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Abstract

We propose a statistical procedure to determine the dimension of the nonstationary

subspace of cointegrated functional time series taking values in the Hilbert space of

square-integrable functions defined on a compact interval. The procedure is based

on sequential application of a proposed test for the dimension of the nonstationary

subspace. To avoid estimation of the long-run covariance operator, our test is based

on a variance ratio-type statistic. We derive the asymptotic null distribution and

prove consistency of the test. Monte Carlo simulations show good performance of

our test and provide evidence that it outperforms the existing testing procedure. We

apply our methodology to three empirical examples: age-specific US employment rates,

Australian temperature curves, and Ontario electricity demand.
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1 Introduction

Much recent research in time series analysis has focused on so-called functional time series;

that is, time series that take values in possibly infinite-dimensional Hilbert or Banach spaces

rather than the usual finite-dimensional Euclidean space. Each observation of a functional

time series may be, for example, a continuous function, a square-integrable function, or a

probability density function (of course vector-valued time series are a special case). Recent

monograph treatments include Bosq (2000), who considers stationary linear processes taking

values in Hilbert and Banach spaces, and Horváth and Kokoszka (2012), who discuss statis-

tical analysis of functional data and functional time series with many empirical examples.

The majority of recent developments in functional time series depend crucially on the

assumption of stationarity. Despite its importance, this issue has received very limited

attention in the literature. In the context of functional time series, there exists only a few

articles that consider tests of the null hypothesis of stationarity. In particular, Horváth et al.

(2014) and Kokoszka and Young (2016) develop a modified version of the univariate KPSS

test (Kwiatkowski et al., 1992) of stationarity, and Aue and van Delft (2019) propose a test

of stationarity in the frequency domain.

Of course, testing for stationarity is an important first step. However, when a time series

is not stationary, an important problem is to determine the type and magnitude of departure

from stationarity. The type of nonstationarity that we consider is the “unit root” or I(1)

nonstationarity well-known from autoregressive processes. Thus, the issue is to determine

the extent of the nonstationarity, which we interpret at the dimension of the nonstationary

subspace (to be made precise later). In this context, testing stationarity is the same as testing

that the nonstationary subspace has dimension zero. To the best of our knowledge, the only

article that considers this more general problem is the seminal contribution of Chang et al.

(2016), though they denote it the “unit root dimension.” Specifically, Chang et al. (2016)

propose a test based on generalized eigenvalues associated with the covariance operator of

the observations and the long-run covariance operator of the first-differenced observations.

In the analysis of vector-valued time series in finite-dimensional space, the dimension of

the nonstationary subspace is the number of linearly independent linear combinations that

are nonstationary and is called the number of common stochastic trends. Similarly, the di-

mension of the stationary subspace is the number of linearly independent linear combina-

tions that are stationary and is called the cointegration rank. In finite-dimensional space,

these numbers are both finite. In that context, Stock and Watson (1988) is an important

early contribution, providing a statistical testing procedure for the dimension of the nonsta-

tionary subspace (number of stochastic trends) in cointegrated vector time series. Different

2



from most subsequent work, their procedure is interpreted as a way to find the number of

stochastic trends rather than the cointegration rank. In finite-dimensional space, there is no

meaningful difference between those interpretations since one determines the other. How-

ever, in infinite-dimensional spaces, and specifically in the Chang et al. (2016) model and in

our model of cointegrated linear processes with finite-dimensional nonstationary subspace,

it is clear that the interpretation given in Stock and Watson (1988) is the most natural.

In the context of time series in finite-dimensional space, there has been a very large

literature developing methods for determination of the cointegration rank or equivalently the

number of common stochastic trends. These have mostly been based on canonical correlation

analysis (e.g., Ahn and Reinsel, 1990; Bewley and Yang, 1995; Johansen, 1995) and eigenvalue

analysis (e.g., Stock and Watson, 1988; Johansen, 1995; Zhang et al., 2019). In an important

contribution to finite-dimensional time series, Müller (2008) demonstrates some desirable

properties of variance ratio-type unit root test statistics that are not shared by other statistics

that have to estimate the long-run covariance. In particular, tests based on variance ratio-

type statistics are shown to be able to consistently discriminate between the unit root null

and the stationary alternative. More practically, variance ratio statistics avoid estimation of

the long-run covariance, which is known to be difficult in practice.

Inspired by the work of Müller (2008) and Chang et al. (2016), we consider a nonpara-

metric variance ratio-type test statistic for the dimension of the nonstationary subspace. In

the univariate special case it reduces to the KPSS statistic with bandwidth zero and in the

finite-dimensional case to the statistic considered by Breitung (2002); see also Taylor (2005)

and Nielsen (2009, 2010). As in Chang et al. (2016), we assume that a cointegrated functional

time series has finite-dimensional nonstationary subspace while the stationary subspace is

infinite-dimensional (i.e., there are infinitely many cointegrating relations). We then discuss

sequential application of our test to determine the dimension of the nonstationary subspace

(the number of stochastic trends). We derive the asymptotic null distribution and prove con-

sistency of the proposed test. Our procedure has several attractive features. First, our test is

nonparametric; that is, we do not require the specification of a particular model. Second, it

is easy to implement in practice. The statistic is given by the sum of generalized eigenvalues

of sample covariance operators. Third, we do not need to estimate any long-run covariance

operators. This is an important difference from existing methods in functional time series

such as Horváth et al. (2014), Kokoszka and Young (2016), and Chang et al. (2016). Fourth,

the asymptotic null distribution of the proposed test statistic does not depend on the choice

of projection operator used to approximate the covariance operators, and is simply a func-

tional of standard Brownian motion. In practice our testing procedure can be easily imple-

mented in a familiar finite-dimensional setting. Finally, our Monte Carlo simulations suggest
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that our test has better finite-sample properties than the existing test of Chang et al. (2016).

We give several empirical illustrations of our methodology, where we also compare with

that of Chang et al. (2016). In particular, we consider age-specific employment curves,

Australian temperature curves, and Ontario electricity demand curves. Other applications of

Chang et al. (2016) include, e.g., global temperature distributions as in Chang et al. (2020).

In our first empirical application, we also demonstrate how it is not feasible to consider a

discrete approximation to the functional time series as a high-dimensional cointegrated vector

autoregression, for example. In many cases, it is simply not computationally possible to

perform the required eigenvalue analysis, while in others the high-dimensional cointegrated

vector autoregression does not work well because of poor properties with high-dimensional

time series; see Ho and Sørensen (1996), Onatski and Wang (2018), and Section 5.

The remainder of this paper is organized as follows. We review some essential mathemat-

ical preliminaries in Section 2. Our testing procedure and asymptotic theory is provided in

Section 3. In Section 4 we present the results from extensive Monte Carlo simulations. We

then apply our methodology to three empirical data sets in Section 5. All proofs and some

additional simulation results are given in the appendices.

2 Mathematical preliminaries

Let H denote the space of square-integrable functions defined on a compact interval I

equipped with the inner product given by 〈f, g〉 =
∫

I f(u)g(u)du for f, g ∈ H and its in-

duced norm ‖f‖ = 〈f, f〉1/2 for f ∈ H. Then H is a separable Hilbert space. Without loss

of generality, we normalize and assume that I = [0, 1] and
∫
f(u)du =

∫ 1
0 f(u)du throughout

the paper. When there is no risk of confusion, we use the terms vector and function inter-

changeably to denote an element of (the vector space) H.

Given a subset M ⊂ H, M⊥ denotes the orthogonal complement of M and clM denotes

the closure of M . Given two subspaces M1,M2 ⊂ H with M1 ∩M2 = {0}, H is said to be a

direct sum of M1 and M2, denoted by H = M1 ⊕M2, if any element of x ∈ H can be written

as x = xM1
+ xM2

for some xM1
∈ M1 and xM2

∈ M2.

We let LH denote the space of bounded linear operators acting on H equipped with the

uniform operator norm, ‖A‖LH
= sup‖x‖≤1 ‖Ax‖. For A ∈ LH, we denote the kernel and

range of A by kerA and ranA, respectively. The dimension of ranA is called the rank of A.

The adjoint of an operator A ∈ LH is denoted by A∗. A linear operator A ∈ LH is said

to be positive semi-definite (resp. positive definite) if 〈Ax, x〉 ≥ 0 (resp. 〈Ax, x〉 > 0) for any

x ∈ H. In this paper, f ⊗ g denotes the operation (f, g) 7→ 〈f, ·〉g for f, g ∈ H.

Sometimes we need to restrict the domain and the codomain of a bounded linear operator.

Whenever this is required, we let A|M1→M2
denote the operator A ∈ LH whose domain is
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M1 ⊂ H and codomain is M2 ⊂ H.

2.1 H-valued random variables

Let (Ω,F ,P) be the underlying probability space. A H-valued random element Z is a

measurable function from Ω to H, where H is understood to be equipped with the Borel σ-

field. The random element is said to be integrable if E‖Z‖ < ∞ and square-integrable if

E‖Z‖2 < ∞. If the random element is integrable, there exists a unique element µ ∈ H such

that E〈Z, f〉 = 〈µ, f〉 for any f ∈ H, and such µ is called the mean function of Z. If the

random element is square-integrable, we define the covariance operator of Z as Cz = E[Z⊗Z].

2.2 I(1) and cointegrated linear processes in H

We require a notion of I(1) sequences and cointegration in our Hilbert space setting. To this

end, we adopt the setting of Beare et al. (2017), who generalize the concept of a cointegrated

I(1) sequence to an arbitrary complex Hilbert space and provide a rigorous mathematical

treatment, although some of the concepts were introduced earlier by Chang et al. (2016).

A sequence (Xt, t ≥ 0) is said to be I(1) if its first differences ∆Xt = Xt −Xt−1 satisfy

∆Xt =
∞∑

j=0

Φjεt−j, t ≥ 1, (2.1)

where (εt, t ∈ Z) is a square-integrable i.i.d. sequence, and (Φj, j ≥ 0) is a sequence in LH

satisfying
∑∞

j=0 j‖Φj‖LH
< ∞ and Φ(1) =

∑∞
j=0 Φj 6= 0. We assume that the covariance

operator Cε of εt is positive definite and denote the long-run covariance operator of (∆Xt, t ≥

1) by Λ∆X = Φ(1)CεΦ(1)∗. For the sequence (2.1), the Beveridge-Nelson decomposition is

∆Xt = Φ(1)εt + νt − νt−1, t ≥ 1, (2.2)

where νt =
∑∞

j=0 Φ̃jεt−j and Φ̃j = −
∑∞

k=j+1 Φk; see Phillips and Solo (1992).

The stationary subspace (cointegrating space) of X is the collection of all h ∈ H such

that the scalar sequence (〈Xt, h〉, t ≥ 0) is stationary for a suitable choice of X0. Beare et al.

(2017) showed that this space is given by ker Λ∆X . Since Cε is positive definite, the stationary

subspace is equal to [ran Φ(1)]⊥. The nonstationary subspace (attractor space) is defined as

the orthogonal complement of the stationary subspace, i.e. cl ran Φ(1). This is the subspace of

H in which the I(1) stochastic trend in the Beveridge-Nelson decomposition (2.2) takes values.

Throughout, A denotes the nonstationary subspace and A
⊥ denotes the stationary subspace.

Given the direct sum decomposition H = A ⊕ A
⊥, any element h ∈ H can be uniquely

decomposed as h = hA + hA⊥ for some elements hA ∈ A and hA⊥ ∈ A
⊥. If hA 6= 0 then

〈Xt, h〉 is I(1). If in fact h ∈ A, then 〈Xt, h〉 may be called a stochastic trend, generalizing

the notion from finite-dimensional space. Furthermore, when the nonstationary subspace, A,

is finite dimensional, its dimension can be called the number of common stochastic trends.
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3 Inference on the dimension of the nonstationary subspace

In this section, we provide a statistical procedure to estimate the dimension of the nonsta-

tionary subspace. For simplicity, we first focus on the case where (Xt, t ≥ 1) has zero mean.

In Section 3.4, we consider I(1) sequences with deterministic components.

3.1 Model and hypotheses of interest

We apply the following assumption throughout.

Assumption 1. (Xt, t ≥ 1) satisfies the conditions stated in Section 2.2, and in particular

(2.1), (2.2). The rank of Φ(1) is given by the integer s in [0,∞).

Under Assumption 1, the nonstationary subspace A is finite-dimensional and given by

ran Φ(1) since any finite-dimensional subspace is closed. Moreover, we have the direct sum de-

composition H = ran Φ(1)⊕[ran Φ(1)]⊥ = A⊕A
⊥ and the relation dim(A) = rank(Φ(1)) = s.

