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RATIONAL COOPERATION IN ONE-SHOT SIMULTANEOUS PD-SITUATIONS'

PART 1: Nash Equilibria for Symmetric Games Wiike€l Forecast Probabilities

"Game theory emanates from games such as chegsker. Everyone knows that in
these games players have to think ahead and devisgategy based on expected
countermoves from the other player. Such strategeraction also characterizes many

economic situations".
1994 Nobel citation for game theorists (Nasarsanyi, Selten)

I. INTRODUCTION

Given, as suggested in the Nobel citation, thayers are going to base their strategic decisians o
their expectations of each other's actions, theg laa interest in avoiding mistaken expectationg thus
might want to consider the possibility that playare more likely to form expectations of each dther
actions when those expectations are correct raltlaer mistaken. However, game theory has tradifipna
assumed players' expectations of each other'snactime statistically independent of whether such
expectations will be confirmed or falsified by eaxther's actual behavior.

Suppose we thus consider how to model stratetgeaction when guided by expectations that are
statistically related to whether they will end uméirmed or falsified by the eventually revealedi@ts of
other players. The following discussion presenthery motivated in part by strategic relationship
"prisoner's dilemma" type situations (hereaftedechlPD-situations). To facilitate exposition, ttweo
players in a PD-situation are hereafter referregsttAdam” and "Eve"; so that we can easily distigly the
two players by their pronouns, "he" and "she",los"and "her", and so on.

A well known intuition for such situations is thgihce Adam would do relatively better for himself
by defecting regardless of what Eve might do, gttt make any difference what he expects shedwiill
Even if he could forecast Eve's choice very acelygperhaps even perfectly) Adam would still ddtée
for himself by defecting rather than cooperatirgince this same inference applies to Eve, therotihe
result consistent with rationally self-interestddyers is for both Adam and Eve to always defeceach
other regardless of what their forecasts of eabkrt choices might be. In short, rationally seiérested
players will be better off always ignoring any eggaions they may have about each other's potential
cooperation, even though they both know that theule both be better off from mutually cooperating
rather than always defecting.

Despite the above intuition, we will show that rigeiable to forecast another player's actual
cooperation better than pure chance can change AalatnEves' strategic incentives in a one-shot
simultaneous PD-situation. In particular, we siilow that if they both have such ability (to fasceach
other's actual choices better than pure chance), ttonditionally cooperative" Nash equilibria melgo
exist in addition to the traditional "always defeequilibrium. By "conditionally cooperative” weeaan

! Discussions in Saarbrucken, Germany during Mag-1994 and Fairfax, Virginia during SeptembereBet 1994 led one of us (RAH) to combine
previous work in imperfect choice theory with nopgerative game theory to derive the main theoilatigalications described below. The present paper
is the first article resulting from our collaborati We would like to thank the Volkswagen Fouratafor financial support. In addition, we wishtbank

the following persons for discussion and commefsineth Arrow, Robert Axelrod, Ken Binmore, Jameglignan, Jurgen Eichberger, Robert Frank,
Hartmut Kliemt, Christian Koboldt, Mathias Lederply North, Joe Oppenheimer, Schmidt-Mohr, Andrelwo8er, Vernon Smith, Ulrich Witt. The
usual disclaimer applies.
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Adam and Eve do not cooperate because of a bebhUilisposition” to act cooperatively, but rathieey
selectivelycooperateontingenton their forecasting each other will also coopefat®perate if and only if
each other is forecasted to cooperate). Adam a&edtkereby ¢ontingently resporido their forecasts of
each other, rather than always defecting regadédstheir forecasts. Moreover, such contingent
responding is motivated solely in order to maximigam's own expected payoff, given the way Eve
responds to her forecast (including the optiongmioring her forecast); and vice versa concerning's€v
motivation for contingently responding to her fasts of Adam's potential cooperation.

A key reason why conditionally cooperative equiibhave not been analyzed before is that
traditional analysis assumes Eve believes theahiget of Adam's cooperation, whatever it mightibehe
same no matter what she chooses. Suppose, howelan can forecast Eveéstual choice better than
pure chance (so that he is more likely to fore€ast's cooperation when she actually cooperatéemrat
than defects), and contingently responds to hiscftst if and only if he forecasts Eve will also pe@te
(thereby cooperating exactly as often as he fotedage's cooperation). Doing so implies Adam igeno
likely to cooperate when Eve actually cooperatéiserathan defects; which thereby implies Eve's etqik
payoff maydrop if she actually defects relative to that acheiealbbm actually cooperating. A similar
implication applies to Adam's expected payoff ifeksan forecast his actual cooperation better thaa p
chance, and she also contingently responds tohegdst. Thus, it may be optimal for both Adard Bwe
to contingently respond to their forecasts (rathen always defecting), given each other does Hus
means contingent responding may be a "self-emfigtcNash equilibrium, if Adam and Eve can both
forecast each other's actual choices better themghance.

Another reason why conditionally cooperative dftid have not been analyzed before is that
traditional analysis assumes Adam and Eve use &g messages" to forecast each other's potential
cooperation; meaning the correlation between thdividual messages exists independently of howmda
or Eve might respond to them. Such exogenous messaight be uncorrelated with each other (for
example, when players observe independently flipg@ds), or they might be correlated with each othe
(for example, when players observe temperaturesaby locations).

Suppose, however, Adam and Eve can forecast ehein'soactual cooperation better than pure
chance, but Eve decides to ignore her forecastlistys defecting regardless of her forecast) whdam
decides to contingently respond to his forecastcfimperating if and only if he forecasts her coapien).
Eve's response strategy implies Adam is less liteefprecast her cooperation (because she alwdgstde
regardless of her forecast, and he is less likefptecast her cooperation when she actually defedher
than cooperates); which in turn implies Adam is enlikely to defect (because he contingently coojgsra
only if he forecasts her cooperation). This furtimplies Eve is also less likely to forecast Adam'
cooperation (because he is more likely to defeud, she is also less likely to forecast his coopamathen
he actually defects rather than cooperates). Tiheslikelihood of either Adam or Eve forecastirarcke
other's cooperation itself depends on both of steittegies about whether to ignore or contingeegpond
to their individual expectations, or "forecast-naggss", about each other's potential cooperatidmat K,
the likelihood of receiving their individual forestamessage®ndogenouslydepends on how both players
decide to respond to them (instead of being exagetmtheir response strategies, as implied for flipis
or temperature observations).

The preceding implications mean Adam and Eve oegchst each other's actual cooperation better
than pure chancenly with messages endogenously correlated with they actually respond to them
That is, what matters to forecasting better thame ghance isot the correlation between players'messages
per se, but instead whether their forecast-messaigesorrelated with how they will actually respdiod
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them? However, as noted above, traditional analysisimss players use only exogenous information
sources; thereby never investigating the stratiegientives implied by players endogenously foreongst
each other's actual choices better than pure chance

In what follows, we will analyze the above twortes; namely, the strategic implications of players
forecasting each other's actual choices better pla@ chance, and the necessity of endogenous gesssa
required to achieve such forecasting ability. fdep to focus on the essential logic as simply @ssible,
this paper analyzes only "symmetric* PD-situatiamswvhich both players' basic payoffs, strategy sets
(about ignoring or contingently responding to tHenecasts), and forecast-probabilities are theesaiirhe
sequel to this paper analyses the general case for any PD-situatidvetiver symmetric or not; also
allowing players' to "endogenously" vary their foast-probabilities to maximize their individual eqted
payoffs.

