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Abstract

We investigate default probabilities and default correlations of Merton-type credit port-
folio models in stress scenarios where a common risk factor is truncated. The analysis is
performed in the class of elliptical distributions, a family of light-tailed to heavy-tailed dis-
tributions encompassing many distributions commonly found in financial modelling. It turns
out that the asymptotic limit of default probabilities and default correlations depend on the
max-domain of the elliptical distribution’s mixing variable. In case the mixing variable is
regularly varying, default probabilities are strictly smaller than 1 and default correlations
are in (0, 1). Both can be expressed in terms of the Student t-distribution function. In the
rapidly varying case, default probabilities are 1 and default correlations are 0. We com-
pare our results to the tail dependence function and discuss implications for credit portfolio
modelling.

Keywords: financial risk management, credit portfolio modelling, stress testing, elliptic distri-
bution, max-domain

MSC classification: 60G70, 91G40

1 Introduction

In the aftermath of the subprime crisis and the European sovereign debt crisis, stress testing
of bank portfolios has become an integral part of financial risk management and banking super-
vision (Turner, 2009; Larosière and others, 2009; Brunnermeier et al., 2009; BIS, 2009). Stress
tests for credit portfolios are of particular importance, since in a typical bank risk capital for
credit risk far outweighs capital requirements for any other risk class.

In this paper, we analyse the behaviour of credit portfolio models under stress depending
on the joint distribution of the stochastic variables of the model. Although widely questioned,
the industry standard is still to employ multivariate normally distributed random variables. In
order to cover a wide range of light-tailed to heavy-tailed distributions we use the family of
elliptical distributions, which contains the normal distribution as a special case. More formally,
let Z = (Z0, . . . , Zd)

T be a random vector on the probability space (Ω,A,P). We assume that
Z follows an elliptical distribution with representation

Z
L
= GAU, (1)
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where G > 0 is a scalar random variable, the so-called mixing variable, A is a deterministic
(d + 1) × (d + 1) matrix with AAT := Σ, which in turn is a (d + 1) × (d + 1) nonnegative
definite symmetric matrix of rank d+1, and U is a (d+1)-dimensional random vector uniformly
distributed on the unit sphere Sd+1 := {z ∈ Rd+1 : zT z = 1}, and U is independent of G. Recent
papers study the asymptotic properties of value-at-risk in a similar setup, e.g. Embrechts et al.
(2009); Mainik and Embrechts (2013).

In the next section, we provide a short survey of structural credit portfolio models. In
this setting, Z0 will be interpreted as a risk factor of the model and Z1, . . . , Zd as asset return
variables of d firms. The default of the i-th firm is represented by {Zi ≤ Di} for a given
default threshold Di ∈ R and the corresponding default probability (PD) is defined by pi :=
P(Zi ≤ Di) = E(1{Zi≤Di}). The default correlations are defined as the correlations of the
default indicators 1{Zi≤Di} and 1{Zj≤Dj}. To simplify the exposition, we assume throughout
that the correlations of Z0, Z1, . . . , Zd are in (0, 1).

The objective of this paper is to analyse the impact of stress on default probabilities and
default correlations. Stress scenarios are specified by truncating the risk factor Z0, i.e., by
conditioning on {Z0 ≤ C} with stress level C ∈ R. Using techniques from Extreme Value
Theory (EVT), we derive the limit of conditional default probabilities and default correlations
as C → −∞. The limit depends on whether the mixing variable G is in the max-domain of the
Fréchet or the Gumbel distribution, or more generally, on whether the tail distribution function
P(G > ·) is regularly varying or rapidly varying. For stressed default probabilities, we show
that for any Di ∈ R

lim
C→−∞

P(Zi ≤ Di|Z0 ≤ C) = 1,

if P(G > ·) is rapidly varying. In contrast, if P(G > ·) is regularly varying with tail index −α,
then

lim
C→−∞

P(Zi ≤ Di|Z0 ≤ C) = tα+1

(√
α+ 1 ρ√
1− ρ2

)
∈ [1/2, 1),

where tν denotes the Student t distribution function with parameter ν and ρ denotes the cor-
relation of Z0 and Zi. These results imply that the limiting default probability under stress
is strictly smaller in the heavy-tailed case than in the light-tailed case. Essentially, in the
heavy-tailed case, extreme outcomes are driven by the joint mixing variable, implying a strictly
positive probability for a conditional extreme positive outcome of Zi.

It is interesting to note that this behaviour of limiting default probabilities is fundamentally
different to tail dependence, which is positive for heavy-tailed G, and converges to 0 as the tail
index of G tends to infinity, that is, to the light-tailed case, see (Schmidt, 2002; Klüppelberg et
al., 2008; Hult and Lindskog, 2002). Limiting default correlations, on the other hand, behave
like tail dependence: we show that Corr(1{Zi≤Di},1{Zj≤Dj}|Z0 ≤ C) converges to 0 in the
light-tailed case and to a positive number in the heavy-tailed case.

The paper is structured as follows: in Section 2, we define stress tests in structural credit
portfolio models. The results on asymptotic stressed default probabilities are derived in section
3. Section 4 focuses on stressed default correlations. In section 5, implications for credit portfolio
modelling are discussed.