Remark 1. For example, a sufficient condition for A to be finite-dimensional is that (Xt, t ≥

1) is autoregressive with compact autoregressive operators (Beare and Seo, 2019, Remark 3.6).

As another example, the functional observations could be generated by a finite-dimensional

factor model, where the (possibly nonstationary) factors could represent level, slope, curva-

ture, etc., as in, for example, the Nelson and Siegel (1987) term structure model. �

Let (φj, j ∈ N) be an orthonormal basis of H satisfying span{φ1, . . . , φs} = ran Φ(1). We

then may understand Xt as the basis expansion

Xt =
∞∑

j=1

〈Xt, φj〉φj with
∞∑

j=1

〈Xt, φj〉
2 < ∞ almost surely.

Let ℓ2(N) denote the space of square summable sequences equipped with the inner product

〈{xj}, {yj}〉ℓ2(N) =
∑∞

j=1 xjyj for {xj}, {yj} ∈ ℓ2(N). Then, under the isomorphism from H

to ℓ2(N), (Xt, t ≥ 0) may be viewed as the random infinite sequence

(〈Xt, φ1〉, . . . , 〈Xt, φs〉, 〈Xt, φs+1〉, . . . ), t ≥ 0. (3.1)

Clearly, since span{φ1, . . . , φs} = ran Φ(1), the first s components of (3.1) are scalar-

valued I(1) processes because

∆〈Xt, φj〉 = 〈Φ(1)εt, φj〉 + 〈νt − νt−1, φj〉 , j = 1, . . . , s,

are stationary with long-run covariances 〈Λ∆Xφj, φj〉 6= 0. On the other hand, the (infinitely

many) remaining components of (3.1) are all stationary for a suitable choice of X0 because

〈Xt, φj〉 = 〈X0 − ν0, φj〉 + 〈νt, φj〉 , j ≥ s+ 1,

and 〈νt, φj〉 is stationary since 〈νt, ·〉 is a measurable transformation of a stationary sequence.

Moreover, 〈Xt, φj〉 has nonzero long-run covariance if
∑∞

j=1 jΦj 6= 0, i.e. it is I(0) in this case.
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It thus follows that the dimension of the nonstationary subspace, dim(A) = rank(Φ(1)),

can be interpreted as the number of stochastic trends embedded in the functional time series

(Xt, t ≥ 0). We consider hypothesis testing on dim(A) and provide a statistical procedure to

determine dim(A). In finite-dimensional Euclidean space, Cn or Rn, this is closely related to

cointegration rank (see references in the Introduction). If the cointegration rank is r ≤ n in

R
n, then there are n−r stochastic trends in that setting. However, under Assumption 1 in our

infinite-dimensional setting, only the dimension of the nonstationary subspace (number of

stochastic trends) may be finitely identified while the cointegration rank is always ∞. Hence,

it may not be proper to call our test a cointegration rank test, but it still may be viewed as

a generalization of conventional cointegration rank tests from finite-dimensional space.

We apply the following assumption to obtain asymptotic results.

Assumption 2. In (2.1), (2.2) it holds that (i) (εt, t ∈ Z) is an i.i.d. sequence with E‖εt‖
4 <

∞; (ii) the covariance operator Cν of (νt, t ≥ 1) is positive definite on A
⊥, i.e., 〈Cνx, x〉 > 0

for all x ∈ A
⊥.

The above assumption is convenient in our asymptotic analysis. Specifically, Assump-

tion 2(i) is a standard condition to obtain weak convergence of linear processes in H as in

Berkes et al. (2013). Assumption 2(ii), which does not seem restrictive in practice, ensures

that a particular limiting quantity is positive definite; see (B.4) in the appendix.

We consider the following null and alternative hypotheses,

H0 : dim(A) = s0 vs H1 : dim(A) ≤ s0 − 1. (3.2)

The null hypothesis in (3.2) can be either a pre-specified hypothesis of interest, or (3.2) can

be applied sequentially to estimate s. We explore the latter possibility in Theorem 2.

3.2 Preliminary asymptotic analysis of covariance operators

We first fix notation for the subsequent discussion. Since ran Λ∆X = ran Φ(1) under As-

sumption 1, only the first s eigenvalues of Λ∆X are nonzero. We let ((αj, ηj), j = 1, . . . , s)

denote the pairs of eigenvalues and eigenvectors of Λ∆X and assume α1 ≥ α2 ≥ · · · ≥ αs > 0

without loss of generality. Note that these can be used to define Λ
1/2
∆X and Λ

−1/2
∆X by the spec-

tral decomposition. In addition, for convenience, we let (ηj, j ≥ s + 1) denote an orthonor-

mal basis of [ran Φ(1)]⊥ so that (ηj, j ∈ N) is an orthonormal basis of H.

Let (W(r), r ∈ [0, 1]) denote a Brownian motion taking values in H with covariance

operator
∑s

j=1 ηj ⊗ ηj and define V(r) =
∫ r

0 W(w)dw for r ∈ [0, 1]. Then

〈W(r), ηj〉
d
= Wj(r) and 〈V(r), ηj〉

d
= Vj(r), j = 1, . . . , s,

〈W(r), ηj〉
d
= 0 and 〈V(r), ηj〉

d
= 0, j ≥ s+ 1,

(3.3)

where “
d
=” denotes equality in distribution, Wj is a sequence of standard Brownian mo-
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tions independent across j, and Vj(r) =
∫ r

0 Wj(w)dw. Under the isomorphism between s-

dimensional real Hilbert space with element h and the Euclidean space R
s with element

(〈h, η1〉, 〈h, η2〉, · · · , 〈h, ηs〉)
′, (W(r), r ∈ [0, 1]) and (V(r), r ∈ [0, 1]) may be understood as the

usual s-dimensional standard Brownian motion and integrated standard Brownian motion.

We define two random operators associated with (W(r), r ∈ [0, 1]) and (V(r), r ∈ [0, 1]) as

W̃ =
∫

W(r) ⊗ W(r)dr and Ṽ =
∫

V(r) ⊗ V(r)dr. (3.4)

Under the above-mentioned isomorphism, these operators may also be understood as random

matrices taking values in R
s×s. Then we find from (3.3) and (3.4) that

〈ηi, W̃(ηj)〉
d
=
∫
Wi(r)Wj(r)dr and 〈ηi, Ṽ(ηj)〉

d
=
∫
Vi(r)Vj(r)dr, 1 ≤ i, j ≤ s,

〈ηi, W̃(ηj)〉
d
= 0 and 〈ηi, Ṽ(ηj)〉

d
= 0, otherwise.

Given functional observations (Xt, t = 1, . . . , T ), let Yt =
∑t

j=1 Xj for t = 1, . . . , T . We

define the unnormalized sample covariance operators

Ĉ =
T∑

t=1

Xt ⊗Xt and K̂ =
T∑

t=1

Yt ⊗ Yt. (3.5)

Asymptotic properties of Ĉ and K̂ play a crucial role in our analysis.

In particular, Lemma 1 shows that T−2Ĉ and T−4K̂ converge to C and K, respectively,

where

C
d
= Λ

1/2
∆XW̃Λ

1/2
∆X and K

d
= Λ

1/2
∆X ṼΛ

1/2
∆X . (3.6)

Given the definition of Λ
1/2
∆X , for any element of h ∈ H allowing the unique decomposition

h = hA + hA⊥ , we have

Ch = C(hA + hA⊥) = ChA ∈ A and Kh = K(hA + hA⊥) = KhA ∈ A. (3.7)

That is, C and K eliminate any (infinite-dimensional) component in A
⊥ and leave only a

(finite-dimensional) component in A. Moreover, the operators C and K are almost surely

invertible on A, even if they are not invertible on H. Note that, when H = R
n, this result

specializes to T−2∑
t XtX

′
t

d
→ C, where C satisfies Ch = h′C = 0 for h ∈ A

⊥ and h′Ch is

invertible almost surely for h = [h1, . . . , hs] with orthonormal vectors h1, . . . , hs ∈ A.

3.3 Variance ratio test

Suppose first that we have a projection operator, denoted Pℓ, whose range is an ℓ ≥ s

dimensional subspace that contains A. Since ((I −Pℓ)Xt, t ≥ 1) is a stationary sequence, its

nonstationary subspace is zero. Thus, we may disregard this part of (Xt, t ≥ 1) and focus

on the projected time series (PℓXt, t ≥ 1). The latter is isomorphic to an ℓ-dimensional

multivariate time series with ℓ − s cointegrating relationships and s (linearly independent)

stochastic trends, i.e. with s-dimensional nonstationary subspace.
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Of course, the assumption that Pℓ is known is not reasonable in practice, so we need to

replace Pℓ with an estimate. We first apply the following high level condition.

Assumption 3. For some finite integer ℓ ≥ s there exists (φT
1 , . . . , φ

T
ℓ ) such that

P T
ℓ =

ℓ∑

j=1

φT
j ⊗ φT

j and ‖P T
ℓ x− x‖ = op(1) for any x ∈ A. (3.8)

Intuitively, Assumption 3 requires a finite collection of vectors whose span asymptoti-

cally includes the nonstationary subspace, A. We call ranP T
ℓ an asymptotic superspace of

A. Of course, there are many possible empirical projection operators that could be applied

in practice (e.g., based on eigenanalysis of various covariance, long-run covariance, or auto-

covariance operators), so we find it convenient to use Assumption 3 as a practically impor-

tant guideline for what a candidate projection operator needs to satisfy. In Section 3.5 we

discuss some practical, data-dependent choices of ℓ and P T
ℓ that satisfy Assumption 3.

Some asymptotic implications of Assumption 3 are discussed in the following remark.

Remark 2. Without loss of generality, we may assume that (φT
1 , . . . , φ

T
s ) converges to some

orthonormal basis (φ1, . . . , φs) of A under Assumption 3. The orthonormal set (φ1, . . . , φs)

may be random elements; we do not require that (φT
1 , . . . , φ

T
s ) to converges to a fixed or-

thonormal basis of A. Under Assumption 3, we also have

‖φT
j − (I − PA)φT

j ‖ = op(1), s+ 1 ≤ j ≤ ℓ.

That is, (φT
j , j = s+ 1, . . . , ℓ) is asymptotically included in A

⊥. It should be noted that we

do not require any limiting behavior of φT
j for j ≥ s+ 1 in our asymptotic analysis, i.e. it is

not required to converge to any (random or fixed) element of H. �

On the subspace ranP T
ℓ , consider the generalized eigenvalue problem

τT
j P

T
ℓ K̂P T

ℓ ξ
T
j = P T

ℓ ĈP T
ℓ ξ

T
j , ξT

j ∈ ranP T
ℓ . (3.9)

The solution to the eigenvalue problem (3.9) can be characterized as

τT
j =

〈P T
ℓ ĈP T

ℓ ξ
T
j , ξ

T
j 〉

〈P T
ℓ K̂P T

ℓ ξ
T
j , ξ

T
j 〉
. (3.10)

The stochastic order and limiting behavior of the eigenvalue, τT
j , is different depending on

whether or not the corresponding eigenvector, ξT
j , falls inside the nonstationary subspace, A.

This is described in detail in Lemma 2 in Appendix A, where it is shown that T 2τT
j converges

to a non-degenerate limit if ξT
j ∈ A while (TτT

j )−1 = Op(1) if ξT
j ∈ A

⊥, i.e. T 2τT
j diverges

to infinity in the latter case. Thus, the s smallest eigenvalues have different stochastic order

than the remaining eigenvalues and T 2∑s
j=1 τ

T
j has a non-degenerate limiting distribution.

In view of (3.10), we call T 2∑s
j=1 τ

T
j a variance ratio statistic. For univariate time series it

reduces to the well-known KPSS statistic of Kwiatkowski et al. (1992) with zero bandwidth,
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and for finite-dimensional multivariate time series it reduces to the statistic considered by

Breitung (2002). We prove the following theorem, which suggests a testing procedure to

determine the dimension of the nonstationary subspace in our Hilbert space setting.