Within the scope of symmetric PD-situations, thiger proceeds as follows. Section Il presents
the main definitions and theorems characterizingrvdontingently-respondinfjo players' forecasts about
each other) is a Nash equilibrium in addition always-defectingwhere players always ignore their
forecasts). Section Il derives explicit formufas calculating numerical examples to illustrate thrmal
analysis. Section IV calculates three exampldse third example illustrates that conditionally pemating
can be a Nash equilibrium no matter how close payerecasting ability gets to the limit of forstiag no
better than pure chance. Section V further analgke intuition behind the analysis, similar tottha
described above. Section VI formally links thelgsia to the above distinction between endogeneusus
exogenous information sources. Section VII compdne resulting analysis with traditional game tijeo
models allowing either "mixed strategies" or "ctated equilibria”. Section VIII discusses more greh
issues about strategically interdependent choiceating incentives toward statistically interdepemtd
behavior; plus a further discussion of why alwagfedting isnotimplied by "revealed preference" theory.
Section IX briefly describes how conditionally c@&opative equilibria imply a behavioral sensitivity t
changes in the relative differences between playgspayoffs; in general agreement with numerous
previous experiments. Section X outlines compampapers which further develop related theory and
experimental topics. Section Xl concludes with riefodiscussion about the historical significande o
cooperation in one-shot PD-situations.

[l. DEFINITIONS & NASH EQUILIBRIA
DEFINITION 1 (Prisoner's Dilemma or PD-Situations)

Four payoff levels arise in prisoner's dilemmaP®-type situations: R, the "reward" from both
players mutually cooperating; P < R, the relatpenalty” from both players mutually defecting on
each other; T > R, the "temptation payoff* from latgrally defecting when the other player
cooperates; S < P, the "sucker's payoff' from teidly cooperating when the other player defects.
These inequalities are equivalent to the followdngdinal PD-payoff ranking: T>R >P > S.

DEFINITION 2 (Conditional Forecast Probabilities)

2 n particular, such messages must be correfgitbdhose "states of mind" which lead players tkenactual choices;
or with whatever behavioral mechanisms actuallyegatie their choices (as discussed in Section \Gvbel

3 For an outline of this paper, see Section X below
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1. Let Adam's actual choice to cooperate or défealenoted by L£and D respectively; and
similarly for Eve's actual choices, denoted &d . Also let G! and D' denote that Adam
forecasts Eve will actually choose: @nd [ respectively; and similarly for Eve's forecasts of
Adam's actual choice, denoted @nd ",

2. Adam's conditional probability of "rightly fazasting" G when Eve actually chooses 8
denoted, £ = p(G."Cg). Conversely, his conditional probability of "wrgly forecasting” & when
Eve actually chooses Dis denoted, w = p(G'TDg). Analogous definitions apply to Eve's
conditional chance of either rightly or wrongly doasting Adam's actual cooperation, denoted r
P(CE'0C,) and w = p(G/D,) respectively. The (r, w) probabilities are vaittwithout subscripts
when they may refer to either player's forecasts.

DEFINITION 3 (Positive versus Zero Forecasting Ap)l

Adam can forecast Eve will actually choose"Better than pure chantdf and only if he is more
likely to forecast her cooperation when she agiuaiboses €than when she does not; so thatr
W, is possible. Adam is then said to hapesitive forecasting ability Otherwise, Adam can
forecast ho better than pure chanteand is said to havezéro forecasting ability if ra = wa is
the only possibility. Analogous definitions appdyEve's forecasting ability.

COMMENTS:

1. Consider an experimental setting where Adam Ewe are separated from timetd t; during
which they must each choose privately with no comication between them. At a later timeheir actual
choices are revealed to each other. Let D dehetéirne interval from;tto . Adam and Eve may have
had opportunity to communicate before D, but whatdiiey may have said cannot "bind" them to any
particular choice once they are physically sepdratering D. Moreover, because they are separated,
neither player knows who actually chose first azosel during D. Nevertheless, they can still attetop
forecast (while separated during D) what each &harentually revealed choice will turn out to hedsa
where t necessarily occurs after D is completed.

2. In the above setting, forecasting better thare mhance g > w,) means Adam is more likely to
forecast Eve's cooperation when her eventuallyaledechoice will confirm rather than falsify hiségast
(because she actually chose to cooperate rathed#fact during D).

3. Forecasting no better than pure chance means'adigelihood of forecasting Eve's cooperation is
independent of whether her eventually revealedcehwiill confirm or falsify his forecast. For exalap
suppose Adam rolls a six-sided die to forecastsEne/ealed choice af; tand forecasts her cooperation or
defection if the number (1, 2, 3, 4) or (5, 6) edjvely faces upward when the die stops movingenTthe
likelihood of Adam forecasting Eve's cooperatior2f8 regardless of what her eventually revealedceho
turns out to be; so thata(rw,) = (2/3, 2/3).

4, Recent experiments by Robert Frank, et. al. chgtayers to both choose between C or D, and
forecast the action chosen by the other playenduai separation interval D like that discussed abdhe
subjects in these experiments were able to forexdt other's actual cooperation better than thaaae
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in one-shot simultaneous PD-situations with explimney payoff§ For example, the conditional forecast
probabilities generated in two different experinsawere (r, w) = (.88, .62) and (r, w) = (.89, .5®sulting
from sample sizes of 122 and 198 respectively. this have direct experimental evidence that p@sitiv
forecasting ability is possible in empirical sitioais with PD-payoffs (T >R > P > S).

DEFINITION 4 (Response Strategies: Conditionallyo@erating versus Always Defecting)

1. A "response-strategy"” is an ordered pairaXWhere X is Adam's actual choice when he
forecasts Eve will choosezCand Y is his actual choice when he forecastsviiNehoose 3. The
subscript A thus refers to Adam's actual respotwsésrecasting Eve will either cooperate or defect
respectively. The ordered pair XYsimilarly represents Eve's actual choices in respoto
forecasting Adam will either cooperate or defespextively.

2. An ordered pair XY or XYg thus reflects the strategic perspective suggésttdte Nobel
citation quoted at the beginning; namely, "eveg/&nows that ... players have to think ahead and
devise a strategy based on expected countermawestiiie other player." Such ordered pairs are
thus called fesponse strategies The A and E subscripts are deleted when theorese strategy
XY may refer to either player.

2. The response strategy DD means to "always tlefec matter what the other player is
forecasted to do, and CD means to "conditionallypesate” if and only if the other player is also
forecasted to cooperate.

COMMENTS:

1. The strategy combination (RPDDg) represents the traditional "dominant strategyttsmn for
simultaneous, single-shot PD-situations; where luittyers always defect no matter what they might
forecast about each other's choice. fPDDg) thus implies both players have zero chance afadigt
cooperating.

