 2004.

Group No. A B C

1 Cyprus Croatia Bulgaria
2 Czech Republic Latvia
3 Estonia Lithuania
4 Hungary Romania
5 Malta Slovakia
6 Poland Slovenia

Table 6. Group averages for IRE in 2004.

Group\Indicator ECR2004/EC2004 EC2004/GDP2004 ECR2004/GDP2004

A 0.034000 0.150845 0.005761
B 0.396833 0.210875 0.075654
C 0.232000 0.585706 0.136107

All groups 0.220944 0.212002 0.048046
p-value 0.000742 0.002187 0.005618

To compare groups, on the basis of Table 6, the values of indicators in each group were determined
in relation to the general average, as shown in Figure 6.

 

Figure 6. Comparison of group averages for IRE in 2004.

When using cluster analysis for traditional renewable energy sources, three clusters were created
for the IRE data in 2004. In Table 5, groups A and B contain six countries, while group C only contains
Bulgaria. When analyzing Figure 6, in this group (and the only country in this group), renewable energy
sources (ECR2004/EC2004) mean that it is ranked in the middle of the surveyed countries. However,
high energy intensity (EC2004/GDP2004 and ECR2004/GDP2004) was the main reason for the creation
of this group, which means high energy costs are responsible for generating the GDP of Bulgaria.
Groups A and B are opposites in terms of traditional, renewable energy sources. Group A included
countries whose main sources of electricity were non-renewable energy sources, and renewable energy
sources accounted for only a small percentage of all electrical capacity or none at all, as shown in
Figure 7.
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Figure 7. Energy sources of the countries in group A in 2004.

In the countries from group B, traditional renewable energy sources accounted for for several
dozen percent of all electricity sources, and the cost of electricity converted into GDP was moderate.
This means that group B is the most ecological group of countries according to the assumed criterion
for 2004.

3.1.2. Groups for IRE Indicators in 2016

After joining the EU, new countries are obliged to implement a pro-ecological policy. For example,
the Directive 2009/29/EC obliged Member States to reduce greenhouse gas emissions. With the
increasing demand for electricity and restrictions resulting from EU directives, the most reasonable
solution was to increase the electrical infrastructure capacity through investments in renewable energy
sources. Treating all types of renewable energy sources in the same way and subjecting the countries
to a re-analysis of clusters for 2016, a tree diagram was produced, as shown in Figure 8.

Figure 8. Tree diagram for IRE in 2016.

By cutting off the tree diagram at a distance of 10 for 2016 and 2004, three clusters re-emerged.
Countries belonging to individual groups and average values in these groups are listed in Tables 7 and 8.
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Table 7. Clusters for IRE in 2016.

Group No. A B C

1 Cyprus Croatia Bulgaria
2 Czech Republic Latvia
3 Estonia Lithuania
4 Hungary Romania
5 Malta Slovakia
6 Poland Slovenia

Table 8. Group averages for IRE in 2004.

Group Indicator ECR2016/EC2016 EC2016/GDP2016 ECR2016/GDP2016

A 0.153333 0.094233 0.014727
B 0.469833 0.106539 0.050602
C 0.461000 0.223131 0.102849

All Groups 0.323077 0.109828 0.038063
p-value 0.000027 0.001363 0.000042

The differences between groups are statistically significant, as demonstrated in the analysis of
variance (p-value in Table 8). The values of the indicators in the groups in relation to the average of all
groups are presented in Figure 9.

 

Figure 9. Comparison of group averages for IRE in 2016.

When comparing the results of the clustering analysis for 2016 with previously obtained results
from 2004, no major changes are visible. The number of created groups is the same and their composition
is identical. When comparing Figure 9 with its counterpart for data from 13 years ago (Figure 6),
the similarities are noticeable. When analyzing Figure 9 more precisely, the biggest change is visible
in group A, where the share of electrical capacity from renewable energy sources increased the most,
both in relation to the total electrical capacity and the GDP. This conclusion is also confirmed by the
analysis of the distribution of types of energy sources in the countries of group A, which is presented
in Figure 10.

The traditional classification of renewable energy sources means that, as in the analyses presented
above, the actual investment of countries in switching their economies to greener and more modern
energy sources can be overlooked. This is due to the fact that hydroelectric power plants are also
renewable energy sources, which in some countries have been a large part of electricity capacity
for decades. This situation mean that with relatively young wind and solar energy infrastructure,
expenditure on their development may be unnoticeable or misinterpreted if their electrical capacity
in the analysis is included with the electric capacity from hydropower. Despite the classification of
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hydroelectric power plants as renewable energy sources, only small power plants with a capacity of up
to several megawatts are considered as such. Larger hydropower plants have a negative impact on the
environment, and thus should not be treated as renewable energy sources.

 

Figure 10. Energy sources in the countries of group A in 2016.

3.1.3. Groups for IREN Indicators in 2004

In the last dozen or so years when writing about renewable energy, we were rather thinking of
dynamically developing wind and solar energy, not about hydroelectric power plants. This trend
resulted from the global energy policy, which assumes that renewable energy is not enough—it needs
to be sustainable. For this reason, the analyses for 2004 and 2016 were reconstructed for a comparison
with the assumption that only wind and solar power plants are renewable energy sources. These
analyses showed the extent to which the new type of renewable energy sources affect the classification
of countries and the ratio of electrical capacity only from this type of energy in relation to GDP. These
indicators designated for this type of energy were designated as IREN.

Assuming that only wind and solar power plants are renewable sources of energy, in 2004,
they constituted only 0.08% of the total electrical capacity. For comparison, the electrical capacity
of the hydroelectric plants alone was 18.60%. The introduced change fully altered the tree diagram
(Figure 11) resulting from cluster analysis for IREN indicators compared to that presented earlier for
IRE indicators in 2004.

Figure 11. Tree diagram for IREN in 2004.
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Cutting off the tree diagram as in the previous analyses at a distance of 10 resulted in the creation
of three groups, but other than the C group, the groups included different countries (Table 9).

Table 9. Clusters for IREN in 2004.

No. Group A B C

1 Latvia Croatia Bulgaria
2 Cyprus
3 Czech Republic
4 Estonia
5 Hungary
6 Lithuania
7 Malta
8 Poland
9 Romania
10 Slovakia
11 Slovenia

Group averages and their values in relation to the overall average are presented in Table 10 and
Figure 12. The analysis of variance at the significance level of 0.05 showed statistically significant
differences between the values of indicators in these groups, which means the groups have been
correctly created and are significantly different from each other.

Table 10. Group averages for IREN in 2004.

Group\Indicator ECRN2004/EC2004 EC2004/GDP2004 ECRN2004/GDP2004

A 0.012054 0.184781 0.002227
B 0.000520 0.180504 0.000115
C 0.000082 0.585706 0.000048

All Groups 0.001373 0.212002 0.000273
p-value 0.000000 0.000009 0.004595

 

Figure 12. Comparison of group averages for IREN in 2004.

As mentioned above, the groups based on IREN indicators have different compositions, but,
as shown in Figure 12, their nature is also different. Group A only contains Latvia, which stands out
from the rest of the world in having the largest electrical capacity from wind energy. Group C, as in
previous analyses, contains only Bulgaria. Again, the main reason for this situation is the high cost of
energy in relation to GDP. The largest group B contains as many as 11 countries where the electrical
capacity from wind and solar plants in relation to the total electrical capacity of each of these countries
is negligible.
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3.1.4. Groups for IREN Indicators in 2016

An increase in demand for electricity and the EU’s climate policy has forced the Member
States countries to invest in renewable energy sources. Wind and solar power plants belong to the
most frequently developed investments in recent years. In most countries, the construction of new
power plants for combustible fuels was practically discontinued due to their negative impact on the
environment and long construction time and high costs. Similarly, the construction of nuclear power
plants requires large financial outlays and building time. The security of these facilities and the use of
radioactive waste are also debatable. Hydroelectric plants, although they are classified as renewable
energy sources, but as mentioned before, have a negative impact on the natural environment if their
power generated is greater than a dozen or so megawatts, and the vast majority of hydroelectric power
plants in the studied countries produce much more power. The time required to design and build
such plants is also quite long. Wind and solar power plants have become a natural choice as their
construction time is shorter compared to power plants. The electrical capacity of wind and solar power
plants depends mainly on the space they occupy, meaning smaller investors can also build them and
create a dispersed network of small power plants. Considering only this type of power plants in
cluster analysis allowed us to eliminate data disturbances caused by hydroelectric plants, and thus to
more accurately group countries in terms of their investments in renewable energy sources. The tree
diagram created for IREN indicators for 2016 is presented in Figure 13.

Figure 13. Tree diagram for IREN in 2016.

By cutting off the tree diagram, as in previous analyses, at a distance of 10, three clusters ere
formed. Despite the same number of clusters as in the analysis for IRE 2016 indicators (Table 7),
the clusters for IREN 2016 contain other countries (Table 11).
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Table 11. Clusters for IREN in 2016.

No. Group A B C

1 Hungary Croatia Bulgaria
2 Latvia Cyprus Romania
3 Slovakia Czech Republic
4 Slovenia Estonia
5 Lithuania
6 Malta
7 Poland

Cluster averages were calculated to characterize clusters (Table 12) and the results are presented in
relation to the average of all figures in Figure 14. As in all previous clusters, the analysis of variance of
indicators in newly created groups was conducted. With the assumed significance level of 0.05, Table 12
shows that the p-value is always less than this value, indicating statistically significant differences
between the clusters.

Table 12. Group averages for IREN in 2016.

Group/Indicator ECRN2016/EC2016 EC2016/GDP2016 ECRN2016/GDP2016

A 0.055908 0.094332 0.005045
B 0.135949 0.098345 0.012990
C 0.173644 0.181012 0.030891

All Groups 0.117120 0.109828 0.013300
p-value 0.000154 0.000004 0.008662

 

Figure 14. Comparison of group averages for IREN in 2016.

The average values in the groups of IREN indicators for 2016 (Figure 14) are similar for IRE
indicators for 2016 (Figure 9). However, this similarity is only accidental as the countries in particular
groups for IREN indicators (Table 11) only slightly overlap the countries in the groups for the IRE
indicators (Table 7). Groups A and B contain countries whose cost of obtaining energy is moderate
in relation to GDP, whereas Romania is also in group C in addition to Bulgaria. Group C, therefore,
contains the poorest countries of the EU, where the energy cost is highest in relation to GDP, but the
share of wind and solar power plants in the electrical capacity simultaneously increased the most in
these countries (Figure 15).
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Figure 15. Energy sources in the countries of group C in 2016.

The structure of the electrical capacity divided into wind and solar power plants (renewable
energy sources) and sum of non-renewable energy sources and hydro power is presented for groups A
and B in Figures 16 and 17, respectively.

 

Figure 16. Energy sources in the countries of group A in 2016.

 

Figure 17. Energy sources in the countries of group B in 2016.

The exclusion of hydroelectric power plants from renewable energy sources led to the level
of investments of individual countries in ecological sources of electricity being more visible in the
conducted analyses. The countries of groups A and B in 2016 had a similar cost of energy conversion to
GDP, but the level of investment in renewable energy sources was significantly different. Four countries
from group A during the 13 years only slightly increased the production of electricity from wind and
solar power plants, which means that this group can be considered the least ecological. Group B
contains 7 of the 13 countries and is characterized by a much higher increase in energy production
from wind and solar farms than the B group with a similar cost of energy conversion to GDP.
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4. Discussion

In the context of the global development of renewable energy sources, we attempted to classify
new EU Member States in terms of their progress in this area, and presented energy costs against their
GDP. The electrical capacity selected for the analysis was divided into renewable and non-renewable
energy sources as well as GDP. In order to compare the progress in the implementation of EU directives
related to the reduction of greenhouse gas emissions through a change in the structure of energy
sources, two variants of a cluster analysis were conducted for 2004 and 2016. In the first variant,
the analyses were conducted for all known renewable energy sources. These analyses showed that all
new EU countries in the analyzed period implemented a policy of increasing the electrical capacities
from renewable sources to a similar level, which caused the groups of countries similar to each other
in 2004 and 2016 to be identical. The distinctive group was group C, which contained only Bulgaria.
Bulgaria is characterized by a large energy intensity, which is the cost of transforming energy into GDP.
However, the significant reduction in energy intensity over the considered period can be regarded as a
country success. In order to omit the influence of large hydropower plants on the results, analogous
cluster analyses of only renewable energy sources of a new type, i.e., wind and solar power plants,
were completed. The analysis for 2004 showed that the differences from previous analyses for 2004
were significant. The number of created groups was the same, but their characteristics and composition
were different. The only group that remained was C, containing Bulgaria, again due to its high energy
intensity. Group A only contained Latvia, which at the time was characterized by the possession of
wind energy sources. The remaining 11 countries were so similar to each other that all were categorized
into group B. This group was characterized in 2004 by zero electrical capacity from wind and solar
power plants. Another analysis for 2016 showed which groups of countries increased their electrical
capacity from modern renewable energy sources to the greatest extent. In this respect, the largest
changes occurred in Group C, which included Bulgaria and Romania. In the two poorest countries of
the EU, where the energy cost in relation to GDP was the highest, the electricity from hydropower
and solar plants was already nearly 20% of the total electrical capacity. Group B, consisting of seven
countries, where this type of energy constitute for over a dozen percent of electricity, can also be
positively assessed. The smallest increase in electrical capacity from hydro and solar power plants
occurred in group A, which included Hungary, Latvia, Slovakia, and Slovenia. It is particularly worth
paying attention to Latvia, which was already distinguished in 2004 by having wind energy sources,
and yet within 13 years it achieved the smallest increase (2%) in electrical capacity from wind and
solar plants among all the surveyed countries. The division of analyses into the two options discussed
above, apart from selecting groups of countries similar to each other in terms of electrical capacity and
GDP, also showed the importance of the differences in the energy assessment of individual countries in
the context of sustainable development, depending on whether their environmental achievements
included current, often dozens-of-years-old and large hydropower plants, or whether only modern
sources of energy from water and sun were analyzed.

By making analogous analyses, as in this article, the research can be extended to the entire EU.
This would allow assessing whether a similar increase in investments in new types of renewable energy
sources occurred countries that were members of the EU before 2004, as in the countries that joined
in 2004 and later. Conducting analyses for all EU Member States would allow us to determine the
differences between old and new members. Further questions could be posed about the composition of
the groups in 2004 and 2016: Is there a division between old and new Member States in 2004? Are there
any noticeable changes in the groups in 2016 among only old EU countries? Are there groups of mixed
old and new Member States in the 2016 groups?

Questions of this type could help determine whether, for example, the new Member States are
able to match the old EU Member States, or, despite investments in renewable energy sources, the old
Member States do it even more efficiently. An analysis for the entire EU would also show differences
in energy efficiency between old and new Member States.
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Subsequent research could include Eastern European countries that are not members of the EU.
Investigating the level of investments in various types of renewable energy sources in these countries,
their development in relation to EU countries could be determined. Depending on the results obtained,
it would be possible to analyze whether EU membership and legislation stimulates larger investments
in renewable energy sources. Would the new Member States have developed these branches of energy
if they did not become members of the EU?

In recent years, the high costs of producing energy from renewable sources have been widely
discussed. The proposed classification of renewable energy sources could also be used to assess their
impact on electricity prices, production costs, inflation, and consumer purchasing power, among others.
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Abstract: A transition to a sustainable energy system is essential. In this context, smart grids represent
the future of power systems for efficiently integrating renewable energy sources and active consumer
participation. Recently, different studies were performed that defined the conceptual architecture of
power systems and their agents. However, these conceptual architectures do not overcome all issues
for the development of new electricity markets. Thus, a novel conceptual architecture is proposed.
The transactions of energy, operation services, and economic flows among the agents proposed are
carefully analysed. In this regard, the results allow setting their activities’ boundaries and state their
relationships with electricity markets. The suitability of implementing local electricity markets is
studied to enforce competition among distributed energy resources by unlocking all the potential
that active consumers have. The proposed architecture is designed to offer flexibility and efficiency to
the system thanks to a clearly defined way for the exploitation of flexible resources and distributed
generation. This upgraded architecture hereby proposed establishes the characteristics of each agent
in the forthcoming markets and studies to overcome the barriers to the large deployment of renewable
energy sources.

Keywords: Electricity markets; power system; conceptual architecture; distributed generation;
flexible resources; local electricity markets

1. Introduction

A transition from a fossil-fuel-based energy system to a decarbonized one is key to performing
a cost-effective strategy to mitigate climate change [1] and achieve the 2 ◦C threshold aim of the
Paris agreement. Within this context, renewable energy sources (RESs) represent the most promising
technology for the transition and the future system. RESs are almost free-emission technologies and,
during the last few years, RESs achieved economic competitiveness against conventional energy sources.
However, their deployment in traditional power systems is not absent of challenges. The stochastic
nature of renewable generation, the non-storable characteristic of electricity in a cost-effective way, and
the low elasticity in demand associated with its difficulties to participate in electricity markets [2] make
their variability a major issue with a wider impact on smaller systems. Moreover, the final energy
consumption will tend to become electric in order to reduce emissions. Thus, future loads will impose
new demands and challenges to the power system such as the massive penetration of electric vehicles
(EV) to electrify transport.

In order to overcome this problem, the smart grid concept was an accepted solution for some time
now. Smarts grids are electricity networks that intelligently integrate their users’ actions to efficiently
deliver economic, secure, and sustainable electricity [3]. The implementation of smart grids implies
broad and sophisticated functionalities of electric transport and distribution systems, improving
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their flexibility, allowing bidirectional energy flows, and facilitating RES and demand response (DR)
integration. The demand response is based on developing active participation of customers with
new requirements that take into account technology and equipment for customer communications,
relations, and services. However, just with the participation of demand, the security of supply will
still be jeopardized with larger levels of stochastic production associated with renewable generation.
Thus, storage systems will also be required to provide flexibility and ensure reliability to the system [4].
Moreover, the batteries’ cost reductions make them a key component in the future power systems [5].

Currently, the electricity sector finds itself making three classes of transformations: firstly, the
improvement of the current infrastructure; secondly, the addition of the digitalization of power systems,
which is the essence of communications and data generation in smart grids; thirdly, business process
transformation to perform, in addition to the traditional activities, new ones, or providing infrastructure
and data to agents such as aggregators and virtual power plants (VPPs). These agents do new activities
related to meeting customer needs and expectations in a more efficient way than the traditional
centralized system. These three transformations were approached in several different ways, which
were mainly described on a very abstract level [6] or focused on specific aspects such as just information
and communication technology (ICT) [7]. Different standardization bodies developed specific concepts
such as the American National Institute of Standards and Technology (NIST) framework and roadmap
for smart grid standards [8] and the European Smart Grid Architecture Model (SGAM) [9]. However, the
necessary new activities, agents, and interactions among them in the future electricity markets are not
clearly defined and authors still characterize them in different ways. Therefore, it is necessary to align
specific agents to established practical conceptual architectures as suggested by Neuriter et al., [10].

The functionality of the future power systems and markets may look quite different according to
the local social, regulatory, or economic environment. Nevertheless, they have common applications
and requirements for digital processing and communications to implement advanced control in
all elements of the power system, allowing for bidirectional communication and energy flows [8],
understanding the automation of processes and systems as digital processing to retrieve data and
perform actions. According to this context, smart grids enable greater information management and
efficiency compared to conventional power systems, thus allowing the exploitation of the benefits
associated with RES, demand response, storage systems, and real-time competition and response in
local markets. Local markets are arising as a new mechanism to provide an efficient allocation and
pricing of the growing distributed generation (DG) and flexible demand [11,12].

Thus, smart grids are emerging as a solution for the future of power systems [13]. This broad
concept that comprises many different agents, actors, and technology was approached in different
ways. Its future faces different problems and sub-problems, which were widely studied. According to
Reference [14], some of these are operation and management, energy storage, security, stability, and
protection, demand control, or service restoration, among others.

For instance, some authors proposed multi-agent systems that optimize resource scheduling in
smart grids [15,16]. These agents enable the system to behave in a more reliable and efficient way.
However, the description of these agents does not follow any standardized premise. The authors of
References [17,18] proposed energy management systems in smart grids. The agents as in Reference [15]
did not include a clear definition of the agent boundaries of action or relationships and presented
conflicts between them. A review of agent-based models was presented in Reference [19], where the
necessity of harmonization between studies was highlighted.

In order to tackle the previously mentioned standardization problems, different meta-architectures
were developed. These conceptual architectures provide a family of ontologies to map smart grids and
guidelines on how to use standards [7]. The main two developments were the previously mentioned
NIST work and SGAM.

In the United States of America (USA), the NIST created relevant conceptual models for the smart
grid. NIST considered the approach that the smart grid can be divided into seven domains [8]. These
domains and their sub-domains enclose the conceptual roles and services, including stakeholders,
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interactions, and types of services. On the other hand, the M/490 working group on reference
architectures created the SGAM, which can be seen as a similar effort on the European level. SGAM is
based on NIST and proposes a model with five interoperability layers, five domains, and six zones, as
can be seen in Figure 1. Thus, every element in the model can be located in a three dimension grid
according to its interoperability, domain, and zone characteristics [9]. As in the case of NIST, SGAM
requires stronger integration between the design and the use cases and formal semantics [20], as it
lacks of precise descriptions.

Figure 1. Smart Grid Architecture Model (SGAM) iterations, layers, and planes. Own elaboration
based on Reference [8].

Highly correlated with smart grid development, the three novel agents of aggregator, storage,
and virtual power plant (VPP) are being developed. In all these cases, several authors published
studies on the topic. However, if the case of smart grids is still not clear and no standard definitions
are used, VPP, storage, and aggregators offer an even wider range of variation and disagreement.
The importance of these three agents is relevant for the conception of smart grids since these agents
are crucial for the security and reliability of power systems with increasing levels of renewable
penetration [21]. For instance, some authors optimized VPP bidding strategies [22–24], renewable
energy integration [25,26], the use of demand response in smart grids [27], or the usage of RESs at the
residential level [28,29]. However, there exists a lack of a standardized definition, interactions, and
roles performed by a VPP.

Demand response is also stated to have an increasing role in power systems due to its potential
capacity to help manage renewable variability [30]. Work was done in analyzing the cost of
automated DR systems [31], the suitability of different customers [32], the evaluation of the action
performance [33,34], or its optimization in smart grid programs [35]. Moreover, its role among active
consumers at the distribution level is gaining importance [36]. Storage is seen as the key technology
to enable RES integration in the future power systems [4,37]. Under this paradigm, storage systems
are already a key agent in the power system as in the case of the Tesla Battery of South Australia [38].
However, the particularities and services that they provide are far from being homogeneous or clear
among scholars and systems. Finally, in a similar line, aggregators were approached in different ways
by authors and regulators, but also lack a clear common definition [39]. Moreover, authors do not share
a common view on the size that optimal aggregation should have. For instance, while the authors of
Reference [40] argued that aggregation is only profitable at large levels, the authors of Reference [41]
defended that, even at low levels, aggregation offers benefits. In sum, agents are not clearly defined
and the interactions between them vary among authors.
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The conceptual architecture here developed is based on the NIST framework [8] and builds on
providing the relationships and interaction design between the different agents. These agents can
be performed by different entities or one entity, company, or organization that could hold more than
one of the agents’ responsibilities. Reference levels of power, voltage, and minimum bidding levels
were parameterized to be chosen depending on the system, thus providing an easy way to implement
the conceptual architecture to any power system. Thus, the proposed conceptual architecture can be
applied to any type of power sector, independently of the level of decentralization and its size.

The main contributions of this paper are the following:

• A novel conceptual architecture for the development of the next-generation electricity markets to
unlock all the hidden potential of flexible and distributed energy resources, taking into special
consideration the potential benefits for active consumers, is proposed based on the analysis of
the shortcomings of the current standardized models that can be found in the literature. This
model provides a path that policy-makers can follow to eliminate barriers to integrate Distributed
Energy Resources (DER) in a competitive way at distribution level.

• A complete description of the main roles/activities that should be assumed by the different agents
in the proposed architecture is provided based on an ontological and a service-oriented analysis.

• A detailed proposal of the interactions that would occur among agents of the developed architecture
is presented. These interactions were carefully analyzed from all points of view: energy flows,
operation services, and economic transactions.

• The impacts on the performance of the conceptual model associated with the inclusion of local
energy markets are analyzed and presented in this paper. This could help overcome the current
flaws in real-time trading.

The rest of the paper is structured as follows: Section 2 outlines the NIST methodology used for
building the proposed design to upgrade the current one. Then, the specific agents proposed for a
standardized architecture are developed in Section 3. Finally, in Section 4, some conclusions are drawn.

2. Materials and Methods

The power system and market conceptual design methodology is described in this section. This
method is framed under the framework of the NIST roadmap for smart grids [8]. The methodology
proposed by the NIST was considered as a base to develop smart grid conceptual architectures by
several authors and other standards [9,42]. In this regard, this methodology was selected as a meta
architecture to develop the proposed upgrade of the existing architecture.

According to Reference [7], the first action is the specification of the roles/services that should be
expected from the general implementation of smart grids. In addition to the traditional roles/services
that are inherent in an electricity distribution system (i.e., generators and retailers), some additional
agents should be expected from the combination of the new environmental requirements and
advanced technology.

In this regard, the smart grid agents need to be designed to enable the system to successfully
respond to the following needs:

• Providing a full technical and economic integration of distributed generation. This generation is
generally difficult to integrate because of the low size, intermittent production, quality problems,
and inability to provide operation services.

• Providing enhanced services and opportunities to the customers, allowing more tailored trading
of their demand/generation resources, including interaction with retail energy and services
markets/products.

• Providing an enhanced operation of the distribution system, both in normal conditions (such as
reconfiguration for more efficient operation or for more secure supply) and in faulty conditions
in order to allow a faster and more effective reaction to faults (fault location, reconfiguration,
self-healing, etc.).
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• Providing information services, based on measurements, to actors in the field of the energy supply
such as aggregators, energy services companies (ESCOs), VPPs, etc.

• Providing the ability to accommodate and manage the presence of new loads at the customer
level, such as the massive connection of electric vehicles.

It is important to highlight that the implementation of these agents can require the participation
of new entities or the redesign of functions that will have to be performed by existing organizations.

A conceptual architecture is necessary to design a system capable of carrying out the roles/services
that smart grids must perform according to the abovementioned needs. At this point, it is necessary to
define a set of concepts that can be widely used along the description of the architecture:

• Agent: a specific function, capability, or sum of services played by an entity that cannot be split.
In some systems, one entity can have in its business portfolio duties of several agents of this
conceptual architecture.

• Activities: things that an agent does or has the capability to do.
• Component: a basic part from which something is made; the physical assets that are intrinsic to

each agent.
• Transaction: agreement between two agents (one buys and the other one sells) to exchange goods,

services, or financial instrument.

In order to align the architecture with the required services of the system, an ontological definition
is required according to Reference [7]. For doing so, the methodology proposed in NIST, shown in
Figure 2, was used.

 

Figure 2. National Institute of Standards and Technology (NIST) conceptual architecture mapped onto
the architecture matrix service orientation and ontology. Own elaboration based on Reference [8].

According to this procedure, four architectural levels must be considered to design the agents:
business, information, automation, and technology. All these levels must be described to answer the
four required layers: conceptual, logical, physical, and its implementation.
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After this first context analysis, the interactions among the different agents were carefully studied
to satisfy the required relationship needs among them. The entities required to implement a smart grid
are, in general, quite standard; however, some agents’ activities assigned to these entities may not be
so established and, in some cases, can be a bit confusing in the literature, where different approaches to
the same agents can be found.

The next section is devoted to presenting the novel conceptual architecture. Firstly, each agent is
defined based on the existing knowledge and literature, and the activities expected for the agent are
identified. According to these activities, the necessary physical components that each agent owns are
described. This includes assets like physical generators, transmission lines, etc. Finally, the power
flows, operating service, or economic transactions of each agent with the rest of them are described to
fulfil the expected new requirements and functionalities of smart grids.

3. Discussion of Agent Conceptual Architecture for Market Implementation

The agents and nomenclature required for the upgraded conceptual architecture proposed in this
paper are depicted in Table 1. The integration of different types of distributed generation, storage, and
demand response resources to provide firm power production, as well as the active participation of the
customers, were considered in detail.

Table 1. Summary of agents and elements considered in the future electricity market framework.

Agents Characteristics

Active consumers Self-generation, flexible demand, buying/selling electricity, and operation services
with a proactive perspective [43]

Generators Electricity generation and procurement of operation services

Virtual power plants
(VPPs)

Buying/selling electricity and operation services from their distributed generation
portfolio to different agents in a coordinated way

Aggregators Buying and selling of small and medium demand resources to sell it to different
agents in a coordinated way

Storage Highly flexible elements that can consume, generate, and provide operation
services

Transmission system
operator (TSO) Ensures power quality and security at a transmission level

Transmitter Owns transmission grid and in charge of its maintenance

Distribution system
operator (DSO) Ensures power quality and security at a distribution level

Distributer Owns distribution grid and in charge of its maintenance

Wholesale market
operator (WMO) Ensures independency and the good functioning of the wholesale market

Local market operator
(LMO) Ensures independency and correct functioning of the local market

Retailers Provides electricity supply to consumers, buys excess of self-generated electricity

Key Concepts Definition

Smart grids An electric grid with an additional communication system that allows a better
management of the system [44]

Demand response Changes in electric usage by end-use customers from their normal consumption
patterns [45]

Smart metering All agents in the system have smart meters that provide data acquisition,
transmission, processing, and interpretation [46].

Self-generation Share of the total energy production directly consumed by the energy production
system owner (based on Reference [47])

Distributed generation Power generation within distribution networks [48]
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Table 1. Cont.

Parameters Definitions

VHV Voltage threshold defined as high voltage in the system parameters

EW-S
Minimum energy required to sell electricity in the electricity market during a

period of time unit (PTU)

EW-B Minimum energy required to buy electricity in the electricity market during a PTU

EL-S
Minimum energy required to sell electricity in the local electricity market during a

PTU

EL-B
Minimum energy required to buy electricity in the local electricity market during a

PTU

POS-T Minimum power required to participate in operation services at transmission level

POS-D Minimum power required to participate in operation services at distribution level

The conceptual architecture was completed with the transactions allowed between agents,
as summarized in Table 2, where economic, energy, and operation service transactions between the
different agents are proposed. A matrix representation of the allowed transactions among agents is
shown in different colors in this table. The possible transactions from the agent in a row to the agent
in the column are represented by triangles. For instance, position T12 shows the transactions from
consumers to generators, which are only economic, as consumers just pay generators for consuming
electricity. On the other hand, T21 shows how generators provide energy to consumers. Another
example could be position T43, where aggregators provide power flows and operating services to VPPs.
In exchange for this, T34, VPPs make economic payments to aggregators.

Table 2. Summary of the transactions among agents on the proposed smart grid framework
(�: economic transaction; �: energy transaction; �: operation service transaction).

Consumers Generators VPP Aggregators Storage TSO

Consumers � ��� � � ��
Generators � ��� � �

VPP �� �� � �� �
Aggregators � � �

Storage � � ��� �
TSO � � � � �

Transmitter
DSO � � � �

Distribution
WMO � � �
LMO � � � �

Retailers � � �

Transmitter DSO Distribution WMO LMO Retailers

Consumers � �� � � � ��
Generators � � � �

VPP � �
Aggregators �

Storage � � � � �
TSO

Transmitter
DSO

Distribution
WMO
LMO

Retailers �

The different agents must accomplish these transactions (economic, energy, or service) in a
coordinated way, based on what is required to interchange information with the rest of the participants
in the power system. Traditional and new entities coexist in the proposed model. Agents whose
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activities change from traditional models are described in more detail in this chapter, while traditional
ones are described when some of their original characteristics change.

3.1. Active Consumers

Consumers are the end-users of electricity, and they use it to perform specific activities (industrial,
commercial, or residential). Three different types of consumers are considered depending on their
connection point to the grid as follows:

1. Low voltage (LV): Consumers. The voltage supply is lower than VHV kV, and they are connected
to the LV distribution network. They are usually residential or small commercial customers.

2. High voltage (HV): Consumers to distribution. Connected to the distribution power system with
a voltage larger than VHV kV. They are typically medium industrial and commercial consumers.

3. High voltage (HV): Consumers to transmission. Connected to the transmission or sub-transmission
power system level with a voltage larger than VHV kV. They are typically large industrial and
commercial consumers.

Consumers used to be a static agent that only consumed energy. Currently, this activity can be
complemented with the production of electricity through self-generation, providing demand response
resources, and being an active participant in electricity markets.

Consumers can be understood as a sum of loads that can own the metering equipment. Recently,
it is becoming more and more common that customers may build their own generation resources,
especially by using renewable resources. These generation facilities may range from a few kW to
several MW. When generated electricity exceeds the demand, it can be sold to the main grid through
retail companies that will be responsible for ensuring the economic compensation to small consumers
by providing an electricity net balance with the system specified prices.

Regarding demand response resources (DRRs), they may exist in the customer facilities as a part
of the demand that can be reduced/incremented according to the prices in the operation markets.
Currently, it is becoming common that consumers own electric vehicles and small storage systems
that can be operated in a smart way by aggregators or themselves [49] to have the possibility to offer
operation services. Consumers should have the required communication systems to provide DRR in
this case. Consequently, and depending on their size, consumers may require communication systems
with other agents. For example, large flexible consumers will require direct communication with the
TSO if they are connected to the transmission grid or direct communication with the distribution
system operator (DSO) if they are connected to the distribution system. On the other hand, small and
medium consumers will just interact with aggregators.

The consumer’s main traditional transaction is to buy electricity from the grid and pay for it.
Consumers can also now sell electricity to the grid and, eventually, may offer DRR directly to the DSO
in a case where the size of the operable load is higher than the required POS-D. Additionally, these DRRs
could also be offered directly to the transmission system operator (TSO) if they are larger than POS-T

or through the aggregator. Regarding the economic transactions, consumers pay for the electricity
consumed to retailers if they do not directly access the markets. If they do, they pay for energy to
the wholesale market operator or the local market operator, to whom they can also sell electricity for
dynamic balancing. Additionally, they can also establish bilateral contracts with generators or VPPs.
Regarding the operation services, consumers receive payments for the use of their flexible resources
from the TSO, DSO, aggregators, VPPs, and generators, depending on who uses their flexibility. Finally,
since consumers are the end-users of the system, they defray most of the incurred costs, such as
transmission and distribution system usage, market and system operators, etc. They may pay them
directly to the involved agents or, more commonly, they make a single payment to the retailer who
divides it up with the rest of agents that receive payments from the consumer.
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3.2. Generators

An electricity generator is an agent that owns the facilities to convert any type of primary energy
into electricity.

The main activity of generators is to produce the electricity that is used by consumers. Moreover,
generators have the capability to provide operation services (OSs), which are mandatory in some cases
and optional in the rest. Optional OSs may be traded in markets or through contracts. Both energy
and operation services can be provided to other agents via markets or bilateral contracts. Moreover,
the regulation in most countries enforces the obligation to provide some type of primary (spinning)
reserve to the TSO from any committed generator [21].

In addition to the generators and turbines, the generation plants have the control and
communication systems to ensure the correct operation to supply the electricity to the grid in a
reliable and secure way. New generators can also own the new assets regarding substations and
transmission lines. Traditional generators were large centralized power plants, normally far away from
consumers. Now, electricity generation also occurs at the distribution level and lower scales, which
is known as DER [8]. Thus, electricity generators can be differentiated regarding their connection
point with the grid (transmission or distribution), size, and dispatchability. Thus, generators can be
bulk generators if they have large sizes and are connected to the transmission network, or they can be
connected to the distributed network as DER. Moreover, a key characteristic of generating technologies
is if they have the capability of varying their power output at will. Therefore, generating technologies
can be differentiated in dispatchable and non-dispatchable technologies. It is common today for
renewable generators to include batteries in their facilities to operate as conventional generators and
provide operation services. Among all technologies, they can also be categorized as renewable (green),
non-renewable (orange), nuclear (yellow), and renewable with storage (blue). The most common ones
are the following: gas, coal, fuel, Combined Heat and Power (CHP), nuclear, hydroelectric, wind, solar
photovoltaics (PV), solar thermal, and biomass. These classifications of technologies based on their
connection point, dispatchability, and availability can be seen in Figure 3.
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Figure 3. Generator technology types.
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Generators mainly receive payments for the energy they produce and the operation services they
offer. Generators provide electricity to the grid they are connected to (transmission or distribution), and
this electricity can be managed by the generators or via a VPP that operates its assets. Regarding the
operation services, they also provide them at the network level they are connected to. These services
can be provided to the transmission and distribution operators if they meet the system operation
service requirements (POS-T, POS-D). Thus, generators produce electricity that they sell in the wholesale
market, local market (if connected to distribution), or via bilateral contracts to consumers, VPPs, and
storage agents in exchange for economic transactions. Moreover, generators can also provide operation
services via markets or contracts with the TSO, DSO, VPPs, and storage, receiving in exchange for
them economic transactions. On the other hand, they can also purchase operation services from VPPs
and storage agents. Finally, generators may pay fees for participating and using Wholesale Electricity
Market (WEM), LMO, and the transmission and distribution grids (if connected to them).

3.3. Virtual Power Plants (VPPs)

VPPs are defined as an entity that integrates small and geographically distributed generators
connected to the distribution system with the objective to provide firm and tradable generation.

VPPs integrate small and disperse generation to perform as a single entity in the wholesale market
and power system [25]. Therefore, VPPs behave as a traditional generator in the system, providing
energy but also operation services. VPPs help small generators, usually with no control capability,
to become a viable and fully qualified generator in the market. The VPP provides this control capacity
for them (primary and secondary reserve and voltage regulation) so that they can compete in energy
and operation services and markets. The generation resources included in one VPP can easily be
modified or switched on or off providing the required flexibility for operation purposes. This flexibility
can also be obtained from the DRR by interacting directly with large consumers or through demand
aggregators for small and medium-size demand resources. Energy storage may be also a key asset
when providing VPP services.

The generators belonging to a VPP are usually spread out over a limited geographical area.
The basic activities, relations, and minimum conditions in the framework of the proposed model are
shown in Figure 4.
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Figure 4. Virtual power plant (VPP) activities and relations.

VPPs agents may own or control generators such as renewables, cogeneration plants, traditional
thermal generators, or storage systems. Moreover, VPPs need to have the same communication and
control needs available as the traditional generators. These requirements should be more complex due
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to the fact that the VPP has to control large amounts of very distributed resources downstream and,
in some cases, very small amounts according to their rated power. Therefore, their communication and
computing systems have to be more complex to participate in energy markets.

Regarding its transactions, VPPs interact with many agents. VPPs buy electricity from DG
generators connected to the distribution grid and storage agents, or from the local energy market.
VPPs sell the electricity to the different markets (wholesale or local). Regarding operation services,
VPPs purchase them from medium consumers connected to distribution, aggregators, and storage
facilities. These are offered to DSO (if they are larger than POS-D), TSO (if they are larger than POS-T),
or to other generators via bilateral contracts. Regarding their economic transactions, VPPs purchase
electricity from generators and storage to sell them. Bilateral contracts can also be established between
VPPs and consumers, retailers, or storage. Between storage and VPPs, bidirectional energy flows
may exist. Finally, VPP agents receive payments from the TSO, DSO, and generators after providing
the above-mentioned services. In order to obtain these services, VPPs have to purchase them from
consumers, aggregators, and storage systems. The VPP is not supposed to pay any fee for participating
in the market or using the transmission or distribution grids, as these costs will be translated to the
generators that they operate or the consumers that buy electricity from them.

3.4. Aggregators

An aggregator is an entity that groups different consumer agents of a power system to represent
and operate them as a single agent that participates in the operation service markets [40,50].

Its main activity is to put into value for the system the small customer demand response resources
that, when independently considered, are not valuable for other network operators. Thus, they unlock
potential resources based on economies of scale [39]. The aggregator manages the customer demand
by clustering small (a few kW) demand resources with similar characteristics, or combining them
to provide valuable resources to the operator, in terms of size, duration, advance notification time,
etc. These products are able to compete in quality and price with those offered by other actors like
generators. One special type of aggregator activity is the electric vehicle charging management, which
manages the EV load charging process (and discharging) in a specific EV concentration point or area,
with the objective to manage this special and flexible load and to provide additional storage to the
system. Aggregators are also responsible for managing the small generation so that they can offer DRR
products combining load and generation. The aggregator requires tools to evaluate the individual
consumer response (or in low aggregation levels as in the case of residential customers) so that it may
evaluate and foresee the main parameters of the customer response such as reduced power, duration,
up and down ramps, etc. Then, it may proceed to the associated settlement when the transaction is
completed. In addition, aggregators may also implement on/off control for small generators.

The basic activities, relations, and minimum conditions for the aggregator in the proposed model
are shown in the Figure 5.

The aggregator’s main components include an extensive communication facilities system and
computational capability. The first has to provide fast and reliable performance, and the second
needs to properly receive the requests from the network operators and respond to them using suitable
resources without compromising the customer requirements and expectations.

The aggregator’s main clients are VPPs, DSO, and TSO, to whom they provide operation services
and power in exchange for economic payments. These operation services are provided according to
the minimum required levels at distribution (POS-D) and transmission (POS-T). Moreover, they may also
offer their services to other actors such as energy suppliers (retailers) and generators so that they may
balance their buy/sell portfolio if necessary. Since all their resources come from consumers, aggregators
have to pay consumers for their resources. These economic incentives that they have to provide are
crucial for the seamless operation of this agent and to unlock the disaggregated opportunities.
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CONNECTED TO 
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 VPP
(2)

FOR OPERATION 
SERVICES

POWER TRANSACTIONS
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(1)  IF POS < POS-D 
(2)  IF POS > POS-D 

(4)  DIRECT TO SYSTEM 

(3)&(4)

(3)  IF POS > POS-T 

(2)&(4)

Figure 5. Aggregator activities and relations.

3.5. Storage

This agent consumes and generates electricity and has the ability to store it for using it afterward.
Storage is rapidly becoming a key technology in energy systems. Storage systems can help

balance and flatten the electricity load profile. They are characterized by very fast responses, which
provide storage with the capability to efficiently deliver operation services such as frequency response,
black-start capability, load following, or capacity mechanisms [51]. Additionally, storage can participate
in the wholesale market, leveling the load, competing with other peak power plants [52], and balancing
short-term deviations. Storage was pointed out as one of the key factors to ensure reliable large
renewable penetration in power systems [4], mainly because of its ability to balance the excess and
deficit of renewable production, thereby avoiding curtailment and also helping the system operator.

This agent has the capability to store energy in other forms such as thermal, potential, mechanical,
or chemical. This includes technologies such as pumped hydro, flywheels, molten salts, hydrogen, and
electrochemical batteries [53]. The storage agent also has to have available information and control
systems to be allowed to participate in the electricity market.

The storage agent implements power and energy transactions with the grid it is connected to
(distribution or transmission). If connected to the transmission grid, storage injects and absorbs
electricity from the grid to perform its activity and provide operation services with a minimum power
(POS-T) to the TSO that manages the transmission grid. If connected to the distribution grid, the storage
may exchange power and operation services with a minimum size (POS-D) not only in the distribution
grid and the DSO but also through VPP. These could be implemented through bilateral contracts, which
can occur for aggregating capacities to better participate in the markets. With respect to economic
transactions, storage can receive payments from the wholesale market, local market, and VPPs for
the energy sold. It can also receive payments from the TSO, DSO, VPP, and generators for operation
services. Storage can also buy electricity from the wholesale market, local markets, and VPPs, and it
may have to pay for the associated fees of markets and grid assets.

3.6. Transmission System Operator

This agent ensures the correct operation of the transmission system. Its main activities are to
guarantee secure operation of the power system. This agent has to obtain the resources to operate the
network not only from traditional generators but also eventually from VPPs, large customers, and
storage as proposed in the architecture. To do so, the TSO needs information that is provided by the
WMO, transmitter, and other agents connected to the transmission grid. The TSO is committed to
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balancing the system and identifying network restrictions, which requires a reliable monitoring and
control capability either for committed generators or VPPs and, eventually, demand response resources,
directly managed or through aggregators. These control signals require fast and reliable communication.

For doing so, the TSO needs to have assets to ensure the information and measurements
flow is available, regarding the operation of the transmission network through a control center.
The communication and cooperation between a DSO and TSO are essential in this new conceptual
architecture. Furthermore, the TSO also has to manage exchanges with other power systems considering
the capacity of the interconnections.

In the proposed model, the TSO has to also consider the use of resources to operate the transmission
network not only from traditional generators but also eventually from VPPs, large customers connected
to transmission, and storage. All these operation services require a minimum but homogeneous power
(POS-T) for all participants that is determined according to the size of the system. Agents need to fulfil
these requirements to compete in equal conditions. The TSO rewards economic payments in exchange
for operation services to generators, VPPs, aggregators, storage systems, and consumers connected
to the transmission network. As the main beneficiaries of the reliable and secure operation of the
transmission grid are consumers, they pay the maintenance of the TSO via fees.

3.7. Transmitter

This agent is in charge of carrying the electricity from the bulk generation to the distribution
system. The activity that it performs is to transport the electricity throughout the assets that it owns.
Moreover, the transmitter has to plan and build (usually in a regulated framework) new lines, as well as
reinforce the ones to account for future demand perspectives. It also verifies the connection procedure
of new-generation capacity.

This agent has a physical infrastructure between the large generators and the distribution grid or
large consumers. This includes high-voltage transformers and transmission lines.

This agent is highly regulated since it is a natural monopoly [54]. Therefore, the only transactions of
this agent are the received fees from generators, storage, and consumers. The users of the transmission
system bear the costs of its maintenance and modernization via taxes.

3.8. Distribution System Operator

This agent refers to the entity in charge of ensuring the operation of the distribution system.
The DSO plays the important role of managing the distribution system. Moreover, since distributed
generation is usually embedded in the distribution system, the system behavior increases in complexity
(direction of energy flows, distribution operation constraints, etc.). To account for this situation,
the DSO needs to have the necessary resources, which come from the customer resources directly
operated or, if desirable, through aggregators. The following new roles that DSOs realize are of
extreme importance:

• Enhancement of the competition and usage of different local resources to manage technical
constraints at a distribution level, allowing the optimization of network planning and solving
congestions at the distribution level [55].

• Provision of the forecast and availability of flexible resource to both TSO and local market
operators, helping both to accurately predict and contrast the reliability of the resources [56].

• Improvement of power quality monitoring and control strategies associated with the inclusion of
distributed energy generation at the distribution level [57].

Therefore, this agent needs to have assets to ensure the information and measurement flows are
available regarding the operation of the distribution network, allowing the detection or prediction of
undesirable conditions (current flows or voltages), and finding the resources to cope with the situation.
According to this fact, fast and reliable communication channels with the TSO, aggregators, VPP, and
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generators connected to the distribution system are crucial. Moreover, they also own control centers to
safeguard the operation of the system.

In the proposed model, the DSO has to also consider the use of resources to operate the network,
not only from traditional generators but also eventually from VPPs, large customers, aggregators,
and storage. All these operation services require a minimum but homogeneous power (POS-D) for
all participants that is dictated by the size of the system. Agents need to fulfil these requirements to
compete in equal conditions. Thus, the DSO is able to provide economic payments in exchange for
operation services to generators, VPPs, aggregators, storage systems, and consumers connected to the
distribution network. On the other hand, since the beneficiaries of the safe and secure operation of the
distribution grid are consumers connected to the distribution, they pay for the maintenance of the
DSO via fees.

3.9. Distributor

This agent is in charge of carrying the electricity at the final stage of the delivery, between the
transmission grid and the final consumers connected to distribution.

Traditionally, the only objective of this agent was to provide the physical infrastructure between
the transport grid and the final consumers. However, its activities are now larger due to the amount
of information that they manage generated by smart meters. Therefore, it became an information
provider too, since it manages all the telemetry and metering infrastructure. This agent as traditionally
highly regulated since it was considered a natural monopoly [54]. Nevertheless, efforts to make the
sector more competitive are arising [58].

A new critical activity for the distributor is as the “information provider”, being responsible for
gathering measurements and other information of the rest of the agents so that they may evaluate the
response. For doing so, the distribution agent owns a large number of physical assets. Among them are
medium- and low-voltage grids, transformers, and consumer’s telemetry equipment; the distributor
also owns a large advanced metering infrastructure (AMI) that collects large quantities of information.
After this, thanks to a measured data management (MDM) system, all this information is filtered,
processed, and organized in order to obtain valuable information for the correct functioning of
the system.

The entities in charge of this agent have to maintain, monitor, and improve the physical assets
and provide the collected information. Therefore, the only transactions of this agent are received fees
from generators, storage, and consumers. The users of the distribution system bear the costs of its
maintenance and modernization via taxes.

3.10. Wholesale Market Operator

This agent is an entity that provides a service, whereby the offers to sell electricity are matched
with bids to buy electricity, ensuring the balance between them [59,60].

The main objective is to ensure the correct and transparent functioning of the economic transactions
associated with the power sector, as well as organizing the different electricity markets, including
wholesale, future markets, and the collection of all the bilateral contracts over the counter (OTC) that
have an impact on the system. This information has to be provided to the TSO to ensure the correct
functioning of the system.

The WMO is an independent actor in liberalized frameworks, strictly regulated. The WMO is
characterized by a trading platform that it controls in order to manage all the bids to buy and sell
products. One of its main tasks is to couple the market by matching the sell and buy offers.

Regarding transactions among agents, the generators, storage, and the consumers bear the costs
associated with the WMO, paying the fees directly or via a third party. Regarding energy transactions,
a minimum level for buying (EW-B) and selling (EW-S) electricity in this market is established depending
on its size. Generators and VPPs offer electricity in the market and are compensated with cash
flows. These come from the retailers and consumers that participate in the market. Storage has the
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capacity to buy and sell electricity to obtain benefits. Thus, cash flows between storage and the WMO
are bidirectional.

3.11. Local Market Operator

Currently, local electricity markets (LEMs) are probably the least developed component of smart
grids. The implementation of electricity markets in the last 20 years did not result in a significant
reduction in the price ties of the energy or the increment of opportunities for most of the final
consumers. Local markets are being designed to bring competitive advantages to these consumers,
by implementing local trading (peer-to-peer) either directly or through aggregators and VPPs [43].

LEMs need to be reliably established to enhance the fair trading for customer-owned renewable
generation and flexible resources.

This requires the development and implementation of dynamic and automatic trading platforms,
for the negotiation of energy for short periods of time (shorter than the ones applied to wholesale
markets) and probably closing a minute before delivery. LME platforms have to offer consumers,
aggregators, and VPPs the chance to virtually trade energy services in a geographically constrained
area [61]. These markets complement wholesale markets and bilateral contracts that do not have the
capability to react in real time to the myriad of small demand resources and distributed generation [62].
The LMO manages and operates the LEM from an independent perspective, enabling a more dynamic
trading of electricity.

Its main activity is to promote the diversity and competitiveness of the market, while ensuring
the correct functioning of it by matching buying and selling bids. Furthermore, they have to monitor
all the energy transactions to communicate them to the DSO to ensure a reliable operation under the
technical limits. This information is provided according to the geographic control area of the DSO
associated with the LEM.

The main components that characterize the LMO are the trading platforms that it controls
to manage all the bids to buy and sell products. All these agents have to be in a local area and
interconnected in a distribution grid. This allows a fast negotiation process and a dynamic response
to prices.

Due to its role of market operator, the LMO receives payments from all the agents participating in
this market. The local market manages payments among the participating agents; to do so, a minimum
level for buying (EL-B) and selling (EL-S) electricity in these markets is established depending on its size.
While generators and VPP agents receive payments for the energy traded, consumers and retailers pay
for it. As in other markets, the storage has bidirectional energy flows, having the capacity to buy and
sell electricity. Finally, consumers, storage, and generators pay an established fee for participating in
the market directly or throughout a third party.

3.12. Retailer

Electricity retailers are entities that bridge the gap between consumers and the wholesale
markets [60]. The activities of this agent do not change significantly from the traditional one. They
buy the electricity in the market and sell it to their customers. Nevertheless, in the proposed model,
the self-generation becomes a common possibility for small customers, being the interaction for these
customers directly handled by retailers. These interactions translate in contracts with consumers to
absorb the self-generation excess and economically compensate them afterward.

The retailers do not have specific components on their assets. They play a role of intermediary,
thus owning strong communication and prediction systems for optimizing their performance.
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This agent needs to interact for energy trading with wholesale and local markets. They can
also sign these transactions through bilateral contracts with generators and VPPs. For these reasons,
they need reliable and secure communication and information channels. Moreover, according to the
proposed architecture, retailers are also allowed to interact with customers and aggregators for portfolio
balancing purposes, needing for that the capability to interact through dynamic pricing (not control
capabilities) with the customers. They are also responsible for implementing the self-consumption or
net balance contracting, needing for that information about the customer buying and selling electricity.
Retailers are also responsible for paying the fees in representation of consumers to the different market
operators. In sum, interactions between retailers are with customers, aggregators, VPPs, generators,
and market operators.

3.13. Conceptual Architecture and Interactions among Agents

The above-described agents establish a series of relationships among them as summarized in
Table 2. More specifically, the figures below map the different interactions that take place in the
newly proposed conceptual architecture. Thus, these figures explicitly depict each of the transactions
above explained.

Figure 6 shows the transactions among agents associated with the physical commodity (electricity),
which can be due to power, operation services, or balancing requirements. The blue arrows show
transactions among agents related to energy; for instance, generators can supply power to the grid
if they are connected to generation. In contrast, if they are connected to the distribution grid, they
can supply its energy to the grid or through a VPP if their capacity is small. Another example can
be storage, which has the capability to provide or purchase electricity from the grid. Depending on
which grid (transmission or distribution) it is connected to, the energy fluxes will vary. The green
arrows represent the operation service transactions. These are related to frequency and voltage control,
energy imbalance, or system protection [21]. It can be seen that these transactions are applied to the
transmission or distribution grid, depending on which grid the resources are connected to. Afterward,
these operation resources at the distribution level can be managed at higher levels by the TSO thanks
to the communication between DSO and TSO.

Figure 7 shows the economic transactions among agents, differentiated depending on if they are
associated with an energy supply, bilateral contracts, operation services, balancing of own assets, fees,
and grid usage transactions. Thus, blue arrows refer to an economic payment associated with a power
exchange, dashed blue arrows show energy bilateral contracts, green arrows represent payments
related with operation services, green dashed arrows represent payments for balancing portfolios or
demands, orange arrows represent fees, and gray arrows represent taxes for the usage of the grid. For
instance, aggregators receive payments for operation services from the DSO, TSO, and VPP, but they
pay these operation services to consumers. Retailers buy energy from wholesale and local markets and
bilateral contracts with VPPs and generators. Afterward, this energy is sold to consumers that pay for
it. On the other hand, the transmitter agent and the distributor agent only receive payments associated
with taxes, which are only paid by consumers, storage, and generators, the agents that are considered
the final users of the infrastructure. Specifically, only agents connected to the distribution grid pay to
the distributor.

Finally, some agents associated with energy services can also balance their own portfolio to
optimize their performance in the market. These last arrows can be seen as green dashed lines.
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4. Conclusions

This paper presented a novel conceptual architecture for the development of the next-generation
electricity markets. The architecture helps unlock all the hidden potential of flexible and distributed
energy resources, taking into special consideration the potential benefits for active consumers. The novel
architecture was proposed based on the analysis of the shortcomings of the existing models that can be
found in the literature. This model provides a path that policy-makers can follow to eliminate barriers
to integrate DER in a competitive way at the distribution level.

In this new paradigm with a massive integration of renewables, the need for electricity storage
and for enhancing the value of demand response resources forces agents’ services and transactions to
appear. The proposed new architecture focuses on agents who enable flexible resources to be exploited
such as storage, virtual power plants, and aggregators. These agents are already operating in some
systems and emerging in others. However, the model includes the transactions among them based on
an ontological analysis. Furthermore, the transactions among the presented agents are separated in
energy, operating services, and economic transactions, which were clearly analyzed and described
regarding the offered services, taking into account the technical restrictions. This results in a clear
proposal of how the future electricity markets could be implemented.

This architecture also presents and characterizes the flexible resources available in the
next-generation electricity markets, paving the way for its transactions. This flexibility can be
available for two functions: to provide operation services, and the fast and dynamic balancing of
electricity consumption and generation at different network levels. Three types of flexibility were shown
in the proposed conceptual architecture. Similar to traditional generators, intermittent renewables
with batteries are also able to provide flexibility. Consumers with self-generation and batteries can
also become a flexible resource for the systems. This also helps them optimize their electricity cost
by unlocking resources and allowing them to use their flexibility with an economic purpose. Finally,
electric vehicles will also become a major source of flexibility in the system. Even though they are
a concrete application, the massive electrification of transport gives as an opportunity to provide
flexibility to the system. EVs can be described as consumers with self-generation and batteries if
vehicle-to-grid chargers are implemented, or just as flexible consumers if only grid-to-vehicle chargers
are installed.

Another novel element is the inclusion of local electricity markets in the conceptual architecture.
Currently, these markets are gaining importance and interest due to their capability of reacting to the
novel scenario of larger intermittency and decentralized generation at the distribution level. However,
their relationships with other agents of the system were not previously studied from an ontological
perspective. These relationships were carefully studied and stated. LEMs represent a valuable tool
to exchange energy locally in a more dynamic and cost-efficient way for the power system (grid loss
reduction). Furthermore, they also present an opportunity for decentralization and enhancement of
competition in real time. It is important to highlight the need to have a fast and reliable communication
channel between the local market operator and the DSO. The latter provides the technical restrictions
that determine under what limits energy can be traded in these LEMs.

Finally, future work should assess the implementation of a case study with the proposed
architecture to assess how the model enhances a more competitive electricity market and how agents
are integrated in existing systems. It is also necessary to develop a clear cost–benefit analysis of the
implemented model to gain knowledge of it. Moreover, simulations of the market behavior under
different time domains also remain as a future objective.
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AMI Advanced metering infrastructure
CHP Combined Heat and Power
DER Distributed Energy Resources
DG Distributed generation
DR Demand response
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DSO Distribution system operator
ESCO Energy services company
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HV High voltage
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LEM Local electricity markets
LMO Local market operator
LV Low voltage
MDM Measured data management
NIST National Institute of Standards and Technology
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OTC Over the counter
PV Photovoltaics
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TSO Transmission system operator
VPP Virtual power plants
WEM Wholesale Electricity Market
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Abstract: DC distribution systems (DCDSs) are a promising alternative to AC systems because they
remove AC-DC conversions between renewable sources and loads. Their unique features compared
to AC include low system inertia, strict power limits and power–voltage coupling. In a liberalised
electricity market, merely applying an AC market design to a DCDS cannot guarantee the latter’s
supply security and voltage stability; new markets must be designed to meet DC challenges.
This article identifies the key design options of DCDS electricity markets. To identify these options,
we develop a comprehensive design framework for local electricity markets; to our knowledge,
we provide the first such analysis. Whereas previous studies focus on separate aspects of DCDS
markets, we widen the scope to include the role of market architecture and investigate the
arrangements of sub-markets. As an illustration, we demonstrate three promising DCDS market
designs that can be defined in our framework, and provide a first assessment of their performance.

Keywords: electricity market design; direct current; distribution system; local market; flexibility

1. Introduction

A high proportion of future electric power will be generated by direct current (DC) renewable
sources [1–3] and consumed or stored locally by DC or DC-ready devices [4,5]. For instance, micro wind
turbines, flywheels, and the motors and heating/cooling devices with variable-speed drives have a DC
link (AC-DC or AC-DC-AC conversion). The rise of DC generation and consumption—characterised as
prosumption—brings challenges. For instance, on the one hand, more rooftop PVs inject volatile power
into distribution networks; on the other hand, vehicle electrification and the deployment of heat pumps
may create new load peaks [1] that are an order of magnitude higher than conventional residential
load peaks. Energy storage systems (especially batteries) are typically DC by nature, but the need
for twice AC-DC conversions has reduced their energy efficiency. These changes pose challenges to
the legacy alternating current (AC) distribution system, which typically has low power capacity, high
energy losses and complex control due to synchronisation and AC-DC conversions. DC distribution
systems (DCDSs), by contrast, facilitate the integration of renewable sources, loads and storage
systems by removing such conversions. Compared to AC, a DCDS does not need complex control
of synchronisation, inrush current, three-phase imbalances and reactive power [6,7]. Technically, it
is also feasible to upgrade existing AC lines into DC lines with remarkably higher power capacity;
such upgrades only demand simple changes in tower heads and insulation [8]. While AC networks
have simpler voltage transformation and protection mechanisms, a DCDS has higher power capacity,
energy efficiency, reliability and simpler control and is a potential competitor to AC systems [6,9,10].