2 Preliminaries

2.1 Structural credit portfolio models

Depending on their formulation, credit portfolio models can be divided into reduced-form models
and structural (or firm-value) models. The progenitor of all structural models is the model of
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Merton (Merton, 1974), which links the default of a firm to the relationship between its assets
and the liabilities at the end of a given time period [0, T ]. More precisely, in a structural credit
portfolio model the i-th counterparty defaults if its asset return (or ability-to-pay) variable Zi
falls below a default threshold Di: the default event at time T is defined as {Zi ≤ Di} ⊆ Ω,
where Zi is a real-valued random variable on the probability space (Ω,A,P) and Di ∈ R. The
portfolio loss variable is defined by

L :=

d∑
i=1

li · 1{Zi≤Di}, (2)

where d denotes the number of counterparties and li is the loss-at-default of the i-th counter-
party. In order to reflect risk concentrations, each Zi is decomposed into a sum of systematic
factors X1, . . . , Xm, which are often identified with geographic regions or industries, and a
firm-specific factor εi, that is,

Zi =
√
R2
i

m∑
j=1

wijXj +
√

1−R2
i εi. (3)

The impact of the risk factors on Zi is determined by R2
i ∈ [0, 1] and the factor weights wij ∈ R.

In order to quantify portfolio risk, measures of risk are applied to the portfolio loss distri-
bution (2). The expected loss of the credit portfolio is used for specifying credit reserves. It is
defined as the mean of L:

E(L) =

d∑
i=1

li · pi,

where pi = P(Zi ≤ Di) = E(1{Zi≤Di}) denotes the default probability of the i-th counterparty.
Capital requirements for covering unexpected losses are typically derived from the value-at-
risk VaRα(L) for a predefined probability α ∈ (0, 1), where VaRα(L) is simply defined as the
α-quantile of L. Obviously, the default probabilities and risk concentrations specified by the
dependence structure of the default variables 1{Zi≤Di} determine the value-at-risk of the credit
portfolio. Default correlations

Corr(1{Zi≤Di},1{Zj≤Dj}) =
P(Zi ≤ Di, Zj ≤ Dj)− pi pj√

pi(1− pi)pj(1− pj)

are used as a measure of dependence by portfolio management to identify risk concentrations
on counterparty level.

2.2 Distribution of model variables

The standard approach in credit risk management is to model the risk factors and ability-to-pay
variables through a joint multi-variate Gaussian distribution. Since the purpose of this paper
is to analyze the impact of stress scenarios under different distribution assumptions we use a
more general framework and consider elliptical distributions instead.

Elliptical distributions cover a variety of light-tailed to heavy-tailed distributions depending
on the tail behaviour of the mixing variable G, i.e., whether G is rapidly varying or regularly
varying. A special role is played by normal variance mixture (NVM) distributions (see, for
instance, McNeil et al. (2005); Bingham and Kiesel (2002)). First, NVM distributions encompass
a number of distributions commonly used in financial modelling, most prominently normal
distributions, t-distributions and symmetric generalised hyperbolic distributions. Second, all
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elliptical distributions of interest in the credit portfolio context can be represented as NVM
distributions: any elliptical distribution whose so-called characteristic generator does not depend
on the dimension d can be represented as an NVM distribution, see Theorem 2.21 of Fang et
al. (1990), or Theorem 3.25 of McNeil et al. (2005). For details on elliptical distributions, we
refer to (Fang et al., 1990; Cambanis et al., 1981) and for their application in finance and risk
management we refer to (McNeil et al., 2005).

2.3 Stress testing in credit portfolio models

In a stress test, credit portfolios are typically evaluated under the assumption of adverse eco-
nomic conditions. A natural way for implementing stress tests in portfolio models is to translate
the stress scenario into constraints on risk factors. In our setup, the constraints are formalised
by truncating risk factor variables X1, . . . , Xm, that is, by conditioning on the range of values
that a risk factor may attain. This is a commonly used stress testing technique for credit risk
management and capital management of financial institutions, see e.g. (Bonti et al., 2006; Du-
ellmann and Erdelmeier, 2009; Kalkbrener and Packham, 2013). More precisely, let us consider
the situation when the risk factor Z0 ∈ {X1, . . . , Xm} is truncated by C ∈ R, that is, Z0 ≤ C
and write

PC(A) = P(A|Z0 ≤ C), A ∈ A,

for the corresponding conditional distribution. In this setting, C is interpreted as the level of
stress applied to the risk factor Z0. The objective of this paper is to calculate the limit of
default probabilities, joint default probabilities and corresponding default correlations under
PC as C → −∞.

3 Default probabilities under stress

Let h be a positive, Lebesgue-measurable function on (0,∞). We write h ∈ RVα if h is regularly
varying with index α ∈ R, i.e.,

lim
x→∞

h(tx)

h(x)
= tα, t > 0,

and h ∈ RV−∞ if h is rapidly varying with index −∞, i.e.,

lim
x→∞

h(tx)

h(x)
=

{
0, t > 1,

∞, 0 < t < 1.

For details on regularly varying functions, we refer to Bingham et al. (1987).
Let Z = GAU denote an elliptical random vector as in Equation (1). We assume that all

variables are standardised so that Σ = AAT is the correlation matrix of (Z0, . . . , Zd)
T . The

correlation of Zi and Zj is denoted by ρij , i, j = 0, 1, . . . , d. We assume that the correlations
with respect to the risk factor are positive, i.e., ρ0i > 0. The case ρ0i ≤ 0 can be treated
analogously.

In the following, denote by Ai· the i-th row of A and let FU denote the uniform distribution
on Sd+1.