2. On the other hand, the strategy combination,(GCIDg) doesnot imply any general "disposition”
or "tendency" for players to cooperate; but insteegresents a "conditional strategy" to potentially
cooperate contingent on what each player fore¢heststher player will actually do. ConsequentyDg,
CDg) does not imply either player will necessarily petate or not. Instead, it implies positive prdlitds

of either zero, one, or both players actually coatieg.

3. A pair of response strategies (XYXYg) might be interpreted as a possible "agreementhich
Adam and Eve exchange promises to respond toftirerasts of each other's choice according ta Zivd

XY e respectively. By this we do not necessarily médam and Eve have actually met and discussed such
an agreement. Rather, their behavior is consisighta "hypothetical agreement" having been made.

4 See chapter 7 d?assions Within ReaspW. W. Norton, 1991, by Frank; and "The EvolutiohOne-Shot
Cooperation: An ExperimentZthology and Sociobiology4, 1993, pp. 247-256, by Frank, Gilovich, & Rega



page 6

However, care should be taken to avoid this imtggtion, because the term "hypothetical
agreement" doemsot mean there is any "moral obligation" or some ottwst associated with violating
promises, thereby causing players to act poteptalhtrary to their self-interest in the absencswth an
agreement. We are instead dealing wiationally self-interested playeraho never keep agreements
"because" they promised to do so. Rather, theyerpaimises only when it is already in their setéisst
to keep them in the first place. Such players tilis give credence only to truly "self-enforcing”
agreements which do not require any potential "ciament device" or "enforcement mechanism" beyond
their own self-interest in order to motivate volanmytcompliance.

4, Therefore, a strategy combination (Y g) may not involve any actual exchange of promises o
any explicit agreement actually communicated betvibe players. It can nevertheless be used tesept
the behavior of rational players who follow stragsgonly when doing so is truly "self-enforcing“drder to
maximize their own expected payoff given each &harategy. That is, no actual agreement, enfoené
mechanism, or anything else is needed to explath players' behavior beyond what their rationaf sel
interest already implies. Subsequent discussias tefers only tself-enforcing strategiesas defined
next.

DEFINITION 5 (Self-Enforcing Strategies and Nashubirium)

A pair of response strategies (XYXYg) is "self-enforcing" if and only if it is optimgkexpected
payoff maximizing) for each player to actually &l its strategy conditional on the other player
also following its strategy; so that neither players a unilateral incentive to deviate from its
response strategy. Such a strategy combinatiartpresents a Nash equilibrium.

As noted in the introduction, this paper focuses'symmetric" PD-situations in order to develop
the essential logic of the analysis as simply assipde. Symmetric situations mean players' styasegs,
basic payoffs, and forecast probabilities are #mesfor both Adam and Eve.

DEFINITION 6 (Symmetric PD-Situations)

Let S= {DD, CD} denote the above defined pair of stgi¢s for responding to a player's forecast
of the other player's actual choice to either comigeor defect, and Iét= (T,R,P,S) denote a set of
basic payoffs potentially received by a player."s§mmetric" one-shot PD-situation means both
players have the same basic payoffs x and samegtraetS; as well as the same conditional
forecast probabilities, denoted,,(wa) = (rg, We) = (r, w). Such a symmetric one-shot simultaneous
PD-game is denoted, PRE, r, w).

The next definition is introduced in order to chigerize when particular strategy combinations
from S ~ Srepresent self-enforcing Nash equilibtia.

5 Besides {DD, CD} there are two other possibkpanse strategies {CC, DC}; corresponding to alveaysperating
regardless of one's forecast, and defecting if @migl if the other player is forecasted to coopef#te opposite to
strategy CD). Neither of these strategies can &&hNequilibria no matter what players' forecasbpbdlities might be.
Consequently, they are omitted in order to focushenessential logic in this paper. The sequéhitopaper (Part II;
see Section X below) explicitly includes all fo@sponse strategies; also allowing players to "emglogsly” vary their
forecast probabilities.
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DEFINITION 7 (Sufficiently Reliable Forecasts)
A player's forecast of the other player's acthalae is" sufficiently reliable" if and only if,

r(R-S)-w(T-PgP-S;
or equivalently, 1)
(r-wR-PE=@-n[P-S]+w[T-R];

where R - P is the net gain from mutual coopenatieer mutual defection; T - R is the net gain
from unilaterally defecting (when the other play®operates); and P - S is the net loss from
unilaterally cooperating (when the other playeedts).

DEFINITION 8 (Cooperation Line)

The set of (r, w) probabilities which exactly stiinequality (1) is called theooper ation line. (r,
w) points on or above this line satisfy inequa(ty; points below this line violate inequality (1).

NOTE:

1. Figure 1 shows a "unit probability box" with aoperation line implied from inequality (1); along
with the formulas for the top and left interceptgte line. Notice that players' basic payoffs XT= R, P,
S) uniquely determine the slope and position oflithe [because the intercept formulas depend only o

these payoffs].
FIGURE 1 ABOUT HERE

2. With inequality (1) and its corresponding co@tien line defined, we can now describe the
possible self-enforcing strategies for any symroetnie-shot simultaneous game, BBf,w).

THEOREM 1 (Self-Enforcing, Nash-Equilibrium Straies)

The following statements characterize when potestimtegy combinations fror§ x S represent self-
enforcing Nash equilibria for any symmetric onetsimultaneous game, PRE, r, w).

1. If players' forecasts of each other's actuaicghare not sufficiently reliable [meaning (r, w)
violates inequality (1), so that (r, w) lies beltive cooperation line], then (QPDDg) is the unique,
dominant-strategy Nash equilibrium. Hence, (DDDx) is the only possible self-enforcing Nash
equilibrium.

2. If players' forecasts are sufficiently reliapieeaning (r, w) satisfies inequality (1), so that
(r, w) lies on or above the cooperation line], tH@D,, DDg) and (CL, CDg) areboth Nash
equilibria. Hence, both (D) DDg) and (CLR, CDg) are self-enforcing strategy combinations.

COMMENTS (Theorem 1 is proven in the Appendix):
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1. Frank's experiments (1991, 1993) directly supddreorem 1. In particular, subjects in his
experiments did not cooperate due to a stable Opalisy type" or "disposition”; as argued by Gaathi
Howard, and others. Rather, they cooperated wieynforecasted the other player would also cooperat
Frank's summary of experimental results is insivadtl991; pages 141-142):

"these findings ... should not be interpreted ddesmce of stable personality types called coopesaand
defectors. On the contrary, we found that at lsashe of our subjects did not consistently folloither
strategy: 13 of them (21 percent) cooperated with of their partners but not with the other. ..pdttern
observed in all three versions of the experimentas for subjects to behave in the same way tregiged
their partners would. In the basic version, foareple, 83 percent of the subjects who predicteid plagtners
would cooperate also cooperated themselves. 3Siyni&b percent of the subjects who predicted diefec
also defected themselves."

2. The intercept formulas for the cooperation im&igure (1) imply it can be shifted arbitrariliose

to the 4%-line corresponding to zero forecasting ability éndar = w) by reducing T - R and P - S
sufficiently relative to R - P; while still preséng the ordinal payoff ranking, T>R>P>S. Consedlyen
forecasting better than pure chance (r > w) imglese exist payoffs for which "conditionally cooptng"”
according to (Ch), CDx) is a self-enforcing equilibrium even though thidiwal PD-payoff ranking (T > R
> P > S) is still satisfied. That is, (GDCDg) can be a self-enforcing equilibrium no matter hdase we
get to the limit of zero forecasting ability. Thisplication is more precisely described in thddiaing
definition, theorem, and corollary.