Although regulations empower prosumer participation in electricity markets [11,12], the
existing AC markets cannot be applied to a DCDS. The latter’s unique technical features, including low

Energies 2019, 12, 2640; doi:10.3390/en12142640 www.mdpi.com/journal/energies105



Energies 2019, 12, 2640

system inertia, strict power limits and power–voltage coupling [13], pose new challenges to the market
design. First, DCDS substations, either connected to AC or DC transmission systems, are typically
converters with much stricter power limits than AC transformers [14]. While the latter have a higher
tolerance to temporary overloading, the precision of converter design and manufacturing leaves
little room for DC converters to be overloaded. However, rapid electrification and large-scale
renewable integration may soon push these substations to congestion. Second, a DCDS mainly
consists of non-spinning devices, and its system inertia is much lower [15] than interconnected AC
systems with large inertia [1]. Hence, substation congestion management is crucial to a DCDS,
because the latter may suffer from severe voltage disturbances once the match between local supply
and demand is broken. Third, DC nodal voltage is solely linked to power flow [16]; this is different
from AC in which voltage magnitude and power flow can be controlled separately. To sum up,
a DCDS is a local system by nature: its network issues, including voltage deviation and network
congestion [17], highlight the local value of flexibility and call for energy exchange among flexible
prosumers. Merely applying AC market designs to DC may cause voltage stability issues, which
motivates the design of new markets tailored to DCDS. Researchers proposed pricing mechanisms
to resolve DC congestion and voltage deviations [14,18,19], but few have investigated the economic
DCDS operation in a liberalised electricity market. This article is inspired by the overlooked potential
of DC at the distribution level and focuses on DCDS markets’ short-term economic efficiency, namely
minimising system operational costs.

Studies on local electricity markets have focused on prosumer-friendly energy trading [20,21],
distribution congestion management [22,23], local ancillary services [24,25] and market
implementation [25,26]. However, the broad scope of electricity market research has resulted in
market designs with the following negative consequences. First, market designs that ignore crucial
design goals are doubtful in terms of credibility and feasibility of implementation. Second, markets
aiming at one specific challenge cannot be applied directly to the real world, in which multiple
interrelated challenges exist. Third, researchers who study a limited set of design variables have not
thoroughly justified this choice of scope. Finally, previous works aimed at single sub-markets did
not investigate the strong linkage among the sub-markets, which crucially affect the overall market
performance [27,28]. All the above calls for a systematic design framework and specified design options
for local electricity markets, yet, to date, there is no consensus on such a framework to our knowledge.

This article provides such a comprehensive market design framework based on an engineering
design process (Section 2), and, with it, identifies the key variables that determine a DCDS market’s
performance. First, we enumerate the common goals of local electricity markets (Section 3).
Second, we recognise the design variables that crucially impact market efficiency, and then evaluate the
consequences of the choice of each design option (Sections 4 and 5). Whereas previous studies focus
on separate markets, we widen the scope to include the role of market architecture and investigate
the arrangement of sub-markets. As an illustration, we demonstrate three promising DCDS market
designs within our framework (Section 6): integrated market design, locational energy market design,
and locational Flex market design. The latter two pay prosumer flexibility (Flex) directly via Flex contracts.
We introduce each market’s principle and organisation, and then briefly discuss its advantages and
challenges. As we conclude in Section 7, this article represents the first step towards a comprehensive
DCDS market design and is a preparatory step towards a quantitative study of DCDS markets.

2. Market Design Framework

As we have seen, to date, there is no consensus on a general design framework for local electricity
markets. This article develops such a framework based on an engineering design process. We adopt
qualitative methods such as literature review and systematic analysis.

Figure 1 illustrates our design framework for local electricity markets, where each block
corresponds to a section of this paper. It is based on an engineering design process of identifying
goals, determining the design space, testing and evaluation [29]. This article focuses on the first two
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stages. Whereas previous studies focus on separate markets, we widen the scope to include the role of
architecture and investigate the arrangement of sub-markets, as suggested by Stoft [27]. Accordingly,
we divide the space into architecture design—choice and arrangement of sub-markets—and sub-market
design that decides detailed trading rules.

Figure 1. Design framework for local electricity markets.

Notably, as shown in Figure 1, we include a feedback loop and allow step-by-step improvements
along with the test and implementation, inspired by the concept of agile design [30]. An electricity
market involves complex systems and multiple stakeholders, thus the market design should be
done in several iterations, starting with a minimum level of testing [31]. Since both technical systems
and prosumers change rapidly, there is no single best market per se but one should improve the designs
continuously during the test and implementation.

Electricity market design is an interdisciplinary study involving power systems, economics,
computer science and social–environmental issues. Each discipline sets unique and sometimes
contradictory requirements. As the World Energy Trilemma [32] suggests, the goals of energy security,
energy equity and environmental sustainability challenge each other, thus the design must balance
them carefully. Section 3 elaborates some unique goals of local markets, such as open access,
transparency and simplicity. The negotiable goals become objectives, whereas the others become
constraints. To validate a market design, we need criteria that define the minimum required level
for each of these goals.

The design space describes the freedom to adjust design variables [33] and represents the feasible
region of a design problem, where each variable represents one dimension with a set of design options.
Although a large design space allows for diversified markets, it also complicates the choice
and validation. We aim to limit the space and focus on those variables crucial to market efficiency.

Market architecture design: The market architecture describes the choice and arrangement
of sub-markets [27], each serving a technical function required for system operation. Stoft [27] suggests
that the choice of sub-markets, their types, the linkages between sub-markets are three key design
variables for market architecture. For local markets, however, we identify the linkage to wholesale
markets as the fourth design variable.

Sub-market design: In each sub-market, properly designed rules yield competitive prices
and prevent gaming [31] by regulating information and prosumer behaviour. The selection of the
design variables is based on a literature review over general electricity markets, balancing markets
and flexibility markets. Based on the stages of market operation [34], we categorise the design variables
into the general organisation, bid format, allocation and payment, and settlement.

Market designs without comprehensive tests may contain serious flaws that lead to failures [31].
Before implementation, a market must be thoroughly tested against uncertainty and complex prosumer
behaviour, by agent simulations or rigorous field tests for instance. One should start with bottom-line
tests to identify fundamental design flaws before bringing them into further studies [31]. A set of
criteria, unbiased and preferably quantitative, should be used to judge if the design goals are met. We
briefly discuss the role of criteria in Section 3.3 and leave the test and implementation for future work.
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Due to our focus on short-term economic dispatch, we make the following assumptions.
First, for globally efficient market operation, we assume that a converter connects a DCDS
to the utility grid, and the price fluctuations of the wholesale markets are passed to final customers.
Second, we adopt the general microeconomics assumption that prosumers are self-interested
and operate their devices to maximise utility. Third, since a DCDS market requires high-frequency
trading, we assume that automatic agents control devices and trade on prosumers’ behalf.
Fourth, since national energy policies decide taxes and levies, we assume the latter to be outside
the scope of local market design.

3. Design Goals

Adopting the design framework of Section 2, this section commences the DCDS market design
by stating the goals. Section 3.1 categorises the common market design goals of energy policy documents
and technical reports. Section 3.2 divides the goals into objectives and constraints. Section 3.3 briefly
discusses the criteria that decide whether the above goals are met or not.

3.1. Listing of the Design Goals

Energy policy documents and technical reports have revealed the goals of electricity markets,
as categorised in Table 1 [12,35]. The primary goal is productive and allocative efficiency, where efficient
prices coordinate efficient prosumption [1]. Next, an efficient market requires reliable system operation.
Another crucial goal is to involve prosumers into the market. Finally, markets should be practical
to implement in real life. Some goals are inevitably contradictory and require a balance.

Table 1. Design goals of local electricity markets.

Category Goal Role

Economic efficiency

efficient production objective
efficient allocation objective

completeness constraint
incentive-compatibility constraint
complete risk-hedging constraint

cost recovery constraint
liquidity & competitiveness objective

System reliability
sufficient network capacity constraint

voltage regulation constraint
power balance constraint

Prosumer involvement

non-discriminatory access constraint
information transparency objective

privacy objective
fairness objective

simplicity objective

Implementability

technical feasibility constraint
scalability objective

stakeholder agreement objective
compatibility with wholesale markets objective

consistency with regulations objective

The market’s primary goal is to produce and allocate resources efficiently [12]. It should be complete
so that each tradeable commodity (for which universal participation, exchangeability and cost causation
of a service is guaranteed) is exchanged at low transaction costs [27]. Incentive-compatible prices
should let prosumers support DCDS [34] as they reflect a resource’s scarcity in time [36] and space [37].
A market should provide complete risk-hedging tools [38] and pay off investments in the long run [1].
Given the few players, it should also improve market liquidity [34] and competitiveness [39].
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Efficient market operation depends on system reliability [40]. The power prosumption of a
community-level grid is highly stochastic and hardly predictable, leading to network congestion [37]
and voltage deviations [41]. Such issues must be solved immediately in a DCDS, especially if a DC
substation cannot be overloaded; otherwise, a low-inertia DCDS must balance local prosumption
immediately by unplanned curtailments.

Another goal is prosumer involvement [23]: a market should grant prosumers non-discriminatory
access [42]. Information transparency [12] facilitates optimal allocation at the cost of prosumer
privacy [43]. The allocation and pricing should be fair [35] so that prosumers pay for their actual
contribution [23]. The trading rules should be simple enough for prosumers to master [23].

Finally, a market should be implementable [37] regarding technical feasibility, scalability, existing
stakeholders and regulations. Market clearing mechanisms should be tractable and scalable [44,45].
The market should respect existing stakeholders [46,47], be compatible with wholesale markets [24]
and consistent with regulations [42], thereby removing implementation barriers.

3.2. Objectives and Constraints

We further divide the design goals into objectives and constraints, as listed in Table 1 on the right
side. A constraint limits the design space and lists feasible options, whereas an objective evaluates
them in order to select design options that meet the goals. Economic efficiency is the fundamental
goal and our primary objective. Since wrong incentives reduce economic efficiency, market
completeness and incentive-compatibility become constraints. A market should offer stakeholders
complete risk-hedging tools and steady revenue to recover investments; hence, they are also
considered constraints. Reliability is crucial to power systems and is a constraint: A market
should mitigate substation congestion and voltage deviations by matching supply and demand
immediately. Prosumer involvement and implementability also play a key role, where the two
constraints are non-discriminatory access (in order to support small prosumers) and the technical
feasibility (regarding computational and communication complexity). The other goals, by contrast,
become the objectives of the market design.

3.3. Criteria

To conclude whether a market design meets the goals, we need unbiased criteria that define the
minimum required level for each goal. Criteria assist our design choices by: (1) excluding markets
that violate design constraints; (2) suggesting the most promising designs with the help of objectives;
and (3) indicating the direction of future improvements. This article does not discuss the full set of
criteria but gives two examples. As discussed in Section 3.2, reliability is a key concern of power
system operation and is a crucial constraint for DCDS market operation. For instance, a DCDS requires
immediate power balancing due to strict converter power limits; a violation of this requirement will
either lead to unplanned curtailments or a system-wide voltage collapse. Thus, we propose two
quantitative criteria, namely a maximum substation congestion ratio (such as 10%) and a maximum
nodal voltage deviation (such as ±30V), to verify different market designs for a DCDS. Such verification
demands detailed modelling of a DCDS’s power network and market players.

4. Market Architecture Design Variables

Sections 4 and 5 investigate the design space of DCDS markets, namely a set of design variables
and their options. For each variable, we aim to answer: How is the variable defined? What is its role in
the overall market design? Which options are there and what does each option imply?

This section identifies the design variables for market architecture—the choice and arrangement
of sub-markets—then lists different options and evaluates their features. Table 2 lists the four design
variables on the left, i.e., the choice of sub-markets, their types, the linkages between sub-markets,
and the linkage to wholesale markets. The first three are identified by Stoft [27], whereas the fourth
one is from our analysis. For each design variable, Table 2 lists the options on the right.

109



Energies 2019, 12, 2640

Table 2. Electricity market architecture: design variables and their options.

Design Variable Design Options

Choice of sub-markets energy/substation capacity/voltage regulation
Market type bilateral/organised

Linkage between sub-markets explicit/implicit
Linkage to wholesale markets complete/partial

4.1. Choice of Sub-Markets

The choice of sub-markets determines the commodities a market remunerates. It lays the
foundation for the incentive scheme. To avoid missing market problems [1], a market design should
reward all tradeable commodities; a commodity still plays a role even if it is not paid directly [27].

The DCDS operation relies on power dispatch, congestion management, plus various ancillary
services regarding voltage regulation, contingency supply, safety, protection and power quality [13].
When deciding which commodities to reward, one should consider non-discriminatory access,
completeness (and no repeated remuneration), transaction costs and transparent operation [27].
According to these criteria, (electrical) energy, network capacity (substation capacity in particular)
and voltage regulation are qualified for a sub-market [13]. By contrast, the services for contingency
supply, safety, protection and power quality have either high entry barriers (technical requirements
for instance) or low tradeability (challenging to measure for instance). Therefore, such services should
be provided by a distribution system operator (DSO) or regulated by DC network codes. To sum up,
energy, network capacity and voltage regulation are the three candidate sub-markets of a DCDS.

4.2. Market Type

The market type describes the arrangement of trading, and it affects the available information
in the market. An organised market, such as a pool (with side payments) or an exchange (without these),
adopts central clearing and facilitates information exchange [48]. It uses standardised contracts to lower
transaction costs but has high requirements for computation and communication infrastructure.
Since a DCDS requires small-amount, high-frequency trading, organised markets are advantageous
in efficiency, transparency and transaction costs. A bilateral market (based on bulletin boards
or brokers) allows peer-to-peer trading and diversified contracts [49], but the information exchange
is less efficient and transparent, thus reducing the market efficiency and DCDS security.

At the first stage of implementation, one may choose not to set up a sub-market but instead create
a pricing scheme for substation capacity or voltage regulation. If market players are not familiar with
such markets, an incentive-compatible pricing signal could still guide them to use resources efficiently.

4.3. Linkage Between Sub-Markets

The linkage between sub-markets is “the heart of market architecture”, which naturally arises
because of time, location and financial arbitrage [27]. Implicit linkages are common between
sub-markets: in a DCDS, for instance, energy and voltage regulation markets are closely linked
due to power–voltage coupling. Implicit linkages lead to information exchange and arbitrages between
sub-markets. An explicitly-linked market [50], by contrast, integrates various commodities into one.
Figure 2 lists all candidate sub-markets—energy, substation capacity and voltage regulation—and five
possible linkages between them (solid lines for explicit linkages and dash lines for implicit ones).

The linkages should contribute to economic efficiency and reduced market complexity [27].
For instance, if the linkages between all sub-markets are explicit, we obtain an integrated market that
merges various commodities into one (Figure 2d). Explicit linkages may increase market efficiency
thanks to improved coordination, but may not if it the value of both sub-markets is not correctly
represented [27]. Otherwise, we obtain multi-commodity electricity markets with separate prices
for each commodity. Figure 2a represents a locational energy market (hereinafter, a sub-market
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is referred to as a market if it is clear from the context), which links the substation capacity to energy
market via locational energy prices. Figure 2b represents a locational voltage regulation market,
where the local flexibility (Flex) for voltage regulation is priced differently at each node of the DCDS.
Figure 2c represents an energy market with voltage-based pricing. Finally, Figure 2e represents
a market where three sub-markets are organised separately. Further study should balance economic
efficiency and the extra complexity an explicit linkage brings.

Figure 2. Choice of sub-markets and their linkages.

4.4. Linkage to Wholesale Markets

The above design variables are identified in wholesale markets [27]. For local markets, we identify
the linkage to wholesale markets as the fourth design variable, indicating how a local sub-market
connects to a corresponding wholesale market [24]. Our motivation is twofold. First, a local market
should facilitate prosumer participation in the wholesale market. Second, local resource allocation
should aim at the global optimum. Prosumers should be exposed to wholesale market prices so
that they share local resources efficiently in a broad marketplace. Here, the design criterion is the
completeness [51], i.e., if each sub-market in a DCDS is linked to a wholesale market. A partial linkage
hinders globally efficient resource allocation and separates prosumers from the wholesale market.
Readers may refer to Tohidi et al. [52] for a more comprehensive review of such linkages.

4.5. Summary

This section identifies some critical design variables of DCDS market architecture and analyses
their options. The market architecture sets the foundation for a market design, based on which we set
rules for each sub-market. Its design variables are the choice of sub-markets, market type, linkages
between sub-markets, and linkage to wholesale markets. Further study should investigate the linkage
between sub-markets and its impact on the overall market performance.

5. Sub-Market Design Variables

Section 4 lists the sub-markets of a DCDS and discusses their arrangement. For each sub-market,
this section identifies the crucial design variables that affect its efficiency and competitiveness.
To the best of our knowledge, Table 3 lists some critical design variables; for each identified variable,
the table shows the options on the right. The selection of the variables is based on literature review of
general electricity markets [34,53,54], balancing markets [55,56] and flexibility markets [24,25,57].

Based on different stages of market operation [34], we further categorise the design variables
into four groups: general organisation, bid format, allocation and payment, and settlement. The general
organisation decides buyers and sellers. The bid format regulates the information gathered from
prosumers. The allocation rules determine the economic efficiency of the allocation, while the pricing
rules sets monetary incentives. Finally, the settlement rules guarantee the delivery of commodities.
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Table 3. Electricity sub-markets: design variables and their options.

Category Design Variable Design Options

General
organisation

buyer and seller one-sided/double-sided
entry requirements universal/tech-specific, voluntary/mandatory

info disclosure fully transparent–fully hidden

Bid format

bid content simple/complex
time resolution 1 s–15 min

gate closure time 1 s–24 h
locational info global/zonal/nodal

Allocation
& payment

objective economic efficiency/renewables/self-sufficiency/. . .
pricing mechanism uniform/discriminatory

price cap yes/no (or sufficiently high)

Settlement
method physical/financial

pricing directions one-price/two-price
risk-hedging tools no/forward market/options/stochastic clearing/. . .

5.1. General Organisation

The general organisation decides buyers, sellers and the available market information. The design
variables are: (1) the arrangement of buyers and sellers; (2) entry requirements, the conditions for prosumer
participation; and (3) information disclosure policy related to prosumers’ privacy.

Arrangement of buyers and sellers: The arrangement of buyers and sellers defines the supply
and demand side of a market. It has a major influence on the market structure, namely, different
parties’ market share and their competition. The design variable is the bidding sides [58]: one-sided
or double-sided. A one-sided market has either a monopoly (for instance, in substation capacity
auctions) or a monopsony (for instance, in frequency regulation markets), whose significant market
power reduces economic efficiency. By contrast, a double-sided market promotes competitions on both
sides and is preferred when possible.

Entry requirements: Entry requirements are the conditions (or obligations) for a prosumer to enter
a market. An entry barrier can be a minimum size of bidding quantity or qualification of performance;
such barriers prevent non-discriminatory access and thus reduce market liquidity. If open access
is a major consideration, we should remove technology-specific entry requirements, so that flexible
generation, flexible loads and storage systems are equally treated [12]. Mandatory participation yields
more predictable market volume and prices, but all the prosumers should accept it.

Information disclosure policy: The information disclosure policy decides to which detail prosumers
should reveal private information. While public information (local prosumption forecasts and
wholesale prices) should be fully transparent to support prosumers’ decisions, bids and allocation
results contain sensitive, private information [59]. Disclosing truthful information may yield more
efficient allocation [57], yet it should be safe and beneficial to prosumers (one option is to publish
anonymous or aggregated bids) [60]. Hence, one should balance information transparency and privacy.

5.2. Bid Format

The bid format determines the information gathered for allocation. The design variables are: (1) the
bid content, the information a prosumer’s bid contains; (2) time resolution of allocation; (3) gate closure time,
the deadline for bid submission; and (4) the inclusion of prosumer’s locational information.

Bid content: The bid content is the information a prosumer’s bid contains. More information
potentially increases market efficiency but challenges computational tractability. Simple bids with price
and quantity are commonly used in power exchanges, whereas complex bids with additional costs,
constraints and location [61] are used in power pools. In energy and substation capacity markets,
simple bids may be sufficient because the services are identical. In flexibility markets, however,
players are much different in operational constraints so complex bids may be necessary.
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Time resolution: A bid resolution is the fineness of allocation or payment in time [56], price [62],
or quantity [63]. A low-inertia DCDS is vulnerable to real-time substation congestion, so the market
needs small-amount, high-frequency trading. Regarding this, the price and quantity resolutions can
be set high to facilitate prosumer participation. However, the time resolution, which is bound by 1 s
(DCDS response speed) and 15 min (wholesale market response speed), should be chosen carefully.
Although a higher time resolution matches local supply–demand more accurately [53], it increases
the computational and communication burden of the market clearing.

Gate closure time: The gate closure time is the deadline for bid updates. Its lower bound is set at the
acceptable uncertainty level, and the upper bound is limited to the system response time. Both bounds
are much lower in a DCDS market than in wholesale markets. Variable renewables push up the upper
bound to one day to address uncertainty; DC converters and flexible devices push down the lower
bound to 1 s thanks to their prompt response. A later gate closure allows the use of more accurate,
updated information [53], whereas an earlier one provides more flexibility.

Locational information: The locational information, included in prosumer bids, indicates the spacial
scarcity of a resource [64]. A DCDS relies on locational information for congestion management
and voltage regulation. Nodal pricing ameliorates this reliance through incentive-compatible prices,
but it has challenges with large numbers of nodes. Zonal pricing is sufficient if congestion only occurs
at some critical points (such as substations) that divide the DCDS into several price zones.

5.3. Allocation and Payment

The allocation rules decide to whom and how a market allocates resources. The payment rules,
on the other hand, reward the accepted bids adequately, thereby setting the bidding incentives.
Both rules affect market efficiency and prosumers’ welfare. The design variables are: (1) the objective,
the desired direction of resource allocation; (2) the pricing mechanism for the allocation; and (3) the price
cap that limits a commodity’s price.

The objective: The objective quantitatively describes the desired direction of resource allocation.
The primary objective of a DCDS market is economic efficiency under reliability constraints.
Other objectives such as integration of local renewables or community energy self-sufficiency may
be considered as well.

Pricing mechanism: The pricing mechanism defines at which price a deal is closed [65]; it lays
the basis of the incentive scheme. Payment is either universal (such as in uniform price auctions)
or discriminatory (such as in pay-as-bid auctions) among market parties [53]. Universal pricing
schemes are incentive-compatible and more predictable. However, marginal pricing may yield
high prices; in such cases, we may consider discriminatory pricing, although it can be vulnerable
to strategic bidding.

Price cap: A price cap (or floor) sets the maximum (or minimum) price of a commodity. In European
wholesale markets, the energy price cap ranges from 150 to 3000 Euro/MWh [53]. Although it is
meant to protect consumers against extreme prices, it limits prosumer’s scarcity rents and affects
incentive-compatibility. To avoid missing money problems [1], we suggest avoiding price caps
or keeping them sufficiently high [46], for instance to the value of the lost load.

5.4. Settlement

Finally, a market operator should settle transactions to guarantee the delivery of commodities.
The design variables are: (1) the method to deliver a commodity; (2) the pricing direction when settling
deviations; and (3) risk-hedging tools to deal with market uncertainties.

Settlement method: The settlement method defines the way a commodity is delivered.
It is: (1) physical, if the commodity must be delivered in real time; or (2) financial, when cash
payments are sufficient [66]. A physical settlement guarantees supply security (typically with penalties
for non-delivery), but the limited market liquidity may invite market power. A financial settlement
yields higher liquidity thanks to arbitrageurs and is preferable in forward markets for risk hedging [34].
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Settlement pricing directions: The settlement pricing direction defines whether the deviation of a
contract is settled at different prices for long and short positions [67]. It affects incentive-compatibility
and investment incentives. The one-price settlement acknowledges the equal position of flexible
generation, demand response and storage. However, their dispatching costs are different in real time,
so we may consider a two-price settlement to make payments incentive-compatible.

Risk-hedging tools: A DCDS has high operational uncertainty that risks the reliability and market
efficiency. Such uncertainty stems from generation availability, load fluctuation, wholesale markets,
bidding behaviour, among others [68]. Since high uncertainty distorts market efficiency and prosumer
welfare, a DCDS market should offer risk-hedging tools, such as forward markets [69], options [70],
or stochastic clearing with risk measures [61].

5.5. Summary

This section lists the design variables of local electricity market rules and analyses their options.
For each sub-market, we must set rules for general organisation, bid format, allocation and payment,
and settlement. The choice of a design variable must carefully balance conflicting design goals;
further quantitative studies might be warranted. Variables for which this is relevant include
the information disclosure policy, time resolution, gate closure time and allocation pricing rules.

Table 4. A brief comparison of three market designs.

Market Design IM LEM LFM

Explicit linkage all sub-markets energy–network capacity Flex–network capacity

Commodity integrated product locational energy + Flex energy + locational Flex

Flex payment implicit explicit, non-location-specific explicit, location-specific

Advantages optimal dispatch in theory,
incentive-compatible price

promoting Flex deployment,
liquid Flex market

promoting free energy
trading and Flex deploy-
ment, Flex at right places

Challenges
privacy issue, sophisti-
cated clearing algorithm,
unpredictable price

standard Flex contract, Flex
pricing, Flex at wrong places;
if a DSO sells Flex: distorted
incentive, tariff fairness

standard Flex contract,
Flex pricing, less liquid
Flex market

6. Three Promising Market Designs

This section demonstrates three illustrative examples of DCDS market designs and provides a first
qualitative verification of our design method in Section 2. Table 4 compares the three promising designs
that fit into our framework, i.e., integrated market (IM) design, locational energy market (LEM) design and
locational Flex market (LFM) design. Regarding market architecture (Section 4), we chose designs with
all the required sub-markets. Regarding sub-markets (Section 5), we chose simple, fast and efficient
mechanisms that facilitate prosumer participation. Whereas the architecture distinguishes these market
designs, the sub-market rules also affect their overall performance. In Table 4, Rows 2–4 list the market
features and the last two rows compare their advantages and disadvantages.

6.1. Integrated Market (IM) Design

An integrated market design explicitly links all the three sub-markets to create an integrated
product, which remunerates energy as well as substation capacity and voltage regulation. The principle
of this design is illustrated in Figure 2d. The only commodity is the electrical energy available
at a specific time and location. The real-time price reflects the temporal and locational scarcity
of energy, whereas the price fluctuation implicitly remunerates prosumers for providing flexibility.

Such design represents a centrally organised market based on security-constrained economic
dispatch, where the objective is economic welfare maximisation. For global market efficiency,
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the opportunity for trade between the local market and the wholesale market should be maximised.
All prosumers are involved in the mandatory real-time market. They submit complex bids, including
their devices’ state, constraints and additional costs. Prosumers are charged (paid) by their marginal
contribution to the system, resulting in real-time locational marginal prices.

This design provides incentive-compatible prices, but challenges are privacy and the need
for sophisticated market clearing algorithms. While prosumers are not familiar with the integrated
product, they need to submit private information; hence, the market requires their trust. Meanwhile,
the sophisticated market clearing requires considerable computation and communication infrastructure.
If flexibility is needed and present, this market design is theoretically optimal, unlike the next two
designs that we discuss. Further, since local energy prosumption is volatile, the local energy price may
be unpredictable, which could be mitigated by the introduction of a voluntary forward market.

6.2. Locational Energy Market (LEM) Design

The second design, as shown in Figure 2a, explicitly links energy and network capacity markets
into a locational energy market (LEM) while leaving voltage regulation in a standalone market.
The LEM optimally allocates energy under network constraints; an example is locational marginal
(energy) pricing [71], which is widely adopted in the US wholesale markets.

As stated in Section 1, voltage regulation of a DCDS requires local changes in energy prosumption
and is therefore dependent on local flexibility (Flex). The DSO, who is responsible for voltage
regulation, can provide this as a system service or contract it from prosumers in an explicit Flex
market. Although LEMs have been studied for DC [14,18,19], few researchers have discussed the use
of Flex trading for DC voltage regulation. Below, we discuss a case with and one without an explicit
Flex market.

6.2.1. Flex Market for Voltage Regulation

In this case, Flex is an explicit, standard commodity which the DSO purchases from prosumers.
It is defined as an option to adjust prosumers’ power in real time. Flex contracts directly remunerate
prosumer flexibility in addition to their revenues from energy trading. Other parties who may purchase Flex
include wholesale market players such as balance responsible parties or aggregators [72]. A Flex market
creates new business models for storage systems and demand response. In this market design,
Flex payments are universal across the DCDS and are not location-specific; compared to the next design,
this one has higher liquidity thanks to larger supply. However, as the Flex market is not location-specific,
there is no guarantee that Flex will be deployed where necessary. Since the LEM takes care of power
matching, the Flex market can be settled less frequently to improve scalability.

6.2.2. The DSO Provides Voltage Regulation

This case represents the current DSO model: Flex is a service provided by the DSO, who passes
the costs along to prosumers in its tariffs [72]. A DSO may own or rent flexible devices and use them
for voltage regulation [10]. One challenge is that voltage deviations may increase because prosumers
are not incentivised to limit them. Another challenge is to set distribution tariffs fairly: instead
of maximising prosumer welfare, a DSO may overcharge prosumers or deploy Flex for extra profit.

6.3. Locational Flex Market (LFM) Design

The third design, depicted in Figure 2b, explicitly links Flex and network capacity markets
in a locational Flex market (LFM), while keeping the energy market standalone. An LFM aims to bring
prosumers into wholesale energy markets by resolving local network issues. It acknowledges the
locational value of flexibility [73] and aims to attract Flex investments to where they are needed.

The organisation of an LFM is similar to a standalone Flex market in Section 6.2.1, except that the
Flex prices vary by location. The market must strictly respect DC network constraints; as real-time
Flex dispatch requires extensive information from prosumers, the LFM should be centrally organised
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and will be less scalable than the Flex market in Section 6.2.1. As the number of providers may be very
limited, we adopt pay-as-bid auctions to mitigate gaming and to lower DSOs’ Flex procurement costs.

Flex markets, including LFMs [74,75], are not well studied and may generate new challenges.
First, Flex products and contracts are difficult to standardise due to their complex constraints.
A Flex contract may set requirements for ramping speed, energy capacity, response delay and tracking
accuracy. Notably, some Flex providers, such as storage systems and flexible loads, have strong
inter-temporal constraints. Second, Flex pricing is challenging because it depends on both the condition
of the DCDS and the state of each Flex device. Third, Flex markets may be susceptible to market power
because of their low liquidity.

7. Conclusions

This article identifies the key design options of electricity markets for DC distribution systems
(DCDSs). Compared to AC systems, a DCDS has higher power capacity, energy efficiency, reliability
and simpler control—anticipating the future where a large amount of renewable power is generated
and consumed locally in DC. We develop a comprehensive design framework for local electricity
markets to structure alternative options. To our knowledge, we provide the first such analysis.

The unique features of DCDS, such as low system inertia, strict power limits and power–voltage
coupling, make a DCDS market fundamentally different from AC: it requires short response times,
precise congestion management (as DC converters cannot be overloaded) and a different approach
to voltage regulation. A DCDS is a local system by nature where flexibility has a high local value
and needs to be exchanged for economically efficient DCDS operation.

The major elements of a DCDS market architecture are energy delivery, the provision of substation
capacity, and voltage regulation. It is possible to provide all three services by creating a sub-market
for each, such as a local energy exchange, a substation capacity auction and a payment scheme
for voltage regulation. However, we found that DC energy and voltage regulation markets are
interlinked due to power–voltage coupling: DC nodal voltage is a function of flexible power
generation and consumption. Compared to the case with a DSO regulating voltage, the inclusion of a
prosumer-oriented Flex market may provide the same service with better price incentives and higher
economic efficiency.

For each selected sub-market, we analysed the design options for the general organisation,
bid format, allocation and payment, and settlement. However, the choice of some design variables
must trade off conflicting design goals. The degree of information disclosure should balance information
transparency and prosumer privacy. The time resolution should balance a DCDS’s need for short
response time (efficient prosumption) and the computational burden (technical feasibility). The gate
closure time should balance a lower power matching error (efficient prosumption) and higher
flexibility for DC voltage regulation (system reliability). The allocation pricing rules should balance
incentive-compatibility and market competitiveness (few players).

Our systematic analysis of the design options led to three promising DCDS markets.
First, the integrated market design explicitly links three sub-markets (for energy, substation capacity and
voltage regulation) to create a single commodity—an integrated product. It aims at incentive-compatible,
volatile price signals that encourage prosumers to resolve congestion and voltage issues, but the challenges
are privacy concerns and the need for sophisticated market clearing algorithms. Second, the locational
energy market design links energy and substation capacity markets but leaves voltage regulation separate.
Although a DSO may provide the latter as a system service, the introduction of a Flex market may offer
the same service with better prosumer incentives. Third, the locational Flex market design links Flex and
network capacity markets, thereby encouraging prosumers to help regulate DC voltage at the most critical
nodes. However, further study should resolve issues regarding product definition, pricing and market
power prevention.

Building on our design framework, the next step is to analyse the design options using quantitative
criteria, each corresponding to a design goal in Section 3. An important direction for future work
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is the development of quantitative models to compare the performance of different market designs.
For market architecture, further studies should balance economic efficiency and the extra complexity
an explicit linkage brings. For sub-markets, researchers should balance conflicting goals by adjusting
four design variables, namely the information disclosure policy, time resolution, gate closure time
and allocation pricing rules. This analysis could be, for example, based on the IEEE European
Low-Voltage Test Feeder (upgraded to DC). Lastly, to develop DCDS markets that are technically
feasible and economically efficient, researchers should test these market designs against uncertainty
and strategic behaviour.
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Abstract: Decision-making of microgrids in the condition of a dynamic uncertain bidding
environment has always been a significant subject of interest in the context of energy markets.
The emerging application of reinforcement learning algorithms in energy markets provides solutions
to this problem. In this paper, we investigate the potential of applying a Q-learning algorithm into a
continuous double auction mechanism. By choosing a global supply and demand relationship as
states and considering both bidding price and quantity as actions, a new Q-learning architecture
is proposed to better reflect personalized bidding preferences and response to real-time market
conditions. The application of battery energy storage system performs an alternative form of demand
response by exerting potential capacity. A Q-cube framework is designed to describe the Q-value
distribution iteration. Results from a case study on 14 microgrids in Guizhou Province, China indicate
that the proposed Q-cube framework is capable of making rational bidding decisions and raising the
microgrids’ profits.

Keywords: microgrids; continuous double auction; Q-learning algorithm; battery energy storage
system, Q-cube framework; bidding strategy

1. Introduction

The power system has experienced the evolution from a traditional power grid to the smart grid
and then to the Energy Internet (EI), driven by economic, technological and environment incentives.
Distributed energy resources (DERs) including distributed generation (DG), battery energy storage
system (BESS), electric vehicle (EV), dispatchable load (DL), etc. are emerging and reconstructing
the structure of power systems. In future EI, renewable energy sources (RESs) are regarded as the
main primary energy owing to the wide application of solar panels, wind turbines and other new
energy technologies [1]. According to a recent report from the U.S. Energy Information Administration
(EIA), the U.S. electricity generation from RESs surpassed coal this April for the first time in history,
providing 23% of the total electricity generation compared to coal’s 20%. Meanwhile, the proportion
of RES generation in Germany has already reached 40% in 2018. The considerable increase of RESs
encourages a significant decrease in energy prices, which drives the reform of energy trading patterns
and behaviors in the power system. In addition, flexible location and bi-direction energy trading
ability of DERs lead to the transformation of management mode from centralized to decentralized [2].
In this process, the introduction of economic models to this decentralized system makes the power
grid truly equipped with market characteristics [3].

As the aggregators of DERs in certain geographical regions, microgrids are important participants
in the power market [4]. By implementing internal dispatch, microgrids can provide economic benefits
through applying demand response projects and avoiding long distance energy transmission [5].
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Moreover, microgrids give solutions for emergencies when power from the grid is disrupted. Energy
trading among networked microgrids in the distribution network form the local energy market [6].
In early research and realistic practice, cooperative energy trading mechanisms have been proposed
to achieve better performances on profit and management for the overall market. Models and
algorithms have been investigated to describe features of the multi-microgrid system [7,8] and solve
the optimization problem [9,10]. However, given a diverse internal network topology and device
configurations, the microgrids’ willingnesses of joining this cooperative energy trading market differ
from each other. Though some mix-strategy Nash equilibrium points have been found by theoretical
proofs, the freedom of energy trading have to be sacrificed in exchange for global optimum, as the
solutions to this NP-hard problem often fail to satisfy everyone. In addition, a cooperative energy
trading mechanism requires detailed information on power prediction and operating data of every
device in the microgrids. This will expose residential energy consumption habits and behavioral
preferences, causing privacy protection issues. Non-cooperative energy trading mechanisms are
urgently needed. The development of information and communication technologies (ICTs) provides
ideas for solving the above problems.

With the application of advanced ICT in the energy market, the degree of informatization has been
greatly improved. Smart meter, mobile internet, blockchain and 5G, etc. help to extend the traditional
power system to a three-layer architecture [11,12]: the bottom layer is the network of power devices
and transmission lines. The middle layer is the network of information nodes, in which the ICTs play a
very important role. Software-based negotiation agents participate in the energy trading market in the
top layer [13]. In the energy trading market of networked microgrids, microgrid operators (MGOs)
are set to trade energy with each other and the grid under the regulations formulated by distribution
network operators (DNOs). Different economic models are implemented in this layer based on
personalized behaviors of the participants, which is an emerging topic in both academic and practical
fields. As a common method for allocating resources, continuous double auction (CDA) is frequently
used to address the bidding problem in energy markets among multi-buyers and multi-sellers [14].
The authors in [15] discussed the efficiency of applying CDA in a computational electricity market with
the midpoint price method. In [16], an adaptive aggressiveness strategy was presented in the CDA
market to adjust bidding price according to market change. A stable CDA mechanism was proposed
in [17], which alleviated the unnecessarily volatile behavior of normal CDA. Furthermore, peer-to-peer
(P2P) energy trading mechanisms are drawing attention as ICTs like blockchain are making P2P energy
trading in real time possible [18]. Wang et al. [19] proposed a parallel P2P energy trading framework
with multidimensional willingness, mimicking the personalized behaviors of microgrids. In [20], a
canonical coalition game was utilized to propose a P2P energy trading scheme, which proves the
potential to corroborate sustainable prosumer participation in P2P energy trading. To summarize,
the literature mentioned above is mainly concerned with the bidding price in the energy trading
market, as the intersection of price sequences decides whether to close a deal or not. However, with
the wide use of advanced ICT in the power grid, the uncertainty of DERs can be compensated by
real-time behavior adjustment; meanwhile, DER responses to price signal become faster than ever
before. Not only does the bidding price have impacts on the bidding results, but bidding quantity
also simultaneously affects the real-time supply and demand relationship. Meanwhile, the capacity
of BESS is only taken into consideration in the internal scheduling of each microgrid, neglecting the
potential of BESS to participate in energy market dispatching.

At the same time as research on energy trading mechanisms, significant efforts have been devoted
to model the complex bidding behaviors of negotiation agents in energy trading markets, among
which the interest of applying reinforcement learning (RL) algorithms to solve power grid problems is
emerging [21]. Reinforcement learning is a formal framework to study sequential decision-making
problems, particularly relevant for modeling the behavior of financial agents [22]. The authors in [23]
made a comprehensive review on the application of RL algorithms on electric power system decision
and control. A few research works have begun to pay attention to this problem and made an effort to
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establish better bidding mechanisms [15,24–28]. Nicolaisen et al. [15] applied a modified Roth–Erev
RL algorithm to determine the bidding price and quantity offers in each auction round. The authors
in [25] presented an exact characterization of the design of adaptive learning rules for contained energy
trading game concerning privacy policy. Cai et al. [26] analyzed the performance of evolutionary
game-theory based trading strategies in the CDA market, which highlighted the practicability of
the Roth–Erev algorithm. The authors in [27] presented a general methodology for searching CDA
equilibrium strategies through the RL algorithm. Residential demand response enhanced by the RL
algorithm was studied in [28] by a consumer automated energy management system. Particularly,
Q-learning (QL) stands out because it is a model-free algorithm and easy to implement. The authors
in [29] considered the application of QL with temperature variation for bidding strategies. Rahimiyan’s
work [30,31] concentrated on the adaptive adjustment of QL parameters with the energy market
environment. Salehizadeh et al. [32] proposed a fuzzy QL approach in the presence of renewable
resources under both normal and stressful cases. The authors in [33] introduced the concept of scenario
extraction into a QL-based energy trading model for decision support.

The existing literature shows the potential of combining QL algorithms and energy trading
mechanisms in obtaining better market performance. However, suitable answers to the following
three issues are still unsettled, which are the motivations for this paper’s research:

(1) How the QL algorithm could be combined to fit better with energy trading mechanisms to
describe the characteristics of the future energy market. Bidding in the future energy market is
close to real-time enhanced by ICTs, and the iteration of Q-values should be round-based rather
than hour-based or day-based, whereas the time scale of updating Q-values in [29] couldn’t reflect
the latest market status. In addition, for a multi-microgrid system, the QL algorithm should be
carried out separately by each microgrid. The authors in [34] provided the thought of applying a
fitted-Q iteration algorithm in the electric power system, and more appropriate methods need to
be proposed.

(2) How the coupling relationship of bidding price and quantity should be modeled and reflected
by the Q-values of the Q-learning algorithm. Little research has been made about the impact of
bidding quantity on bidding results in the above literature. Wang’s work referred to the issue of
bidding quantity [25], but only the bidding strategies of sellers in the market are discussed. In
addition, the energy trading game presented in this paper adopted a discontinuous pricing
rule. The impact of BESS on adjusting bidding quantity was mentioned in [35] without considering
the ramping restriction, which is not practical in realistic scenes. The authors in [36] applied the
extended fitted-Q iteration algorithm to control the operation modes of battery storage devices
in a microgrid; however, only three actions were taken into consideration in this paper and the
(dis)charge rate constraints were ignored.

(3) How the QL parameters should be decided by each microgrid, considering real-time energy
market status, microgrid preferences, historical trading records and other time-varying factors.
In QL algorithms, the risk characteristic of one microgrid is reflected by the values of QL
parameters. However, in the existing literature, those QL-based models try to identify the bidding
status according to the experiences gained from a series of trials in the current bidding rounds,
ignoring the importance of historical trading records. The authors in [30,31] had noticed this
issue, but the relationship between QL parameters and bidding performances were not analyzed
in detail. In addition, the progress of QL research in other areas [37] hasn’t been introduced into
the energy trading market.

To tackle the above issues, we formulate the energy trading problem among microgrids as a
Markov Decision Process (MDP) and investigate the potential of applying a Q-learning algorithm into
a continuous double auction mechanism. Taking inspiration from related research on P2P trading
and heuristic algorithms, a Q-cube framework of Q-learning algorithm is proposed to describe the
Q-value distribution of microgrids, which is updated in each bidding round iteratively. To the best of
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the authors’ knowledge, none of the previous work has proposed a non-tabular formation of Q-values
for decision-making of the power grid.

The contributions of this paper are summarized as follows:

(1) The energy trading problem among microgrids in the distribution network is framed as
a sequential decision problem. The non-cooperative energy market operation and bidding
behaviors are modeled with a continuous double auction mechanism, which decreases the
need for centralized control and suits the weakly-centralized nature of this distribution network.

(2) The high dimensional continuous problem is tackled by the Q-learning algorithm. Except for
the bidding price, the bidding quantity of microgrids is considered as the second dimension of
bidding action space and could be adjusted during the bidding process with the assistance of
BESS, by which the coupling relationship between energy trading price and quantity during
bidding process is handled. Related parameter setting and sharing mechanisms are designed.

(3) A non-tabular solution of Q-values considering two dimensions of action space is designed as
a Q-cube. The Q-value distribution in the proposed Q-cube is in accordance with the behavior
preferences of the microgrids.

(4) The real-time supply and demand relationship is highlighted as the state in the proposed
Q-learning algorithm. A normal probability density distribution is divided into eight equal
parts as eight states for all the microgrids. In addition, the idea of ’local search’ in heuristic
algorithms is applied in the proposed Q-learning algorithm for generating the action space. This
approach not only takes the characteristics of power grids into consideration, but also achieves
the compromise between exploitation and exploration in the action space.

(5) The proposed continuous double auction mechanism and Q-learning algorithm are validated by
a realistic case from Hongfeng Lake, Guizhou Province, China. Profit comparison with traditional
and P2P energy trading mechanisms highlights the doability and efficiency of the proposed
method. A 65.7% and 10.9% increase in the overall profit of the distribution network could be
achieved by applying a Q-learning based continuous double auction mechanism compared with
the two mechanisms mentioned above.

The rest of this paper is organized as follows. In Section 2, the overview of a non-cooperative
energy trading market is presented, along with a description of the proposed Q-learning based
continuous double auction mechanism. A Q-cube framework of the Q-learning algorithm is introduced
in Section 3. Case studies and analyses are demonstrated in Section 4 to verify the efficiency of the
proposed Q-cube framework for a Q-learning algorithm and continuous double auction mechanism.
Finally, we draw the conclusions and future works in Section 5.

2. Mechanism Design for Continuous Double Auction Energy Trading Market

In this section, we provide the overview of non-cooperative energy trading market and the
analytical description of Q-learning based continuous double auction mechanism.

2.1. Non-Cooperative Energy Trading Market Overview

In a future distribution network, the DNO is the regulator of local energy trading market as
it provides related ancillary services for market participants: (1) By gathering and analyzing the
operation data from ICT, the DNO monitors and regulates the operation status of distribution network;
(2) By carrying out centralized safety check and congestion management, the DNO guarantees the
power flow in every transmission line is under limitation; (3) By adopting reasonable economic models,
the DNO affects energy trading patterns and preferences of market participants. With the reform of
the traditional energy market, along with the application of advanced metrology and ICT, the trend of
peer-to-peer energy trading pattern is emerging. As peers in this energy market, we assume that MGOs
have no information on their peers’ energy trading preferences and internal configurations, which
addresses the concern on privacy protection. In addition, each peer in this energy market is blind about
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the bidding target, it joins this energy trading market to satisfy its own needs for energy to the greatest
extent rather than seeking cooperation. Each MGO can adjust its bidding price and quantity according
to public real-time market information and private historical trading records. Accordingly, the energy
trading among microgrids in the distribution network could be formulated as a non-cooperative
peer-to-peer energy trading problem. Figure 1 shows the process of the non-cooperative energy trading
market discussed in this paper.

Consider a distribution network containing a number of networked microgrids in a certain area.
In the hour-ahead energy trading market before Time Slot N, each MGO deals with the internal
coordinated dispatch (ICD) of local DERs and residents based on DERs’ power prediction and BESS’s
state of charge (SOC) restriction information. Meanwhile, the DNO makes the distribution network
scheduling for further procedures. A Q-learning based continuous double auction among microgrids is
implemented according to ICD results and BESS’s SOC status; detailed descriptions are presented in the
following chapter. After the safety check and congestion management made by DNO, energy trading
commands are confirmed and transmitted to each MGO. As the MGOs are empowered to set real-time
price for regional energy, internal pricing for DER power and charge and discharge scheduling for
BESS are completed in this period.

Figure 1. The process of the proposed non-cooperative energy trading market.

Energy is exchanged according to the pre-agreed trading contracts in Time Slot N under the
regulation of DNO. Sufficient back-up energy supply and storage capacity are provided in case
of the impact of extreme weather and dishonesty behaviors of the market participants. A market
clear process is carried out after Time Slot N to ensure the accurate and timely settlement of energy
transactions. Punishments are also made for the above abnormal market behaviors. Security and
timeliness of the market clear process could be guaranteed by advanced ICT such as blockchain, smart
meters, 5G, etc.

2.2. Q-Learning Based Continuous Double Auction Mechanism

This paper proposes a Q-learning based continuous double auction (QLCDA) mechanism for the
energy trading market. Figure 2 presents the process of the proposed QLCDA in one time slot.

Before the QLCDA start in one time slot, each MGO tackles the ICD problem and generates
the initial bidding information. The SOC check and charge and discharge restriction of the BESS
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are also completed in this initialization stage. In each round of CDA (indexed by n), each MGO
reports its energy trading price and quantity to the DNO. Note that the trading quantity would be
updated in each round; it is possible that one MGO changes its role as buyer or seller in the bidding
process. Thus, an identity confirmation is made as the first step in CDA and the number of buyers
(nb)/ sellers (ns) are obtained. Then, the DNO calculates and releases the overall supply and demand
relationship (SDR) to these networked microgrids. Meanwhile, the reference prices for buyer and
seller microgrids are calculated and released, which are the average price of selling and buying energy
in the real-time market. MGOs update their bidding price and quantity according to real-time SDR
and historical trading records based on the Q-Learning algorithm; the SOC restrictions are also taken
into consideration to limit the behaviors of BESS in each microgrid. The bidding price of sellers and
buyers are sorted in increasing order by the DNO; we have priceb

nb < priceb
nb−1 < · · · < priceb

1 and
prices

1 < price2 < · · · < prices
ns. Once the price sequences of seller and buyers are intersected, i.e.,

prices
1 < priceb

1, MGOs whose bidding prices are in this interval are chosen to join the energy sharing
process. Actual trading price and quantity are decided in this step and the bidding quantity of each
microgrid is updated based on the sharing results. If there is still untraded energy in the market, the
QLCDA will repeat until the deadline of bidding rounds (N represents the maximum bidding round
in one time slot). If energy demand or supply are fully satisfied before the deadline, QLCDA will
be stopped in the current round. Results of QLCDA are confirmed by MGOs and sent to the DNO
for further energy allocation and safety check. Detailed descriptions on initialization and the energy
sharing mechanism are presented in the following chapters.

InitializationInitialization
(MG Bidding Information)

n � N

Identity Confirmation

Calculation&Release
Supply&Demand
Relationship

Update
Price&Quantity

Based on Q-Learning

PriceBid �
PriceAsk

n = n + 1

Sharing Process

Update
Quantity to
be Traded

Remain
Untraded
Energy

Confirmation of
Bidding Results

Initialization
(BESS Information)

Update SOC State

SOC Restriction

End

Y es

No

Y es

Y es

No

No

Figure 2. The process of Q-learning based continuous double auction in one time slot.
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2.2.1. Initialization Setups

As the ICD of each microgrid is completed before QLCDA by each MGO, the scheduling plans are
assumed to be fixed during one time slot, therefore the initial bidding quantity of QLCDA are set as
the results of ICD. For seller microgrid i, the initial bidding price in time slot T is calculated as follows:

pinitial
i = pt

grid,buy +
(

p_hlt − p_llt) · randi. (1)

Similar to the seller, buyer microgrid j submits the bidding price as follows:

pinitial
j = pt

grid,sell −
(

p_hlt − p_llt) · randj, (2)

where pt
grid,buy and pt

grid,sell represent energy purchase and sell price of the grid in time slot t respectively.
p_hlt and p_llt are the highest/lowest bidding price limitation of this market in time slot t. randi and
randj are random real numbers generated from the range of [0.95,1] to obtain higher/lower initial
bidding price for sellers/buyers.

As each microgrid is equipped with BESS already, it is essential to consider the application of
BESS in QLCDA and make full use of its charging and discharging capacity to improve real-time SDR
inside the distribution network. The charging ability of microgrid i’s BESS is given by:

Pt,charge
bess,i =

Ci · min
(

SOCΔ,charge
i , (1 − SOCt

i )
)

Δt · η
charge
i

. (3)

Similarly, the discharging ability of microgrid i’s BESS is calculated as follows:

Pt,discharge
bess,i =

Ci · min
(

SOCΔ,discharge
i , SOCt

i

)
· η

discharge
i

Δt
, (4)

where Ci is the capacity of microgrid i’s BESS, SOCt
i is the initial SOC of BESS in time slot t. Due to

the limitation of material technology, charging and discharging behaviors of BESS are constrained,
SOCΔ,charge

i and SOCΔ,discharge
i represent the ramp constraints on charging and discharging of microgrid

i’s BESS, respectively. Practical operations of BESS will cause energy loss, therefore we set η
charge
i and

η
discharge
i as the charging and discharging efficiency of BESS, respectively. During the QLCDA process,

updated bidding quantity can’t exceed the restrictions on these two parameters. Δt is the bidding cycle
in this energy trading market.

2.2.2. Energy Sharing Mechanism

Once the price sequences of buyers and sellers are intersected, i.e., prices
1 < priceb

1, the microgrids
whose bidding price are within the interval will be chosen to enter the energy sharing process.
Due to the uncertainty and complexity of price intersections, a layering method and a price-prioritized
quantity-weighted sharing rule are combined to solve the energy sharing problem.

The number of selected buyer and seller microgrids are nbshare and nsshare, respectively. Starting
from the highest bidding price of sellers, the buyer microgrids whose bidding prices are higher than
ps

bsshare
and all of the seller microgrids are selected to be combined into a sharing layer. These buyer

microgrids have the priority to trade with seller microgrids as they would like to pay the higher price
for each unit of energy. Deals are made in this layer and related microgrids are removed from the
sharing list depending on different situations. The layering method is applied repeatedly until there is
no buyer microgrid in the sharing list or all the energy of seller microgrids is sold out. The detailed
layering process is presented below:

• (1) Form a bidding layer according to the above-mentioned method and proceed to (2).

127



Energies 2019, 12, 2891

• (2) Allocate the energy in this layer. If energy demand exceeds supply in this layer, the sharing
process is over after allocation. If energy supply exceeds demand in this layer, proceed to (3).

• (3) Remove the buyer microgrids in this layer from the optional sharing list as their energy
demands are satisfied. Remove the sell microgrids whose selling prices are higher than the current
highest price of buyer microgrids as there are no potential buyers for them. Return to (1) to form
a new bidding layer.

Take the situation in Figure 3 as an example. Two buyer microgrids (pb
1 and pb

2) and three seller
microgrids (ps

1, ps
2 and ps

3) are selected to form Layer 1 as shown in Figure 3a. After energy allocation
in Layer 1, all of the seller microgrids have surplus energy, therefore pb

1 and pb
2 are removed from

the sharing list as their energy demands are satisfied. ps
3 is also removed from the list as no buyer

microgrid’s bidding price is higher than his. Afterwords, Layer 2 is formed containing one buyer
microgrid (pb

3) and two seller microgrids (ps
1 and ps

2), as shown in Figure 3b. The sharing process ends
after the energy allocation in this layer.

Layer1

pb1pb2pb3pb4

ps1 ps2 ps3 ps4

· · ·

· · ·
Price

Buyer

Seller

(a) Layer 1

Layer2

pb1pb2pb3pb4

ps1 ps2 ps3 ps4

· · ·

· · ·
Price

Buyer

Seller

(b) Layer 2

Figure 3. Layering methods in the proposed sharing mechanism.

For each layer in the energy sharing process, without loss of generality, we propose
a price-prioritized quantity-weighted sharing rule for two situations. Figure 4 gives the sharing
results of examples on these two situations, in which the bidding price/quantity of each deal is given
below/above the figure. Energy quantity of buyers in a layer is sorted based on their quoted prices in
descending order, while for sellers the quantity are sorted in ascending order. This rule ensures buyers
with higher bid prices give priority to lower-priced energy. In Figure 4a, for the sharing process in
round n, when ∑ qb

i ≥ ∑ qs
j , every seller will sell out its energy, the exceeded part of demand will be

cut and participate in the next round of bidding in the energy market. However, when ∑ qb
i < ∑ qs

j as
shown in Figure 4b, the sellers will have to fairly share the exceeded part of supply. A seller microgrid
j’s trading quantity is calculated as follows:

qn
j =

{
qn

j i f ∑ qb
i ≥ ∑ qs

j ,
qn

j − qn
cut,j i f ∑ qb

i < ∑ qs
j ,

(5)

qn
cut,j =

(
∑ qs

j − ∑ qb
i

)
·

qn
j

∑ qs
j
. (6)

In Equation (6), qm
cut,j represents the cut quantity for microgrid j in round n. The oversupply

burden is weighted shared to each seller microgrid and cut from their energy supply. This sharing
rule guarantees that each seller microgrid could sell a non-negative quantity, which is more fair than
the equally sharing mechanism. After the determination of sharing layers and trading quantity, the
DNO can choose any suitable price within the interval [ps

i , pb
j ] as trading price at this time slot for

microgrid i and j. We assume both sides of this transaction agree to trade at a price pij = θ · (pb
i + ps

j ),
where θ ∈ (0, 1) is a predefined constant. Without loss of fairness, θ is set as 0.5 in this paper.

The proposed energy sharing mechanism ensures that buyer microgrids with higher bidding
price and seller microgrids with lower bidding price have the priority in reaching a deal. In
addition, the fairness of energy trading quantity is accomplished by a weighted sharing rule.
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Figure 4. Sharing price and quantity under two situations.

3. A Q-Cube Framework for Q-Learning in a Continuous Double Auction Energy Trading Market

In a normal Q-learning algorithm, an agent learns from the environment information and interacts
with relevant agents. By observing states and collecting rewards, an agent selects appropriate actions
to maximize future profits. The agents are independent from one other both in terms of acting as
well as learning. However, the particularity of the energy trading market creates a complex energy
economic system. Non-cooperative trading pattern, personalized MGO preferences and time-varying
market conditions bring difficulties to the selection of bidding strategies for market participants.
As a model-free algorithm, Q-learning is capable of modeling the MGOs’ bidding behaviors in a
continuous double auction energy trading market. In this paper, a Q-cube framework of Q-learning
algorithm is proposed especially for this multi-microgrid non-cooperative bidding problem, which
addressed the exploitation–exploration issue.

3.1. Basic Definitions for Q-Learning

We base the Q-cube framework on an MDP consisting of a tuple 〈S, A, S′, r〉. Detailed
introductions of these variables are given as follows.

3.1.1. State Space

S represents the state space, which describes the state of MGOs in a real-time energy market.
As a multi-agent system, it is impossible and senseless to select different state descriptions for each
agent, whereas a common formulation is preferred. We propose to choose the real-time supply and
demand relationship to form the state space for the following reasons: (1) the SDR has a decisive
impact on bidding results. When the energy supply exceeds demand in a distribution network,
seller microgrids are more willing to cut their bidding prices to make more deals, and exceeded supply
is preferred to be stored in the BESS rather than selling to the grid at lower prices. In the meantime,
buyer microgrids are not eager to raise their bidding prices quickly, but they tend to buy more energy
for later use as the trading prices are much cheaper than those of the grid. The interactions between
price and quantity on two roles of the energy market participants still exist when the energy demand
exceeds supply. (2) The SDR reflects external energy transactions status of the networked microgrids.
The more balanced the supply and demand relationship is, the less energy networked microgrids
interacted with the distribution network. (3) The SDR describes the bidding situation as a public
information of the energy trading market, which addresses the issue of privacy protection.

In this paper, the real-time SDR of round n in time slot T is formulated as a normal distribution
with μ = 0 and δ = 0.3, whose value is extended to the interval of [0,2].

SDRn = 2 · 1√
2πδ

exp(− (CPn − μ)2

2δ2 ), (7)
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CPn =
∑ qn

seller−∑ qn
buyer

A
, (8)

where CPn is the clear power index, representing the clear power of the energy market in round n
divided by a pre-defined constant A.

A pre-selection on the value of δ is performed and the results are shown in Figure 5a. A small
choice of δ value (δ = 0.1) will cause a sharp increase of SDR during the interval of [−0.25, 0.25], which
makes the SDR meaningless in a large clear power index range. Meanwhile, a large δ value (δ = 0.5)
will reduce the sensitivity of SDR when the energy supply and demand are close to equilibrium.
Therefore, a compromise choice of δ value (δ = 0.3) is preferred.

(a) SDR function based on clear power (b) State division based on probability density distribution

Figure 5. Supply and demand relationship function and state division of the proposed
Q-cube framework.