Theorem 1. Suppose that Assumptions 1–3 hold, and let (τT
1 , . . . , τ

T
ℓ ) with τT

1 ≤ . . . ≤ τT
ℓ

and (ξT
1 , . . . , ξ

T
ℓ ) ⊂ H be the pairs of eigenvalue and eigenvectors satisfying (3.9). Then

T 2
s∑

j=1

τT
j

d
→ tr

(
(Ṽ|A→A)−1W̃|A→A

)
, (3.11)

T 2
q∑

j=1

τT
j

p
→ ∞ for any s+ 1 ≤ q ≤ ℓ. (3.12)

Remark 3. Suppose again that Pℓ is known and replaces P T
ℓ . In this case, additional in-

tuition can be gained by considering the isomorphism between ranPℓ and R
ℓ, where an el-

ement u ∈ ranPℓ, with the unique basis expansion u =
∑ℓ

j=1〈u, uj〉uj for an orthonormal

basis (u1, . . . , uℓ) of ranPℓ, is identified as the vector (〈u, u1〉, . . . , 〈u, uℓ〉)
′. Under this iso-

morphism, (PℓXt, t ≥ 1) may be viewed as a multivariate ℓ-dimensional time series and (3.9)

may be viewed as a generalized eigenvalue problem in R
ℓ, where PℓĈPℓ and PℓK̂Pℓ appearing

in (3.9)–(3.10) are isomorphic to the sample covariance matrices of this ℓ-dimensional time

series and its cumulated sum, respectively. Then, as noted by Breitung (2002) for cointe-

grated systems in a Euclidean space setting, the stochastic order of τT
j depends on whether

or not the corresponding eigenvector ξT
j falls inside the span of the cointegrating vectors (or

equivalently the attractor space). �

Remark 4. Theorem 1 suggests a consistent test for the hypothesis in (3.2). Clearly, the

statistic T 2∑s0

j=1 τ
T
j has a well-defined limiting distribution under H0, while it diverges to

infinity under H1. For a given significance level α, we therefore reject H0 when T 2∑s0

j=1 τ
T
j >

cα for some cα depending on α. Using the isomorphism between A and R
s, it follows that

the asymptotic distribution in (3.11) satisfies

tr
(
(Ṽ|A→A)−1W̃|A→A

)
d
= tr

((∫ 1

0
Vs(r)V

′
s (r)dr

)−1 ∫ 1

0
Ws(r)W

′
s(r)dr

)
, (3.13)

where Ws is s-dimensional standard Brownian motion and Vs(r) =
∫ r

0 Ws(w)dw. Hence,

critical values cα for the test statistic, T 2∑s0

j=1 τ
T
j , can be simulated from (3.13) with s = s0

by standard methods. �

To estimate or determine the dimension s of A, we apply a top-down procedure, where

we sequentially test (3.2) with s0 = smax, smax − 1, . . . , 1 for some reasonably chosen smax

and using nominal level α. The estimate of the dimension of the nonstationary subspace, ŝ,

is then given by the first non-rejected null hypothesis. If H0 is rejected for all values of s0

considered, then we set ŝ = 0. The following result then follows from Theorem 1.
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Theorem 2. Suppose that the assumptions of Theorem 1 hold and that P{smax ≥ s} → 1.

Then

P{ŝ = s} → 1 − α and P{ŝ > s} → 0. (3.14)

We note that Theorem 2 requires that P{smax ≥ s} → 1. In theory, this could be

guaranteed by letting smax → ∞ as T → ∞. In practice we would normally expect s to

be quite small, so this would be guaranteed by letting smax be some moderate number. As

suggested by Chang et al. (2016, footnotes 4 and 13), smax could be determined by graphical

methods, like eigenvalue plots, or by the number of functional principal components that

determine a large proportion of the total variance. The following remark considers the

consequences of selecting smax < s.

Remark 5. From our proof of Theorem 1, it may easily be deduced that if smax < s, then

T 2
smax∑

j=1

τT
j

d
→ tr

(
(Ṽ|A′→A′)−1W̃|A′→A′

)
, (3.15)

where A
′ denotes some smax-dimensional subspace of A. As in Remark 4, the isomorphism

between R
smax and any smax-dimensional subspace of H implies that the limit in (3.15)

satisfies

tr
(
(Ṽ|A′→A′)−1W̃|A′→A′

)
d
= tr

((∫ 1

0
Vsmax

(r)V ′
smax

(r)dr
)−1 ∫ 1

0
Wsmax

(r)W ′
smax

(r)dr

)
.

Because smax < s, all the eigenvalues in the test statistic for the first hypothesis in the

sequential procedure, namely H0 : dim(A) = smax, are convergent and satisfy (3.15). It

follows that, in this case, instead of (3.14) we have P{ŝ = smax} → 1 − α. �

The consequence of Remark 5 is that, when smax < s, the sequential testing procedure

will conclude that ŝ = smax with probability converging to 1 − α as T → ∞. Therefore, in

practice, if the sequential procedure results in ŝ = smax it seems prudent to restart with a

higher value of smax.

3.4 Deterministic components

Until now we assumed that (Xt, t ≥ 1) has mean zero. We now adapt the discussion to

allow a deterministic component. A nonzero intercept function or a linear trend function

seem most relevant in practice, so we focus on those, but an extension to more general

deterministic components requires only a slight modification of the subsequent discussion.

Specifically, for some functions µ1, µ2 ∈ H, we consider the unobserved components model

Xt = µ1 + µ2t+ Ut, (3.16)

where (Ut, t ≥ 1) is an unobserved I(1) sequence with mean zero that is generated like

(Xt, t ≥ 1) in the previous sections. The model (3.16) includes the intercept function, µ1,

and the linear trend function, µ2. If only an intercept function is wanted, then we set µ2 = 0.
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We define the functional residuals from least squares estimation,

U
(1)
t = Xt −

1

T

T∑

t=1

Xt and U
(2)
t = U

(1)
t −

(
t−

T + 1

2

) ∑T
t=1

(
t− T +1

2

)
Xt

∑T
t=1

(
t− T +1

2

)2 ;

see Kokoszka and Young (2016) for details. Here, the superscript (1) denotes residuals from

the model with only an intercept function, while (2) denotes residuals from the model with

both intercept and linear trend functions. Analogously to (3.5) we define, for ̺ = 1, 2,

Ĉ(̺) =
T∑

t=1

U
(̺)
t ⊗ U

(̺)
t and K̂(̺) =

T∑

t=1




t∑

j=1

U
(̺)
j ⊗

t∑

j=1

U
(̺)
j


 . (3.17)

We then consider the following generalized eigenvalue problem,

τT
j,(̺)P

T
ℓ K̂(̺)P T

ℓ ξ
T
j,(̺) = P T

ℓ Ĉ(̺)P T
ℓ ξ

T
j,(̺), ξT

j,(̺) ∈ ranP T
ℓ . (3.18)

To describe the asymptotic distributions, we let (W(̺)(r), r ∈ [0, 1]) denote a demeaned

(for ̺ = 1) or detrended (for ̺ = 2) Brownian motion taking values in H with covariance

operator
∑s

j=1 φj ⊗ φj and define V(̺)(r) =
∫ r

0 W(̺)(w)dw for r ∈ [0, 1] and ̺ = 1, 2. Based

on these, we then define W̃(̺) and Ṽ(̺) as in (3.4).

Theorem 3. Suppose that Assumptions 1–3 hold, and let (τT
1,(̺), . . . , τ

T
ℓ,(̺)) with τT

1,(̺) ≤ . . . ≤

τT
ℓ,(̺) and (ξT

1,(̺), . . . , ξ
T
ℓ,(̺)) ⊂ H be the pairs of eigenvalue and eigenvectors satisfying (3.18).

Then, for ̺ = 1, 2,

T 2
s∑

j=1

τT
j,(̺)

d
→ tr

(
(Ṽ(̺)|A→A)−1W̃(̺)|A→A

)
, (3.19)

T 2
q∑

j=1

τT
j,(̺)

p
→ ∞ for any s+ 1 ≤ q ≤ ℓ. (3.20)

Remark 6. As in Remark 4, it can be shown that the limiting distribution in (3.19) satisfies

tr
(
(Ṽ(̺)|A→A)−1W̃(̺)|A→A

)
d
= tr

((∫ 1

0
V (̺)

s (r)V (̺)
s

′(r)dr
)−1 ∫ 1

0
W (̺)

s (r)W (̺)
s

′(r)dr

)
, (3.21)

where W (̺)
s is s-dimensional demeaned (resp. detrended) Brownian motion when ̺ = 1 (resp.

̺ = 2), and V (̺)
s (r) =

∫ r
0 W

(̺)
s (w)dw. As in Remark 4, quantiles of this distribution can be

found by simulation. For ̺ = 1, 2, these are tabulated in Breitung (2002). �

3.5 Practical choice of P T
ℓ for feasible test

In this section we discuss practical, data-dependent choices of the projection operator, P T
ℓ ,

that asymptotically span the nonstationary subspace, i.e. satisfy Assumption 3. To avoid

basing the generalized eigenvalue problems in (3.9) and (3.18) on high-dimensional covariance

matrices, which could lead to inaccuracy or even inconsistency of eigenvalues (Yao et al.,

2012), we suggest projection operators constructed from a small set of orthonormal vectors.
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The next remark discusses one such projection, based on Ĉ or Ĉ(̺), as applied by Chang et al.

(2016). The subsequent theorem discusses another projection, based on our K̂ or K̂(̺)

Remark 7. Let C̃ equal Ĉ or Ĉ(̺) for ̺ = 1, 2, depending on the specification of deterministic

components, and let {γT
j , φ

T
j } be the pairs of eigenvalues and eigenvectors satisfying γT

j φ
T
j =

C̃φT
j for γT

1 ≥ γT
2 ≥ . . .. If Assumptions 1 and 2 hold, it follows from Theorem 3.3 of Chang

et al. (2016) that P T
ℓ =

∑ℓ
j=1 φ

T
j ⊗ φT

j satisfies Assumption 3 for any ℓ ≥ s. �

Theorem 4. Suppose that Assumptions 1 and 2 hold. Let K̃ equal K̂ or K̂(̺) for ̺ = 1, 2,

depending on the specification of deterministic components, and let {γT
j , φ

T
j } be the pairs of

eigenvalues and eigenvectors satisfying

γT
j φ

T
j = K̃φT

j (3.22)

for γT
1 ≥ γT

2 ≥ . . .. Then P T
ℓ =

∑ℓ
j=1 φ

T
j ⊗ φT

j satisfies Assumption 3 for any ℓ ≥ s.

In Theorem 4, we suggest an estimate P T
ℓ based on eigenanalysis of K̃ following the idea

of Chang et al. (2016) who estimate P T
ℓ based on eigenanalysis of C̃; see Remark 7. In either

case, the space spanned by the first s eigenvectors converges to the nonstationary subspace,

such that Assumption 3 is satisfied for any ℓ ≥ s. We use these results to form test statistics

associated with the null hypothesis in (3.2) as follows.

Remark 8. Following Remark 4, we test the null hypothesis in (3.2) using the test statistic

T 2∑s0

j=1 τ
T
j . When the required estimate P T

ℓ is based on K̃ and Theorem 4, we denote the

test statistic by TK, and when it is based on C̃ and Remark 7, we denote the test statistic

by TC. It follows from Theorem 4 and Remark 7 that all our previous results and remarks

apply to both TK and TC. �

The statistics TK and TC depend on the tuning parameter ℓ, the choice of which is dis-

cussed next. However, we note that the limiting distributions of these statistics, as given in

Theorems 1 and 3, do not depend on any nuisance parameters. Furthermore, the compu-

tation of the statistics do not require an estimate of the long-run covariance operator Λ∆X .

In contrast, Chang et al.’s (2016) statistic requires computation of the long-run covariance

operator P T
ℓ Λ∆XP

T
ℓ for their choice of P T

ℓ , and the functional KPSS statistics of Horváth

et al. (2014) and Kokoszka and Young (2016) require estimation of the long-run covariance

operator of the sequence (Xt, t ≥ 1).

Remark 9. Note that s appearing in Theorem 4 and Remark 7 is the true dimension of

the attractor space, which of course is unknown in general. However, this is not a problem

in practice because we start with s0 = smax, where smax ≥ s, and test down; see Theorem 2.

Then we can apply Theorem 4 and Remark 7 with ℓ ≥ s0, which is feasible. Indeed, our test

is very robust to choice of smax, even when smax is much larger than s; see Section 5.4. �
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Remark 10. For the choice of ℓ, we suggest either a fixed value, for example ℓ = smax +k for

some integer k ≥ 0, or alternatively a value that depends on the null hypothesis, ℓ = s0 + k

for some integer k ≥ 0. Note that both these choices are feasible in practical application

since both smax and s0 are known to the practitioner. Clearly, the choice of ℓ may be an

important issue for finite sample properties of our tests. In our Monte Carlo simulations in

Section 4 we consider both ℓ = s0 and ℓ = s0 + 2, and find that ℓ = s0 + 2 (which of course

is feasible in practice) provides a good compromise between size and power. �

Remark 11. In Chang et al.’s (2016) test of (3.2), exactly s0 orthonormal vectors that

asymptotically span the nonstationary subspace, A, are required for consistency. An inter-

esting feature of our Assumption 3, which is supported in practice by Theorem 4, is that

our testing procedure does not require exactly s0 orthonormal vectors that asymptotically

span A. Instead, our testing procedure allows ℓ to be strictly larger than s0 in the estimate

of the asymptotic superspace, ranP T
ℓ , whose span asymptotically includes A. Intuitively, it

seems clear that estimation of A is much more difficult than estimation of any space that is

asymptotically a superspace of A, and this may cause problems for Chang et al.’s (2016) test

in finite samples. This is, to some extent, confirmed in our simulations in Section 4, where

the test with ℓ = s0 + 2 outperforms that with ℓ = s0. �

Remark 12 (Estimation of A). Sometimes, estimation of A is of independent interest.