DEFINITION 9 (Cost-Benefit Ratio for PD Cooperatjon

1. Letx =max[T -R, P-S],andy =R - P. Tlaiable x is a measure of the opportunity cost
of cooperating; either from forsaking a potentiad gain T - R by unilaterally defecting on the othe
player's cooperation; or from risking a potentied loss P - S by unilaterally cooperating when the
other player defects. The variable y measuresptitential benefit from mutually cooperating
compared to mutually defecting.

2. x/y can thus be interpreted as a "cost-bersfit" which measures the potential costs from
cooperating relative to the potential benefits frolming so, compared to otherwise mutually
defecting.

THEOREM 2 (Forecasting Better Than Pure Chanceiémphequality (1) Holds As x/y. 0)

1. Forecasting better than pure chance (r > wli@mphere exist PD-payoffs (T >R >P > S)
such that inequality (1) is satisfied for suffidigrsmall but still positive x/y > 0; so that pkg'
forecasts are guaranteed to be sufficiently rediaisl the cost-benefit ratio x4y O.

DEFINITION 10 (Pure Prisoner's Dilemma Games)
1. Let PDE r, w) denote the set of all symmetric one-shehuianeous PD-games,

PD(SE,r,w); such that players' strategy sets and fotgmambabilities equal respective§and (r,
w).



page 9

2. PDE, r, w) is then called gouire prisoner's dilemniaf and only if (DDa, DDg) is the only
self-enforcing equilibrium for all P & = (T,R,P,S), r, w] that satisfy the ordinal payhking,
T>R>P>S.

COROLLARY 1 (Resolution of the "Paradox of PD-Comgt®mn")

PD(, r, w) is a pure prisoner's dilemma if and onlpédither player can forecast the other player's
actual choice better than pure chance; so that isssatisfied. Otherwise, forecasting bettanth
pure chance (r > w) guarantees there exist T >HR>S such that (C) CDx) is a self-enforcing
Nash equilibrium for the corresponding one-shotu$iameous game PB[x = (T,R,P,S), r, w].

COMMENT: Corollary 1 implies the ordinal payoff teng traditionally associated with PD-situations
(T >R > P > S) isnot sufficient to guarantee defection is a "domindrategy”. That is, (D DDg) is not
necessarily the unique dominant equilibrium; sot tfi2D,, DDg) may not be the only possible self-
enforcing equilibrium between the players. RatfeébD., CDg) may also be a self-enforcing equilibrium so
long as players can forecast each other's acto@ebetter than pure chance. Consequently, asiyiym
forecasting ability better than pure chance impbesvhole range of one-shot PD-situations are now
compatible with "rationally cooperating"; therebgsolving the seeming "paradox" of rational behavior
never allowing cooperation in such situations.

. STATISTICAL FORMULAS FOR CALCULATING EXAMPLES

In order to calculate explicit examples of Theorenwe must first explain how to calculate "joint
choice-probabilities” of Adam and Eves' actual chsito either cooperate or defect.

DEFINITION 11 (Joint-Probabilities of Players' AeluChoice Combinations)

The 'Joint choice-probabilitie$ of both players actually cooperating, only onetledm actually
cooperating, or both players actually defectingdsmeoted respectively; pACCe), P(Ca, De), p(Da,
Ce), p(Da, De).

These joint-probabilities determine the likelihaafdddam and Eve actually receiving each of theirfBD-
payoffs (T, R, P, S). Their expected payoff forazuare denoted respectively,

Ua = Rp(G., C) + Sp(G, De) + Tp(Da, G + Pp(Dy, De) (2a)

Ue = Rp(G,, Ce) + Tp(Ga, De) + Sp(Dy, Ce) + Pp(Dy, De) (2b)

DEFINITION 12 (Players' Individual Choice Probatids)

The following conditional and unconditionatHoice probabilitie’ are defined for Adam: 4=
P(CalICe), 1 - b = p(DalCe), Va = p(GIDg), 1 - va = p(DalDg); and z = p(Gy), 1 - 2 = p(Dn).
Analogous definitions apply to Eve's choice probgds: u: = p(GLCa), 1 - U= = p(DedCh), VE =
P(Ce[Dya), 1 - v = p(DeDy); and 2 = p(G), 1 - = p(Dy). Players' conditional choice
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probabilities (which depend on each other's chdiaes thus represented with the letters u and v,
and their unconditional choice probabilities angresented with the letter z. Subscripts are dilete
when (u, v, z) may refer to either Adam or Evesich probabilities.

COMMENTS:

1. The reason for defining both conditional and amitional choice probabilities is that positive
forecasting ability (r > w) implies that playerstividual choices may not be statistically indepartdof
each other, if either player conditionally respotmlis forecast according to CD. Consequentlg,jtiint-
probabilities used in equations (2a,b) cannot resrég be calculated by multiplying players' uncitiothal
choice probabilities, zand z. For example, p(& Cc) can be expressed as either of the following two
multiples: p(GOCe)p(Ce) = Uaze, or p(GLCA)P(Ca) = Weza. These two multiples do not simplify to the
single multiple zzg except for statistically independent choices, ghelhz = uy and z = U

2. Each of the joint-probabilities in equations ,facan similarly be expressed as two probability
multiples [by reversing the order of conditionabipabilities used to calculate each joint-probajfjilit

PG, Ce) = UnZe = Ueza (3a)
P(Da, Ce) = (1 - w)ze = Ve(1 - Z) (3b)
P(G, De) =Va(l - z) = (1 - W)za (3c)
P(Dx De) = (1 -w)(1-2) = (1-wW(1-2) (3d)
3. Adding equations (3a) and (3b) implies=zeza + Ve(1 - z.). Similarly adding equations (3c) and

(3d) (plus rearranging terms) also implies=zuxze + Va(1 - z). We thus have the following two equations
for players' unconditional choice probabilities:

Zn = WnZe + Va(l - Z) & Ze = Uza + V(1 - 2) (4a,b)

Equations (4a,b) imply that players' unconditioreioice probabilites (¢ zg) are statistically
interdependent with each other and with both df twnditional choice probabilities {uva, Ug, Ve).

4. Adam's unconditional chance of cooperating therdepends on his conditional chance of
cooperating when Eve cooperates or not, which di#gpen how her unconditional chance of cooperating
depends on her conditional chance of cooperatirenwkdam cooperates or not, which in turn depends on
Adams's unconditional chance of cooperating, anadrsoleading to a statistical "infinite regressFor
example, suppose we interpret the statisticalioglships of equations (4a,b) as players "thinkiagbut
responding to each other. Such hypothetical radipgnleads to an infinite regress whereby Adam
considers his likely response knowing Eve is alsesiering how to respond to his likely responsel a
knowing Eve knows that he knows she is respondirtgs likely response, and so on.