The blue curve in Figure 5a shows the SDR under a different clear power index. When ∑ qn
seller =

∑ qn
buyer, SDRn = 1, the energy supply and demand attain equilibrium. When ∑ qn

seller ≥ ∑ qn
buyer,

SDRn ≥ 1, vice versa. The SDR is sensitive in the interval close to 1 as the equilibrium between energy
supply and demand is dynamic and in real time. In view of the fact that the SDR of energy trading
market is a continuous variable, it is impossible to consider this MDP problem in an infinite space.
In addition, it is impractical to model and simulate the energy trading market with limitless state
descriptions. As a common method of applying Q-learning algorithm in practical problems, the state
space should be divided into limited pieces for a better characterization of the SDR. For the Q-learning
algorithm proposed in this paper, the number of states should be even-numbered as the SDR function
is symmetrical. In addition, the probability of falling into each state should be equal. Without loss
of fairness, the probability density distribution of the SDR function is divided into eight blocks with
equal integral areas as shown in Figure 5b. These eight SDR intervals are defined as eight states in the
proposed state space S for all the MGOs. The clear power index is also divided into eight intervals,
corresponding to eight intervals of the SDR. When the clear power index is close to 0 (the market is near
the equilibrium between energy supply and demand), the interval length of state is small as in most
time slots the SDR experiences minor oscillation in the bidding rounds near the deadline. However, for
the states whose clear power index is far from 0, the interval length is large as the SDR isn’t sensitive,
which means that the microgrids in the distribution network want to escape from these states.

3.1.2. Action

A represents the set of eligible actions of MGOs, which are the variation of bidding price and
quantity in each bidding round. As most of the previous works aim at increasing market participants’
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profits via the dynamic adjustment of bidding pricing, we propose a two-dimensional formulation of
action for Q-learning. By covering both bidding price and quantity, the action space is extended to
a two-dimensional space rather than a set of single price actions, formulated as Equation (9):

an = (pn, qn) n = 1, 2, · · · , N. (9)

The basic idea on actions in this paper is that each MGO always optimistically assumes that all
other MGOs behave optimally (though they often will not, due to their exploration and exploitation
nature). In addition, all the MGOs play fair competition in the bidding process. Considering the
particularity of energy trading market and agent-based simulation environment, the concept of ’Basic
Action’ is created to describe the rational and conventional action of each MGO. One point needs to be
emphasized is that ’Basic Action’ is just a point in the action space, showing the general choices of
bidding price and quantity for MGOs. The mathematical expressions of basic price action are presented
as follows:

pn,basic
i = pT

i,step · (1 + TPn) · SDRFn, (10)

pT
i,step =

∣∣∣priceinitial
i − pricehistory,T

i

∣∣∣
β · N

, (11)

TPn = 1 − (1 − n
N
)e−1

, (12)

where pT
i,step represents the price changing step of MGO i, determined by MGO i’s initial bidding

price priceinitial
i and historical trading price pricehistory,T

i in time slot T as shown in Equation (11).
β is a regulation factor for the price changing step. As the QLCDA reaches the time deadline, both
buyer and seller MGOs are willing to make a concession on the bidding price to make more deals.
The setup of time pressure TPn as presented in Equation (12) describes the degree of urgency over
bidding rounds. Discussions on the choice of time pressure function have already been made in
previous research [19]. In this paper, we adopt a simplified form in which the time pressure of each
microgrid is only related to the bidding round index. The historical trading records of each microgrid
are ignored in the description of time pressure. SDRFn is a modified factor based on real-time SDR.
Different calculation expressions are adopted for buyer and seller MGOs as follows, inside which π is
an adjustment coefficient in the range of [0.3,0.5]. The setting of π measures the influence of SDR on
the basic bidding price:

SDRFn
i =

{
π · (1 − SDRn) + 1 for buyers,
π · (SDRn − 1) + 1 for sellers.

(13)

Accordingly, the basic quantity action is calculated as follows:

qn,basic
i =

{
qn

i ·
(
SDRn · PSn

i − 1
)

for buyers,
qn

i ·
(
(2 − SDRn) · PSn

i − 1
)

for sellers,
(14)

PSn
i = ρ + 2 · (1 − ρ) · N(PRn

i , μ, σ), (15)

PRn
i = λ · phistory,T

i − pre f erence,n
i

pt
hl − pt

ll
, (16)

where the PRn
i is a reference price factor calculated as a parameter of normal distribution, λ = 1 when

MGO i is a buyer, while λ = −1 when MGO i is a seller. pre f erence,n
i is the reference price of MGO i in

round n, calculated as the average price of potential transactions in the market. The values of μ and σ

in Equation (15) are the same as those in Equation (7). ρ is a pre-defined adjustment coefficient located
in the range of [0.95,1] for coordination with the change rate of SDR in Equation (14).
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Since the action space is a continuous one, it is impossible to explore the whole action space in this
problem. The idea of ’local search’ in heuristic algorithms is applied in the proposed Q-learning
algorithm: we intend to explore the neighborhood space of basic action on price and quantity
dimensions for better bidding performance in the QLCDA process. Based on the basic action obtained
in the former process, we search two directions of the price and quantity dimensions symmetrically,
therefore the number of actions in each dimension is odd. Supposing that we choose more than
two neighborhoods of the basic action in one direction, the total number of actions in this problem will
be at least 25 actions, which is impractical and meaningless in both modeling and simulation. To limit
the number of bidding actions and reduce computational complexity, only the closest neighborhoods
are taken into account. The neighborhood actions are calculated as follows, where ξ and τ indicate the
proximity of bidding price and quantity according to bidding experiences, respectively. ξ and τ are
independent variables that only describe the neighborhood relationship of bidding price and quantity.
Thus, a 3×3 action matrix is created as alternative behaviors of one MGO under a certain state. One
factor, in particular, needs highlighting: the nine actions under a certain state represents nine bidding
preferences and tendencies of each microgrid. Given that the SDR in one state might be different, the
nine actions are also SDR-based and not totally the same for one state:

pn,−
i = pn,basic

i − ξ · pn
i,step, (17)

pn,+
i = pn,basic

i + ξ · pn
i,step, (18)

qn,−
i = qn,basic

i · (1 − τ), (19)

qn,+
i = qn,basic

i · (1 + τ). (20)

3.1.3. Q-Values and Rewards

The goal of the Q-learning algorithm for bidding strategy optimization is to choose the appropriate
actions under different states for each MGO, and the Q-Values indicate the long-term values of
state-action pairs. In the former Q-learning process, the Q-values for state-action pairs are arranged
in the so-called Q-table. However, based on the action space, we mention, in the former chapter, a
Q-cube framework of Q-learning algorithm is proposed as shown in Figure 6, in which the colors of
state slices are corresponding to Figure 5.
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Figure 6. A Q-cube framework designed for the Q-learning algorithm.

The Q-value of taking one bidding action under one certain state is distributed in this Q-cube
as shown with a small blue cube inside. Generally speaking, the proposed Q-cube is a continuous
three-dimensional space, but, for practical purposes, we discrete the problem domain by taking
eight states, three bidding prices and three bidding quantities under consideration in this paper.
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Each MGO has a unique Q-cube showing the Q-value distribution in the proposed problem domain.
The Q-values in the Q-cube are not cleared to zero at the end of each time slot but will be applied
as initial configuration of the next time slot. The rolling iteration of Q-cube accumulates bidding
experience in the energy trading market.

r(s, a) is the reward function for adopting action a in state s. The selection of reward function is
crucial, since it induces the behavior of MGOs. Seeing that we consider the dual effects of bidding
price and quantity in QLCDA, both contributions of adopting one certain action should be taken
into account in the reward function. The mathematical expression of reward function is presented in
Equation (21). ω represents the weighted factor on bidding price and quantity. As price is the decisive
factor in deciding whether a deal is closed, we pay more attention to the bidding price, therefore ω is
usually set to be greater than 0.5:

r(s, a) = ω · rp(s, a) + (1 − ω) · rq(s, a). (21)

rp(s, a) and rq(s, a) represent the contributions of bidding price and quantity update on the
reward function, which are calculated as follows. All of the variable definitions are the same as those
in Equations (10)–(16):

rp(s, a) =

∣∣∣∣∣∣pn
i − phistory,T

i

∣∣∣− ∣∣∣pre f erence,n
i − phistory,T

i

∣∣∣∣∣∣
pT

i,step
, (22)

rq(s, a) =
λ · (qn

i − qinitial,T
i )

qinitial,T
i · (SDRn − 1)

. (23)

3.2. Update Mechanism of the Proposed Q-Cube Framework

In the proposed Q-learning-based continuous double auction energy trading market,
as two dimensions of MGOs’ action, bidding price is the key factor in deciding whether to close
a deal or not, bidding quantity affects the real-time SDR of the overall market. Meanwhile, the SDR
(as the MGOs’ states) has a decisive influence on MGOs’ actions by updating Q-Values. The coupling
relationship between MGOs’ actions and market SDR is modeled in this chapter, as shown in Figure 7.
One MGO takes an−1 in round n − 1 and the state transfers from sn−1 to sn. After calculating
rewards and updating Q-value, the probability of choosing any action in the action space is modified.
Afterwards, given the new Q-cube and market SDR, the MGO might choose an as the action in round
n and repeat the above process. Therefore, the state-action pair of one MGO in each bidding round is
formulated in a spiral iteration way, considering both local private information and public environment.
The Q-cube framework is a connector of the state perception process and a decision-making process,
which is the core innovation of this paper.

Round (n− 1) Round n Round (n+ 1)

sn−1

+

an−1

sn

+

an

sn+1

+

an+1

· · ·· · ·

· · ·· · ·

︸ ︷︷ ︸
Action Space

︸︷︷︸ State Space

Figure 7. The coupling relationship between microgrid operators’ actions and market supply
demand relationship.
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3.2.1. Q-Value Update

The common Q-Value update rule for the model-free Q-learning algorithm with learning rate α

and discount factor γ is given as follows:

Qn+1(sn
i , an

i ) = (1 − α) · Qn(sn
i , an

i ) + α ·
[

r(sn
i , an

i )− γ · max
∀ai

Qn(sn+1
i , an+1

i )

]
, (24)

where Qn+1(sn
i , an

i ) represents the updated Q-value for MGO i adopting action an
i under state sn

i in the
nth bidding round. When observing the subsequent state sn+1

i and reward r(sn
i , an

i ), the Q-value is
immediately updated. We adopt this common Q-value update rule for Q-learning in this paper.

The learning rate α and discount factor γ are two critical parameters of MGOs as they reflect each
MGO’s bidding preference. The learning rate defines how much the updated Q-value learns from
the new state-action pair. α = 0 means the MGO will learning nothing from new market bidding
information, while α = 1 indicates that the Q-value of a new state-action pair is the only important
information. The discount factor defines the importance of future revenues. The MGOs whose γ near
0 are regarded as a short-sighted agent as it only cares about gaining short-term profits, but, for the
MGOs whose γ is close to 1, they tend to wait until the proper time for more future revenues.

3.2.2. Action Update

In each round of QLCDA, for each MGO, firstly the basic action is calculated based on market
SDR and historical trading records as shown in Figure 8 with red balls in the action space. The colors
of action space slices represent the market state. The neighborhood actions are formed in the action
space as shown with blue blocks. A selection process is carried out by creating the probability matrices
of nine optional actions.
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Figure 8. The update process of bidding action in the proposed Q-learning algorithm.

In Equation (25), the action matrix An
i is composed by combining the optional bidding price and

quantity. Correspondingly, the elements the probability matrix Pron
i are formed according to ’ε-greedy’

strategy. The probability (xbb) of the basic action (abb
i = (pbasic

i , qbasic
i )) is given preferential treatment

and equals ε. For each microgrid, the setting of ε represents its degree of attention on optimal bidding
action choice in theory, which is diverse from each other. The probability of other neighborhood
actions are calculated by weighted sharing of the remaining probability according to their Q-value
(as Equation (26)). The sum of nine probabilities on actions equal to 1:

An
i =

⎡
⎢⎣ (p−i , q+i ) (pbasic

i , q+i ) (p+i , q+i )
(p−i , qbasic

i ) (pbasic
i , qbasic

i ) (p+i , qbasic
i )

(p−i , q−i ) (pbasic
i , q−i ) (p+i , q−i )

⎤
⎥⎦ ⇒ Pron

i =

⎡
⎢⎣ x−+ xb+ x++

x−b xbb x+b

x−− xb− x+−

⎤
⎥⎦ . (25)
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For example, x−+ represents the probability of choosing action a−+
i = (p−i , q+i ) under the

current state, which is calculated as follows:

x−+ = (1 − ε)· Qn(sn
i , a−+

i )

∑
∀a/abb

Qn(sn
i , ai)

. (26)

This selection mechanism means that all MGOs have a higher possibility of choosing actions with
higher Q-values in each round of QLCDA. By putting the MGOs’ best possible local actions together,
the most suitable actions for the current global state are generated in a distributed non-cooperative way.

4. Case Studies and Simulation Results

In this section, we investigate the performance of the Q-learning algorithm for continuous double
auction among microgrids by Monte Carlo simulation. The proposed algorithm is tested on the
realistic case in Guizhou Province of China. The distribution network near Hongfeng Lake consists of
14 microgrids with different scales and internal configurations. Detailed topology of the networked
microgrids are given in Figure 9. As power flow calculation and safety check are not the focus of this
paper, distance information and transmission price in this distribution network are not provided here.
The interested reader may refer to [24] for more details.

We simulate this non-cooperative energy trading market within a scheduling cycle of 24 h.
The QLCDA is performed every Δt = 0.5 h. A scheduling cycle starts at 9:00 a.m. The internal
coordinated dispatch of each microgrid is accomplished in advance, from which the dispatch results
are treated as initial bidding information in QLCDA. BESS properties of the 14 microgrids are provided
in Table A1, including capacity, initial SOC, charge and discharge restriction and charge and discharge
efficiency. Guizhou Grid adopts the peak/flat/valley pricing strategy for energy trading, which
divides a 24-hour scheduling cycle into three types of time intervals. The surplus energy injected to
the grid is paid at 0.300 CNY for each kWh in the whole day. In addition, buying energy from the grid
is charged at the price 1.197/0.744/0.356 CNY, respectively (see Table A2).

Figure 9. Network topology of 14 microgrids in Guizhou Province, China.

In order to simulate the microgrids’ preferences in decision-making, different risk strategies
are adopted by setting diverse Q-learning parameters. Fourteen microgrids’ values of learning rate,
discount rate and greedy degree are given in Table A3. Three risk strategies are defined and discussed
according to different Q-learning parameter choices:

• Conservative Strategy: the high value of α (ranged in [0.6,1]) indicates that the MGO is greedy
about new bidding information, but the higher choice of ε (ranged in [0.6,1]) indicates that he is
conservative on basic QLCDA bidding actions. In addition, he’s satisfied with a lower value of γ

(ranged in [0,0.4]) as future revenue is not important for him.
• In-Between Strategy: Ordinary choices of three parameters ranged in [0.4,0.6].
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• Risk-Taking Strategy: the MGO is not greedy about new bidding information (low value of α

ranged in [0,0.4]) but likes to explore more potential actions (low value of ε ranged in [0,0.4]) as
a risk-taker. In the meantime, he is eager for more future profits (high value of γ ranged in [0.6,1]).

Other hyper parameters in the proposed Q-learning algorithm are given in Table A4.
The proposed energy trading market model and QLCDA algorithm are implemented and

simulated using MATLAB R2019a on an Intel Core i7-4790 CPU, 3.60GHz. Three case studies on
bidding performances and profit comparisons are discussed in this section. All the three case studies
are simulated repeatedly for 30 times, among which the bidding result of one certain Monte Carlo
simulation is analyzed in detail in Case Studies 1 and 2, and the average values of bidding profits are
adopted to compare with the profits of two other energy trading mechanisms in Case Study 3.

4.1. Case Study 1: Bidding Performance of the Proposed Continuous Double Auction Mechanism

4.1.1. Bidding Performance of the Overall Energy Trading Market

The proposed continuous double auction energy trading mechanism achieves significant effects
on the energy trading among microgrids. Figure 10 shows the bidding process of price in Time Slot 12.
In Figure 10a, the bidding price of all microgrids in the whole time slot is presented. Starting with
different initial bidding prices, the slopes of price curves indicate different bidding strategies of the
MGOs. Due to the fact that bidding price is the key factor in deciding whether to close a deal or not,
different intersection points of the pricing curves represent deals under various market conditions.
Buyer/Seller MGOs with stronger willingness of reaching deals prefer to raise/drop their prices
quickly, expecting that their energy demand/supply is satisfied in the early stage of a time slot.
Although patient MGOs would like to wait until the deadline for a better trading price, they have to
experience fierce price competition near the deadline and face the possibility of no energy to trade.

(a) Bidding price in the whole time slot (b) Bidding price details in round 105-135

Figure 10. The bidding process of price in time slot 12.

Figure 10b shows the bidding price details in rounds 105–135 of time slot 12. MG 11 hadn’t
traded energy with other microgrids for a long time according to historical records. With stronger
willingness of selling energy, MG 11 drops its bidding price quickly and reaches a deal with MG 4 at
the price 0.530 CNY/kWh. Unmet energy demand of MG 4 is satisfied by MG 13 with a higher price
(0.579 CNY/kWh). MG 6 raises its bidding price slowly and closes deals with MG 9 and MG 10 at the
price of 0.481 CNY/kWh and 0.489 CNY/kWh, respectively. However, 27.016 kWh of energy demand
has to be bought from the grid with a higher price (0.744 CNY/kWh) as all the energy supply from
other microgrids is sold out. This shows a trade-off between price and trading opportunity: one MGO
might be eager for closing a deal, but the trading price might not be satisfactory. On the other hand,
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the energy trading market follows the principle of ’First, Bid, First, Deal’, which means the closer the
time to the deadline, the less energy one is able to trade.

Comparison on clear power curves before and after CDA is presented in Figure 11. Enhanced by
the proposed CDA mechanism, the distribution network achieves better performance on the balance
of energy supply and demand. As a result of more balanced energy trading market conditions, more
energy is transacted within the distribution network rather than trading with the grid, which reduces
long-distance energy transmission loss. With the help of BESS, an alternative form of ’demand response’
is performed among microgrids by exerting the potential capacity of elastic loads, which expands the
concept of demand response from time-slot-based to multi-agent-based by CDA. In addition, trading
prices are more reasonable and profitable, taking care of each MGO’s personal preferences.

Figure 11. Clear power of the overall energy trading market before/after continuous double auction.

The comparison of trading quantity before and after the proposed CDA is given in Table 1.
A significant effect could be obtained by adopting CDA as the trading quantity with grid decrease by
different degrees. For example, only 10.8% of the energy demand of MG 3 is provided by the grid,
while microgrids with heavy demand like MG 4 and MG 6 still depend on the grid to a large extent,
holding 65.5% and 57.1%, respectively. Seller microgrids’ dependency of the grid is obviously less
than that of buyer microgrids with an average percentage of 26.1% as they prefer to sell energy within
the distribution network. The BESS storage change and (dis)charge energy loss are also presented in
Table 1, from which we could find that most of the microgrids’ BESS obtain higher SOC at the end of
one scheduling cycle. The larger BESS capacity and the more active the participation in the trading
market, the more BESS (dis)charge energy loss will be caused.
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Table 1. Comparison of trading quantity before/after continuous double auction.

Trading Quantity MG 1 MG 2 MG 3 MG 4 MG 5 MG 6 MG 7

With Grid(Before)(kWh) 530.0 351.3 1540.7 1747.2 2840.3 6787.7 2167.5

With Grid(After)(kWh) 125.0 85.5 166.5 1145.2 741.1 3876.4 595.7
(23.6%) (24.4%) (10.8%) (65.5%) (26.1%) (57.1%) (27.5%)

BESS Storage Change (kWh) 21.7 13.3 55.5 31.2 32.0 151.1 36.1

BESS (Dis)Charge Loss(kWh) 7.5 8.1 14.6 10.9 26.6 51.9 10.4

Trading Quantity MG 8 MG 9 MG 10 MG 11 MG 12 MG 13 MG 14

With Grid(Before)(kWh) 3754.1 1640.0 1275.4 1209.2 1616.9 4427.7 2230.6

With Grid(After)(kWh) 1131.1 386.2 287.9 243.4 622.7 705.5 720.9
(30.1%) (23.5%) (22.6%) (20.1%) (38.5%) (15.9%) (32.3%)

BESS Storage Change (kWh) −5.9 15.2 14.2 3.9 26.4 −26.1 −9.7

BESS (Dis)Charge Loss(kWh) 16.5 12.7 7.7 12.5 20.1 33.9 34.8

4.1.2. Bidding Results of Specific Microgrids with Different Roles

The bidding results of specific microgrids with different roles are presented in this chapter,
including bidding price and quantity. Figure 12 gives the energy trading price of MG 4 and MG 12.
MG 4 plays the role of buyer in the whole scheduling cycle, and it successfully reaches deals with other
microgrids in most of the time slots as shown in Figure 12a. On no-deal time slots, it buys energy from
the grid at higher prices. During the valley interval, although the grid purchase price is low enough
(0.356 CNY/kWh), there are still plenty of opportunities to trade with other microgrids in consideration
of the real-time SDR. MG 4 succeeds at buying energy at lower prices in almost all the time slots in
this interval. Different from MG 4, MG 12 plays two roles in different time slots. The detailed trading
prices of MG 12 in time slots 9 to 32 are presented in Figure 12b. Good performance is obtained in both
roles that MG 12 plays: during buyer intervals, it reaches deals with other microgrids at prices lower
than the grid’s, while, in seller intervals, it sells energy in every time slot for higher profits. The overall
profit of MG 12 raised by 33.9% after joining the CDA energy trading market.

(a) Trading price of MG 4 in a 24h scheduling cycle (b) Trading price of MG 12 between time slot 9 and 32

Figure 12. Energy trading price of MG 4 and MG 12.

For MG 7, the bidding performance on quantity is presented in Figure 13a. As a buyer microgrid
in the whole scheduling cycle, the gaps between original bidding quantity curve and actual trading
quantity curve correspond to the real-time SDR. When SDR ≥ 1 (the original clear power ≥ 0 as shown
in Figure 13a above the blue horizontal line) in former and later time slots, MG 7 raises its trading
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quantity and stores more energy into its BESS to absorb the surplus energy in the market. During the
middle time slots when SDR < 1 (the original clear power < 0), part of the energy demand is provided
by its own BESS, which helps to balance the excessive energy demand in market. The two curves
coincide at the end of the scheduling cycle as the BESS stores enough energy in time slot 32 to 38
and SOC is near 1. The same characteristics could be found in the bidding performance of MG 12.
In Figure 13b, when energy demand exceeds supply as shown below the purple horizontal line, the
BESS of MG 12 discharges to satisfy the energy demand. More energy is sold in these time slots to
reach a better market SDR performance, while, during the nighttime, MG 12 charges the surplus
energy to its BESS rather than selling to the grid. It is obvious that the actual trading quantity curves
cohere better with the real-time SDR than the original bidding quantity curves in both the standpoints
of buyer and seller microgrids.

(a) Bidding quantity comparison of MG 7 (b) Bidding quantity comparison of MG 12

Figure 13. Bidding performance on quantity of MG 7 and MG 12.

The BESS SOC of MG 7 and MG 12 is presented in Figure 14, from which we could find the trend
of SOC curves coheres with that of the SDR. When SDR < 1, both MG 7 and 12 discharge their BESS to
compensate the lack of energy supply. The BESS of MG 12 releases all its energy and the SOC reaches
0 since time slot 16. However, when the energy supply exceeds demand during the nighttime, the
BESS starts to charge and save surplus energy for later use. The SOC of MG 7 reaches 100% since
time slot 40. Different from former research by [25], the charge and discharge behaviors of BESS are
restricted by ramp constraints, which makes the simulation results closer to reality. Due to BESS
capacity and (dis)charge energy loss, the regulatory ability of BESS on the energy trading market is
limited. When SOC = 0 or SOC = 1, internal re-scheduling of each microgrid could be developed for
greater bidding potential.

4.2. Case Study 2: Effectiveness Verification of the Proposed Q-Cube Framework

The Q-cube of a MGO is updated in each round of the whole scheduling cycle. Q-values are
iteratively accumulated following the proposed update rules. In order to display this distribution
in the three-dimension space, bidding actions are abstracted to nine actions. MG 6 and MG 13 are
chosen as the examples of risk-taking strategy and conservative strategy, respectively. The Q-value
distributions of these two microgrids are shown in Figure 15.
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Figure 14. Battery energy storage system’s SOC on MG 7 and MG 12.

As a risk-taker, the Q-value distribution in MG 6’s Q-cube is a non-uniform distribution with
a slight trench in the middle of action dimension as shown in Figure 15a. According to the Q-cube
framework proposed in this paper, the low value of MG 6’s greedy degree (ε = 0.1680) results in
its curiosity on the neighborhood actions of basic action (action 5) for all the states. Neighborhood
actions are given more opportunities to accumulate Q-values based on the action selection mechanism.
The eagerness of obtaining more future profits aggravates this phenomenon as the discount factor
(γ = 0.6721) is high. A low value of learning rate (α = 0.2617) indicates that new bidding information
in the real-time market has little impact on the choice of actions.

(a) MG 6 (Risk-Taking Strategy). (b) MG 13 (Conservative Strategy).

Figure 15. The Q-value distribution of microgrids adopting two risk strategies.

On the contrary, MG 13 chooses to be conservative in the QLCDA process, whose Q-value
distribution in the Q-cube is presented in Figure 15b. MG 13 likes to keep in touch with the latest
market information and prefers to choose the basic action under states near SDR = 1, which leads to
high values of learning rate (α = 0.6812) and greedy degree (ε = 0.8462). He is satisfied with current
revenues and doesn’t have much interest in exploring new actions, so the discount factor of MG 13 is
at a low level (γ = 0.333). Therefore, there is an obvious hump on the surface of Q-value plane around
the middle part (near Q (state 4, action 5) and Q (state 5, action 5)), showing that MG 13 is rational
and not greedy.
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The iteration results of Q-values of different microgrids prove that the proposed Q-Cube
framework for Q-learning algorithm is capable and effective in reflecting the microgrids’ characteristics.

4.3. Case Study 3: Profit Analysis on Different Energy Trading Mechanisms

To verify the performance of the proposed QLCDA, a profit analysis on different energy trading
mechanisms is carried out. Previous work of [19] on peer-to-peer energy trading mechanism is
introduced here for comparison. As shown in Table 2, three energy trading mechanisms are simulated
on the same case from Guizhou Grid for 30 times and the average values of energy trading profits are
calculated and analyzed for statistically significance. Negative values indicate the cost paid to peer
microgrids and the DNO. The proposed QLCDA mechanism is proved to have superior performance
over tradition energy trading mechanism as expected. In addition, for most microgrids, a certain
degree of increase on profits could be obtained compared to P2P mechanisms. The profits of seller
microgrids are commonly raised as clean energy generated during valley intervals could be stored
until the needed time rather than selling to the grid at lower prices. A 65.7% and 10.9% rise in the
overall profits of the distribution network can be achieved by the QLCDA mechanism compared with
that of the tradition energy trading mechanism and P2P mechanism, respectively.

However, for some buyer microgrids (particularly for MG 6), the profits by adopting the QLCDA
mechanism is less than that of the P2P mechanism. This could be explained by the following reasons:
(1) as presented in Table 1, the trading quantity is adjustable in the QLCDA mechanism, most of the
microgrids obtain higher BESS SOC at the end of one scheduling cycle, inside which MG 6 stores
the largest quantity of energy (151.1kWh). The profits by selling this part of stored energy are not
calculated in Table 2, while, in a P2P mechanism, the effect of applying BESS and changes in bidding
quantity is not taken into consideration. (2) MG 6 is a risk-taker based on its Q-learning parameters.
The low value of greedy degree (ε = 0.1680) and learning rate (α = 0.2617) indicate that MG 6 cares
less about new bidding information and wants to explore more potential actions rather than sticking
to the basic action. A high value of discount rate (γ = 0.6721) proves his eagerness for more future
profits, therefore it prefers to keep its BESS at a high SOC and seek deals with lower trading prices
near the deadline. From another standpoint of view, the profits analysis proves the effectiveness of the
proposed Q-Cube framework for the Q-learning algorithm on energy trading problems.

Table 2. Contrast of profits among three energy trading mechanisms 1.

MG 1 MG 2 MG 3 MG 4 MG 5 MG 6 MG 7

Profit in TM (CNY) −428.3 −281.5 −1224.7 −1429.4 −1989.0 −4542.4 −1516.6
Profit in P2PM (CNY) −340.9 −230.0 −993.5 −1090.6 −1483.0 −3539.1 −1199.6

Profit in QLCDAM (CNY) −313.7 −217.4 −892.1 −1154.5 −1494.1 −3989.2 −1143.2
Growth Rate(Over P2PM) 8.0% 5.5% 10.2% −5.9% −0.7% −12.7% 4.7%

MG 8 MG 9 MG 10 MG 11 MG 12 MG 13 MG 14

Profit in TM (CNY) 1126.2 491.9 295.4 −110.1 421.2 1328.3 515.6
Profit in P2PM (CNY) 1687.4 808.4 459.3 −70.5 581.0 1874.2 708.4

Profit in QLCDAM (CNY) 1875.4 897.0 471.3 29.3 564.2 2105.8 743.1
Growth Rate(Over P2PM) 11.1% 11.0% 2.6% 141.6% −2.9% 12.4% 4.9%

1 TM: Traditional Mechanism; P2PM: Peer-to-Peer Mechanism; QLCDAM: Q-learning based Continuous
Double Auction Mechanism.

Considering the equipment and operation costs of BESS, the proposed QLCDA mechanism might
not be the best choice for energy trading among microgrids, but the simulation results prove its
potential in increasing profits for microgrids with different configurations and preferences.

5. Conclusions

To better describe the characteristics of future electricity market, a non-cooperative continuous
double auction mechanism, considering the coupling relationship of bidding price and quantity,
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was developed in this paper to facilitate energy trading among microgrids in the distribution
network. An alternative form of ’demand response’ is performed in the proposed energy trading
mechanism by exerting the potential capacity of BESS, which expands the concept of demand
response from time-based to multi-agent-based. The Q-learning algorithm was introduced to CDA
mechanism as a decision-making method for each microgrid. To solve the existing defects on the
application of Q-learning algorithm in power system, a non-tabular framework of Q-values considering
two dimensions of the bidding action is proposed as a Q-cube. In addition, corresponding parameter
setting and state-action architecture are designed to better reflect the microgrids’ personalized bidding
preferences and make rational decisions according to real-time status of the networked microgrids.
Simulations on a realistic case from Hongfeng Lake, Guizhou Province, China prove the efficiency
and applicability of the proposed CDA mechanism and Q-cube framework. All of the microgrids
are able to make an appropriate negotiation response to the global real-time supply and demand
relationship without disclosing personal privacy. A 65.7% and 10.9% increase in the overall profit of
the distribution network could be achieved by applying a QLCDA mechanism compared with the
traditional energy trading mechanism and P2P energy trading mechanism, respectively. In addition, the
Q-value distribution in the proposed Q-cube gives a good response to microgrid’s bidding behaviors
and preferences on both theoretical analysis and simulation results. As has been demonstrated in this
paper, the proposed Q-cube framework of a Q-learning algorithm for a continuous double auction
mechanism can be applied to more energy trading markets in future EI.

There are still some limitations of the proposed Q-cube framework to be discussed: the interaction
between bidding price and quantity should be better described as many other factors could have an
influence on this coupling relationship, and it is still difficult to summarize the microgrids’ energy
bidding preferences with these existing parameters. Moreover, the power flow calculation should be
considered synchronously as the energy trading quantity might cause safety issues in the distribution
network. In future works, a two-layer energy bidding architecture could be discussed considering both
QLCDA among microgrids and internal coordinated dispatch inside microgrids. The interaction of
these two layers is worth studying. The power transmission limitations should be considered to ensure
the safety of energy market. In addition, further extensions are to be carried out on the time-varying
setting of QL parameters and a more appropriate description of the reward function.
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Abbreviations

The following abbreviations are used in this manuscript:

EI Energy Internet
DER Distributed Energy Resource
DG Distributed Generation
BESS Battery Energy Storage System
EV Electric Vehicle
DL Dispatchable Load
RES Renewable Energy Source
ICT Information and Communication Technology
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MGO Microgrid Operator
DNO Distribution Network Operator
CDA Continuous Double Auction
P2P Peer-to-Peer
RL Reinforcement Learning
QL Q-learning
MDP Markov Decision Process
ICD Internal Coordination Dispatch
SOC State of Charge
QLCDA Q-learning based Continuous Double Auction
SDR Supply and Demand Relationship

Appendix A. Supplementary Case Data from the Guizhou Grid, China

Table A1 shows the BESS properties of the 14 microgrids in the Guizhou Grid, including capacity,
initial SOC, charge and discharge restriction and charge and discharge efficiency.

Table A1. Battery energy storage system properties of 14 microgrids in the Guizhou Grid.

MG 1 MG 2 MG 3 MG 4 MG 5 MG 6 MG 7

Capacity(kWh) 40 20 80 100 100 300 80
Initial SOC (%) 33.74 30.60 68.78 68.05 49.65 54.93 60.59

Charge & Discharge Restriction(%) 24.05 16.18 16.39 15.55 15.98 16.15 18.23
Charge & Discharge Efficiency 0.8543 0.9207 0.9465 0.8756 0.9156 0.9400 0.9309

MG 8 MG 9 MG 10 MG 11 MG 12 MG 13 MG 14

Capacity(kWh) 150 70 50 60 100 200 150
Initial SOC (%) 60.59 44.99 32.84 59.05 48.00 69.58 62.65

Charge & Discharge Restriction(%) 18.23 20.91 19.93 20.91 23.39 18.96 18.87
Charge & Discharge Efficiency 0.9309 0.8899 0.8933 0.8791 0.8891 0.9004 0.8622

The peak/flat/valley electricity price formulated by Guizhou Grid, China is presented in Table A2,
which divides a day into three types of time internals.

Table A2. Peak/flat/valley electricity price formulated by the Guizhou Grid.

Time Interval Interval Type Price (CNY/kWh)

8 a.m.–11 a.m., 6 p.m.–9 p.m. Peak 1.197
6 a.m.–8 a.m., 11 a.m.–6 p.m., 9 p.m.–10 p.m. Flat 0.744

10 p.m.–6 a.m. Valley 0.356

The learning rate α, discount factor γ and greedy degree ε parameters of the 14 microgrids are
given in Table A3.

Table A3. Q-Learning Parameters of 14 Microgrids.

MG 1 MG 2 MG 3 MG 4 MG 5 MG 6 MG 7

Learning Rate α 0.5107 0.3205 0.7124 0.7969 0.7169 0.2617 0.6210
Discount Factor γ 0.5240 0.6423 0.7569 0.3373 0.7781 0.6721 0.4231
Greedy Degree ε 0.6564 0.3564 0.8156 0.4961 0.3485 0.1680 0.4894

MG 8 MG 9 MG 10 MG 11 MG 12 MG 13 MG 14

Learning Rate α 0.3546 0.5083 0.3291 0.5566 0.2371 0.6812 0.2996
Discount Factor γ 0.4670 0.7065 0.2570 0.4146 0.6397 0.3330 0.4062
Greedy Degree ε 0.3648 0.2658 0.6173 0.3173 0.4983 0.8462 0.7943

The values of hyper parameters that appear in this paper are given in Table A4.
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Table A4. Hyper parameters settings for the proposed Q-learning algorithm.

Parameter θ μ δ β π ρ ξ τ ω

Value 0.50 0 0.30 1.20 0.40 0.98 0.30 0.10 0.70
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Abstract: Renewable energy sources produce less environmental impact and have little marginal cost.
Thus, because of these characteristics, it is desirable to disseminate it for the purpose of economic
efficiency. Because of the uncertainty in the supply of renewable energy and the special feature of
electricity as a good, such as merit order curve, introducing forward markets is an essential factor in
a liberalized market. In European countries, which have already established several mechanisms for
managing liquidity including markets with several timelines, the market liquidity invites the investor
to perform some speculative action. We present a simple electric power market model to analyze the
speculative actions of electricity suppliers and the price effect of such actions. Moreover, we found
that the speculative action improves the inelasticity of the demand in electricity market.

Keywords: electricity market; speculative trading; forward market

1. Introduction

In Japan, power-related administrative reforms have been progressing since the 2011 earthquake.
The liberalization of the electricity market is a major pillar of this policy. From the ministry of economy,
trade and industry (METI) report [1], until now, the power market has been monopolized by regional
corporations, and a single large power company has provided almost all of the power in a given
region. The Tokyo Electric Power Company, which caused a nuclear accident, is one such company.
The public reaction on the accident has led to a demand for a system that will allow consumers to
select a preferred power company. In fact, the liberalization of electricity retail began in 2016, and it is
expected to continue being liberalized going forward.

The Japanese government is promoting the liberalization of electricity concurrently with the
introduction of renewable energy; furthermore, it is trying to promote power trading through one
market player, namely the Japan Electric Power Exchange (JEPX). In the spot market, all bids are
matched every 30 min; thus, 48 products are traded every 30 min per day. The minimum volume that
can be traded during a 30-min bid is 1 MW (equivalent to 500 kWh). The bid supply and demand
are matched by using the price auction method. In the case of congestion of electricity, the exchange
is split by a regional hub, and the transaction is carried out in each split market. When there is no
intersection between the supply and demand caused by oversupply, the spot price is deemed to be
zero (see JEPX website [2]).

However, as we explain in Section 3, the electricity market possesses some special properties
(such as demand price-in-elasticity and merit order curve) that are different from the normal goods
handled in economics. For this reason, electric power industries in regions such as Europe also
supplement the electricity market through various mechanisms. The forward market (that is,
the opening up of an electricity market before electric power is actually supplied) is one of the
mechanisms for increasing the liquidity of electric power.
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Of course, the forward market has already been opened by using JEPX. There are four types of
forward products, including monthly 24-h products, weekly 24-h products, monthly daytime products,
and weekly daytime products. Bid supply and demand is matched through continuous sessions.

The development of forward markets is also important from the perspective of renewable energy
propagation. The growing popularity of renewable energy is, of course, a natural consequence of
nuclear power plant accidents. Nuclear power has a lower environmental impact compared to thermal
power, and it has been introduced for that purpose in Japan. Furthermore, the policy for cleaner
renewable energy achieved national attention after the earthquake. However, renewable energy is
produce through a variable energy system in which the amount of power generation is affected by
various environmental factors such as sunshine hours, wind speed, and rainfall. Because weather
information changes from moment to moment, the existence of markets with various timelines that
correspond to such information is also essential for considering business operator’s risk aversion.

Previous research has pointed out that increasing the liquidity of renewable energy is also
an important factor in the penetration of renewable energy; thus, based on this aspect as well,
the forwards market is an essential system. For example, researchers investigating wind power
generation in Germany pointed out the importance of increasing the liquidity of electricity (Holttinen
(2005) [3], Ummels et al. (2006)) [4]. Markets with several timelines raise the liquidity of electricity and
it becomes easy to trade electricity produced by renewable energy.

However, increasing the amount of trading opportunities includes one other aspect: allowing
market participants to dynamically perform speculative actions. Electric power is difficult to save,
but if the liquidity of the market increases, and the electricity transaction becomes easier, it is natural
that some market players make profits by using price differences. In this paper, we use a simple model
based on JEPX to analyze the speculative behavior in the dynamic power market. Moreover, we show
that the demand inelasticity is improved by the speculative trading. The inelasticity of demand in the
electricity market is well known, and it is one of the causes of inefficiencies, such as price manipulation
by suppliers. However, our findings show that speculative action may improve the inelasticity and
increase market welfare. Our model is based on JEPX; however, the basic factor of the model is not
specific to Japan. This model can be applied as a more general model in electricity markets.

The rest of the paper is organized as follows. Section 2 introduces related literature, and Section 3
explains the standard electricity market features. Section 4 then introduces the heterogeneous belief
model, and it includes many of the electricity market features noted in Section 3. Section 5 presents
the theoretical results and discusses some policy implications. Finally, Section 6 provides some
concluding remarks.

2. Related Literature

Following the full-scale liberalization of electricity retailing, constructing forward market has
become an urgent agenda for the further vitalization of the electricity wholesale market, which is
an important source of power procurement for electricity retailers. It is crucial to develop an electricity
forwards market that can effectively aid the formation of fair and transparent price indicators and help
to hedge against the risk of fluctuations in electricity wholesale prices.

Lucia et al. (2002) [5] and Pilipovic (1998) [6] examined the importance of the regular pattern in the
behavior of electricity prices and its implications for the purposes of forward pricing. Other empirical
papers, such as those by Escribano et al. (2002) [7], Eydeland et al. (2003) [8], Huisman et al. (2003) [9],
and Maekawa et al. (2018) [10], have introduced a panel model for determining hourly electricity
prices in forward markets and thus examined their characteristics. These models consider several
factors: seasonality, regime switching, or price spikes.

Research in this field has been actively conducted recently. For example, Botterud et al. (2010) [11]
analyzed 11 years of historical spot and forward prices from the hydro-dominated electricity market
and found that forward prices tended to be higher than spot prices.
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By using multivariate models, Raviv et al. (2015) [12] demonstrated that the disaggregated hourly
prices contained useful predictive information of the daily average price in the Nord Pool market.

All these papers utilized an empirical perspective. However, to understand the relationship
between spot prices and forward prices, it is essential to construct a microeconomic theoretical model.
The power market has many special conditions, and it is difficult to simply adopt any particular
economic point of view.

In response to these empirical studies, power market prices are being modeled in many studies.
There is a long list of papers for wholesale power prices and electricity derivatives (e.g., Cartea et al.
(2005) [13], Weron (2007) [14], Hikspoors et al. (2007) [15], Benth et al. (2008) [16], and Jaimungal et al.
(2011) [17]). Their models are very sophisticated and their relevance to the empirical data is deep.
However, because they emphasize the relationship between investors and the market, they are not
an economically closed model. To understand the relationship between spot prices and forward
prices, it is essential to construct a microeconomic theoretical model. However, the power market
has many special conditions, and it is difficult to simply adopt any particular economic point of view.
The construction of theoretical model is expected to facilitate easier utilization of economic findings.
We introduce a speculative model with heterogeneous beliefs to the electricity market.

Similar to our research, Cartea et al. (2018) [18] derived an investor’s optimal trading strategy of
electricity contracts traded in two locations. Their strategy was based on ambiguity averse to price
spikes. Our model is to analyze speculative behavior of the more essential power market. We add
more fundamental condition of electricity market features to a speculative market model and analyze
speculative trading by electric suppliers, not investors.

The purpose of this paper is to provide a new theoretical foundation to understand the factors that
drive the electricity markets. In our model, speculative behavior has a strong influence on the price of
the electricity market. In addition, it is due to the strong presence of market participant heterogeneity.

The field of speculative model construction along with heterogeneous belief has been the target of
study for a long time. If all investors possess a common belief, there is no incentive for trading assets.
However, as some heterogeneity exists in investors’ belief, each investor assigns a different value to
the asset, and a trade can occur.

At first, Miller (1977) [19] and Harrison et al. (1978) [20] created speculative models by using the
heterogeneous belief agent. Townsend (1983) [21] and Singleton (1987) [22] pointed out the importance
of heterogeneous beliefs in economics. Market prices are influenced by fundamentals, but players’
beliefs are also essential factors for determining prices. Sheinkman et al. (2003) [23] evolved these
models to adapt to more general asset models. Thus, heterogeneity is treated in the theoretical model
as a large driving force that drives the market.

For instance, in the energy market, as discussed by Gabriel et al. (2009) [24], investors can exert
both strategic and hedging behaviors by utilizing heterogeneous expectations. Utilizing significant
evidence, Joets (2015) [25] found that energy markets are composed of heterogeneous traders who
exhibit different behaviors depending on the intensity of the price fluctuations and the uncertainty.

This paper uses the heterogeneity of market participants to create a new price model of speculative
electricity market. We found that the speculative trading relaxes the price spikes. Electric price spikes
are discussed in many papers (Huisman et al. (2003) [9], Weron et al. (2004) [26], Cartea et al.
(2005) [13], Escribano et al. (2002) [7], Knittel et al. (2005) [27] and Chan et al. (2008) [28]). In these
papers, some quantitative models are embedded with price spikes by using several factors such as
seasonality, risks and events. Although the relationship between our speculative behavior and the
price spike is simple, it can also contribute to the development of these studies.

3. Model Bases and Materials: Electricity Market Features

Our model was created based on the features of these JEPX market attributions. The following
conditions are assumed in our model.

• Cost function follows the “merit order curve”.
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• There are two types of suppliers: normal and renewable suppliers.
• There are two markets: forward market and spot market.
• Consumers’ demand curve is inelastic to the price.
• Only non-renewable suppliers have budgets for speculative trading.
• All suppliers and consumers are price-takers.

Since the marginal cost is almost constant under the same power generation method, the power
generation company efficiently generates power to meet the limits such that marginal costs remain
low in accordance with the demand.

In a power market, “merit order effect” is used as a term to describe the mechanism by which
the market price is determined. The electric power supply is determined based on the “merit order”;
among these, the sources with the cheapest marginal costs (mostly renewable energy sources such
as wind power, solar energy, hydroelectric power, and nuclear power) will be sold more quickly.
Renewable energy sources such as photovoltaic solar power, wind power, and hydroelectric power are
located at the left end in the merit order curve because they have little marginal costs. Based on this,
nuclear power, coal, oil, and natural gas follow in order (see Figure 1).

Cost/Price(yen/MWh)

power volume
Wind Hydro Nuclear Coal Gas

0

/Solar
Oil

(MWh)

Figure 1. Merit order curve.

For the purposes of this study, we assumed that there are two types of suppliers: normal suppliers
and renewable suppliers. Although regional monopolistic companies participate in the electricity
market, there are no regional differences in power prices in areas other than Hokkaido, and, as a result
of inter-regional competition, a single company cannot wield exclusive market power in JEPX. Recently,
new suppliers who deal with renewable energy sources have begun to participate in JEPX, but most of
them are small and local companies.

This paper’s major results include determining the relationship between forward price and spot
price. Two types of products are currently being traded on JEPX: spot market products and forward
market products. Moreover, there are four types of forward products: monthly 24-h products, weekly
24-h products, monthly daytime products, and weekly daytime products. For simplicity, we assume
that there are two market types in the model: spot market and forward market.

Power demand also has specific characteristics in economic theories. It is well-known that
electricity demand is very inelastic to price. Naturally, a major reason is that electricity is an essential
item. Electric power is one of the essential infrastructures of modern society, and it is very difficult
to live without electric power in countries where urbanization has advanced. The difficulty of
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saving electricity is another factor of the inelasticity. If an appropriate storage system is not in
place, it is inflexible with respect to price, as it is impossible to buy electricity when its price is low and
to consume it when its price is high.

In our model, electricity was supplied through two resources: renewable resources where the
marginal costs are zero and non-renewable energy resources, such as thermal power, where the
marginal costs can be denoted with a positive real number a.

Our model is based on the particular situation of JEPX. In Japan, JEPX, the only power trading
market, was established during the trend of electricity liberalization. JEPX was established through
investments from electric power companies and new electric power companies, and started trading
from 2005 onwards. Since only members of JEPX can trade in the market, general consumers cannot
buy electricity directly. Therefore, we assumed that all market players were price-takers. No one has
the market power required for controlling electricity prices.

4. Theoretical Method

4.1. Model Settings

We formulated the following equations as an original model. Suppliers can produce electricity at
t = 2, and they can trade them at t = 1. The trading good for t = 1 is not electricity; rather, it is the
right to sell electricity at t = 2. Therefore, at date 1, the suppliers who expect higher prices at date 2
have an incentive to buy them, and those who expect lower prices at date 2 have an incentive to sell
them.

There are two types of electricity suppliers: renewable suppliers and normal suppliers.
Renewable suppliers can produce electricity by utilizing renewable resources, and their marginal

costs thus tend to be zero. They are small firms and have no budgets for speculation.
Normal suppliers are conventional suppliers. They produce electricity at marginal costs a > 0.

They have budgets I > 0 for speculative trading.
At t = 1, the electricity supplied at t = 2 is traded in the market. p1 is t = 1 price, and p2 is

t = 2 price.
At t = 1, all firms can watch p1 and determine the trading volume. All suppliers can sell electricity,

but only normal suppliers can buy electricity in the market (renewable suppliers have no budgets for
this activity).

All suppliers have beliefs about renewable supply at t = 2, R2. If some firms expect high volumes
of renewable supply at t = 2, they must also expect low electricity prices at t = 2, Ei[p2].

They determine their trading strategy based on their beliefs about Ei[p2].
Profit maximization at t = 1 is as follows:

Maxx1,xb (p1 − a)x1 + Ei[v(x1, xb)]

s.t .x1 ≤ X, p1xb ≤ I, x1, xb ≥ 0
(1)

x is the selling volume, xb is the purchase volume, and v(x1, xb) is the value function for t = 2.

v(x1, xb) = Maxx2 (p2 − a)x2 + p2xb

s.t. x2 ≤ X − x1, x2 ≥ 0
(2)

They determine the appropriate date for selling their electricity by comparing the prices and
marginal costs. For example, if p1 is higher than their expected forward price Ei[p2] and higher than
marginal cost a, they sell the electricity.
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Renewable suppliers are authorized to sell R1 units of electricity. R1 is interpreted as the minimum
supply value for renewable energy sources (R1 can be zero). The main problem of renewable suppliers
can be expressed as follows:

Maxx1 p1x1 + Ei[v(x1)]

s.t. x1 ≤ R1, x1 ≥ 0
(3)

x is the selling volume, and v(x1) is the value function for t = 2.
At t = 2, renewable suppliers can sell an additional R2 units of electricity. R2 is a random variable,

and it is realized at date t = 2.

v(x1) = Maxx2 p2x2

s.t. x2 ≤ R1 + R2 − x1, x2 ≥ 0
(4)

Because their marginal costs amounts to 0, their strategy is simpler than that of the normal
suppliers. If p1 > Ei[p2], they usually sell electricity at t = 1; otherwise, they tend to wait until t = 2.

The main way to solve the problem can be expressed as follows:
Normal suppliers’ strategy at t = 1 can be expressed as follows:

x1 = X, xb = 0 if p1 > Ei[p2] and p1 ≥ a (5)

x1 = 0, xb = 0 if p1 > Ei[p2] and p1 < a (6)

x1 = 0, xb =
I

p1
if p1 ≤ Ei[p2] (7)

Renewable suppliers’ strategy at t = 1 is:

x1 = R1 if p1 > Ei[p2] (8)

x1 = 0 if p1 ≤ Ei[p2] (9)

Normal suppliers’ strategy at t = 2 can be expressed as follows:

x2 = X − x1 if p2 ≥ a (10)

x2 = 0 if p2 < a (11)

Renewable suppliers’ strategy at t = 2 can be expressed as follows:

x2 = R1 + R2 − x1 (12)

The consumers’ demand is d1(p1) at t = 1. This is the industrial firm’s demand. The consumers’
demand at t = 2 is d2(p2). We assumed that little elasticity would exist. That is, d′1(p1) < 0,
and d2(p2) < 0. We assumed limp1→∞d1(p1) = 0, and limp2→∞d2(p2) = 0.

4.2. Model Equilibrium

The market equilibrium is determined by the intersection between the supply and demand.
We can solve this model by conducting backward induction.

The equilibrium at t = 2 matches the normal electricity noted in Section 3.
To explain the equilibrium, we note the total electricity sold at date 1 as Xb.

Xb =
∫

i
xb

i di (13)
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The market equilibrium is determined with some price p1 (see Figure 2).

a

0

X + R1 + R2R1 + R2

D2(p2)

−d1(p1) −d1(p1)

volume

price

Figure 2. Date 2 market equilibrium.

Total demand D2(p2) is expressed as follows:

D2(p2) = d2(p2) (14)

Total supply S2(p2) is expressed as follows:

0 ≤ S2(0) ≤ R1 + R2 + Xb − d1(p1) if p2 = 0 (15)

S2(p2) = R1 + R2 + Xb − d1(p1) if 0 ≤ p2 ≤ a (16)

R1 + R2 + Xb − d1(p1) ≤ S2(p2) ≤ R1 + R2 + X − d1(p1) if p2 ≥ a (17)

The market equilibrium is determined through the intersection of the demand and supply functions:

D2(p2) = S2(p2) (18)

The electricity price at t = 2, p2 is expressed as follows:

p2 = 0 if d2(0) + d1(p1) ≤ R1 + R2 + Xb (19)

0 < p2 < a if d2(0) + d1(p1) > Xb + R1 + R2 and d2(a) + d1(p1) ≤ Xb + R1 + R2 (20)

p2 = a if d2(a) + d1(p1) > Xb + R1 + R2 and d2(a) + d1(p1) ≤ X + R1 + R2 (21)

p2 > a if d2(a) + d1(p1) > X + R1 + R2 (22)

p2 depends on the renewable supply R2 and the price at t = 1, p1.
The market equilibrium is determined by the intersection of the demand and supply functions:

D2(p2) = S2(p2) (23)

The belief of p2 depends on the belief of R2 and p1.
Let Fp1(Ei[p2]) be the distribution of the expected price at t = 2 at price p1. For solving the

equilibrium, we need the following assumption.

Assumption 1. If p ≤ p′, for all Ei[p2], Fp(Ei[p2]) ≤ Fp′(Ei[p2]).
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Although this is an assumption, we check whether this assumption is satisfied through the market
equilibrium.

At t = 1, the population of suppliers who have beliefs p1 > Ei[p2] is 1 − Fp1(p1).
Therefore, at t = 1, if p1 ≤ a, 1 − Fp1(p1) normal suppliers buy electricity, and Fp1(p1) renewable

suppliers sell electricity.
p1 > a, 1 − Fp1(p1) normal suppliers buy electricity, and Fp1(p1) renewable and normal suppliers

sell electricity.
Total demand D1(p1) is expressed as follows:

D1(p1) = d1(p1) + (1 − Fp1(p1))
I

p1
(24)

An analysis of Assumption 2 showed that the demand function is decreasing: limp1→0D1(p1) = ∞,
and limp1→∞D1(p1) = limp1→∞d1(∞) = 0. Total supply S2(p2) is expressed as follows:

Fp1(p1)R1 if p1 ≤ 0 (25)

Fa(a) ≤ S1(a) ≤ Fa(a)(R1 + X) if p1 = a (26)

Fp1(p1)(R1 + X) if p2 ≥ a (27)

An analysis of Assumption 2 showed that the supply function is increasing in p1, and S(0) = 0
limp1→∞S1(p1) = R1 + X. The market equilibrium is determined by the intersection of the demand
and supply functions (see Figure 3):

D1(p1) = S1(p1) (28)

The electricity price at t = 1, p1 is expressed as follows:

d1(p1) + (1 − Fp1(p1))
I

p1
= Fp1(p1)R1 if p1 ≤ a (29)

Fa(a)R1 < d1(p1) + (1 − Fa(a))
I

p1
< Fa(a)R1 + Fa(a)X if p1 = a (30)

d1(p1) + (1 − Fp1(p1))
I

p1
= Fp1(p1)R1 + Fp1(p1)X if p1 > a (31)

D1(p1) is decreasing, and S1(p1) is increasing.

limp1→0D1(p1) = ∞ (32)

limp1→∞D1(p1) = limp1→∞d1(p1) = 0 (33)

limp1→0S(p1) = S(0) = 0 (34)

limp1→∞S1(p1) = R1 + X (35)
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0

X + R1
Fa(a)R1

D1(p1)

volume

price

Figure 3. Date 1 market equilibrium.

5. Results and Discussion

This model has a mixed structure; it includes aspects of the heterogeneous belief model as well
as the electricity market. Therefore, it includes many special features that are not available in other
models. As noted, the shape of supply curve at date 1 is one of them. This shape is derived from the
electricity market model. Electricity suppliers have ladder cost-related functions, and their strategy
depends on the shape of that functions. We analyzed three major points of this model: price relation,
speculative trading effect, and belief effect.

5.1. Price Relation

The market at date 2 is simpler than the market at date 1. However, the date 2 price is influenced
by the date 1 price p1. The next lemma shows the relation between p1 and p2.

The market equilibrium at date 2 is simpler than the date 1 equilibrium. As noted, total supply
S2(p2) is expressed as follows:

0 ≤ S2(0) ≤ R1 + R2 + Xb − d1(p1) if p2 = 0 (36)

S2(p2) = R1 + R2 + Xb − d1(p1) if 0 ≤ p2 ≤ a (37)

R1 + R2 + Xb − d1(p1) ≤ S2(p2) ≤ R1 + R2 + X − d1(p1) if p2 ≥ a (38)

Xb electricity units are sold by normal suppliers at date 1. Therefore, based on the date 1
equilibrium, the following can be expressed:

Xb = Fp1(p1)X (39)

Therefore, Xb is an increasing function of p1. Moreover, d1(p1) is a decreasing function of p1.
Thus, if p1 gets higher (and other conditions at date 2 remain equal), total supply moves towards the
right. As a result, p2 decreases (see Figure 4).

We can examine Assumption 2 by this price relation. Higher p1 implies lower p2 for all suppliers;
therefore, p1 ≤ p′1 for all Ei[p2].

Fp1(Ei[p2]) ≤ Fp′1
(Ei[p2]) (40)

This implies that Assumption 2 is satisfied by this equilibrium.
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Figure 4. Date 2 market equilibrium with higher p1.

5.2. Speculative Trading

Interestingly, the date 1 supply spikes at price p1 = a. The optimistic normal suppliers have the
incentive to sell electricity at date 1, but their marginal cost is a. Therefore, they choose to sell electricity
only if p1 exceeds a.

If the speculative trade is prohibited, the market structure become very simple. Suppliers cannot
buy electricity at t = 1; that is, xb must be 0. Therefore, normal suppliers’ profit maximization at t = 1
changes as follows:

Maxx1,xb (p1 − a)x1 + Ei[v(x1)]

s.t. x1 ≤ X, p1xb ≤ I, x1 ≥ 0
(41)

x1 is the selling volume, and v(x1) is the value function for t = 2.

v(x1, xb) = Maxx2 (p2 − a)x2

s.t. x2 ≤ X − x1, x2 ≥ 0
(42)

The renewable suppliers face the same problem. Thus, the market without speculative trading
equilibrium is as follows:

d1(p1) = Fp1(p1)R1 if p1 ≤ a (43)

Fa(a)R1 < d1(p1) < Fa(a)R1 + Fa(a)X if p1 = a (44)

d1(p1) = Fp1(p1)R1 + Fp1(p1)X if p1 > a (45)

p2 = 0 if d2(0) + d1(p1) ≤ R1 + R2 (46)

0 < p2 < a if d2(0) + d1(p1) > R1 + R2 and d2(a) + d1(p1) ≤ Xb + R1 + R2 (47)

p2 = a if d2(a) + d1(p1) > R1 + R2 and d2(a) + d1(p1) ≤ X + R1 + R2 (48)

p2 > a if d2(a) + d1(p1) > X + R1 + R2 (49)

Because suppliers cannot buy the electricity, the demand on date 1 is only d1(p1).
Because optimistic suppliers expect that renewable supplies are low and electricity prices at t = 2

is high, they buy date 1 electricity for the purpose of making profits through resale. The date 1 price
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p1 is affected by the elasticity of the demand. Even if the consumers’ demand d1(p1) is inelastic with
regard to the price, total demand is not inelastic with regard to the price.

Lemma 1. The total demand becomes more elastic with regard to the price through speculative trading at t = 1.

Proof. In the speculative trading model, the date 1 total demand is elastic.

D1(p1) = d1(p1) + (1 − Fp1(p1))
I

p1
(50)

Even if the consumers’ demand d1(p1) is perfectly inelastic with regard to the price, the total
demand is not inelastic with regard to the price.

This simple lemma implies that the trade of the suppliers has a role in establishing stability in the
electricity market. If speculative trade is prohibited, the price p1 jumps from 0 to a, with demand for
d1 shifting (see Figure 5).

a

0

X + R1
Fa(a)R1

D1(p1)

volume

price

Figure 5. Date 1 market equilibrium without speculative trading.

Governments may often worry about consumers’ surplus in the speculative electricity market.
Interestingly, consumers’ surplus is not always lower than that of the market without resale.

5.3. Heterogeneous Belief

The market equilibrium is heavily influenced by the suppliers’ beliefs. It is essential to compare
some measures of optimistic beliefs.

Assumption 2. Gp1(p2) > Fp1(p2) for all p1, p2.

This means that, with distribution Fp1 , for all p1, the population that expects to encounter a date 2
price that is higher than p2, which is larger than that with Gp1 . Therefore, Fp1 is a more optimistic
distribution than Gp1 .

