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Abstract: In this paper, the complete convergence for maximal weighted sums of extended neg-
atively dependent (END, for short) random variables is investigated. Some sufficient conditions
for the complete convergence and some applications to a nonparametric model are provided. The
results obtained in the paper generalise and improve the corresponding ones of Wang el al. (2014b)
and Shen, Xue, and Wang (2017).
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1 Introduction

In this paper, we consider a sequence {X,,n > 1} of random variables defined on some probability
space (2,.7, P).

It is well known that the complete convergence plays an important role in establishing almost sure
convergence of summation of random variables as well as weighted sums of random variables. The concept
of the complete convergence was introduced by Hus and Robbins (1947) as follows.

Definition 1.1 A sequence of random wvariables {X,,n > 1} is said to converge completely to a
constant C' if for any € > 0,

> P(IX, —C|>¢) < .
n=1

For independent and identically distributed (i.i.d., in short) random variables {X, X,,, n > 1}, let
Sp =3 p_y Xk,n > 1be the partial sums, Hsu and Robbins (1947) proved that S,, /n converge completely
to EX, provided DX < oco. Erdds (1949) proved the converse theorem. This Hus-Robbins-Erdés’s
theorem was generalized in different ways. Kate (1963), Baum and Katz (1965), and Chow (1988)
formed the following generalization of Marcinkiewicz-Zygmund type.

Theorem 1.1 Let {X, X,,,n > 1} be a sequence of i.i.d. random variables and let ap > 1,0 > 1/2.

The following statements are equivalent:

(i) E|X|P<ooand EX =0 ifp>1;

(i) D02 nP72P(]S,] > en®) < oo for all € > 0;

(iii) > oo, n*P 2P(maxi<i<y, |Si| > en®) < oo for all € > 0;

If ap > 1, > 1/2 the above are also equivalent to

(iv) >0 noP2P(sup;s,, i~ %|S;| > €) < oo for all e > 0.
In convenient, we call item n®?~2 as the weight function of the tail probabilities. Many useful lin-
ear statistics are weighted sums of independent and identically distributed random variables, such as,
least-squares estimators, nonparametric regression function estimators and jackknife estimates, and so
on. However, in many stochastic model, the assumption that random variables are independent is not
plausible. Increases in some random variables are often related to decreases in other random variables,
so an assumption of dependence is more appropriate than an assumption of independence. One of the
important dependence structure is the extended negatively dependent structure, which was introduced
by Liu (2009) as follows.
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Definition 1.2 Random variables X,k =1,---,n are said to be lower extended negatively depen-
dent (LEN D) if there is some M > 0 such that, for all real numbers xi, k=1,--- n,

k=1 k=1

they are said to be upper extended negatively dependent (UEN D) if there is some M > 0 such that, for
all real numbers ryp, k=1,---,n,

P { ﬁ (X > xk)} <M ﬁ P{Xi >z} (1.2)
k=1

k=1

and they are said to be extended negatively dependent (END) if they are both LEND and UEND. A
sequence of infinitely many random variables { Xy, k = 1,2,---} is said to be LEND/UEND/END if
for each positive integer n, the random variables X1, Xo,- -+, X,, are LEND/UEND/END, respectively.

The END structure covers all negative dependence structures and, more interestingly, it covers certain
positive dependence structures. Some results for END sequence have been found. See, for example, Liu
(2009) obtained the precise large deviations for dependent random variables with heavy tails. Liu (2010)
studied the sufficient and necessary conditions of moderate deviations for dependent random variables
with heavy tails. Shen (2011) gave the probability inequalities. Chen, Chen, and Ng (2010) considered
the SLLN for END random variables and applications to risk theory and renewal theory, and so on.

Recall that the sequence {X,,,n > 1} is stochastically dominated by a random variable X if

sup P{|X,,| >t} < CP{|X]| > t}, (1.3)

n>1

for some positive constant C' and all ¢ > 0. A real valued function I(z), positive and measurable on
[A, 00) for some A > 0, is said to be slowly varying if

lim HAz)

AT =1 for each A > 0.

Motivated by applications in statistics, many researchers extended the Baum-Katz type result for
independent random variables to some dependent random variables, such as some mixing random vari-
ables, NA sequences, NOD random variables, END random variables and even WOD random variables.
Recently, Wang et al. (2014b) established the following result on complete convergence for weighted sums
of END random variables.

Theorem 1.2 Let {X, X,,,n > 1} be a sequence of identically distributed END random variables
with EX =0 and E|X|P < oo for some ap > 1 and 1/2 < a < 1. Let {an;, 1 <i<mn,n > 1} be an array
of real numbers such that

Z lan;|? = O(n), for some q > p. (1.4)
i=1
Then for any € > 0,
S rtr (S
i=1 i=1

Based on the above work, Shen, Xue, and Wang (2017) generalised the weight functions of tail prob-
abilities in Theorem 1.2 for non-identical distributed END random variables, and obtained the following
result about complete convergence:

> 5n°‘> < 0o0. (1.5)



Theorem 1.3 Let 0 < p < 2, > 0,ap > 1, and {X,,,n > 1} be a sequence of END random
variables, which is stochastically dominated by a random variable X. Let l(x) > 0 be a slowly varying
function. Assume further that EX,, =0 for eachn >1 if p>1 and {an;,1 <i <n,n > 1} is an array
of real numbers such that

If
E[IXPI(IX[V)] < oo, (1.6)

then for any e > 0,

i naP—Ql(n)P < ianiXi
n=1 i=1

Motivated by the above works, we will further study the complete convergence for weighted sums of
END random variables, the purpose of this article is threefold:

(1) generalise the condition of weight {an;,1 <i <mn,n > 1} in Theorem 1.3 to one in Theorem 1.2;

(2) take into account the maximum of weighted sums.

(3) the values of p and « are extended to o > 3, ap > 1.

This work is organized as follows: main results on complete convergence for maximal weighted sums
of END random variables and the applications to a nonparametric model are provided in Section 2. Some
lemmas and the proofs of the main results are presented in Section 3.

Before we present our main results, we note that C' will be numerical constants whose value are without
importance, and, in addition, may change between appearances. a,, = O(b,) stands for a,, < Cb,, for all
n > 1 and I(A) is the indicator function on the set A. Denote X = max(X,0) and X~ = max(—X,0).

> 6n°‘> < 00, (1.7)

2 Main Results

Our main results on complete convergence for maximal weighted sums of END random variables are
as follows.

Theorem 2.1 Let a > 3, ap > 1 and {(z) be a slowly varying function at infinity. Let {X,,n > 1}
be a sequence of END random variables, which is stochastically dominated by a random variable X. Let
{ani, 1 <i<mn,n>1} be an array of real numbers such that a,; =0 or |ay;| > 1 and,

n

Z lani|® = O(n), for some & > p. (2.1)

i=1

Moreover, additionally assume that EX,, =0 for a <1. If

E|XPe(1X]"*) < oo, (2.2)
then, for arbitrary € > 0,
o0
ap—2 | > en® .
Z n L(n)P (121]a<xn |Tj| > en ) < 00, (2.3)

n=no

k

where T, = > aniX;,1 <k < n,m>1and, ng > 1 be a suitable constant such that £(n) > 0 well
i=1

defined.

In the case of a,; =0 or |a,;| > 1, we give the following two Remarks on Theorem 2.1.