5. Despite the statistical interdependence andifafiregress just noted, we can still obtain
determinant values for both players' unconditioclzhnces of cooperating or not. The reason is that
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equations (4a,b) are linear in all their variabkss;that we can solve them simultaneously far £2) as
functions of the remaining variablesa(wa, Ug, Ve). The resulting formulas give a determinant stiil
prediction of both players' unconditional likelirbof cooperating or not:

gy = —UaVe ¥ Vall - Ve) peprers Schalterargument nicht angegeben. &

1 - (ua - val(ue - vg)
ze = —JEVA * Vel - va) e Schalterargument nicht angegeben.  (5a,b)
1 - (ua - va)(ue - ve)

Notice that no infinite regress to ever higher "srletvels” of hypothetical responding arises in ¢ipna
(5a,b). Instead, there is only "one-round" of nalitstatistical interdependence between playersiahct
choices; which leads directly to determinant calttahs of the probabilities of these choices.

6. By substituting (5a,b) into (3a,b,c,d), playgusit probabilities can be written as functiongtiodir
conditional choice probabilities {uva, U, VE). This in turn implies that players' expected gféformulas
(2a,b) can also be expressed as functions of these variables, plus their PD-payoffs= (T,R,P,S).
These two expected payoff functions are written:

Ua =T0[(Ua, Va), (Ue VE); &l & Ue =T0{(Un, Va), (U, VE); €] (6a,b)

7. Next consider how players' conditional forecaisti conditional choice probabilities are related.
Recall that response strategy DD implies a playeeys defects or never cooperates regardless of its
forecast of the other player's choice; which ingpltealso never cooperates regardless of the plager's
actual choice. We thus have the following implioati

DD implies (u, v) = (0, 0); for either player'sratitional choice probabilities (7a)

On the other hand, response strategy CD implidsatipdayer cooperates exactly as often as it featedae
other player will cooperate [because CD meansdpeaates if and only if it forecasts the other plawill
also cooperate]. We thus have the implication,

CD implies (u, v) = (r, w); for either player'sraditional choice probabilities (7b)

8. By substituting (7a) or (7b) into (5a,b) andrtlseibstituting into (3a,b,c,d), the players' fain{-
probabilities [p(G, Ce), p(Da, Ce), p(Ca, Dg), p(Da, Dg)] become functions of their conditional forecast
probabilities, (k, wa) and (g, We), plus their pair of response strategies (iXXYg); where XYa and XYe
respectively denote Adam and Eves' response sigategmS = {DD, CD}. Each player's expected payoff
formula (2a,b) thereby also becomes a functionath Iplayers' conditional forecast probabilities dmath

of their response strategies; plus their basic fiayo = (T,R,P,S). We can thus re-express players'
expected payoff functions (6a,b) as follows,

UA = T[A[(rA, WA), (rE, WE), (XYA, XYE), E] (83.)

UE = T[E[(rA, WA), (rE, WE), (XYA, XYE), E] (8b)
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Note the above substitutions [(7a) or (7b) inta,k§] also imply that formulas (5a,b) for players'
unconditional choice probabilities A(zzz) are functions of their forecast probabilities ahdir response
strategies; denoted as follows,

n = ZA[(I'A, WA), (rE, WE); (XYA, XYE)] & = = f[(rA, WA), (rE, WE); (XYA, XYE)] (8C,d)

9. Finally, recall that Theorem 1 applies to synmuejames where players' conditional forecast
probabilities are equal. Expected payoffs fundif8a,b) can thus be simplified to,

Ua = TC[(r, W); (XY A, XYE); ] & Ug = TE[(r, W); (XY a, XYE); €] (9a,b)

IV. EXAMPLES WITH ZERO AND POSITIVE FORECASTING ABITY

1. Example With Zero Forecasting Ability

With the above equations and statistical relatigpss formally specified in (2a,b) - (9a,b), we can
now calculate examples of Theorem 1. First comsideexample with zero forecasting skill, corresting
to r =w; such as (r, w) = (.5, .5) for both plajemnd (T,R,P,S) = (10, 8, 6, 4) for both playdtss easy to
see that (.5,.5) lies below the cooperation linglied by (10, 8, 6, 4) [because (.5)(8 - 4) - 1B)¢ 6) =0 <
(6 - 4) = 2]; so that inequality (1) is violatedhds, (D0),DDg) is the unique dominant equilibrium
according to Part 1 of Theorem 1. Let us show twwerify this result for the one-shot simultanegasne
PD[S(10,8,6,4),.5,.5].

1. First calculate players' joint-probabilities iled from the strategy pair (D) DDg). Substituting
implication (7a) into equations (5a,b) impliesa,(z) = (0, 0);. Further substituting into equations
(3a,b,c,d) implies that players' joint-probabiktiall equal O except for the chance of them bothatiag
which equals 1. That is, [pACCe), p(Da, Ce), p(Ca, Dg), p(Da, De)] = (0, 0, 0, 1). This is of course what
one would expect, since (QPDDg) implies both players always defect (hence neweperate) regardless
of their forecasts.

2. Next calculate the joint-probabilities implieghin the strategy pair (GDCDg). Substituting (7b)
into (5a,b) implies,

_ (.5)(.5) + (51 - .5): 25 + .25
1-(5-.5° 1
Schalterargument nicht angegeben. (10)

= .5 = zFehler!

ZA

Thus, (z, z) = (.5, .5); which further implies by substitutingo (3a,b,c,d), that players' joint-probabilities
SatiSfyv [p(Qv OE)! p(DA, CE)! p(CAv DE)! p(DA, DE)] = (251 251 25! 25)
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3. Next calculate the joint-probabilities impliegin the strategy pair (GI)DDg). Calculations like
those in steps 1 and 2 above imply, &) = (.5, 0), and [p(&, Cc), p(Da, Ce), p(Ca, Dg), p(Da, Dg)] = (O,

0, .5, .5). Note that either (7a) or (7b) musubed in substituting into (5a,b) and (3a,b,c,dpeteling on
which player uses strategy DD or CD respectivel@imilar calculations also imply the latter joint-
probabilities equal respectively (0, .5, 0, .5),tfee strategy pair (DR CDg).

4. With the preceding three steps finished, we aaloulate players' expected payoffs according to
formulas (2a,b). For example, strategy pair {CODg) implies,

Us =TE[(5, .5); (CDy, CDy); (10, 8, 6, 4)] = 10(.25) + 8(.25) + 6(.25) +2K) = 7 (11a)

Ue = 18(.5, .5); (CDy, CDy); (10, 8, 6, 4)] = 10(.25) + 6(.25) + 8(.25) +2K) = 7 (11b)

Table 1 summarizes the above joint-probability axgected payoff calculations implied from
different combinations of strategies frdgn= {DD, CD}. The strategic implications of Table can be
represented with a traditional "normal" fostrategy matrix The numbers in the matrix are the expected
payoffs (Ui, Ug) shown in Table 1, which result from players chogglifferent combinations of strategies
CD or DD. Note how the strategy matrix implies (QIDDg) is the unique dominant strategy equilibrium;
as also implied by Part 1 of Theorem 1. This dlgpiiim implies a degenerate joint-probability distition
(0, 0,0, 1); shown in Table 1.