Lemma 2. The market price p1 is higher under Fp1 compared to that under Gp1 .

Proof. This implies D1(p) under G(d) is lower than that under F(d) for all d. Similarly, S1(p) is higher
than that under F(d). Then, the date 1 price p is lower than that under F(d). This is because the date 2
price p2 is expressed as follows:

d1(p1) + (1 − Fp1(p1))
I

p1
= Fp1(p1)R1 if p1 ≤ a (51)
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Fa(a)R1 < d1(p1) + (1 − Fa(a))
I
a
< Fa(a)R1 + Fa(a)X if p1 = a (52)

d1(p1) + (1 − Fp1(p1))
I

p1
= Fp1(p1)R1 + Fp1(p1)X if p1 > a (53)

Based on the assumption, for all, p1 is expressed as follows:

d1(p1) + (1 − Fp1(p1))
I

p1
≥ d1(p1) + (1 − Gp1(p1))

I
p1

(54)

Fp1(p1)R1 ≤ Gp1(p1)R1 (55)

Fp1(p1)R1 + Fp1(p1)X ≤ Gp1(p1)R1 + Gp1(p1)X (56)

Therefore, the total demand under Fp1 is larger than that under Gp1 , and the total supply under
Fp1 is less than that under Gp1 . As a result, the market price increases under Fp1(p2).

Because of heterogeneous beliefs, the price of the electricity is higher compared to the no-resale
market price. Firms have the incentive to buy the electricity for the speculative resale, and the consumer
suffers the higher prices.

This model involves a heterogeneous bubble. Heterogeneous beliefs among investors create such
bubbles. In such models, investors’ beliefs differ because they have different prior belief distributions.
Agents’ heterogenous beliefs can occur because of many factors. For example, overconfidence about
the precision of signals among investors can lead to different prior distributions (with lower variance)
regarding the signals’ noise term. Investors without common prior beliefs can agree to disagree
even after they share all their information with each other. In the heterogeneous beliefs model with
short-sale constraints, the asset price can result in the creation of bubbles. Optimistic agents buy the
asset, and the price rises. Under the conditions of a short-sale constraint, pessimistic traders cannot
make use of the high asset prices (Miller (1977) [19], Harrison et al. (1978) [20]). In a dynamic model,
the asset price can even exceed the valuation of the most optimistic investor’s expectation regarding
the economy. In the model, firms with pessimistic beliefs about the demand on the next day sell the
electricity immediately; this implies that the supply on the next day increases. Therefore, a pessimistic
belief distribution, such as G(x), is very beneficial for the consumers’ surplus.

As noted in Section 4.1, higher p1 implies lower p2 in this model. Therefore, the next lemma
shows some negative correlations between the expected price and the realized price.

Lemma 3. The market price p2 is lower under Fp1 than that under Gp1 .

Therefore, if the suppliers’ belief is optimistic (that is, they expect higher E[p2]), p2 tends to be
lower. This can be interpreted as a heterogeneous belief bubble, and this bubble burst on date 2.

6. Policy Implications and Conclusions

6.1. Policy Implications

By utilizing the three lemmas discussed in Sections 5.2 and 5.3, we can propose two policy
implications. First, through speculative trading, electricity price spikes can be reduced. Pricing is one
of the signals for market conditions. Therefore, in terms of efficiency, price jumping is not desirable.
Price spikes are considered in several research papers (Huisman et al. (2003) [9], Weron et al. (2004) [26]
and others as noted in Section 2). Price spikes occur because the electricity market is characterized
by inelastic demand and a stair-like supply curve. However, speculative trading allows suppliers to
be electricity buyers on date 1. This increases the elasticity of the total demand, and the price change
becomes relaxed.
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Abrupt price fluctuations are undesirable because they increase the market risk. The presence
of forward markets is motivated by speculation, so they become more sensitive to price differences.
As a result, forward market will be effective for reducing price fluctuations.

Second, the forward market is also an important factor for making policy decisions that may
cause prices to move in the opposite direction. If the price on date 1 is large, the price on date 2 tends
to be lower. As the government’s main policy target includes consumers who lack market power,
it is important to keep the price of the second quarter (that is, the real-time price) low.

The main risk posed by forward markets may be the speculative price hikes. In the case of other
asset bubbles, high prices are factors that can hurt efficiency. However, the situation is different in the
case of the electricity market. The power market cannot save power because of the characteristics of
power; therefore, the power capacity within a certain time zone loses the opportunity cost if it is not
sold. Therefore, prices do not remain high, as is the case for ordinary assets. As a result, it is unlikely
that the consumer’s utility will be impaired by the high electricity prices. Conversely, as Lemma
2 shows, price increases in the forward market are likely to increase consumer utility. From this
viewpoint as well, the effectiveness of the forward market for electricity can be demonstrated.

6.2. Conclusions

Increasing market liquidity is an indispensable factor for introducing renewable energy. However,
attempts to raise liquidity in economics can generally lead to speculative behavior. In this paper,
we outline such problems with a simple model. Based on the results of the model’s speculative
behavior, we determined that, even if the consumer demand for electricity is inelastic with regard
to the price, the price elasticity of the demand is newly born; in this way, price change becomes
stable. However, the forward market creates speculative trading. Speculative trading naturally
accompanies a decrease in consumer surplus. Policymakers, especially the Japanese government,
have a strong tendency to vigorously construct speculative actions in the electricity market and
strengthen regulations. However, this model shows that some regulation, in terms of optimistic
prospects to the future electricity price, can increase consumers’ surplus.

In addition, it has often been pointed out that, in the existing power market model, the market
price is dominated by several corporations. In this situation, the market price can be easily raised by
these corporations because of the special nature of electric power. However, in this model, the company
is assumed to be a price-taker; this also shows that there are cases in which consumer surplus can
increase. Thus, inviting new corporations is an important policy for the liberalization of the power
market. Our main findings is that the speculative tradings can improve the inelasticity of the demand.
This finding of our theory is the first one that points out this effect. This finding is also a very useful
result when considering the market design of the electricity market. Speculative trading is an important
factor in introducing the forward market to electricity. The results of this paper show that speculative
trading has a positive externality and is likely to be a desirable policy in the electricity market.

Our model is based on JEPX. However, the basic elements are common to electricity markets
in other countries, and can be applied as a more general electricity model. It would be necessary
to comprehensively analyze the linkage between dynamic markets rather than individual markets.
We propose a basic model as one of the attempts to describe these two types of markets.
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Abbreviations

The following abbreviations/nomenclature are used in this manuscript

JEPX Japan Electric Power Exchange
p1 date 1 price
p2 date 2 price
X maximum supply of normal suppliers
R1 minimum supply of renewable suppliers
R2 maximum supply of renewable suppliers
d1(p1) consumers’ demand at date 1
d2(p2) consumers’ demand at date 2
a marginal cost of normal suppliers
Fp1 (p) the population of suppliers who has beliefs Ei[p2] < p under p1
x1 suppliers’ selling volume at date 1
x2 suppliers’ selling volume at date 1
xb suppliers’ purchase volume at date 1
Xb total suppliers’ purchase volume at date 1
S1(p1) total supply volume at date 1
S2(p2) total supply volume at date 2
D1(p1) total demand volume at date 2
D2(p2) total demand volume at date 2
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Abstract: One reason for the allocation of reserves in electricity markets is the uncertainty of
demand and supply. If the bias of the generation portfolio shifts from controllable generators to
renewable sources with significantly higher uncertainty, it is natural to assume that more reserve
has to be allocated. The price of reserve allocation in European models is dominantly paid by the
independent system operator in the form of long-term paid reserve capacities and reserve demand
bids submitted to various reserve markets. However, if we consider a scenario where the significant
part of generation is allocated in day-ahead auctions, the power mix is not known in advance, so the
required reserves can not be efficiently curtailed for the ratio of renewables. In the current paper we
analyze an integrated European-type, portfolio-bidding energy-reserve market model, which aims to
(at least partially) put the burden of reserve allocation costs to the uncertain energy bidders who are
partially responsible for the amount of reserves needed. The proposed method in addition proposes
a more dynamic and adaptive reserve curtailment method compared to the current practice, while it
is formulated in a computationally efficient way.

Keywords: integration of renewable sources; integrated markets; co-optimization; reserve allocation

1. Introduction

Although modern renewable generators do have improved controllability properties compared
to earlier solutions, they still exhibit a higher level of supply uncertainty compared to non-renewable
generators. In addition, uncertainty is present in several forms in the power grid. First of all, in addition
to renewable sources with fundamental characteristics of production uncertainty (of some level),
conventional power plants are also naturally subject to failures and technological issues, which may
limit their output from time to time. Furthermore, significant part of the demand corresponds to
domestic consumers, the schedule of whom may be predicted only with limited accuracy [1,2].

As supply-demand imbalance causes frequency shift in the power network, certain forms of
ancillary services (or ‘reserves’ to put it shorter) are needed for frequency stability. Activating these
reserves in the appropriate time restores power balance and thus network frequency. Ancillary
markets [3] are specialized energy-economical platforms, in which commodities connected to ancillary
services are traded. Although there is a broad spectrum of ancillary service and reserve types, in this
paper we consider reserves used for frequency control. In a typical ancillary market, reserve providers
are paid for allocating the required reserves and an additional fee is paid if the reserve is activated
as well. According to this, in the current paper (regarding reserves) we consider capacity-allocation
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payment (and we are not interested if later the reserve is activated or not and do not consider these
activation payments).

Reserves may be classified furthermore into non-event and event driven resources.
While non-event driven resources are used to compensate production-consumption imbalances,
event driven resources are used in reaction to contingencies and power plant or line outages. In the
current article we focus on non-event driven resources and their allocation.

As maintaining the frequency stability of the power grid is the responsibility of the system
operator (The terminology may differ as the expressions TSO (transmission system operator) and ISO
(independent system operator) are also used for this player. In our case, as reserves will be allocated in
the integrated power-reserve auction, we will assume that the operator is in charge not only of the
transmission system but also of the auction, so we will use ISO.), it is its task to ensure the allocation
of the required amount of reserve via long-term contracts or from the ancillary markets. Ensuring
the necessary reserves via long term contracts is by nature more inflexible, as the actual power mix
resulting from day ahead power exchanges and its uncertainty properties can not be taken into account.
Either the system operator takes a conservative (and costly) approach and allocates a high amount of
reserves in long term contracts or uses a mix of long term and short term solutions to account for the
actual reserve requirements.

Regarding the general issues of reserve allocation, Reference [4] formulates two general questions:
How much reserve should be allocated and who should pay for it? The first problem, in addition to the
simple approach presented in the same paper [4], has been a subject to several articles. Following the
lead idea of Reference [4], namely that reserve should be purchased up to the point where the marginal
cost of providing reserve is equal to the marginal value of this reserve, the article [5] considers the
customer outage cost to determine the marginal value of reserve. Regarding more recent approaches,
motivated by the increasing market share of renewable sources, stochastic unit commitment based
reserve procurement procedure for power systems including wind farms is described in Reference [6],
while more or less the same problem is approached by a different solution in Reference [7]. Reference [8]
contributes to the same topic by applying a chance-constrained optimization to determine the required
amounts of reserve capacity. A robust optimization based method of joint determination of day-ahead
energy and reserve dispatch is described in Reference [9]. Allocation of reserve-related costs is however
not discussed in detail in these articles.

Regarding the allocation of these costs, which is discussed less in the literature, the original
paper [4] gives two approaches: In addition to the most simple solution, namely ‘all consumers should
pay a share of the cost of reserve on the basis of their consumption’, it also adds that on the other hand
‘the cost of reserve should be shared among the generators on the basis of their contribution to the need for
reserve’. It also discusses the possible scenario when generators forward these cost to their consumers.
Regarding the allocation of reserve-related balancing and ramping costs, Reference [10] proposes
a unit commitment-based approach, applying the principle of pareto-optimality for the problem.
Reference [11] aims to distribute the reserve cost among the most appropriate consumers, applying
agent-based modelling and simulation approach. A somewhat similar agent-based approach combined
with stochastic unit commitment for the reserve cost allocation problem is presented in Reference [12].
The two latter papers both use the concept of demand factors (first defined in Reference [13]) to
characterize the reliability level of customers.

In the current article we follow the second principle formulated in Reference [4] and aim to put
the burden of reserve allocation costs to market participants whose activity significantly contributes to
the need of reserve allocation. In the context of portfolio-bidding markets, the ‘who pays for’ question
is typically answered by the principle that the accepted demand bids cover the costs of products,
thus we need to introduce any cost-allocation policy in the form of demand bids. This principle can be
considered promising as it fits into the official market development plans of the European Union. It is
stated in the Clean Energy Package that ‘all market participants shall be responsible for the imbalances they
cause in the system’ and this imposition includes variable renewable energy producers [14]. However,
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the explicit regulation concerns only balancing markets while the more liquid day-ahead trading
platform may remain free of uncertainties. This gap could be filled using a model developed in the
current article.

In order to facilitate European market development, the created clearing formulation has to be
adjusted to the usual European approach. Thus, in contrast to previous results, which analyzed the
problem in a unit commitment framework [15], we consider self-scheduling generators and a purely
portfolio-bidding market based framework, consisting energy and reserve markets. We define the
concept of supplementary reserve demand bids, which ensure that the owner of any uncertain energy
bid, in the case of acceptance, will also automatically contribute to the costs of reserve allocation as well.
While uncertainty characterization in the majority of previous literature was focussing to either power
plants or customers, in the proposed approach we consider the potential uncertainty of both side of
the energy market—both uncertain supply and demand energy bids are considered. Furthermore
while previous methods use computationally demanding agent based modelling (as References [11,12])
or include quadratic constraints [10] (or their semidefinite relaxation), we formulate the suggested
method as a simple mixed integer linear problem (MILP), which can be efficiently solved, for example,
via Benders-decomposition [16] and/or the branch-and-bound algorithm [17]. (Both techniques are
widely used to solve problems in the power sector [18–20].) In addition, the method suggested
in the current paper uses a single scalar parameter according to which the set of uncertain/not
uncertain energy bids are defined. Decreasing this parameter from a sufficiently large value, the market
implementation of the method presented may be introduced to the market incrementally.

For the aim of simplicity and clarity, we introduce the proposed concept assuming a period
decoupled market, in which no multiperiod block orders or minimum income condition (MIC) orders
are present, thus every period may be dispatched independently of the others. This means that
it is enough for us to define the framework for a single period and introduce the concepts in this
context. Later, in Section 4, we discuss the principles according to which the proposed concepts may
be implemented in markets using multi-period block orders or MIC orders.

2. Materials and Methods

2.1. Uncertainty Quantification

We assume that every bid of the market can be connected to a bidder. We assume that there are K
bidders in the energy market. Similar to the approach of demand factors [12,13], we use simple scalar
quantities to characterize the uncertainty of market participants. While in the case of the demand factor
the characterizing scalar is formulated as the quotient of the expected energy not supplied (EENS) and
the current load, we also account for deviations in the positive direction and define two uncertainty
measures corresponding respectively to the positive and negative part of the deviation in question.
Based on previous bidding and market behavior of the bidder (or if no data present, then based on
the applied technology), we assign the uncertainty quantifiers (u+

k and u−
k ) for each energy-bidder.

The previous market behaviour in this case means that we may analyze how many times and how
much the bidder deviated from its previously fixed schedule in relative terms (%) in the positive or in
the negative direction, weighted by the quantity of the bid in question. Let us denote the expected
relative value in the positive direction of bidder k by u+

k , while the expected relative value in the
negative direction of bidder k by u−

k . By nature, both u+
k and u−

k are non-negative quantities.
For example, let us suppose a bidder corresponding to a renewable source with significant

uncertainty. If we have for example, a bid/schedule realization history (H) for bidder k (For the
indexing of bidders we use the variable k, while j and i are used for the indexing of bids.) as

H =

(
50 70 100 80 65 65
41 73 92 80 63 69

)
, (1)
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Each column of H corresponds to a previous auction, where the bid of the bidder has been
accepted. The top element of each column holds the nominal bid quantity, while the bottom row
corresponds to the realized schedule. In this particular case we have the following signed relative
deviation vector D (in %).

Di = 100
H2,i − H1,i

H1,i
→ D =

(
−18 4.29 −8 0 −3.08 6.15

)
(2)

Taking the positive and the negative part of this vector and weighing with the first row of (1),
we get the expected values

u+
k =

∑i
Di+|Di |

2 H1,i

∑i H1,i
= 1.63% u−

k =
∑i

Di−|Di |
2 H1,i

∑i H1,i
= 4.42% (3)

for bidder k. Let us define the positive and negative uncertainty upper bounds u+ and u−.
Bids belonging to bidders with u+

k ≥ u+ and u−
k < u− will be called positively uncertain (U+) bids,

while bids belonging to bidders with u+
k < u+ and u−

k ≥ u− will be called negatively uncertain (U-)
bids. Bids belonging to bidders with both u+

k ≥ u+ and u−
k ≥ u− will be called bi-uncertain (Ub) bids.

To consider a simple example, if we assume the above bid with u+
k = 1.63%, u−

k = 4.42% and
u+ = u− = 2%, the bid will be considered as a negatively uncertain bid. In contrast, if u+ = u− = 1%,
the bid will be taken into account as a bi-uncertain bid.

While the above example was demonstrating the case of a supply bid, we apply the same
approach for demand bids as well in the proposed framework (domestic consumers may be for
example, considered as uncertain demand bidders).

Let us note that uncertainty upper bounds in general may be different in the case of supply and
demand bids, however in this paper we will not distinguish between uncertainty bounds of supply
and demand bids. As we will see later, we will use these values to account for reserve allocation
needed for the coverage of this uncertainty.

2.2. Market Model of the Single Period Case

We consider a basic portfolio bidding scenario, where participants capable of delivering a certain
product (energy or reserve in this case) are represented by supply bids, while entities who are ready
to pay for it are submitting demand bids. The market clearing aims to balance the supply with the
demand in the terms of the traded quantity and the price.

As in the first step we do not consider multi-period block bids, which define interdependencies
over time periods, the calculations for each period may be carried out independently. For this reason,
to make the notation more simple, in the first step we describe the calculations regarding only a single
time period. Later we discuss how the proposed approach may be generalized for multi-period cases
including block orders. Regarding the bid format, the two generally used bid types in portfolio-bidding
electricity markets are the step bid and the linear bid. In the case of the step bid the price per unit (PPU)
of the bid is independent of the acceptance rate, while in the case of linear bid the price depends on the
acceptance rate linearly. In other words, while step bids are parametrized by two values (the quantity
(q) and the bid PPU), linear bids are parametrized by the quantity, a starting price and a final price.
If a linear bid is partially accepted the resulting PPU may be derived as a linear interpolation of the
two prices: If for example, the acceptance rate is 0.5, the resulting PPU is the average of the starting
price and the final price. In the proposed framework, for the aim of simplicity and computational
efficiency, we do not allow linear bids, only step bids.

In the proposed model, there are 3 sub-markets: the energy sub-market and the reserve
sub-markets corresponding to positive and negative reserve. The term ‘sub-market’ is used to
emphasize that interdependencies between these markets will be defined and thus they have to
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be cleared together—in this case the ‘market’ is composed of the sub-markets and the sub-markets are
not independent entities anymore.

We do not consider fill-or-kill type bids in the market model, in other words partial acceptance
is allowed for all energy bids. Regarding energy bids with uncertainty levels below the thresholds
u+ and u−, the variable yES

j ∈ [0, 1] denotes the acceptance variable of j-th energy supply bid, while

yED
j ∈ [0, 1] denotes the acceptance variable of j-th energy demand bid. In the case of uncertain bids,

yESU+
j ∈ [0, 1], yESU−

j ∈ [0, 1] and yESUb
j ∈ [0, 1] denote the acceptance variables of energy supply bids

with (respectively positive, negative or both) uncertainty, while yEDU+
j ∈ [0, 1], yEDU−

j ∈ [0, 1] and

yEDUb
j ∈ [0, 1] denote the acceptance variables of energy demand bids with uncertainty.

As we will see later, these acceptance indicators will be included in variable vector of the problem.
In addition to the acceptance indicators, the variable vector will also hold the income variables, logical
integer variables used in the formulation of logical constraints and the market clearing prices (MCP)
for energy and reserves. Under market clearing prices we mean prices which are compatible with the
bid acceptance and balance constraints (see their formulation later). In other words, if the prices are
equal to the market clearing prices, such an acceptance configuration of bids is possible (according to
the bid acceptance rules), which ensures the balance of supply and reserve in every sub-market.

2.2.1. Supplementary Reserve Demand Bids

We assume that if uncertainty is present in the dispatch, in the spirit of the uncertain bidder
pays principle, reserves must be allocated according to the measure of the uncertainty in question.
We assume furthermore that these uncertain sources (being typically non-controllable units) are
physically unable to provide reserves which could be used to handle the uncertainty implied by them.
As we would like to make uncertain sources and consumers (bidders) pay for the implicated allocation
of reserves, we assign obligatory reserve bids in the corresponding (positive, negative or both) reserve
markets to each bid submitted in the energy sub-market. We call these compulsorily submitted reserve
demand bids supplementary reserve demand bids (SRDBs). Both the bid price and bid quantity of these
SRDBs are centrally regulated, they are not determined by the bidder. Uncertain energy bids together
with the one or two connected SRDB(s) are called orders. As we will see later, the acceptance of the
bids composing the order is dependent on the total income of the order, thus SRDBs and the related
orders define interdependencies between the sub-markets.

Let us assume that yESUb
j is acceptance indicator of the energy supply bid of the bi-uncertain bidder

k, the quantity of which is denoted by qESUb
j , while pESUb

j stands for price per unit (PPU) of the bid.

In the proposed setup, implied by the bid corresponding to yESUb
j , bidder k also compulsorily submits

a positive and a negative reserve demand bid, whose acceptance indicators are denoted by yRD+ ESUb
j

and yRD− ESUb
j respectively. The upper index in the notation refers to the set of positive/negative

reserve demand bids implied by bi-uncertain energy supply bids.
As it is detailed in the following, the proposed concept of supplementary reserve demand bids

may be introduced in the market gradually. In the beginning, it is the task of the ISO to allocate
reserves and cover the connected costs. Furthermore, it is plausible that the ISO aims to ensure some of
the required reserves in the day-ahead reserve markets. According to this consideration, we consider
also reserve bids, which are not connected to uncertain energy bids. In the case when SRDBs cover
all reserve needs, the model is completely functional without any non-SRDB reserve demand bid.
The acceptance indicators of these (non-SRDB) bids are denoted by yRS+

j , yRD+
j , yRS−

j and yRD−
j in the

case of positive reserve supply, positive reserve demand, negative reserve supply and negative reserve
demand respectively.

Returning however to SRDBs, we need to consider the following. As positive deviations must
be balanced by negative reserve and vice versa, positively uncertain ES bids (yESU+

j ) imply negative

reserve demand bids denoted by yRD− ESU+
j and negatively uncertain ES bids (yESU−

j ) imply positive
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reserve demand bids denoted by yRD+ ESU−
j . In principle, the reserve amounts allocated for these

demand bids cover the corresponding expected uncertainty, thus we may write

qRD+ ESUb
j = −qESUb

j u−
k qRD− ESUb

j = −qESUb
j u+

k

qRD+ ESU−
j = −qESU−

j u−
k qRD− ESU+

j = −qESU+
j u+

k , (4)

We can see in Equation (4) that following the general convention, throughout the paper we use
negative sign for the quantities of demand bids.

We also account for uncertainty in the case of energy demand bids—domestic retail electricity
suppliers (who submit demand bids in the wholesale market, which is the subject of our study)
may have for example, higher uncertainty compared to bidders corresponding to industrial demand.
The notation is similar: the bi-uncertain energy demand bid yEDUb

j implies the a positive and a negative

reserve demand bids yRD+ EDUb
j and yRD− EDUb

j .
In our formalism, we consider demand with negative sign, so the row vectors in Equation (1) will

be negative. Positive deviations in this case will mean less consumption, which must be balanced by
negative reserves and mutatis mutandis. The SRDBs corresponding to demand bids are described by
Equation (5).

qRD+ EDUb
j = qEDUb

j u−
k qRD− EDUb

j = qEDUb
j u+

k

qRD− EDU+
j = qEDU+

j u+
k qRD+ EDU−

j = qEDU−
j u−

k , (5)

We will suppose that the PPUs of these SRDBs are slightly higher compared to the highest PPU of
the submitted reserve supply bids for the corresponding period. The difference is denoted by ε and
corresponds to the unit of the market (e.g., 1 EUR/MW). The constant ε is introduced to avoid the
possible overlap of supply and demand price curves in the case of the reserve sub-markets, which
would potentially undermine the uniqueness of the optimal solution. The SRDB prices are formally
defined as

pRD+ SRDB
j = max

i
(pRS+

i ) + ε pRD− SRDB
j = max

i
(pRS−

i ) + ε . (6)

where SRDB ∈ {EDUb, EDU−} in the case of positive reserve and SRDB ∈ {EDUb, EDU+} in the
case of negative reserve.

We assume that the amount of reserve supply is always enough to cover the total reserve demand.
This assumption is usually valid in practice because regulators enforce power plants to offer reserve
services. In this case the bid curves of the reserve spot markets (either positive or negative) will follow
the qualitative scheme depicted in Figure 1.

As all SRDBs are accounted for on the price of the supply bid with the highest PPU +ε, the central
line segment in the demand curve (labeled by SRDB in Figure 1) collects all the SRDBs. The line
segments before and after it represent other reserve demand bids submitted to the reserve sub-market.
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Figure 1. The scheme of the reserve spot market (both in the case of + and− reserve). D—demand, S—supply,
MCP—market clearing price, MRSBPPU—Maximal reserve supply bid PPU, SRDB—Supplementary reserve
demand bids. By definition, the PPU of SRDBs is equal to the PPU of the highest reserve supply bid + ε.

2.2.2. Minimum Surplus Conditions

Minimum Surplus Conditions for Uncertain Energy Supply Bids

In the proposed setup, without any additional considerations, it is possible that a submitted
energy bid is rejected, while the connected SRDB(s) is/are accepted—this would naturally imply
loss for the respective order, for the bidder is obliged to pay for the SRDB(s). Furthermore, even if
the primary energy bid and the implied SRDB(s) is/are accepted, depending on the resulting MCPs,
the surplus from the energy bid (originating from the energy sub-market) may not cover the cost of
the SRDB(s) (originating from the reserve sub-markets) or the remaining surplus of the order (after
extracting the costs of the SRDBs) may be very small. As the first step in the solution of this problem,
we must calculate the incomes of the individual energy/reserve bids.

In order to formulate a linear computational framework, we take advantage of the dependence
between MCPs and bid acceptance indicators (y) and use the description of income introduced in
References [21,22], as follows. Let us denote the income of the bid corresponding to yESUb

j by IESUb
j .

Intuitively IESUb
j may be calculated as

IESUb
j = MCPEqESUb

j yESUb
j (7)

where MCPE stands for the market clearing price of energy.
Equation (7) holds however a quadratic expression of variables, namely the product of MCPE

and yESUb
j , which would result in a computationally demanding quadratically constrained problem

(MIQCP). To overcome this issue we formulate the expressions for income as

yESUb
j > 0 → IESUb

j = yESUb
j qESUb

j pESUb
j + qESUb

j MCPE − qESUb
j pESUb

j (8)

yESUb
j < 1 → IESUb

j = yESUb
j qESUb

j pESUb
j (9)

We implement the logical relations in the optimization framework based on the so called big-M
method [23], using integer logical variables (denoted by z) as described in Appendix A.

To elucidate the Formulas (8) and (9), let us enumerate the following three possibilities:

• If the bid is entirely accepted (yESUb
j = 1), IESUb

j equals the product of qESUb
j and MCPE according

to (8).
• If the bid is partially accepted (MCPE = pESUb

j ), IESUb
j equals to yESUb

j qESUb
j pESUb

j . Both (8) and (9)
are active in this case and they result in the same inequality.

• If the bid is entirely rejected (yESUb
j = 0), according to (9) IESUb

j = 0.
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The above considerations may be naturally formulated also for income of bids corresponding to
yESU+

j and yESU−
j —and also for bids corresponding to yES

j but their income wont be important in the
proposed framework.

The incomes of uncertain energy demand bids IEDUb
j , IEDU+

j , IEDU−
j and incomes of positive

and negative SRDBs connected to energy bids, denoted by, IRD+ SRDB
j and IRD− SRDB

j (SRDB ∈
{EDUb, EDU+, EDU−}) respectively, may be formulated similarly, taking into consideration in the
latter two case that in the case of demand bids qRD+ SRDB

j and qRD− SRDB
j < 0, thus the income will

mean practically expense because of the resulting negative sign.
According to these income calculations, now we may formulate constraints which exclude the

scenario when the surplus of the primary energy bid does not meet the expense of the SRDB(s).
In addition, we assume that for every uncertain order a surplus constant (S > 0) is defined, which
describes how much the surplus of the primary bid must exceed the expenses (in other words it gives
a lower bound for the total resulting surplus). In the proposed approach we assume that this constant
may be determined by the bidder, thus it is diverse. However, under certain market conditions, it may
be also plausible to assume that S is a parameter regulated by the central authority (system/market
operator). Regarding the bid corresponding to yESUb

j , we denote this constant by SESUb
j (the notation is

similar in the case of yESU+
j and yESU−

j ). The constant SESUb
j > 0, will represent the minimum surplus

value, which is required in the case of the acceptance of the order. According to this we may formulate
the minimum surplus condition (MSC) for bi-uncertain energy supply bids as

SESUb
j − IRD+ ESUb

j − IRD−ESUb
j ≤ IESUb

j − pESUb
j qESUb

j yESUb
j , (10)

where the right side is the surplus of the bid and the left side is the sum of the costs of the connected
SRDBs (the incomes are negative because of demand) and the parameter SESUb

j . In the case of positively
uncertain ES bids, we may write

SESU+
j − IRD− ESU+

j ≤ IESU+
j − pESU+

j qESU+
j yESU+

j , (11)

while in the case of negatively uncertain ES bids, the formula becomes

SESU−
j − IRD+ ESU−

j ≤ IESU−
j − pESU−

j qESU−
j yESU−

j . (12)

Minimum Surplus Conditions for Uncertain Energy Demand Bids

In the case of bi-uncertain energy demand bids, the minimum surplus condition will state that
total cost of the bid must be no more than the maximal potential cost of the bid, which would have
been realized in the energy sub-market in the particular case if MCPE

i = pED
j , minus a similar surplus

constant (SEDUb
j ) as in the case of supply bids.

−IEDUb
j − IRD+ EDUb

j − IRD− EDUb
j ≤ −pEDUb

j qEDUb
j yEDUb

j − SEDUb
j , (13)

In the case of positively uncertain ED bids, we may write

−IEDU+
j − IRD− EDU+

j ≤ −pEDU+
j qEDU+

j yEDU+
j − SEDU+

j , (14)

while in the case of negatively uncertain ED bids, we may write

−IEDU−
j − IRD+ EDU−

j ≤ −pEDU−
j qEDU−

j yEDU−
j − SEDU−

j . (15)

2.2.3. Bid Acceptance Constraints

For energy supply bids with no uncertainty
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• yES
j > 0 → MCPE ≥ pES

j .
• yES

j < 1 → MCPE ≤ pES
j .

For bi-uncertain energy supply bids

• yESUb
j > 0 → Inequality (10) holds. This also implies MCPE ≥ pESUb

j .
• yESUb

j < 1 → MCPE ≤ pESUb
j or yESUb

j = 0, yRD+ ESUb
j = 0 and yRD− ESUb

j = 0.

For positively uncertain energy supply bids

• yESU+
j > 0 → Inequality (11) holds. This also implies MCPE ≥ pESU+

j .
• yESU+

j < 1 → MCPE ≤ pESU+
j or yESU+

j = 0, and yRD− ESU+
j = 0.

For negatively uncertain energy supply bids

• yESU−
j > 0 → Inequality (12) holds. This also implies MCPE ≥ pESU−

j .
• yESU−

j < 1 → MCPE ≤ pESU−
j or yESU−

j = 0, and yRD+ ESU−
j = 0.

For energy demand bids with no uncertainty

• yED
j > 0 → MCPE ≤ pED

j .
• yED

j < 1 → MCPE ≥ pED
j .

For bi-uncertain energy demand bids

• yEDUb
j > 0 → Inequality (13) holds. This also implies MCPE ≤ pEDUb

j .
• yEDUb

j < 1 → MCPE ≥ pEDUb
j or yEDUb

j = 0, yRD+ EDUb
j = 0 and yRD− EDUb

j = 0.

For positively uncertain energy demand bids

• yEDU+
j > 0 → Inequality (14) holds. This also implies MCPE ≤ pEDU+

j .
• yEDU+

j < 1 → MCPE ≤ pEDU+
j or yEDU+

j = 0, and yRD− EDU+
j = 0.

For negatively uncertain energy demand bids

• yEDU−
j > 0 → Inequality (15) holds. This also implies MCPE ≤ pESU−

j .
• yEDU−

j < 1 → MCPE ≥ pEDU−
j or yEDU−

j = 0, and yRD+ EDU−
j = 0.

For positive reserve supply bids

• yRS+
j > 0 → MCPR+ ≥ pRS+

j
• yRS+

j < 1 → MCPR+ ≤ pRS+
j

For negative reserve supply bids

• yRS−
j > 0 → MCPR− ≥ pRS−

j
• yRS−

j < 1 → MCPR− ≤ pRS−
j

For not SRDB positive reserve demand bids

• yRD+
j > 0 → MCPR+ ≤ pRD+

j
• yRD+

j < 1 → MCPR+ ≥ pRD+
j

For not SRDB negative reserve demand bids

• yRD−
j > 0 → MCPR− ≤ pRD−

j
• yRD−

j < 1 → MCPR− ≥ pRD−
j

For positive SRDBs
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• yRD+ SRDB
j > 0 → Inequality (10), (12), (13) or (15) holds (depending on the type of

the energy bid in the order of the SRDB) and MCPR+ ≤ pRD+ SRDB
j , where SRDB ∈

{ESUb, ESU−, EDUb, EDU−}.
• yRD+ SRDB

j < 1 → MCPR+ ≥ pRD+ SRDB
j or all acceptance indicators of the respective order are 0.

For negative SRDBs

• yRD− SRDB
j > 0 → Inequality (10), (11), (13) or (14) holds (depending on the type of

the energy bid in the order of the SRDB) and MCPR− ≤ pRD− SRDB
j , where SRDB ∈

{ESUb, ESU+, EDUb, EDU+}.
• yRD− SRDB

j < 1 → MCPR− ≥ pRD− SRDB
j or all acceptance indicators of the respective order are 0.

The structure of the variable vector and the formulation of logical implications based thereon may
be found in Appendix A.

2.2.4. Energy and Reserve Balances

The energy and reserve balances may be formulated as

nES

∑
j=1

yES
j qES

j +
nESUb

∑
j=1

yESUb
j qESUb

j +
nESU+

∑
j=1

yESU+
j qESU+

j +
nESU−
∑
j=1

yESU−
j qESU−

j

+
nED

∑
j=1

yED
j qED

j +
nEDUb

∑
j=1

yEDUb
j qEDUb

j +
nEDU+

∑
j=1

yEDU+
j qEDU+

j +
nEDU−
∑
j=1

yEDU−
j qEDU−

j = 0, (16)

nRS+

∑
j=1

yRS+
j qRS+

j +
nRD+

∑
j=1

yRD+
j qRD+

j +
nESUb

∑
j=1

yRD+ ESUb
j qRD+ ESUb

j +
nEDUb

∑
j=1

yRD+ EDUb
j qRD+ EDUb

j

+
nESU−
∑
j=1

yRD+ ESU−
j qRD+ ESU−

j +
nEDU−
∑
j=1

yRD+ EDU−
j qRD+ EDU−

j = 0, (17)

nRS−
∑
j=1

yRS−
j qRS−

j +
nRD−
∑
j=1

yRD−
j qRD−

j +
nESUb

∑
j=1

yRD− ESUb
j qRD− ESUb

j +
nEDUb

∑
j=1

yRD− EDUb
j qRD− EDUb

j

+
nESU+

∑
j=1

yRD− ESU+
j qRD− ESU+

j +
nEDU+

∑
j=1

yRD− EDU+
j qRD− EDU+

j = 0. (18)

2.2.5. The Objective Function

The objective function to maximize is the total social welfare (TSW). By definition the TSW is the
total utility of consumption minus the total costs of production [24]. The TSW equals in this case the
sum of the social welfare in the three sub-markets.
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TSW = TSWE + TSWR+ + TSWR−

TSWE = −
nES

∑
j=1

yES
j qES

j pES
j −

nED

∑
j=1

yED
j qED

j pED
j − ∑

TEU

nTEU

∑
j=1

yTEU
j qTEU

j pTEU
j

TSWR+ = −
nRS+

∑
j=1

yRS+
j qRS+

j pRS+
j −

nRD+

∑
j=1

yRD+
j qRD+

j pRD+
j

− ∑
TEU

nTEU

∑
j=1

yRD+ TEU
j qRD+ TEU

j pRD+ TEU
j

TSWR− = −
nRS−
∑
j=1

yRS−
j qRS−

j pRS−
j −

nRD−
∑
j=1

yRD−
j qRD−

j pRD−
j

− ∑
TEU

nTEU

∑
j=1

yRD− TEU
j qRD− TEU

j pRD− TEU
j (19)

where TEU ∈ { ESUb, ESUp, ESUn, EDUb, EDUp, EDUn} denotes set of possible types of
uncertain energy bids. Negative signs are needed because of the quantity convention of bids:
the amount of demand bids is negative (while supply is positive).

3. Simulation Results

We evaluate the proposed method in the case of a simple, single-period market clearing scenario,
where supply and demand bids are submitted to energy and positive and negative reserve markets.
SRDBs are created for uncertain energy bids and the market is cleared according to the rules described
in Section 2.2. We assume that no network capacities or other limitations constrain the trading (in other
words we assume a one-node market). We use the reference bid set described in Appendix B.

As the positive and negative uncertainty upper bounds u+ and u− define the set of uncertain
bids (as described in Section 2.1), decreasing these parameters from a sufficiently large value (which
initially implies no uncertain bids) may be viewed also as gradual introduction of the uncertain bidder
pays principle to the market. In this section, for the sake of simplicity, we assume that u+ = u− = u
and analyze the effect of decreasing u.

3.1. Social Welfare of the Sub-Markets

Figure 2 shows how the TSW values of the energy and reserve sub-markets changes as the
parameter u is decreased from 30% to 1% in 1% steps. As energy bids with uncertainty values over
u are considered as uncertain bids, the decrease of this parameter implies an increasing number of
uncertain bids. When a bid becomes uncertain, it is submitted with the respective SRDBs and the
MSCs come into play. Even if the MCPs do not change, it can happen that, thanks to the newly
occurring expenses of SRDBs, a formerly accepted energy bid does not meet the MSC conditions and
will be rejected.

Regarding the energy sub-market it can be said that decreasing u adds additional constraints to
the optimization problem (implied by the SRDBs and corresponding MSCs), thus the decreasing TSW
in the first plot of Figure 2 is perfectly plausible.

Regarding the reserve sub-markets, the increase of the TSW depicted in the second plot of Figure 2
may be explained with the increasing number of demand bids. As more and more energy bids are
classified as uncertain, more and more SRDBs appear in the markets.

As reserve bids do not correspond to physical production but to the allocation of potential
production, usually the bid prices are lower compared to energy bids. This is also reflected in the
bid set used for the example and described in Appendix B—the prices of reserve bids are lower.
Considering that the volume traded on the reserve markets is also lower, this naturally results in
a lesser value of social welfare compared to the energy sub-market.
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Figure 2. (a) Total social welfare of the energy sub-market (TSWE) as the parameter u is decreased.
(b) Total social welfare of the reserve sub-markets as the parameter u is decreased. TSWR+ and TSWR−

denote the total social welfare of the positive and the negative reserve market respectively

3.2. Traded Volumes

The traded total volumes in the sub-markets (depicted in Figure 3) show a similar trend to
TSWs: As more and more energy bids become uncertain and some of them do not meet the MSCs
thus are disregarded. In contrast, with the increasing number of SRDBs, the demand ion the reserve
sub-markets is increasing as the parameter u is decreased.
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Figure 3. (a) Total traded volume of the energy sub-market as the parameter u is decreased. (b) Total
traded volumes of the reserve sub-markets as the parameter u is decreased.

3.3. Market Clearing Prices

Regarding the MCPs in different scenarios of the simulation, Figure 4 depicts the results.
The monotone rise in the reserve MCPs depicted in the second plot of Figure 4 may be explained

by the increasing demand in the reserve sub-markets: The number of SRDBs, thus reserve demand
increases with the number of uncertain energy bids. The effect of this phenomena on the MCP of
energy (depicted in the first plot of Figure 4) is however twofold: Here bids become unacceptable due
to increasingly occurring MSCs on both the demand and supply side. As the extent of ‘lost’ bids in
supply/demand side potentially changes in every step, the change of MCP can not be predicted.
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Figure 4. (a) Market clearing price (MCPE) of the energy sub-market as the parameter u is decreased.
(b) Market clearing prices of reserve sub-markets (MCPR+/MCPR−) as the parameter u is decreased.

3.4. Computational Properties

As discussed in References [25,26], some of the algorithms used or suggested for electricity market
clearing (like EUPHEMIA [17]) contain heuristic elements. In contrast, the proposed model results in
a standard MILP problem, which may be approached by any general solver.

To give an impression about the computational requirements and performance of the proposed
framework, a small series of computational test were performed. The required computational time
was measured as the function of the parameter u in the case of 3 different reference bid set containing
various numbers of energy bids. The results regarding computational times and number of induced
variables are depicted in Figure 5. It can be seen in the figure that as the uncertainty threshold u is
lowered, with the increasing number of SRDBs, the computational demand shows an increasing trend.
The computational demand is dominantly influenced by the number of integer variables, which also
increases with the number of SRDBs.

The calculations were performed on a HP Z440 desktop computer, using the IBM CPLEX
solver [27] called from MATLAB.

(a) (b)

Figure 5. (a) Required computational time as u is decreased in the case of 50–50, 100–100 and 200–200
energy supply and demand bids (with similar uncertainty parameters as in the case of the previous
example detailed in Appendix A). (b) Number of variables and integer variables in the 200 bids case.

4. Discussion

4.1. Additional Possible Phenomena in the Setup

Figure 6 depicts the TSW of reserve sub-markets in a similar experiment as detailed before and
depicted in Figures 2 and 4: The parameter u is decreased.
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Figure 6. Total social welfare (TSW) of the reserve sub-markets as the parameter u decreases in example
2. TSWR+ and TSWR− denote the total social welfare of the positive and the negative reserve market
respectively.

In this figure however, the increase of TSWR+ is not monotone. The explanation for this is that
if for example, an energy bid has a positive uncertainty of 27% and a negative uncertainty of 26%,
the following happens. As u is decreased to 27%, the bid becomes positively uncertain. If the cost
of the implied SRDB is acceptable and the MSC holds, the bid will be still accepted in the energy
market and its SRDB will be also accepted, increasing the TSW of the reserve market (compared to
the u = 28% scenario). However, in the case of u = 26%, the bid becomes bi-uncertain and instead
of one, two SRDBs must be paid for. In this case, it is plausible that the MSC does not hold anymore,
resulting in the rejection of all three bids of the order (according to bid acceptance rules). This may be
interpreted as a loss of a bid in the positive reserve sub-market, resulting in the decrease of the TSW.

4.2. Total Amount of Allocated Reserve

At a given value of u, the amount of reserve resulting from the SRDBs is explicitly defined by
Equation (4). On the other hand, as discussed before, several principles may be applied to determine
the total amount of allocated reserves in the power system [6–9]. While the advantage of the proposed
methodology is that it allocates reserves and the corresponding cost only in the case of accepted
uncertain energy bids (due to MSCs) and it is flexible as the current power mix changes, there are no
explicit guarantees for the amount of total allocated reserves for the whole system. The total reserve
allocated by SRDBs may not meet the thumb rule that stating that the amount of allocated reserve must
be at least equal the capacity of the largest unit in service (consider for example, a not-uncertain nuclear
power plant and several smaller uncertain renewable sources). This approach is however is generally
accepted in the context of event-driven reserves, while, as mentioned earlier, we are focussing on
non event-driven resources. The main aim of the proposed approach is not to handle such large and
conservative reserve needs (which most of the time may be handled by long term contracts by the
system operator) but to provide a framework in which the (hour-level) actual reserve requirements
and costs implied by the uncertainties of imminent power mix are automatically allocated.

On the other hand, Equation (4) may be modified by a normalization factor c as described in
Equation (20) in order to tune the total amount of allocated reserves.

qRD+ ESUb
j = −qESUb

j cu−
k qRD− ESUb

j = −qESUb
j cu+

k

qRD+ ESU−
j = −qESU−

j cu−
k qRD− ESU+

j = −qESU+
j cu+

k , (20)

If the computational capacity is sufficient, this tuning can be carried out via an outer control loop,
calculating the dispatch and the total SRDB amount as a function of c. There are no guarantees that any
amount of total SRDB-reserves may be allocated with this method (after increasing c above a certain
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level, none of the MSCs will hold, thus all uncertain bids will be rejected and no SRDB-reserve will be
allocated) but this additional parameter may be a useful tool to achieve certain regulation aims.

4.3. Market Implementation

As proposed in Section 3, the values u− and u+ may be decreased step-by-step from high values.
During the simulation we analyzed how this decrease affects the various sub-markets assuming the
same original bid set.

Regarding the possible market implementation of the method, this decrease of parameters may
be carried out on for example, a monthly scale, thus progressively coupling the initially independent
energy and reserve sub-markets via the SRDBs and meanwhile giving time for market participants to
adapt to the changing regulation.

A further important question arises in connection with widely used special orders in electricity
markets. Block orders [28] submitted to the energy sub-market and exhibiting the fill-or-kill property
have not been discussed in the current paper for the aim of simplicity. There is no theoretical
obstacle however to apply the fundamental principle of the approach for such orders. Considering
a multi-period uncertain block order, the respective SRDBs may be defined for each affected period—in
this case, the computations for each period must be carried out simultaneously and the income of the
block order has to be formulated as the sum of incomes for the different periods. The MSC in this case
can be included in the acceptance rules of the block order.

Minimum income condition orders [29], which are basically hourly step orders bound together by
the minimum income condition, also define interdependencies between different periods. The novel
income formulation of these orders proposed in Reference [21] and also used in this paper can be easily
generalized to account also for the expenses of SRDBs, thus the acceptance rules of such bids may be
also generalized for the proposed setup.

The proposed formulation is also compatible with general complex orders [22], orders including
load gradient conditions (LGC orders) [30] and markets with so called ‘PUN’ orders, where the buyers
pay uniform price despite multiple price zones [25].

One must keep in mind however that generalizing the proposed framework for interdependent
multi-period clearing mechanisms may be computationally demanding because of the high number of
integer variables originating from logical expressions. On the other hand, the MILP framework may
be efficiently implemented using novel computational paradigms (e.g., Benders decomposition—see
Reference [26]).

5. Conclusions and Future Work

In this article we proposed a method to implement the uncertain bidder pays principle in integrated
portfolio-bidding electricity markets, in which the bidders of uncertain energy bids compulsorily
submit predefined reserve demand bids (supplementary reserve demand bids or SRDBs) to the reserve
markets to account for production/demand uncertainty. The profitability of orders corresponding to
uncertain energy bids upon acceptance is ensured in the proposed framework by the minimum surplus
conditions (MSC), which bounds the total surplus of the order composed by the uncertain energy
bid and the connected SRDBs. As the set of uncertain bids is defined by an uncertainty threshold
parameter u, the proposed framework may be progressively applied, inducing increasing coupling
between the initially independent energy and reserve sub-markets. The computational formulation
results in a mixed integer linear programming problem (MILP).

Regarding the generalization perspectives of the framework, when we are discussing the
implementation of the uncertain bidder pays principle in the context of portfolio-bidding markets,
we think that the general question may be formulated as ‘how the uncertainty of a unit/consumer
becomes a reserve demand bid, which covers the cost of reserve allocation’. In this paper we proposed
an approach which works on the level of single bids. This approach has the benefit that the resulting
SRDB (and thus the cost of the reserve) is straightforwardly assigned to a market participant—to
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the submitter of the uncertain energy bid. A different approach, where the uncertainty of multiple
energy bids bids is represented by one reserve demand bid, would allow the more complex handling
of uncertainties (e.g., with the possible application of risk measures [31]) but the problem of cost
allocation would become more challenging as well. Nevertheless, the general problem of bid/order
formulation from uncertain energy bids means a potential research direction for the future, which
we plan to pursue based on the current results. A straightforward generalization of the concept is to
formulate the approach for multi-period models with the inclusion of block orders and/or minimum
income condition (MIC) orders.
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Abbreviations

The following abbreviations are used in this manuscript:

MIC Minimum income condition
PPU Price per unit
MCP Market clearing price
SRDB Supplementary reserve demand bid
MRSBPPU PPU of the maximal reserve supply bid
MILP Mixed integer linear problem
MIQCP Mixed integer quadratically constrained problem
TSW Total social welfare
MSC Minimum surplus condition
EENS Expected energy not supplied
LGC Load gradient condition

The variable nomenclature is

H Bid/schedule realization history
D Deviation vector
u Uncertainty indicator
u Uncertainty threshold
y Bid acceptance indicator
q Bid quantity
p Bid price per unit (PPU)
I Income
MCP Market clearing price
S Surplus constant
TSW Total social welfare
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The superscripts used in the variables stand for

ES Energy supply
ED Energy demand
ESU+ Positively uncertain energy supply bid
ESU− Negatively uncertain energy supply bid
ESUb Bi-uncertain energy supply bid
EDU+ Positively uncertain energy demand bid
EDU− Negatively uncertain energy demand bid
EDUb Bi-uncertain energy demand bid
RS+ Positive reserve supply bid
RS− Negative reserve supply bid
RD+ Positive reserve demand bid
RD− Negative reserve demand bid
RD+/RD− ESUb/ESU+/ESU− Positive/negative reserve demand bid implied by bi-uncertain/positively

uncertain/negatively uncertain energy supply bid
RD+/RD− EDUb/EDU+/EDU− Positive/negative reserve demand bid implied by bi-uncertain/positively

uncertain/negatively uncertain energy demand bid

Appendix A. Structure of the Variable Vector and Formulation of Logical Constraints

Let us assume that R+ denotes the nonnegative reals, R[0,1] denotes the set of real numbers in
[0, 1], while B denotes the set of binary numbers (B = {0, 1}).

We denote the numbers of the various bid types submitted to the market as summarized in
Table A1.

Table A1. Number of various bid types submitted to the market.

nES number of uncertainty-free energy supply bids
nESUb number of bi-uncertain energy supply bids
nESU+ number of positively uncertain energy supply bids
nESU− number of negatively uncertain energy supply bids

nED number of uncertainty-free energy demand bids
nEDUb number of bi-uncertain energy demand bids
nEDU+ number of positively uncertain energy demand bids
nEDU− number of negatively uncertain energy demand bids
nRS+ number of non-SRDB positive reserve supply bids
nRD+ number of non-SRDB positive reserve demand bids
nRS− number of non-SRDB negative reserve supply bids
nRD− number of non-SRDB negative reserve demand bids

The variable vector of the proposed formulation may be partitioned as

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

MCP
YES

YED

YRS+

YRD+

YRS−

YRD−

IES

IED

IRD+

IRD−

Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)
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where MCP holds the market clearing prices,

MCP =

⎛
⎜⎝ MCPE

MCPR+

MCPR−

⎞
⎟⎠ (A2)

YES, YED, YRS+, YRD+, YRS− and YRD− hold the acceptance indicators,

YES =

⎛
⎜⎜⎜⎝

yES

yESUb

yESU+

yESU−

⎞
⎟⎟⎟⎠ YED =

⎛
⎜⎜⎜⎝

yED

yEDUb

yEDU+

yEDU−

⎞
⎟⎟⎟⎠

YRS+ =
(

yRS+
)

YRD+ =

⎛
⎜⎜⎜⎜⎜⎝

yRD+

yRD+ ESUb

yRD+ EDUb

yRD+ ESU−

yRD+ EDU−

⎞
⎟⎟⎟⎟⎟⎠

YRS− =
(

yRS−
)

YRD− =

⎛
⎜⎜⎜⎜⎜⎝

yRD−

yRD− ESUb

yRD− EDUb

yRD− ESU+

yRD− EDU+

⎞
⎟⎟⎟⎟⎟⎠ (A3)

YES ∈ R
nES+nESUb+nESU++nESU−
[0,1] ,

YED ∈ R
nED+nEDUb+nEDU++nEDU−
[0,1] ,

YRS+ ∈ R
nRS+
[0,1] , YRD+ ∈ R

nRD++nESUb+nEDUb+nESU−+nEDU−
+ ,

YRS− ∈ R
nRS−
[0,1] , YRD− ∈ R

nRD−+nESUb+nEDUb+nESU++nEDU+
+ .

The vectors IES, IED, IRD+ and IRD− holding the incomes are composed as

IES =

⎛
⎜⎝ IESUb

IESU+

IESU−

⎞
⎟⎠ IED =

⎛
⎜⎝ IEDUb

IEDU+

IEDU−

⎞
⎟⎠

IRD+ =

⎛
⎜⎜⎜⎝

IRD+ ESUb

IRD+ EDUb

IRD+ ESU−

IRD+ EDU−

⎞
⎟⎟⎟⎠ IRD− =

⎛
⎜⎜⎜⎝

IRD− ESUb

IRD− EDUb

IRD− ESU+

IRD− EDU+

⎞
⎟⎟⎟⎠ (A4)

IESUb ∈ R
nESUb
+ , IESU+ ∈ R

nESU+
+ , IESU− ∈ R

nESU−
+ ,

IEDUb ∈ R
nEDUb
+ , IEDU+ ∈ R

nEDU+
+ , IEDU− ∈ R

nEDU−
+ ,

IRD+ ESUb ∈ R
nESUb
+ , IRD+ EDUb ∈ R

nEDUb
+ ,

IRD+ ESU− ∈ R
nESU−
+ , IRD+ EDU− ∈ R

nEDU−
+ ,

IRD− ESUb ∈ R
nESUb
+ , IRD− EDUb ∈ R

nEDUb
+ ,

IRD− ESU+ ∈ R
nESU+
+ , IRD− EDU+ ∈ R

nEDU+
+ .
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The sub-vector z is a binary vector holding the auxiliary variables for logical implications, and as
these binary variables are bound to acceptance variables, it is partitioned similarly to Y.

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ZES

ZED

ZRS+

ZRD+

ZRS−

ZRD−

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

ZES =

⎛
⎜⎜⎜⎝

zES

zESUb

zESU+

zESU−

⎞
⎟⎟⎟⎠ zED =

⎛
⎜⎜⎜⎝

zED

zEDUb

zEDU+

zEDU−

⎞
⎟⎟⎟⎠

ZRS+ =
(

zRS+
)

ZRD+ =

⎛
⎜⎜⎜⎜⎜⎝

zRD+

zRD+ ESUb

zRD+ EDUb

zRD+ ESU−

zRD+ EDU−

⎞
⎟⎟⎟⎟⎟⎠

ZRS− =
(

zRS−
)

ZRD− =

⎛
⎜⎜⎜⎜⎜⎝

zRD−

zRD− ESUb

zRD− EDUb

zRD− ESU+

zRD− EDU+

⎞
⎟⎟⎟⎟⎟⎠ (A6)

To give an example how the logical implications corresponding to income formulations and
bid acceptance constraints are implemented in the computational framework, let us consider the
variable block zESUb ∈ B3nESUb corresponds to the implications (8) and (9) describing the income of of
bi-uncertain energy supply bids, and to the bid acceptance constraints of bi-uncertain energy supply
bids. The logical implications using the zESUb variables are implemented as follows.

The constraints corresponding to income formulation described in Equations (8) and (9) may be
written in the shorter form

yESUb
j > 0 → f I

1 ≤ 0 & f I
1 ≥ 0

yESUb
j < 1 → f I

2 ≤ 0 & f I
2 ≥ 0 (A7)

where

f I
1 = yESUb

j qESUb
j pESUb

j + qESUb
j MCPE − qESUb

j pESUb
j − IESUb

j (A8)

and

f I
2 = yESUb

j qESUb
j pESUb

j − IESUb
j (A9)

Bid acceptance constraints of ESUb bids may be written as

yESUb
j > 0 → f MSC ≤ bMSC

yESUb
j < 1 → f BA

1 ≤ bBA or f BA
2 ≤ 0 (A10)
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where, according to Equation (10) and the bid acceptance rules of ESUb bids

f MSC = pESUb
j qESUb

j yESUb
j − IESUb

j − IRD+ ESUb
j − IRD− ESUb

j

bMSC = −SESUb
j

f BA
1 = MCPE

bBA = pESUb
j

f BA
2 = yESUb

j + yRD+ ESUb
j + yRD− ESUb

j . (A11)

Let us note that (as every y ∈ [0, 1]) f BA
2 ≤ 0 ⇔ yESUb

j = 0 yRD+ ESUb
l = 0 yRD− ESUb

j = 0.
All together, the implications may be summarized and reformulated as

yESUb
j ≤ 0 and/or

(
f I
1 ≤ 0 & − f I

1 ≤ 0 & f MSC ≤ bMSC
)

(A12)

− yESUb
j ≤ −1 and/or

(
f I
2 ≤ 0 & − f I

2 ≤ 0 & ( f BA
1 ≤ bBA or f BA

2 ≤ 0)
)

(A13)

Formula (A12) may be implemented in the optimization framework as

yESUb
j − zESUb

j1 ≤ 0

f I
1 − BI

1(1 − zESUb
j1 ) ≤ 0

− f I
1 − BI

1(1 − zESUb
j1 ) ≤ 0

f MSC − BMSC(1 − zESUb
j1 ) ≤ bMSC (A14)

where the B-s are the so called ‘big M’-s: BI
1 = max( f I

1 ), BMSC = max( f MSC).
While, Formula (A13) is implemented as

− yESUb
j − zESUb

j2 ≤ −1

f I
2 − BI

2(1 − zESUb
j2 ) ≤ 0

− f I
2 − BI

2(1 − zESUb
j2 ) ≤ 0

f BA
1 − zESUb

j3 BBA
1 ≤ bBA

f BA
2 − (1 − zESUb

j2 )BBA
2 − (1 − zESUb

j3 )BBA
2 ≤ 0 (A15)

We can see that since we have an implication of the type A → B or C a bi-uncertain energy
supply bid requires 3 auxiliary binary variables. Bids, to which only simple acceptance constraints
are connected like ES, ED, RS+ and so forth, require only 2 binary variables to formulate the two
simple implications. Based on these considerations, the size of the z blocks may be easily determined.
The other implications may be formulated analogously, using the appropriate variables.

In the case of SRDB-s, for example, yRD+ ESUb
j , (while the income-related constraints are totally

analogous) we formulate the bid acceptance-related constraints as

yRD+ ESUb
j > 0 → f MSC ≤ bMSC & f BA

1 ≤ bBA
1

yRD+ ESUb
j < 1 → f BA

2 ≤ bBA
2 or f BA

3 ≤ 0 (A16)

where f MSC and bMSC is the same as before (MSC condition for the order), and here f BA
1 ≤ bBA

1
corresponds to the appropriateness of MCPR+: f BA

1 = MCPR+, bBA
1 = pRD+ ESUb

j .

On the other hand, f BA
2 = −MCPR+, bBA

2 = −pRD+ ESUb
j , and f BA

3 hold the acceptance indicators
corresponding to the bids of the order.
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Appendix B. Reference Bid Set

In this appendix, the reference bid set of the example detailed in Section 3 is described.

Table A2. Reference ES bid set: The columns correspond to the index of the bid (ID), quantity (q),
bid price (p), positive and negative uncertainty (u+, u−), and S respectively.