It is well-known that P(G > ·) ∈ RV−α implies P(Zi > ·) ∈ RV−α, i = 0, . . . , d, see e.g.
Theorem 7.35 of McNeil et al. (2005). For many distributions of interest in RV−∞, such as
the normal distribution and the generalised hyperbolic distributions, we know that the mixing
variable is in RV−∞, see e.g. Section 7.3 of McNeil et al. (2005).
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Theorem 1. (i) If P(G > ·) ∈ RV−α, then

lim
C→−∞

PC(Z1 ≤ D1, . . . , Zd ≤ Dd)

=

∫
u∈Sd+1,A0·u>0,...,Ad·u>0

(A0·u)α dFU (u)

(∫
u∈Sd+1,A0·u>0

(A0·u)α dFU (u)

)−1
.

(ii) If P(G > ·) ∈ RV−∞, then

lim
C→−∞

PC(Z1 ≤ D1, . . . , Zd ≤ Dd) = 1.

Proof. We first give a proof for the special case Di = 0 for i = 1, . . . , d.
Since the elliptical random vector is symmetric and continuous we can write

lim
C→−∞

PC(Z1 ≤ 0, . . . , Zd ≤ 0) = lim
C→∞

P(Z0 > C,Z1 > 0, . . . , Zd > 0)

P(Z0 > C)
. (4)

For the numerator

P(Z0 > C,Z1 > 0, . . . , Zd > 0) = P(G >
C

A0·U
,A0·U > 0, . . . , Ad·U > 0)

=

∫
u∈Sd+1,Ai·u>0,i=0,...,d

P

(
G >

C

A0·u

)
FU (du). (5)

For (i), it follows from P(G > ·) ∈ RV−α that

lim
C→∞

P (G > C/(A0·u))

P(G > C)
= (A0·u)α, for A0·u > 0.

Potter’s bounds (de Haan and Ferreira, 2006, Proposition B.1.9) state that for arbitrary ε > 0
and δ > 0 there exists C0 such that for all C ≥ C0, C/(A0·u) ≥ C0,

P (G > C/(A0·u))

P(G > C)
< (1 + ε)(A0·u)α max

(
(A0·u)δ, (A0·u)−δ

)
,

and since the right-hand side is integrable, we obtain by Dominated Convergence that

lim
C→∞

∫
u∈Sd+1,Ai·u>0,i=0,...,d

P (G > C/(A0·u))

P(G > C)
FU (du) =

∫
u∈Sd+1,Ai·u>0,i=0,...,d

(A0·u)α FU (du).

Applying the same method to the denominator of Equation (4) completes the proof of (i).
For (ii), it suffices to consider the case d = 1, i.e., limC→∞P(Z1 > 0|Z0 > C) = 1, since the

general case follows from

P(Z1 > 0, . . . , Zd > 0|Z0 > C) ≥ 1−
d∑
i=1

(1−P(Zi > 0|Z0 > C)).

Equality (5) implies

P(Z1 > 0|Z0 > C) =

=

∫
u∈S2,Ai·u>0,i=0,1

P

(
G >

C

A0·u

)
FU (du)

(∫
u∈S2,A0·u>0

P

(
G >

C

A0·u

)
FU (du)

)−1
.
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Write u ∈ S2 in polar coordinates as u = (cos θ, sin θ), θ ∈ [−π, π], and let A be the Cholesky
decomposition of the correlation matrix, i.e., A0· = (1, 0)T , A1· = (ρ,

√
1− ρ2) with ρ := ρ01

the correlation of Z0, Z1. Hence, A0·u = cos θ > 0 if θ ∈ (−π/2, π/2) and A1·u = ρ cos θ +√
1− ρ2 sin θ = sin(θ + arcsin ρ) > 0 if θ ∈ (− arcsin ρ, π − arcsin ρ). It follows that∫
u∈S2,Ai·u>0,i=0,1

P

(
G >

C

A0·u

)
FU (du) =

∫ π/2

− arcsin ρ
P

(
G >

C

cos θ

)
dθ

=

∫ π/2

−π/2
P

(
G >

C

cos θ

)
dθ −

∫ π/2

arcsin ρ
P

(
G >

C

cos θ

)
dθ

and ∫
u∈S2,A0·u>0

P

(
G >

C

A0·u

)
FU (du) =

∫ π/2

−π/2
P

(
G >

C

cos θ

)
dθ.

Since ρ > 0, we have cos θ < cos(arcsin ρ) =
√

1− ρ2 for θ ∈ (arcsin ρ, π/2). Hence, by
definition of rapidly varying functions and by Dominated Convergence,

lim
C→∞

∫ π/2

arcsin ρ

P

(
G > C√

1−ρ2

√
1−ρ2
cos θ

)
P

(
G > C√

1−ρ2

) dθ = 0.

On the other hand, for θ ∈ (− arcsin ρ, arcsin ρ),

lim
C→∞

P

(
G > C√

1−ρ2

√
1−ρ2
cos θ

)
P

(
G > C√

1−ρ2

) =∞,

so that, putting everything together, we obtain

lim
C→∞

P(Z1 > 0|Z0 > C) = 1.

It remains to show that

lim
C→−∞

PC(Z1 ≤ 0, . . . , Zd ≤ 0) = lim
C→−∞

PC(Z1 ≤ D1, . . . , Zd ≤ Dd), (6)

for arbitrary D1, . . . , Dd. Let i ∈ {1, . . . , d} and a > 0. Note that for C < −|Di|/a,

PC(Zi − aZ0 ≤ 0) ≤ PC(Zi ≤ aC) < PC(Zi ≤ Di) < PC(Zi ≤ −aC) ≤ PC(Zi + aZ0 ≤ 0).