TABLE 1& ITSSTRATEGY MATRIX ABOUT HERE

2. Example With Positive Forecasting Ability

Consider the same example as before, except thaplayers have positive forecasting skill, such
as (r, w) = (.9, .3) for both players. In this sition, (.9, .3) lies above the cooperation linecthese (.9)(8 -
4) - (.3)(10 - 6) = 2.4 > (6 - 4) = 2]; so thatduelity (1) is satisfied. Thus, Part 2 of Theorgnimplies
(DDa, DDg) and (CLR, CDx) are both self-enforcing Nash equilibria for theeeshot simultaneous game,
PD[S, (10, 8, 6, 4), .9, .3]. Let us calculate ashia prior example to verify this result.

1. First calculate (g z) for the strategy pair (Cf CDg) by substituting (7b) into (5a,b), to obtain:

- () *+ (A -3 27 -2 A8 _ o e
1-(9-.3 1-(6° 64 ) |

Schalterargument nicht angegeben. (12)

Za

Thus, (z, ze) = (.75, .75); which further implies by substingiinto (3a,b,c,d), that players' joint-
probabilities satisfy, [p(& Cg), p(Da, Co), P(Ca, De), p(Da, Dg)] = (.675, .075, .075, .175). These
probabilities are calculated by substituting (#ipi(5a,b), and then substituting into (3a,b,d@ybtain:
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P(Ca, Cg) = zale = Zefa = (.75)(.9) = .675 (13a)
P(Da, Ce) = (1 - W)ze = (1 -.9)(.75)=w(1 - z) = (:3)(1 - .75) = .075 (13b)
P(Ca De) = za(1 - 1) = (75)(1 - .9) = (1 -@wa = (1 - .75)(:3) = .075 (13c)
P(Da, De) = (1 - 2)(1 -we) = (L - Z)(L -wa) = (1 -.75)(1 - .3) = .175 (13d)
2. In like manner, players' joint-probabilities che calculated for the other three strategy pairs

{(CD,,DDg), (DD,, CDg), (DDa, DDg)}; except that both (7a) and (7b) must be useceddimg on which
player uses strategy DD or CD respectively. Tabkimmarizes these joint-probabilities and assediat
expected payoff calculations implied by differetitategy combinations of either DD or CD. As in first
example, the strategic implications of Table 2 mapresented in a normal form strategy matrix. The
numbers in the matrix are the expected payoffs, (Ug) resulting from players choosing different
combinations of response strategies CD or DD.

TABLE 2& ITSSTRATEGY MATRIX ABOUT HERE

Note how the strategy-matrix implies there are Nesh equilibria, (Cl), CDg) and (DD, DDg); in
accordance with Part 2 of Theorem 1. Consequeiatlyays defecting” regardless of what playersdast
about each other [corresponding to (RMDg)] is not the only Nash equilibrium. Rather, eqdayer
"conditionally-cooperating” according to CD is aptimal strategic reaction to the other player also
conditionally cooperating in the same manner; sb 8D,, CDg) becomes a self-enforcing equilibrium.

3. Example With A Small PD Cost-Benefit Ratio

The next example illustrates Theorem 2 and Caxolla about (CR, CDg) being a self-enforcing
equilibrium even with little positive forecastingilsabove pure chance; provided the PD cost-bémnafio
xly is sufficiently small but still positive [seeefinition 9 above]. In particular, suppose playéasic
payoffs are x = (25.2, 25, 5, 4.8); which imgli®@ = .2, y = 20, and x/y = .01. Suppose alsggracan
forecast each others' actual choice only slighditds than pure chance; such as (r, w) = (.53, Hjis
means each player has only 53 to 50 odds of rigather than wrongly forecasting the other playactsial
cooperation. For example, Adam has 50-50 oddsisfakenly forecasting Eve's cooperation when her
eventually revealed choice will falsify his predtict [because she actually chose to defect]. Orother
hand, Adam has only slightly more favorable 53 Toodlds of correctly forecasting Eve's cooperatibenv
her eventually revealed choice will confirm hisgliotion [because she actually chose to cooperate].

Given the explicit calculation steps presentedtfar above examples, we omit further detailed
calculations, and only summarize the relevant tessimilar to Tables 1 and 2 above, along with the
associated strategy matrix. These results arersimoWable 3 and its associated strategy matrix.

TABLE 3& ITSSTRATEGY MATRIX ABOUT HERE
Note how the strategy matrix derived frm Tablen®lies (CD,, CDg) is a self-enforcing Nash

equilibrium, despite players forecasting only dfigtbetter than pure chance. This agrees with Térad.,
since inequality (1) is satisfied; (.53)(25 - 4:8}.5)(25.2 - 5) = .606 > (5 - 4.8) = .2. Moreovére
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(CDa,CDg) equilibrium is both "Pareto dominant" and "risknginant® over the (DR, DDg) equilibrium.
This means (CR CDx) satisfies Harsanyi & Selten's' "equilibrium sélec’ criteria, as well as many other
such criteria. (CR, CDg) may thus be the only really "stable" strategyildmium. Yet these conclusions
follow even though players are able to forecasy stightly better than using a purely random devike
flipping a coin to determine whether the other playill actually cooperate or defect.

In cases where both T - R and P - S are equalgdsy to determine the threshold where examples
like preceding one are possible. In particulath& numerator of the cost-benefit ratio x/y satisfix = T -
R =P - S, then inequality (1) is equivalent to:

X
X+y
=R-P (14)

r-wz2

Fehler! Schalterargument nicht angegeben. where y

In the preceding example, inequality (14) implies w must be at least (.2)/(15.2) .0099; which is
satisfied for (r, w) = (.51, .5). Thus, only 5136 odds of rightly rather than wrongly forecastihg other
player's cooperation is sufficient for (@DCDe) to be a self-enforcing equilibrium in the precedi
example.

V. INTUITIVE EXPLANATION FOR THE (CD,, CDg) EQUILIBRIUM

Recall implication (7b) that Eve's conditional @ probabilities and conditional forecast
probabilities are necessarily equal whenever simgitonally cooperates in response to her forecést
Adam's actual choice [GDmplies (&, Ve) = (e, Wg)]. Consequently, if Eve can forecast Adam's dctua
choice better than pure chance §r wg], then @ > v is necessarily also implied by €D That is,
conditionally cooperating and positive forecastalgjlity together imply Eve is more likely to actlyal
cooperate when Adam actually cooperates than whdammAactually defects. Moreover, the converse
proposition also holds. That is ® ve implies both CR and g > we must also hold [because responding
according to DR implies (i, ve) = (0, 0) by implication (7a); and £ w: implies u = vg for either DI} or
CDg]. We thus have the following result.

THEOREM 3 (Characterizing When u > v Is Satisfied)
u > v if and only if a player responds accordingdD and can forecast the other player's actual

choice better than pure chance (r > w). The alsehsubscripts means this implication applies to
both Adam or Eve.