ID q [MW] p [EUR/MW] u+ u− S [EUR]

1 32.08 54.04 0 0.02 0
2 35.76 67.03 0.16 0.14 27.06
3 72.78 109.6 0.07 0 0
4 43.2 83.5 0.01 0.17 0
5 74.77 82.05 0 0 22.3
6 75.63 92.84 0.07 0.02 0
7 76.18 91.3 0 0.01 78.34
8 28.99 109.2 0.01 0.12 17.48
9 56.92 67.69 0.03 0.09 0

10 21.34 56.35 0.05 0.5 0
11 24.86 59.68 0 0 0
12 36.13 52.4 0.01 0 16.5
13 30.41 61.69 0 0.07 6.92
14 33.66 101 0 0.18 25.98
15 46.86 71.59 0 0.17 27.26
16 45.29 82 0 0 19.06
17 55.52 71.47 0.02 0.12 0
18 75.26 103.2 0 0.42 70.78
19 51.23 55.33 0.03 0.03 34.66
20 24.94 72.62 0 0.09 22.4
21 45.05 100.7 0.02 0 19.72
22 26.92 55.15 0 0 0
23 66.69 51.58 0 0 37.82
24 21.87 102.6 0.07 0 10.32
25 62.03 108.9 0 0.04 133.3
26 43.21 65.7 0 0 0
27 67.12 68.3 0.04 0.07 0
28 57.16 86.29 0.03 0 0
29 42.01 98.65 0.11 0 0
30 70.98 106.4 0 0 98.5
31 78.39 104.2 0 0.03 0
32 22.96 82.1 0 0 0
33 48.56 89.24 0 0.32 43.88
34 54.63 102.8 0 0 0
35 69.34 94.12 0.18 0 77.9
36 37.74 96.92 0 0.16 61.82
37 47.68 90.75 0.14 0.01 76.42
38 50.2 50.35 0 0 28
39 63.17 63.71 0 0 1.22
40 76.42 110 0 0.05 81.08
41 23.56 77.62 0 0.01 9
42 34.04 82.91 0 0.09 0
43 40.81 106.1 0 0 0
44 51.88 62.6 0 0.07 0
45 74.69 93.82 0.02 0 0
46 24.02 67.05 0 0 29.88
47 55.86 85.02 0 0 20.36
48 30.22 70.81 0.08 0 0
49 74.31 90.97 0 0 0
50 75.13 72.05 0 0.17 0
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Table A3. Reference ED bid set: The columns correspond to the index of the bid (ID), quantity (q),
bid price (p), positive and negative uncertainty (u+, u−), and S respectively.

ID q [MW] p [EUR/MW] u+ u− S [EUR]

1 −36.32 104.4 0 0 0
2 −39.9 110.8 0.09 0.03 0
3 −41.39 75.68 0 0 0
4 −27.12 140.9 0 0 0
5 −29.76 101.8 0.14 0 0
6 −33.23 132.6 0.04 0 0
7 −41.42 96.16 0.31 0 0
8 −15.19 143.7 0 0 0
9 −27.33 113.2 0.34 0 0

10 −33.82 140 0.03 0.02 0
11 −-39.86 77.72 0 0 0
12 −10.38 134.4 0 0 0
13 −12.27 85.39 0 0 0
14 −27.64 94.7 0 0.1 0
15 −25.21 97.9 0 0.1 0
16 −44.12 79 0 0 0
17 −21.38 132.9 0.1 0 0
18 −20.38 144.6 0 0.07 0
19 −28.45 123.9 0.06 0 0
20 −24.55 76.77 0.09 0.06 0
21 −20.66 80.14 0 0.11 0
22 −14.17 114 0 0 0
23 −38.62 135.2 0.15 0 0
24 −22.05 81.56 0.13 0 0
25 −32.56 103.3 0 0.06 0
26 −25.72 88.34 0.29 0.32 0
27 −23.72 78.41 0.05 0.03 0
28 −35.95 138.4 0.03 0.04 0
29 −48.79 94.67 0 0.04 0
30 −29.24 140.4 0 0.16 0
31 −34.83 103.1 0.08 0.03 0
32 −34.81 118.1 0 0.07 0
33 −14.32 134.4 0.04 0 0
34 −13.19 98.94 0 0.06 0
35 −33.59 97.01 0 0.2 0
36 −44.54 121.2 0 0 0
37 −40.65 145 0 0.3 0
38 −39.18 107.4 0.15 0 0
39 −44.97 118.1 0 0 0
40 −49.31 142.9 0 0.06 0
41 −49.04 73.14 0 0 0
42 −24.23 136.6 0 0 0
43 −34.61 90.51 0.12 0.14 0
44 −15.27 140.7 0 0 0
45 −29.96 103.9 0 0.01 0
46 −28.88 129.7 0.04 0 0
47 −27.01 128.7 0.08 0 0
48 −47.28 114.3 0.15 0.1 0
49 −43.24 129.3 0 0 0
50 −20.66 124.2 0 0 0
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Table A4. Reference (non-SRDB) RS+ bid set: The columns correspond to the index of the bid (ID),
quantity (q) and bid price (p) respectively. The SRDB bids are generated according to u, and the implied
actual set of uncertain energy bids.

ID q [MW] p [EUR/MW]

1 7.11 28.34
2 4 28.38
3 19.94 51.98
4 16.2 63.76
5 16.89 67.17
6 2.64 31.28
7 15.06 64.25
8 8.73 34.73
9 12.37 26.15

10 2.78 67.01
11 9.23 60.32
12 6.36 52.39
13 18.08 53.33
14 18.64 69.82
15 4.7 26.11
16 18.41 31.66
17 3.61 57.21
18 5.15 32.18
19 10.62 67.7
20 15.34 55.26
21 3.26 38.77
22 18.87 63.57
23 18.04 51.49
24 4.92 32.92
25 15.46 67.54
26 13.85 49.47

Table A5. Reference (non-SRDB) RS- bid set: The columns correspond to the index of the bid (ID),
quantity (q) and bid price (p) respectively. The SRDB bids are generated according to u, and the implied
actual set of uncertain energy bids.

ID q [MW] p [EUR/MW]

1 19.4 26.11
2 16 44.81
3 13.35 39.13
4 18.6 35.05
5 8.74 38.86
6 2.68 52.23
7 17.05 51.47
8 8.54 31.29
9 4.09 69.16

10 11.75 28.89
11 6.61 34.44
12 7.66 65.67
13 11.37 32.3
14 4.58 27.88
15 17.39 68.86
16 18.73 43.43
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Table A6. Reference (non-SRDB) RD+ bid set: The columns correspond to the index of the bid (ID),
quantity (q) and bid price (p) respectively. The SRDB bids are generated according to u, and the implied
actual set of uncertain energy bids.

ID q [MW] p [EUR/MW]

1 −12.76 45.55
2 −16.76 70.49
3 −12.6 54.63
4 −11.9 50.88
5 −19.93 51.42

Table A7. Reference (non-SRDB) RD- bid set: The columns correspond to the index of the bid (ID),
quantity (q) and bid price (p) respectively. The SRDB bids are generated according to u, and the implied
actual set of uncertain energy bids.

ID q [MW] p [EUR/MW]

1 −18.23 56.8
2 −10.45 42.55
3 −3.49 63.49
4 −7.6 55.99
5 −5.8 35.06
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Abstract: Recent movements for the decarbonization of the electricity sector have become a priority
for many countries around the world and will inevitably lead to the sharp decline of fossil-fuel-based
energy. Energy from fossil fuels is to be replaced by renewable energy sources (RES), although the
transition will neither be cheap nor smooth. One sustainable and environmentally friendly alternative
to fossil fuels and which will take a considerable share in the increasing supply of renewable energy
resources is biofuels. There are various types of biofuels used in practice; however, biodiesels represent
one of the most popular and widespread ones. This paper focuses as a case study on the byproducts of
Jatropha curcas, a crop and a plant that is already used for biofuel production and which is subsequently
employed in electricity generation in Jatropha curcas producing regions. This paper identifies the
limitations and prospects of Jatropha curcas utilization. Also, Jatropha curcas is compared to other
materials suitable for biomass generation. An economic analysis for a 2 MW biofuel powerplant was
conducted incorporating various market-related risks. The study shows that at current prices, net
profitability can be achieved using Jatropha curcas byproducts for producing electricity.

Keywords: renewable energy; biofuels; electricity generation; power sector; biomass; Jatropha curcas

1. Introduction

On 1 January 2016, the 17 Sustainable Development Goals (SDGs) of the 2030 Agenda—adopted by
world leaders in September 2015 at an historic United Nations (UN) summit—officially came into force.
Over the next fifteen years, with these new Goals that universally apply to all, countries mobilized
efforts to end all forms of poverty, fight inequalities, and tackle climate change, while ensuring that no
one is left behind [1].

Electrification of rural areas in developing countries is considered fundamental for reducing
energy poverty and meeting the SDGs. Provision of electricity to rural areas through national grids
is costly per unit of electricity because rural consumers are more scattered and typically buy less
electricity per consumer compared to urban consumers. Rural households are assumed to consume at
least 250 kWh per year and urban households 500 kWh per year.

Instead of bringing the national grid to rural consumers, community scale electricity production
units may be a more realistic solution for supplying electricity at a reasonable cost per kWh, and
biomass-based electricity generation is deemed to have potential [2,3].
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The SDGs build on strategies that create economic growth and addresses a range of social needs
including education, health, social protection, and job opportunities, while tackling climate change and
environmental protection [1]. This paper analyzed the use of biofuels in systems and aimed mainly on
six goals of the SDGs, depicted in Figure 1. These goals are interconnected to each other, because one
supports the rest.

 
Figure 1. Contribution of this article to Sustainable Development Goals [1]. Source: Own results based
on Reference [1].

Mitigating global climate change requires decarbonizing the electricity sector as it is a major source
of global greenhouse gas (GHG) emissions. With roughly half GHG emissions coming from coal-fired
power plants, electricity from natural gas presents another alternative—a lower carbon technology.
The optimal strategy for picking ideal technology will depend on the ultimate costs of each technology
as well as the social costs from GHG emissions. These analyses are increasingly discussed in many
countries around the world [4]. Based on The National Climate Assessment, in just the US, due to
the change in climate, hundreds of billions of dollars are lost, mainly because of heat-related deaths,
coastal property losses, and lost wages in outdoor industries due to the presence of heat waves [5,6].
Transition to lower carbon emission technologies will neither be cheap nor smooth; however, the status
quo is still fairly expensive, even though the cost is not directly visible.

The introduction of alternative fuels is a logical step, which is continuously being done around
the world. The first generation of alternative fuels introduced in large numbers comprised oilseed,
sugarcane, and other oil containing food and animal feed crops. First generation bioethanol is mainly
produced from sugar containing plants or cereal (grain) crops. Vegetable oils are also used after a range
of conversion to fatty acid methyl or ethyl esters. Even though, second, third, and fourth generation
are currently under research both by commercial and scientific circles, first generation is still the main
representative of alternative fuels [7].

This paper focused on the use of Jatropha curcas as a potentially useful source of renewable energy,
which was discussed in October 2008 in the European Parliament. The proposal was that one-fifth of
energy should come from non-food-related alternatives. Because this crop does not compete with food
production, it can become a choice for assessment by international investors and biodiesel processors,
energy producers and international institutions. In addition, it would be appropriate to support
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oilseeds which do not compete with food crops with certain subsidy incentives for areas, particularly
in developing countries, because of employment policy.

The paper is organized as follows: Section 2 provides a short literature review. Section 3 focuses
on the materials and methods used in our study. Section 4 presents the results and discussions. Finally,
Section 5 concludes by summarizing the main findings and implications.

2. Literature Review

The genus Jatropha curcas, belonging to the family Euphorbiaceae, contains 322 genera and
8910 species ranging from large woody trees to simple weeds. The site of origin is tropical Central
America, from where they spread to many tropical and subtropical areas, including India, Africa, and
North America. The plants are monoecious and contain yellow to red latex. The lists are alternate,
simple or palpated. The flowers are single-sex, the fruit is fleshy [8].

The most significant of the species is Jatropha curcas (hereto referred to as Jatropha curcas), which is
widely grown in the tropics. It is a monoecious shrub or low tree, which grows up to 5 m. Its smooth
shiny bark, which can appear greenish brown or yellow, has a paper-like look and tends to easily
peel. The watery pink latex can be pulled out mechanically and, after use, the color turns brown.
The branches are ascending, coarse, and glabrous [8].

In addition to the production of biofuels, oil from the fruits of this plant is used, including in
the production of candles, soaps, hair conditioners, and lamp oils. Jatropha curcas gossypifolia and
Jatropha curcas multifida also have the same area of origin. The seeds of these two species contain oil
which can be used in a similar way. Jatropha curcas multifida is also popular as an ornamental and
decorative plant, similar to Jatropha curcas podarica [9,10].

Of course, as a plant spread in the tropical and subtropical regions of most continents, Jatropha curcas
has several distinct local names in each of these regions.

Jatropha curcas has high ecological adaptability. As a succulent plant that excretes water through
its leaves during the dry season and also because it is deeply rooted, it is very well adapted to grow
in semi-arid conditions. With increasing humidity, plant production also increases. Despite the fact
that this plant survives the average annual rainfall of 250–300 mm very well, it needs an average
annual rainfall of at least 600 mm to produce flowers and then fruit. Optimal precipitation for seed
production is 1000–1500 mm. Higher precipitation can then cause fungal and fungal attack on the root
system [11–16].

Jatropha curcas can withstand extremely high temperatures very well, which, however, affects yield,
while even a small frost can permanently damage the plant. Enzymatic-catalytic chemical reactions of
plants that affect biomass production are controlled by van‘t Hoff effect (increasing the temperature by
10 ◦C leads to an increase in the rate of reaction two to three times). The optimum temperature for its
growth ranges from 20 ◦C to 28 ◦C. It can be grown at low altitudes. Jatropha curcas is not sensitive to
daytime. It is very suitable for growing in areas of high light intensity, but it is not suitable for growing
in shady places. Flower formation is not dependent on latitude, and the plant can bloom at any time
of year.

The properties of the oil, especially its quality and density, are important for biodiesel production.
Physical properties include density, viscosity, and low temperature properties. Density is important
in relation to the calorific value of the fuel. Viscosity characterizes the degree of fluidity and, with a
high viscosity, the fuel system is more stressed, or can cause that the fuel could not be pumped. Low
temperature properties are important to ensure operation in winter. Of the chemical parameters, the
acidity number in relation to the corrosive environment and especially the presence of unsaturated
fatty acids is important. Multiple bonds in fatty acids are more susceptible to oxidation processes.

The physical and chemical properties of Jatropha curcas are quite variable. Characteristic properties
are greatly influenced by the environment and genetic interaction, such as size, weight, and oilseed.
The quality of the oil, especially the content of fatty acids, is further influenced by the maturity of the
fruits during harvesting, the method of processing and storage. In general, it is necessary to ensure
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low oil contamination, low acid value, low phosphorus, water, and ash particles and to increase its
oxidation stability. The crude oil is relatively viscous. It is characterized by low fatty acid content,
which improves storage conditions. When stored, a higher content of linoleic acid may pose a problem,
which may cause the oil to be more susceptible to oxidation. The high cetane number guarantees a
low flash point. The oil contains a small amount of sulfur, resulting in lower SO2 emissions during
combustion [17–21].

It is possible to obtain an oil yield higher than 1500 kg per hectare of this plant. Yield starts from
18 months, but an economic yield is obtained from the third year after planting. Based on experimental
field conditions, the average seed yield with existing varieties under irrigation conditions after 3 years
is estimated to be 4 to 5 tons per hectare (4 to 6 kg/plant/year). However, farmers also recorded a yield
of 6 tons of seed per hectare. The most limiting factor of Jatropha curcas besides water is the relatively
high laboriousness. Therefore, large-scale Jatropha curcas plantations are not economically feasible
today (under the current conditions) and it can be replaced only partially by mechanization. Three
common planting densities can be identified: 1111, 1666 and 2500 trees per hectare equal to a squared
spacing of 3.0 by 3.0, 2.4 by 2.4, and 2.0 by 2.0 meters per tree [22].

Jatropha curcas oil is adequate to be used as a raw material in biodiesel production which meets
American and European standards [23,24]. Additionally, the press cake can be used as a fertilizer and
the organic waste products can be digested to produce biogas (CH4). Average oil content of dry seed
on a mass basis is 34% [25]. Full composition is shown is in Table 1.

Table 1. Proximate and ultimate analysis, and higher heating values of the raw materials [21].

Sample
Moisture

(%)

Proximate Composition
(% Weight, Dry Basis)

Ultimate Composition
(% Weight, Dry Basis)

Volatile
matter

Fixed
Carbon

Ash C H N S O

Jatropha curcas seed cake 4.08 73.7 19.06 7.24 52.12 6.91 5.01 0.7 28
Seed cake biochar 9.28 40.02 46.62 13.36 61.31 3.55 3.77 0.38 17.6

Jatropha curcas Shell 10.57 71.52 17.64 10.84 40.8 5.9 1.53 0.43 40.5

Jatropha curcas is a promising plant for both bio-energy supply and socio-economic development
in developing countries [26,27]. Full usage of Jatropha curcas is depicted in Figure 2.

 
Figure 2. Usage of Jatropha curcas. Source: Own results.
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For comparison of the biogas yield from Jatropha curcas cake with other raw materials which are used
frequently for commercial biogas production see Table 2, which shows some examples of agricultural,
industrial, and municipal residues as well as energy plants with properties of Jatropha curcas.

Table 2. Comparison of Jatropha curcas properties with other raw materials [28,29].

Raw Material Yield [m3·t−1]

Jatropha curcas cake 360
Jatropha curcas mesocarp 200

Jatropha curcas cake and mesocarp mix 310

Fat (deep-fry) 960
Glycerin 930
Wheat 660

Rapeseed residues 640
Hay 450

Straw (barley) 345
Molasses 340

Fruit pomace 280
Grass cuttings 220
Maize silage 200

Organic municipal waste 100
Kitchen residues 80

Starch process water 65
Manure (poultry) 62

Potato mash 40
Manure (cattle) 22

Source: Own results.

The biogas yield of 360 m3 of biogas per ton of Jatropha curcas is much higher than comparable
energy plants, castor (Ricinus communis) and Camelina (Camelina sativa) [29].

The cake is excellently degradable. The cake residue has a high heating value between 16–17 MJ/kg;
however, incineration would destroy the nutrients, which are needed on the ropa plantations to grow
the trees. Therefore, Jatropha curcas is more suitable for biogas production than burning in steam
powerplant [30–34]. Since the Jatropha curcas cake is excellently degradable, biogas production would
be currently the best alternative. Jatropha curcas cake has a volume of 360 m3·t−1. Mesocarp, as opposed
to the cake, is not well degradable. However, mesocarp could have significant value for biogas
production and increase biogas yields in a powerplant Mesocarp yield is roughly 200 m3·t−1 [28]. When
both Jatropha curcas cake and adequate amount of Jatropha curcas mesocarp (adequate portion from
collected fresh fruit bunches) are processed into biogas, it would be approximately 310 m3·t−1 [35].

A significant number of articles about Jatropha curcas biodiesel are focused on fuel properties [36–41],
different approaches and processes used to produce biodiesel from Jatropha curcas [29,42,43], comparative
studies on fuel properties of Jatropha curcas with other biodiesels [44–47] or evaluation of its impact
on countries [24,48–54]. As many studies were conducted that analyzed utilization of this plant for
biodiesel, no comprehensive study is known to the authors that deals with the use of Jatropha curcas
byproducts for a biogas power plant.

Jatropha curcas has the great advantage of being grown on agriculturally unsuitable soils, causing
it to produce low or no carbon deficiencies in these soils offering immediate and lasting benefits. It is
true that the yield of these plants is higher than that of Jatropha curcas On the other hand, the price of
seeds can be four to five times higher than that of Jatropha curcas. Another disadvantage of these plants
is the high demand for them in the food industry [55–57].

Biogas produced from Jatropha curcas can be further processed or used as is. Biogas as a mixture
consisting mainly from methane and carbon dioxide can be purified in an absorption column, where
the CO2 is removed. The choice of a specific gas sweetening process depends mostly on the material
itself, the required selectivity, costs, environmental requirements, and the final product. Usually amine
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compounds, physical solvents or hybrid (mixed-solvent systems that contain both amine and a physical
solvent) are used [58]. This pure natural gas can be simply put into gas pipeline and distributed or
liquified and either transported via LNG (liquid natural gas) tanker or used as high energy-density
fuel for trucks or buses [59].

Another application, which will be also discussed in this paper, is burning biogas in a combustion
chamber to produce stream and generate electricity by steam turbine. This application is an easier
application of biogas than previous ones, because there is not any separation of gases. Detailed
theoretical technology is discussed for example in Reference [60].

3. Materials and Methods

The process of making biofuels from Jatropha curcas was carried out as follows: after extraction
of oil, Jatropha curcas cake and mesocarp were obtained. The first step of biogas production was
pretreatment. Generally, all processes of this kind start with pretreatment step, where pH is regulated
for optimal fermentation usually by adding acid or base. The bacteria of the individual process steps
have different pH values at which they can grow optimally. The optimum pH for hydrolyzing and
acid-forming bacteria is 4.5–6.3. Methane-forming bacteria need a pH in the neutral range of 6.8–7.5.
If the fermentation process is in one tank—bioreactor—the pH must be properly maintained. The pH
is usually adjusted spontaneously within the system via the alkaline and acidic metabolic products
formed during anaerobic decomposition. Normally, the pH released by the carbon dioxide in the
neutral range is balanced. If a drop in pH is observed, substrate delivery must be immediately reduced
or stopped to give bacteria time to break down the acids present.

The fastest fermentation rate was observed when oil cake was incubated in 0.1 mol·L−1 NaCl
at 20 ◦C. Biogas production rate went up to 0.0015 m3/kg per day [61]. Temperature is important
to monitor, because it affects all biochemical processes. As the temperature rises, the speed of all
processes in the reaction increases, and another undesirable reaction may occur. Also, by changing
the temperature and, hence, the speed of the processes, the dynamic equilibrium of the process is
disrupted. It is, therefore, necessary to maintain a constant temperature for a stable course of anaerobic
decomposition. Commonly, there are three typical temperature ranges that suit individual bacteria:
psychrophilic (below 20 ◦C), mesophilic (25–40 ◦C) and thermophilic (above 45 ◦C).

After this pretreatment, the biogas production rate increased 5 times between the 1st and 5th
days of fermentation when compared to fermentation without pretreatment. After this period, a sharp
decrease in the biogas production rate was observed. The next step was fermentation. This process is
usually done by species either from bacteria (Bacillus licheniformis, Bacillus subtilis or Lactobacillus) or
microorganisms like Filamentous fungi [62,63]. The reactor was designed as a continuous stirred-tank
reactor (CSTR), so the goal was to keep the highest production rate during the whole process. A CSTR
was picked because it is easy to manage optimal temperature, it has low operational costs, and it always
produces the same resulting product. On the other hand, the batch reactor had differences in product
quality and the temperature could not be simply managed. Plug flow reactor (PFR) is by far the most
expensive type of reactor and its strengths would not have been much used in this experiment.

A culture medium was continuously fed into the bioreactor to maintain the steady state.
The bioreactor continuously leaves biogas and effluent with Jatropha curcas residue.

To ensure a stable and steady combustion of biogas, a compressor was put before the combustion
chamber. The compressor kept the volume of biogas at a defined level so that process was safe.

A simplified process schema is depicted in Figure 2, below. After pre-treatment of the Jatropha curcas
mix, the treated material enters the bioreactor where biogas is produced. Biogas is compressed
and burnt in the combustion steam chamber to produce steam that enters a steam turbine which
produces electricity.

An economic evaluation for biogas power plant fueled by the Jatropha curcas plant was done for a
2 MW biogas power plant. In economic evaluation, a mix of Jatropha curcas cake and mesocarp was
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considered, which means that 310 m3 t−1 was taken as an average biogas yield. This and other main
parameters for a 2 MW power plant are presented in the Table 3.

Table 3. Technical data for a Jatropha curcas power plant.

Raw Material Jatropha curcas Cake/Jatropha curcas Mezocarp

Dry substance (%) 35
Biogas yield (m3) 310

Energy yield (kWh t−1) 1695
Available raw material (t year−1) 26,000

Operation period (d year−1) 365
Net operation time (hr year−1) 7884

Average daily operation time (hr.d−1) 21.6
Fertilizer production (t year−1) 18,200

Annual biogas yield (m3 year−1) 8,060,000
Annual energy yield (MWh year−1) 44.064

Total electrical capacity (MW) 2
Annual electricity production (MWh year−1) 16,366

Plant electricity consumption (%) 5
Net electricity production (Q) (MWh year−1) 15,519

Source: Own results.

Dry substance was considered 35%, which is the commonly required level. It was assumed
that there would be technological breaks of 2.4 h every day in the process, so the operation period
was 7884 h per annum. The analysis of the 2 MW biogas power plant determined it would produce
fertilizer in a volume of approximately 18,200 tons if considering a 26,000 tons of input material and
30% decrease of volume after the biogas production process.

These technological parameters served as a basis for the economic evaluation of the proposed
investment project. The profitability of the project depends on revenues and costs. Project revenues
(TR) are calculated as a product of price (P) and quantity (Q).

TR = P × Q (1)

Quantity is deterministic and depends on the technological process. Price of electricity is
considered to be fixed.

Costs for the biogas electric power plant consist of two parts: fixed cost (FC) and variable cost (VC).

TC = FC + VC (2)

Fixed cost consists primarily of the cost for a power plant. The authors requested offers from
various suppliers and calculated an average price for a power plant to be approximately $3 million.
Another type of cost important for the analysis was annual operational costs that were mostly part
of the variable costs. Operation can be broken down into the following items: personnel (operation,
supervision), consumables (gasoline), maintenance (electro-mechanical, biological), insurance, and
administration. Depreciation was set to 20 years [64,65]. Emission allowances for CO2 were not
considered in this analysis.

Another important part of the economic analysis is how much of the material input is needed.
In order to fulfil needs for 2 MW a power plant, at least 26,000 tons of feedstock is needed. It is assumed
that the material for biogas production is bought from a processor at 7% of the price of Jatropha curcas
oil. Jatropha curcas oil is strongly correlated with palm oil price which is indexed at main commodity
exchanges in Southeast Asia [43].

It is crucial to determine future movement in price of palm oil as it is a basis for Jatropha curcas oil
price. For price prediction, ARIMA (AutoRegressive Integrated Moving Average) and Augmented
Dickey Fuller test (ADF) were used [66,67].
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ARIMA models are used for time-series forecasting. The aim of the ARIMA models is to
describe the autocorrelations in the data. The ARIMA models, also called Box–Jenkins models, are
models that may possibly include autoregressive terms (AR), moving average terms (MA), and
differencing operations.

One of the most important models in econometrics is the random walk, which is basically an
AR(1) process.

yt = yt−1 + ut (3)

Equation (3) is the driftless random walk. If a constant is included, it becomes the random
walk with drift. To determine if an AR(p) process is stationary involves examining the roots of its
characteristic equation. Given the following AR(p) model, it can be said to be stationary if when written
in the lag operator notation, the ϕ(L)−1 converge to zero:

yt = yt−1 + ut (4)

yt = ϕ(L)−1 ut (5)

If this is the case, the autocorrelations decline to zero as the lag length is increased. For an AR(p)
process to be stationary, the roots from the characteristic equation:

1 − ϕ1z − ϕ2z2 − . . . − ϕpzp = 0 (6)

all need to lie outside the unit circle, i.e., are greater than 1. The random walk is an example of a
non-stationary process, as its roots lie on the unit circle not outside:

z = 1

yt = yt−1 + ut

yt = Lyt−1 + ut (7)

yt(1 − L) = + ut

1 − z = 0,

where (1 − z) is the characteristic equation and the root (z) lies on the unit circle. The same principle
applies to higher orders too:

z = 2

yt = yt−1 − 0.25 yt−2 + ut

yt = Lyt − 0.25L2yt + ut (8)

(1 − L + 0.25L2)yt = ut

1 − L + 0.25L2 = 0

(1 − 0.5z)(1 − 0.5z) = 0

In the above example, both roots lie outside the unit circle, so the AR(2) process is stationary. The same
applies for higher orders of lags too, although it becomes increasingly difficult to factorize these. Further
characteristics of an AR(p) process are that the mean and variance of an AR(1) process are:

E(yt) =
μ

1−ϕ1
, var(yt) =

σ2(
1−ϕ2

1

) (9)
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The Augmented Dickey Fuller test (ADF) is test for a unit root in a time-series sample. This test is
for a larger and more complicated set of time-series models and a statistic value of test is a negative
number. The more negative it is, the stronger the rejection of the hypothesis that there is a unit root
at some level of confidence. The null hypothesis is that the variable contains a unit root, and the
alternative is that the variable was generated by a stationary process 28.

The extended regression used in the ADF test can be expressed in its most general form as:

ΔYt = μ+ γYt−1 +

p∑
j=1

α jΔYt− j + βt +ωt (10)

where μ is the drift term, t denotes the time trend, and p is the largest lag length used.
One of the most important economic factors that affect profitability and therefore feasibility of

using Jatropha curcas byproducts is the price of this crop on the market. As Jatropha curcas is not a
commodity, it is necessary to derive its price based upon other oil producing crop in this region, such
as palm oil. Palm oil price evolution given by index Mundi [68] is depicted in the Figure 3.

Figure 3. Jatropha curcas biogas power plant. Source: Own results.

Data in Figure 4 show that while in between 2006 and 2008, there has been a growing trend, in
2008 the price fell to a minimum level of approximately $450 per ton. After 2008, prices recovered to
an all-time high of approximately $1250 in 2011. After that the price has been falling. In January 2017,
the price reached a local maximum at $825 per ton and since then, the prices are going down to a level
of $600 and below per ton.

Based on the numbers in the analysis, the following indicators of profitability are calculated:
payback period, net present value, and break-even point.

Payback period (PP) shows how long it takes to recover the initial investment (C0) through
annualized cash flow (CF). It is calculated as follows.

PP =
C0

CF
(11)

Net present value is the difference between the present value of cash inflows and the present
value of cash outflows. Net present value is used in capital budgeting to analyze the profitability of an
investment or project, where r stands for a discount rate.

NPV = −C0 +
CF1

(1 + r)1
+

CF2

(1 + r)2 + . . .+
CFt

(1 + r)t =
n∑

t=0

CFt

(1 + r)t (12)

Net present value is calculated for the period of t = 20 years as it represents best the physical
depreciation of the power plant.
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Figure 4. Evolution of Jatropha curcas price since 1999. Source: Own results.

Break-even point (BEP) is the point at which cost and revenue are equal. It means that there is no
net loss or gain, and one has “broken even”.

BEP =
FC

P−VC
(13)

where P stands for output price (electricity), FC are fixed costs, VC are variable costs.
In order to conduct the profitability calculations, it is necessary to define the economic variables.

They are given in the Table 4 below.

Table 4. Economic data for Jatropha curcas power plant.

Items Value

Fixed cost ($) 3 million
Operational cost ($p.a.) 152,000

Input price ($/ton) 39.76
Output price ($/kWh) 0.11

Discount rate (%) 0.5

Source: Own results.

Fixed cost was simplified to only the purchasing price of the biogas powerplant. Input price was
calculated as 7% fraction of the predicted Jatropha curcas price. Output price was given as fixed, based
on the currently prevailing prices in Jatropha curcas producing regions. Discount rate was set to 8% on
average, based on risks given for similar projects in the area [69,70]. In the calculations of NPV, the
discount rate was simulated in the range of 1–16%. Cost structure is represented in Table 5 below.
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Table 5. Cost structure for a Jatropha curcas power plant.

Items Value

Jatropha curcas cake and mesocarp (%) 87
Operational cost (%) 13

Source: Own results.

The cost structure shows that the material costs for Jatropha curcas cake and mesocarp are the most
important ones with nearly nine-tenth of total costs.

4. Results and Discussion

In order to proceed to an estimation of an ARIMA model, it is essential to test the variable for the
existence of a unit root. The most common test is the Augmented Dickey Fuller test as introduced in
the methodological section. For data N = 232, it includes 2 lags of (1 − L) price (max was 12, criterion
modified AIC) with unit–root null hypothesis: a = 1, two tests were conducted: test with constant and
no trend and test with constant and trend.

The first test takes the form of the model (1 − L)y = b0 + (a − 1)y(−1) + ... + e.
1st order autocorrelation coefficient for e = 0.011, lagged differences: F(2, 113) = 14.796 (0.0000),

estimated value of (a – 1) = 0.0518326, tau_c(1) = −2.39326 and asymptotic p-value = 0.1436.
The second test takes the form of model (1 − L)y = b0 + b1t + (a − 1)y(−1) + ... + e.
1st order autocorrelation coefficient for e = −0.001, lagged differences: F(8, 100) = 4.779 (0.0001),

estimated value of (a − 1): −0.0492756, tau_ct(1) = −1.64713 and asymptotic p-value = 0.7743.
The results showed that a null hypothesis of the unit–root was rejected. Therefore, it was not

necessary to difference the time-series for the ARIMA model. Using the autocorrelation function
and partial autocorrelation function, the authors identified the ARIMA model to be ARIMA(1,0,1).
Definitions of the roots lead to estimation of an ARMA(1,1) model.

The results in Table 6 show that both roots were significant. Hence, this test can be used for the
prediction of the future price of palm oil, which will provide guidance for Jatropha curcas oil prices.
This prediction is graphically given in Figure 5 for the next two years.

Table 6. Results of ARMA model.

Coefficient SD z p-Value

const 627.468 115.799 5.419 6.01 × 10−8

phi_1 0.971330 0.0138850 69.96 0.0000
theta_1 0.360203 0.0516843 6.969 3.19 × 10−12

Source: Own results.

The price ranges from $552 per ton to $584 per ton. The results of the prediction for the next
24 months show that the palm oil price has probably reached a bottom at $552 per ton and a slight
growth can be expected in the coming months. Given the uncertainty of the prediction (green shaded
95% interval), a middle value of $568 was then used for the economic analysis of Jatropha curcas biogas
powerplant profitability. When using the predicted price one must be cautious, as it is important to take
into account other fundamental factors which may influence the price, such as prices of substitutes, etc.

Using all the aforementioned analytical results, the authors calculated the payback period, net
present value, and break-even point.
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Figure 5. Prediction of future price for palm oil. Source: Own results.

Payback period in Table 7 shows a relatively good outcome. Results could be even better if we
assumed rising price of electricity. It is, however, important to be cautious as some of the assumptions
are relatively strong. For example, it is assumed that CO2 allowances will not be paid for by the
power plant.

Table 7. Results of the economic analysis of biogas generation.

Model Variable Result

Payback period (years) 7.91
Break event point, volume (MWh) 123,358

Source: Own results.

Finally, net present value was also calculated for different discount rates. The result of this analysis
is presented in Figure 6. The shaded area in the diagram contains 80% confidence interval.

The results show that net present value is mostly positive for discount rates ranging from 1 to
11%. If the prevailing discount rate 8% is taken in account, NPV is positive in the entire interval of
prediction. It is obvious that the price of Jatropha curcas or palm oil has a large impact on NPV.

The results presented in this paper are not discussed by many authors, as many studies focus
on the use of Jatropha curcas seed and oil primarily for biodiesel production [51,71,72]. For example,
Verma and Gaur [73] estimate the costs of production in the similar range.

A study by Bouffaron et al. [74] described the chemical process and economic model, but with
uncertain conclusions for the viability of the project.

Other authors discuss energy investments in Indonesia. For example, according to [75], investment
into diesel replacement with palm oil showed positive net present values and quicker payback period
thanthe project analyzed in this paper. For China, Deng et al. [76] calculated the cost efficiency of
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Jatropha curcas biodiesel with positive results albeit with a smaller discount rate. Use of biofuels was
also discussed for Germany and the United States [77–79].

 

Figure 6. Net present value calculations. Source: Own results.

5. Conclusions

Our results provide a unique analysis of how to utilize byproducts from Jatropha curcas production
in the form of cake and mesocarp. We propose utilization of these byproducts for electric power plants
making it an excellent source of cheap electricity and an essential element in high renewables electricity
systems. We quantified all the cost and benefit components of the project and set important parameters
for their calculation including a floating discount rate. Viability of this venue was calculated. All
profitability indicators used in the analysis showed very promising results. Jatropha curcas, based on this
analysis, may be a very successful crop for biogas production. It would be, however, important to also
evaluate other impacts of this project in terms of its social and environmental impact by incorporation
of, for example, emission allowances.

The analysis presented in the paper shows that using byproducts of Jatropha curcas may be
profitable. For some of the processors this can be a method of diversifying their businesses to use
the byproducts of Jatropha curcas seed production. In terms of circular economy, the proposed use
of Jatropha curcas mesocarp and cake in electricity production is also beneficial as it provides great
benefits and contributes to a lower waste burden. All of these features make Jatropha curcas a novel and
interesting element in a highly renewable electricity system.
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commercial LNG production in the EU. Energies 2019, 12, 1565. [CrossRef]

60. Sher, F.; Pans, M.A.; Afilaka, D.T.; Sun, C.; Liu, H. Experimental investigation of woody and non-woody
biomass combustion in a bubbling fluidised bed combustor focusing on gaseous emissions and temperature
profiles. Energy 2017, 141, 2069–2080. [CrossRef]
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Abstract: Currently, the majority of world economies (even those located in the sunbelt (+/− 35 degrees
of latitude with good sunshine with low seasonality) uses various types of fossil fuels as the main
source of energy for their economies. However, this represents a very volatile and unsustainable
strategy, since according to various estimates, the fossil fuel era will inevitably end as all carbon fuels
are going to be spent in the next few centuries. Unlike traditional energy, renewable energy sources
(RES) are not based on energy resources, but rather rely upon natural energy flows. With regard
to its unique property, there has been an active construction of power plants of renewable energy
and their gradual integration into national energy supply systems in recent decades. At the same
time, the existing models of electricity markets were unprepared for their wide distribution. Hence,
determination of the market value of energy generated by power plants using renewable energy
sources becomes a particularly significant issue. This market value has to take into account the
prevention of costs from the use of fossil fuels, as well as the resulting environmental benefits.
Our paper proposes methods for solving this problem, contributing to the increase of economic
efficiency of investment projects for the construction of renewable energy facilities and the formation of
economic incentives for their propagation in energy supply systems. The proposed methods are based
on the dynamic differentiation of tariffs for consumers with renewable energy sources depending on
their structure of electricity consumption. Its effectiveness is demonstrated by calculating the cost
of electricity for households located in the Krasnodar region using renewable energy sources. It is
shown that this approach to the formation of tariffs for consumers allows the household to receive
additional savings from the efficient use of energy installations on RES and energy storage devices
in terms of alignment of the energy consumption schedule. This creates a significant incentive for
households to use them and contributes to increasing the effectiveness of government renewable
energy support programs, including by solving the acute problem of raising electricity tariffs from
the grid.

Keywords: renewable energy; system integration; power industry; state policy; smart metering;
tariff rates

1. Introduction

Over the past few decades, the views on the role of traditional hydrocarbon energy changed
dramatically. An increasing stress in concepts of development of a human society of the future is made
on power engineering on the basis of using the renewable energy sources, as Melas et al., Augutis
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et al., Bhattacharya et al., and Umbach et al. have consistently shown through examples of various
countries across the world [1–4]. The answer to the question of why this is happening lies not only in
the consideration of actions of economic mechanisms and incentives in the energy sector. One can see
that the answer also partly lies in a political subtext of energy development based on renewable energy,
its scientific, environmental, and social aspects and so on. All of them form the outer visible part of the
energy economic and policy iceberg.

Within the core of the hidden processes of close attention of governments of many countries to
the development of renewable energy generation one can find careful attempts to find the scale and
depth of the next energy crisis. Its occurrence is only a matter of time, due to many factors, the main of
which are the following two: (i) physically limited amount of extracted energy sources, and (ii) the
constant growth of energy consumption by human civilization, as Qureshi et al., Uz, or Ang et al. point
out in their papers in the relevant energy-focused journals [5–7]. Particularly noteworthy is the fact
that electricity is no longer just an additional benefit. As a result of the serious growth of the world’s
population and the concomitant restructuring of all vital industries nowadays, energy has become the
key to the survival of billions of people all around the world.

In an attempt to avoid the consequences of a social and economic shock as a result of the energy
crisis, various countries took steps to break the vicious circle and provide the basis for ensuring the
minimum necessary level of power generation within the national energy systems [8,9]. This explains
the emergence of keen interest in renewable energy based on the use of natural energy flows. Their
integration into power systems is one of the priority tasks of the energy policy of a number of countries
aimed at ensuring energy security, despite the fact that renewable energy sources in many cases are
characterized by low economic efficiency and form many problems associated with the optimization
and management of operating modes of power systems. For instance, some researchers [10–13]
explain this by the uneven production of renewable energy and its inconsistency with the electricity
consumption schedule. Moreover, the introduction of renewable energy often leads to an increase
in the cost of energy for the end consumer. Some other researchers [14–16] note that the increase in
the cost of electricity is primarily due to an increase in the grid tariff due to a decrease in electricity
consumption from the grid and an increase in the demand for peak power capacities.

Most recently, academic research and engineering projects conducted in the field of development
of renewable energy have started to gain serious attention.

Serious state support is provided for scientific and technological developments of renewable
energy power plants, the emphasis of which is shifted towards increasing their installed capacity.
As noted in the papers [17–19], an increase in the unit capacity of power plants leads to a reduction in
the cost of electricity production.

Another direction in the field of the use of renewable energy sources which is developing no less
intensively is the development, creation and operation of small power plants. According to many
authors [20–23], they focus on the needs of private households or small settlements. It is worth noting
that the military departments of most countries are strongly interested in creating such autonomous
systems, which ensures a constant flow of funds to finance such projects.

To achieve the goals of national strategies for the development of renewable energy and increase
their investment attractiveness at the level of governments and energy departments of countries, it is
necessary to develop state tariff policy tools aimed at introducing and using renewable energy sources
in energy supply systems. They should include economic incentives to optimize energy consumption
through the introduction of autonomous energy sources and be based on differentiated pricing by hour
area of the day. At the same time, as practice shows, differentiated tariffs are often less profitable for the
consumer than a fixed tariff during the billing period [14,15]. This is due to the discrepancy between the
fixed values of the tariff rates established for the time zones and the actual daily energy consumption
schedule. Taking into account the development of automated systems for commercial metering of
electricity, it is necessary to develop a pricing method that takes into account real-time changes in
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energy consumption and stimulates consumers and manufacturers to introduce and effectively use
renewable energy sources.

This paper aims to solve the following important problems and issues:

• Inconsistency between the existing systems for differentiating electricity tariffs by time zones and
real daily energy consumption schedules which leads to inefficiency of the tariff policy in the field
of energy management of consumers and their irrational use of renewable energy sources.

• The need to reduce the growth in the cost of electricity for consumers from the power supply
system caused by suboptimal loading of the production capacity of the energy system when
consumers use autonomous energy sources based on renewable energy sources.

• Stimulating consumers to align the schedule of electricity consumption during the day and
increase the efficiency of using autonomous energy sources based on renewable energy sources
(RES), including the use of electric energy storage technology.

2. Overview of the Global Renewable Energy Market

According to the data from 2016, the renewable energy market is represented by power plants
with a total capacity of more than 2000 GW (Figure 1) [24–26]. The main suppliers of renewable energy
are hydropower and wind as well as solar energy and bioenergy.
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Figure 1. World production capacity of renewable energy sources, GW.

At the same time, solar and wind energy markets are the fastest growing in the world. The world
wind power capacity over the past 7 years increased 2.5 times, reaching a total capacity of 487 GW,
while the global solar photovoltaic power capacities increased more than 10 times and amounted to
303 GW (Figure 2) [24–26].

Additionally, there is a significant reduction in the cost of individual technologies of renewable
energy. This contributes to the innovative development of the industry, in particular, reducing the cost
of installation and production of solar photovoltaic cells, as well as the modernization of wind turbine
structures and the emergence of new materials. In terms of the cost, the renewable energy sources in
many countries are now close to competing with new fossil-fired power plants (Figure 3) [27–29].

209



Energies 2019, 12, 3250

 
Figure 2. World wind and solar production capacity, GW.
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Figure 3. Estimated cost of electricity on renewable energy installations, US dollars per kWh.

One of the most competitive renewable energy sources is coastal wind installations, primarily for
countries where energy resources are expensive. Where fossil fuels are fairly cheap (for example, fairly
low gas prices in the United States and Russia), wind turbines can compete with traditional energy
sources only under favorable weather conditions and state support programs for the development of
the industry. At the same time, the increased interest of many countries in environmental protection
and energy security leads to the active development of renewable energy [30–34].

Nowadays, more than 160 countries of the world (82%) pursue a policy of supporting the sector,
of which in 20 countries the share of renewable energy sources in the total energy balance exceeds 20%.
According to the EU energy strategy, by 2030 countries should ensure a 40% reduction in greenhouse
gas emissions and an increase to 32% of the share of renewable energy [35]. In the longer term, many
countries will likely go significantly further. In particular, Germany plans to reach 60% of the share of
renewable energy in the country’s total energy balance by 2050. Figure 4 presents a generalized model
of factors influencing the development of renewable energy in the world.
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Figure 4. Factors renewable energy development in the world.

Overall, it becomes apparent that high rates of growth in production of renewable energy are
largely due to significant state support. It allows in a number of countries to make renewable energy
attractive, even in cases where its initial economic indicators are more than 50% worse than when
using fossil fuel resources. At the same time, renewable energy is successfully developing in the world
in spite of the crisis phenomena in the global economy, and, in fact, is one of the most effective ways to
overcome the energy crisis.

3. Analysis of the Methods and Consequences of State Support for the Development of RES

Over the past few decades, the development of renewable energy sources in the world has
achieved great success in increasing production efficiency and reducing equipment cost. Due to the
development of new technologies, renewable energy has become capable of the cost of production to
compete with traditional power generation in countries with favorable for the use of natural energy.
However, in spite of all their achievements, today renewable energy technologies face great challenges
in ensuring the required level of competitiveness due to the peculiarities of energy production and the
high cost of building an installed capacity unit, which makes it impossible to develop them without
state support [36,37].

Government programs to support renewable energy sources are usually aimed at solving several
problems at once [38–42]:

• decarbonization of power systems and an increase in domestic electricity production,
• improving the technological competitiveness of renewable energy by reducing production costs

and creating new jobs.
• In some countries, state programs of support for renewable energy have existed for more than

20 years, which made it possible to analyze the experience of the best practices in implementing
such programs. There are four categories of government policy tools to support renewables:

• tax incentives;
• state subsidies;
• regulatory tools;
• privileged access policy.

Many countries use several RES support tools at once. At the same time, it is possible to trace the
relationship between the number of tools used to support renewable energy sources and the country’s
income. Low-income countries use an average of 2.2 different mechanisms, while high-income
countries use 4.8 [43]. Table 1 presents a summary of the use of renewable energy support mechanisms
in the world.
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Table 1. Application of state support mechanisms for renewable energy sources (RES) in the world.

Instruments of State Support for RES 2005 2016

Countries with approved state programs for the development of RES 48 160

Countries applying special tariffs for generating renewable energy 34 108

Countries using emission quotas for greenhouse gases 11 99

In recent years, more and more political tools have been created for the development of RES.
For 2018, 164 countries are already implementing state programs for the development of RES. At the
same time, half of them are countries with developing or transitional economies [43,44]. Tax relief
and earmarked loans are commonly used to support renewable energy. In high-income countries
investment subsidies and grants are mainly used.

The dominant mechanisms for the support of renewable energy are schemes for the introduction
of a special fixed (green) tariff (feed-in tariff) and netting of electricity (net metering), applied in both
developing and developed countries. Today, about 66% of countries use these tools.

Net metering assumes that in windy or sundial hours the owner of an installation of renewable
energy sources delivers surplus electricity to the grid, which he cannot consume himself, and during
windless or night hours he consumes electricity from the grid to offset the volumes supplied earlier.
If according to the results of the billing period, such a participant in energy supply consumed more
electricity than he supplied, then he compensates for the difference at the usual rate. If, on the contrary,
he consumes less energy than he supplied, he may use the surplus in subsequent periods or even
receive payments from the power utility. When using net metering, only one meter is required, which
will show the difference between the volumes of electricity taken and delivered to the grid. A feed-in
tariff allows owners of a power plant for renewable energy to receive compensation for electricity
supplied to the network that exceeds the retail tariff; however, as the number of owners of such
installations grows, the feed-in tariff usually decreases and ultimately compares to the retail tariff.
This scheme requires the installation of two separate meters.

Despite the advantages, the use of these tools to support renewable energy often leads to the
emergence of cross-subsidization of consumers and generation, as well as an increase in the tariff
for electricity transmission throughout the network. So for the period 2008–2016, Australia, Spain,
Portugal and Germany were characterized by an exceptional increase in electricity prices (a 112% price
increase) [14,15,43]. This is due to the fact that in these countries, generation and sale of electricity
are competitive activities, while transmission and distribution networks are structurally separated
and regulated by the monopolies. Reducing the demand for electricity from the grid and reducing
the uniformity of the electricity consumption schedule due to the spread of generation to renewable
energy sources led to an increase in the network tariff, which was to provide the necessary regulated
revenue to grid companies and compensate them for the investments made over the past five years to
develop the network infrastructure. In turn, consumers responded to the growth of tariffs by reducing
consumption, which led to an increase in network tariff rates for the next year in order to provide the
necessary gross revenue to grid companies and the second wave of changes in electricity demand from
the grid.

The described negative processes in the energy supply system aggravated the state programs for
subsidizing consumers who commissioned installations for renewable energy sources, in particular,
solar photovoltaic panels, which were compensated by raising prices for power grid supply. The sharp
increase in fixed-rate tariff obligations for RES (feed-in tariff) led to the third wave of network
tariff increases.

Another consequence of the wrong state policy in support of renewable energy is the emergence
of indirect cross-subsidization, when consumers who have not installed or cannot afford installations
on renewable energy, in fact, pay the grid company for consumers who switch to renewable energy,
forced to raise the network tariff, and generation company, which increases the uneven loading of
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power equipment and the number of hours of use of expensive peak power while reducing the amount
of electricity generation [44–46].

The way out of the situation described is the development of a tariff that stimulates the consumer
to equalize the load during the day period of electricity consumption [47–49]. This suggests the use of
a differentiated tariff for the zones of the day, the key disadvantage of which in this situation is its static
nature, when the selected zones may not correspond to a dynamically changing load schedule and,
thus, instead of reducing the price of electricity for the consumer, lead to its increase. It is necessary to
develop a methodology for dynamic differentiation of the electricity tariff, which with the development
of automated systems for commercial metering of electricity and their intellectualization becomes
applicable in practice.

4. Proposal for the Method of Dynamic Differentiation of Electricity Tariffs

To solve the problem of reducing power supply costs, reducing the need for expensive peak
capacity of the power system and increasing the efficiency of using autonomous power plants for
renewable energy, it is necessary to manage power consumption by encouraging consumers to use
measures to level the daily consumption schedule. These measures should encourage consumers to
introduce power storage equipment into the autonomous power supply system (for example, based on
solar photovoltaic panels), allowing them to distribute the produced energy over a wide range of
hours during the day, as well as to change their institutional behavior, which will be expressed in
adapting the daily pattern of electricity consumption to a production schedule of available autonomous
energy sources.

Such a measure to stimulate the optimization of power consumption and the effective use of
autonomous sources is the formation of an economically sound tariff according to the zonal principle.
The zones of base, semi-peak and peak load on the power system are distinguished. For each zone,
depending on the amount of electricity consumption, its own tariff rate is set.

At the same time, as shown in the next part of the paper, the zonal differentiation of the tariff does
not always contribute to improving the efficiency of electricity supply and may even be less beneficial
for the consumer than the single-value undifferentiated tariff. This is due to the fixed values of the
peak and half-peak tariff rates and transition time zones, which do not correspond to the actual daily
load curve of consumers. Also, a contribution is made by the existing tariff differentiation in many
countries in terms of amount of energy consumption, which is often poorly founded.

The development of automated systems for commercial metering of electricity along the path of
using advanced (smart) electricity meters, equipped with communication tools for monitoring and
data transmission on energy consumption in real time, allows us to develop pricing methods for
electricity with much greater differentiation of time zones consumption and tariff rates than the existing
ones [50–52]. Thus, it is possible to solve the problem of inconsistency of the tariff differentiation
system and real daily energy consumption schedules.

The following algorithm is proposed for dynamic pricing of electricity, taking into account the
fact that consumer load charts on weekends and working days differ significantly:

1. Based on the statistical analysis of data for the previous period, daily graphs of consumer load
are compiled on a typical work day and a day off: Pw(t) иPh(t)

2. According to consumer load schedules, values are calculated:

a. Minimum power consumption per unit of time:

Pmin
w = minPw(t), Pmin

h = minPh(t)
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b. Average power consumption per unit of time:

Pw =

n−1∑
t=0

Pw(t)

n
, Ph =

n−1∑
t=0

Ph(t)

n

c. Half-peak power consumption per unit of time:

Ppp
w = Pw + 2

√√√√√n−1∑
t=0

(Pw(t) − Pw)
2

n
, Ppp

h = Ph + 2

√√√√√n−1∑
t=0

(Ph(t) − Ph)
2

n

d. Maximum power consumption per unit of time:

Pmax
w = maxPw(t), Pmax

h = maxPh(t)

3. Energy consumption zones are determined:

a. Basic power consumption (B):

PB
w(t) ∈ [0, Pmin

w ], PB
h (t) ∈ [0, Pmin

h ], t = 0, 23

b. Half-peak power consumption (PP):

PPP
w (tw) ∈ (Pmin

w , Ppp
w ], PPP

h (th) ∈ (Pmin
h , Ppp

h ], tw = tPmin
w

, tPPP
w

, th = tPmin
h

, tPPP
h

, Pw(tPmin
w

) = Pmin
w ,

Ph(tPmin
h

) = Pmin
h , Pw(tPPP

w
) = PPP

w , Ph(tPPP
h
) = PPP

h

c. Peak power consumption (P):

PP
w(tw) ∈ (Ppp

w , Pmax
w ], PP

h (th) ∈ (PPP
h , Pmax

h ], tw = tPPP
w

, tPmax
w

, th = tPPP
h

, tPmax
h

, Pw(tPPP
w
) = PPP

w ,

Ph(tPPP
h
) = PPP

h , Pw(tPmax
w

) = Pmax
w , Ph(tPmax

h
) = Pmax

h

4. A fixed tariff rate is established for the base consumption zone, and an interval of tariff rates is
established for the half-peak and peak power consumption zones:

a. Basic power consumption (B):

CB(t) = CB, t = 0, 23

b. Half-peak power consumption (PP):

CPP(t) ∈ [CPP
min, CPP

max], CPP
min = CPP(P(t) = Pmin), CPP

min > CB, CPP
max = CPP(P(t) = PPP), t = tPmin , tPPP

c. Peak power consumption (P):

CP(t) ∈ [CP
min, CP

max], CP
min = CP(P(t) = PPP), CP

min > CPP
max CP

max = CPP(P(t) = Pmax), t = tPPP , tPmax

5. We believe that the increase or decrease in energy consumption proportionally reduces or increases
the cost of electricity in the corresponding zone with the coefficient K:
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a. Half-peak power consumption (PP):

KPP =
CPP

max −CPP
min

tPPP − tPmin

b. Peak power consumption (P):

KP =
CP

max −CP
min

tPmax − tPPP

6. The chain growth rates are calculated, which characterize the increments of energy consumption
in the areas of half-peak and peak consumption:

a. Half-peak power consumption (PP):

GPP(t) =
PPP(t)

PPP(t− 1)

b. Peak power consumption (P):

GP(t) =
PP(t)

PP(t− 1)

7. A dynamic calculation of the cost of electricity for the consumers at each time point for working
days and days off are produced. In case of increase in energy consumption in the half-peak and
peak zones, an additional penalty is imposed [G(t)− 1]K. Accordingly, when energy consumption
decreases in comparison with the previously registered value, the tariff rate is decreased:

TCw(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CBPw(t), Pw(t) = Pmin

w
CPP(t)Pw(t) + [GPP(t) − 1]Kpp, Pw(t) ∈ (Pmin

w , PPP
w ]

CP(t)Pw(t) + [GP(t) − 1]Kp, Pw(t) ∈ (PPP
w , Pmax

w ]

,

TCh(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CBPh(t), Ph(t) = Pmin

h
CPP(t)Ph(t) + [GPP(t) − 1]Kpp, Ph(t) ∈ (Pmin

h , PPP
h ]

CP(t)Ph(t) + [GP(t) − 1]Kp, Ph(t) ∈ (PPP
h , Pmax

h ]

8. The total cost of electricity per day is calculated, taking into account the discrete values of the
indications of smart meters:

TCD
w =

n∑
i=1

TCw(ti)(ti − ti−1), TCD
h =

n∑
i=1

TCh(ti)(ti − ti−1)

The above algorithm implements the principle of dynamic pricing of electricity for the consumer,
when at each moment in time it is determined in which energy consumption zone (base, half-peak,
peak) the consumer load curve is found. Based on the calculation of the chain load growth rates for
each energy consumption zone, a system of tariff rates is formed. The growth of energy consumption in
the semi-peak zone and its coverage due to the use of energy system resources, rather than renewable
energy, is punished by higher tariff rates, reduction of energy consumption is encouraged by a dynamic
reduction in rates.

5. Empirical Model: A Case Study of Krasnodar Region of Russia

Our empirical model focuses on the Krasnodar region which is one of the largest regions-consumers
of electricity in Russia. At the same time, it is characterized by a high level of energy deficiency. Hence,
the development of territorial energy system in the region is given great importance [53,54].
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In 2016, electricity production amounted to about 7 billion kWh with a consumption volume of
22 billion kWh. From 2006 to 2016 electricity consumption in the region increased by more than two
times. The increase in consumption in the territorial energy system was mainly due to the growth of
electricity consumption by industrial enterprises, the intensive development of the resort and recreation
complex and the buildup of electrical loads during the construction of Olympic facilities in Sochi.

The shortage of generating capacity of the territorial energy system of the Krasnodar region was
covered by the flow of electricity and power through the intersystem power lines from adjacent power
systems. In January 2017, the total flow of electricity into the power system of the Krasnodar region
amounted to more than 1 billion kWh, including 130 million kWh via interstate lines. In total, the
Krasnodar region satisfies its electricity needs by 35% due to preferential energy production at thermal
power plants [55].

Krasnodar region is one of the most attractive in Russia for the development of generation based
on the use of renewable energy sources in terms of its natural and climatic characteristics. According
to existing estimates, by realizing the potential of renewable energy in the Krasnodar region, it is
possible to produce up to 1300 MW instead of burning hydrocarbon fuels. The most important types
of renewable resources for the Krasnodar region are solar and wind energy, which account for 80% of
the energy potential of renewable energy sources in the region [52,56,57].

Special attention in the region is paid to the development of distributed solar energy, which should
make it possible to reduce capital expenditures on the construction of new sources of traditional energy,
as well as on the construction of new kilometers of transmission lines. The potential of solar energy in
the region is about 1400 kWh/m2, which corresponds to the level of countries that actively use solar
energy today, such as the United States and Australia [14,28,52].

Solar energy is used primarily for the needs of households using electricity generators based
on photovoltaic cells and panels [58]. Figures 5 and 6 show the averaged graphs of the daily load
of a household on a typical working day and on a day off with a graph of energy generated by
solar installations.

 
Figure 5. Household electrical load graph on a working day with a superimposed graph of electricity
generated by solar installations.

As can be seen from the graphs presented, the peak of the electricity produced by solar power plants
does not correlate with the time of day with the peaks of household electricity consumption, especially
on working days. The significant difference between daily power consumption and autonomous
power generation of households with solar panels leads to inefficient use of solar generation. Thus,
the economic potential of individual solar installations is not fully disclosed, which leads to low
efficiency of state programs to subsidize the development of solar energy.
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Figure 6. Household electrical load graph on a day off with a superimposed graph of electricity
generated by solar installations.

One of the ways to increase the efficiency of using solar installations is to use energy storage
technologies, which make it possible to distribute electricity generated from solar power plants during
the day (Figure 7) [38,59–61].

Figure 7. Household electrical load graph on a working day with a superimposed graph of electricity
produced by solar installations with energy storage.

As can be seen from the graph, as a result of the use of energy storage, it becomes possible to use
electricity generated from solar installations more evenly throughout the day. Consumption during
peak hours is reduced by about 30% and household energy consumption at night is reduced by 80%.

The use of solar power and energy storage by households is largely related to the current tariff
menu for electricity from the network in the region. Today, one-rate tariffs are applied in Kranodar
region, differentiated by two and three zones of the day, as well as the volume of consumption
(Table 2) [59].