Hence,

lim
C→−∞

PC(Z1 − aZ0 ≤ 0, Z2 ≤ 0, . . . , Zd ≤ 0) ≤ lim
C→−∞

PC(Z1 ≤ D1, Z2 ≤ 0, . . . , Zd ≤ 0)

≤ lim
C→−∞

PC(Z1 + aZ0 ≤ 0, Z2 ≤ 0, . . . , Zd ≤ 0).

Since Equation (5) is continuous in A1·, it follows that limC→−∞PC(Z1 + aZ0 ≤ 0, Z2 ≤
0, . . . , Zd ≤ 0) is a continuous function in a ∈ R, hence

lim
C→−∞

PC(Z1 ≤ D1, Z2 ≤ 0, . . . , Zd ≤ 0) = lim
C→−∞

PC(Z1 ≤ 0, Z2 ≤ 0, . . . , Zd ≤ 0).

and therefore (6) is obtained by reiterating this argument.
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Remarks

(i) Default thresholds D1, . . . , Dd determine the unconditional default probabilities P(Zi ≤
Di). Note, however, that limC→−∞PC(Z1 ≤ D1, . . . , Zd ≤ Dd) does not depend on the
Di, i.e., in the limit, stressed default probabilities do not depend on the unconditional
default probabilities, but only on the dependence structure of the Zi.

(ii) Theorem 1 implies in particular that the limiting default probability under stress is strictly
smaller than 1 in the heavy-tailed case, provided that the variables are not perfectly
correlated. This result can be attributed to the special structure of elliptical distributions,
where a stress event may be caused by a large mixing variable and a uniform random
vector on the sphere Sd+1 with components close to zero, whose signs may well differ,
thus overall leading to potentially very large positive or negative realisations of the asset
returns. In the light-tailed case, the tail behaviour of the mixing variable is too moderate
to produce extreme overall behaviour of opposite signs.

(iii) Even without further making the limiting distribution of part (i) concrete, it can be
numerically determined efficiently using Monte Carlo simulation. An efficient method to
simulate uniform random variates on the unit sphere Sd+1, is to draw (d+ 1)-dimensional
independent normally distributed random variables Y = (Y0, . . . , Yd)

T , and transform
them according to Y/ ‖Y ‖, which produces the desired random variates, see e.g. Corollary
3.23 of McNeil et al. (2005) or Section 3.4.1.E. of Knuth (1998). Simulation has proven to
be significantly faster than the numerical calculation of integrals in Proposition 3 below.

In the following two propositions, we express the integral in Theorem 1(i) in terms of beta
functions: the incomplete beta function B(z; a, b) is defined by

B(z; a, b) :=

∫ z

0
ua−1(1− u)b−1 du = 2

∫ arcsin(
√
z)

0
(sin θ)2a−1(cos θ)2b−1 dt, (7)

where the last equation follows from substituting u = (sin θ)2. The regularized incomplete beta
function is defined as

Ix(a, b) =
B(x; a, b)

B(a, b)
, (8)

where B(a, b) := B(1, a, b). Note that there exists the following relationship between an incom-
plete beta function and the distribution function tν of the Student-t distribution with parameter
ν:

tν(x) =

{
1
2Iν/(x2+ν)

(
ν
2 ,

1
2

)
, x ≤ 0,

1
2

[
1 + Ix2/(x2+ν)

(
1
2 ,

ν
2

)]
, x > 0.

(9)

Proposition 2 covers the case d = 1, which corresponds to stressed default probabilities,
whereas Proposition 3 deals with stressed bivariate default probabilities.

Proposition 2. Let P(G > ·) ∈ RV−α. Then,

lim
C→−∞

P(Z1 ≤ D1|Z0 ≤ C) =
1

2
+

1

2
Iρ2

(
1

2
,
α+ 1

2

)
= tα+1

(√
α+ 1 ρ√
1− ρ2

)
∈ [1/2, 1), (10)

where ρ := ρ01 denotes the correlation of Z0 and Z1.
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Proof. By Theorem 1(i),

lim
C→−∞

PC(Z1 ≤ D1) =

∫
u∈S2,A0·u>0,A1·u>0

(A0·u)α dFU (u)

(∫
u∈S2,A0·u>0

(A0·u)α dFU (u)

)−1
.

Write u ∈ S2 in polar coordinates as u = (cos θ, sin θ), θ ∈ [−π, π]. As in the proof of Theorem
1(ii) we obtain

lim
C→−∞

PC(Z1 ≤ D1) =

∫ π/2

− arcsin ρ
(cos θ)α dθ

(∫ π/2

−π/2
(cos θ)α dθ

)−1
.

Using Equalities (7) and (8) yields∫ π/2

−π/2
(cos θ)α dθ = B

(
1

2
,
α+ 1

2

)
,∫ π/2

− arcsin ρ
(cos θ)α dθ =

∫ arcsin ρ

0
(cos θ)α dθ +

1

2
B

(
1

2
,
α+ 1

2

)
=

1

2
B

(
ρ2;

1

2
,
α+ 1

2

)
+

1

2
B

(
1

2
,
α+ 1

2

)
and therefore

lim
C→−∞

PC(Z1 ≤ D1) =
1

2
+

1

2
Iρ2

(
1

2
,
α+ 1

2

)
.

The claim follows by observing that this expression corresponds to the respective Student t-
distribution function, see Equation (9).