Theorem 4 shows that the first s eigenvectors of K̃ converge to an orthonormal basis of

A. Therefore, estimation of A reduces to estimation of s, which can be determined by our

testing procedure. See also Theorem 3.3 of Chang et al. (2016), where it is shown that the

first s eigenvectors of C̃ converge to orthonormal basis of A. �

4 Monte Carlo simulations

In this section, we investigate the finite sample performance of our test by Monte Carlo

simulation. For all simulation experiments, the number of replications is 10,000, the nominal

size is 5%, and critical values for the variance ratio tests are from Table 6 in Breitung (2002)

(see Remarks 4 and 6). Note that s is the true value of the dimension of A in the DGP and

s0 is the value under the null hypothesis. We report results for five statistics: CKP is the

statistic of Chang et al. (2016), TK and TC are the variance ratio statistics using ℓ = s0 + 2

eigenvalues of the sample covariance operators K̂(1) and Ĉ(1), respectively, to construct P T
ℓ

(see Remark 8), and T ∗
K and T ∗

C are the variance ratio statistics using ℓ = s0 eigenvalues.

The performance of the CKP statistic is sensitive to the choice of bandwidth parameter used

in the estimation of the long-run covariance operator. We follow Chang et al. (2016) and use

the Parzen kernel with the automatic data-dependent bandwidth rule of Andrews (1991).

Finally, all statistics include correction for a non-zero intercept function, but no linear trend
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function.

4.1 Experiment 1: densities of individual earnings

This simulation experiment is based on the time series of cross-sectional densities of in-

dividual earnings that is analyzed in Chang et al. (2016). The observations of individual

weekly earnings are obtained from the Current Population Survey (CPS) and deflated us-

ing inflation-adjustment factors suggested by CPS with base year 2005; see https://cps.

ipums.org/cps/cpi99.shtml/. Moreover, as in Chang et al. (2016), we drop top-coded

earnings as well as zero earnings. As a result, our data set provides cross-sectional observa-

tions of individual earnings for 247 months from January 1994 to July 2014, and the number

of cross-sectional observations for each month ranges from 12,180 in April 1996 to 15,826 in

October 2001. For convenience, we divide each observation by 3500, which is strictly larger

than the historically maximal observation, 3394.81, so that all observations are in [0, 1].

Clearly, this normalization does not cause any numerical differences compared with the re-

sults without normalization. As in Chang et al. (2016), we estimate monthly densities of in-

dividual earnings by kernel density estimation with the Epanechnikov kernel and bandwidth

given by 2.3449σ̂n1/5, where σ̂ is the standard deviation of cross-sectional observations and

n is the cross-sectional sample size.

The basic data-generating process (DGP) for the simulation experiment is constructed

in the same way as in Chang et al. (2016) with the only difference that we use 247 B-

spline basis functions for the representation of L2[0, 1]-functions, and obtain the eigenvectors

(v̂1, . . . , v̂247) of the covariance operator Ĉ. We let

Xt − X̄T =
247∑

j=1

aj,tv̂j (4.1)

and
∆aj,t = βj∆aj−1,t + σjηj,t, j = 1, 2(= s),

aj,t = βjaj−1,t + σjηj,t, j ≥ 3,
(4.2)

where ηj,t are i.i.d. N(0,1) across j and t, and βj and σj are replaced by the estimates from the

observations âj,t = 〈Xt − X̄, v̂j〉 for t = 1, . . . , T . We consider sample sizes T = 200 and T =

300. Note that this DGP is a special case of the functional AR(1) processes in Section 4.3.

The results for the DGP (4.1)–(4.2) are reported in Table 1. In this simulation experi-

ment, all the tests have good size properties, but the CKP test has higher power than the

variance ratio tests. Comparing across variance ratio tests, it seems that, at least for this

DGP, the T ∗
C test has higher finite-sample power.
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Table 1: Simulation results for DGP (4.1)–(4.2)

(a) T = 200

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

TK 0.001 0.012 0.196 0.625 0.911
TC 0.002 0.028 0.436 0.906 0.985
T ∗

K 0.008 0.040 0.399 0.858 0.984
T ∗

C 0.025 0.064 0.783 0.965 1.000
CKP 0.014 0.025 0.946 0.944 0.934

(b) T = 300

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

TK 0.001 0.023 0.501 0.940 0.999
TC 0.002 0.035 0.709 0.993 1.000
T ∗

K 0.008 0.051 0.679 0.984 1.000
T ∗

C 0.025 0.056 0.921 0.997 1.000
CKP 0.013 0.034 1.000 1.000 1.000

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s = 2 and the H0 value is s0.

Nominal size is 5%.

4.2 Modifications of experiment 1: shocks less concentrated on A

In the basic DGP in (4.1)–(4.2) we have
∑2

j=1 σ
2
j/
∑247

j=1 σ
2
j ≃ 0.65. This implies that 65%

of the random functional variation at time t + 1, given all the information up to time t,

occurs in the nonstationary subspace. This seems like a very high value, in the sense that a

random shock projected onto the two-dimensional nonstationary subspace has larger variance

than that projected onto an infinite-dimensional stationary subspace. In the next DGP we

therefore replace σj in (4.2) with σ̃j defined as

σ̃2
j = (1/q1)σ

2
j , j = 1, 2(= s),

σ̃2
j = q1σ

2
j , j ≥ 3,

(4.3)

for q1 ∈ {2, 2.5}. Now
∑2

j=1 σ̃
2
j/
∑247

j=1 σ̃
2
j ≃ 0.32, 0.23 for q1 = 2, 2.5, respectively.

In Table 2 we report the results from the modified DGP in (4.3). It is clear that the

CKP test is very sensitive to the value of q1 with severe over-sizing when q1 ≥ 2. On the

other hand, the variance ratio test is quite robust to q1 with the exception of T ∗
C . Recalling

that T ∗
C is the variance ratio test with ℓ = s0, and taken in combination with the previous

results, this suggests that the choice of ℓ = s0 vs ℓ = s0 + 2 entails a finite-sample size-power

trade-off in the sense that the latter has much better size control but inferior power (in cases

where both have accurate size and hence meaningful power).

Overall, for the TK, TC, and T ∗
K tests, the sizes and powers are almost unaffected by the

value of q1. This robustness seems to be a big advantage of the variance ratio test in practical

applications. Comparing with the results of Table 1, where the CKP test showed superior

finite sample properties, it seems that those results are somewhat specific to the case where

random shocks are concentrated on the nonstationary subspace. In general, random shocks

may not be concentrated on a lower dimensional nonstationary subspace, and other values

of the variance decomposition should be considered as well, such as those in Table 2.

In our next modification we also make the shocks less concentrated on the lower-dimensional
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Table 2: Simulation results for modified DGP (4.3)

(a) T = 200

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

q1 = 2 (32.0%)
TK 0.000 0.010 0.193 0.621 0.911
TC 0.002 0.033 0.436 0.906 0.985
T ∗

K 0.006 0.026 0.386 0.851 0.983
T ∗

C 0.025 0.203 0.789 0.967 1.000
CKP 0.014 0.174 0.953 0.946 0.934

q1 = 2.5 (23.2%)
TK 0.000 0.010 0.191 0.619 0.910
TC 0.004 0.063 0.444 0.906 0.985
T ∗

K 0.005 0.031 0.386 0.850 0.982
T ∗

C 0.025 0.364 0.813 0.971 1.000
CKP 0.015 0.382 0.961 0.952 0.939

(b) T = 300

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

q1 = 2 (32.0%)
TK 0.000 0.021 0.499 0.939 0.999
TC 0.002 0.035 0.707 0.990 1.000
T ∗

K 0.006 0.037 0.669 0.980 1.000
T ∗

C 0.029 0.134 0.924 0.996 1.000
CKP 0.013 0.100 1.000 1.000 1.000

q1 = 2.5 (23.2%)
TK 0.000 0.021 0.498 0.939 0.999
TC 0.004 0.050 0.707 0.990 1.000
T ∗

K 0.006 0.038 0.668 0.980 1.000
T ∗

C 0.029 0.268 0.930 0.996 1.000
CKP 0.014 0.252 1.000 1.000 1.000

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s = 2 and the H0 value is s0.

Nominal size is 5%.

nonstationary subspace, A, by including estimation/measurement error in the DGP. First,

the time series in the Chang et al. (2016) DGP in (4.1)–(4.2) consist of estimated densities, so

we should not disregard estimation errors. Second, the first step of functional time series anal-

ysis typically includes smoothing of discrete observations to obtain functional observations.

This data pre-processing also entails estimation error for each Xt. In either case, we make the

DGP a little more realistic by adding an i.i.d. noise to each realization. That is, we consider

X̃t = Xt + q2ut, ut = PF 10Bt, (4.4)

where Bt is a sequence of i.i.d. standard Brownian bridges and PF 10 denote the projection

operator onto the span of the first 10 Fourier basis functions (without a constant function).

The projection PF 10 is not essential to this experiment and is applied to make X̃t a smooth

function for each t. The inverse signal-to-noise ratio is q2 ∈ {0.1, 0.15}.

The results for the modified DGP (4.4) are reported in Table 3. The CKP test has very

poor size control for this DGP. Even for the larger sample with T = 300, the size of the

CKP test is 10.3% with q2 = 0.1 and 24.0% with q2 = 0.15. The TC, T ∗
K , and T ∗

C tests also

have some size distortions, although they are not at all as pronounced as for the CKP test.

On the other hand, the TK test has quite good size control for this DGP.

The simulation results for power are difficult to compare because of the large size distor-

tions for some tests. However, it is worth noting that the CKP test suffers from a power rever-

sal problem, in the sense that power declines as s0 increases and is further away from the true
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Table 3: Simulation results for modified DGP (4.4)

(a) T = 200

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

q2 = 0.1
TK 0.001 0.032 0.476 0.932 0.999
TC 0.004 0.071 0.749 0.990 1.000
T ∗

K 0.008 0.064 0.644 0.977 1.000
T ∗

C 0.030 0.107 0.980 1.000 1.000
CKP 0.027 0.086 0.865 0.539 0.107

q2 = 0.15
TK 0.002 0.060 0.669 0.985 1.000
TC 0.006 0.107 0.913 0.999 1.000
T ∗

K 0.009 0.099 0.818 0.996 1.000
T ∗

C 0.037 0.210 0.998 1.000 1.000
CKP 0.055 0.237 0.792 0.365 0.030

(b) T = 300

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

q2 = 0.1
TK 0.001 0.043 0.758 0.996 1.000
TC 0.003 0.062 0.901 1.000 1.000
T ∗

K 0.007 0.066 0.848 0.999 1.000
T ∗

C 0.030 0.084 0.994 1.000 1.000
CKP 0.026 0.103 1.000 1.000 0.980

q2 = 0.15
TK 0.002 0.067 0.865 0.999 1.000
TC 0.005 0.089 0.972 1.000 1.000
T ∗

K 0.008 0.099 0.933 1.000 1.000
T ∗

C 0.032 0.142 0.999 1.000 1.000
CKP 0.049 0.240 0.999 0.995 0.878

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s = 2 and the H0 value is s0.

Nominal size is 5%.

s. This phenomenon was also observed by Chang et al. (2016) in their Table 7, where the true

number of stochastic trends is one, and columns 1 and 2 are reasonable, but columns 3–5 cor-

respond to alternatives that are farther away from the null hypothesis with declining power.

Overall, the CKP test is clearly much more sensitive to both modifications considered

than the variance ratio tests. In particular, the TK test is very robust to all specifications.