According to the current tariff menu and the “dynamic” differentiated tariff proposed in the
previous part of the paper, the cost of electricity per month was estimated for households consuming
electricity only from the grid, households with solar panels and households with solar panels and
storage using given electrical load graphs. The calculation results are shown in Table 3.
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Table 2. Electricity tariffs in the Krasnodar region.

Category
One-Rate

Tariff,
Rubles/kWh

One-Rate Tariff,
Differentiated by

Two Zones of the Day,
Rubles/kWh

One-Rate Tariff, Differentiated
by Three Zones of the Day,

Rubles/kWh

Day Zone
(Peak and
Half-Peak)

Night
Zone

Peak
Zone

Half-Peak
Zone

Night
Zone

for the amount of electricity consumed
up to 250 kWh per month 1.10 1.10 0.77 1.65 1.10 0.44

for the amount of electricity consumed
from 250 to 600 kWh per month 1.44 1.44 1.01 2.16 1.44 0.58

for the amount of electricity consumed
in excess of 600 kWh per month 4.95 4.95 3.47 7.43 4.95 1.98

Table 3. Comparison of the results of calculating the cost of electricity for households according to the
current tariffmenu and the proposed dynamic tariff differentiation.

Types of Power Grid Tariffs

The Cost of Electricity for Households, Rubles/month

with Consumption only
from the Power Grid

with Solar
Installations

with Solar Installations
and Storage

One-rate tariff 204,496 106,756 88,515

One-rate tariff, differentiated by
two zones of the day 235,367 126,757 96,784

One-rate tariff, differentiated by
three zones of the day 221,299 118,334 90,327

“Dynamic” differentiated tariff 220,157 98,245 73,346

As can be seen from the data, the cost of electricity when applying the existing tariff differentiation
scheme for two and three times zones of the day is the highest for households that do not use solar
power. These results are also true for households with solar panels and storage, which suggests that
the existing tariffmenu does not encourage consumers to use solar energy efficiently. This is due to
the discrepancy between the time zones used in the existing differentiated tariffs and the actual peak
and half-peak areas of household electricity consumption, as well as the high values of household
electricity consumption in the morning and evening hours. Thus, it is beneficial for the consumer to
use the one-rate undifferentiated tariff regardless of the availability of renewable energy sources and
the use of energy storage devices.

This problem can be solved using the proposed method of dynamic tariff differentiation.
For households that do not use solar installations, the simplest one-rate tariff still remains the
cheapest. However, for households that use solar installations, and the solar systems with stored
energy, there are obvious advantages for a “dynamic” differential tariff. Reducing the cost of electricity
for households will stimulate the population to more active and, most importantly, rational use of
solar installations, will reduce the load on the energy system, as well as reduce the need for building
new generating capacity of traditional energy with high capital costs.

6. Conclusions

Overall, it can be stated that the need and prospects for the development of renewable energy
across the world are confirmed today by various stimulating legal and economic acts and laws,
including those located in the area of creating differentiated power grid tariffs for consumers.
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At the same time, as the conducted study showed, the applied system of state tariff differentiation
often not only does not lead to the formation of economic incentives for optimizing electricity
consumption when introducing power plants for renewable energy, but also turns out to be less
beneficial for the consumer than simple one-rate tariffs. This is due to the fixed values of the transition
to tariff zones at half-peak and peak rates, which do not correspond to the real daily consumption
graph of the region’s households. The situation is also aggravated by poorly justified differentiation of
the tariff by the volume of energy consumed during the period.

Analysis of the developed daily energy consumption graphs of households in the Krasnodar
region on workdays and weekends showed that the rational use of solar power plants leads to a
significant decrease in the amount of energy consumed from the power system in the half-peak zone of
the load curve. At the same time, it is not possible to achieve a uniform distribution of the load on the
power system during the day due to the use of autonomous solar installations. Energy consumption
at peak hours is reduced, but the unevenness of the daily load graph remains. Consequently, there
remains a need for the availability of maneuverable peak equipment in the power system, which is
rapidly gaining power, even if the accumulative power equipment is installed to reduce the irregularity
of the power consumption graph. At the same time, solar energy sources will displace half-peak power
plants from the load graph, reducing the need of this generation for power system to ensure continuous
power supply to consumers.

The development of automated systems for commercial metering of electricity along the path to
the use of smart electricity meters allows developing electricity pricing methods with a much greater
differentiation of consumption zones and tariff rates than the existing ones. Thus, it is possible to solve
the problem of inconsistency of the tariff differentiation system by time zones and real daily energy
consumption graphs.

Using the example of the Krasnodar region, it is shown that the proposed method of dynamic
differentiation of the electricity tariff allows a household to receive additional savings from the effective
use of solar power and energy storage in terms of equalizing the energy consumption schedule.
This creates a significant incentive for their use by households and contributes to the effectiveness of
government programs to support renewable energy sources, including solving the acute problem of
increasing power grid tariffs.
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Nomenclature

A List of Symbols

Pw(t), Ph(t) daily graphs of consumer load on a typical work day and a day off
Pmin

w , Pmin
h minimum power consumption on a typical work day and a day off

Pw, Ph average power consumption on a typical work day and a day off
Ppp

w , Ppp
h half-peak power consumption on a typical work day and a day off

Pmax
w , Pmax

h maximum power consumption on a typical work day and a day off
CB fixed tariff rate for the basic power consumption zone
[CPP

min, CPP
max] interval of tariff rates for the half-peak power consumption zone

[CP
min, CP

max] interval of tariff rates for the peak power consumption zone
KPP cast coefficient for the half-peak power consumption zone
KP cast coefficient for the peak power consumption zone
GPP(t) chain growth rates for the half-peak power consumption zone
GP(t) chain growth rates for the peak power consumption zone
TCw(t), TCh(t) tariff rates at each time point for working days and days off
TCD

w , TCD
h total cost of electricity per day for working days and days off
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Abbreviations

RES renewable energy sources
B basic power consumption zone
P peak power consumption zone
PP half-peak power consumption zone
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8. Filipović, S.; Radovanović, M.; Golušin, V. Macroeconomic and political aspects of energy
security—Exploratory data analysis. Renew. Sustain. Energy Rev. 2018, 97, 428–435. [CrossRef]

9. Sovacool, B. Differing cultures of energy security: An international comparison of public perceptions. Renew.
Sustain. Energy Rev. 2016, 55, 811–822. [CrossRef]

10. Abdmouleh, Z.; Alammari, R.; Gastli, A. Review of policies encouraging renewable energy integration &
best practices. Renew. Sustain. Energy Rev. 2015, 45, 249–262. [CrossRef]

11. Oree, V.; Hassen, S.; Fleming, P. Generation expansion planning optimisation with renewable energy
integration: A review. Renew. Sustain. Energy Rev. 2017, 69, 790–803. [CrossRef]
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Abstract: A simple effective model is proposed for the day-ahead electricity market. The model
considers the main factors which govern the process, predicts the seasonal and daily variation of
electricity demand, renewable production, system marginal price, and merit order effect. The accuracy
of the model is increased by fitting to historic data of the Hellenic electricity market. During the
period between October 2016 and December 2018, the Hellenic electricity market calculated explicitly
the merit order effect using an innovative mechanism to directly charge the electricity suppliers
(retailers). On the basis of the proposed model and the market recorded data, the effect of the
renewable penetration on the wholesale Hellenic electricity prices is revealed. The model is further
used to analyze the market future behavior when basic factors (electricity demand, conventional
power, and renewable penetration) are known or estimated. The effect of merit order effect on the
Hellenic legislation is discussed and the appropriate measures adopted by the Hellenic authorities
are analyzed and evaluated.

Keywords: system marginal price; renewable energy sources; photovoltaics; day ahead market;
merit order curve; electricity demand; seasonal and daily variation; RES (renewable energy
sources) surcharge

1. Introduction

The integration of renewable energy sources (RES) in electricity markets has been significantly
reinforced by policy support measures in all European countries. The effect of their participation on the
determination of electricity wholesale marginal prices has become, however, a topic of political debate.
Considering that renewables enter with priority into the day-ahead market (DAM) (zero pricing bids),
the merit order curve (MOC) is shifted to the right or equivalent, the demand curve is shifted to
the left, most expensive plants are driven out, and subsequently, the clearing wholesale marginal
electricity price is diminished. This phenomenon is the so-called merit order effect (MOE). Since intense
discussions have taken place about the economic surcharge that passes to the final consumers due to
renewable supporting mechanisms, a broad spectrum of literature exists on the analysis, quantification,
and evaluation of the MOE phenomenon.

The methods for the examination of MOE are based on two main approaches [1,2], which are as
follows: (a) the development of electricity market models, which simulate the operation of DAM and
calculate the resulted spot electricity price for various scenarios [3–9] and (b) the regression analysis
approach, which uses historical price and generation data in order to quantify the actual achieved
reduction in spot price for a given period of time [2,3,10–14]. Studies that combine both approaches are
also met [15]. Although each country has its unique characteristics in terms of energy mix, economic
growth, incentives policy, etc., useful information and knowledge can be retrieved by relevant research.

The impact of the RES generation in Germany was analyzed by Sensfuß et al. [8], by developing a
detailed electricity market simulation model. The results showed the high impact of the diffusion of
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renewables on spot market prices, reaching a reduction of 7.8€/MWh (2006). For the same country,
Weigt [6] investigated the impact of wind penetration, and indicated a significant decline in market
price, especially during peak periods (10€/MWh). In Spain, two relevant studies were found in
the literature. De Miera [7] assessed the effect of support schemes on power prices for the case of
wind-generation electricity, and concluded that the reduction of spot price was much higher than the
increase in cost charged to the consumers for the financial support of the technology. Ciarreta et al. [9]
analyzed the Spanish electricity market for four years (2008–2012) and calculated the cost of “green”
energy as the difference between the savings gained due to MOE and the incentive amounts. According
to the results, after the wide deployment of RES, a positive net cost was computed, but a difference in
the cost among technologies was observed.

The significant impact of wind generation on spot prices was also proven by Jónsson et al. [11],
who used a non-parametric regression model to analyze the Danish electricity market. Similarly, based
on the regression approach, Luňáčková et al. [14] quantified the MOE in the Czech market by using six
years of hourly, daily, and weekly data (2010–2015), which led to the outcome of a 10% increase in RES
deployment, except from solar which had a negative impact in general, and caused a 2.5% decrease in
electricity price. Gelabert et al. [10] used a multivariate regression model to estimate the MOE of the
RES and cogeneration in Spain between 2005 and 2010 and showed that a marginal increase of 1 GWh
of electricity production from the previous technologies leads to a decrease of 2€/MWh in electricity
prices. In the case of Italy, Clò et al. [3] used empirical data from the DAM and proved that wholesale
electricity prices were reduced by 2.3€/MWh and 4.2€/MWh due to an increase of 1 GWh in the hourly
average of daily produced energy from solar and wind systems, respectively.

In Greece, the share of RES in electricity production mixture increased from to 6.9% in 2004 to
16.3% in 2017, while the national target for 2020 is 18% [16]. The main incentive for the RES wide
penetration in the country has been the feed-in tariff (FIT) mechanism [17,18]. The impact of this
deployment on the Hellenic electricity market was evaluated by Simoglou et al. [19,20], by developing
a simulation model for the market operation under various scenarios of RES capacity. The results
indicated that RES integration caused a significant reduction in the SMP (system marginal price) and
CO2 emissions, but the payment of consumers was increased for the examined years (2009 and 2011).

This paper aims to extend the current literature and quantify, as well as analyze the MOE in the
Hellenic wholesale electricity DAM by: (1) analyzing historic data, (2) proposing and validating a
simple model describing the phenomenon, (3) analyzing future market behavior when the crucial
factors are known or predicted, and (4) analyzing and evaluating the related surcharge mechanism
used by the Hellenic authorities. The MOE analysis refers to seasonal and daily variation of the
MOE along with the effect of renewable technology on the MOE. The political significance of MOE
in electricity pricing along with the Hellenic authorities curing experiment (2016–2018) are analyzed
in Section 2, and the corresponding recording data are statistically analyzed in Section 4.1. A robust
mathematical model is proposed in Section 3, which is fitted to recording data in Section 4.2 and used
to analyze future market behavior in Section 4.3. Section 5 summarizes the conclusions of the analysis.

2. Merit Order Effect and the Hellenic Electricity Market

Greece enjoys a renewable energy sources (RES) installed capacity of approximately 5 GW
operating under the feed-in tariff (FIT) model, initially introduced by law 3468/2006 [21]. Priority to the
grid applies also to net-metering, virtual net-metering, and feed in premium scheme lastly introduced
through law 4414/2016 [22] leading, as well, to a further decline of the system marginal price (SMP).

The RES account introduced through law 2773/1999 [23], is responsible for payments of renewable
electricity production under feed-in supporting schemes. Its revenue architecture faced significant
challenges and deficits in Greece during the last decade, leading the RES investments all over the
country to payment delays, financial problems, and unfortunately retroactive cuts in contracted tariffs
even for operating projects through laws 4093/2012 [24], 4152/2013 [25], and finally 4254/2014 [26].
Although at first sight one could claim that the RES account deficits were solely driven by rapid
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expansion of renewables during 2011 to 2013 without a simultaneous and adequate increase in the RES
levy (called ETMEAR in Greece) in consumer electricity bills, the continuation of financial problems of
the RES account even after retroactive cuts in tariffs of 2012–2014, indicated the problematic revenue
architecture of the account.

Focusing closer on the RES account structure [27], a major revenue component has to do with its
income from the wholesale market, corresponding to the renewable electricity produced and infused
into the grid multiplied by the hourly SMP. In order to provide priority for renewables to the grid over
other conventional sources such as lignite or gas-fired plants or imports, feed-in operating models
(feed-in tariff or feed in premium) provide that RES are not truly participating in the wholesale market
with price bids that compete with fossil fuel bids but instead their bidding price remains zero every
hour in order to be always preferable and selected to feed-in [28].

Therefore, regardless of the specific operating model, such as FIT, FIP, or net-metering, it is the
priority in entering the market (grid) that renewable energy enjoys through zero bidding prices that
diminishes SMP in DAM and, consequently, RES account revenues for renewable overall electricity
production infused. This naturally means that a further increase in renewable capacity under priority,
even at comparable to SMP price levels, is expected to expand MOE further, diminishing SMP even
more and consequently further triggering the need for a RES levy increase, in order for the RES account
to keep its financial ability to support contracted prices for renewables. This systematic decline of SMP
due to RES priority is benefiting suppliers not only for the renewable electricity they buy at this lower
marginal wholesale market price but for all their electricity needs drawn from the pool, because for
each hour the wholesale price is one and unique [29].

On the one hand, the RES levy not only works to finance the true cost difference between renewable
and fossil fuel electricity, but as a tool to cover the continuously increasing distortion because of
MOE and the missing money problem it causes for the RES account [29]. It is obvious that a general
withdrawal of RES as a priority aiming to minimize MOE and hence the RES account distortion in
revenues through SMP, could not be part of a viable solution. The stochastic nature of wind and
solar energy production could cause them to not survive direct competition against fossil fuels, unless
storage solutions become reliable and economically effective for them.

On the other hand, one could argue that for the consumer the distortion of MOE finally plays no
role regarding total electricity bill cost, since the increased RES levy is counteracted by the reduced
wholesale electricity cost based on the diminished SMP. In other words, the added amount of money
that the regulated part of the bill (through RES levy) needs to carry because of the distortion of MOE, is
balanced by the decrease in the nonregulated or so called “competitive” part of the bill. Furthermore,
if new renewables entering the system are remunerated with tariffs close to the SMP levels, as it now
happens, then electricity bills for the consumer will no longer increase. However, even new renewables,
because of their priority entrance under zero pricing bidding, will trigger a further SMP decline and
need for a RES levy increase not only for them but for all other previously existing and operating RES
penetration, and hence the vicious circle continues even more aggressively.

Real life in Greece during the recession years showed that regulated electricity costs bare political
costs, meaning that authorities are, in general, reluctant or negative towards increasing a part of the
electricity bill, especially when they cannot easily explain to consumers why this is happening (MOE is
difficult to describe) and at the same time when they cannot directly control the nonregulated part of
the bill that should be equally decreased.

During 2015, the RES account in Greece started showing deficits again due to a SMP drop.
Suppliers did not proceed to electricity price reductions in the competitive part but instead kept
high profitability margins benefiting from the MOE in order to face the growing phenomenon of
unpaid consumer bills. At the same time, the RES levy was officially frozen against increases by the
State. Less than a year later, during 2016, delays in payments for renewables, due to the RES account
increasing cumulative deficit, started to rapidly rise jeopardizing national policies against climate
change and of course Greece’s credibility as an investment destination. Therefore, public dialogue and
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the challenge during that time was to determine how to take out of the RES levy its distorted part due
to the MOE and charge it to suppliers that were systematically benefitting from high margins out of it.

Towards this aim, the idea was to introduce a parallel virtual wholesale market being resolved
every hour exactly as the official one but excluding renewables that operate under priority. Out of
this virtual market, a virtual SMP could be calculated and its difference from the official SMP would
give the decline of the SMP because of MOE. This difference between the virtual SMP (VSMP) and the
official one multiplied by the amount of MWh each supplier drew from the pool in order to cover the
demand of its customers, would represent a new charge for suppliers. This new charge, domestically
called “PXEFEL”, aimed to make suppliers return to the RES account their systematic economic benefit
and increased margin because of the RES and the MOE they caused.

In this respect, by having the RES account as an additional regular revenue through the MOE
charge counteracting the MOE, the RES levy could be kept to the necessary, fair (not distorted) lower
levels. The aim of the RES levy was to make it correspond to whatever difference in the production
costs truly exists between fossil and renewable sources. On the other hand, for suppliers, the MOE
charge consisted of a new cost component incorporated into the “competitive” part of their consumer
bills, whereby suppliers had the ability to disperse it in a variety of manners among different customer
groups in correlation to their hourly consuming profile. The MOE differs significantly among different
hours in the DAM, since it mainly has to do with electricity demand and RES active penetration.

A radical alternative solution proposed at that time was to fully integrate the RES levy into the
wholesale cost of suppliers, and hence to the “competitive” part of their bills. To do so, the market
operator would have to charge them a “below the line” RES levy on the basis of electricity drawn from
the DAM pool. Suppliers would then fully incorporate the cost of the RES levy in their pricing policies,
mixed of course with their benefit from the MOE that the RES at the same time cause. Suppliers’ bills
would then become more market oriented, since there would be no regulated part for the RES electricity
cost that suppliers do not “own”. This model would be somehow equivalent to suppliers being
contracted directly by the RES producers through bilateral contracts to purchase their production at
their fixed tariffs.

3. Day-Ahead Electricity Market Model

The proposed mathematical model aims to predict the MOE versus the crucial factors affecting
the DAM. It is basically a deterministic model which considers the “predictable” part of the seasonal
and daily variation of the demand and renewable production, while the “random” part is considered
as just a noise which is eliminated by fitting to historical data. Random variation could be considered
by adding random functions describing the noise, but this is out of the scope of the present paper.
A stochastic model for probabilistic forecasting has been proposed recently by Bello et al. [30].

3.1. Definition of the Merit Order Effect

Mathematically, the MOE is defined as the difference in system marginal price between (a) the
value calculated when all the demand is considered into market clearance procedure, the virtual system
marginal price (VSMP) and (b) the value calculated when the renewable production is excluded from
the demand, the system marginal price (SMP). That is, MOE = VSMP − SMP.

This definition is graphically presented in Figure 1.
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Figure 1. Definition of the merit order effect (MOE) using the demand and supply curve (merit order
curve) in the day-ahead electricity market.

3.2. The Merit Order Curve

The supply curve in the DAM is called the merit order curve (MOC). The following equation is
proposed and used in this paper to describe it:

P = Pmed

( S
Smax − S

)n
(1)

where the supply price P (€/MWh) is calculated versus the dispatchable electricity supply S (GWh/h),
when the following three parameters are known:

• Smax GWh/h the maximum feasible electricity supply;
• Pmed €/MWh the electricity price at half of maximum supply;
• n - empirical shape constant.

Obviously, the maximum feasible electricity supply is analogous to the conventional installed
power (lignite-fired, gas-fired, and large hydro) that are dispatchable, meaning that they have the
ability to determine the SMP through their hourly price bidding in the DAM.

The above analysis assumes that other factors affecting the MOC remain constant during the
analysis period. Other factors such as the suppliers bidding strategy, the CO2 emissions price, and the
fuel price can be introduced in the parameters Pmed and n through appropriate functions, but this is
out of the scope of this paper.

3.3. The Electricity Demand

The electricity demand appears to have both seasonal and daily variations. The seasonal variation
of the electricity demand appears as two peaks, one during the winter and one during the summer.
Loumakis et al. [31] considered the following three additive kinds of demand with different variation
each: (a) A constant demand independently of the season, (b) a winter activities demand, and (c)
a summer activities demand. A normal distribution was proposed to describe both the winter and
summer activities with different characteristics. The resulting equation is [31]:

Di =
DT(1− dw − ds)

365
+ dwDT·N(two, Δtw, i) + dsDT·N(tso, Δts, i) (2)

where the electricity demand Di (GWh/day) during the day i (1, 2, . . . , 365) is calculated, when the
following seven parameters are known:
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• DT GWh/year the total electricity demand during the year;
• dw - the portion of the total annual demand for winter activities;
• ds - the portion of the total annual demand for summer activities;
• two days the time of the peak of winter activities;
• tso days the time of the peak of summer activities;
• Δtw days the typical duration of the winter activities;
• Δts days the typical duration of the summer activities.

The normal distribution is expressed by the following equation: N(μ, σ, t) = 1√
2πσ2

exp
(
− (t−μ)2

2σ2

)
.

The daily variation of the demand also appears to have two peaks, one at noon and another in the
evening. The above idea concerning the seasonal variation is also used to describe the daily variation:

Dij =
Di(1− dn − de)

24
+ dnDi·N(tno, Δtn, j) + deDi·N(teo, Δte, j) (3)

where the electricity demand Dij (GWh/hour) during the hour j (= 1, 2, . . . , 24) of the day i (1, 2, . . . ,
365) is calculated, when the total demand Di (GWh/day) of the day i is calculated from Equation (2)
and the following six parameters are additionally known:

• dn - the portion of the total daily demand for noon activities;
• de - the portion of the total daily demand for evening activities;
• tno hours the time of the peak of noon activities;
• teo hours the time of the peak of evening activities;
• Δtn hours the typical duration of the noon activities;
• Δte hours the typical duration of the evening activities.

3.4. Renewable Electricity Production

The renewable electricity production appears also to have both seasonal and daily variations.
Loumakis et al. [31] proved that all types of renewables follow a cosine seasonal variation with different
amplitude and peak time. Thus, the resulting total renewable also appears cosine variation with
characteristics depended on renewable mixture. Instead, concerning daily variation, all renewables,
except photovoltaics, are random or almost constant without any deterministic variation. Photovoltaics
follows a well-known deterministic variation during daytime sunshine hours. On the basis of these
remarks the renewables can be divided into two categories, concerning the daily variation profile, the
photovoltaics (PV), and the other (W). Thus:

Ri = Wi + PVi (4)

where:

• i days the day of the year (1, 2, . . . , 365);
• Ri GWh/day the electricity generated from renewables during the day i;
• Wi GWh/day the electricity generated from renewables except photovoltaics during the day i;
• PVi GWh/day the electricity generated from photovoltaics during the day i.

The seasonal variation of both kinds of renewables is described by the cosine equation:

Wi =
WT

365
− ΔW cos

(
2π

i− iWo

365

)
(5)

PVi =
PVT

365
− ΔPV cos

(
2π

i− iPVo

365

)
(6)
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Equation (5) calculates the electricity Wi (GWh/day) generated from renewables except
photovoltaics during the day of the year i (1, 2, . . . , 365), when the following three parameters
are known:

• WT GWh/year the total annual electricity generated by renewables except photovoltaics;
• ΔW GWh/day the seasonal variation amplitude of renewables except photovoltaics;
• iWo days the day of minimum production for renewables except photovoltaics.

Equation (6) calculates the electricity PVi (GWh/day) generated from photovoltaics during the
day of the year i (1, 2, . . . , 365), when the following three parameters are known:

• PVT GWh/year the total annual electricity generated by photovoltaics;
• ΔPV GWh/day the seasonal variation amplitude of photovoltaics;
• iPVo days the day with the minimum production for photovoltaics.

Concerning the daily variation, the following equations are proposed:

Wij =
Wi
24

(7)

PVij = c f
PVi
24

max
(
cos

(
2π

j− jPVo

24

)
, 0

)
(8)

Equation (7) calculates the electricity Wij (GWh/hour) generated from renewables except
photovoltaics during the hour j (1, 2, . . . , 24) of the day of the year i (1, 2, . . . , 365), when the
total daily electricity is calculated by Equation (5) (uniform distribution).

Equation (8) calculates the electricity PVij (GWh/hour) generated from photovoltaics during the
hour j (1, 2, . . . , 24) of the day i (1, 2, . . . , 365), when the total daily electricity is calculated by Equation
(6) and the following parameter is additionally known:

• jPVo hours the hour with maximum production from photovoltaics.

The correction factor cf is given by the equation: cf = PVi /
∑24

j=1 PVij

3.5. Regression Analysis

The resulting mathematical model of Equations (1)–(8) calculates all crucial quantities of the
electricity market (electricity demand, renewable generation, merit order curve, system marginal price,
and merit order effect) when twenty-three parameters are known. The information flow diagram of
the proposed model is presented in Figure 2.

The parameters can be estimated using three separate regressions:

• Equations (2) and (3) are simultaneous fitted to real data of demand;
• Equations (5)–(8) are simultaneous fitted to real data of renewable electricity generation;
• Equation (1) is fitted to real data of system marginal price and virtual marginal price.

The appropriate data were retrieved from the Hellenic electricity market operator [32] and the
Hellenic energy exchange group [33].

During the period from October 2016 to December 2018 (27 months) the auction clearing process
of the DAM was calculated twice (a) using the demand and supply including renewables in order to
obtain the system marginal price (SMP) and (b) using the demand and supply excluding renewables in
order to obtain the corresponding SMP without the renewables, denoted as virtual system marginal
price (VSMP).

The following data were retrieved for the whole year 2017:

• Dij GWh/h Hourly electricity demand;
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• Rij GWh/h Hourly renewables electricity;
• SMPij €/MWh Hourly system marginal price;
• VSMPij €/MWh Hourly virtual system marginal price.

where i is the day identification number (1, 2, . . . , 365) and j the hour identification number (1, 2,
. . . , 24) per day.

The resulting fitted model can be used to forecast by changing the following parameters (factors):

• Smax GWh/h the maximum feasible electricity supply;
• WT GWh/year the total annual electricity generated by renewables except photovoltaics;
• PVT GWh/year the total annual electricity generated by photovoltaics;
• DT GWh/year the total electricity demand during the year.

All other model parameters cannot be considered as factors since they remain long-term constants.
They are not analogous to the market size, but they are dependent on the country activities and
weather characteristics.

Renewable Electricity

Renewables Total
Except Photovoltaics Photovoltaic Annual Conventional

Installed Installed Electricity Installed
Power Power Demand Power

Seasonal Variation Seasonal Variation Seasonal Variation
Renewables Photovoltaics Demand

Except Photovoltaics Generation
- - - Merit

Equation (5) Equation (6) Equation (2) Order
(3 parameters) (3 parameters) (7 parameters) Curve

-
Daily Variation Daily Variation Daily Variation Equation (1)

Wind Photovoltaic Demand (3 parameters)
Generation Generation Model

- - -
Equation (7) Equation (8) Equation (3)

(0 parameters) (1 parameters) (6 parameters)

Demand Supply
Curve Curve

Day
Renewable Ahead
Electricity Electricity

Market

Virtual
System System

Marginal Marginal
Price Price

Figure 2. Model information flow diagram.

4. Results and Discussion

4.1. Statistical Analysis

The recording quantities (D, R, VSMP, and SMP) along with the calculated ones (DR = D − R and
MOE = VSMP − SMP) are presented in Figure 3. Hourly data are plotted, that is 8760 points for each
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quantity. The time duration curves are also presented in Figure 3. Furthermore, the basic statistics are
presented in Table 1 and the corresponding fitted normal distributions in Figure 4.

 
Figure 3. Real data versus time along with the corresponding duration curves: D = demand, DR =
demand renewables, R = renewables, VSMP = virtual system marginal price, SMP = system marginal
price, MOE =merit order effect. Data from Hellenic electricity market operator [32] and the Hellenic
energy exchange group [33].
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Table 1. Basic statistics.

Variable Symbol St Dev Mean Median Min Max Units

Demand D 1.13 5.89 5.84 3.24 9.61 GWh/h
Demand renewables DR 1.09 4.84 4.70 1.81 8.48 GWh/h

Renewables R 0.64 1.05 0.91 0.12 3.29 GWh/h

Virtual system marginal price VSMP 33.9 68.8 57.6 37.8 >150 €/MWh
System marginal price SMP 16.8 54.7 51.7 0.0 >150 €/MWh

Merit order effect MOE 24.5 14.2 6.9 0.0 >150 €/MWh

Figure 4. Fitted normal distribution: D = demand, DR = demand renewables, R = renewables, VSMP
= virtual system marginal price, SMP = system marginal price, MOE =merit order effect.

The examined quantities, as analyzed in the previous sections, appear as seasonal and daily
variation. Seasonal variation is revealed using 24 h moving averages which eliminate the daily variation.
The results are presented in Figure 5.

Figure 5. Seasonal variation using 24 hour moving averages: D = demand, DR = demand renewables,
R = renewables, VSMP = virtual system marginal price, SMP = system marginal price, MOE =merit
order effect.

Daily variation is revealed by averaging data separately for each hour of the day. Averaging is
performing for every month since due to seasonal variation every month different daily characteristics
appear. The results are presented in Figures 6 and 7.
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Figure 6. Daily variation using monthly-averaged hourly data: D = demand, DR = demand renewables,
R = renewables. Horizontal axis = hour of the day, vertical axis = energy in GWh/h.

It must be noticed that, during January and July 2017, peak demand conditions were met resulting,
as expected, in higher SMP, VSMP prices, and MOE.

Due to the pan-European electricity crisis triggered by the withdrawal of several nucleal plants
in France for service and repair reasons in late Autumn 2016, wholesale electricity prices all over
Europe climbed to very high levels during December 2016 to January 2017. To cover the gap, France
turned to imports of electricity from neighbour countries dispersing crisis all over Europe. The extra
needs for electricity were covered mostly from natural gas-fired plants leading to a gas market crisis
as well. This climb also happened with the SMP in Greece and of course the VSMP. Winter peaking
demand reinforced, as expected, market thirst and anxiety for electricity. In February of 2017, the
Regulatory Authority of Energy (RAE) imposed a ceiling of 15€/MWh per hour for MOE in order
to avoid its extreme values leading to excessive burden for suppliers. The same electricity demand
anxiety phenomenon occurred also at the end of 2017 mostly due to bad cold weather conditions
reinforced by the memory and fear of the previous year’s crisis as well.
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Figure 7. Daily variation using monthly-averaged hourly data: VSMP = virtual system marginal price,
SMP = system marginal price, MOE =merit order effect. Horizontal axis = hour of the day, vertical axis
= price in €/MWh.

Two electricity demand peaks per day are observed in Figure 6, one during noon and the second
in the evening. Noon peak demand is almost completely covered by the PV production all over the
year. Noon peak is higher compared to evening peak during summer months while the contrary
happens in winter.

Figure 7 shows how the SMP prices escalate when electricity demand is peaking and what happens
to wholesale prices (VSMP) if the RES were not present. Furthermore, the PV penetration leads to time
concentrated electricity production during noon hours and reduces the SMP during these hours at the
most, resulting in the highest MOE values.

4.2. Regression Analysis

Table 2 presents the parameter estimates from the regression analysis as described in the previous
sections. Three different regressions were applied and the comparison between real and calculated
values are presented in Figures 8–11.
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Table 2. Model parameter estimation results.

Merit Order Curve Parameters Equation (1) Units

Price at half of maximum supply Pmed 55.2 €/MWh
Maximum feasible electricity supply Smax 9.88 GWh/h

Empirical shape constant n 0.412 -
Demand Seasonal Variation Parameters Equation (2)

Annual demand DT 51.6 TWh/y
Winter activities fraction dw 0.099 -

Winter activities peak day two 13.1 days
Winter activities standard period Δtw 44.5 days

Summer activities fraction ds 0.085 -
Summer activities peak day tso 205 days

Summer activities standard period Δts 33.3 days
Demand Daily Variation Parameters Equation (3)

Noon activities fraction dn 0.147 -
Noon activities peak hour tno 12.5 h

Noon activities standard period Δtn 3.38 h
Evening activities fraction de 0.127 -

Evening activities peak hour teo 21.1 h
Evening activities standard period Δte 3.03 h

Renewable Electricity Variation Parameters Equations (5)–(8)

Annual production of other renewables WT 5.48 TWh/y
Seasonal relative variation of other renewables ΔW 0.00 -

Other renewables generation peak day iwo 0.00 days
Annual production of photovoltaics PVT 3.71 TWh/y

Seasonal relative variation of photovoltaics ΔPV 0.294 -
Photovoltaics production minimum day iPVo 3.58 days

Photovoltaic production peak hour jPVo 13.7 h

Figure 8. Seasonal variation: Comparison between real (grey lines) and model calculated (black lines)
values. D = demand, R = renewables, SMP = system marginal price, MOE =merit order effect.
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Figure 9. Daily variation: Comparison between real (points) and model calculated (lines) values.
D = demand, DR = demand renewables, R = renewables, VSMP = virtual system marginal price, SMP
= system marginal price, MOE =merit order effect.

Figure 10. Merit order curve: Comparison between real and model calculated values.

Parameters in Table 2 express either (a) the market characteristics (weather, demand, generation
technologies, etc) which remain constant long term or (b) the market size (demand, conventional and
renewable installed power, etc) which follow the growth of economy.

The four parameters which express the market size are:

• Smax GWh/h the maximum feasible electricity supply;
• WT GWh/year the total annual electricity generated by renewables except photovoltaics;
• PVT GWh/year the total annual electricity generated by photovoltaics;
• DT GWh/year the total electricity demand during the year.

Smax is analogous to the installed power of conventional electricity generated systems that are
dispatchable, meaning that they determine SMP through hourly price bidding in the day-ahead
market. Similarly, WT and PVT are analogous to the renewable installed power, non-photovoltaics
and photovoltaics, respectively. Finally, DT expresses the society activities and is analogous to the
economic growth.
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Figure 11. Merit order curve: Comparison between real and model calculated values. Monthly
averaged values.

Thus, it is useful to compare the estimated values of these parameters with the recorded values:
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• Estimated values of DT and PVT are exactly as recorded 51.9 TWh/y and 3.72 TWh/y, respectively,
while estimated value of WT is a little higher than recorded 5.84 TWh/y;

• Smax of 9.88 GWh/h is a decline from the expected installed conventional power of 12 GW, because
the total capacity does not participate continuously into the market.

4.3. Sensitivity Analysis

The proposed mathematical model can be used to predict electricity market behavior in the
future when the parameter estimates in the Table 2 are adjusted to future values. The four parameters
which express the size of the market are considered as factors. All other parameters express market
characteristics which remain constant long term. Thus, the factors which affect market future behavior
are the following four parameters:

• Smax GWh/h the maximum feasible electricity supply;
• WT GWh/year the total annual electricity generated by renewables except photovoltaics;
• PVT GWh/year the total annual electricity generated by photovoltaics;
• DT GWh/year the total electricity demand during the year.

Smax is analogous to the installed power of conventional electricity generated systems that are
dispatchable, meaning that they determine SMP through hourly price bidding in the day-ahead
market. Similarly, WT and PVT are analogous to the renewable installed power, non-photovoltaics
and photovoltaics, respectively. Finally, DT expresses the society activities and is analogous to the
economic growth.

In the sensitivity analysis of Figure 12 the effect of the above four factors on the merit order effect
(MOE), separately, is presented. Demand is the crucial factor; it can double the MOE when it increases
by about 25%. Renewables appear to have a smaller effect, while conventional installed power appears
to have a negative effect. Obviously, all these effects are interpreted from Figure 1 by changing the
interception of the demand and supply curves.

Figure 12. Sensitivity analysis (one factor at a time): Effect of crucial market factors on the merit order
effect. D= demand, W= renewables except photovoltaics, PV= photovoltaics, and Smax = conventional.

The effect of the factors when they are changed simultaneously is presented in the scenario
analysis of Figure 13. The following scenarios are examined:

• D Demand is increased, all other factors are kept constant;
• D + R Demand and renewables are increased by the same rate and conventionals are kept constant;
• D + C Demand and conventionals are increased with the same rate and renewables are

kept constant;
• A All factors are increased by the same rate;
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• A − D All factors except Demand are increased by the same rate.

Figure 13. Scenario analysis (simultaneous factor variation): D + R = demand and renewables are
increased by the same rate, conventionals are kept constant; D = demand is increased, all other factors
are kept constant; A = all factors are increased by the same rate; D + C = demand and conventionals
are increased with the same rate, renewables are kept constant; and A − D = all factors, except demand,
are increased by the same rate.

Obviously, the higher positive effect is obtained when demand and renewables are increased
simultaneously, and the higher negative effect is obtained when demand remains constant and all
other factors are increased. Similarly, any other combination of changes can be examined.

5. Conclusions

During the period between October 2016 and December 2018 the Hellenic DAM calculated explicitly
the MOE using an innovative mechanism to directly charge the electricity suppliers. Through the MOE
charge (called PXEFEL in Greeks), suppliers were returning to the RES account the financial benefit
they were enjoying because of MOE, namely the lower SMP values in the DAM due to RES penetration.

The above mechanism needs an appropriate model to evaluate and analyze daily, seasonal, and
long-term variations of the MOE towards an optimum MOE charge strategy. Thus, a simple model for
the DAM is proposed and validated to real data. The model, considering the main factors which govern
the process, predicts the seasonal and daily variation of electricity demand, renewable production,
SMP, and MOE. The model was fitted adequately to historic data of the Hellenic DAM during the
year 2017.

The model innovation is based on the separate direct simulation of the supply and demand curves
and the seasonal and daily variation of the electricity demand and renewable generation.

On the basis of the proposed model and the market recorded data, the effect of the renewable
penetration on the wholesale electricity prices is analyzed.

The model can further be used to predict future market behavior when the basic factors (electricity
demand, conventional power, conventional costs, and renewable penetration) are known or estimated.
Thus, the effect of the evolution of the RES penetration on the MOE can be estimated and analyzed
towards an optimum RES penetration supporting strategy.

The proposed model was applied successfully to the Hellenic electricity market, but it can be used
to any other similar market.
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Nomenclature

c f the correction factor (-)
de the portion of the total daily demand for evening activities (-)
Di the electricity demand during the day i (GWh/day)
Dij the electricity demand during the hour j of the day i (GWh/hour)
dn the portion of the total daily demand for noon activities (-)
ds the portion of the total annual demand for summer activities (-)
DT the total electricity demand during the year (GWh/year)
dw the portion of the total annual demand for winter activities (-)
i the day of the year (1, 2, . . . , 365) (days)
iPVo the day with the minimum production for photovoltaics (days)
iWo the day of minimum production for renewables except photovoltaics (days)
j the hour with maximum production from photovoltaics (hours)
jPVo the hour with maximum production from photovoltaics (hours)
n empirical shape constant (-)
P the supply price (€/MWh)
PVi the electricity generated from photovoltaics during the day i (GWh/day)
PVij the electricity generated from photovoltaics during the hour j of the day i (GWh/hour)
Pmed the electricity price at half of maximum supply (€/MWh)
PVT the total annual electricity generated by photovoltaics (GWh/year)
Ri the electricity generated from renewables during the day i (GWh/day)
Rij the electricity generated from renewables during the hour j of the day i (GWh/hour)
S the dispatchable electricity supply (GWh/h)
Smax the maximum feasible electricity supply (GWh/h)
SMP the System Marginal Price (€/MWh)
SMPij the System Marginal Price during the hour j of the day i (€/MWh)
teo the time of the peak of evening activities (hours)
tno the time of the peak of noon activities (hours)
tso the time of the peak of summer activities (days)
two the time of the peak of winter activities (days)
VSMP the Virtual System Marginal Price (€/MWh)
VSMPij the Virtual System Marginal Price during the hour j of the day i (€/MWh)
Wi the electricity generated from renewables except photovoltaics during the day i (GWh/day)
Wij the electricity generated from renewables except photovoltaics during the hour j of the day i (GWh/hour)
WT the total annual electricity generated by renewables except photovoltaics (GWh/year)
ΔPV the seasonal variation amplitude of photovoltaics (GWh/day)
Δte the typical duration of the evening activities (hours)
Δtn the typical duration of the noon activities (hours)
Δts the typical duration of the summer activities (days)
Δtw the typical duration of the winter activities (days)
ΔW the seasonal variation amplitude of renewables except photovoltaics (GWh/day)

Abbreviations

A all
C conventionals
CO2 carbon dioxide
D demand
DAM day-ahead market
DR demand minus renewables
ETMEAR surcharge on electricity price (Greek abbreviation)
FIP feed-in premium
FIT feed-in Tariff
MOC merit order curve
MOE merit order effect
PVs photovoltaics
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PXEFEL merit order effect charge (Greek abbreviation)
R renewables
RAE regulatory authority of energy
RES renewable energy sources
SMP system marginal price
VSMP virtual system marginal price
W renewables except photovoltaics
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Abstract: Artificial intelligence (AI) techniques and algorithms are increasingly being utilized in
energy and renewable research to tackle various engineering problems. However, a majority of the
AI studies in the energy domain have been focusing on solving specific technical issues. There is
limited discussion on how AI can be utilized to enhance the energy system operations, particularly
the electricity market, with a holistic view. The purpose of the study is to introduce the platform
architectural logic that encompasses both technical and economic perspectives to the development of
AI-enabled energy platforms for the future electricity market with massive and distributed renewables.
A constructive and inductive approach for theory building is employed for the concept proposition
of the AI energy platform by using the aggregated data from a European Union (EU) Horizon 2020
project and a Finnish national innovation project. Our results are presented as a systemic framework
and high-level representation of the AI-enabled energy platform design with four integrative layers
that could enable not only value provisioning but also value utilization for a distributed energy system
and electricity market as the new knowledge and contribution to the extant research. Finally, the study
discusses the potential use cases of the AI-enabled energy platform.

Keywords: electricity market; energy market; artificial intelligence; digital platform; peer-to-peer

1. Introduction

The energy transformation, so sought after world-wide, would only be effective via the increased
integration of renewable energies that are supported and enabled by intelligent grids, or smart grids.
Smart-grid technologies will make it possible to use the available renewable energy sources efficiently
and sustainably to create added value to the energy service as well as reducing costs for energy
consumers and prosumers while supporting a decentralized and open architecture and design for the
energy system [1]. However, energy scholars focusing on power systems acknowledge the challenges
with increasingly complex energy systems. As such, the electric grid is a massive infrastructure with
e.g., physical limitations [2].

The European Commission [3] envisions that tomorrow’s power grids will be made up of
interconnected and diverse systems, with a growing number of distributed energy generation and
consumption equipment and appliances that generate a large volume of data [4]. Considering only
smart meters, if the average packet size is about 200 bytes [5], with a reading interval of 15 min as
suggested in the European Union (EU) regulations and the 200 million smart meters that are deployed
in 2020 [6], the total amount of memory in Europe is 5 606 TB of information. Reduce the sampling size
to every second for near-real-time network measurement, and this is around 5 exabytes of data to be
collected within a year only from smart meters. In particular, the electricity industry demands big data
capabilities and novel architectures that can enhance power system management of the more complex

Energies 2019, 12, 4128; doi:10.3390/en12214128 www.mdpi.com/journal/energies243



Energies 2019, 12, 4128

and decentralized grids [3]. Thus, over the last few decades, research efforts and scholarly discussion
around the world have been focused on ways to effectively predict and optimize energy use.

Artificial intelligence (AI) as an emerging technological field has been altering numerous sectors of
the world’s industries and economies. AI is seen as an innovation front and enabling technology [7,8].
AI includes a broad collection of computational techniques to extract insights from a variety of
data sources—including the so-called “small data” that is generated by the algorithm itself) that
assist in decision-making [9]—and create actionable information [10]. Generally, AI is deemed a
general-purpose technology that can have significant technological, social, economic and political
implications [9,11,12]. Some describe AI as parallel to the steam engines or electricity technologies that
have changed many aspects of human life.

Evidently, AI will radically transform the energy sector. General Electric (GE) estimates that AI
can enhance the production of a wind farm by as much as 20% [13]. At the same time, as claimed by
Nagy et al. [1], the AI transformation in the energy industry will directly influence the international
energy stability and economic prosperity. For instance, the use of artificial neural networks is of
great importance for electricity companies to improve their productivity, the quality, and safety of the
productions, and the stability of the electricity. As a case in point, the Google Date Center utilized the
DeepMind AI to effectively achieve 40% of the energy-saving for the data center operation [14].

However, as AI technology adoption and penetration rates increase in the energy sector,
the existing AI and energy-related research remain under-explored without sufficient scholarly
effort on AI applications in the energy and electricity market design on top of the physical and technical
energy infrastructure.

The study of Quan and Sanderson [15] introduces a holistic framework to analyze AI systems
and platforms, including AI core technologies, AI platforms, and AI applications. Based on this
framework, the extant AI and energy research has been largely focused on AI core technologies.
For example, AI technology has penetrated the technical applications rapidly in the industrial systems.
Technically, in the power and electrical engineering domain, AI techniques, such as expert systems,
neural networks, and fuzzy logic have been utilized to solve various technical challenges [16], including
but not limited to (1) energy forecasting [17,18], (2) energy market price prediction [19], (3) smart
grid fault detection [20], (4) demand-side management [21], (5) building energy management [22],
(6) smart home demand response management [23], and (7) smart grid data security with AI and
blockchain [24]. In terms of driving the energy transition process, the greatest potential in the use of AI
is forecasting renewable energy potential, big data management and optimization of hybrid renewable
energy systems, e.g., [25,26].

Research Gaps Relevant to the Study

Several gaps can be identified in the extant research. The first gap in the current research is the
lack of AI platform discussion dedicated to energy systems and market design. As argued by Reich [27]
and Singer et al. [28], to the present day, AI systems (including AI-empowered energy systems) have
hardly reached broad use in practice for several reasons. Research has often focused on narrow and
specialized technical subtasks, not on larger and more integrated problems. Specifically, for AI’s
application in renewable systems, it is suggested by [29] that most studies discuss the utilization of AI
approaches in wind- and solar-based systems. AI approaches have great potential, but their effective
utilization in future research is needed to provide more novel approaches to managing renewable
energy sources, such as in the case of AI for hybrid renewables.

Although AI is identified as a promising optimization method [25], there is little discussion on it
at the systemic level. A “platform” as a system model or architecture can tackle this problem. As stated
by Landahl et al. [30], when developing a variety of products for a large number of customers/end
users, the producers strive for commonalities and distinguishing features of the developed product
variants. A common approach for this is the adoption of a platform model [31], which is typically
achieved by modularizing the product’s architecture [32].
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As suggested by Ramos and Porto [2], some of the important problems in energy supply
technology and in the energy market require capabilities such as (1) heuristic search, (2) logical
thinking, (3) perception as well as (4) uncertainty tolerance. All these needs give rise to the opportunity
for cross-investigation between energy research and AI technologies. At a broader systemic level
(e.g., a system platform perspective), AI does not only enhance a certain operation but can be potentially
an effective enabler of the new solutions in the energy ecosystem in the areas of enhanced artificial
neural networking and decision making, operation, maintenance, market monitoring, as well as
optimized trading in the electricity markets [2].

For another emerging paradigm of energy internet thinking, the energy internet is considered to be
a new and advanced paradigm for smart grids with massive inter-connected devices and bi-directional
power and information flows. This emerging paradigm also demands more advanced techniques to
optimize the entire energy system rather than individual applications [33], including big data, AI-based
control, and optimization as well as cloud computing. Thus, the AI platforms for energy system and
market design at a systemic level is a research front that requires more attention and research effort.

The second gap relates to the synergy between AI applications and electricity market design.
The research and development of AI focus primarily on developing new algorithms and software that
tackle a focal problem [29]. While most of the previous studies cover the applications of AI techniques,
such as fuzzy logic or artificial neural networks in renewable systems [29], in theoretical research there
is relatively limited discussion on AI’s potential in the electricity market such as facilitating market
trading and renewable matchmaking in the electricity marketplace, especially in the emerging context
of massive renewable integration into the smart grids. In contrast, empirically, companies in the energy
industry have started experimenting with different use cases. For example, ABB focuses on advanced
testing methods of 3D-simulation of power plants with a holistic view of the system which is based on
smart human-computer interaction systems [34].

Fundamentally, markets have played a key role in giving market participants (or market actors)
the opportunity to profit from the trade. Market design literature (e.g., [35]) suggests that the design of
a market needs structure and a diverse range of market operations and transaction mechanisms to
operate efficiently [36]. Market design studies often delve into fundamental problems: how the market
agents can learn the patterns of the market to determine the optimal transaction prices? Or, how the
market agents can have an enhanced understanding of the market environment where they operate?

This research suggests that in the energy/electricity market, it is possible to harness the improved
predictions provided by data and AI algorithms to enable the marketplaces to better predict consumer
and producer demand and supply. This proposition is supported by the previous literature of Ramo
and Porto [2], which calls for further study on the economic perspective of the energy industry.
However, we need to develop a deeper understanding of how such a platform is constructed than an
ontological description. This is addressed in this study.

The third gap pertains to the value utilization of the electricity market. As mentioned, existing
AI technologies have been focused on how to optimize energy production and distribution for the
legacy energy systems. The issue arises when the platform thinking is adopted for the existing energy
systems that overemphasize on the energy production and energy supply chain. In platform literature,
a platform-like marketplace is formed because of the participation from both supply and demand,
or value provisioning and utilization that help create the network effect for a platform to succeed [37].
By adopting platform thinking, AI can impact the utilization side of the marketplace or platform is
limited from the existing energy research and literature.

By developing a high-level systemic architecture framework for an AI-enabled energy platform,
this paper contributes to the need for a better understanding and articulation of the potential AI
platform in the energy industry as well as AI’s roles and applications in electricity market design and
operation. More specifically, the research addresses two parallel research questions: firstly, what can
be the AI-enabled energy platform for the electricity market? and secondly what are the potential AI
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applications for the value provisioning and utilization of the energy platform in order to provide better
services for energy consumers?

Overall, by addressing these two questions, the research contributes to the existing literature in
three ways: (1) the study enriches the existing AI and energy research discussion with a more holistic
view: expanding from the technical focus of narrow AI technical applications to the utilization of AI at
a systemic level; (2) the research introduces platform thinking and a platform architecture/model for
the potential integration of AI into the energy systems. An AI-empowered energy system can have the
capability to manage massive data and complex grid and market operations when the shares of the
renewables increase significantly; (3) the research explores and proposes a number of AI applications
in managing and optimizing the market operation and design. Previous literature [2] only gives a
proposition that AI technology can transform the energy market operation without providing details
and in-depth discussion. This research gap is filled in this research, including discussing how AI and
blockchain can transform the further electricity market based on the extant studies of [38–40].

As addressed by [1], the direction of AI development in the energy industry is still an open path.
To facilitate more effective and efficient human–AI collaboration, more research efforts are required
to progress towards the development of new synergies AI and other parts of the energy system.
Thus, this study is inspired and built on this call for action. The research question of this study is as
follows: “How can we integrate AI technologies into the future energy system architecture, in order to enhance
transparency and participation of users in different markets?” The focus is on AI’s potential at the utilization
side of the electricity market, in order to enable smart energy services and increase value utilization.
The paper focuses on AI-enabled energy market architecture at the system level. Therefore, we are
open to a variety of AI technologies that demonstrate potential in the energy industry rather than a
particular AI technique.

This paper contains the following sections: Section 2 encompasses a number of definitions on AI,
AI’s application in smart grid and renewable researches. This section further introduces and explains
the platform thinking and elaborates on the research method. Section 3 shows the outcome of the study
by constructing and articulating the architectural model of an AI platform in the context of smart grids
by expanding the 4C (connection, content, context, and commerce) framework in ICT (information and
communication technology) and digitalization research. Section 4 discusses the potential applications
of AI in the electricity market through the framework created in the previous section. Finally, Section 5
provides the conclusions of this study and heads to further research direction.

2. Literature Review and Methods

Nilsson [41] defines that “AI encompasses the intelligent behavior in artifacts, which involves
perception, reasoning, learning, communicating and acting in complex environments”. The main
purpose of AI is basically considered as the creation of intelligent machines that can perform human-like
capabilities and beyond. Furthermore, it is recommended by the scholars (e.g., [42]) that the capabilities
of AI can be divided into subgroups or categories such as reasoning, problem-solving, natural language
processing, perception as well as general intelligence [42] to solve complex problems [43].

From the computer science perspective, AI is deemed as an approach for the software programs
to analyze focal problems and devise appropriate solutions. AI core technologies are classified as
machine learning, artificial neural network, and heuristic search [44]. To this date, numerous studies
have been conducted to explore, experiment and investigate the capability and use of AI in a variety of
fields such as big data analytics, information system, production engineering, and medicine, just to
name a few [29].

2.1. Artificial Intelligence (AI) Application in Smart Grids and Renewables

Based on the framework of Quan and Sanderson [15], AI in energy research is mostly directed in
different techniques and solutions for designing, optimizing, and managing the operations of different
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domains. In energy and renewables research, the literature review shows that AI has been studied in
areas such as solar, wind, geothermal and hydro [29].

A substantial number of studies have focused on energy demand prediction [45,46]. For instance,
prediction models can be categorized into the following types [47]: physical-oriented, data-oriented,
hybrid, and large-scale prediction methods. In the area of energy prediction, the artificial neural
network technique is well-known for the accurate forecasting of energy usage [29]. However, there is a
challenging issue related to accuracy when the scale is reduced (e.g., neighborhood or household level)
although precise load forecasting is possible at the aggregated level (e.g., national level), In this vein,
the study of Ahmadi [48] suggests that the artificial neural network is developed in as many as 40% of
the energy artificial neural networking algorithms [49].

The use of AI in solar energy: AI applications in solar energy are reviewed in the literature [50–52].
Applications often involve the use of artificial neural network methods for solar modeling [51] in
both single and hybrid approaches [53]. For instance, the use of machine learning can improve the
solar forecasting accuracy with a range of 30% to 50% increase, e.g., [54,55] compared to conventional
forecasting models.

The use of AI in wind energy: empirical research and trial by industry incumbents like GE show
that through the use of IoT (Internet of Things) sensors, data networks, and advanced analytics can
optimize the wind turbines to have as high as 20% peak efficiency in artificial neural network energy
production [13]. By reviewing the academic research, Jha et al. [29] identify a number of studies related
to the physical model, statistical model as well as artificial neural network methods for wind modeling.
Basically, the applications of AI techniques in wind energy cover several categories, such as neural,
statistical and evolutionary learning [29].

Overall, the artificial neural network, reinforcement learning, genetic algorithms, and multiagent
systems are common techniques for AI to solve the problems of classification, forecasting, artificial
neural networking, optimization, and control [2]. The current literature and research also show the
disintegrated gap and low visibility of studies that integrate ICT systems, power/energy systems as
well as energy market research [2]. However, this research suggests that AI and machine learning is an
emerging application in the power and energy field, quickly gaining a footing within the intelligent
energy systems domain.

2.2. Platform Thinking and Approach

The literature offers numerous platform types with different definitions and properties.
The platform concept and thinking can find its presence in both economic and technology/engineering
literature [56]. The work of Gawer [56] seeks to integrate technological platforms.

Digital platform architectures can generally be classified into two types which can have multiple
hybrid combinations [57]: the economic-oriented transactional platform and the engineering-oriented
technology platform. First, an economic-focused transaction platform facilitates exchanges by
fragmented groups of consumers and/or suppliers. The platform provides a matchmaking mechanism
to connect supply and demand that are normally fragmented [58]. This definition is in line with
an economic point of view, and digital platforms are seen as markets where the platform facilitates
exchanges between actors who otherwise would not be able to do business with each other. An example
of this type of platform is Uber, as the platform connects drivers with travelers and facilitates the
transaction between the two groups as a two-sided market or platform [59]. The economic platform
thinking can also be extended to multi-sided markets [60,61].

The engineering/technological platform is seen as a digital platform with technological architectures
that enable innovation [56,62,63]. Such a platform architecture builds a foundational technology and
distribution system that enables the other technologies to be integrated into the platform, enhancing
value for the whole system. For instance, the mobile app ecosystem of Apple (App Store) is a
well-known case of such a digital platform [63]. The core idea is that the platform includes modules
that can be used to decompose complex systems into manageable components connected by interfaces.
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The modules provide information-sharing because each module does not need information about the
entire system, which in turn allows access control over specific data [59,64].

The research of Gandia and Parmentier [65] shows that it is possible to combine and integrate both
the economic and engineering/technological conceptualization of the platform. For example, economic
thinking would consider the declining costs of information gathering and market mediation for the
empirical multi-faceted platforms on the Internet, such as eBay, Amazon, and Airbnb. In parallel,
the technological perspective of a platform is rooted in presenting the platform as an integral system
of software and hardware that offers standards, interfaces, and mechanisms that enable supplement
technology vendors or providers to be matched with the end users as well as interacting with other
technology providers. In this vein, the platform innovators’ and the complementary partners’ success
depend on the platform owner’s continuous innovation [65].

2.3. Research Method

In an effort to address the research gaps, this research adopts two approaches: First, system
architecture thinking, e.g., [66], where a “systems architecture is the conceptual model that defines the
structure, behavior, and more views of a system”, and action design research (ADR) [67]. In the paper,
the 4C systemic framework is used: connection, content, context, and commerce [68] and the 4C
layered typologies [69] that can incorporate both the value provisioning and value utilization of a
digital system, which bridges the gap in existing energy research. The 4C framework can be reconciled
with the market layer of the smart grid architecture model (SGAM) that is the formal system framework
established by the standardization organizations in the European Union [70]. Furthermore, the paper
follows the system architecture logic and align the discussion based on system architecture’s three key
constructs: the system structure, the system (and the component) behavior, and the view of a system.

Second, this study utilizes the constructive and action-oriented research approach for
theory building and concept proposition for the AI energy platform architecture as an IT
(information technology) artifact, aiming at bringing novelty value to the energy system and market
design studies. Information system research has rich literature on the relevant approaches for dealing
with the development and design of system architecture. For instance, action research is one stream of
studies that incorporate theory generation with researcher intervention to tackle organization-related
research problems and connecting the theory with practices [67,71,72]. In another stream of information
system research, design science is used to create IT artifacts with a constructive approach. The IT
artifacts are “shaped by the interests, values, and assumptions of a wide variety of communities of
developers, investors, users” [73].

Seins et al. [67] have proposed a new IT artifact (e.g., software architecture) development approach
that combines action research and design science, namely, ADR. The ADR approach stresses the
importance of the relevance cycle through explicit guidance for integrating the process of building,
intervention, and evaluation in a concerted effort [67]. In the context of this study, ADR addresses two
challenge areas for creating the system architecture of the AI-enabled energy platform; (1) addressing a
problem situation in a specific organizational setting which is the ecosystem as an organizational form
in the energy sector; (2) constructing and validating an IT artifact, that is the 4C platform architecture
that addresses the issues/needs in the energy ecosystem. Thus, this paper follows the four processes
of the ADR to formulate, build, reflect and formalize the AI-enabled energy platform as an artifact.
This means that the aim of the research is to generate theory and a framework with the help of empirical
data, rather than the deductive approach that uses hypothesis and theory testing based on stringent
empirical data [74].

This study is built on two large=scale research projects, including the EU P2P-SmartTest European
Horizon 2020 project [75] and the VirpaD Finnish national innovation project [76]. The EU-level
P2P-SmartTest project focuses on the investigation of a more intelligent electricity distribution system
through the incorporation of 5G technology, local energy markets and novel business models for future
power grids. Peer-to-peer (P2P)-based distributed smart energy grids have the capability to integrate
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multiple sources of distributed renewable generations at the local level, such as the microgrids. Such an
approach can provide qualitative and quantifiable value from tremendously enhanced interaction and
integration of the ICT technologies and energy networks at the systemic level. Furthermore, regulatory,
standardization and commercial frameworks are proposed to enable distributed energy trading and
market design (e.g., through the P2P platform).