We shall also assume in the following proposition that ρ12 ≥ ρ01ρ02, which expresses that
the specific components of Z1 and Z2 are correlated in a non-negative way. The sole reason for
this assumption is to avoid awkward case differentiations, and it can easily be lifted.

Proposition 3. Let P(G > ·) ∈ RV−α. Then,

lim
C→−∞

P(Z1 ≤ D1, Z2 ≤ D2|Z0 ≤ C) =
1

2
tα+1

(√
(α+ 1) t√
1− t2

)

+

∫ π/2

− arcsin t

[
1

2
− tα+2

(
−
∣∣∣∣√α+ 2

q3(ϕ)

∣∣∣∣)] (cosϕ)α dϕ

(
B

(
1

2
,
α+ 1

2

))−1
+

∫ − arcsin t

− arcsin ρ01

tα+2

(
−
∣∣∣∣√α+ 2

q3(ϕ)

∣∣∣∣) (cosϕ)α dϕ

(
B

(
1

2
,
α+ 1

2

))−1
,

(11)

where q3(ϕ) =

√
1− ρ202 − q21

ρ02 cosϕ+ q1 sinϕ
and q1 =

ρ12 − ρ01ρ02√
1− ρ201

and t := ρ01 ∧ ρ02√
q21+ρ

2
02

.

Proof. Write u ∈ S3 in polar coordinates as u = (sin θ cosϕ, sin θ sinϕ, cos θ)T , with θ ∈ [0, π],
ϕ ∈ [−π, π]. Let A be given by A0· = (1, 0, 0)T , A1· = (ρ01,

√
1− ρ201, 0)T and A2· = (ρ02, q1, q2)

T

with q1 =
ρ12 − ρ01ρ02√

1− ρ201
and q2 =

√
1− ρ202 − q21. We have A0·u = sin θ cosϕ > 0 if ϕ ∈

(−π/2, π/2) and θ ∈ (0, π). For A1·u = ρ01 sin θ cosϕ +
√

1− ρ201 sin θ sinϕ = ρ01 sin θ sin(ϕ +
arcsin ρ01) > 0 we obtain ϕ ∈ (− arcsin ρ01, π − arcsin ρ01) on θ ∈ (0, π). Finally, for A2·u =
sin θ(ρ02 cosϕ + q1 sinϕ) + q2 cos θ > 0 we need to distinguish four cases: First, if q4(ϕ) :=
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ρ02 cosϕ + q1 sinϕ > 0 and θ ∈ (0, π/2), then A2·u > 0 if tan θ > −q2/q4, which is fulfilled
for all θ ∈ (0, π). Second, if q4 > 0 and θ ∈ (π/2, π), then A2·u > 0 if tan θ < −q2/q4, which

implies θ < π− arctan(q2/q4) = π− arcsin

(
q3√

1 + q23

)
, where q3(θ) := q2/q4. Third, for q4 < 0

and θ ∈ (0, π/2), we have A2·u > 0 if tan θ < −q2/q4 = q2/|q4|, so that θ < arctan(q2/|q4|) =

arcsin(
|q3|√
1 + q23

). Fourth, if q4 < 0 and θ ∈ (π/2, π), then A2·u > 0 if tan θ > q2/|q4|, but this is

not fulfilled for any θ ∈ (π/2, π), since tan θ < 0. Finally, we have q4 = ρ02 cosϕ+ q1 sinϕ > 0
for ϕ ∈ (−π/2, π/2) if tanϕ > −ρ02/q1, resp. ϕ > arctan(−ρ02/q1) = arcsin(−ρ02/

√
q21 + ρ202).

Putting everything together, we obtain

lim
C→−∞

P(Z1 ≤ D1, Z2 ≤ D2|Z0 ≤ C) =

(∫ π/2

−π/2

∫ π

0
(sin θ)α+1(cosϕ)α dθ dϕ

)−1
[∫ π/2

t

∫ π/2

0
(sin θ)α+1(cosϕ)α dθ dϕ+

∫ π/2

t

∫ π−arcsin(q3/
√

1+q23)

π/2
(sin θ)α+1(cosϕ)α dθ dϕ

+

∫ t

− arcsin ρ01

∫ arcsin(q3/
√

1+q23)

0
(sin θ)α+1(cosϕ)α dθ dϕ

]
,

with t := − arcsin(min(ρ01, ρ02/
√
q21 + ρ202)).

First, ∫ π/2

−π/2

∫ π

0
(sin θ)α+1(cosϕ)α dθ dϕ = B

(
α+ 2

2
,
1

2

)
B

(
1

2
,
α+ 1

2

)
.

Second,∫ π/2

t

∫ π/2

0
(sin θ)α+1(cosϕ)α dθ dϕ

=
1

4
B

(
α+ 2

2
,
1

2

)[
B

(
1

2
,
α+ 1

2

)
+B

(
ρ201 ∧

ρ202
q21 + ρ202

;
1

2
,
α+ 1

2

)]
and∫ π/2

t

∫ π−arcsin(q3(ϕ)/
√

1+q3(ϕ)2)

π/2
(sin θ)α+1(cosϕ)α dθ dϕ

=

∫ π/2

t

1

2

[
B

(
α+ 2

2
,
1

2

)
−B

(
q3(ϕ)2

1 + q3(ϕ)2
;
α+ 2

2
,
1

2

)]
(cosϕ)α dϕ

and∫ t

− arcsin ρ01

∫ arcsin(q3(ϕ)/
√

1+q3(ϕ)2)

0
(sin θ)α+1(cosϕ)α dθ dϕ

=

∫ t

− arcsin ρ01

1

2
B

(
q3(ϕ)2

1 + q3(ϕ)2
;
α+ 2

2
,
1

2

)
(cosϕ)α dϕ.
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Figure 1: Asymptotic univariate PD’s (left) and bivariate PD’s (right) as a function of the tail
index. Correlations are ρ01 = ρ02 = ρ and ρ12 = ρ2. The choice of ρ12 implies that the asset
returns are correlated only via the risk factor.