4.3 Experiment 2: functional AR(1) process

For our next simulation experiment we consider the commonly applied functional AR(1)

model. In particular, our setup follows that of Beare et al. (2017) and Aue et al. (2017). Let

(ζj, j = 1, . . . , 21) be the first 21 orthonormal polynomial basis functions defined on [0, 1],

and let (ζ(j), j = 1, . . . , 21) be the same collection in a different order obtained by randomly

permuting (ζj, j = 1, . . . , 8) and (ζj, j = 9, . . . , 21), separately. We generate the functional

time series as

Xt = µ+
21∑

j=1

θj〈ζ(j), Xt−1〉ζ(j) +Bt, (4.5)

where (Bt, t = 1, . . . , T ) is a sequence of i.i.d. standard Brownian bridges with

θj =





1 for j ≤ s,

θ(j−s) for j ≥ s+ 1,

for 0 ≤ θ < 1. Following, e.g., Aue et al. (2017), we permute (ζj) as described above to avoid

any effects caused by the particular shape and ordering of the basis functions, and hence the
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Table 4: Functional AR(1) with permutation, θ = 0.5

(a) T = 200

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 0.9790 1.0000 1.0000 1.0000
1 0.0437 0.8864 0.9989 1.0000
2 0.0399 0.8783 0.9994
3 0.0464 0.8690
4 0.0611

TC 0 0.9935 1.0000 1.0000 1.0000
1 0.0546 0.9533 0.9997 1.0000
2 0.0737 0.9427 0.9999
3 0.1101 0.9309
4 0.1543

T ∗
K 0 0.9964 1.0000 1.0000 1.0000

1 0.0641 0.9745 0.9998 1.0000
2 0.1024 0.9695 1.0000
3 0.2039 0.9695
4 0.3192

T ∗
C 0 0.9994 1.0000 1.0000 1.0000

1 0.3373 0.9936 1.0000 1.0000
2 0.6256 0.9920 1.0000
3 0.7577 0.9916
4 0.8236

CKP 0 1.0000 1.0000 0.9996 0.9562
1 0.3799 0.9999 0.9987 0.9624
2 0.6925 0.9956 0.9701
3 0.7999 0.9709
4 0.8466

(b) T = 500

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 1.0000 1.0000 1.0000 1.0000
1 0.0516 0.9941 1.0000 1.0000
2 0.0450 0.9953 1.0000
3 0.0502 0.9967
4 0.0626

TC 0 1.0000 1.0000 1.0000 1.0000
1 0.0526 0.9982 1.0000 1.0000
2 0.0490 0.9973 1.0000
3 0.0632 0.9988
4 0.1040

T ∗
K 0 1.0000 1.0000 1.0000 1.0000

1 0.0546 0.9992 1.0000 1.0000
2 0.0545 0.9985 1.0000
3 0.0782 0.9997
4 0.1439

T ∗
C 0 1.0000 1.0000 1.0000 1.0000

1 0.1622 0.9997 1.0000 1.0000
2 0.3934 0.9996 1.0000
3 0.5674 1.0000
4 0.6623

CKP 0 1.0000 1.0000 1.0000 1.0000
1 0.1887 1.0000 1.0000 1.0000
2 0.4530 1.0000 1.0000
3 0.6323 1.0000
4 0.7245

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and the H0 value is s0. Nominal

size is 5%.

shapes of the stationary and nonstationary subspaces. Intuitively, when the nonstationary

subspace is s-dimensional, s elements are randomly drawn from the first eight polynomials.

Similarly, to avoid any effects caused by the particular shape of the mean function µ in (4.5),

it is generated by
∑21

j=1 gjζj, where gj are i.i.d. standard normal random variables. Finally,

the functional observations are constructed by smoothing (Xt, t = 1, . . . , T ) in (4.5) using

41 Fourier basis functions (the choice of basis functions has minimal effect in this setting).

Table 4 summarizes our simulation results for θ = 0.5 (results for θ = 0.1 and θ = 0.8

are presented in Tables 9 and 10, respectively, in Appendix D). We first note that the CKP
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test has very poor size control for all θ and all s = dim(A). Even though it improves as the

sample size increases, there is still severe over-rejection for T = 500. On the other hand,

the TK variance ratio test has excellent size control for all θ and s considered. The variance

ratio tests based on C and those with ℓ = s0 are also over-sized. This suggests again that

estimation of A is more difficult than estimation of an asymptotic superspace of A, and this

may be the underlying cause of the size distortion. Comparison of finite-sample power is

quite meaningless given the large size distortions of the CKP test, so we only note that the

TK variance ratio test seems to display excellent power in this simulation setup.

Finally, we also simulated model (4.5) with the nonstationary subspace spanned by the

first s polynomial basis functions, i.e. without permutation of (ζj, j = 1, . . . , 8). These results

are reported in Tables 11–13 in Appendix D. Because lower-order polynomial basis functions

are more smooth than higher-order polynomials, all tests have better finite-sample properties

in this case. However, the CKP test still substantially over-rejects the null hypothesis when

either s or θ is relatively high, while the variance ratio tests perform very well overall.

Overall, our Monte Carlo simulations strongly support the use of the TK variance ratio

test. It is very robust to the DGP specifications with excellent size control throughout. Fur-

ther evidence on the robustness based on empirical applications is presented in Section 5.4.

5 Empirical applications

5.1 Logit transformed age-specific employment rates

We first apply our methodology to the time series of age-specific employment rates in the

US observed monthly from January 1989 to November 2018. The data is available from the

CPS at https://www.ipums.org/. We only consider individuals in the working age (15–64)

population. For age a, the age-specific employment rate at time t is computed as

Xa,t =

∑nt

i=1 wi,tZi,t1{ai,t = a}
∑nt

i=1 wi,t1{ai,t = a}
,

where 1{·} denotes the indicator function, nt is the number of individuals observed at time t,

and wi,t, ai,t, and Zi,t denote the weight (WTFINL in CPS), age, and employment status

dummy of individual i at time t, respectively. The employment rate specific to each age,

Xa,t, is then seasonally adjusted using the software package provided by the US Census

Bureau. The age-specific employment rate takes values between 0 to 1 by construction, so as

is common in the literature, we hereafter consider the logit transformation, ψ(Xa,t), instead

of Xa,t. Finally, the functional observations Xt(u) for u ∈ [15, 64] and t = 1, . . . , T = 359

are obtained by smoothing ψ(Xa,t) over a using 31 Bspline basis functions.

In Figure 1 we plot three real-valued sequences (〈Xt, v〉, t ≥ 1) to explore characteristics
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Figure 1: Group characteristics

(a) younger age group (b) older age group (c) all ages

Figure 2: Monthly age-specific employment rates January 1989 to November 2018

(a) logit of employment rates (b) first six eigenvalues of K̂(2) (c) first score

(d) second score (e) third score (f) fourth score

of the functional time series. Specifically, we consider v = vy, vo, and va, where

vy(u) = 1{u ≤ 25}, vo(u) = 1{u ≥ 54}, va(u) = 1, u ∈ [15, 64].

Clearly, 〈Xt, vy〉 and 〈Xt, vo〉) are the average employment rates for the younger and older age

groups, respectively, and 〈Xt, va〉 is the overall average employment rate. Firstly, Figure 1

suggests that the functional time series of age-specific employment rates is nonstationary,

because if it were stationary, then (〈Xt, v〉, t ≥ 1) would be stationary for any arbitrary choice

of v ∈ H. Secondly, it seems that the series may have a linear time trend. Thirdly, the three

series clearly have some degree of co-movement, but they also have their own characteristics.

For example, in 2009 employment rates decline sharply in both age groups, but the decline

seems more severe in the younger age group than in the older age group. If we only focus on

the employment rate that is aggregated over ages as in Figure 1(c), this information is lost.
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Table 5: Test results for logit of age-specific employment rates

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

Intercept only
TK 17.67 156.38 579.59 1623.55∗∗ 4411.19∗∗∗

CKP 0.1134 0.0325 0.0077∗∗∗ 0.0075∗∗∗ 0.0068∗∗∗

Linear trend & intercept
TK 130.43 426.18 1401.94∗∗ 4381.61∗∗∗ 7107.46∗∗∗

CKP 0.1110 0.0093∗∗∗ 0.0074∗∗∗ 0.0073∗∗∗ 0.0066∗∗∗

Note: The functional data are smoothed with 31 Bspline functions, and the number of observations is

T = 359. We use ∗, ∗∗, and ∗∗∗ to denote rejection at 10%, 5%, and 1% significance level, respectively.

Critical values for the CKP test in the linear trend case are calculated from the functional residuals U
(2)
t

and 100,000 approximate realizations from the asymptotic distribution. Data and R code to replicate this

table are available on the authors’ websites.

Panel (a) of Figure 2 displays the functional observations. In Figure 2(b) we display the

first six (largest) eigenvalues of K̂(2) from (3.22) on a logarithmic scale. Let the inner product

of the jth eigenvector of (3.22) with (U
(̺)
t , 1 ≤ t ≤ T ) denote jth score process. Figure 2(c)–

(f) displays the first four score processes. Because Figure 1 suggested the possible presence of

a linear time trend, this has been applied in the specification of the deterministic component

for the plots. Note that the horizontal axis in Figure 2(a) is age and not time, so a “trend”

in this plot is related to the shape of the intercept function and not the time trend.

The order of magnitude and rate of decay of the eigenvalues can be suggestive of the di-

mension of the nonstationary subspace, as discussed in Chang et al. (2016) for the eigenval-

ues of Ĉ. In particular, the number of “large” eigenvalues should correspond to the dimen-

sion of the nonstationary subspace. Furthermore, based on Theorem 4 we expect that the

first s score processes behave as unit root processes. From the plots of both the eigenvalues

and the score processes, there seems to be quite strong graphical evidence in favor of the di-

mension being at least one and possibly two.

Table 5 summarizes the test results under two different specifications of deterministic

component, nonzero intercept and linear trend. Even though Chang et al. (2016) do not

explicitly consider the case where the DGP includes a linear trend function, we may apply

their test to the functional residuals U
(2)
t in which case the asymptotic distribution of their

test statistic under the null is given by the minimum eigenvalue of
∫ 1

0 W
(2)
s0

(r)W (2)
s0

′(r)dr.

For both specifications of deterministic terms in Table 5, the CKP test rejects more than

the TK variance ratio test. In particular, with only an intercept, the CKP test suggests that

the dimension of the nonstationary subspace is ŝ = 2 and the TK test suggests ŝ = 3. Allowing

for a linear trend, which based on Figure 1 seems prudent, the CKP and TK tests suggest ŝ = 1
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Table 6: Johansen trace test results for logit of age-specific employment rates

Lag length, k 1 2 3 4 5

ŝ 1 2 23 20 13

Note: The data are the 50-dimensional vector-valued series ψ(Xa,t), a = 1, . . . , 50. The estimated number

of stochastic trends is based on Johansen’s trace test with lag length k, a restricted trend, and significance

level 5%.

and ŝ = 2, respectively. This pattern is, at least to some extent, expected from the simulation

evidence, where the CKP test was often found to be over-sized. For that reason, we would

be most inclined to conclude that the logit transformed age-specific employment curves have

a two-dimensional nonstationary subspace (i.e., are driven by two stochastic trends).

Before moving on, we entertain the following idea. We consider the series (ψ(Xa,t), t =

1, . . . , 359) for a = 1, . . . , 50 as a 50-dimensional vector-valued time series and apply standard

methods from finite-dimensional Euclidean space (note that in the next empirical examples

the dimension is too high for this idea to be feasible). In particular, we apply Johansen’s

(1995) trace test for cointegration rank in a vector error-correction model with k lags and

an unrestricted constant and a restricted trend. The results are presented in Table 6 for

k = 1, . . . , 5. While more lags may be preferable with monthly data, e.g. k = 12, the

eigenvalue calculations fail for k > 5; see Yao et al. (2012) for theoretical results on failure

of eigenvalue calculations with large covariance matrices. It is well known that Johansen’s

(1995) test has low power in high-dimensional systems (Ho and Sørensen, 1996; Onatski and

Wang, 2018), and of course it can be sensitive to the parametric specification of the lag-

order. This is also what we find in Table 6, at least for k ≥ 3, whereas for k = 1, 2 the

results could be a consequence of size-distortion due to under-specification of the lag-order.

5.2 Minimum temperatures in Australia

The next empirical example is an application to yearly minimum temperature curves in

Australia. This example is also considered in Aue et al. (2017), who reject the null of

stationarity against the alternative of structural change in the mean function. However,

their finding could be a consequence of a nontrivial nonstationary subspace.

The raw data is obtained from the Australian Bureau of Meteorology at http://www.

bom.gov.au and consists of daily minimum temperature observations. For each year, the

observations are smoothed using 23 Fourier basis functions to obtain a curve of minimum

temperatures through the year. We consider six weather stations that have relatively large

samples, and we allow for a non-zero intercept function in the processes.