The VirpaD project focuses on the digitalization of building and energy services. This project is
under the umbrella of the Finnish national research and innovation project that promotes the utilization
of IoT, the sharing economy ideology and AI to develop digital platforms in the built environment
(e.g., smart buildings, energy efficiency). The project provides and supports the creation and operation
of digital platforms that are enabled by big data and AI algorithms. Furthermore, the VirpaD project
provides the inputs of how an AI platform can be designed and what are its capabilities at different
levels/layers of the platform.

Following the ADR logic, this research involves two main stages and four specific processes.
The first stage was to review the existing digital architectural design and models of platforms in the two
research projects. The data was collected from the platform development and engagement workshops
with a stakeholder engagement approach [77]. The workshops involved multiple stakeholders that
participated in the projects, representing energy utilities, energy service companies (ESCO), ICT and
telecommunication operators, consumers/prosumers, regulators and so on. Moreover, the project
technical reports and relevant project deliverables were collected and utilized. The P2P-SmartTest
project provided the inputs and models of the distributed energy market design, while the VirpaD
project provided the digital platform architecture with AI integration. The second stage involved the
use of the ADR approach [78–80] with four specific processes that enable the mapping and reconciliation
of the platform design into one model, the 4C systemic model that is presented in detail in the next
section. This action design-oriented approach is an established approach both in the information
system and organization research domain.

Process (1) Problem formulation: in this process, the research focused on conceptualizing the
formulated problem, which is the focal research question of this study: what is the potential of
AI-enabled system architecture for the future energy markets? In particular, this question was posed to
address the two challenges stemming from (1) incorporation of massive renewables that are integrated
into the grids and create new operational, technological and economic challenges for the future energy
market and; (2) an emerging shift from the utility-centric model to a consumer-centric model. As the
World Energy Council [81] addresses, the dynamic consumer-centric energy utilities are 85% more
likely to outperform their peers with respect to the rate of profitability growth, yet only 14% of energy
companies today are in this category.

Process (2) Building and intervention: in this process, the research involved multiple stakeholders
in the energy industry. Ecosystem actor workshops were organized that focused on the creation of
the energy and AI platform architecture. The same 4C framework was utilized in both P2P-SmarTest
and VirpaD projects, where the P2P-SmarTest project focused on a decentralized energy market as
the context and VirpaD project focus was on the AI-enabled platform in smart building context
(including building energy consumption). As suggested by [67], this process involved reciprocal
shaping and concurrent evaluation.

Process (3) Reflection and learning: this is a continuous process and parallels the first two stages as
suggested by Sein et al. [67]. This process involved iterative cycles of conscious reflection on the problem
framing and the theories chosen to reach the target model or architecture as the conceptual outcome.
In this process, the researchers had in-depth queries and discussion on the platform architecture from
process 2 with energy ecosystem actors involved in the project and workshops.

Process (4) Formalization of the learning: in this process, the research formalized the results of the
study to cast the artifact instance into the artifact class or a more generalized model. The architecture
design outcomes (instances) of the P2P-SmarTest and VirpaD projects were cast into a more generalized
4C architecture. Furthermore, the study also used secondary empirical cases to validate the architectural
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model developed. The empirical case information was collected from the industry reports, industry
news media, case company websites and public reports as secondary data. It is of importance to note
that the cases included in the invalidation step are only to demonstrate the explainability and usability
of the proposed model. The cases are not from an exhaustive list of empirical companies.

3. Results

This study adopts the system architecture thinking and ADR approach for the design of the AI
energy platform. Thus, the results are presented and discussed by focusing on the three key constructs:
the structure, the behavior and components, and the view of the system [82].

3.1. System Structure: The Architectural Framework of the AI Energy Platform

The platform architecture may also define the business/market layer from the Smart Grid
Architecture Model (SGAM) [83]. SGAM has three dimensions: domains on the x-axis (Generation,
Transmission, Distribution, Distributed Energy Resources, Customer premises), Zones of ICT-based
control systems on the y-axis (Process, Field, Station, Operation, Enterprise, Market), and the
Interoperability layer on the z-axis (Components, Communication Information, Function, Business).
Therefore, the AI platform architecture contributes to enhancing the smart grid platform as it exists
at the moment to integrate the high penetration of renewable energy sources. From this point on,
the business layer [84] is, therefore, decomposed into four layers, those from the 4C framework in
Table 1 below.

Table 1. The 4C framework for artificial intelligence (AI) energy platform (adapted from [69,85]).

Layer Description

Commerce
The information and communication technology (ICT) solutions that

provide all stakeholders with an application or marketplace for trading
alternative connectivity solutions, content or context data.

Context The ICT solutions that provide data and information-related
contextual-based services.

Content The ICT solutions that provide any data, information, and content that
the users would want or need.

Connection The connectivity-related solutions to connect one or several networks.

The 4C systemic framework is applied in various empirical-inspired digitalization
studies [68,69,85], which is used in this study as the foundation for theory and framework building.
The framework has been used in value-related research in smart energy and the smart grid.
The framework encompasses four types of value typologies in a digital system (e.g., smart energy
and renewable system): connectivity, content, context, and commerce (as shown in Table 1). The 4C
framework resonates with the SGAM architecture as the formal system model in the EU. The framework
connects the service logic and value-based provisioning and utilization [85] within the focal ecosystem.

Each of the 4C layers is formed from the smart grid architecture and shall integrate the different
actors within the value chain of the smart grid infrastructure. Therefore, the AI platform is transversal
between the energy actors but also throughout the domains and hierarchical zones of the smart grid.
In the 4C framework, the content and context layers are particularly relevant to the field of AI as data
and contextual-aware services from these two layers are empowered by the technological infrastructure.
For instance, AI and more specifically deep-learning technologies have been used for price prediction
for intra-day trade in Nordpool (the Nordic regional energy-trading platform) based on the research
of [86]. The simplified conceptual framework developed and utilized in this study is shown in Figure 1
and the detailed interconnection and integration between the 4C framework as the business/market
layer of the SGAM are presented in Figure 2.
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Figure 1. The simplified overall conceptual framework of the study.

Figure 2. Integrating the 4C framework within the smart grid architecture model (SGAM).
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From a technology perspective, the computation value of a digitalized ecosystem is realized
through the integration of AI technology and algorithms into the existing ICT systems. In particular,
the AI algorithms are developed and trained through various frameworks (e.g., TensorFlow, PyTorch)
and hardware and software computation resources. Building on top of the establishment of network
connectivity and the extraction, collection, and storage of data, AI algorithms are trained to build
meaningful models to enable the execution of automated tasks at scale.

3.2. System Behavior: AI Energy Platform from Market Design and Value Utilization Perspective

Conventionally, a “simple” market model suggests that the business model is to facilitate the
value created in the market to flow from providers to users through a central entity as the aggregator.
The concept paves the way to the simple platform model proposed by [58]. The platform models can
be two- or multi-sided platforms that connect the heterogeneous groups of value providers and value
users through market mechanisms such as matchmaking and bridging [87].

The work of Gandia and Parmentier [65] describes the design of a digital platform from the value
utilization point of view. The platform operators normally need to subsidize one side of the platform
such as the platform service users [65]. In a multi-sided platform, the end-user may consume the
product, service or other value that is created and provided by the other actors on the platform while
producing value to other actors. Furthermore, a multi-sided platform can bridge a variety of user
groups to interact with each other and create positive network effects [88]. Expanding this stream of
design for the AI platform market led to the incorporation of the work from Milgrom and Tadelis [37]
that focuses on how AI can impact generic market design in two major ways.

First, AI can promote trust in digital marketplaces or platforms (hereafter, digital platform).
According to Milgrom and Tadelis [37], trust is a critical issue on digital platforms, mainly due to the
threat from anonymous trading and asymmetric distribution of information. Confidence and trust
on different sides of the platform are essential for the platform actors to conduct transactions and
form a market. The existing digital platforms use online review, feedback and reputation systems
to establish digital trust among platform actors. However, Milgrom and Tadelis [37] argue that the
current online reputation mechanisms potentially inflate the seller rating and do not provide accurate
information for buyers. For instance, the average positive feedback for eBay merchants is about 99.4%.
This can mislead the buyers to make the right choice on the platform today. AI techniques such as
natural language processing can be implemented to access the online communication and provide
more accurate evaluations of the quality and trustworthiness of the buyers and sellers [89].

Second, AI can reduce matchmaking friction. Existing literature (e.g., [37,90]) shows that a key
deployment of AI and more specifically machine learning, for digital platform is to enhance and
optimize the way in which potential actors engage with the platform through the search function.
Today, search engines like Google or Bing also employ AI algorithms as their core technology provides
better search result quality, enhances the matchmaking capability of the platform and provides a great
user experience. The sharing economy platforms like Airbnb also utilizes AI to deliver better search
results for the users from its platform to make customers happy. Therefore, on the utilization side of the
platform, when the energy system and market become highly distributed, AI can impact, enhance and
optimize for better user experience such as better trust mechanisms and matchmaking friction reduction.

3.3. System Behavior: AI Energy Platform from Technology Innovation and Value-Provisioning Perspective

The value-provisioning side of an AI platform is focused on the creation and development of AI
functionality and capability to create value for the platform users. Here, the 4C framework is used for
the AI platform as the model goes beyond the boundaries of a company and enables collaborative value
creation and capture with other ecosystem actors [91] and for the joint and system-wide development
of innovations [92].

The 4C concept is manifested as the stacks and layers of the platform model where lower layers
serve as the foundations for the higher layers enable the commerce or electricity market trading [85].
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The layered approach is similar to the EU’s SGAM model as the formal and technical-oriented model or
architecture of smart grids, where there are five layers from bottom to top: physical component layer,
component layer, data layer, functional layer, and business layer). Compared to SGAM, the layers in
the 4C framework can also be dynamically combined and stacked to provide more versatile value to
the energy system [85].

Overall, the value provisioning of the AI platform is more concerned with the creation of value
by AI, for example, optimized grid operation and management (connection layer), the enhanced
prediction of energy supply (content layer), load balancing (context layer) or market pricing for whole
electricity market (commerce).

3.4. System View: the Proposition of an AI-Empowered Energy Platform

This study sees that an AI platform model/framework can be established as a market model of the
energy industry. In such a platform, energy users and producers (e.g., consumers and prosumers) can
contribute to the electricity market by providing distributed renewable energy supplies and network
balancing capability in exchange for other types of value, such as a tangible monetary reward for active
market participation or intangible value like environmental and social value. In this case, a multi-sided
platform can be created not only for the exchange of monetary value but also to enable the market
participants to capture other types of value [85]. AI can be utilized as an orchestrating entity to facilitate,
optimize, manage and automate the market transactions. The increased number of market transactions
and activity logs can serve as data and training input to improve the AI and algorithms (e.g., how
Google uses neural networks to improve its data center operation’s energy saving). This type of AI
platform builds on the existing electricity market transactions and operations that are dependent on
human decision making and control.

4. Discussion

Referring to the framework in the previous section, the mapping of the AI platform model and
validation of such an architectural model are discussed in this section. The initial mapping of the AI
platform architecture is shown in Figure 3.

 

Figure 3. How AI can impact the value provisioning and utilization on the energy platform.
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4.1. Using AI to Enhance Value Provisioning on the Energy Platform

AI has demonstrated its effectiveness in the smart grids in renewable integration. At the connection
layer, AI can support artificial neural networking and scheduling for the electric grid and network
operations such as optimal dispatch, network reconfiguration, and maintenance schedule. According to
Ramos and Porto [2], a number of AI techniques such as artificial neural networks or fuzzy systems are
frequently used to solve the issues related to these operation areas.

At the content layer, AI can provide enhanced energy supply and production. For example, GE
utilizes intelligent algorithms to improve and optimize the operation of wind turbines. Furthermore,
when massive nodes of renewable supplies are connected to the grids, AI can perform well in the areas
of diagnosis and control. For example, intelligent tutoring systems are trained and experimented with
by utilities to improve network control [29].

At the context layer, contextual information and data can provide input to train AI models for
load and demand prediction [93] as load and supply predictions are not only used by the traditional
energy utilities.

At the commerce layer that relates to market trading, fuzzy logic has been implemented to provide
price forecasting for electricity markets. Moreover, deep learning as a recently popular technique
is utilized in cross-border electricity trading and price prediction [86]. The study of [94] shows the
progress in using AI algorithms to assist distribution system operators (DSO) in managing high levels
of renewables on a local flexibility trading market.

4.2. Using AI to Enhance Value Utilization on the Energy Platform

Based on the framework of the research, a number of areas that AI can impact on the utilization
side of the smart grids and renewables are identified.

First, similar to the market price prediction on the commerce layer that is mainly used by the
energy utilities, aggregators and balancing service providers in the electricity market trading today,
AI can provide similar data, information, and prediction for the consumers who are on the utilization
side of the platform at the commerce layer. Moreover, the energy-intensive industry branches could
use AI to schedule processes based on their energy intensity to maximize profits and minimize costs.

Second, as proposed by Milgrom and Tadelis [37], a potential use case of AI in the context layer is
to enhance the way potential consumers interact with the digital user interface to search for products
or services provided by the platform. In our case, it can be the renewable trading products and other
energy services provided on a digital energy platform in the context layer. Moreover, there is also a
market for storage capacity. Apart from providing emergency reserves in the intra-day market, there is
also a vision that electricity consumers could not only buy battery power from public facilities but
also sell.

Third, at the content layer of the value utilization, AI can improve and transform the trust
mechanisms of today’s digital platform (e.g., at the content layer). As mentioned previously, natural
language processing can be used to extract semantic information and meaning from the platform
actors’ communication messages in order to provide better insight into the trustworthiness and quality
of the platform actors so that it enables better use of the energy platform at the commerce layer. From a
technical perspective, the study of Chui et al. [95] introduces a novel approach, the genetic algorithm
support vector machine multiple kernel learning (GA-SVM-MKL) algorithm to detect 20 types of home
appliances with improved accuracy of 7%. Such an application can support better optimization of
home energy use at a more granular level.

At the connection layer, AI can be connected with other technologies such as blockchain to promote
trusted and automated connections that enable advanced market matchmaking and transaction on
other layers. By integrating AI, smart contracts and distributed-ledger technologies, there is potential
to bridge the exchange of excess renewable generation, storages and electric vehicles (EV) through
automated matchmaking with little or no human intervention, which can be a game-changer for
tomorrow’s electricity market [38].
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4.3. Validating the Platform Model with Empirical Cases

Based on the action design approach, this study includes a validation process on the proposed
system architecture with the empirical cases collected with desk research. The findings from analyzing
the empirical cases are two-fold (Figure 4):

Figure 4. Validation results of the proposed platform architectural model.

First, the existing empirical cases resonate with the initial argument of the paper in
that the AI applications in energy are rather narrowly focused on a specific use-case domain.
However, these cases can be mapped with the 4C framework on both value-provisioning and
utilization sides. Second, there are emerging companies that have adopted the platform model to
develop an AI-enabled energy platform, a platform that spans two or three layers within the 4C
framework. Although these cases do not fully cover the whole 4C framework, the empirical results
demonstrate that the 4C framework can be used to analyze and explain the architectural design of an
AI-enabled energy platform in practice.

On the value-provisioning side of the framework, a number of examples show that AI has been
applied at different layers. The context layer can be associated with supply prediction. Xcel, as one
of the largest energy suppliers in the US, is utilizing AI technology in Colorado to address weather
forecasting challenges. AI-based data mining approach is used to create in-depth weather reports with
high accuracy. Xcel’s system collects data from local satellites, weather stations, and wind farms to
identify data patterns and make predictions to better inform the company’s planning decision in terms
of energy supply [96]. Google as an ICT and AI giant has used machine learning to make predictions
for wind farms. For instance, Google’s London-based subsidiary DeepMind has utilized its own AI
system to forecast wind-farm production. DeepMind can predict wind power output 36 h ahead by
using DeepMind’s neural networks [97].

At the content layer, GE has used its Predix platform to optimize GE’s wind-farm production.
The platform can integrate data from different sensors from the wind turbine and performs detailed
analysis to predict production and operation failure in the machine before it happens. Furthermore,
the Predix platform can also optimize a collection of wind turbine assets to maximize the electricity
product output [96].
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At the connection layer, AES (an energy company that has 36 gigawatts of energy capacity
in 17 countries) has been developing advanced neural networks, natural language processing, and
machine intelligence. The key application area of the AES’ AI is to improve the awareness, efficiency,
and maintenance of the electric grids that connect the company’s solar and gas generation assets, as
the so-called “preventative maintenance” for grid operations [98].

On the value utilization side of the framework, several new AI companies have emerged in the
energy market. PowerScout [99] is a California–based startup that can be considered as providing the
solution for the consumers on the commerce layer of the 4C framework. The company uses AI and
machine learning to improve consumer awareness and participation in the energy market. PowerScout
utilizes industry data and AI to demonstrate potential savings on power costs for the consumers.
PowerScout’s AI platform collects data from over 100 billion data points that are connected to 45 million
households. The data is collected from several sources and predicts whether or not a given household
should be investing in solar energy and helps the solar installers to match with the potential buyers.

At the content and context layers, GE has been focusing on utilizing AI to optimize how electricity
flows out of batteries and points of consumption [100]. Grid4C and Landis+Gyr (one of the leading
smart meter manufacturers) have formed a partnership to provide utilities with granular real-time
predictions and actionable insights for operations and customer-facing applications. The so-called
“AI grid edge” solution is the core technology that enables the applications to achieve granular load
forecasting as well as optimization for the distributed energy resources for home energy management
at the appliance level. The new application can predict and detect faults in both grid assets and home
appliances and can be used to reduce peak demand at consumer home premises [101]. These cases
demonstrate that AI technologies are actually used for demand-side management at consumer locations.

In addition to the empirical AI applications that are focused on a single layer within the 4C
framework, the research has also identified a breed of emerging AI platforms that span multiple layers
of the framework and resemble the platform architecture proposed in the paper.

C3.ai [102] is an AI-as-a-Service (AIaaS) platform that enables the utility companies to utilize a
variety of data sources (from the grid operations) that underpin AI and machine learning algorithms to
optimize grid asset management and forecasting systems, enhance the energy efficiency, and enrich
customer service engagement with real-time predictive insights. C3.ai’s AI energy platform offers
solutions that can cover several 4C layers: (1) at the commerce layer, C3.ai has the software solutions
for digital customer experience and customer segmentation and targeting; (2) at the context layer, the
platform offers energy-management analytics to reduce utility operation costs and enhance operation
via real-time tracking, analytics, and optimization. AI techniques are used to provide more accurate
forecasting and enable more effective demand response; (3) at the content layer, the C3.ai optimizes DER
management by integrating real-time energy data across systems and sensor networks. The platform
can enable secure API (application programming interface) to access various data for a utility’s grid edge
control and operational platforms. With the AI algorithms, the C3.ai platform enables the management
of distribution asset capacity constraints and mitigation of active and reactive voltage issues; (4) at the
connection layer, the C3.ai provides predictive maintenance that can estimate asset failures in advance
for the generation, transmission, and distribution systems. Both supervised and unsupervised learning
algorithms are used to process the data streams from sensors, SCADA (supervisory control and data
acquisition) systems, and asset management systems to identify anomalies and predict malfunction
probability of the assets.

Another empirical case is Verv [103], which is an AI energy startup that integrates AI and
blockchain: (1) at the connection layer, the company’s device is connected directly to the smart meter
in a home. Through the hardware device, Verv’s platform then monitors the whole electricity usage
of the consumer premises. Verv’s device has a “sample rate” that is up to 5 million times faster than
a typical smart meter [103]. This is known as high-frequency data which allows the Verv device to
gain more detail from the electricity mains.; (2) the content and context are interconnected in Verv’s
case, where the collected high-frequency electricity data allow the AI algorithms to recognize the
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household appliances via their unique energy signatures, eventually identifying new appliances in
consumer homes and providing smarter insights into usage patterns. (3) At the commerce layer,
the company builds a blockchain-enabled electricity trading platform that enables P2P energy trading.
The households can sell the excess solar generation directly to other consumers/prosumers through the
matchmaking mechanism provided by Verv Trading. This approach helps provide low-cost electricity
for the consumers without solar panels and more return on investment for the prosumers who have
solar panels installed.

Overall, based on the outcome of the validation, the proposed platform model demonstrates the
expandability of the empirical cases. On one hand, the proposed model shows that the stand-alone
and hybrid empirical AI applications can be mapped on the architecture model at all four layers and
two sides of value provisioning and utilization, except for the connection layer on the value utilization
side. On the other hand, the results show that there is a gap between theory and practice. The AI
energy concepts are developed ahead of the empirical cases that can actually implement. This is
particularly true for the value utilization side of the platform. For example, there is no empirical case
on automated trading at the commerce layer for consumers. However, Fortum as a Nordic energy
supplier is providing the Nordpool spot market price for the electricity consumers today. There is
potential to incorporate AI-enabled pricing prediction for the consumers and prosumers in the future.

The enhanced matchmaking (context) and platform trust (content) enabled by AI are missing.
However, the ICT and eCommerce literature suggests that AI algorithms can be used to optimize and
generate highly relevant results and reduce search friction and cost to the user [37] in other empirical
cases. Currently, there is no massive energy platform like Amazon for eCommerce platforms or Airbnb
for home-sharing platforms, which means enhanced matchmaking and search friction reduction is
not critical at the time of this paper as the energy platform has not reached a critical mass to demand
these functions. However, technology is mature enough to provide such capability. For instance,
Google receives more than 63,000 searches per second on any given day, which is equivalent to
5.6 billion searches per day [104].

5. Conclusions

In the ever-increasing pace of renewable integration and the adoption of smart grids as the next
generation of the energy system, the integration of massive distributed energy supply and resources
is the key. Evidently, AI technology can tackle many of today’s energy-system challenges that have
numerous non-linear and high-uncertainty issues.

The literature used in the paper represents two streams of scientific research, the energy market
design literature and the information system literature. Our key contribution to energy market design is
to use introduce platform thinking for the AI-enabled energy market. The platform is a well-established
concept and theory in energy economics. For the information system literature, we bring in the business
model perspective as the information system comprises the operation process and business process.
Even though platforms and data have been related to both research streams, existing research has not
incorporated both streams to investigate AI as a general-purpose technology [9] that can enable and
influence the technical and market architecture of the energy platforms. It is key to distinguish that this
paper focuses on the system architecture of the energy market, while deriving mathematical modeling
is not within the scope.

Above all, a consumer- and prosumer-oriented electricity system architecture enabled by AI
technology is becoming a crucial area for the energy sector and energy market worldwide [105]. A more
autonomous, optimized and flexible design of an energy system can be enabled by AI technology
that is supported by the advancement in big data, IoT technology as well as computing technology.
Multiple studies show that AI can improve the operating efficiency, reliability and intelligent ability
of the energy system. Overall, AI is expected to be one of the means to develop security, economy,
and reliability of the power industry.
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The key contributions of the study are as follows. First, the study proposes a new energy
system/market design architecture that is enabled by AI and big data. AI techniques have been tested,
experimented upon and proven effective in numerous technical areas of smart energy systems and
renewable productions. However, the lack of a holistic view of how these AI techniques can be integrated
from the energy system perspective has been missing. This study tackles this issue by utilizing the 4C
framework that has earlier been used in the ICT and energy ecosystem studies [69,85]. The end results
show how AI technologies can be integrated into various parts of the energy system architecture.

Second, through the proposed platform model, the study identifies the research gap that the
current AI and energy studies have been focused on narrow AI applications. This paper discusses the
possibility of an AI platform that can incorporate, coordinate and manage different AI applications
so that to create extended value for a complex system of the energy industry and market. The
study introduces platform thinking to AI and energy research, suggesting that an AI-empowered
energy platform or marketplace can be a potential solution for the next-generation energy systems
for the incorporation of massive distributed renewable resources. Companies like Google, Amazon,
Airbnb have proven that AI has the capability to manage and automate a digital system and platform
that can go beyond human limitations e.g., by handling tens of thousands of research queries per
second without compromising the resulting quality.

Third, the advantage or benefit of using the platform approach is to see how extant energy research
has focused on value provisioning for the energy systems. This is largely due to the fact that the
legacy energy systems are built on the paradigm of centralization and where the energy supply chain
thinking is dominant. Platform thinking brings forward a perspective shift to help us see not only value
provisioning but also value utilization in the electricity market. Thus, coordination and optimization
can and should take place on both provisioning and utilization sides of the market. This inspires us to
see AI’s capability on the utilization sides of the electricity market in cases such as enhancing market
trust, reducing research and matchmaking friction and cost to the market participants. It is important
to note that AI’s capabilities on the value utilization side are not only limited to the areas discussed
in this paper. In fact, this research encourages future research to explore and discover more on the
utilization side of the energy platform to enrich energy research and literature.

The limitation of the study is that it is built on secondary data and is inductive research. AI platform
thinking is a novel concept that steers us towards the future energy industry and new AI technologies,
and applications are still emerging. The paper focuses on concept development and proposition rather
than validation. It is recommended for future research to utilize the deductive approach to survey and
collect more empirical case studies to further test and improve the framework developed in this study.

This paper contributes to how AI can be combined with platform thinking to develop a holistic
view on the AI energy platform. We argue that this is a potential model and design for the future and
for more distributed energy and electricity markets. In addition, theoretical research and the practical
application of AI in energy markets are further encouraged, For instance, a more holistic energy system
comprises more than just renewable electricity exchange, it also includes services targeted at smart
cities, industries, and transportation among others [95]. From the geopolitical perspective, with the
increased share of renewables entering the scene of electricity and the energy market, tough competition
will be faced by traditional powerplants and utilities to stay profitable, although baseload power
will still be required. Therefore, there is massive potential for the use of AI technologies today and
in the future for a regional market beyond country borders, such as the pan-European energy and
electricity market.
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Abstract: To further promote market competition, enrich trading varieties, alleviate information
asymmetry, and improve trading efficiency during electricity market reform in China, the continuous
bidirectional transaction (CBT) was designed and applied in the Yunnan electricity market (YNEM),
which is dominated by medium- and long-term power energy trading. The clearing model for the
CBT with the goal of maximum social welfare is proposed in two bidding stages, including call
auction (CA) and continuous double auction (CDA). Correspondingly, the integrated two-stage
market clearing algorithm is also introduced to ensure the data consistency and business continuity.
Finally, the analysis of the practical application shows that the proposed model, algorithm, and
various key implementation strategies of the trading platform support the bidding and clearing of
the CBT well. In addition, the research and application of CBT may also provide valuable insights for
other electricity market construction.

Keywords: electricity market; trading mechanism; clearing model; clearing algorithm; trading platform

1. Introduction

Over the last few decades, the installed power-generation capacity of China has exploded,
especially for hydropower capacity, increasing from 20 GW in 1980 to 352 GW in 2018 [1,2]. However,
wasted hydropower is often associated with the rapid deployment of hydropower because of a lack of
energy planning, delayed construction of power grid, and multiple interest game [3]. According to
official statistics, wasted hydropower exceeded 28.7 terawatt hours (TWh) and 31 TWh, respectively, in
Sichuan and Yunnan in 2016 [4], which are the two hydropower-dominated power grids. This is a very
serious problem and also partly motivated the electricity market reform. Therefore, the “Opinions on
Further Deepening the Reform of the Electric Power Systems: Document No. 9” was promulgated in
March 2015 by the State Council and the Central Committee of the Communist Party [5].

Since the new round of electricity market reform in 2015, various regions and provinces in China
have created medium- and long-term electricity markets, and a great deal of progress has been made.
Two regional trading centers in Beijing and Guangzhou, as well as provincial trading centers in each
province, have been set up to handle cross-provincial, cross-regional, and intra-provincial transactions.
From the perspective of the whole country, the market reform has been deepened year by year due
to positive factors, such as diversified market entities, rich trading varieties, and diversified market
services. In 2018, the total amount of electricity traded (including the generation rights traded) in
the national electricity market was 2065.4 billion kilowatt hours, up 26.5% from the previous year.
The proportion of electricity traded in the market was 30.2% of the total electricity consumed by the
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whole society, 4.3 percentage points higher than in the previous year. The proportion of electricity
traded in the market was 37.1% of the electricity sold by power grid enterprises [6].

Yunnan Province, as one of the first batches of comprehensive pilot provinces of electricity
market reform, has always been in the forefront of domestic electricity market reform. After several
years implementing successful operations, much progress has been made in, for instance, the market
scale, the market supervision and the trading mechanism. By the end of December 2018, a total of
7662 market entities had completed registration and gained access. This scale is three times that of the
initial stage of the Yunnan electricity market (YNEM). In 2018, more than 85 billion kilowatt-hours
of electricity were traded in the provincial market, an increase of more than 21% from the previous
year. Among this electricity, the proportion of clean energy trading electricity accounted for more than
97%, ranking highest in the country. Trading electricity accounted for more than 62% of the electricity
sold in the Yunnan power grid (YNPG) [7]. This increase in electricity trading volume indicates an
increase in market demand, which promotes the reduction of hydropower curtailment to a certain
extent. In addition, medium- and long-term trading mechanisms are becoming increasingly mature,
and trading varieties are abundant, providing diversified choices for market players [8]. As a pioneer
in the new round of electricity market reform in China, the newly reformed YNEM has achieved
initial results, where an increasingly mature, efficient, and fair electric power trading market has been
gradually established, which provides valuable experience for the construction of electricity markets
in other provinces.

The market operators of the YNEM have been committed to enriching the construction of
the trading mechanism. To further promote market competition, enrich trading varieties, alleviate
information asymmetry, and improve trading efficiency, the continuous bidirectional transaction (CBT)
was designed and applied in the YNEM in 2018 [9], which is characterized by a sequential two-stage
bidding process with real-time market information disclosure that integrates call auction (CA) and
continuous double auction (CDA) [10,11]. The CBT is quite different from the original trading methods
in the YNEM. How to design and implement CBT business, such as bidding and market clearing, is a
problem worth studying.

Research on electricity trading mechanisms attracts much attention. Many experts and scholars
have done a great deal of work on this topic [12]. On the one hand, game theory, auction theory, and
other mechanism design theories are widely used in power market design. Using game theory, Carlos
Silva et al. designed a new mechanism. In the deregulated environment, efficiency (economic dispatch)
can be achieved despite the information barrier of effective distribution of power production [13].
Based on the theory of signal game, Liu Z et al. took the degree of information interference as an
important factor to evaluate the bidding mechanism and put forward a semi-random matching (GSM)
incentive bidding mechanism [14]. In order to alleviate the market power of participants and improve
the social welfare of the power market, Xiaoyan Zou took the social welfare contribution of each
participant as the key factor of market clearing, payment and settlement, and transaction matching
rules, and proposed a new double-sided auction mechanism [15]. Under the condition of satisfying
the characteristics of mechanism design theory of individual rationality, incentive compatibility and
payment cost minimization, Zou P et al. analyzed, derived and designed a customized pool-based
market mechanism by using the economic mechanism design theory [16]. In order to institutionally
stabilize the market, Chen Zhang and Wei Yan restricted the abuse of market power by restricting the
arbitrage opportunities generated by multiple markets and developed a mechanism [17]. In order to
realize the long-term stability of electricity price in the day-ahead electricity market [18–20], Ying Yu et al.
designed an incentive contract menu. In the framework of a one-leader and multi-follower game, a
bilevel Stackelberg game model was also proposed to find the optimal incentive mechanism [21]. On the
other hand, with the development of power system, the design of power market in the environment of
rapid penetration of renewable energy and distributed energy is also concerned [22]. Agalgaonkar et al.
examined placement and penetration level of the distributed generations under the standard market
design (SMD) framework [23]. Based on the indirect mechanism design framework, Khazaei and Zhao
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aggregated renewable energy power generation companies in a two-settlement electricity market and
designed the revenue distribution mechanism by solving the competitive equilibrium of the special
market with transferable revenue [24]. Liu et al. discussed P2P power trading mechanisms based on
auction and bilateral contract and analyzed their effectiveness in the future power distribution system,
to reasonably manage power trading between users [25]. To develop strategies for the integration of
prosumers into competitive electricity markets, Parag and Sovacool identified and discussed three
potential retail markets related to the integration of retail power grid, peer-to-peer models, and
retail community groups [26]. Relying on blockchain and CDA mechanism, Wang et al. proposed a
decentralized electricity transaction mode for microgrids [27]. Mengelkamp et al. derived seven market
components as a framework to build an efficient microgrid energy market [28].

Although there are a lot of studies on market mechanism, its literature and real application on
integrated CA and CDA in the electricity market, which is dominated by medium- and long-term
power energy trading, are relatively less. This paper aims to research and design the CBT and put it
into operation in YNEM. To this end, the clearing model with the goal of maximum social welfare
for the CBT is proposed, which is the theoretical basis of market clearing based on CBT trading rules.
Correspondingly, based on the difference and connection analysis of the two stages, the design of a
two-stage integrated market clearing algorithm to ensure the data consistency and business continuity
is also introduced. Moreover, the practical experiences in implementing the CBT-based electricity
trading platform (CETP) are described. Finally, the practical application is analyzed, and the CBT
mechanism, clearing model, algorithm, and platform construction experience mentioned in this paper
may provide valuable insight for other power market constructions.

The rest of the paper is structured as follows. In Section 2, the continuous bidirectional transaction
of the YNEM is briefly introduced. The two-stage integrated clearing model of the CBT is proposed in
Section 3. Section 4 illustrates the design of the market-clearing algorithm of the CBT. Section 5 presents
the architecture and some implementation strategies adopted in the CETP. The practical application
of the CBT based on the CETP in the YNEM is shown in Section 6. Finally, conclusions are drawn in
Section 7.

2. Organization of Continuous Bidirectional Trading Mechanism

Unlike the major electricity markets operated by Pennsylvania-New Jersey-Maryland(PJM),
California Independent System Operator (CAISO), and Electric Reliability Council of Texas (ERCOT)
in North America [29–31], British Electricity Trading and Transmission Arrangements (BETTA) in
Great Britain [32] and Nord Pool Spot in Nordic Europe [33], the YNEM is dominated by medium-
and long-term electrical energy transactions briefly described in Figure 1. Moreover, all trading
contracts require physical delivery, which means that the final transaction results need to be checked
by YNPG [34]. The continuous bidirectional transaction (CBT) is new to the YNEM; it was introduced
in the beginning of 2018, and currently, this bidding scheme is applied to the monthly market, where
electricity consumers and producers submit a set of price-volume pairs, indicating their willingness to
buy and sell electricity for the next operating month [9]. The CBT, together with the original bilateral
transaction and matching transaction, constitute the main transaction varieties in the monthly market.

The CBT is a multistage double auction with numerous buyers and sellers, where the following
rules are applied:

1. It is a two-stage double auction online.
2. The first stage includes a call auction (CA), i.e., a one-shot game, where buyers and sellers submit

sealed bids with discrete price–quantity combinations, which state the amount of energy that the
company is pleased to sell or buy at specified prices.

3. During the first stage, the sellers cannot obtain the buyer’s demand curves. In the same way,
sellers’ supply curves are not available to the buyers. All market participants can bid or cancel a
bid until the time is up. After the closure of this stage, the submitted seller and buyer bids are
aggregated, resulting in the first-stage unconstrained results by the CETP of Kunming Power
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Exchange (KMPEX). The results include the market clearing prices (MCPs) of this stage and bid
matchings according to the submitted bids [35]. Orders with remaining unmatched volume will
enter the second stage first with the same timestamp.

4. The second stage consists of a continuous double auction (CDA) [36]. Participants use the CETP to
advertise offers to sell or bids to buy energy. In such a computerized marketplace, all participants
can observe the quantity and price submitted by other parties, but they cannot learn the identity
of any party who submits an order. When a party enters a new bid, the CETP checks whether
there is a matching offer within the bid-delivery period. If it finds that the differences of prices
(DOP) between the buyer’s and the seller’s bids is not negative, the transaction is automatically
concluded, and the price and quantity are displayed for all participants to view. Otherwise, the
unmatched new bid is added to the list of uncompleted bids and will remain until a transaction
can be concluded or until the bid is withdrawn. A similar procedure occurs each time a new bid
is entered into the system [37].

5. Since the auction is calculated in a sequential machine, the bidding information is registered in
time-sharing. Therefore, even if two bids are submitted at exactly same time, they are registered
in order, which is determined by chance [38].

6. If no time is left in the second period, the auction is finished. Here, the total unconstrained results
are submitted to YNPG for security checks, which take into account the technical requirements,
such as spatial–temporal coupling among reservoirs, line congestion on both the buyer and seller
side, and the risk of water spillage, rather than economic factors, such as price or cost. For instance,
when the transmission line is blocked, the power generation needs to be curtailed according to the
capacity, which means that power generation is substantially controlled by the grid [39].

7. The results of the security check are returned to KMPEX in the form of the caps of the power
generation, which KMPEX regards as constraints to the final bid clearing. Then, the final constraint
results will be part of the monthly transaction contracts [40].

 
Figure 1. Process of the medium- and long-term electrical energy transactions in the Yunnan electricity
market (YNEM).

The organizational process of the CBT is shown in Figure 2. The regular schedule of each stage
listed in the figure may be adjusted and disclosed to market participants before the transaction is
actually carried out.
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Figure 2. Flowchart of the continuous bidirectional transaction (CBT).

3. Two-Stage Clearing Model of the CBT

In this paper, the expected total revenue of buyers and sellers is regarded as the whole social
welfare (also denoted as ‘surplus’) from the auction [15,35,41]. The CBT is also an auction mechanism
maximizing the whole social welfare, which is equivalent to maximizing the expected total revenue of
sellers and buyers under the following restrictions. The market-clearing model for the CBT can be
described as follows.

3.1. Call Auction Stage

Objective function—the social welfare of the call auction stage can be expressed as follows:

π1 = max
∑
i∈I

∑
j∈J

((Pbb,i − Pbd,i j) ×Qbd,i j + (Psd,i j − Psb, j) ×Qsd,i j) (1)

where i and I represent the index and set of market buyers, respectively; j and J represent the index
and set of market sellers; Pbb,i (yuan/kWh) represents the bid price of market buyer i; Pbd,i j (yuan/kWh)
represents the deal price of market buyer i with market seller j; Qbd,i j (kWh) represents the energy
cleared of market buyer i with market seller j; Psb, j (yuan/kWh) represents the bid price of market
seller j; Psd,i j (yuan/kWh) represents the deal price of market seller j with market buyer i; Qsd,i j (kWh)
represents the energy cleared of market seller j with market buyer i; and π1 (yuan) represents the social
welfare of the call auction stage.

All the constraints are given by the KMPEX before the bidding. The constraints faced by the call
auction stage include bidding constraints and clearing constraints.

Market bidding constraints are defined as follows:
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⎧⎪⎨⎪⎩ 0 ≤ Qbb,i ≤ Qbb,i
0 ≤ Qsb, j ≤ Qsb, j

(2)

{
Pα ≤ Pbb,i ≤ Pβ
Pα ≤ Psb, j ≤ Pβ

(3)

where Qbb,i (kWh) represents the quantity caps of buyer bid; Qsb, j (kWh) represents the quantity caps
of seller bid; and Pα (yuan/kWh) and Pβ (yuan/kWh) represent the lower and upper bounds of the bid
price of buyer i and seller j, respectively.

Market clearing constraints are defined as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
j∈J

Qbd,i j ≤ Qbb,i∑
i∈I

Qsd,i j ≤ Qsb, j
(4)

∑
i∈I

∑
j∈J

Qbd,i j =
∑
i∈I

∑
j∈J

Qsd,i j (5)

{
Qbd,i j ≥ 0
Qsd,i j ≥ 0

(6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PΔ,i j = Pbb,i − Psb, j

Pbd,i j = Pbb,i − PΔ,i j/2
Psd,i j = Psb, j + PΔ,i j/2

(7)

Equation (4) indicates that the accumulated transaction quantity does not surpass the bid quantity.
Equation (5) is the power balance constraint, which represents that the total amount of electricity
traded between buyers and sellers is balanced. In Equation (6), the lower bound takes nonnegative
values for Qbd,i j and Qsd,i j, which means that transfers of electricity between buyers or between sellers
are not allowed in this transaction.

All sellers (i ∈ I) and buyers ( j ∈ J) are paired into I × J pairs, and the DOP of I × J pairs are
calculated by Equation (7), where PΔ,i j represents the DOP between marker buyer i and marker seller j,
which is not negative to meet the transaction conditions. Pbd,i j and Psd,i j represents the buying and
selling prices for the financial settlement of each pair, respectively, which are determined according to
a modified pay-as-bid (PAB) principle that adjusts the effective prices through their DOP [4].

3.2. Continuous Auction Stage

In the continuous stage, every pair matched successfully is recorded as one round. That is, there
is only one matching pair of trades per round.

Objective function—the social welfare of the continuous auction stage can be expressed as follows:

π2 =
∑
r∈R

max((P′bb,i,r − P′bd,i j,r) ×Q′bd,i j,r + (P′sd,i j,r − P′sb, j,r) ×Q′sd,i j,r) (8)

where r, R represents the index and set of trade rounds during the second stage (continuous double
auction); P′bb,i,r (yuan/kWh) represents the bid price of market buyer i in the round r; P′bd,i j,r (yuan/kWh)
represents the deal price of market buyer i with market seller j in the round r; Q′bd,i j,r (kWh) represents
the energy cleared of market buyer i with market seller j in the round r; P′sb, j,r (yuan/kWh) represents
the bid price of market seller j in the round r; P′sd,i j,r (yuan/kWh) represents the deal price of market
seller j with market buyer i in the round r; Q′sd,i j,r (kWh) represents the energy cleared of market seller
j with market buyer i in the round r; and π2 (yuan) represents the social welfare of the second stage.
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Market bidding constraints are defined as follows:

⎧⎪⎪⎨⎪⎪⎩ Q′bb,i,r ≤ Q
′
bb,i,r

Q′sb, j,r ≤ Q
′
sb, j,r

(9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Q
′
bb,i,r = Qbb,i −

∑
j∈J

Qbd,i j −
r−1∑

r′=1

∑
j∈J

Q′bd,i j,r′

Q
′
sb, j,r = Qsb, j −

∑
i∈I

Qsd,i j −
r−1∑

r′=1

∑
i∈I

Q′sd,i j,r′

(10)

⎧⎪⎪⎨⎪⎪⎩ Pα ≤ P′bb,i,r ≤ Pβ
Pα ≤ P′sb,i,r ≤ Pβ

(11)

where Q
′
bb,i,r represents the bid quantity caps of buyer i in the round r; Q

′
sb, j,r represents the bid quantity

caps of seller j in the round r; Equation (10) explains that how to calculate the bid quantity constraint
value of the round r.

Market clearing constraints are defined as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
j∈J

Q′bd,i j,r ≤ Q′bb,i,r∑
i∈I

Q′sd,i j,r ≤ Q′sb, j,r

(12)

∑
i∈I

∑
j∈J

Q′bd,i j,r =
∑
i∈I

∑
j∈J

Q′sd,i j,r (13)

⎧⎪⎪⎨⎪⎪⎩ Q′bb,i,r ≥ 0
Q′sb, j,r ≥ 0

(14)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P′Δ,i j,r = P′bb,i,r − P′sb, j,r

P′bd,i j,r = P′bb,i,r − P′Δ,i j,r/2

P′sd,i j,r = P′sb, j,r + P′Δ,i j,r/2
(15)

Equation (12) indicates that the accumulated transaction quantity must be less than their bid
quantity in the per round. Equation (13) represents that the total amount of electricity traded between
buyers and sellers is balanced. In Equation (14), the lower bound takes nonnegative values for Q′bb,i,r
and Q′sb, j,r, which means that transfers of electricity between buyers or between sellers are not allowed
in this transaction. The clearing price mechanism is illustrated in Equation (15). P′Δ,i j,r represents the
DOP between marker buyer i and marker seller j in the round r, and P′bd,i j,r P′sd,i j,r are the buying and
selling prices for the financial settlement of each pair, respectively.

4. Two-Stage Integrated Clearing Algorithm

As mentioned above, the CBT includes a bidding process that integrates CA and CDA. In order
to better design a two-stage integrated market clearing algorithm, it is necessary to analyze its main
differences and connections.

Connections: After the market clearing of the first stage, the orders with remaining unmatched
volume will be directly included in the second stage, at the same time as the earliest bidding information
in the second stage.

Differences: The market clearing takes place only once after all the biddings are collected in the
first stage, and the bidding and clearing are obviously sequential; the market clearing is real-time
in the second stage, and once the transaction conditions are met, the matching will be carried out.
The real-time market-clearing couples the continuous bidding and clearing together.

271



Energies 2019, 12, 4663

To ensure the data consistency and business continuity in an efficient way, based on the above
analysis, a two-stage integrated market-clearing algorithm is designed. The algorithm used to solve the
whole problem is represented by the flowchart in Figure 3. The main steps involved in the algorithm
implementation are described as follows.

Figure 3. Flowchart of the algorithm.

Step 1: pair each buyer and seller, and the DOPs are calculated for all matching pairs.
Step 2: these pairs are then sorted in descending order based on DOP values. Obviously, a pair with a
negative DOP value will not be contracted. The same DOP pairs are divided into a group.
Step 3: start with the group with the largest DOP. If there are any remaining spread groups to calculate,
proceed to the next step; otherwise, the market clearing of the first phase is over, so move on to Step 5.
Step 4: the total transaction amount of this group is the smaller value of the quantity declared by all
the buyers and the quantity declared by all the sellers in this group. Then, the transaction quantity of
each pair is allocated according to the bid quantity in this group. The prices are given by Equation (7),
which is mentioned above. After the contract is formed, move on to step 3.
Step 5: orders with remaining unmatched volume are marked with the same timestamp and grouped
by price. After entering the second stage, each group is listed as a new order at the earliest time.
Step 6: if the continuous phase is still in progress, then enter the next step; otherwise, the market
clearing in the second phase is over.
Step 7: wait and receive new bid info of buyers or sellers. All buyer bids are sorted according to
bid-price values in descending order, while seller bids are sorted in ascending order. Once the bid
price between buyers or between sellers is the same, it shall be sorted according to the principle of
early declaration priority.
Step 8: obtain the optimal order of buyers’ declaration and sellers’ declaration, and calculate the DOP
between buyers’ and sellers’ bids.
Step 9: if the DOP is not negative, go to the next step; otherwise, move on to step 6.
Step 10: the pair is matched between the buyer and seller, whose transaction amount is the smaller
value of the quantity declared by the buyer and the quantity declared by the seller. The buyer price
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and seller price are given by Equation (15), which is mentioned above. After the contract is formed,
move on to step 6.

5. CBT-Based Electricity Trading Platform

As the software application platform for the CBT in the YNEM, the CETP mainly serves market
participants and the market operators. The former need to submit a set of price-volume bids through
the CETP to obtain the electricity contracts. The latter is responsible for matching the electricity bids
submitted by buyers and sellers and for determining the prices and quantities of the energy traded in
the market, which needs to be completed through the CETP.

The framework of the CETP and some key implementation strategies adopted in the system are
described below.

5.1. The Overall Architecture of CETP

The conceptual framework of the CETP is demonstrated in Figure 4, employing a multitier
architecture: client-side application (presentation tier); application server cluster (application tier); and
database cluster (data tier) [42]. In the overall deployment, the responsibilities of each tier are different,
and each tier can have one or more components. It should be noted that these tiers may not correspond
to the physical distribution and are purely abstract. The components that handle the user interface and
user interaction are at the presentation tier. Components that work together to solve business logic
problems, such as user bidding, order validation, and market clearing, belong to the application layer.
The business logic tier uses the data tier as the repository of the whole system. The CETP selects both
relational and nonrelational databases [43], according to the business characteristics of the CBT. For the
sake of high performance, clustering technology and dual hot backup machine technology are adopted
for each application server and database server in the system.

 
Figure 4. Conceptual framework of the trading system with multitiered architecture.
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Generating company (GENCO) users, consumption company (CONCO) users, market operators
of the KMPEX, etc. can independently and synchronously access the user interfaces for data entry,
bidding, operation, analysis, market clearing, grid security checks, querying information, and so
on. The requests received in the presentation tier are proposed in the application tier. Components
consisting in the application tier constitute four main modules: message queue-based order processing,
multilevel order logic verification with predefined rules, market clearing using models (i.e., market
clearing models), and real-time push and disclosure of market information. The data generated by the
application layer will be stored in the database for archiving. The results are displayed to the user in
the presentation tier.

5.2. Process Flow of Bidding Order

The CBT orders run through the kernel business of the CETP. Figure 5 graphically represents the
order data flows in the CETP and analyzes the data flows during order processing. During processing,
the orders in the CETP are stored in a message queue. All the orders submitted or canceled are first
placed in the original queue. If two bids are made at exactly the same time, the order of entry into the
original queue is determined by chance. Next, the orders in the original queue will be marked with a
timestamp, as a key indicator of order sorting for the clearing algorithm, and then enter the queue to
be detected. Furthermore, based on the trading rules, all orders in the order queue to be detected are
checked according to the rules, and those that do not meet the conditions are put into the order queue
without pass validation; otherwise, they are put into the order queue with pass validation. Only orders
that pass validation can be used for market clearing, and the orders that meet the transaction conditions
will be matched to form the final transaction results stored in the result queue. In addition, the market
information needs to be calculated logically based on the market process information and pushed to
the market participants through the real-time push service. All process and result information for
processing an order is stored in a persistent manner.

 
Figure 5. Data flow diagram of CBT.

5.3. Logic Verification for Trading Rules

Reasonable and effective order verification can ensure the standardization and effectiveness of
bidding orders, to ensure the normal operation of transactions. A multilevel order logic verification
method with predefined rules is put into use in the CETP.

The verification content of each level is as follows.
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Level One: verify the information integrity of the bidding data, such as the unique identification
code of the bidding subject and the bidding timestamp, which is regarded as the information
integrity validation.

Level Two: verify the basic specifications of bidding power and electricity price in each stage,
such as data type and accuracy, which is regarded as business standardization verification.

Level Three: verify the number of bidding segments in each stage, the logic of placing and
withdrawing orders, and other types of business constraints, which is regarded as the business
logic validation.

As shown in Figure 6, the verification of the three layers is carried out in sequence. Once the
order cannot pass the verification of one layer, the verification failure will be directly determined.
It should be noted that the check items in each layer can be adjusted, invalidated, or added when the
business rules change. After the verification process, the verification module forwards the order to the
verification result queue, and participants get notified of a successful or failed order submission.

Figure 6. Schematic diagram of the verification process.

5.4. Market Quotation Information

The information-disclosure mechanism is very important to increase market transparency, reduce
transaction costs, improve market fairness, and enhance power-system security [44]. In the bidding
process of the CBT, market participants can obtain not only their own private information, such as
the submitted quantity price, but also the public information of the market, i.e., market information.
The real-time display of market information is one of the major features of the CBT in the continuous
bidding stage. Normative and transparent information disclosure can weaken information asymmetry.
The market information of the CBT mainly includes top of book, market summary, last trades, and
candlestick charts, which are effective guides for market participants to make bidding decisions.
The market information is explained below, as shown in Figure 7.
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Figure 7. Schematic diagram of market information.

Top of book: all the bids are queued in an order book. The five best bids or asking prices submitted
to the market are listed on the publicly observable board. The buyers’ bids in the order book are
arranged in descending order of price, while the sellers’ bids are sorted in ascending order (the higher
the buyer’s price is, the more likely the transaction will be caused by the lower the seller’s price is).

Market summary: during the bidding process, the market summary can be disclosed based on
the latest real-time market data, which include the number of orders received, the total trade volume,
the average hammer price, etc.

Last trades: the last trades are listed in a contract table. The disclosure information is restricted to
the paired transaction time, the clearing price, and the volume for each contract. The trades in the table
are sorted in decreasing order of matching time.

Candlestick charts: as trade progresses, candlestick charts for different timescales, such as 5 min
and 10 min, will be drawn based on cumulative data. In practice, the relationship among opening,
high, low, and closing prices in a continuous trading process is utilized by proponents of candlestick
charts, to predict price movements.

All the abovementioned information is updated when there is a new order or trade.

6. Case Study and Application

6.1. Results and Analysis for CBT

To illustrate the effect and characteristics of CBT, take the power energy trading market in
November 2018 as an example. Its process and schedule are shown in Figure 8. The bidding period of
the first stage was 09:00–09:20, and that of the second stage was 09:30–12:00. A total of 45 CONCOs
and 34 GENCOs participated in this transaction. The bidding and clearing of this transaction are
described below.

Figure 8. Process and schedule of the CBT in November 2018.
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A total of 81 orders (including six orders withdrawn) were declared during the first stage, among
which the CONCOs declared 101.929 GWh of electricity, with an average price of 0.19867 yuan/kWh.
The declared electric quantity of GENCOs was 2774.818 GWh, with an average price of 0.22544 yuan/kWh.
The market bidding data also reflected the characteristics of the YNEM, where supply far exceeds
demand. However, during the process of the first stage, the market information was not transparent,
which was precious for the bidding-strategy adjustment. The one-round auction made it difficult
to realize full competition. As Figure 9 illustrates, buyers and sellers had great differences in price
intention. On the demand side, the bid price changed greatly and dispersedly, the bid volume was
relatively small, and the demand curve was steep. On the supply side, hydropower plants stored water
to high reservoir levels after the wet season, and bid price was usually higher at this point. However, for
such hydropower stations with poor regulating performance, they were willing to declare a lower price,
to improve the probability of winning the bid, in order to increase its power generation and reduce the
risk of water abandonment. The transaction volume of this stage was only 14 GWh, and the average
transaction price was 0.21380 yuan/kWh. A total of 24 contracts were concluded, and the rate of trade
for the users was only 13.74%.

Figure 9. Supply-and-demand curves of two stages of CBT.

Before the beginning of the second stage, the clearing price and contract volume of the first stage
were announced, which played a certain price-guiding role in the subsequent bidding. During the
second stage, a total of 248 orders (including 100 orders withdrawn) were declared, among which the
cumulative effective order quantity of 124.05771 GWh was placed by CONCOs, and the average price
was 0.21562 yuan/kWh. The effective order quantity of GENCOs was 83.444 GWh, with an average
price of 0.21839 yuan/kWh. In contrast to the first stage, the market information was disclosed in real
time in the continuous bidding process, and the market participants could directly respond to the price
signals through their trading decisions. Figure 9 shows that the difference in price intention between
buyers and sellers was much smaller than previously. As opposed to the one-shot nature of the first
stage’s auction, the transaction intentions were reached gradually through the strategy adjustment of
both sides in the process of constant gaming until market closure. As the deal closed, the accumulated
transaction power reached 93.99562 GWh, the average transaction price was 0.21770 yuan/kWh, 83
contracts were reached, and the deal rate for the user was up to 75.77%.

Finally, all the two-stage unconstrained transaction results passed the security check by YNPG.
According to the two-stage clearing model of the CBT, the social welfare of the first stage and the

second stage were 106,519 yuan and 14,880.08 yuan, respectively. Although the volume of matched
deals in the second stage was far more than that in the first stage, the social welfare was less than that
in the first stage. The reasons accounting for this phenomenon mainly included the following two
aspects: (1) due to the high transparency of price in the second stages, the price willingness of both

277



Energies 2019, 12, 4663

parties was gradually close to each other’s, and the DOP of the two matched sides was small or even
zero. (2) The second stage was a continuous transaction based on the principle with first come, first
serve, which existed the loss of allocative efficiency. In other words, the previously matched result
maybe lost the greater social welfare that was possibly brought by the subsequent bidding [45].

To further illustrate the dynamic bidding process in the continuous bidding stage, i.e., the second
stage, a large user (user A) was taken as an example to describe the dynamic bidding and game process
based on market information. Figure 10 shows the average transaction price during the period of the
entire market used to indicate the market price signal. The bidding price and trading volume of user
A, which are drawn in Figure 10, represent its bidding strategy and strategic results, respectively.

Figure 10. The dynamic bidding and game process of user A.

After the market was opened, the first hammer price of the whole market was approximately
0.218 yuan/kWh, and user A failed to win the bid for the first order, with a price of 0.2 yuan/kWh. In the
early period of the market (approximately 09:30–10:00), the average transaction price fluctuated in the
price range of 0.215–0.218 yuan/kWh; however, the highest bid of user A was only 0.205 yuan/kWh, so
the contract was not reached. Then, the average price showed a large drop (approximately 10:10); at
this time, user A had raised the price to 0.209 yuan/kWh but did not take the initiative and still did not
win the bid. Subsequently, user A continued to adjust the bidding strategy but failed to satisfy the
conditions for the conclusion of the business. The average transaction price was relatively stable at
0.217 yuan/kWh in the middle term of the market (approximately 10:25–11:00), but user A did not bid.
As the market gradually entered the later period, the user significantly increased the order price to
0.217 yuan/kWh and won the bid for the first time, reaching a contract volume of nearly 2 GWh. Later,
the quotation price of user A was steadily above 0.218 yuan/kWh, winning the bid many times, and
the transaction contracts were concluded. With the deadline of the continuous bidding stage, the final
cumulative transaction volume of user A was fixed at 46 GWh.

It can be seen from the above description that, in the whole continuous bidding stage, market
participants can flexibly adjust their bidding strategies and conduct a dynamic game with the market
itself by considering their own resource endowment, risk preference, and other factors to reach trading
intention and maximize their own interests.

According to the above two aspects of the analysis, the combination of the two bidding stages
accelerates the discovery of market prices. The real-time disclosure of market information weakens
information asymmetry. Market players adjust their strategies based on market information, and dynamic
games promote full competition in the market. Continuous clearing increases transaction efficiency.
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6.2. Overall Application and Prospect

The CETP has been in operation since the end of 2017, so it supports the effective implementation of
the CBT. By December 2018, 12 CBTs were successfully launched in the YNEM. A total of 232 CONCOs
participated in the bidding, with a total of 2178 Gigawatt hours (GWh) declared. A total of 167 GENCOs
participated in the declaration, with a total of 32196 GWh declared [7]. In the whole year of 2018, a total
of 5278 orders were processed, 5136 CBT contracts were concluded, and the total volume of the energy
cleared was up to 1018 GWh.

Table 1 shows aggregated data from the CETP in 2018, including the total volume and average
price of each transaction. Data analysis shows that the transaction size of the CBT varies from month
to month, which is affected by the primary energy supply, market demand, and other trading varieties
within a month. As a hydro-dominated electricity market, the YNEM has abundant incoming water
in the wet season (from June to October in Yunnan), and the supply far exceeds the market demand.
The typical buyer’s market causes trading prices to be lowered to “the floor price”, defined by trading
rules (0.13 yuan/kWh) in many months of the wet season. In addition, compared with the dry season,
most of the market demand has been met by other varieties (for example, the bilateral negotiated
transaction) before the CBT is carried out in the same month during the wet season, leaving less demand
space, resulting in a small amount of CBT contracts. In addition, from the point of the two-phase
contrast of each month, the contract volume in the continuous bidding stage is more than that in the call
auction stage. The longer trading period in the continuous bidding stage has a positive impact on the
contract volume, but the more important reason is that the real-time disclosure of market information
is conducive to market players tracking market trends, capturing price signals, and forming more
contracts through more sufficient competition. Although the transaction amount in the call auction
stage is small, it still has many functions: First, in bilateral transactions, many market players take the
average transaction price of the first stage as the "benchmark" and determine the final transaction price
of bilateral transaction electricity [9]; second, in the continuous bidding stag, market players usually
bid or offer by reference to the average transaction price of the call auction stage [7]. More public
information about the CBT can be found at www.kmpex.com.

Table 1. The market-clearing overview of the CBT in 2018 (data source: CETP).

Month
The Two-Stage Summation Call Auction Stage Continuous Auction Stage

Volume
(GWh)

Price
(Yuan/kWh)

Volume
(GWh)

Price
(Yuan/kWh)

Volume
(GWh)

Price
(Yuan/kWh)

2018-01 249.276568 0.22452 58.20 0.22416 191.076568 0.22463
2018-02 84.792 0.1799 46.034 0.18473 38.758 0.17416
2018-03 72.707 0.22859 5.45 0.22307 67.257 0.22904
2018-04 141.33481 0.22834 13 0.22933 128.33481 0.22824
2018-05 105.6456 0.21783 5.4806 0.21691 100.165 0.21788
2018-06 134.588 0.16188 13.513 0.16644 121.075 0.16137
2018-07 4.88 0.13 0.31 0.13 4.57 0.13
2018-08 1.46 0.13103 0.60 0.1325 0.86 0.13
2018-09 0.165 0.13 0.12 0.13 0.045 0.13
2018-10 10.11 0.13 0.11 0.13 10 0.13
2018-11 107.99562 0.21719 14 0.2138 93.99562 0.2177
2018-12 104.742 0.22258 0.752 0.22597 103.99 0.22256

Through the analysis of the application in the whole year, it shows that any mechanism can give
full play to its advantages only under suitable conditions. The CBT needs to be further improved
and adjusted based on the above practical operation analysis. Examples of improvements include
the following:
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1. In the medium- and long-term market, the proportion of bilateral negotiation transaction and
CBT can be coordinated to release more bidding space for the CBT, which may further play the
advantages of the CBT.