Remark 2.1 Comparing Theorem 2.1 with Theorem 1.2, the identical distribution in Theorem 1.2 is
extended to the case of non-identical distribution. In addition, there are many examples of slowly varying
functions which are positive and monotone non-decreasing, such as {(x) = 1,4(x) = logx, (x) = (log x)?,
and so on. on the other hand, it is obvious that the complete convergence of mazximal weighted sums imply
(1.5). Hence, the main result of this paper generalise the corresponding one of Wang el al. (2014b).

Remark 2.2 Comparing Theorem 2.1 with Theorem 1.3, we extend the condition (2.1) on weight
{ani,1 < i < myn > 1} from & = 2 to some & > p with the same moment condition. In addition,
0<p<2,aa>0,ap>1in Theorem 1.3 implies o > % > %

Theorem 2.2 Let a > %, ap > 1 and () be a slowly varying function at infinity. Let {X,,n > 1}
be a sequence of END random variables, which is stochastically dominated by a random variable X. Let
{ani, 1 < i < m,n > 1} be an array of real numbers such that |ay;| < 1, 1 < i < n,n > 1. Moreover,

ap—1 2(ap—1)
a—3 7 alp=9)-1 [’

additionally assume that EX, = 0 for a < 1. If there exists a constant 6§ > max {p,
such that

EIX P4 X]/*)(log | X[)? < oo, (24)
where 0 < § <p,a(p—38)>1, andp—3§ > 1 for p> 1, then (2.3) holds.

Remark 2.3 Comparing Theorem 2.2 with Theorem 2.1, the moment condition (2.4) is a little
stronger than (2.2). It is reasonable since we consider the complete convergence of tail probability for
weighted partial sums Z?:l ani X;, where decreases in weights are related to increases in random variables.

Combining Theorem 2.1 and Theorem 2.2, we can give the following result.

Corollary 2.1 Leta > 3, ap > 1 and {(x) be a slowly varying function at infinity. Let {X,,n > 1}
be a sequence of END random variables, which is stochastically dominated by a random variable X. Let
{ani, 1 <i <mn,n > 1} be an array of real numbers satisfying (2.1). Moreover, additionally assume that

EX, =0 for o <1. Then (2.4) implies (2.3).

Remark 2.4 For ap > 1,1/2 < a < 1, {X, X,.n > 1} be a sequence of identically distributed
END random variables with EX = 0 and E|X|P < oo, and {an;,1 <1i < mn,n > 1} is an array of real
numbers satisfying (2.1), Zhang (2014) obtained (2.3) for £(x) = 1. Although we sacrificed a little bit
of the moment condition, we generalized not only the non-identical distribution and the slowly varying
function, but also the parameter « to a > 1/2.

In what follows, we apply the result of Corollary 2.1 to a nonparametric regression model and inves-
tigate the strong convergence for the nonparametric regression estimator based on END errors.
Consider the following nonparametric regression model:

Ynlzf(xnz)+5nza t=12--,n,n=>1, (25)

where z,; are known fixed design points from a given compact set A C R™ for some m > 1, f(-) is
an unknown regression function defined on A and &,; are random errors. Assume that for each n > 1,
(€n1y&n2, "+, Enn) have the same distribution as (1,2, --,&,). As an estimator of f(-), the following
weighted regression estimator will be considered:

k
far(@) =D Wai()Yni, k=1,2,---,n, z€ACR™, (2.6)
i=1
where Wi, (z) = Whi(@; 201, T2y +y Tnn )y ¢ = 1,2, -+, n are the weight functions.

The class of estimator (2.6) was first introduced by Stone (1977) and next adapted by Georgiev
(1983) to the fixed design case. Until now, the estimator (2.6) has been studied by many authors, such as
Georgiev and Greblicki (1986), Miiller (1987) and Georgiev (1988) among others for independent errors,
and Roussas (1989), Fan (1990), Tran et al. (1996), Hu et al. (2002), Liang and Jing (2005), Yang et



al. (2012), Wang et al. (2014a), Wang et al. (2014c), Shen (2016) and Yan (2017) among others for
dependent errors. The aim of this section is to investigate the strong convergence of the nonparametric
regression estimator f,x(z) by using the complete convergence that we established in Section 2.

For any function f(z), we denote ¢(f) as all continuity points of the function f on A. The norm ||z||
is the Euclidean norm. For any fixed point 2 € A, the following assumptions on weight functions W;,;(x)
will be used:

H;: 1r<n]?§n z;WM( x) — 1‘ — 0 as n — oo

Z [Whi(x)] < C < ooforalln>1;

Z|an( )W f(@ng) — F@)I(||2n; — z|| > a) — 0 as n — oo for all a > 0.

Based on the assumptions above, we can get the following results on complete convergence of the
maximum of the nonparametric regression estimator f,(z).

Theorem 2.3 Let o > 1/2,p > 2/« and £(x) be a slowly varying function at infinity. Let {e,,n >
1} be a sequence of zero mean END random variables, which is stochastically dominated by a random

variable ¢ and E|e[P£(|e|"/*)(log|e])? < oo, where 6 as one in Theorem 2.2. Assume that assumptions
(Iil) —-(II3) hold. Lf

— —a 2.
max. Wkl =0 (n™%) as n— oo, (2.7)
then for any x € c(f),
max |fnx(x) — f(x)| — 0, completely, as n — oc. (2.8)

1<k<n

Theorem 2.4 Let o > 1/2 and {e,,n > 1} be a sequence of zero mean END random variables,
which is stochastically dominated by a random variable € and E|e|*/*(log|e|)? < oo, where  as one in
Theorem 2.2. Assume that assumptions (Hy) — (Hs) hold. Then for any x € c(f), (2.7) implies (2.8).

3 Some Lemmas and Proofs
To prove the main results of the paper, we need the following important lemmas.

Lemma 3.1 (c¢f.Liu (2009)) Let {X,,n > 1} be a sequence of END random variables.
(i) For each n > 1, if f1, fa,-- -, fn are all nondecreasing (or nonincreasing) functions, then random
variables f1(X1), f2(X2), -+, fu(Xn) are also END.
(i) For each m > 1, there exists a constant M > 0 such that

E (ﬁXj) < MﬁEXj.
i=1 =1

Lemma 3.2 (c¢f.Wang et al. (2014b)) Let p > 2 and {X,,n > 1} be a sequence of END random
variables with EX,, = 0 and E|X,|P < oo for each n > 1. Then there exists a positive constant C,
depending only on p such that

n P

Sox

i=1

E

n n p/2
<G, D EIXP+ (Z E|Xi2> , foralln>1.
i=1

i=1

and

p/2

j p n
ZXZ- ) < Cp(logn)? ZE|X P+ (ZE|X1-2> . foralln>1.
=1 i=1




Lemma 3.3 Let p > 2 and {X,,,n > 1} be a sequence of END random variables with EX, = 0
and E|X,|P < oo for each n > 1. Let {an;, 1 <i < n,n > 1} be an array of real numbers. Then there
exists a positive constant C), depending only on p such that

p/2

P n
Zam i > < Cp(logn)? ZE\amX P+ (Z E|am-Xi|2> ,
i=1

( max
1<j<n
for alln > 1.