Putting everything together yields

lim
C→−∞

P(Z1 ≤ D1, Z2 ≤ D2|Z0 ≤ C) =
1

4

[
1 + I

ρ212∧
ρ202

q21+ρ
2
02

(
1

2
,
α+ 1

2

)]

+
1

2

∫ π/2

t

[
1− I q3(ϕ)

2

1+q3(ϕ)
2

(
α+ 2

2
,
1

2

)]
(cosϕ)α dϕ

(
B

(
1

2
,
α+ 1

2

))−1
+

1

2

∫ t

− arcsin ρ01

I q3(ϕ)
2

1+q3(ϕ)
2

(
α+ 2

2
,
1

2

)
(cosϕ)α dϕ

(
B

(
1

2
,
α+ 1

2

))−1
,

and replacing the incomplete beta functions by the Student-t distributions, cf. Equation (9),
yields the claim.

Figure 1 shows examples of asymptotic univariate and bivariate PD’s for varying tail index
α. This demonstrates how PD’s depend on both the tail index and the correlations.

4 Default correlations under stress

In the case where P(G > ·) ∈ RV−α, default correlations can be explicitly calculated using
the results from Propositions 2 and 3. For the case where G is rapidly varying, we have the
following result.

Proposition 4. Let P(G > ·) ∈ RV−∞. Then,

lim
C→−∞

CorrC(1{Z1≤D1},1{Z2≤D2}) = 0,

where CorrC denotes the correlation under PC .

Proof. It is easily seen that for any probability measure P,

Corr(1{Z1≤D1},1{Z2≤D2}) =
P(Z1 > D1, Z2 > D2)− (1− E(1{Z1≤D1})) (1− E(1{Z2≤D2}))√
E(1{Z1≤D1}) (1− E(1{Z1≤D1}))

√
E(1{Z2≤D2}) (1− E(1{Z2≤D2}))

.

(12)
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Using Theorem 1, this simplifies in the case of P(G > ·) ∈ RV−∞ to

lim
C→−∞

CorrC(1{Z1≤D1},1{Z2≤D2}) = lim
C→−∞

P(Z1 > D1, Z2 > D2|Z0 ≤ C)√
P(Z1 > D1|Z0 ≤ C)

√
P(Z2 > D2|Z0 ≤ C)

= lim
C→∞

P(Z1 ≤ D1, Z2 ≤ D2, Z0 > C)√
P(Z1 ≤ D1, Z0 > C)

√
P(Z2 ≤ D2, Z0 > C)

,

(13)

where the second equality follows from the symmetry of the Zi.
Suppose first that ρ01 6= ρ02; wlog. let ρ02 > ρ01. As before, we first prove the claim for

D1 = D2 = 0.
We write (13) in the form

lim
C→−∞

CorrC(1{Z1≤0},1{Z2≤0}) = lim
C→∞

P(Z1 ≤ 0, Z2 ≤ 0, Z0 > C)

P(Z2 ≤ 0, Z0 > C)

√
P(Z2 ≤ 0, Z0 > C)

P(Z1 ≤ 0, Z0 > C)
.

(14)

The first term is bounded by 1. For C > 0, write the second term in the form

P(Zi ≤ 0, Z0 > C) = P

(
G >

C

A0·U
,A0·U > 0, Ai·U < 0

)
=

∫
u∈S2,A0·u>0,Ai·u<0

P

(
G >

C

A0·u

)
FU (du)

=

∫ − arcsin ρ0i

−π/2
P

(
G >

C

cos θ

)
dθ.

Since ρ02 > ρ01, we have − arcsin ρ02 < − arcsin ρ01, and

sup
θ∈(−π/2,− arcsin ρ02]

cos θ = cos(− arcsin ρ02) =
√

1− ρ202.

Hence, using that G is rapidly varying and via Dominated Convergence,

lim
C→∞

∫ − arcsin ρ02

−π/2

P(G > C/ cos θ)

P(G > C/
√

1− ρ202)
dθ = 0,

whereas

lim
C→∞

P(G > C/ cos θ)

P(G > C/
√

1− ρ202)
=∞, for θ ∈ (− arcsin ρ02,− arcsin ρ01],

which implies that

lim
C→∞

P(Z2 ≤ 0, Z0 > C)

P(Z1 ≤ 0, Z0 > C)
= 0 (15)

and therefore Equation (14) is 0.
To complete the proof for ρ02 > ρ01 it remains to show that

lim
C→−∞

CorrC(1{Z1≤D1},1{Z2≤D2}) = lim
C→−∞

CorrC(1{Z1≤0},1{Z2≤0}) = 0

for arbitrary D1, D2 ∈ R. For a > 0 and C > |D2|/a,

P(Z2 + aZ0 ≤ 0, Z0 > C) ≤ P(Z2 ≤ D2, Z0 > C) ≤ P(Z2 − aZ0 ≤ 0, Z0 > C).