2. In the stage of the call auction, the degree of information disclosure can be improved, such
as real-time disclosure of virtual transaction price, virtual transaction volume, and virtual
non-transaction volume in the bidding stage, but the order information is not disclosed, which
may help to further play the function of price discovery.

7. Conclusions

Since the beginning of 2015, China has been in the process of electricity market reform, and all
provinces or regions are actively exploring the suitable market mechanism and construction. In this
paper, a new trading mechanism is proposed, which is characterized by a sequential bidding and
clearing process that integrates CA and CDA. The clearing model of the CBT, with the maximum goal
of social welfare for the two bidding stages, is introduced. A two-stage integrated market clearing
algorithm is designed to ensure data consistency and business continuity. Finally, the trading platform
based on the CBT mechanism is established and has been applied in the YNEM. The analysis results
and practical application throughout one year illustrate that the proposed model, algorithm, and
various key measures in the trading platform support the business development of the CBT well. It
shows that sellers and buyers actively take part in the electricity market and can take the initiative to
adjust their bidding wills in two stages, according to the price signals of the market, in order to win the
desired electric volume. From a practical point of view, the CBT can promote market competition and
price discovery, alleviate information asymmetry, and improve transaction efficiency.

Certainly, the CETP also has some weakness, including the following two points: (1) market
entity could not timely receive market quotation information because of poor network condition; (2)
the logical verification is less efficient for many bidding orders in a few paralleled electricity markets
because the program is running in the same server machine. We will look at solving these problems as
our next step.
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19. Bobinaitė, V.; Konstantinavičiūtė, I.; Lekavičius, V. Theoretical model for electricity market price forecasting.

Econ. Manag. 2012, 17, 944–951. [CrossRef]
20. Nowotarski, J.; Tomczyk, J.; Weron, R. Robust estimation and forecasting of the long-term seasonal component

of electricity spot prices. Energy Econ. 2013, 39, 13–27. [CrossRef]
21. Yu, Y.; Jin, T.; Zhong, C. Designing an incentive contract menu for sustaining the electricity market. Energies

2015, 8, 14197–14218. [CrossRef]
22. Hobbs, B.F.; Oren, S.S. Three waves of US reforms: Following the path of wholesale electricity market

restructuring. IEEE Power Energy Mag. 2019, 17, 73–81. [CrossRef]
23. Agalgaonkar, A.P.; Kulkarni, S.V.; Khaparde, S.A.; Soman, S.A. Placement and penetration of distributed

generation under standard market design. Int. J. Emerg. Electr. Power Syst. 2004, 1. [CrossRef]
24. Khazaei, H.; Zhao, Y. Indirect mechanism design for efficient and stable renewable energy aggregation.

IEEE Trans. Power Syst. 2019, 34, 1033–1042. [CrossRef]
25. Liu, Y.; Wu, L.; Li, J. Peer-to-peer (P2P) electricity trading in distribution systems of the future. Electr. J. 2019,

32, 2–6. [CrossRef]
26. Parag, Y.; Sovacool, B.K. Electricity market design for the prosumer era. Nat. Energy 2016, 1, 16032. [CrossRef]
27. Wang, J.; Wang, Q.; Zhou, N.; Chi, Y. A novel electricity transaction mode of microgrids based on blockchain

and continuous double auction. Energies 2017, 10, 1971. [CrossRef]
28. Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy

markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [CrossRef]

281



Energies 2019, 12, 4663

29. Ott A, L. Experience with PJM market operation, system design, and implementation. IEEE Trans. Power Syst.
2003, 18, 528–534. [CrossRef]

30. Huang, J.; Yalla, P.; Yong, T. New real time market applications at the California Independent System
Operator (CAISO). In Proceedings of the IEEE PES Power Systems Conference and Exposition, New York,
NY, USA, 10–13 October 2004; pp. 1228–1233.

31. Amin, M. North America’s electricity infrastructure: Are we ready for more perfect storms? IEEE Secur. Priv.
2003, 99, 19–25. [CrossRef]

32. Roques, F.A.; Newbery, D.M.; Nuttall, W.J. Investment incentives and electricity market design: The British
experience. Rev. Netw. Econ. 2005, 4. [CrossRef]

33. Flatabo, N.; Doorman, G.; Grande, O.S.; Randen, H.; Wangensteen, I. Experience with the Nord Pool design
and implementation. IEEE Trans. Power Syst. 2003, 18, 541–547. [CrossRef]

34. Chen, F.; Cao, R.; Cheng, C.; Li, G.; Li, X. Contracted generation verification in hydro-dominated electricity
markets. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering
and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy,
6–9 June 2017; pp. 1–6.

35. Fang, D.; Ren, Q.; Yu, Q. How Elastic Demand Affects Bidding Strategy in Electricity Market: An Auction
Approach. Energies 2019, 12, 9. [CrossRef]

36. Chen, K.; Lin, J.; Song, Y. Trading strategy optimization for a prosumer in continuous double auction-based
peer-to-peer market: A prediction-integration model. Appl. Energy 2019, 242, 1121–1133. [CrossRef]

37. Kirschen, D.S.; Strbac, G. Fundamentals of Power System Economics; John Wiley & Sons: New York, NY,
USA, 2004.

38. Munhoz, F.C.; Correia, P.B. Bidding design for price-taker sellers in bilateral electricity contract auctions.
Int. J. Electr. Power Energy Syst. 2008, 30, 491–495. [CrossRef]

39. Rangel L, F. Competition policy and regulation in hydro-dominated electricity markets. Energy Policy 2008,
36, 1292–1302. [CrossRef]

40. Liu, S.; Yang, Q.; Cai, H.; Yan, M.; Zhang, M.; Wu, D.; Xie, M. Market reform of Yunnan electricity in
southwestern China: Practice, challenges and implications. Renew. Sustain. Energy Rev. 2019, 113, 109265.
[CrossRef]

41. Weber, J.D.; Overbye, T.J. An individual welfare maximization algorithm for electricity markets. IEEE Trans.
Power Syst. 2002, 17, 590–596. [CrossRef]

42. Matena, V.; Krishnan, S.; DeMichiel, L.; Stearns, B. Applying Enterprise JavaBeanse: Component-Based Development
for the J2EEe Platform, 2nd ed.; Addison-Wesley: Boston, MA, USA, 2003.

43. Jatana, N.; Puri, S.; Ahuja, M.; Kathuria, I.; Gosain, D. A survey and comparison of relational and non-relational
database. Int. J. Eng. Res. Technol. 2012, 1, 1–5.

44. Yang, Y.; Bao, M.; Ding, Y.; Song, Y.; Lin, Z.; Shao, C. Review of information disclosure in different electricity
markets. Energies 2018, 11, 3424. [CrossRef]

45. Scharff, R.; Amelin, M. Trading behaviour on the continuous intraday market Elbas. Energy Policy 2016, 88,
544–557. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

282



energies

Article

Husk Energy Supply Systems for Sunflower Oil Mills

Valerii Havrysh 1, Antonina Kalinichenko 2,*, Grzegorz Mentel 3, Urszula Mentel 4 and

Dinara G. Vasbieva 5

1 Department of Tractors and Agricultural Machines, Operating and Maintenance, Mykolayiv National
Agrarian University, 54020 Mykolayiv, Ukraine; havryshvi@mnau.edu.ua

2 Institute of Environmental Engineering and Biotechnology, University of Opole, 45-365 Opole, Poland
3 Department of Economics and Finance, University of Information Technology and Management in Rzeszow,

35-225 Rzeszow, Poland; gmentel@wsiz.rzeszow.pl
4 Department of Security Science, Rzeszow University of Technology, 35-959 Rzeszow, Poland;

u.mentel@prz.edu.pl
5 Foreign Languages Department, Financial University under the Government of the Russian Federation,

Leningradsky prospect 49, Moscow 125993, Russian; dinara-va@list.ru
* Correspondence: akalinichenko@uni.opole.pl; Tel.: +48-787-321-587

Received: 4 December 2019; Accepted: 9 January 2020; Published: 11 January 2020

Abstract: Together with solar, wind, and hydro renewable energy sources (RES), biomass constitutes
an integral part of the high-renewables electricity systems. Considerable feedstocks for electricity
generation are process-based residues. Ukraine is the world leader in sunflower seed production,
therefore, husk (a by-product of oil production) is a promising biofuel for combustion- based power
plants. The plants consume primarily electricity and fossil fuels (natural gas or fuel oil) for steam
production. Their usage affects the edible oil production cost and impacts on climate change.
The above facts force us to look for alternatives. By-product (husk) utilization can reduce exhaustible
energy consumption (fossil fuels and grid electricity) and mitigate climate change. The aim of the
study is to make an energy and ecological assessment of biomass energy supply systems. Specifically,
the electricity and heat consumption of Ukrainian sunflower oil mills is investigated. Different options
of cogeneration systems are analyzed. The preferable mode of combustion-based husk combined
heat and power plants is to meet their own heat demand and to sell surplus electricity. Relative gross
income and carbon dioxide emission reductions are calculated. Our results show that husk utilization
can meet electricity and heat requirements of edible plants. The surplus electricity may be sold to the
grid. Husk combined heat and power plants may result in reduction of carbon dioxide by 200–300%
and an increase of total income by 24.7–65.7% (compared to conventional energy supply systems).

Keywords: renewable energy sources; husk; energy supply; biomass; efficiency; carbon dioxide; emissions

1. Introduction

Energy plays a key role in the development of a modern civilization. Fossil fuel prices, their exhaustibility,
and environmental issues have become primary challenges for mankind. This is a reason why renewable
energy, including bioenergy has become a priority for most countries, including the European Union
(EU) [1–3]. This fact has compelled the EU to put forward the following objectives [4,5]:

• Strengthening of energy security (decreasing imports of primary energy);
• The reduction of greenhouse gas (GHG) emissions.

To reach the above objectives, a set of measures has been identified. They include the development
of renewable energy [6,7]. Recently, the targets of the Renewable Energy Directive (2009/28/EC) were
updated. The new targets increase the share of renewable energy consumption (up to 27%) and cut in
GHG emissions (up to 40% compared to the emissions in 1990) [8,9].
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The utilization of field-based and process-based residues can contribute to providing sustainability
of the energy sector [10–12]. Therefore, the biomass residue utilization meets the emerging concept of
circular economy. It may be a solution related to waste management [13]. The usage of organic waste
as biofuel for power generation or cogeneration is vital for development. It fits into the concept of
circular economy that is a new alternative model of transforming residues into energy. This concept
promotes to sustainable development [14–16].

Edible oil production is an energy intensive industry. A considerable share of energy demand
of technology (electricity and heat) is met by fossil fuels and electricity from the grid. Meanwhile,
these mills produce by-products. For example, for sunflower oil production it is husk. Husk could be
an alternative to conventional fuels. Biofuel has a number of advantages. First of all, it is a renewable
energy source. Secondly, a biomass resource management leads to significant greenhouse gas emission
savings. The plant captures carbon dioxide out of the air [17]. Thus, there is a closed cycle of carbon
dioxide emission and absorption. Moreover, biomass does not contain sulphur. Therefore, biomass
power plants do not emit sulphur dioxide into the atmosphere. As can be seen, process-based residues
can be an alternative energy source [18].

The sunflower is widely cultivated around the world. Seventy percent of all sunflower seeds are
harvested by European countries [19]. Ukraine, the Russian Federation, and Argentina are the top
producers of sunflower seeds [20]. Sunflower husk is a by-product of oil production. Its high energy
content (around 15.4 MJ/kg) makes it possible to be used as fuel. Due to the fact that husk is carbon
neutral, its utilization for energy production could mitigate climate change. However, a large share of
sunflower husk is sent to landfills and its energy usage is scarce [21].

This paper examines the energy supply systems of sunflower oil mills. As a basic case, actual
technological parameters of Ukrainian sunflower oil mill were considered.

2. Literature Review

Ukraine has a highly developed agricultural industry, especially edible oil production. From 2013
its share of the world in sunflower seed production ranges from 24.8% to 30.16% [22]. Sunflower seed
production is stimulated by high demand for vegetable oil and its high price. Over the last five years,
Ukrainian farmers have produced more than 10 million tons of sunflower seed (Figure 1). Despite the
increase in production, it has been slowing down since 2012, its value is rather high, and Ukraine is
ranked first among the world producers.

Both feedstock and energy costs are important factors that affect the production cost of sunflower
oil. The sunflower oil industry in Ukraine is energy intensive. Electricity consumption ranges from
96.6 to 198 kWh per ton of oil and heat consumption (steam) ranges from 348 to 1184 kWh per ton of
oil [23]. It is higher compared to other edible oil production [24–26]. It impacts on production cost.
To raise the competitiveness of the industry, reducing energy costs is paramount.

It can be reached by means of biomass utilisation. Sunflower oil mills produce a by-product (husk).
Husk and products (oil and cake) can be used to generate electricity and/or heat. This substitutes the
energy resources sold (fossil fuels and electricity) and reduces greenhouse gas emission. Moreover,
biomass CHPs could improve the stability and reliability of the electrical grid. In Ukraine there are
about 70 husk boilers in operation. However, only three sunflower oil mills use husk-based combined
heat and power plants (CHP) [27,28].

Renewable energy is of great importance in terms of preventing climate change and reducing harmful
emissions [29]. The European Union (EU) supports the increase of renewable energy production [30–32].
A lot of scientists have analyzed the influence of renewable energy usage on economic indicators and
economic growth [33–37].
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Figure 1. Sunflower seed production history [28].

Previous research has studied the energy supply systems of edible oil plants based on
biomass [25,38–40]. They considered a general concept of husk application for energy supply [41,42]
and the energy balance of oil mill [40]. However, this problem for sunflower oil mills has been studied
insufficiently. Therefore, optimal energy supply schemes are currently being sought. The purpose of
the paper is to assess the optimal mode of biomass-based energy supply systems. More specifically,
the article aims to reveal specific energy consumption for edible oil production, assess the husk
utilization impact on carbon dioxide emission, to analyze different options for biomass utilization.

3. Materials and Methods

The methodology used is as follows. Information and data are collected from the public domain
and interactions are made with industrial’s officials. Prices of energy, fuels, and products are widespread
indicators. Information resources (publications, statistics, and websites) were used. The information
was used for further calculations.

All kind of fuels (renewable and fossil) can be compared within the following domains: Energy,
environmental, engine efficiency, economics including efficiency of technological equipment.

The energy indicators are as follows: Lower heating value and energy density. The lower heating
values were taken from handbooks. The energy density is the amount of energy per unit volume (liter,
cubic meter, etc.)

DE = LHV · ρ, MJ/m3, (1)

where LHV is the lower heating value of the fuel, MJ/kg; ρ is the density of fuel, kg/m3.
The higher the energy density of fuel, the better the fuel is for consumers.
The ecological indicators may be divided into two groups: Hazardous emissions and carbon

dioxide emission. Carbon dioxide emissions are discussed further. This kind of emission has
two components: From fuel combustion and in due to electrical consumption. The combustion of
hydrocarbon fuels results in the production of carbon dioxide, which is known as a greenhouse gas.
This specific value from fossil fuel substitution can be calculated as

ERh = HH · η−1
b · EF, tCO2, (2)

where HH is the heat energy of fossil fuel substituted, GJ; EF is the carbon dioxide emission factor for
conventional fuel, tCO2 /GJ; ηb is the thermal efficiency of the conventional fuel boiler.
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The husk is a carbon dioxide neutral fuel. Its utilization reduces carbon dioxide emission compared
to a certain fossil fuel. This specific value on one ton of husk can be calculated as

ERs = LHVh · ηh · η−1
b · EFm, kgCO2/t, (3)

where LHVh is the lower heating value of one ton of husk, GJ/t; EFm is the carbon dioxide emission
factor for conventional fuel, kgCO2/GJ; ηh is the thermal efficiency of the husk boiler (gasifier).

Emission reduction from onsite electricity production

ERe = EC · EFc, tCO2, (4)

where EC is the electricity onsite consumption from grid substituted, MWh; EFc is the emission factor
for grid electricity, tCO2 /MWh.

Engine performance indicators can be divided into three groups: Break thermal efficiency or
engine efficiency, brake specific fuel consumption, and brake specific energy consumption.

4. Results

4.1. Sunflower Oil Mill Energy Consumption

Top 10 of Ukrainian sunflower oil mills has capacity from 500 to 970 thousand tons of seed per
year [43]. Annually they process 7 million tons or 50% of sunflower seed harvest. They use electricity
from the grid and thermal energy produced by burning fuel in a boiler (Figure 2). Their specific energy
consumption depends on the capacity (Figure 3). Average specific energy consumption is, kWt per ton
of oil: Electricity—132.5; heat—779.1.

To reduce energy consumption costs, native mills use husk as a fuel. The output of sunflower
seed husk ranges from 15.94% to 18.88% or from 159.4 to 188.8 kg per ton of seeds [44]. To meet
their own requirements in heat, powerful Ukrainian vegetable oil mills consume around 46–48% of
husk produced (direct burning in boilers). A few mills have their own combined heat and power
(CHP) plants. For example, Kirovogradoliya LLC has a husk-based CHP. The CHP was developed
to meet all own energy (electricity and heat) requirements. Its electric capacity is 1.7 MWe (electric
efficiency—around 5%), thermal capacity is 26.7 MWt. This plant annually consumes up to 42.8
thousand tons of husk (around 57.8% of husk produced). It allows the mill to cover its own energy
demands in heat and partially in electricity.

Figure 2. Basic scheme of a Sunflower Seed Oil Mill.
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Figure 3. Specific energy consumption (kWh per ton of sunflower oil) vs. annual sunflower oil capacity
(thousand tons of seed) [23].

Specific heat to electric consumption ratio of Ukrainian edible oil mills is decreasing with the
increase in a plant capacity (Figure 4). The average ratio is 5.97. This means that the thermal efficiency
of a CHP unit must be greater than the electrical efficiency by the same value. Surplus electricity can
be sold into the grid. It contributes to its stability and to lower carbon dioxide emissions.

Figure 4. Heat/electricity consumption ratio vs. sunflower oil refinery capacity.

To generate electricity steam turbines and internal combustion engines running on syngas are
used. Several oil mills (Galati Sunflower oil factory, Pology oil extraction plant PJSC, Centre Soya Ltd.)
have experienced the gasification technology. Last mill has a gasification-based husk CHP plant (rated
electric power—700 kW; heat—800 kW) (Flex Technologies Limited, London, UK) [40,45,46].

4.2. Biomass as Fuel

The main results, which are planned to achieve by biomass utilization, can be divided into two
groups: Economic and environmental. All products (oil and cake [47]) and by-product (husk) may be
used as fuels. Their utilization has distinctive energy and economic efficiency. They can be used in
their original form or improved before utilization (gasification, liquefaction, or methanation). Husk can
be burnt directly or converted into syngas, biogas, or ethanol [48]. Sunflower meat (cake) can be used
as solid fuel or converted into biogas [49]. Table 1 compares parameters of selected fuels.
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Table 1. Properties of selected fuels.

Parameter Unit Husk Meal Oil Natural Gas Fuel Oil

LHV MJ/kg 15.4 28 37 49.75 40.5
Ash content % 2.1 1,2 - - 0.05

Carbon content % 44 64 78 76 88
Bulk density kg/m3 95–170 >600 920 0.72 940

Energy density MJ/m3 1463–2618 >16,800 34,040 35.82 38,070

Their improvement can get better both environmental and economic indicators of oil production.
They can be used in steam boilers to substitute conventional fuel (in Ukraine it is natural gas).
If products and by-product substitute natural gas (for steam generation), husk utilization has the best
economic result (difference between cost of natural gas substituted and market price of any products
and by-product) (Figure 5). The above calculations have been made for one kg. The above differences
per one kg of biofuels are, UAH/kg: Husk—4.88; meal—3.32; oil—(−8.22). The sunflower oil is more
expensive than natural gas. Therefore, husk as a fuel has an advantage. Husk energy potential is
enough to cover energy demand in electricity and heat (Figure 6). It is estimated that the potential
electricity production is four-fold higher than the electricity demand. In addition, the heat requirement
is a third of the husk potential thermal power production. Excess power and heat can be delivered to
external consumers.

Figure 5. Market prices and cost of natural gas substituted.

Figure 6. Installed and potential electric power vs. sunflower oil refinery capacity.

288



Energies 2020, 13, 361

4.3. Carbon Dioxide Emission

Ecological indicators may be divided into two groups: Hazardous emissions and carbon dioxide
emission. In the study, carbon dioxide emissions were discussed further. This emission consists of two
components: Fossil fuel combustion and in due to electricity consumption. For Ukrainian sunflower
seed oil mills the first component ranges from 48 to 96 kg per ton of seed processed. The second
component ranges from 37 to 77 kg per ton of seed processed.

According to our calculation, one ton of husk (used for steam production) reduces carbon dioxide
emission and this range is from 790.10 to 1162.53 kg (Table 2). It corresponds to 51.3–75.5 kg of carbon
dioxide per one GJ of thermal energy.

Table 2. Ecological impact of husk utilization.

Conventional Fuel
Volume of Fossil Fuel

Substituted by One ton
of Husk, t(m3)

Carbon Dioxide
Emission Factor,

kgCO2/GJ

Carbon Dioxide Emission
Reduced, kg per ton of

Husk

Natural gas 428.44 56.10 807.60
Fuel oil 0.38 79.00 1162.53

Electricity consumption for a technological process is the largest sources of emissions for sunflower
seed oil mills. Emissions from electricity consumption by any mill are calculated by applying an
“emission factor” to the quantity of electricity consumed. Emission factor for grid electricity is taken
from an official source. For Ukraine, carbon dioxide emission factor per kWh of electricity consumed is
equal to 0.709 [49] or 0.896 kgCO2/kWh [50].

According to our calculations, power generation from husk (condensate steam turbine, electric
efficiency of 31%) reduces carbon dioxide emission by 0.707 kg per kWhe (or 938 kg per ton of
husk). Additionally, cogeneration has the potential of 1305 kg per ton of husk. Its carbon dioxide
emission reduction potential depends on electrical efficiency (Figure 7). The last factor is prevailing.
Gasification-based husk CHP plants allow higher value of carbon dioxide emission reduction compared
to combustion-based husk CHP plants.

Figure 7. Carbon dioxide emission reduction potential per one ton of husk.

4.4. Energy Supply System Based on Biomass

There are three possible husk utilization pathways: Heat production only, electricity generation
only, and combined power and heat generation.

Sunflower husk contains ash (at average 2.1%) [51]. The composition of this by-product of combustion
includes calcium, potassium, micro elements, etc. Therefore, the ash can be used as a component to produce
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fertilizer [52]. Moreover, it is suitable as a filler for the production of ceramics [53]. Its price is more than
EUR80/t. Therefore, ash sale can give additional income.

Sunflower husk can be used to generate electricity and heat production. The first pathway substitutes
electricity bought, the second—fossil fuels (natural gas, fuel oil, coal, etc.) bought. Their ratio is

RCs = ηe · ηb · Epr · LHVng · 3, 6−1 · η−1
h ·NGpr−1,

where LHVg is the lower heating value of natural gas, MJ/m3; Epr is the price of electricity, UAH/kWh;
NGpv is the price of natural gas, UAH/m3; ηe is the electric efficiency.

Internal combustion engines and gas turbine generators have the highest electric efficiency as
compared with steam generators (Figure 8). They can be run on liquid or gaseous fuels. Therefore,
husk to be used in the above method must be converted into combustible gas: Syngas or biogas [54,55].
Gasification technology is currently being used and biogas technology is under development.

Figure 8. Electric efficiency of gas turbine engines, reciprocating engines, and steam turbine combined
heat and power plant CHP (adapted from [56–65]).

Electricity generation can substitute electricity whose cost is lower than solely heat generation
(substitution of natural gas). Cogeneration allows mills to reduce more costs of conventional energy
bought (Figure 9). As can be seen (Figure 9), the increase in electric efficiency of CHP (and, therefore,
the increase of electricity generated) results in the increase of economic benefits.

Figure 9. Economic efficiency of CHP (developed by authors).
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Husk utilization’s economic efficiency depends on the electric efficiency of a CHP plant and can
be calculated as

RC = ηb · LHVng ·
ηt · ηe · Epr

3.6 + NGpr · (ηt−ηe)
ηb·LHVng

ηh ·NGpr
,

where ηt is the total thermal efficiency of CHP; LHVh is the lower heating value of husk, MJ/kg.
The more conventional energy resources are substituted, the higher income is made. The possible

energy supply technologies are as follows (Figure 10): 1—steam turbine combined heat and power
generation plant (CHP) via husk combustion; 2—gas turbine (GT) CHP via syngas combustion; 3—internal
combustion engine (ICE) CHP via syngas combustion; 4—gas turbine or internal combustion engine
with organic Rankin cycle (ORC).

Figure 10. Energy supply technologies of Sunflower Seed Oil Mill (developed by author).

4.5. Principles of Energy Production

Ukrainian sunflower oil refineries use husk for steam production. Only some plants have CHP,
but they cover only part of the electricity required.

There are three pathways of energy production by CHP (Table 3). The first pathway is to meet
its own electricity requirement. However, in this case CHP cannot cover its own demand in heat.
To correct the situation an additional steam boiler must be used. The second pathway is to meet its
own heat requirement. In this case a CHP plant generates surplus electricity. It may be sold by green
tariffs to electricity grid. For both cases, the remaining husk can be converted into pellets. The third
pathway is the following. The husk combustion-based CHP plant can cover requirements in both
electricity and heat. This energy supply system could have adapted the heat to electricity production
ratio. If there is actual heat to electricity ratio (HERa) of a certain sunflower seed oil mill and total
efficiency of a CHP plant then necessary electric efficiency (ηt) is

ηe = ηt·(1 + HERa)−1.

During operation of a certain mill, the heat to electricity ratio may vary. In this case, surplus
electricity can be delivered to the national grid.
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Table 3. Relative gross income and carbon dioxide emission reduction.

Pathway of Energy Production Combustion-Based CHP Gasification-Based CHP

Gross income
The first pathway 1.17 1.16

The second pathway 1.25–1.26 1.64–1.66
The third pathway 1.16 -
Husk for heat only 1 -

Carbon dioxide emission reduction
The first pathway 1.60 1.20

The second pathway 2.11–2.16 3.58–3.66
The third pathway 1.85–1.87 -
Husk for heat only 1 -

The gross income comprises three pillars: Cost of natural gas substituted, cost of electricity from
grid substituted and sold to the grid by green tariff, and cost of husk pellets produced. Carbon dioxide
emission reduction includes two components: Substitution of natural gas (or another conventional fuel)
and electricity generation. The relative values of gross income and carbon dioxide reduction (the base
is husk utilization to meet heat requirements only) are presented in Table 3. The second pathway of
energy production has the best economic and ecological results. In this option, the cogeneration unit
uses all available husks. Prerequisites for success are the sale of excess electricity by the green tariffs to
the grid and the full use of thermal energy for oil production. Therefore, the prospect energy supply
scheme is shown in Figure 11.

 
Figure 11. Energy supply scheme of Sunflower Seed Oil Mill (developed by author).

As can be seen, the best strategy for CHP development is to cover heat demand by CHP.
As compared with husk utilization for heat production only, it allows mills to increase total income
by 21–23% and reduce carbon dioxide emission by 70–73%. Gasification-based technologies may be
profitable if their specific investment costs are not more than 40% that of combustion-based technology.
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5. Conclusions

The primary goal of biomass utilization is to reduce production costs and carbon dioxide emission.
The ecological benefit of husk (as biofuel) is that it is a carbon neutral source of energy. CHP plants
ensure the most ecological effect.

The increase of mill capacity results in the decrease of specific energy consumption and
heat/electricity consumption ratio. To reduce production costs and carbon dioxide emission, Ukrainian
mills utilize sunflower seed husk (primarily to cover requirement in heat). Its consumption ranges
from 46% to 57.8% of total husk production.

Heat to electricity consumed ratio of oil mills does not coincide with heat to electricity generated
ratio of CHP plants. Therefore, different modes of CHP have been analyzed. The preferable mode is
the design of CHP plants to cover heat demand of an oil mill. This option may increase total income by
24.7–65.7% and cut carbon dioxide emission by 201–366%. Either way, excess electricity is sent to the
grid. In addition, the remaining husk may be used for pellet or green electricity production.

Energy content of husk exceeds energy demand of any edible oil plant. Husk utilization allows
the plants to reduce carbon dioxide emission, kg per ton of oil produced: Heat generation—142; power
generation—174; combined power and heat generation—274.

Gasification based husk CHP provides higher electricity efficiency, gross income, and carbon
dioxide emission. However, this technology is not mature enough.

At further work, impact of annual operating hours and investment costs on economical indicators
are expected to be studied.
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48. Popescu, B.; Şenilă, L.; Vărăticeanu, C.; Şimon, G. Cellulosic bioethanol from sunflower seed hulls—A
renewable energy source. Studia UBB Ambient. 2013, 58, 105–110.

49. Brander, M.; Sood, A.; Wylie, C.; Haughton, A.; Lovell, J. Electricity-Specific Emission Factors for Grid Electricity;
Econometrica: Edinburgh, UK, 2011; pp. 1–22. Available online: https://ecometrica.com/assets/Electricity-
specific-emission-factors-for-grid-electricity.pdf (accessed on 10 November 2019).

50. Gómez, D.R.; Watterson, J.D. Stationary Combustion. In 2006 IPCC Guidelines for National Greenhouse
Inventories; IGES: Japan, 2006; Volume 2, pp. 2.2–2.47. Available online: https://www.ipcc-nggip.iges.or.jp/
public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf (accessed on 10 November 2019).

51. Maj, G.; Krzaczek, P.; Kuranc, A.; Piekarski, W. Energy properties of sunflower seed husk as industrial
extrusion residue. Agric. Eng. 2017, 21, 77–84. [CrossRef]
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Abstract: Our paper focuses on the renewable energy and EU 2020 target for energy efficiency in
the Czech Republic and Slovakia. We study the reduction of greenhouse gas (GHG) emissions in
these two EU Member States through the prism of the Europe 2020 strategy and the 3 × 20 climate
and energy package and economic growth (represented by the Gross Domestic Product (GDP) that
allows to measure the national dynamics and provide cross-country comparisons) without attributing
specific attention to issues such as the electrification of transport or heating, and thence leaving
them outside the scope of this paper. Both Czech Republic and Slovakia are two post-Communist
countries that still face the consequences of economic transformation and struggle with the optimal
management of natural resources. Both countries encountered profound system transformation after
1989 that are apparent in all three measures of sustainable development used in our study. We show
that it is unlikely that the planned increase in renewable energy in the Czech Republic and Slovakia
will reach its targets, but they might succeed in reducing their energy consumption and greenhouse
gas emissions. Our findings show that the energy intensity of Czech and Slovak economies increased
in the early 2000s and then stabilized at a level about twice of the EU average. It appears that this value
is likely to remain the same in the forthcoming years. However, implementation of GHG emissions in
the Czech Republic and Slovakia may be at risk in case the proper energy policy is not maintained.
Moreover, our results show how the increase in the share of renewable energy and improvement in
energy efficiency go hand-in-hand with mining and exploiting the energy sources that is notorious for
the transition economies. We also demonstrate that a proper energy policy is required for effectively
reducing energy consumption and greenhouse gas emissions. There is a need for commitments
made by relevant stakeholders and policymakers targeted at achieving sustainable economic growth
and energy efficiency. In addition, we demonstrate that there is a need for maintaining a proper
balance between economic development and environmental protection, which is a must for the EU
sustainable energy development agenda and all its accompanying targets for all its Member States.

Keywords: renewable energy sources; sustainable development; energy efficiency; economic growth;
energy consumption; Czech Republic; Slovakia

1. Introduction

Increasing energy demand stimulates economic growth (represented by the gross domestic
product (GDP), but energy consumption also causes greenhouse gas emissions. One can see that GDP
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allows comparing the dynamics of economic development over time and on a cross-country basis but
recently one can hardly assess economic growth without attributing attention to the consumption
of natural resources and preserving the environment. In was in the past decades that the increasing
attention to global warming and climate change has focused on the relationship between environmental
pollutants, energy consumption and economic growth [1–3]. In order to effectively control greenhouse
gas (GHG) emissions and ensure the sustainability of economic development, it is important to
better understand the relationships between greenhouse gas emissions, energy consumption and
economic growth [4–6]. The energy consumption for each mode of transport is calculated as direct
energy (consumption of fossil fuels and electricity during transport) and cumulative energy (including
the energy consumed during the entire production process (exploration, extraction, transport and
production of fuels). The emissions are calculated as carbon dioxide (CO2) equivalent to taking into
account the total GHG potential of emissions from the combustion of fossil fuels. With regard to the
above, one can differentiate between the direct CO2 equivalent, which occurs at the place of energy
conversion, and the cumulative CO2 equivalent, which takes into account the entire production process
(exploration, extraction, transport and production of fuel) [7,8].

One of the illustrative examples is the transport sector that, together with heating, constitutes
one of the mean areas where profound electrification based on the renewable energy source (RES)
became an overall target many governments worldwide committed to. Even though we do not base
the results of our paper on this sector and do not analyze it or consider its in-depth implications,
a simple reference can be useful here. In general, greenhouse gas emissions from the transport sector
rose from around 146 megatons of carbon dioxide equivalents in 2000 to 174 megatons in 2017 [9,10].
Greenhouse gas emissions from passenger cars rose from 81 megatons in 2000 to 94 megatons in 2017.
The largest increase from 50 megatons in 2000 to 72 megatons in 2017 is for freight vehicles [11]. It is
important that the company monitors both intensity and overall emissions. To keep the indicator set
small, only the GHG intensity is included in this toolkit. Carbon offsets or other emissions trading
programs are not considered in this toolkit.

With all of the above, it has to be mentioned that the EU is on the forefront of electric transportation
with an ambitious plan to operate around 250 million electric vehicles (EVs) by 2025, which represents an
effective transition to the climate targets [12]. However, the effective reduction of energy consumption
and greenhouse gas emissions that the electric transportation was envisaged to entail, seem to require
proper energy policy and careful planning [13]. The plans for transport electrification meet lots of
obstacles and introduce several paradoxes. For example, one can observe that very often the electricity
for powering the electric vehicles (EVs) is produced at the coal power stations, which creates a negative
overall impact for the environment. Thence, it becomes apparent that the transition to clean electric
transport should proceed along the lines of green-to-green paradigm and have to be considered from
the point-of-view of the sustainability spectrum. It is not easy to provide a justified opinion on how
to avoid the negative impact on the environment related to electromobility implementation. One of
the possibilities would be the new advances in EV technology using alternative energy sources or
improvements in battery storage technology that would allow to transfer large amounts of energy over
large spaces.

Overall, one would probably agree with us that economic development and growth in today’s
globalized and cumbersome world should be based on the optimal management of natural resources
that would not induce any harm or burden for the future generations to come and to their natural
environment. Thence, the attention should be focused on the resource management that would
both ensure the global competitiveness of economies without compromising their economic growth
and well-being.

This paper focuses on the renewable energy sources in the EU 2020 target for energy efficiency
in the two EU Member States, Czech Republic and Slovakia. We scrutinize the EU national energy
efficiency targets for 2020 (which represents an important energy policy task, as Newbery at al. [14]
demonstrate) and compare them with those of the two countries in question. Moreover, we employ
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the Auto Regressive Integrated Moving Average (ARIMA) model to obtain the forecasts for whether
the 2020 targets can be achieved.

2. Energy Consumption and Greenhouse Gas Emissions

Household energy consumption is the main reason for the sector’s observed greenhouse gas
emissions [15,16]. Although the ratio of total energy consumption to GHG emissions is direct,
the contribution of electricity consumption to GHG generation compared to other fuels used primarily
for thermal purposes is much more significant compared to their share of total energy [17,18]. This can
be backed up with the fact that the average carbon intensity (in gCO2-e/kWh) is internationally used
in calculating greenhouse gas (GHG) emissions from the electricity system, and the role of GHG in
this system is highlighted in many reports and studies covering a wide spectre of countries, including
China, Iran as well as other countries (see, e.g., [19–21]).

One of the main advantages of efficiency improvements is that they slow down the growth
in energy consumption and reduce greenhouse gas emissions [22,23]. Energy intensity is the ratio
of energy consumption per activity unit (such as floor space and GDP). In a way, energy efficiency
is a measure of how effectively energy is used for a specific purpose and an important way of
decarbonization [24–26]. The energy evaluation makes a major contribution to ensuring that users are
where improvements are needed. Lots can be achieved in an energy assessment, from the disclosure of
energy consumption to waste identification and efficient energy use. Efficient use of energy is still an
important national and international topic in the discussion of political measures, both in European
Union and abroad [27,28]. The assessment of energy efficiency in different countries is important for
each country. To improve the efficiency of anyone’s home, one should first carefully consider her
or his options. An audit assesses electricity bills, insulation, heating and cooling systems, electrical
systems as well as devices to determine how much energy your house uses and where energy is wasted.
Following the recommendations and specially devised strategies can save 5% to 30% of the electricity
bill [29,30].

Speaking about the penetration of the renewable energy sources into the traditional electricity
and power systems, one has to look deeper into the specifics. In many countries, hydro sources are
often needed to generate energy for almost all fuels and technologies to generate electricity, and energy
is needed to treat and transport both water and wastewater [31–33]. A fascinating case study on the
subject is the state of California in the United States with its large water supply systems (which require
a lot of energy for pumping) that moves water from the relatively humid northern areas of the state to
the drier and more populated southern region (including the major metropolitan areas of Los Angeles
and San Diego) [34]. Conversely, the majority of the natural gas used in the water system is used for
water heating on the consumer side of the water meter. Savings varied significantly across the state’s
hydrological region, with the largest savings in the populous south coast region (237,200 mg) and the
lowest savings in the sparsely populated North Lahontan region (1400 mg) [35]. Since the savings in
electricity and greenhouse gas emissions are calculated directly from the water savings, the results of
these calculations showed a similar spatial variation.

When it comes to the debate of promoting renewable energy sources (RES) for the future electricity
and power systems, one has to consider all possible alternatives [36–38]. Apart from the traditional
renewables there are also some carbon-based alternatives to oil (e.g., methane hydrates and the
conversion of coal into methane gas, or the use of oil reservoirs and shale oil), but other interesting
options present themselves too [39–41]. One of them is the microbial fuel cells (MFCs) that convert
biochemical to electrical energy [42–48]. MFCs can be used in biomass-based energy production,
even though a plethora of technical challenges has to be solved before they will be practical for
renewable energy production [49–51]. Nevertheless, their applications and possible deployment show
that there are many less explored possibilities of using renewables in electricity generation, many of
those not well-known to the general public or less explored by the researcher who might not be aware
of all the possible implications for energy security and energy policy they might present [52–56].
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All in all, energy consumption and greenhouse gas emissions constitute an important problem
that all the world’s largest economies are facing today, However, one can also see that this might be
a political, rather than a climate protection, energy efficiency or economic issue. World leaders and
important stakeholders are interested in re-election or maintaining their leading positions. Therefore,
they want to make sure economic stability and growth are delivered at all costs. However, in the
same time they have to face the commitments of tackling the climate changes and global warming,
as well as introducing more renewable energy sources into the generation of power and electricity.
Somehow, a balance should be reached and maintained to keep both the voters and the international
partners satisfied. The European Union (EU) is in a specifically difficult position in this situation due
to its complex structure, which lacks the traits of the federal state, and has a complex decision-making
process as well as evaluation and acceptance procedures.

3. Europe 2020 Strategy and the 3 × 20 Climate and Energy Package

One would probably agree with is that EU plays a crucial role in the world as a powerful actor
and leader in sustainable economic growth. The EU serves as a role model for more governments
and actors when it comes to taking real and effective action [57]. The search for ways to increase and
improve the use of renewable energies should not stop in 2020. Countries should continue to focus
on this area in the coming decades and shape the next steps together. The first deadline for adoption
of the package in Parliament was March 2009. However, there have been protests in some countries
regarding the modalities to achieve these goals, particularly as a result of the economic and financial
crisis that has led to tough negotiations between countries. The European Council of the 11th and 12th
of December 2008 finally adopted the package but changed the original measures.

Various EU countries have many issues with meeting their energy efficiency and consumption
obligations. For example, the French government admits failing to meet its climate change commitments.
In 2017, France achieved 16.3% of its energy consumption from renewable sources, compared to its
23% target for 2020. Wood and hydropower are the main sources of green energy in France, ahead of
biofuels [58,59]. The legislative proposals concern energy efficiency, the design of the electricity market
and the governance rules for the Energy Union.

The climate package recognizes energy poverty as a major challenge in Europe and, with these
proposals, aims to protect vulnerable consumers through targeted socio-political and energy-efficient
measures [60,61]. In the package, one can see only minimum requirements for total energy efficiency.
They regulate the maximum permissible energy consumption per floor area or room volume in new
and existing buildings.

There are also provisions such as energy performance certificates, indicating the energy
consumption of an existing or new building or a new building unit, and usually classify it in
steps that differ in terms of energy consumption per square meter [62,63]. The certificates are issued by
certified energy auditors and must be issued publicly, for example in advertisements for the sale or
rental of buildings.

In this regard, the policy stipulates that regular maintenance can lead to significant operational
improvements and recommends combining these inspections with certifications. The number of
charging stations has been growing faster and faster than the number of EVs that could use them,
and their installation is becoming increasingly profitable for electricity suppliers. In order to boost the
market for cleaner vehicles, the EU Parliament and the Council agreed in February 2019 to amend
the directive on the promotion of clean and energy-efficient vehicles [64]. The directive stipulates
that authorities that procure vehicles (e.g., for public transport) must take their CO2 emissions and
the emissions of other pollutants into account. The EU emissions trading system includes emissions
from more than 11,000 power plants and industrial plants and, from 2013, emissions from aviation.
Around 40% of total EU emissions are covered by the regulation [65]. In addition to the EU27, Croatia,
Iceland, Norway and Liechtenstein are also part of the ETS. When the EHS was introduced in 2005,
it was the first trading system for greenhouse gases. As already mentioned, the EU should achieve its
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overall GHG target. The EEA’s projections show that it will cut its greenhouse gas emissions by six
percentage points above the 2020 target with existing measures and by seven percentage points by
adopting additional measures. Since 2016, five EU countries have actually increased their greenhouse
gas emissions compared to 1990. Careful monitoring was applied to the primary energy consumption
in order to assess progress in energy efficiency in terms of goals and policies for the European Union
and its Member States. In 2009, the Europe 2020 Strategy was adapted [66]. It includes very important
and timely targets set for the whole European Union are as follows:

• reducing greenhouse gas emissions by at least 20% compared to 1990 levels;
• increasing the share of renewable energy in the final energy consumption to 20%;
• moving towards a 20% increase in energy efficiency (from 2005 levels).

Table 1 shows the national energy efficiency targets for 2020 for the EU28, Czech Republic
and Slovakia.

Table 1. National energy efficiency targets for 2020 for the EU28, Czech Republic and Slovakia [43].

EU Member State
Greenhouse Gas

Emissions *1

(%)

Share of Renewable
Energy *2

(%)

Primary Energy
Consumption *3

(Mtoe)

Final Energy
Consumption *3

(Mtoe)

Czech Republic 9 13 39.6 25.3
Slovakia 13 14 16.4 9.0
EU28 *4 20 20 1483.0 1086.0

Note: Mtoe—million tonnes of oil equivalent; *1—compared to 2005 levels; *2—share of renewable energy in gross
final energy consumption; *3—absolute level of energy consumption in 2020 (Mtoe) as notified from Member States
in 2013, in the NEEAP 2014, annual reports or in separate notifications to the European commission in 2015 and
2016 (Mtoe); *4—compared to 1990 levels.

A little explanation should be made here for better clarity of the explanation of our empirical
model and its main results and implications that are presented in the next sections. As opposed to
final energy consumption, primary energy consumption refers to energy that has not been subject to
any conversion or transformation process. Energy intensity represents the amount of primary energy
consumption per unit of GDP. The energy intensity indicator depends on the industrial structure of the
economy and thus is not an exact proxy for energy efficiency in the EU Member States.

Moreover, several more methodological issues should be explained about the energy intensity
(EI), gross inland energy consumption (GIEC), gross domestic product (GDP) and their relationship.
All of the above can be expressed in the formula that follows:

EI = GIEC/GDP (1)

where:
EI—energy intensity;
GIEC—gross inland energy consumption;
GDP—gross domestic product.

4. Methodology

The data used for our empirical models was accessed in December 2019 via Eurostat, a European
Statistical Office. Some of the latest data are for 2018 (GDP), but others are for 2017 (e.g., GHG),
which is given by the data availability and accessibility.

For forecasting time series, a popular and widely used statistical method called ARIMA [67–69]
has been used. ARIMA is an acronym for Auto Regressive Integrated Moving Average. AR is a
class of linear model where the variable of interest is regressed on its own lagged values. MA is also
class of linear model, where the variable of interest is modeled with its own imperfectly predicted
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values of current and previous times [70]. The I is an integration—it specifies the number of times the
differencing operation is performed on a series to make it stationary.

The Auto Regression (AR) process is written as

yt = φ1yt−1 + φ2yt−2+ · · · + φpyt−p + εt

where:
φt−1—parameters;
yt−i—regressors;
ε—error.
Moving Average (MA) can be written in terms of error terms:

yt = θ1εt−1 + θ2εt−2 + · · · + θqεt−q + εt

where:
θt−1—parameters;
εt−i—regressors—imperfections (errors) in predicting previous terms;
ε—error.
The ARMA process has the mathematical form:

yt =

p∑
i=1

φiyt−i +

q∑
j=1

θiεt− j + εt

As a result, the differencing is the ARIMA process. The “predictors” on the right-hand side
include both the lagged values of yt and the lagged errors. We call this an ARIMA (p, d, q) model,
where parameters (p, d, q) describe:

AR: p—periods to lag;
I: d—the degree of differencing;
MA: q—the lag of the error component.
All figures used hereinafter in this paper and employed for comparing the situation in Czech

Republic and Slovakia were prepared separately for Czech Republic and Slovakia due to one simple
fact that the scale of data was different and it would not look clear and comparable if placed on the
same figure.

Moreover, we should also explain that the confidence interval (Lo-Hi) of a forecast (shadow on
figures) is the range within which the value we forecast will lie with a certain probability. For example,
if, for GHG for Slovakia in 2018, the Lo.95-Hi.95 percent of the forecast confidence interval is between
40.09 and 48.38, then with a probability of 95%, GHG (greenhouse gas emission) will be at least 40.09
Mt and at most 48.38 Mt.

The empirical models used hereinafter is based on our previous similar studies covering other EU
countries (e.g., Poland) and focusing on the same issues (see, e.g., [71]).

5. Results and Discussions

Our results are outlined below as follows: First, let us look at the greenhouse gas emission (GHG)
in the Czech Republic. The dashed line in Figure 1 represents the GHG emission limit for 2020. For the
Czech Republic it is no more than 9% comparing to year 2005 (149.53 Mt). It means that the limit for
2020 equals 162.99 Mt. The emissions are decreasing (even taking into the account the high and low
forecast as shown in Figure 1).
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Figure 1. GHG emissions in Czech Republic in 1990–2020 (Source: Own results).

Table 2 depicts the values presented in Figure 1 in more detail, including the forecast, as well as
forecast for the values of Hi and Lo at 80% and 95%, respectively, for the Czech Republic.

Table 2. Forecast Auto Regressive Integrated Moving Average (ARIMA) (0,1,0) details for GHG
emissions in Czech Republic (Source: Own results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 127.8996 120.8964 134.9028 117.1891 138.6101
2019 125.3328 115.4288 135.2368 110.1859 140.4797
2020 122.766 110.6361 134.8959 104.2149 141.3171

Our key conclusion stemming from the analysis of GHG emissions in Czech Republic is that the
country is likely to meet the requirements of Europe 2020 in terms of greenhouse gas emissions (GHG),
because from 2007 onwards the trend is towards a continuous reduction in greenhouse gas emissions.

Looking into the case of Slovakia, one can see the following story (see Figure 2 that follows).
For Slovakia the GHG limit is no more than 13% comparing to year 2005 (51.28 Mt). It means the limit
for 2020 equals 57.95 Mt.

Table 3 depicts the values presented in Figure 1 in more detail, including the forecast, and the Hi
and Lo at 80% and 95%, respectively, for Slovakia.

Table 3. Forecast ARIMA (2,1,0) details for GHG emissions in Slovakia (Source: Own results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 44.2312 41.52021 46.9422 40.08509 48.37732
2019 45.10624 40.37804 49.83445 37.87508 52.33741
2020 45.83483 38.46569 53.20397 34.5647 57.10496
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Figure 2. GHG emissions in Slovakia in 1990–2020 (Source: Own results).

The key conclusions for Slovakia that were obtained appear to be similar to in the situation in the
Czech Republic. Figure 3 shows the share of renewable energy sources (RES) in the Czech Republic.

Figure 3. Share of renewable energy sources in gross final energy consumption in the Czech Republic
(Source: Own results).

The share of renewable energy in Czech Republic has been growing and since 2005 has always
been under Europe 2020 target (see Table 4).
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Table 4. Forecast ARIMA (0,1,0) details for the share of renewable energy sources in the Czech Republic
(Source: Own results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 15.36808 14.59934 16.13681 14.1924 16.54375
2019 15.97615 14.889 17.06331 14.31349 17.63881
2020 16.58423 15.25274 17.91572 14.5479 18.62056

Even the most pessimistic forecasts (Lo.95) show that the RES will be above the assumed level of
13%. Figure 4 above show the results of the similar simulation for Slovakia.

Figure 4. Share of renewable energy sources in gross final energy consumption in Slovakia (Source:
Own results).

From Figure 4 and Table 5 one can deduct that the maximum share of renewable energy in Slovakia
was in 2015, and since this year has been decreasing. Therefore, it is improbable that Slovakia will
achieve Europe 2020 goals in the RES indicator.

Table 5. Forecast ARIMA (0,1,0) details for the share of renewable energy sources in Slovakia (Source:
Own results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 11.49 10.33109 12.64891 9.717603 13.2624
2019 11.49 9.851056 13.12894 8.983452 13.99655
2020 11.49 9.482712 13.49729 8.420118 14.55988

Figure 5 and Table 6 shows the primary energy consumption and final energy consumption (PEC,
FEC) for the Czech Republic.
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Figure 5. Primary energy consumption in the Czech Republic (Source: Own results).

Table 6. Forecast ARIMA (1,0,0) details for the primary energy consumption in the Czech Republic
(Source: Own results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 40.66137 38.64919 42.67354 37.58402 43.73872
2019 40.91168 38.31415 43.50922 36.93909 44.88428
2020 41.11603 38.19276 44.03931 36.64527 45.5868

Overall, it seems that for the Czech Republic primary and final energy consumption have both
been fluctuating around their Europe 2020 target (see Figure 6 and Table 7). Based on the forecast,
we can assess that the target will be slightly exceeded, but the confidence interval of the forecast gives
hope that it could be under the limit. Figure 7 and Table 8 shows the results from a similar simulation
for the case of Slovakia.

Figure 6. Final energy consumption in the Czech Republic (Source: Own results).
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Table 7. Forecast ARIMA (0,2,1) details for the primary energy consumption in the Czech Republic
(Source: Own results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 25.81322 24.62623 27.00021 23.99788 27.62857
2019 26.14355 24.17197 28.11513 23.12828 29.15882
2020 26.47387 23.69279 29.25496 22.22057 30.72717

Figure 7. Primary energy consumption in Slovakia (Source: Own results).

Table 8. Forecast ARIMA (0,1,0) details for the primary energy consumption in Slovakia (Source:
Own results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 16.14603 15.27609 17.01598 14.81557 17.4765
2019 16.14603 14.91575 17.37632 14.26447 18.0276
2020 16.14603 14.63925 17.65282 13.8416 18.45047

The main conclusions here is that the primary energy consumption in Slovakia has been under
the Europe 2020 limit since 2011, but since 2014 we can observe change in the trend—PEC growth.
It appears quite difficult to assess what the result in 2020 will be, but our simulations and forecast show
it will be very close to the limit.

Final energy consumption for Slovakia was set on an unattainable level for this country. Slovakia
has never been close to this level and seems improbable to achieve this level in 2020 (see Figure 8 and
Table 9).

Table 9. Forecast ARIMA (0,1,0) details for the final energy consumption in Slovakia (Source:
Own results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 11.12881 10.3039 11.95372 9.867218 12.39041
2019 11.12881 9.96221 12.29541 9.344648 12.91298
2020 11.12881 9.700022 12.5576 8.943667 13.31396
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Figure 8. Final energy consumption in Slovakia (Source: Own results).

Figure 9 below shows the levels of the gross domestic product (GDP) in the Czech Republic.

Figure 9. Gross domestic product in current and constant prices in the Czech Republic (Source:
Own results).

In general, there is no forecast of GDP, because it does not constitute any importance for Europe’s
2020 strategy and its implications. Nevertheless, is seems important to describe how it looked like in
the past, because GDP is used for energy intensity calculation and forecast (see the next figures that
follow) and is also important for sustainable development. Figure 10 below shows the gross domestic
product in current prices in Slovakia.
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Figure 10. Gross domestic product in current and constant prices in Slovakia (Source: Own results).

The results for Slovakia seem to be very much the same as for Czech Republic. Furthermore, let us
look at Figure 11 that shows real GDP growth rate in EU compared to the Czech Republic and Slovakia.

Figure 11. Real GDP growth rate in the EU compared to the Czech Republic and Slovakia (Source:
Own results).

The differences between the Czech Republic and Slovakia are quite obvious. Slovakia is growing
at a faster pace. This might be attributed to the better and more efficient economic reforms in Slovakia
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that accepted the Euro as its currency in 2009 while the Czech Republic still keeps its national currency,
the Czech koruna.

Figures 12 and 13 that follow shows the energy intensity in the Czech Republic and Slovakia that
is calculated as the ratio of gross inland energy consumption (GIEC) to GDP. The two different shapes
of energy intensity depict the (i) forecast, (ii) forecast Lo 80% and 95%, as well as (iii) forecast Hi 80%
and 95% for each country, respectively (see Tables 10 and 11 for more explanation showing the values
for each forecast).

Figure 12. Energy intensity in the Czech Republic expressed as GIEG/GDP with forecast, forecast Lo
80% and 95% and forecast Hi 80% a and 95% (Source: Own results).

Figure 13. Energy intensity in Slovakia expressed as GIEG/GDP with forecast, forecast Lo 80% and 95%
and forecast Hi 80% a and 95% (Source: Own results).
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Table 10. Forecast ARIMA (0,1,0) details for the energy intensity in the Czech Republic (Source: Own
results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 0.23128835 0.217935688 0.244641013 0.210867215 0.251709485
2019 0.224008806 0.205125289 0.242892322 0.19512896 0.252888652
2020 0.216729261 0.193601771 0.239856751 0.181358817 0.252099704

Table 11. Forecast ARIMA (0,1,0) details for the energy intensity in Slovakia GIEG/GDP with forecast,
forecast Lo 95% and forecast Hi 95% (Source: Own results).

Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95

2018 0.198569715 0.181460651 0.21567878 0.172403659 0.224735771
2019 0.185333467 0.161137596 0.209529338 0.148329075 0.222337858
2020 0.172097218 0.14246345 0.201730987 0.12677628 0.217418157

The low value of energy intensity speaks of the level of economic development. The average
for the EU equals 0.1097. The energy intensity of Czech Republic is twice larger than the average for
the EU but it has a decreasing trend. Figure 13 below shows the same situation but using the case of
Slovakia. It is apparent that the Slovak energy intensity also exceeds the EU average.

The main conclusions stemming from Figures 12 and 13 and the accompanying tables are that
the low value of energy intensity speaks of the modern economy. The EU average equals 0.1097.
Energy intensity of Slovakia is twice larger than the average of the EU and decreased fast between
1995 and 2007, but in the last years the decrease is very slow and looks to be stabilizing.

Figure 14 depicts energy consumption and greenhouse gas emissions for the Czech Republic.

Figure 14. Gross inland energy consumption (GIEC) and GHG emissions in the Czech Republic (Source:
Own results).

In the case of the Czech Republic, GIEC and GHG are correlated, but we can see that in the last
years GHG emission is decreasing faster than the energy consumption. This is, of course, a positive
trend that can be attributed to the improvement in energy policy and strategy.
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All in all, also in the case of Slovakia, the GIEC and GHG appear to be correlated. It is apparent
from Figure 15 that in the last years, GHG emission is decreasing a little faster than energy consumption,
but not as fast as in the case of the Czech Republic that was analyzed above. This was shown on the
previous figures describing the renewable energy sharing system.

Figure 15. Gross inland energy consumption (GIEC) and GHG emissions in Slovakia (Source:
Own results).

6. Conclusions

Recent commitments to sustainable development and mitigating climate changes made by most
of the world’s governments also found their way into the energy policy of the European Union,
becoming the basis of its national energy efficiency targets for 2020 embedded in the Europe 2020
strategy. The Europe 2020 strategy and the 3 × 20 climate and energy package envisage the reduction
of greenhouse gas emissions in EU Member States as well as increasing the share of renewable energy
for enhancing energy efficiency. Due to the varying level of economic development, different objectives
were set for different EU Member States, with the Czech Republic and Slovakia, which constitute the
case studies employed in this paper, facing targets that were lower than that in the case of the more
economically developed EU countries.

With regard to the above, one has to understand that climate targets were set in order to slow down
or even reverse (albeit in the long run) the depletion of natural resources and preventing environmental
degradation. In no way were these targets set with a purpose of halting the economic growth (especially
when it comes to the economies in transition) but rather to help the countries in question to develop in
accordance with the principles of energy efficiency and sustainable economic growth.

Both countries selected for our case study, the Czech Republic and Slovakia, experienced deep
system transformation after the fall of Communism in 1989 that are apparent in the GDP, gross inland
energy consumption and GHG emissions that constitute the measures of sustainable development
used in our research. Our results indicate that it is quite unlikely that the planned increase in renewable
energy is going to reach its targets for the Czech Republic and Slovakia (which is similar to the case of
other EU Member States that joined after 2004) but it will be possible to reduce energy consumption
and greenhouse gas emissions. This is, among other things, due to the fact that gross inland energy
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consumption and greenhouse gas emissions in the Czech Republic and Slovakia appear to be correlated.
Greenhouse gas emissions are going down in both countries in question a little faster than energy
consumption, but this pace is more rapid in the Czech Republic than in Slovakia.

In addition, it becomes apparent that implementation of GHG emissions in the Czech Republic
and Slovakia may be at risk in case the proper energy policy is not maintained by the stakeholders and
governments of the respective countries. Moreover, our findings show that regardless of the mix of
fossil and renewable energy, the state of economic development and the geographical location of any
EU Member States, a proper energy policy is required for effectively reducing energy consumption
and greenhouse gas emissions. The energy intensity of Czech and Slovak economies increased in the
early 2000s and then stabilized at a level about twice of the EU average. Our analysis of the energy
intensity for the both countries in question shows that in the forthcoming years its value is likely to
remain the same.

Overall, our results also demonstrate that maintaining a proper balance between economic
development and environmental protection should be kept at all cost regardless of the position of
the country. The cases of the Czech Republic and Slovakia scrutinized in this paper confirms that.
Both countries have (common) Communist pasts but both underwent a spectacular economic transition
and became Member States of the European Union. However, their story might be used by other
EU Member States, both constituting the “core” EU and those that joined in 2004 or after. It might
be also interesting to study the implications of Brexit and the shift of energy policies during and
after the transition period for the United Kingdom. Further progress in maintaining a proper balance
between economic development and environmental protection might be ensured by the decisive steps
of the Czech and Slovak (as well as other EU) stakeholders and policymakers in terms of investments
into renewable energy sources, modernizing the old energy sector and seeking for new solutions for
sustainability and energy efficiency.
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