Figure 3 shows a graphical summary of the Sydney data set. In particular, Figure 3(b)

shows the six largest eigenvalues of K̂(1) on a logarithmic scale. The first eigenvalue is clearly
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Figure 3: Annual minimum temperature curves at Sydney station 1860–2018

(a) minimum temp. curves (b) first six eigenvalues of K̂(1) (c) first and second scores

Table 7: Test results for Australian minimum temperatures

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

Sydney, 1860–2018
TK 16.27 440.81∗∗ 1508.09∗∗∗ 3348.58∗∗∗ 6728.21∗∗∗

CKP 0.0523 0.0199∗∗ 0.0184 0.0149 0.0148

Melbourne, 1856–2014
TK 14.65 397.21∗∗ 1331.09∗∗∗ 4421.53∗∗∗ 7933.17∗∗∗

CKP 0.0846 0.0194∗∗ 0.0174∗ 0.0138 0.0137

Gunnedah Pool, 1877–2011
TK 68.92∗ 393.15∗∗ 1369.26∗∗∗ 2809.60∗∗∗ 4820.76∗∗∗

CKP 0.0202∗∗∗ 0.0166∗∗ 0.0141∗∗ 0.0142 0.0134

Cape Otway, 1864–2018
TK 55.64 980.81∗∗∗ 2197.37∗∗∗ 4611.09∗∗∗ 8595.01∗∗∗

CKP 0.0187∗∗∗ 0.0140∗∗∗ 0.0143∗∗ 0.0138 0.0131

Boulia Airport, 1888–2018
TK 31.56 226.93 1376.03∗∗∗ 3510.24∗∗∗ 6449.36∗∗∗

CKP 0.0176∗∗∗ 0.0160∗∗∗ 0.0129∗∗ 0.0130∗ 0.0140

Gaydah Post Office, 1894–2008
TK 16.72 429.14∗∗ 1109.67∗∗ 2574.92∗∗∗ 4469.61∗∗∗

CKP 0.0517 0.0208∗∗ 0.0184 0.0182 0.0154

Note: The functional data are smoothed with 23 Fourier basis functions. In the order of stations reported

in the table, the numbers of observations are 160, 161, 133, 155, 126, and 117, respectively. We use ∗, ∗∗,

and ∗∗∗ to denote rejection at 10%, 5%, and 1% significance level, respectively.

very different from the remaining eigenvalues, suggesting a one-dimensional nonstationary

subspace (one stochastic trend). This is also suggested from the plots of the first and second

scores in Figure 3(c), of which only the first seems nonstationary.

Table 7 reports the test results for the six temperature series. The findings for the CKP

test are very mixed. In all of the data sets, s0 = 5 is not rejected, although smaller values
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Figure 4: Monthly electricity demand in Ontario January 1994 to November 2018

(a) electricity demand curves (b) first six eigenvalues of K̂ (c) first and second scores

are rejected, and smaller yet are not. The CKP findings are thus strongly dependent on the

starting point, smax, of the procedure. On the other hand, our TK test detects one stochastic

trend for all temperature curves with at least 5% significance (s0 = 1 is in fact rejected for

the Gunnedah Pool series, but only at the 10% level).

Clearly, this strong dependence of the CKP procedure on the starting value, smax, is

undesirable in practice. At the same time, our TK variance ratio test seems to be much less

subject to this problem, and this could be a very appealing feature of our test to applied

researchers. The robustness (or lack thereof) of the CKP procedure and the TK variance

ratio test to the starting value, smax, is further explored in Section 5.4.

5.3 Ontario monthly electricity demand

In our final empirical example, we examine the existence of nonstationarity in Ontario elec-

tricity demand. The raw data is observed every hour from January 1994 to November 2018,

and is available at http://www.ieso.ca. We obtain T = 299 monthly electricity demand

curves using around 700 hourly data points for each month smoothed with 31 Bspline ba-

sis functions. The monthly curves are seasonally adjusted by functional regression on a set

of 12 seasonal dummies (of course, this implies that the series have zero mean, but in the

asymptotic theory it corresponds to inclusion of an intercept function).

Figure 4 shows a graphical summary of the time series of monthly electricity demand

curves. As in the previous example, the first eigenvalue is orders of magnitude larger than

the remaining eigenvalues, and the first score process looks nonstationary while the second

looks stationary. Again, this is suggestive of a one-dimensional nonstationary subspace.

Table 8 presents test results for the electricity demand data set. The TK test concludes

that the nonstationary subspace is one-dimensional at the 5% significance level. The CKP

test, on the other hand, concludes that the process is either stationary or has a three-

dimensional nonstationary subspace at the 1% significance level (s0 = 3 is the only non-

rejected hypothesis). In view of the Monte Carlo simulation results, this is not too surprising.
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Table 8: Test results for Ontario monthly electricity demand

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

TK 49.26 446.95∗∗ 2533.74∗∗∗ 5163.29∗∗∗ 8154.96∗∗∗

CKP 0.0188∗∗∗ 0.0187∗∗ 0.0190 0.0102∗∗ 0.0075∗∗∗

Note: The seasonally adjusted functional data are smoothed with 31 Bspline basis functions. The number of

observations is T = 299. We use ∗, ∗∗, and ∗∗∗ to denote rejection at 10%, 5%, and 1% significance level, resp.

Figure 5: Estimates from the CKP and VR procedures for the data sets

(a) age-specific empl. rate (b) Sydney min. temp. (c) Gunnedah Pool min. temp.

(d) Boulia Airport min. temp. (e) Ontario electricity demand

Note: For age-specific employment rates a linear trend is included, for the minimum temperature series an

intercept but no trend is included, and for the electricity demand seasonal dummies are included. In all

cases the significance level of the tests is 5%. The results for the minimum temperatures in Gaydah Post

Office, Melbourne, and Cape Otway are identical to those in Panels (b), (b), and (d), respectively.

5.4 Robustness to choice of smax

In practice, rather than testing a specific hypothesis of interest, we expect that the most

common application of our proposed test, and of the CKP test, is to estimate the dimension

of the nonstationary subspace as in Theorem 2. To this end, both procedures require a priori

setting an upper bound, denoted smax. The hypothesesH0 : dim(A) = s0 for s0 = smax, smax−

1, . . . , 1 are then tested sequentially. It is preferable that the result of this procedure is robust

to the choice of smax, i.e. that it does not depend on the choice of smax (as long as smax ≥ s).

We know from the empirical examples discussed above that the CKP results can depend

heavily on the choice of smax, while the TK variance ratio test was more robust to this choice.
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We investigate this issue further in Figure 5, where we report the estimated dimension for

each data set using the sequential testing procedure in Theorem 2 with 5% significance level

for smax = 3, . . . , 20. It is obvious from Figure 5 that the CKP procedure is very sensitive

to the initial hypothesis, smax, while the variance ratio test is very robust.

In particular, the CKP test tends not to reject the initial hypothesis, H0 : dim(A) = smax,

when smax gets bigger. Consequently, sequential application of the CKP test would either

lead to the conclusion that the dimension of the nonstationary subspace is smax, or smax would

be increased and the sequential test repeated (as discussed in Remark 5) thus exacerbating

the problem. This issue with the CKP test is likely due to the power reversal problem of the

test as discussed for the modified DGP (4.4) in Section 4.1 and also observed by Chang et al.

(2016) in their Table 7. In some cases, this dependence of the CKP test on the choice of smax

is a relatively minor issue, and can be avoided by careful choice of smax based on graphical

or other measures as discussed in Chang et al. (2016, Section 5). For example, for the age-

specific employment and electricity demand applications, the CKP procedure gives the same

estimate for smax ≤ 7 and smax ≤ 6, respectively. However, in all the other applications,

the CKP procedure finds that ŝ = smax for all choices of smax ≥ 4. This is problematic,

not only in view of Remark 5, but also since two researchers with different choices of smax

would frequently find different estimates from the CKP procedure, even though they retain

the same significance level.

On the other hand, our TK variance ratio procedure is very robust to the choice of

smax. For all the data sets, it gives the same estimate for all smax considered. For practical

application, this is a substantial advantage of our procedure.

6 Conclusion

We have proposed a testing procedure to determine the dimension of the nonstationary

subspace (number of stochastic trends) in functional time series taking values in a Hilbert

space. Our test statistic is of the variance ratio type, and in the univariate special case it

reduces to the well-known KPSS statistic of Kwiatkowski et al. (1992) with bandwidth zero.

The test is based on a projection onto a subspace of Hilbert space that is a superspace of

the true nonstationary subspace with probability converging to one. We provided an easily

implemented candidate for this required projection operator using empirical eigenvectors of

covariance operators. We have derived the asymptotic distribution of the test statistic under

the null hypothesis, which is a functional of standard Brownian motion. It does not depend

on the choice of projection operator nor on the number of eigenvectors used to construct the

projection operator. Monte Carlo simulation results were reported which provide evidence

that our test has good finite sample properties and is a good alternative to the existing test
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of Chang et al. (2016). Finally, we applied our methodology to three empirical data sets,

age-specific US employment curves, Australian temperature curves, and Ontario electricity

demand curves, and in all cases found evidence of nontrivial nonstationary subspaces.

Appendix A: Preliminary lemmas

The first lemma shows convergence of the sample covariance operators.

Lemma 1. Suppose that Assumptions 1 and 2 are satisfied. With the notation in Section

3.2 it holds that

‖T−2Ĉ − C‖LH
= op(1), (A.1)

‖T−4K̂ − K‖LH
= op(1). (A.2)

The next lemma shows the different behavior of the sample covariance operators in dif-

ferent directions of the parameter space.

Lemma 2. Suppose that Assumptions 1, 2 and 3 are satisfied. With the notation in Section

3.3 the following holds.

(i) For any vT ∈ ranP T
ℓ satisfying supT ‖vT ‖ < ∞,

|〈T−2P T
ℓ ĈP T

ℓ v
T , vT 〉 − 〈CvT , vT 〉| = op(1),

|〈T−4P T
ℓ K̂P T

ℓ v
T , vT 〉 − 〈KvT , vT 〉| = op(1).

(ii) For any vT ∈ A
⊥ ∩ ranP T

ℓ satisfying supT ‖vT ‖ < ∞,

〈CvT , vT 〉 = 0 and 〈KvT , vT 〉 = 0,

|〈T−1P T
ℓ ĈP T

ℓ v
T , vT 〉 − 〈(I − PA)Cν(I − PA)vT , vT 〉| = op(1),

〈T−2P T
ℓ K̂P T

ℓ v
T , vT 〉 = Op(1).

The results of Lemmas 1 and 2 will be important in the derivation of the limiting distri-

bution of our test statistic. In the next two lemmas, these results are extended to accom-

modate deterministic terms.

Lemma 3. Suppose that Assumptions 1 and 2 are satisfied. With the notation in Section

3.4 it holds that, for ̺ = 1, 2,

‖T−2Ĉ(̺) − C(̺)‖LH
= op(1), (A.3)

‖T−4K̂(̺) − K(̺)‖LH
= op(1), (A.4)

where C(̺) d
= Λ

1/2
∆XW̃(̺)Λ

1/2
∆X and K(̺) d

= Λ
1/2
∆X Ṽ(̺)Λ

1/2
∆X .

Lemma 4. Suppose that Assumptions 1, 2, and 3 are satisfied. With the notation in Section

3.4 the following holds for ̺ = 1, 2.
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(i) For any vT ∈ ranP T
ℓ satisfying supT ‖vT ‖ < ∞,

|〈T−2P T
ℓ Ĉ(̺)P T

ℓ v
T , vT 〉 − 〈C(̺)vT , vT 〉| = op(1),

|〈T−4P T
ℓ K̂(̺)P T

ℓ v
T , vT 〉 − 〈K(̺)vT , vT 〉| = op(1).

(ii) For any vT ∈ A
⊥ ∩ ranP T

ℓ satisfying supT ‖vT ‖ < ∞,

〈C(̺)vT , vT 〉 = 0 and 〈K(̺)vT , vT 〉 = 0,

|〈T−1P T
ℓ Ĉ(̺)P T

ℓ v
T , vT 〉 − 〈(I − PA)Cν(I − PA)vT , vT 〉| = op(1),

〈T−2P T
ℓ K̂(̺)P T

ℓ v
T , vT 〉 = Op(1).

Appendix B: Proofs of theorems

B.1 Proof of Theorem 1

We consider the decomposition P T
ℓ = P T

ℓ PA + P T
ℓ (I − PA) = P T

ℓ,A + P T
ℓ,A⊥ , for P T

ℓ,A = P T
ℓ PA

and P T
ℓ,A⊥ = P T

ℓ (I − PA), and the following operator matrices,

K̂ℓ = P T
ℓ K̂P T

ℓ |ran P T

ℓ
→ran P T

ℓ

=


 (P T

ℓ,A)∗K̂P T
ℓ,A (P T

ℓ,A⊥)∗K̂P T
ℓ,A

(P T
ℓ,A)∗K̂P T

ℓ,A⊥ (P T
ℓ,A⊥)∗K̂P T

ℓ,A⊥


 ,

Ĉℓ = P T
ℓ ĈP T

ℓ |ran P T

ℓ
→ran P T

ℓ

=


 (P T

ℓ,A)∗ĈP T
ℓ,A (P T

ℓ,A⊥)∗ĈP T
ℓ,A

(P T
ℓ,A)∗ĈP T

ℓ,A⊥ (P T
ℓ,A⊥)∗ĈP T

ℓ,A⊥


 .