Proof of Lemma 3.3 By Lemma 3.1, it’s easy to see that {a}, X;,1 <i <n} and {a_;X;,1 <i<n}
are still END random variables respectlvely for each n > 1. It follows from Lemma 3.2 that

max
1<j<n

max
1<j<n

where Cj,, C}) are positive constants depending only on p. Let

Z amX

p/2]
) < C,(logn)? ZE|a X7+ (ZE|a X |2> ,n>1, (3.1)

and

Z a,; Xi

[ n n p/2]
) < C)l(logn)? | > Ela,, X" + (Z EamXZ-|2> ,n>1, (3.2)
i=1 =1

C,= max{C;, C}'},

then by C,. inequality, (3.1) and (3.2) we have

P
<1glja<xn Zam i ) = (fgjagn ZamX Z%X )
< p—1 + v - X.
< 25 (e[S o]
p/2
< 2°71C) (logn)? ZE|a XalP + <ZE|a X|2>
n p/2
+2P71CY (log )P ZE|amX [P+ <Z E|a;iXi|2>
i=1
n p/2
< 20710, (logn)? ZE|amX P+ (ZE|amXi|2>
i=1
Therefore, the result holds for C), = 2”_1@,, which depends only on p. O

Lemma 3.4 (Adler and Rosalsky (1987); Adler, Rosalsky, and Taylor et al. (1989)) Let {X,,n >
1} be a sequence of random variables, which is stochastically dominated by a random variable X. For any
a >0 and B> 0, the following two statements hold:

E[Xn|*I(|Xn| < 8) < CLEIX|*I(|X] < 8) + 5 P{|X] > B}];
E[X["I(|Xn] > §) < CEIX[I(|X]| > B),

where Cy and Cs are positive constants. Consequently, E|X,|* < CE|X|*.



Lemma 3.5 (Yan J.G. (2018)) Let {an;, 1 < i <mn,n > 1} be an array of real numbers such that

n
Z anil® <n for some € >0,
i=1

then
() for every 0 < ( <&,

i=1
(i) for allm >1, k > ¢,

B(In)(j +1) 7" < Clm +1)' &,

s

i
3

and then for alln >m >1, Kk > &,

n—1

S HI) G+ 1)< Cm+ 1) E,

j=m

where I; = {1 <i<n:n$(G+1)7Y8 < |ay| < nl/857Y¢} | for eachn > 1,5 > 1.
(#it) for arbitrary s > 1,

w

#(In;) < min{n,s+ 1}.
j=1

We will use the following properties of slowly varying functions.

(3.3)

Lemma 3.6 (cf.Seneta (1976)) If £(x) is a function slowly varying at infinity, then for any s > 0,

Cin™*f(n) <> i ' 7(i) < Con~*U(n),

and .
Can®l(n) <Y i '0(i) < Can*L(n),
=1

where C;,1=1,2,3,4 are positive constants depending only on s.

Proof of Theorem 2.1. Without loss of generality, we may assume that a,; > 0for1 <i<n,n>1

and
n
Z lani|® <n, for some & > p.
i=1

We choose a number g such that

1
— <gqg<1l
ap

For 1 <i<n,n > 1, denote
Yni - aanu
Y = —n (Y, < —n®) 4 Y (|Yoi| < n%9) + 09I (Y > n®9);
Y3 = (Y — n®)I (Y, > n®9);

YTE?) = —(Yni + n*N)I(Yy; < —n®?).



Obviously,
Yo =Y+ v v v P =0, v 20,

and

ap—2 > ap—2
Z n l(n (max |T;| > en ) Z n n <1r%1]aéxn

n=ngo n=no
[e'e] j o o ; .
ap=2 W] En ap—2 )| _ €n
n=no i= n—=no P
j (0%
op2 @) 5 en”
- 3 e (s 3002
n=ng =
> J «@ 0 n
= ap*QE P Y(l) > 2 ap72€ P Y(2) En
3 werer (v = %)
n=ng
2 L+ L+

To prove (2.3), it suffices to show that I, < oo for k = 1,2,3. Since the convergence of Iy and I3 are the
same, we will just present the proof of I < co.
For I, we first show that

n~ % max
1<j<n

Z ey

n — 0o. (3.8)

By (2.2), it is easy to see that
E|X|P7" <00, forall0<n<p.

We choose 7 such that
O<n<p, alp—n)>alp—m)g>Tland, p—n>1ifp>1.

We prove (3.8) through the following three cases.
Case I. a<1. By ap > 1 we have p > 1. Therefore, EX,, = 0,n > 1, and then EY,; = 0 for
1 <7< n,n>1 By Lemma 3.4 and Lemma 3.5, we get

n=o EY(I
113]3<Xn Z
j J
< n7% max EY: I(|Yi| < n®)| +n™ P(|Y,;| > n™
< o || B <00 03P 2 )
J J
= n % max EY, I(|Y,:| > n®?)| +n*? P(|Y,;| > n*
s |3 ) 003 )
< 27 BVl I(|Yai| > n%) < Cnm* Y Elani X|I(|ani X| > n®)
i=1 i=1
< COn~%(n®9)'- (r— n)ZE|a JX[PTT < O~ (n®) —(p—m) Z|am| -n
i=1
< Cn—a(naq)l—(p—n) .p = Cp~leale=m=1] . p=e(l=9) s 0 n 5 . (3.9)



Case II. a>1,p>1.By ¢ >p>1, Lemma 3.4 and Lemma 3.5, we have

J J
—a D <« —e ) | < agq ) ag
=" max ZEYM <7t max ) [ENYoi T([Yni| < n®) + 0 P(|Yy] > n)]
n n
< Cn D ElaniX|I(|an X| <n) 4> nP(|an X| > n)
=1 =1
< COn™® Z Fla,; X| < Cn™¢ Z lani| <Cn~®-n=Cn~ (=Y 50, n — . (3.10)

i=1

Case III. a > 1,p < 1. By Lemma 3.4, Lemma 3.5 and Markov’s inequality we have

no 1) n-o 1)
Joax. ZEY ZE\Y
< 7Y [Elani Xl I(lan Xi| < n®9) + n®UP(|an: Xi| > n®?)]
i=1
n n
< 1Y Elan X |I(|an X[ < n%) + > nP(|an X| > naq)]
=1 =1
< n=% Znaql (p—m) E|a X|P n_,_znaq (NP Ela,; X|P~ 77‘|
i=1
< COn~@.peali=(-m) Z lan:[P~" < Cp~leale=m=1l . p=all=a) oy 5 o0, (3.11)

i=1

By (3.9), (3.10) and (3.11), we get (3.8).
Therefore, in order to prove I; < oo, it suffices to show that

o J
2 5 nor=2y(p)p <lrélja§}(n ; (nyil) - EYTS))

n=no
By the expression of Yrgil) and Lemma 3.1, for each fixed n > 1, {Yn(il) — EYTEZD7 1 < ¢ < n} remain
END random variables. From a(p —n)g > 1 and 0 < ¢ < 1, we get

> 6) < o0. (3.12)

1 p—n 1 p—n,_ap-n -1 .
———a(l——)g>a—=—oal — = >0ifp<2.
a—z-a-2 g a5 —an -0 . ifp <

We choose a constant 7 such that
-1 1 —(p—
T > max«{ 2, p, op T I op = 7p (p n)q .
a—3 a—z-a(l-"5l)g 1—q

Then, by Markov’s inequality, Lemma 3.3 and C). inequality we have

J

I < C Z n*P=2f(n)n"*7E ( max )

1<j<n

n=ngo

< C Z n°P=20(n)n"" (logn)"

n=no

.