11



For sufficiently small a we obtain from (15)

0 = lim
C→∞

P(Z2 + aZ0 ≤ 0, Z0 > C)

P(Z1 ≤ 0, Z0 > C)
≤ lim

C→∞

P(Z2 ≤ D2, Z0 > C)

P(Z1 ≤ 0, Z0 > C)

≤ lim
C→∞

P(Z2 − aZ0 ≤ 0, Z0 > C)

P(Z1 ≤ 0, Z0 > C)
= 0

and therefore

lim
C→∞

P(Z2 ≤ D2, Z0 > C)

P(Z1 ≤ 0, Z0 > C)
= 0.

Applying the same argument to the numerator yields

lim
C→∞

P(Z2 ≤ D2, Z0 > C)

P(Z1 ≤ D1, Z0 > C)
= 0.

Obviously,
P(Z1 ≤ D1, Z2 ≤ D2|Z0 > C)

P(Z2 ≤ D2|Z0 > C)
is bounded by 1. Hence, by Equality (14),

lim
C→−∞

CorrC(1{Z1≤D1},1{Z2≤D2}) = 0.

It remains to show that the claim also holds for ρ01 = ρ02. Wlog. assume that D1 ≤ D2.
We now provide a proof for the case D2 ≤ 0. The case D2 > 0 is shown analogously.

It follows from (13) that

lim
C→−∞

CorrC(1{Z1≤D1},1{Z2≤D2}) ≤ lim
C→∞

P(Z1 ≤ 0, Z2 ≤ 0, Z0 > C)

P(Z1 ≤ D1, Z0 > C)
.

The numerator can be written in the form

P(Z1 ≤ 0, Z2 ≤ 0, Z0 > C) =

∫
A0·u>0,Ai·u<0,i=1,2

P

(
G >

C

A0·u

)
FU (du).

Express u ∈ S3 in polar coordinates by u = (sin θ cosϕ, sin θ sinϕ, cos θ)T with θ ∈ [0, π],
ϕ ∈ [−π, π]. Observe that the conditions A0·u = sin θ cosϕ > 0 and A1·u = ρ01 sin θ sin(ϕ +
arcsin ρ01) < 0 imply θ ∈ (0, π) and ϕ ∈ (−π/2,− arcsin ρ01). Hence,

x := sup
A0·u>0,A1·u<0

A0·u

= sup
θ∈(0,π),ϕ∈(−π/2,− arcsin ρ01)

sin θ cosϕ

= sin(π/2) cos(− arcsin ρ01)

= cos(− arcsin ρ01) =
√

1− ρ201.

At θ = π/2, ϕ = − arcsin ρ01, the conditionA2·u < 0 is not satisfied: sinceA2·u = sin θ(ρ02 cosϕ+
q1 sinϕ) + q2 cos θ, where q1 and q2 are as in Proposition 3, resp. the proof of Proposition 3 it
follows from ρ02 = ρ01 that

A2·u = ρ01 cos(− arcsin ρ01)︸ ︷︷ ︸
=
√

1−ρ201

− ρ12 − ρ
2
01√

1− ρ201
ρ01 =

ρ01√
1− ρ201

(1− ρ12) ≥ 0.

This implies that
y := sup

A0·u>0,A1·u<0,A2·u<0
A0·u < x.
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Hence, by the property that G is rapidly varying and via Dominated Convergence,

lim
C→∞

∫
u∈S3,A0·u>0,A1·u<0,A2·u<0

P (G > C/(A1·u))

P(G > C/y)
FU (du) = 0. (16)

For the denominator we have

P(Z1 ≤ D1, Z0 > C) =

∫
u∈S3,A0·u>0,A1·u<0

P

(
G > max

(
|D1|
|A1·u|

,
C

A0·u

))
FU (du)

=

∫ π

0

∫ − arcsin ρ01

−π/2
P

(
G > max

(
f(θ, ϕ),

C

sin θ cosϕ

))
sin θ dϕdθ, (17)

where

f(θ, ϕ) :=
|D1|

|ρ01 sin θ sin(ϕ+ arcsin ρ01)|
.

Obviously, the maximum in the integrand of (17) is given by f(θ, ϕ) if

sin θ cosϕ

|ρ01 sin θ sin(ϕ+ arcsin ρ01)|
=

cosϕ

|ρ01 sin(ϕ+ arcsin ρ01)|
≥ C

|D1|
.

Hence, f(θ, ϕ) is the maximum in a neighbourhood of ϕ = − arcsin ρ01. On the other hand,
for every ϕ ∈ (−π/2,− arcsin ρ01) the maximum is given by C/(A0·u) for C sufficiently large.
Hence, we choose C large enough so that

max

(
|D1|

|ρ01 sin θ sin(ϕ+ arcsin ρ01)|
,
C

A0·u

)
=

C

A0·u
and A0·u = sin θ cosϕ > y

for (θ, ϕ) ∈ M , where M ⊂ (0, π) × (−π/2,− arcsin ρ01) is a set of positive Lebesgue measure.
Hence, by the property that G is rapidly varying and via Dominated Convergence, we obtain
from (17) that

lim
C→∞

P(Z1 ≤ D1, Z0 > C)

P (G > C/y)
≥ lim

C→∞

∫
M

P (G > C/(sin θ cosϕ))

P (G > C/y)
sin θ dϕdθ =∞.

Together with (16), this proves the claim.