Let DT denote the normalization operator matrix

DT =


T

−1/2I1 0

0 I2


 ,

where I1 and I2 are properly defined identity operators. Then the generalized eigenvalue

problem (3.9) can be rewritten as

(T 2τT
j )(T−1DT K̂ℓDT )ξT

j = (T−3DT ĈℓDT )ξT
j , ξT

j ∈ ranP T
ℓ . (B.1)

By the isomorphism between R
ℓ and any ℓ-dimensional subspace of H, the general-

ized eigenvalue problem (B.1) may be understood as a standard eigenvalue problem in R
ℓ.

Let [T−1DT ĈℓDT ] (resp. [T−3DT K̂ℓDT ]) be the matrix representation of T−1DT ĈℓDT (resp.

T−3DT K̂ℓDT ) with respect to the orthonormal basis (φT
1 , . . . , φ

T
ℓ ) of ranP T

ℓ , as given by

[T−1DT ĈℓDT ]ij = 〈T−1DT ĈℓDTφ
T
j , φ

T
i 〉, 1 ≤ i, j ≤ ℓ,

[T−3DT K̂ℓDT ]ij = 〈T−3DT K̂ℓDTφ
T
j , φ

T
i 〉, 1 ≤ i, j ≤ ℓ.
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From Assumption 3, Remark 2, and the results in Lemma 2, it follows that

[T−3DT K̂ℓDT ] −


[K] 0

0 0


 p

→ 0, [K]ij = 〈Kφj, φi〉, 1 ≤ i, j ≤ s, (B.2)

[T−1DT ĈℓDT ] −


[C] 0

0 [C̃ν ]T


 p

→ 0, [C]ij = 〈Cφj, φi〉, 1 ≤ i, j ≤ s, (B.3)

[C̃ν ]Tij = 〈C̃νφ
T
j , φ

T
i 〉, s+ 1 ≤ i, j ≤ ℓ, (B.4)

where C̃ν = (I − PA)Cν(I − PA). Moreover, by our Assumption 2(ii) and Remark 2, the

matrix [C̃ν ]T is positive definite regardless of the limiting behavior of (φT
s+1, . . . , φ

T
ℓ ).

Given the results in (B.2)–(B.4), only the first s eigenvalues of (B.1) are finite in the limit

when normalized by T 2. Specifically, it follows that

T 2
s∑

j=1

τT
j

p
→

s∑

j=1

τj,

(T 2τT
j )−1 p

→ 0, j = s+ 1, . . . , ℓ,

which proves (3.12). The limiting eigenvalues (τ1, . . . , τs) and corresponding eigenvectors

(ξ1, . . . , ξs) are defined by the limiting eigenvalue problem

τj[K]ξj = [C]ξj, ξj ∈ R
s. (B.5)

Thus, we may deduce from (B.5) and Remark 4 that
s∑

j=1

τj = tr
(
[K]−1[C]

)
= tr

(
(Λ

1/2
∆X ṼΛ

1/2
∆X |A→A)−1Λ

1/2
∆XW̃Λ

1/2
∆X

)
.

Finally, recall that Λ
1/2
∆X : A → A and Ṽ : A → A are both invertible operators (almost surely

for Ṽ). By the properties of the trace, it then follows that
s∑

j=1

τj = tr
(
((Λ

1/2
∆X)|A→A)−1(Ṽ|A→A)−1W̃|A→A(Λ

1/2
∆X |A→A)

)
= tr

(
(Ṽ|A→A)−1W̃|A→A

)
,

which proves (3.11).

B.2 Proof of Theorem 2

The result that P{ŝ > s} → 0 is a direct consequence of the consistency of the test, i.e.

of (3.12) in Theorem 1, and the assumption that P{smax ≥ s} → 1. Thus, because P{ŝ >

s} → 0, the sequential test procedure will reach the test of the null hypothesis that s0 = s

with probability converging to one. This is a test of a true null, so we find from (3.11) in

Theorem 1 that P{ŝ = s} → 1 − α, which proves the required result.
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B.3 Proof of Theorem 3

The proof is nearly identical to that of Theorem 1, but using Lemmas 3 and 4 instead of

Lemmas 1 and 2, and hence is omitted.

B.4 Proof of Theorem 4

Let K̃∞ denote the limit K or K(̺) depending on the specification of the deterministic com-

ponent. Then it follows from Lemmas 1 and 3 that ‖T−4K̃ − K̃∞‖LH
= op(1).

Let φT
j and φj denote the eigenvectors corresponding to the ordered eigenvalues of K̃

and K̃∞, respectively. Using the fact that the first s eigenvalues of K̃∞ are almost surely

distinct, it follows from Lemma 3.2 of Hörmann and Kokoszka (2010) (as a generalization of

Lemma 4.3 of Bosq (2000)) that

‖φT
j − sgn(〈φT

j , φj〉)φj‖ = op(1), j = 1, . . . , s. (B.6)

Note that (φ1, . . . , φs) is a random orthonormal set, but the span is nonrandomly given by

span(φ1, . . . , φs) = A. Therefore, (B.6) implies that the set of eigenvectors (φT
1 , . . . , φ

T
s )

asymptotically spans A. Specifically, for any x ∈ A,

‖〈φT
j , x〉φT

j − 〈φj, x〉φj‖
p

→ 0, j = 1, . . . , s,

‖〈φT
j , x〉φT

j ‖
p

→ 0, j = s+ 1, . . . , ℓ.
(B.7)

From (B.7), we may easily deduce that Assumption 3 is satisfied.

Appendix C: Proofs of lemmas

C.1 Proof of Lemma 1

Recalling that Xt(u) is a random function of the argument u ∈ [0, 1], we define the double-

indexed function ZT (r, u) = T−1/2X⌊T r⌋(u) = T−1/2∑⌊T r⌋
t=1 ∆Xt(u) for r ∈ [0, 1] and at the

functional value u ∈ [0, 1]. When there is no risk of confusion, we also use the notation

ZT (r) = T−1/2X⌊T r⌋ to denote the entire function of u. Under the summability condition
∑∞

j=0 j‖Φj‖LH
< ∞ and Assumption 2, the sequence ∆Xt in (2.1) is a so-called L4-m-

approximable sequence; see Proposition 2.1 in Hörmann and Kokoszka (2010). Then, from

Theorem 1.1 in Berkes et al. (2013) and the Skorokhod representation, it follows that

sup
0≤r≤1

∥∥∥ZT (r) −W (r)
∥∥∥ p

→ 0, (C.1)

where W
d
= Λ

1/2
∆XW . Let C =

∫
W (r) ⊗W (r)dr, then clearly C

d
= Λ

1/2
∆XW̃Λ

1/2
∆X .

Similarly, for all r ∈ [0, 1], we let W (r, u) denote the function value at u ∈ [0, 1] and use

W (r) to denote the random (square-integrable) function of u. Both Ĉ and C are integral

operators, so we let ĉ(u,w) (resp. c(u,w)) denote the kernel function of T−2Ĉ (resp. C).
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These are given as follows,

ĉ(u,w) =
1

T 2

T∑

t=1

Xt(u)Xt(w) =
∫
ZT (r, u)ZT (r, w)dr,

c(u,w) =
∫
W (r, u)W (r, w)dr.

To prove (A.1) we show a stronger result. An operator A is a compact operator if

there exists two orthonormal bases, (fj, j ∈ N) and (gj, j ∈ N), and a real-valued sequence

(γj, j ∈ N) tending to zero, such that

Ax =
∞∑

j=1

γjfj ⊗ gj(x).

A compact operator A is said to be a Hilbert-Schmidt operator if
∑∞

j=1 γ
2
j < ∞. The so-

called Hilbert-Schmidt norm of A is then given by

‖A‖HS =




∞∑

j=1

‖Agj‖
2




1/2

for any arbitrary orthonormal basis (gj, j ∈ N). The following norm inequality is well known,

‖ · ‖LH
≤ ‖ · ‖HS. (C.2)

It thus suffices to show that ‖T−2Ĉ − C‖HS = op(1).

Define the norm ‖g‖L×L = (
∫ ∫

g(u,w)2dudw)
1/2

for a kernel function g : [0, 1] × [0, 1] →

R. Then note that

‖T−2Ĉ − C‖HS = ‖ĉ− c‖L×L ≤
∫ (∫ ∫ (

ZT (r, u)ZT (r, w) −W (r, u)W (r, w)
)2
dudw

)1/2

dr,

(C.3)

where the equality is because both T−2Ĉ and C are integral operators and the inequality is

the Cauchy-Schwarz inequality. The integrand in (C.3) is equal to

(ZT (r, u) −W (r, u))(ZT (r, w) −W (r, w))

+W (r, u)(ZT (r, w) −W (r, w)) + (ZT (r, u) −W (r, u))W (r, w). (C.4)

Using (C.4) and Minkowski’s inequality, (C.3) is bounded from above by
∫ ∫ (

ZT (r, u) −W (r, u)
)2
dudr

+ 2
∫ (∫ (

ZT (r, u) −W (r, u)
)2
du
)1/2 (∫

W
2
(r, w)dw

)1/2

dr

≤ sup
0≤r≤1

(∫ (
ZT (r, u) −W (r, u)

)2
du
)

+ 2 sup
0≤r≤1

(∫ (
ZT (r, u) −W (r, u)

)2
du
)1/2

sup
0≤r≤1

(∫
W

2
(r, w)dw

)1/2

= op(1),

32



where the last equality is from (C.1) and the fact that

sup
0≤r≤1

∥∥∥W (r)
∥∥∥ < ∞ almost surely

because W (r) is almost surely continuous on a bounded interval. Thus, (A.1) is established.

To prove (A.2), we note that instead of (C.1) we now have

sup
0≤r≤1

∥∥∥∥∥∥
T−3/2

[T r]∑

t=1

Xt −
∫ r

0
W (u)du

∥∥∥∥∥∥
= sup

0≤r≤1

∥∥∥∥
∫ r

0
ZT (u)du−

∫ r

0
W (u)du

∥∥∥∥ = op(1), (C.5)

which follows from Lemma B.3 in Horváth et al. (2014) and the Skorokhod representation.

The remainder of the proof is almost identical to that of (A.1), and is therefore omitted.

C.2 Proof of Lemma 2

First note that vT ∈ ranP T
ℓ implies P T

ℓ v
T = vT , so that

|〈T−2P T
ℓ ĈP T

ℓ v
T , vT 〉 − 〈CvT , vT 〉| = |〈(T−2Ĉ − C)vT , vT 〉| ≤ ‖T−2Ĉ − C‖LH

sup
T

‖vT ‖2 = op(1).

The inequality follows from Cauchy-Schwarz and properties of the operator norm and the

final equality follows from Lemma 1. The proof of the second statement of part (i) is identical.

Next, we prove part (ii). The first statement is a direct consequence of the definitions of

C and K; see (3.7). Because vT ∈ A
⊥ ∩ ranP T

ℓ we have P T
ℓ (I − PA)vT = vT , so that

〈P T
ℓ ĈP T

ℓ v
T , vT 〉 = 〈(I − PA)Ĉ(I − PA)vT , vT 〉. (C.6)

We then find that

|〈T−1P T
ℓ ĈP T

ℓ v
T , vT 〉 − 〈(I − PA)Cν(I − PA)vT , vT 〉|

= |〈T−1(I − PA)Ĉ(I − PA)vT , vT 〉 − 〈(I − PA)Cν(I − PA)vT , vT 〉|

≤ ‖T−1(I − PA)Ĉ(I − PA)vT , vT 〉 − 〈(I − PA)Cν(I − PA)‖LH
sup

T
‖vT ‖2,

where the inequality follows from Cauchy-Schwarz and properties of the operator norm.

We note that T−1(I − PA)Ĉ(I − PA) may be viewed as the sample covariance operator of

((I − PA)νt, t ≥ 1), and it follows from Assumption 2 and Mas (2002) that

‖T−1(I − PA)Ĉ(I − PA) − (I − PA)Cν(I − PA)‖LH
= op(1), (C.7)

which shows the second statement of part (ii). The proof of the third statement is identical.