)

+C Z n°P=20(n)n"*7 (logn)” (

n=no

= I+ 1.



To prove (3.12), it needs only to prove I}; < oo and I3, < oo respectively.
By C, inequality, Markov’s inequality, Lemma 3.4 and Lemma 3.5, we have

I o< CY 020 (logn)” 3 [Vl I([Yuil < n®) + 00 (Y] > no9)]

n=ng =1
< C ) n277¢(n)(logn) ZE|amX\ I(|an X| <0+ n®7 P(|an; X| > naq)l
n=no =1
< C Z nP=27270(n)(logn)" lznaqf (r— ”)]E\a JX|P n+znaq7 n"Y) P B, X [P n]
n=ngo =1
o0
< C Z n?=2=97 () (log n)fnafJ[T—(p—n)] . Z || P

n=no =1
_p— (p )q
< C Z peld-alr T =Y0(n)(logn)™ < cc.
n=no

Next for I{,. By C, inequality and Lemma 3.4 we have

Iy < C > n®7(n)(logn)"

n=ngo

n 2
ZE‘YHZ‘ I(|Yyi| <n™) + Zn2aqP(|Ym" > naq)‘|

=1 =1

< C ) a2 7U(n)(logn)”

n=no =1 =1

If p > 2, by Markov’s inequality and Lemma 3.5,

I, < Ci n*?=2=°7¢(n)(logn)" (ZamEX2>

n=ng

C i nap—?—a‘rg logn (Z anz)

n=ngo

IN

< C Z (e D=2l L(n) (logn)™ < .

n=ngo

If 0 < p < 2, again by Markov’s inequality and Lemma 3.5,

*
Il2

IN

n=ngo =1 =1

-

IN

C Z nap—Q—om—g(n)(log n)Tnaq[Q—(P—Tl)]% . <Z am.|;0—fl>

n=ng =1
< C Z poP=2-7le=3 =051 y(n) (logn)" < oo.
n=no

By (3.14) and (3.15), we see that I}, < oo. Thus, combine (3.13), (3.12) holds, that is I; < oco.
Next for I5. Let

7@ — (Yo —nNDI(n* <Y,; <n®+n%) +n*I(Yy; >n*+n), 1<i<n, n>1

Thus, Z'>) > 0 and

v® =23 L (v, —n® = nOI(Y > n®+n), 1<i<n, n>1

n
ZE\amX| I(|ap; X| < n®) + ZnQO‘qP(\amX| >n®

)

(o) n n
C Z n*P=2727¢(n)(logn)” [Z(n"‘q)z_(p_”)EmmXp_" —|—Zn2°“1(n_o‘q)(p_")E\aniXW_"

(3.13)

[

(3.14)

[V

(3.15)



Therefore,

I, < CZ n?=20(n (Zz > )
n=no =1
oo n gno‘
+C n®P=2¢(n)P Y, —n® —n*OHI(Y,; >n* +n*?) > —
> it (z< N )> < )
< CZn“p 20(n (ZZm )—i—C’ZnO‘p 20(n ZPYm>n +n)
n=no n=no =1
£ Ioy + Ino. (3.16)

To prove I < oo, it suffices to show that Iy; < 0o and Iz < 0.
For I5q, we first show that

n= Z EZ? 50, n— oo (3.17)
If p > 1. By Lemma 3.5, we have

n=e zn: EZ®) <np= Zn: EYpiI (Y > n®9)

=1 i=1

o
IN

n
n~%(n®a)t==n) ZE|amX|p—n

<
i=1

< no¥(net)t=emm) Z lani [P~ < Cp~leap=m—ll—all=a) _, g - oo, (3.18)
i=1

If 0 < p < 1. By Markov’s inequality, Lemma 3.4 and Lemma 3.5, we have

0 < n© ZEZ(2 <7 BV 1(|Yii| < 20%) + 0% P([Yeg| > 20°9)]
i=1
< Cn™® Z [Elan: X|I(|an; X| < 2nY) 4+ 2n*P(Jan; X| > 2n%) + n“P(|an; X| > 2n*9)]
i=1
n
< Cn S [Blan X|T(jani X| < 20%) + 1@ P(jani X| > 20%9)
i=1
S M D e e BRI
i=1
< COn~%pop~odP=m Z |an; P77 < Cp~leae=m=1l 00 p 5 0. (3.19)

i=1
Obviously, (3.17) follows from (3.18) and (3.19). Therefore, to prove Is; < 0o, it needs only to prove

I 2 Y e 2(n)P ( S (2P - Ez3)| >

n=ng i=1

n(X
v ) < o0. (3.20)

From Lemma 3.1, for each fixed n > 1, {Zr(j) — Eij-), 1 < i < n} are still END random variables.
We choose constant k such that

ap—1 ap—1 2(ap—1)
n>max{§, —T T a1
2 3

11



And by ap—1> a(p—n) — 1> 0, we see that % > 2, therefore, Kk > 2.
By Markov’s inequality, C) inequality and Lemma 3.3, we have

f:(z(z) B7)

K

I < C Z n°P=20(n)n" " E

n=ng i=1

< 0wy ZE‘Z O Y ey () <ZE (22) )
n=ng n=ng =1

£ L+ Ly

To prove (3.20), it suffices to show that I3;; < oo and I3, < co.
We will proceed with two aspects.
(i) If p > 2. First for I3;5. If p > 2, then by C, inequality, Lemma 3.5 and & > p, we have

I;12 < C Z noP— 2— Qﬁé (ZE|Y7”| ) <C Z noP— 2— ané (Zanz>

< C Z neP=2=oRg(n) . p¥ = i ~(emd) <”_&j>_1 (n) < . (3.21)

If p = 2. Similarly we have

2
I, < C Z neP=2mory(n, <ZE|Ym| I(|Yni] <2n%) 4+ n®*P(|Y,] > n )>
n=ngo =1
n %

< C Z 2 (n (Zn“"EWmF "I(|Yi] < 207) + 2“-(n‘a>2—"EYm2‘">

n=ng =1

s

<Y ey (Znanmymﬁ )

n=ng =1
< C Z nap—?—(ucg(n) (nan-l-l)%

n=ng
< C Z — == (a2 g(n) < oo (3.22)

n=ngo

Next for I3;;. By C, inequality, we get

M:

Ly < €3 0o 270%0m) S [E[Yal I(n® < Yo < 0% +1%9) + 0 P([Yuil > n® +n°9)

n=ng =1

< oY wmreny )Z[Wmmm < 20%) + 0 P(| Vo] > 1))
n=ngo =1

- C Z neP2meny( >Z Yo PT(|Yos] < 20%) +C Y 0 72(n) Y P(|Yyi| > n®)
n=ng =1 n=no =1

£ I+ (3.23)

Thus, to prove I3;; < 0o, we need to prove 137, < oo and I}, < 0.
Firstly, in view of I,,; and an; = 0 or |an;| > 1, it is easy to see that

n—1
U Iy = {1 <i<nam| > 1}
j=1

12



We thus by Lemma 3.5 that

I35 < CZ"’”’ *U(n ZZ (lani X| > n?)
n=ng Jj= 116],,7
< 03w m ZP|X|>n (1)) 8(1,y)
n=ngo
n—1 1 1
_ ap—2 t . - = — =
C’Zn {(n ZP|X|>H E) 8(Ing) (t o 5)
n=ng 7=1
— o0
< Cznap 20(n Z“ i) Y, Pm<|X|"<m+1)
n=no j=1 _ $
m=[n-j¢]
- (n—1)A[(2) §]
< C’Znap 2(n ZPm<|X|t<m+1) Z 8(Inj)
n=ng m=n Jj=1
o L1\ ¢
< C aP=2y(p Pim < |X['<m+1 mn 1
izn mzanmH((n +
oo (5] §
+1)7
< C ap=2p P XIt < 1 m 1
< Zn (n)z (m<||_m+)<( " +

n=ngo m=n

+C Z n°P~10(n)
n=no

A * *
- 121121 +I21122'