6 Risk dominance follows because a 50-50 randdimizdetween expected payoffs 15.3 and 4.9 excedi3-50
randomization between expected payoffs 15.1 angeb;pages 20-21 ogame Theoryby Fudenberg & Tirole
(1991). See alsA General Theory of Equilibrium in Gamdsy John Harsanyi & Reinhard Selten, MIT Press,
(1988).
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COMMENTS:

1. We can use Theorem 3 to help explain why {GTDe) can be a self-enforcing equilibrium. To do
so0, consider Figure 2 which shows a standard wale¥ing the traditional dominant strategy PD-$iolo;
corresponding to both players "always defectingardless of what they might forecast about eachristh
actual choice, (DI, DDg). The two straight lines show Adam's expectedffdyom actually cooperating
(the lower line) or actually defecting (the uppiee) as a function of Eve's unconditional prob&pitf
actually cooperating on the lower axis,z p(G). Since the two lines never cross, actually defgds
Adam's best response regardless:0f z

FIGURE 2 ABOUT HERE

2. However, Theorem 3 implies there is notsiagle unconditional probability of Eve actually
cooperating; if she can forecast Adam's actualcehbetter than pure chance and responds to heagkire
according to CR Rather, positive forecasting ability combinedhwonditionally cooperating (if and only
if she forecasts Adam will cooperate) together infpVe hagwo conditional choice probabilitiesg & Ve.
When this happens Adam's expected payoff from #gtaaoperating can be higher than from actually
defecting, as illustrated by points E and F in Fég2.

3. The reason for points like E and F is that-uvg implies Adam is no longer limited to exactly
vertical comparisons of points on his two expected payo#sl (corresponding to a single unconditional
probability #z). Instead, Adam comparesonvertical points displaced by the horizontal difflece
between g and ¢. Such comparisons are no longer guaranteed tw fastually defecting over actually
cooperating. Similar reasoning applies to Everwdlge compares her expected payoffs from coopgratin
versus defecting. She likewise is not limited éoticle comparisons if Adam can forecast her aathalce
better than pure chance and responds to his fdseaasording to CR so that Theorem 3 also implies i

Va.

4, Thus, if Adam and Eve can both forecast eachr@tiactual choices better than pure chance, then
conditionally cooperating may have higher expegtayoff than always defecting for each of them, give
each other also conditionally cooperates. Thisligafon in turn implies that both players condiizdly
cooperating (Ch, CDg) may be a self-enforcing Nash equilibrium; as faltyncharacterized in Part 2 of
Theorem 1 above. For example, if T - R equalsSR then inequality (14) above implies (&CDk) is a
self-enforcing equilibrium whenever the differeroetween (u = r) and (v = w) exceeds x/(x+y) fortbot
Adam and Eves' conditional choice and forecast ghdities. Otherwise, inequality (1) and its asatexd
cooperation line can be used to determine whichbaaations of these probabilities imply (&DBCDg) is a
self-enforcing equilibrium.

VI. FORECASTING ABILITY & ENDOGENOUS VS EXOGENOUBSIESSAGE SOURCES

Let us further examine the statistical relatiopshbetween players' forecasts of each other's
choices. Recall that a superscript f denotes geptaforecast of the other players' actual chaioghat G'
and G' signify that Adam and Eve forecast each otheramitiperate.

1. We can think of such forecasts as messages aihati the other player's actual choice is expected
to be. For example, £ might represent a message to Adam; suclEae's actual choice is expected to
be G". Such a message may or may not be confirmdeMeis eventually revealed choice. Consequently,
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it is up to Adam to decide whether to disregard tmessage (by always defecting regardless of Eve's
expected choice, Df), or to respond to it in a contingent manner (bgditionally cooperating based on
Eve's expected choice, GDSimilar strategic options (Dibr CDx) are available to Eve in deciding how to
respond to her expectations about Adam's actwéteh

2. Recall from equations (8c,d) that players' udit@nal choice probabilities gz zg) are functions of
their forecast probabilities and their responsatsties, denoted ira, wWa), (fe, We); (XY, XYg)] and
Z[(ra, Wa), (re, We); (XY, XYB)]. We can thus calculate players' unconditiomabpbilities of forecasting
each others' cooperation (receiving messagésr@ G' about each other) as follows:

P(G) = o' [(ra, Wa), (e, We); (XY A, XYE)] = mZe+ Wa(l - Z) (15a)
and
P(C) = off(ra, Wa), (fe, We); (XY, XYE)] = feza + We(1 - 22) (15b)
2 = 2l W)y (6 W (XY Xvg) = —Uavet vall-ve) gy,
1 - (ua - va)(ue - Ve)
Schalterargument nicht angegeben. (15c)
where
= Fa ), Gewe) (Ve Xyg] = —Uevat Vel T Vi) gy
1 - (ua - va)(ue - Ve)
Schalterargument nicht angegeben. (15d)
and
[DD implies (u, v) = (0, 0)] & [CD implies (u, \& (r, w)]; for either player (15e)
3. We can use (15a,b,c,d,e) to calculate playersbnditional probabilities of them receiving

messages (6C's), depending on their forecast probabilities anspomse strategies. For example,
consider strategy pair (GICDg); which implies by (15€) that (u, v) = (r, w) footh players. Substituting
the latter equalities into (15c,d), and then iit6a,b), we obtain by algebraic manipulation tH¥dang
formulas:

rawe + wa(l - we)

p(Ca) = Fehler! Schalterargument nicht angegeben. &
1-(ra - ware - we)
p(cl) = 1WA~ We(l - W) Fehler! Schalterar gument nicht
1-(ra - wadre - we)
angegeben.(16a,b)

Formulas (16a,b) are essentially the same as (1 %xdept that (r, w) is substituted for (u, v) footh
players. This is because (&BDg) implies both players cooperate exactly as oftethay forecast each
other's cooperation; so that their unconditionanee of cooperating equals their unconditional chaf
forecasting each other's cooperation.
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Next consider strategy pair (RPCDg). Using (15€) and substituting into (15c¢,d) irepli(z, 1 -
z,) = (0,1) and (g 1 - %) = (W, 1 - w); which in turn implies by (15a,b) that p{iC= rawe + wa(1 - W)
and p(G) = we. Similar reasoning applied to strategy pair 4IIDg) implies analogous results, except
subscripts A and E are reversed; so thataD€Ewa and p(G') = rewa + We(1 - wa).

Finally, consider strategy pair (RIDDg). Again using (15e) and substituting into (1%c,d
implies (@, 1 -2)=(0,1) and (z 1 - z) = (0, 1); which in turn implies by (15a,b) tha{Ca") = ws and
p(Ce) = we. Table 4 displays the above calculations foredéfit strategy pairs.

TABLE 4& TABLES5ABOUT HERE

Notice from Table 4 that players' forecast-messagbabilities [p(G'), p(C)] depend on their
strategy combination. For example, the probabdityAdam forecasting Eve's cooperation (by recgjvin
message &) drops as either player shifts from conditionaypperating to always defecting; dropping to
[rawe + wa(1 - we)] if he unilaterally switches from GIXo DD, and dropping further to sif Eve alone
or both of them switch from GDto DD:z. Table 5 gives two numerical examples where lpitlyers
forecast probabilities are either (r, w) = (.9,8),(r, w) = (.51, .5). In the first case, mess&d, has a
75% chance of being received for strategy pair {QCDk), dropping to a 48% chance for strategy pair
(DDa, CDg), and dropping further to a 30% chance for strafegrs (C, DDg) and (DD, DDg).