That default correlations under stress converge to zero in light-tailed models can be explained
as follows: In regression analysis, correlation – expressed as R2 – measures the degree of the
linear relationship between two random variables. In the case of default correlations, there
are only four possible scenarios: both variables are zero, both variables are one, and exactly
one variable is one and the other is zero (and vice versa). In the light-tailed case, since,
asymptotically, default is a sure event, only the event that both variables take value one remains.
However, for any large stress level, the probability that both variables are zero vanishes most
quickly and probability mass is pushed into the remaining three cases. No line will succeed in
adequately describing the relationship of those variables and in particular will not capture the
variance in the centralized variables.

5 Implications for credit portfolio modelling

The main results of this paper are formulae for asymptotic stressed default probabilities in

credit portfolio models with elliptically distributed risk factors and asset variables Z
L
= GAU .

We have shown that for any Di ∈ R

lim
C→−∞

P(Zi ≤ Di|Z0 ≤ C) = 1,
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if P(G > ·) is rapidly varying and, if P(G > ·) is regularly varying,

lim
C→−∞

P(Zi ≤ Di|Z0 ≤ C) = tα+1

(√
α+ 1 ρ√
1− ρ2

)
∈ [1/2, 1).

This behaviour of limiting default probabilities is fundamentally different to tail dependence,
which is a popular measure in finance to assess the ability of a bivariate distribution to generate
joint extreme events: For two random variables Y1 and Y2 with distribution functions F1 and
F2, the coefficient of (lower) tail dependence of Y1 and Y2 is

λl(Y1, Y2) := lim
q→0+

P(Y2 ≤ F←2 (q)|Y1 ≤ F←1 (q)), (18)

where F←i denotes the inverse of the df Fi. The tail dependence coefficient depends only on
the copula rather than the bivariate distribution function, see e.g. Joe (1997); Nelsen (1999);
McNeil et al. (2005). For heavy-tailed elliptical distributions, i.e., the mixing variable G is in
RV−α, the tail dependence is given by

λl(Y1, Y2) =

∫ π/2
π/2−arcsin ρ(cos θ)α dθ∫ π/2

0 (cos θ)α dθ
= 2tα+1

(
−

√
(α+ 1)(1− ρ)

1 + ρ

)
,

where ρ := Corr(Y1, Y2), see Hult and Lindskog (2002); Schmidt (2002); McNeil et al. (2005).
Hence, λl(Y1, Y2) > 0 for ρ > −1. In contrast, the tail dependence is zero for a normal distri-
bution, which is the most frequently used distribution in structural credit portfolio models, e.g.
normal distributions are used in Moody’s KMV model (Crosbie and Bohn (2002)). Due to zero
tail dependence, normally distributed models are usually considered less sensitive to extreme
stress than heavy-tailed models. The results in this paper show that this is not necessarily the
case: in the limit, the impact of stress on default probabilities is higher in light-tailed models
than in heavy-tailed models.

To analyze the precise difference between tail dependence and asymptotic stressed PD’s, we
write the tail dependence of Z0 and Z1 in the form

λl(Z0, Z1) = lim
C→−∞

P(Z1 ≤ C|Z0 ≤ C), (19)

which is equivalent to definition (18) since Z0 and Z1 are identically distributed. Hence, for
calculating tail dependence the conditional probability PC(Z1 ≤ C) has to be evaluated whereas
the stressed default probability PC(Z1 ≤ D) is evaluated at a constant D. For light-tailed
elliptical distributions, the variable Z1 only attains limit values in the range

lim
C→−∞

PC(C ≤ Z1 ≤ D) = 1

for any D ∈ R, whereas extreme events outside this range have positive probability in the
heavy-tailed case:

lim
C→−∞

PC(Z1 ≤ C) > 0, lim
C→−∞

PC(Z1 > D) > 0.

The resulting difference between tails dependence and asymptotic stressed PD’s as a function
of the tail index α is shown in Figure 2.

Turning now to stressed default correlations, we observe a behaviour similar to tail depen-
dence: we have shown that stressed default correlations converge to 0 in the light-tailed case
and to a positive number in the heavy-tailed case. Hence, in light-tailed models extreme stress
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Figure 2: Tail dependence coefficient and asymptotic PD under stress as a function of the tail
index α. Left: correlation parameter 0.4; right: correlation parameter 0.7.
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Figure 3: PD’s under stress as a function of the stress probability p := F (C), with F the
distribution function of the respective model and C the stress level. Models considered are
the normal distribution and the t-distribution with parameter 3. Correlations are 0.4. Left:
unconditional PD is 0.1 (i.e., D = F (−1)(0.1)); right: unconditional PD is 0.01.

scenarios tend to heavily increase the expected loss whereas tail risk measures, which are driven
by the dependence of default events, are less affected.

It is important to note, however, that the asymptotic behaviour analysed in this paper is not
necessarily representative for typical stress scenarios in credit risk management. To gain further
insight and provide a heuristic answer, we consider PD’s under stress for various stress levels
and compare them in light- and heavy-tailed models. Figure 3 shows PD’s under stress for both
normally distributed and t-distributed (ν = 3) models as a function of the stress probability
p := F (C), where F is the distribution function of the respective model and C is the stress
level. The correlation is chosen to be 0.4. Despite converging to a value smaller than 1, PD’s
under stress in the t-distributed model dominate the normally distributed case unless the stress
probability is very small: If the unconditional PD is 10%, then for stress probabilities greater
than 10−6, the PD under stress in the t-distributed model is greater than the respective PD in
the normal model. If the unconditional PD is 1%, then the threshold lies beyond 10−13.

Hence, aside from providing useful information for stress testing, our results indicate that
gauging the suitability of a distribution family for credit portfolio modelling solely on asymptotic
behaviour may be misleading.
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