We will prove I5;19; < 00 and 5159 < 00.

oo

>

Pm<|X|"<m+1)

£

m=[n'"TT]+1

From%:a—%,it is easy to see that
1 1 ¢ 1
t(l-—)=—, ——=—, ;=1
and then

£ £ 3 af —1

4+ — -1-2) = -1 —-1- 1

S elen—1-3) = at-1+ S ap-1-ac+1)
p—¢§

By Lemma 3.6 and (2.2), we have

2_,
I < CZ o

n=no

o0
<oy r

m=ng

oo
D>

m=ng
<

n) Y Pm<|X['<m+1)-m

m

m=n

Pm<|X|'<m+1)-

13

m

(m<|X'<m+1)- mi Z noP=2-% £(n)

£

n=[m&+t]

mt ((mlft%f)

C + CE|X|PU(|X|#) < o0

(3.24)



Similarly,

*
121122

IN

IA

IN

c Y

£
m=[n(1)+t ]+1

c ¥

£
m=[ny" *]+1

C + CE|X[PU(|X]*) < oo.

From (3.24) and (3.25), we get 15,15 < 00.
Next for I3;;;. By Lemma 3.4 and C, inequality, we have

Similarly to the process of 13115 < 00, we can get that Jy < co. It remains to show that J; < oo.
For simplicity, we will prove

In fact,

JT =

< Y nrrenn) Yo (5)E BIX)FI
J

<

<

A

*
12111

IN

A

Oznap 2— ang

n=ngo

C«ZnapZ

n=no

omz

ZE|amX I (|an: X;| < 2n%)

=1

Pm<|X["<m+1)-

m )

mt f(mﬁ)

Pm<|X|"<m+1) Z n®P=1 f(n)

n=no

Z Elan: X|*I(Jan: X| < 2n%)

£OS v 2n

n=no

J1 + Jo.

JikACznapQQfﬁg

n=ngo

C«Znap 2— ome

n=no

n=ng

CZ nap 2— oergg

n=no

=1

ZP |an; X| > 2n%)

i=1

ZE|amX| I(Jan: X| < n%) < oco.

i=1

Z > Elani X[FI(Jani X| < n)

j=1li€l,;
n—1 . 1
(X1 (2
j=1
[(n-(+1)¥)
Zy"ﬁ I.;)
m=0
n— 2n

1
CZ nap 2— ou-c+£€( )Z]_

n=no

+C i nPTEO () Y GE

n=ng

Ji + Jia

Jj=1

It remains to show that Jj; < oo and J7, < 0.
We have by Lemma 3.5 and Lemma 3.6 that

Jho= C’Znap et E i

n=nogo

2n

m=0

8(Lnj)

[n

G €]

> EIX[FI(m < |X|'<m+1)

m=2n-+1

n

) Y EIX[FI(m < |X['<m+ 1)

m=0

14

<.

|
—

Il
-

4(L;) > EIX|I(m < |X]' <m+1)

> EIX[FI(m < |X|' <m+1)

(3.25)

(3.26)



IA

IN

IN

<

<

2n
CZnaP TRt (n ZE|X|“I(m<|X|t<m+ 1)
n=ngo m=0
CY EX[FI(m<|X['<m+1) Y a7 8(n)
m=1 n=[m/2]

C Y EIX[FI(m < X[ < m+ 1)m P~ E (m)

m=1

C Z P(m < |X[' <m+1)m*~14(m)

m=1

C + CE|X[P~'=9(|X|") < C + CE|X|Pe(|X|V).

On the other hand, again by Lemma 3.5 and Lemma 3.6, we have

i
[n'"€] n—1

J5 < cznap TetEln) Y EX[FIm < |X[P<m+1) Y

j_? ﬂ(ITLj)

1=

e men j=lm/my#1-1
oo '€
< ¢ i) Y EIXIm < |X]" <m+ 1) ([m/n) ] - 1)
n=ng m=2n+1
< C ) EX[Im<|X|'<m+lm™ 7 > aptrrestii(o8(n)
m=2ng+1 _&
n=[mé&+t]
d —£ 3 3 £
< C > EX[FIm<|X['<m+Lm™ T omE 0P (mE)

m=2ng+1

< ¢ Y Pm<IX|"<m+1)-m¥ ((m*) < O+ CE|X|PL(| X"
m=2no+1

From (3.27) and (3.28), we have J; < oo, and then I3;; < oo.
The case of 0 < p < 2 is similarly to the process of p > 2, so we omit it. Thus, (2.3) holds. This ends

Ot).

(3.27)

(3.28)

O

Proof of Theorem 2.2. Without loss of generality, for 1 <1i <n,n > 1, we assume that a,; > 0 and

the proof.

denote
x@
x @
x®)

Then

and

n=mno

IN

n=ngo

(1>

E n*?=2((n max
1<j<n

= —ayn®I(X; < —n%) 4+ an; X I (| Xi] < n%) 4+ anin®I1(X; > n®);

@ni(Xi — ’I’La)I(Xi > Tla);
= —am(Xl + no‘)I(XZ < 77101).

aniX; = XD+ xP - xB x>0 xB >,

ny nt — ? nt —

Z n*?=2((n <max |T;| > 8n°‘>

+Znap 20(n (in)zeg(l)

n=no

Dy + Dy + Ds.



In the sequel, we will prove that D; < oo, ¢ = 1,2,3. Since the proof of Dy < co and D3 < oo are the
same, we will only present the convergence of Ds. In fact, by Lemma 3.4, Lemma 3.6 and (2.4)

Dy < Zn‘w 20(n Z (1X;] > n®) czn‘w Y(n)P(|X]| > n%)

n=ng =1 n=ngo
- C Z n®~H(n) ¥ P(m* <|X| < (m+1)%)
< C’Z (m® < |X| < (m+1)° Zn(’p 1£
m=ng n=mno
< C Y mPUm)P(m* < |X| < (m+1)%) < CE|X|PL(X]V*) < oc. (3.29)

For Dy, we first prove that

n~ % max
1<j<n

— 0,1 — o0. (3.30)

Z ex(V

When « < 1, it follows from EX; =0, |an;| <1, Lemma 3.4 and (2.4) that

MQ

J

< n ¢ max. Z:: Ea, X;I(|X;] <n® ;amn P(X;| >n )]
J

= n @ 1I£1Ja<xn z:: Ean X;I(|1X;] > n®)| + ;amno‘P(|Xi| > n) ]

< On™@ ZE|X,»|](|XZ»| >n®) < Cpt P EIXPOI(|X] > n®) = 0,n — 0o, (3.31)
i=1

When o > 1 and p > 1, we have from Lemma 3.4 and (2.4) that F|X| < oo, and

n

« (1) — (03 « «
Joax ZEX < n ;[E|Xi|f(|Xi| <n®) +n*P(|X;] > n®)]
< Cn'™@E|X| = 0,n — oo. (3.32)