C.3 Proof of Lemma 3

We need the result corresponding to (C.1) for the case with residuals. Similarly to the proof

of Lemma 1, we define Z
(̺)
T (r) = T−1/2U

(̺)
⌊T r⌋ and show that

sup
0≤r≤1

∥∥∥∥Z
(̺)
T (r) −W

(̺)
(r)
∥∥∥∥ = op(1), (C.8)
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where W
(̺)

(r)
d
= Λ

1/2
∆XW(̺). After showing (C.8), the remainder of the proof is identical to

that of Lemma 1 and is therefore omitted.

The proof of (C.8) applies well-known techniques combined with the convergence results

in (C.1) and (C.5). For example, for ̺ = 1, we have U
(1)
t = Xt − T−1∑T

t=1 Xt, so that

Z
(1)
T (r) = ZT (r) −

∫
ZT (w)dw. Since W

(1)
(r) = W (r) −

∫
W (w)dw, the left-hand side of

(C.8) for ̺ = 1 is bounded by

sup
0≤r≤1

∥∥∥ZT (r) −W (r)
∥∥∥+ sup

0≤r≤1

∥∥∥∥
∫
ZT (w)dw −

∫
W (w)dw

∥∥∥∥ = op(1), (C.9)

where the convergence is from (C.1) and (C.5).

C.4 Proof of Lemma 4

This follows by nearly identical arguments to the proof of Lemma 2, using the results in

Lemma 3, and is therefore omitted.
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Appendix D: Additional simulation results

Table 9: Functional AR(1) with permutation, θ = 0.1

(a) T = 200

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 0.9989 1.0000 1.0000 1.0000
1 0.0478 0.9539 0.9999 1.0000
2 0.0453 0.9599 0.9999
3 0.0512 0.9649
4 0.0654

TC 0 0.9998 1.0000 1.0000 1.0000
1 0.0532 0.9888 1.0000 1.0000
2 0.0748 0.9900 1.0000
3 0.1085 0.9909
4 0.1579

T ∗
K 0 0.9998 1.0000 1.0000 1.0000

1 0.0613 0.9946 1.0000 1.0000
2 0.0983 0.9954 1.0000
3 0.1660 0.9951
4 0.2809

T ∗
C 0 1.0000 1.0000 1.0000 1.0000

1 0.3359 0.9989 1.0000 1.0000
2 0.6295 0.9992 1.0000
3 0.7684 0.9993
4 0.8393

CKP 0 1.0000 1.0000 0.9916 0.6109
1 0.3721 0.9995 0.9842 0.7632
2 0.6654 0.9772 0.8476
3 0.7799 0.8837
4 0.7825

(b) T = 500

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 1.0000 1.0000 1.0000 1.0000
1 0.0550 0.9996 1.0000 1.0000
2 0.0482 0.9986 1.0000
3 0.0514 0.9993
4 0.0619

TC 0 1.0000 1.0000 1.0000 1.0000
1 0.0559 0.9999 1.0000 1.0000
2 0.0505 0.9997 1.0000
3 0.0620 0.9998
4 0.1003

T ∗
K 0 1.0000 1.0000 1.0000 1.0000

1 0.0580 1.0000 1.0000 1.0000
2 0.0539 0.9999 1.0000
3 0.0712 1.0000
4 0.1120

T ∗
C 0 1.0000 1.0000 1.0000 1.0000

1 0.1619 1.0000 1.0000 1.0000
2 0.3768 1.0000 1.0000
3 0.5556 1.0000
4 0.6346

CKP 0 1.0000 1.0000 1.0000 1.0000
1 0.1777 1.0000 1.0000 1.0000
2 0.4279 1.0000 1.0000
3 0.5952 1.0000
4 0.6800

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and the H0 value is s0. Nominal

size is 5%.
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Table 10: Functional AR(1) with permutation, θ = 0.8

(a) T = 200

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 0.6520 0.9385 0.9978 1.0000
1 0.0305 0.4558 0.8864 0.9931
2 0.0183 0.3361 0.8470
3 0.0189 0.2548
4 0.0168

TC 0 0.8136 0.9783 0.9992 1.0000
1 0.0511 0.6376 0.9533 0.9982
2 0.0604 0.5044 0.9211
3 0.0686 0.3904
4 0.0593

T ∗
K 0 0.8766 0.9918 0.9995 1.0000

1 0.0707 0.7641 0.9793 0.9992
2 0.1249 0.7042 0.9718
3 0.2051 0.6640
4 0.2694

T ∗
C 0 0.9684 0.9994 1.0000 1.0000

1 0.3650 0.9184 0.9962 1.0000
2 0.5863 0.8961 0.9936
3 0.6592 0.8872
4 0.6718

CKP 0 1.0000 1.0000 1.0000 0.9999
1 0.4632 0.9986 1.0000 0.9995
2 0.7432 0.9839 0.9976
3 0.8195 0.9437
4 0.7879

(b) T = 500

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 0.9707 0.9999 1.0000 1.0000
1 0.0440 0.8945 0.9994 1.0000
2 0.0403 0.8811 0.9997
3 0.0340 0.8532
4 0.0469

TC 0 0.9843 1.0000 1.0000 1.0000
1 0.0492 0.9390 0.9997 1.0000
2 0.0501 0.9221 0.9999
3 0.0624 0.8922
4 0.1015

T ∗
K 0 0.9914 1.0000 1.0000 1.0000

1 0.0555 0.9625 1.0000 1.0000
2 0.0741 0.9552 1.0000
3 0.1300 0.9465
4 0.2384

T ∗
C 0 0.9983 1.0000 1.0000 1.0000

1 0.2041 0.9868 1.0000 1.0000
2 0.4632 0.9823 1.0000
3 0.6247 0.9798
4 0.7089

CKP 0 1.0000 1.0000 1.0000 1.0000
1 0.2636 1.0000 1.0000 1.0000
2 0.5703 1.0000 1.0000
3 0.7440 1.0000
4 0.8272

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and the H0 value is s0. Nominal

size is 5%.
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Table 11: Functional AR(1) without permutation, θ = 0.1

(a) T = 200

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 0.9989 1.0000 1.0000 1.0000
1 0.0467 0.9425 0.9999 1.0000
2 0.0412 0.9469 0.9999
3 0.0337 0.9490
4 0.0359

TC 0 0.9999 1.0000 1.0000 1.0000
1 0.0491 0.9845 1.0000 1.0000
2 0.0448 0.9872 1.0000
3 0.0402 0.9911
4 0.0479

T ∗
K 0 1.0000 1.0000 1.0000 1.0000

1 0.0524 0.9789 1.0000 1.0000
2 0.0521 0.9849 1.0000
3 0.0465 0.9824
4 0.0521

T ∗
C 0 1.0000 1.0000 1.0000 1.0000

1 0.0526 0.9989 1.0000 1.0000
2 0.0570 0.9974 1.0000
3 0.0535 0.9984
4 0.0899

CKP 0 1.0000 1.0000 0.9964 0.6967
1 0.0463 0.9995 0.9974 0.9759
2 0.0451 0.9995 0.9886
3 0.0369 0.9832
4 0.0723

(b) T = 500

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 1.0000 1.0000 1.0000 1.0000
1 0.0507 0.9993 1.0000 1.0000
2 0.0453 0.9979 1.0000
3 0.0424 0.9991
4 0.0528

TC 0 1.0000 1.0000 1.0000 1.0000
1 0.0516 0.9998 1.0000 1.0000
2 0.0464 0.9999 1.0000
3 0.0452 0.9996
4 0.0555

T ∗
K 0 1.0000 1.0000 1.0000 1.0000

1 0.0534 0.9998 1.0000 1.0000
2 0.0489 0.9997 1.0000
3 0.0483 0.9996
4 0.0586

T ∗
C 0 1.0000 1.0000 1.0000 1.0000

1 0.0534 1.0000 1.0000 1.0000
2 0.0495 1.0000 1.0000
3 0.0488 1.0000
4 0.0615

CKP 0 1.0000 1.0000 1.0000 1.0000
1 0.0480 1.0000 1.0000 1.0000
2 0.0555 1.0000 1.0000
3 0.0462 1.0000
4 0.0649

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and the H0 value is s0. Nominal

size is 5%.
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Table 12: Functional AR(1) without permutation, θ = 0.5

(a) T = 200

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 0.9675 0.9999 1.0000 1.0000
1 0.0440 0.8526 0.9986 1.0000
2 0.0302 0.8177 0.9968
3 0.0300 0.8061
4 0.0279

TC 0 0.9789 1.0000 1.0000 1.0000
1 0.0463 0.9247 0.9999 1.0000
2 0.0341 0.8863 0.9993
3 0.0361 0.8931
4 0.0404

T ∗
K 0 0.9915 1.0000 1.0000 1.0000

1 0.0537 0.9193 0.9999 1.0000
2 0.0469 0.9090 0.9991
3 0.0478 0.8946
4 0.0509

T ∗
C 0 0.9939 1.0000 1.0000 1.0000

1 0.0545 0.9800 1.0000 1.0000
2 0.0533 0.9462 1.0000
3 0.0615 0.9545
4 0.1126

CKP 0 1.0000 1.0000 1.0000 0.9936
1 0.0521 1.0000 1.0000 0.9985
2 0.0574 1.0000 0.9991
3 0.0596 0.9959
4 0.1342

(b) T = 500

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 0.9999 1.0000 1.0000 1.0000
1 0.0481 0.9919 1.0000 1.0000
2 0.0442 0.9899 1.0000
3 0.0399 0.9922
4 0.0438

TC 0 0.9999 1.0000 1.0000 1.0000
1 0.0488 0.9963 1.0000 1.0000
2 0.0458 0.9947 1.0000
3 0.0419 0.9960
4 0.0470

T ∗
K 0 1.0000 1.0000 1.0000 1.0000

1 0.0515 0.9967 1.0000 1.0000
2 0.0513 0.9959 1.0000
3 0.0489 0.9958
4 0.0549

T ∗
C 0 1.0000 1.0000 1.0000 1.0000

1 0.0516 0.9990 1.0000 1.0000
2 0.0527 0.9977 1.0000
3 0.0514 0.9984
4 0.0622

CKP 0 1.0000 1.0000 1.0000 1.0000
1 0.0486 1.0000 1.0000 1.0000
2 0.0620 1.0000 1.0000
3 0.0592 1.0000
4 0.1045

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and the H0 value is s0. Nominal

size is 5%.
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Table 13: Functional AR(1) without permutation, θ = 0.8

(a) T = 200

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 0.6048 0.9078 0.9962 0.9999
1 0.0218 0.3654 0.8343 0.9897
2 0.0117 0.2292 0.7389
3 0.0063 0.1618
4 0.0060

TC 0 0.6810 0.9517 0.9989 1.0000
1 0.0260 0.4688 0.9005 0.9967
2 0.0147 0.3056 0.8412
3 0.0103 0.2469
4 0.0158

T ∗
K 0 0.8130 0.9726 0.9994 1.0000

1 0.0486 0.5242 0.9430 0.9975
2 0.0395 0.4414 0.8783
3 0.0311 0.3383
4 0.0363

T ∗
C 0 0.8429 0.9887 0.9999 1.0000

1 0.0519 0.7316 0.9684 0.9998
2 0.0644 0.5347 0.9433
3 0.0738 0.4964
4 0.1406

CKP 0 1.0000 1.0000 1.0000 1.0000
1 0.0516 0.9990 0.9999 0.9995
2 0.0833 0.8688 0.9955
3 0.0816 0.6887
4 0.1384

(b) T = 500

Test s s0 = 1 s0 = 2 s0 = 3 s0 = 4

TK 0 0.9531 1.0000 1.0000 1.0000
1 0.0434 0.8593 0.9989 1.0000
2 0.0281 0.8049 0.9980
3 0.0260 0.8108
4 0.0264

TC 0 0.9576 1.0000 1.0000 1.0000
1 0.0450 0.8945 0.9995 1.0000
2 0.0304 0.8374 0.9992
3 0.0294 0.8478
4 0.0316

T ∗
K 0 0.9795 1.0000 1.0000 1.0000

1 0.0556 0.9089 0.9996 1.0000
2 0.0464 0.8856 0.9994
3 0.0489 0.8796
4 0.0516

T ∗
C 0 0.9823 1.0000 1.0000 1.0000

1 0.0563 0.9649 0.9998 1.0000
2 0.0517 0.9099 0.9998
3 0.0574 0.9154
4 0.0827

CKP 0 1.0000 1.0000 1.0000 1.0000
1 0.0515 1.0000 1.0000 1.0000
2 0.0824 1.0000 1.0000
3 0.0876 1.0000
4 0.2070

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and the H0 value is s0. Nominal

size is 5%.
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