When a > 1 and p < 1, by Lemma 3.4, Chebyshev’s inequality and (2.4) we get

ZEX(”

1<]<n

n
n= Y [BIXG|I(1X:| < n®) +n® P(IX;] > n®)]

=1

Cnl=e [na“—@—é VEIX|POI(|1X| < n®) + nan—a<P—5>E|X|P—5}

IN

IA

= Cn'=*P=IE|IX|P70 - 0,n — occ. (3.33)

Thus, formula (3.30) follows from (3.31) ~(3.33). To get D; < oo, it suffices to show that

s (m > (x - x| 2 g) o
T =1

n=ngo

16



By Lemma 3.1, it is easy to see that {Xf;) — EXSi)} remain END random variables for every n > 1. We
have from Chebyshev’s inequality and Lemma 3.3 that

J

X(l) EX(l)
> )
< C Z n®P=2=2%(n)(log n) ZE‘X(I +C Z n°P=2=2%(n)(logn)’ (ZE‘X

n=no n=no

0
*
Dj

IN

ap—2—afb
C Z n {(n)E (éljagxn

n=no

£ D, + Di,,

2(ap—1)

since 0 > a—0=1 > 2. We will prove that Dj; < oo and D7, < oo, respectively. By C, inequality and
Lemma 3.4, we have

Diy < €3 n ) logn)® S [Blaw X T(Xi < n%) + (ann®)’ P(X] > 1)
i=1

n=ngo

< C Z nP=2=%(n) (logn)® > [E|X,|°I(|X;| < n®) + n®? P(|X;] > n®))]
n=no =1
(oo}

< C Z noP~1=90p(n)(logn)? [E|X|0I(|X| <n®) +nP(X]| > n®)|

n=ngo

= C Z n®P=1=2%(n)(logn) B| X |°I(|X| < n®) + C Z n°P~1(n)(logn)’ P(|X| > n®)

n=ngo n=no

Diyq + Dips.

[I>

Similarly to the proof of (3.29) we have
Diy, < CEIX[Pe(1X]*)(log | X 1)’
For Djy;, we get from Lemma 3.6 and (2.4) that

Diyy = C > n'7%(n)(logn)’ > EIX|"I((m—1)* < |X| < m®)

n=ng m=1

< C i EIX[I((m = 1)* < |X| <m®) i nP=1=2%(n)(log n)”

< Y mP%(m)(logm) E|X|°I((m — 1)* < |X| < m®)
< CEIXPU(|X|Y*)(log |X])’
We thus get Dj; < oo. Finally, for D7j,, it follows from C, inequality and Lemma 3.4 that

D <C S 25 () (log n)’ (EXI(|X| < n®) + n>* P(IX| > n®))""".

n=no

If p > 2, then we have EX?2 < oco. Since 6 > ’Zp_ll, we get
y 2

Di, <C Z nap_z_o‘“%ﬂ(n)(logn)g < 00.

n=no

17



If p < 2, it follows from Chebyshev’s inequality that
> 0/2
Dy, < C> noP=2=20+5 p(n) (log n)" (n“(Q_(p_é))E\X|p_‘5I(|X| < n®) +n2an—a<P—5>E\X\P—5)
n=no

ey neP=2=5(e=9)-1(n)(logn)? < co,

n=no

IN

since 0 > % This ends the proof of Theorem 2.2. O

Proof of Corollary 2.1. Without loss of generality, we may assume that >, |an;|* < n for some
& > p. For fixed n > 1, let

A ={1 <i<n,fan| <1}, Apa = {1 <i <, lag| > 13,

and let
aflll) = anzI(Z S Anl) ( ) = Qn; (’L S Ang)
Then
)
<
11}1Ja<xn Z aniXi 1I%a<xn Zam X;| + 11?Ja<xn Za

It follows from Theorem 2.1 and Theorem 2.2 that

00 J
ap—2 g o
Z n L(n)P <1rélja§><n Zlasz >en )
1=

n=no
- <0 ne
< ap—2 1_ > e ap—2 e
< Z n*?=%¢(n)P (121]'33}{71 Zam 2= ) + Z n*P==(n <1glja<xn Zam il > )
n=ngo = n=no =
< 09,

which ends the proof of Corollary 2.1. g
Proof of Theorem 2.3 Let a,; = W,,; - n®. For any £ > p, it follows by (2.7) that

Z|am|5 Z|Wm|5 O(n-n=%) - n* = O(n).

It can be found that condition (2.1) in Theorem 2.1 is satisfied. For any x € ¢(f), it is easy to see that

fnk(x) - Efnk(x) = Z W’m(x)gnz

Hence, it follows by (2.3) of Corollary 2.1 that

k
ap—2 ) >
Z n n <1I<n/§§n ZWm(x)sm > 5>
n=ng - li=1
9] k
ap—2 . > @
Z n L(n)P <1I<n]?é<n Zam(x)ez >en ) < 00,
n=ng - - =1
since (€n1,En2, " ,Enn) have the same distribution as (e1,e2,---,e,) for each n > 1. By the property of
the slowly varying function, it follows that for any = € ¢(f),
max |fnr(x) — E fur(z)| — 0, completely, as n — oc. (3.34)

1<k<n

18



Hence, to prove (2.8), it suffices to show that for any = € ¢(f),

[max. |E frr(z) — f(x)] = 0, as n — oo. (3.35)

For any x € ¢(f) and a > 0, it follows from (2.5) and (2.6) that

k
max |Efux(2) ~ fl2)] < max > Wai(@) - (f(wni) f(x))‘
- = =1
k
+f ()] max > Wilz) — 1
- =1
< > Wai(@)| - |f (@ni) = £(@)] - I([[znk — 2] < a)

+Z (Whi(@)| - [f (zni) = f(@)] - I([|2nk — z(| > a)

ZWM ) — 1.

Since z € ¢(f), for any v > 0, there exists a ¥ > 0, such that |f(z') — f(z)| < v when ||z’ — z| < 9.
Select 0 < a < ¥ in formula (3.36), we have

+|f(x)| max

1<k< (3.36)

max [Bfun(@) = (@) < GZ\WM @ e,

Z Wi (2

+Z|Wm xm)—f(x)|f(||xm—x|| > a),

which together with conditions (Hy) — (H3) yields that (3.35) holds. This completes the proof. O

Proof of Theorem 2.4 The proof is similar to that of Theorem 2.3. We will apply Corollary 2.1
with p = 2/a and ¢(z) = 1. Hence, the desired result (2.8) follows by Corollary 2.1 immediately. The
proof is ended. O

References

[1] Adler, A., Rosalsky, A. 1987. Some general strong laws for weighted sums of stochastically dominated
random variables. Stoch. Anal. Appl. 5, 1-16.

[2] Adler, A., Rosalsky, A., Taylor, R.L. 1989. Strong laws of large numbers for weighted sums of random
elements in normed linear spaces. Int. J. Math. Math. Sci. 12, 507-530.

[3] Baum, L.E., Katz, M. 1965. Convergence rates in the law of large numbers. Trans. Am. Math. Soc.
120, 1, 108-123.

[4] Chow, Y.S. 1973. Delayed sums and Borel summability of independent, identically distributed ran-
dom variables. Bull. Inst. Math. Acad. Sinica 1, 207-220.

[5] Birkel, T. 1989. A note on the strong law of large numbers for positively dependent random variables,
Statist. Probab. Lett. 7, 17-20.

[6] Chen, Y., Chen, A., Ng, K. 2010. The strong law of large numbers for extended negatively dependent
random variables, J. Appl. Prob. 47, 4, 908-922.

[7] Chow, Y.S. 1988. On the rate of moment convergence of sample sums and extremes, Bulletin of the
Institute of Math. 16, 3, 177-201.

19



[10]

[11]

[12]

Erdds, P. 1949. On a theorem of Hsu and Robbins. Ann. Math. Stat. 20, 286-291.

Etemadi, N. 1981. An elementary proof of the strong law of large numbers, Z. Wahrsch. Verw.
Gebiete. 55, 119-122.

Etemadi, N. 1983. On the strong law of large numbers for nonnegative random variables, J. Multi-
variate Anal. 13, 187-193.

Fan, Y. 1990. Consistent nonparametric multiple regression for dependent heterogeneous processes:
the fixed design case. J. Multivariate Analysis, 33, 72-88.

Georgiev, A.A. 1983. Local properties of function fitting estimates with applications to system iden-
tification, in Math. Stat. and Appl. eds. W.Grossmann et al., Proceedings 4th Pannonian Sump.
Math. Stat. 4-10 September 1983, Bad Tatzmannsdorf, Austria: Reidel, Dordrecht, 141-151.

Georgiev, A.A. 1988. Consistent nonparametric multiple regression: the fixed design case. J. Multi-
variate Analysis, 25, 100-110.

Georgiev, A.A., Greblicki, W. 1986. Nonparametric function recovering from noisy observations. J.
Stat. Planning and Inference 13, 1-14.

Heyde, C.C. 1975. A supplement to the strong law of large numbers. J. Appl. Probab. 12, 173-175.

Hsu, P.L., Robbins, H. 1947. Complete convergence and the law of large numbers. Proc. Natl. Acad.
Sci. USA 33, 25-31.

Hu, S.H., Zhu, C.H., Chen, Y.B., and Wang, L.C. 2002. Fixed-design Regression for Linear Time
Series. Acta Mathematica Scientia, 22B, 9-18.

Katz, M. 1963. The probability in the tail of a distribution. Ann. Math. Stat. 34, 312-318.

Liang, H.Y., Jing, B.Y. 2005. Asymptotic properties for estimates of nonparametric regression models
based on negatively associated sequences. J. Multivariate Analysis, 95, 227-245.

Liu, L. 2009. Precise large deviations for dependent random variables with heavy tails. Stat Probab
Lett. 79, 1290-1298. d0i:10.1016/j.spl.2009.02.001.

Liu, L. 2010. Necessary and sufficient conditions for moderate deviations of dependent random
variables with heavy tails. Sci China Ser A Math. 53, 6, 1421-1434. doi:10.1007/s11425-010-4012-9.

Miiller, H.G. 1987. Weak and universal consistency of moving weighted averages. Periodica Math.
Hungarica, 18, 241-250.

Qiu, D.H., Chen, P.Y. 2011. Limiting behavior of weighted sums of NOD random variables. J. Math.
Res. Exposition 31, 1081-1091.

Qiu, D.H., Chen, P.Y. 2014. Complete and complete moment convergence for weighted sums fo
widely orthant dependent random variables. Acta Math. Sin. Engl. Ser. 30, 9, 1539-1548.

Qiu, D.H., Hu, T.C. 2014. Strong limit theorems for weighted sums fo widely orthant dependent
random variables. J. Math. Res. Appl. 34, 1, 105-113.

Roussas, G.G. 1989. Consistent regression estimation with fixed design points under dependence
conditions. Stat. Prob. Letters, 8, 41-50.

Seneta, E. 1976. Regularly varying function. Lecture notes in Math., Vol. 508. Springer, Berlin.

Shen, A. 2011. Probability inequalities for END sequence and their applications, J. Inequal. Appl.
98, 1-12.

Shen, A. 2016. Complete convergence for weighted sums of END random variables and its applications
to nonparametric regression models. J. Nonparametric Stat. 28, 4, 702-715.

20



[30]

[31]
32]

[33]

Shen, A., Xue, M., Wang, W. 2017. Complete convergence for weighted sums of extended negatively
dependent random variables. Communications in Stat.- Theory and Methods 46, 3, 1433-1444.

Stone, C.J. 1977. Consistent nonparametric regression. The Annals of Stat. 5, 595-620.

Tran, L., Roussas, G., Yakowitz. S., Van, B.T. 1996. Fixed -design regression for linear time series.
Annal. Stat. 24, 975-991.

Wang, X.J., Deng, X., Zheng, L.L., Hu, S.H. 2014a. Complete convergence for arrays of rowwise
negatively superadditive-dependent random variables and its applications. Statistics: J. Theor. Appl.
Stat. 48, 4, 834-850.

Wang, X.J., Hu, S.H. 2015. The consistency of the nearest neighbor estimator of the density function
based on WOD samples. J. Math. Anal. Appl. 429, 497-512.

Wang, X.J., Li, X.Q., Hu, S.H., Wang, X.H. 2014b. On complete convergence for an extended
negatively dependent sequence. Communications in Stat.- Theory and Methods 43, 2923-2937.

Wang, X.J., Xu, C., Hu, T.C., Volodin, A., Hu, S.H. 2014c. On complete convergence for Widely
Orthant-dependent random variables and its applications in nonparametric regression models. TEST,
23, 607-629.

Wang, X.J., Zheng, L.L., Xu, C., Hu, S.H. 2015. Complete consistency for the estimator of nonpa-
rameter regression models based on extended negatively dependent errors. Statistics: A Journal of
Theoretical and Applied Stat. 49, 396-407.

Wu, Q.Y. 2006. Probability limit theory for mizing sequences. Science Press of China, Beijing.

Wu, Y.F., Song, M.Z., Wang, C.H. 2014. Complete moment convergence and mean convergence for
arrays of rowwise extended negatively dependent random variables. The Scientific World Journal,
Artical ID 478612, 7 pages. doi: 10.1155/2014/478612.

Yan, J.G. 2017. Strong Stability of a type of Jamison Weighted Sums for END Random Variables.
J. Korean Math. Soc. 54, 3, 897-907.

Yan, J.G. 2017. Almost sure convergence for weighted sums of WNOD random variables and its
applications in nonparametric regression modelsl. Communications in Stat.-Theory and Methods.
47, 16, 3893-3909.

Yan, J.G. 2018. Complete convergence and complete moment convergence for maximal
weighted sums of extended negatively dependent random variables. Acta Math. Sin. Engl. Ser.
https://doi.org/10.1007/s10114-018-7133-7.

Yang, W.Z., Liu, T.T., Wang, X.J., Hu, S.H. 2014. On the Bahadur representation of sample quan-
titles for widely orthant dependent sequences. Filomat 28, 7, 1333-1343.

Yang, W.Z., Wang, X.J., Wang, X.H., Hu, S.H. 2012. The consistency for estimator of nonparametric
regression model based on NOD errors. J. Inequalities and Applications 13 pages, Article ID 140.

Zhang, G.H. 2014. Complete convergence for Sung’s type weighted sums of END random variables.
J. Inequalities and Applications 2014:353.

21



IRTG 1792 Discussion Paper Series 2018

For a complete list of Discussion Papers published, please visit
irtgl792.hu-berlin.de.

001 "Data Driven Value-at-Risk Forecasting using a SVR-GARCH-KDE Hybrid"
by Marius Lux, Wolfgang Karl Hardle and Stefan Lessmann, January
2018.

002 "Nonparametric Variable Selection and Its Application to Additive
Models" by Zheng-Hui Feng, Lu Lin, Ruo-Qing Zhu asnd Li-Xing Zhu,
January 2018.

003 "Systemic Risk in Global Volatility Spillover Networks: Evidence from
Option-implied Volatility Indices " by Zihui Yang and Yinggang Zhou,
January 2018.

004  "Pricing Cryptocurrency options: the case of CRIX and Bitcoin" by Cathy
YH Chen, Wolfgang Karl Hardle, Ai Jun Hou and Weining Wang, January
2018.

005 "Testing for bubbles in cryptocurrencies with time-varying volatility" by
Christian M. Hafner, January 2018.

006 "A Note on Cryptocurrencies and Currency Competition” by Anna
Almosova, January 2018.

007 "Knowing me, knowing you: inventor mobility and the formation of
technology-oriented alliances" by Stefan Wagner and Martin C. Goossen,
February 2018.

008 "A Monetary Model of Blockchain" by Anna Almosova, February 2018.

009 "Deregulated day-ahead electricity markets in Southeast Europe: Price
forecasting and comparative structural analysis" by Antanina Hryshchuk,
Stefan Lessmann, February 2018.

010 "How Sensitive are Tail-related Risk Measures in a Contamination
Neighbourhood?" by Wolfgang Karl Hardle, Chengxiu Ling, February
2018.

011 "How to Measure a Performance of a Collaborative Research Centre" by
Alona Zharova, Janine Tellinger-Rice, Wolfgang Karl Hardle, February
2018.

012 "Targeting customers for profit: An ensemble learning framework to
support marketing decision making"” by Stefan Lessmann, Kristof
Coussement, Koen W. De Bock, Johannes Haupt, February 2018.

013 "Improving Crime Count Forecasts Using Twitter and Taxi Data" by Lara
Vomfell, Wolfgang Karl Hardle, Stefan Lessmann, February 2018.

014  "Price Discovery on Bitcoin Markets" by Paolo Pagnottoni, Dirk G. Baur,
Thomas Dimpfl, March 2018.

015 "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation,
and Portfolio Performance” by Tony Klein, Hien Pham Thu, Thomas
Walther, March 2018.

016 "Time-varying Limit Order Book Networks" by Wolfgang Karl Hardle, Shi
Chen, Chong Liang, Melanie Schienle, April 2018.

017 "Regularization Approach for NetworkModeling of German EnergyMarket"
by Shi Chen, Wolfgang Karl Hardle, Brenda Lépez Cabrera, May 2018.

018 "Adaptive Nonparametric Clustering” by Kirill Efimov, Larisa Adamyan,
Vladimir Spokoiny, May 2018.

019 ‘"Lasso, knockoff and Gaussian covariates: a comparison" by Laurie
Davies, May 2018.

IRTG 1792, Spandauer Stral3e 1, D-10178 Berlin
http://irtgl1792.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the IRTG 1792.




IRTG 1792 Discussion Paper Series 2018

For a complete list of Discussion Papers published, please visit
irtgl792.hu-berlin.de.

020 "A Regime Shift Model with Nonparametric Switching Mechanism" by
Haigiang Chen, Yingxing Li, Ming Lin and Yanli Zhu, May 2018.

021  "LASSO-Driven Inference in Time and Space" by Victor Chernozhukov,
Wolfgang K. Hardle, Chen Huang, Weining Wang, June 2018.

022 " Learning from Errors: The case of monetary and fiscal policy regimes"
by Andreas Tryphonides, June 2018.

023 "Textual Sentiment, Option Characteristics, and Stock Return
Predictability” by Cathy Yi-Hsuan Chen, Matthias R. Fengler, Wolfgang
Karl Hardle, Yanchu Liu, June 2018.

024 "Bootstrap Confidence Sets For Spectral Projectors Of Sample
Covariance" by A. Naumov, V. Spokoiny, V. Ulyanov, June 2018.

025 "Construction of Non-asymptotic Confidence Sets in 2 -Wasserstein
Space" by Johannes Ebert, Vladimir Spokoiny, Alexandra Suvorikova,
June 2018.

026 "Large ball probabilities, Gaussian comparison and anti-concentration"
by Friedrich Gotze, Alexey Naumov, Vladimir Spokoiny, Vladimir
Ulyanov, June 2018.

027 "Bayesian inference for spectral projectors of covariance matrix" by Igor
Silin, Vladimir Spokoiny, June 2018.

028 "Toolbox: Gaussian comparison on Eucledian balls" by Andzhey Koziuk,
Vladimir Spokoiny, June 2018.

029 "Pointwise adaptation via stagewise aggregation of local estimates for
multiclass classification” by Nikita Puchkin, Vladimir Spokoiny, June
2018.

030 "Gaussian Process Forecast with multidimensional distributional entries"
by Francois Bachoc, Alexandra Suvorikova, Jean-Michel Loubes, Vladimir
Spokoiny, June 2018.

031 ‘"Instrumental variables regression” by Andzhey Koziuk, Vladimir
Spokoiny, June 2018.

032 "Understanding Latent Group Structure of Cryptocurrencies Market: A
Dynamic Network Perspective" by Li Guo, Yubo Tao and Wolfgang Karl
Hardle, July 2018.

033 "Optimal contracts under competition when uncertainty from adverse
selection and moral hazard are present" by Natalie Packham, August
2018.

034 "A factor-model approach for correlation scenarios and correlation
stress-testing” by Natalie Packham and Fabian Woebbeking, August
2018.

035 "Correlation Under Stress In Normal Variance Mixture Models" by Michael
Kalkbrener and Natalie Packham, August 2018.

036 "Model risk of contingent claims™ by Nils Detering and Natalie Packham,
August 2018.

037 "Default probabilities and default correlations under stress" by Natalie
Packham, Michael Kalkbrener and Ludger Overbeck, August 2018.

038 "Tail-Risk Protection Trading Strategies" by Natalie Packham, Jochen
Papenbrock, Peter Schwendner and Fabian Woebbeking, August 2018.

IRTG 1792, Spandauer Stral3e 1, D-10178 Berlin
http://irtgl1792.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the IRTG 1792.




IRTG 1792 Discussion Paper Series 2018

For a complete list of Discussion Papers published, please visit
irtgl792.hu-berlin.de.

039 "Penalized Adaptive Forecasting with Large Information Sets and
Structural Changes" by Lenka Zbonakova, Xinjue Li and Wolfgang Karl

Hardle, August 2018.

040 "Complete Convergence and Complete Moment Convergence for Maximal
Weighted Sums of Extended Negatively Dependent Random Variables"

by Ji Gao YAN, August 2018.

041 "On complete convergence in Marcinkiewicz-Zygmund type SLLN for
random variables” by Anna Kuczmaszewska and Ji Gao YAN, August

2018.

042 "On Complete Convergence in Marcinkiewicz-Zygmund Type SLLN for
END Random Variables and its Applications" by Ji Gao YAN, August

2018.

IRTG 1792, Spandauer Stral3e 1, D-10178 Berlin
http://irtgl1792.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the IRTG 1792.



	AA_Frontpage
	250718accepted 
	ZZ_Endpage