5. Consider first the example with (r, w) = (.9), .8nd note the above mentioned drop from a 75%
chance to a 48% chance of Adam receiving forecassage &. Since he knows that Eve's forecast-
message € depends on the likelihood of his actual coopenaiecause she is more likely to forecast his
cooperation when he actually cooperates than wieeddes not), Adam knows Eve is less likely to
cooperate if he decides to ignore his forecast-aggssind always defect instead. He is then lesly lik
himself to forecast her cooperation (less likelyeoeive forecast-messagg)Cbecause his likelihood of
forecasting her cooperation also drops when dainig ¢ess likely to be confirmed by her actual cleoi
Consequently, Adam anticipates that he will be ldsdy himself to forecast Eve's cooperation if he
switches from conditionally cooperating to alwayfetting (from CIQ to DD,). The latter conclusion
means that players realize the likelihood of tlmwim forecast about each other depends on how they
decide to respond to those forecasts. That idikiéhood of receiving forecast-messagg Gepends on
whether Adam ignores it or not.

6. Next consider the second example in Table 5 (jtlhv) = (.51, .50). The differences between
Adam's forecast-message probabilities for differtrategy combinations are much smaller than in the
first example. Nevertheless, as noted at the é®kction 1V, these small differences are suffiti®
enable just enough forecasting ability (above mir@nce), so that (GDCDx) is still a self-enforcing
Nash equilibrium when the cost-benefit ratio x/y0% [such as the case when (T, R, P, S) = (25.2525
4.8) in the earlier example]. Thus, what mightnselike a negligible deviation from pure-chance
forecasting can still make a major difference ie #trategic opportunities available to players.r Fo
example, with the payoffs just mentioned, the twaategy equilibria (C, CD:) and (DD, DDg)
correspond to a difference of 15.11 versus 5 dsm@dy in both players' expected payoffs.

7. The formulas in Table 4 and the numerical exam Table 5 imply the likelihood of players
receiving their forecasting-messagesas independent of how they respond to these messafjest is,
p(Ca") and p(G") are not independent of players' strategy decisjeiD or DD]. Rather, the likelihood of

a player's forecast-message itsetfdogenously” depends on howoth players' decide to respond to their
own messages. Suppose players instead useekterial or "exogenous' message source to forecast
each other's cooperation. For example, supposeusesl a naturally correlated message source such a
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temperature observations at different locationfettecast each other's cooperation (by each pldgking

a certain range of temperatures for which the ofti@yer's cooperation is forecasted if a tempeeatur
within this range is observed). Or suppose theypgean artificial message source by having artreleic
random number generator send to each of them atedekignals; where players decide how they will
respond to their own signal by either cooperatindefecting.

Consider a key feature of any such "exogenous$aggssource that might be used by Adam and
Eve in a PD-situation. Let M denote the set ofeptally observed signals from such a message spurc
with individual signals observed by Adam and Evewated m and m. Suppose Adam decides to
cooperate in response to certain signals, denoteld M; and defect whenever a messageh{M - M)
is received. Eve similarly selects a subset oéptisll messages M1 M, and cooperates if and only if she
observes a message:- M Mg  Subsets i and M: thus correspond to Adam and Eves' forecasting
messages'cand Cg; that is, [Ca = ma O Ma] and [Ce <= me O Mg]. An exogenous information source
implies for any potential message received by Eve,/ihM, the probability of Adam receiving a
message M/ M, is fixed independently of both Adam or Eves' respastrategies, regardless of what
actions such strategies might lead them to actueligose. That is, p(mO MaOmg) is invariant to
Adam or Eve's strategy decisions CD or DD, regadllef whether C or D is actually chosen by
responding according to either strategy. For exejtpe correlation between thermometer readings at
different locations is independent of what somemight do after looking at one of the thermometers,
what someone else might do after looking at theratiermometer.

8. The above property (of exogenous message s@umggises Eve can determine the likelihood of
Adam observing mO Ma conditional on her observingemil Me. However, she cannot determine from
me O Mg the likelihood of Adam actually cooperating or ef@fng in response to observing i Ma.
That is,the probability of Eve observingem/ Mg conditional on Adam observingsm/M, is thesame
regardless of whether Adam actually cooperatesairim response to observing.m/ M, [as well as
the same regardless of how she actually responddserving ma /7 Mg]. This is a general result for
any information source whose signal-correlatiomiependent of players' response strategies whadh |
them to make actual choices; as stated in thededittition and theorem.

DEFINITION 16 (Forecast Probabilities For ExogenMesssage Sources)

Let a set M represent any message source for wthiehconditional probability p(aimg)
between any pair of Adam and Eves' messagesdri] M is independent of both players'
strategy decisions (CD or DD), no matter what dathaices (C or D) might actually result from
these decisions. M is then said to bee&aogenousnessage source; otherwise M is said to be an
endogenousnessage source. Also, letyMnd M: be any two subsets of M that Adam and Eve
might use to forecast each other's cooperationningaG' = ma 0 Ma, and G' < me O Me.
Their resulting conditional and unconditional faetprobabilities are denoted,

ra(Ma) = p(mx O MAOCe) ie(Mg) = p(m: O MelOC,)

and (17a)
Wa(Ma) = p(mh 0 MaODg) We(Meg) = p(me O Me[Dp)
2:(Ma) = p(m 0 Ma) and &Me) = p(m: U Mg) (17b)

THEOREM 4 (Exogenous Message Sources Imply Zeredasting Ability)
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Let M be any exogenous message source. Theretluiting forecast probabilities defined in
(17a) are equal to players' respective uncondititumacast probabilities defined in (17b); which
thereby implies both players have zero ability ace€ast each other's actual cooperation better
than pure chance. That is, the following idergitiecessarily hold:

rA(MA) = WA(MA) = ZA(MA) and If(ME) = WE(ME) = ZE(ME);
for anyexogenousnessage source M, and for all MM, Mg 1 M
COMMENTS!

1. Theorem 4 implies any exogenous message sasr@emorthless guide to forecasting players'
actual choices in a strategic PD-situation. Thigm intuitive result, since rational players wontut
expect to forecast each other's strategic behauimessfully with messages that are only correlatdd
other messages, but not with their actual respdosasy given message either of them might receiia.
example, we might paraphrase the Nobel citatiortegliat the beginning in the following way,

"Everybody knows in games like chess or poker plagers would not attempt to forecast expected
countermoves from the other player by observingyerous signals such as correlated temperature
readings. Instead, they would try to discern sigrarrelated with each other's actual choices, or
with those 'states-of-mind' which lead each of themake actual choicé's

2. As suggested by the preceding statement, fdiegadrategic behavior (better than pure chance)
requires players to discern signals (endogenouasiyelated with each other's actual "state of miod"
with whatever cognitive or behavioral mechanismtualty generate their behavior. For example, a
human player's actual state of mind might be catedl with "facial expression," "body language,'n¢o

of voice," and so on; or with its "perceived consemces” related to potentially received payoffthsas

(T, R, P, S). Nonhuman players like birds and negskmight be governed by relatively more
"instinctive" mechanisms that also produce obsdevabpmptoms correlated with body language, facial
expression; or with certain forms of "emotion",otal patterns", and so 8n.

7 Care must be given to avoid possible misintégticen of Theorem 4. Suppose Adam forecasts Eeeperation if
he observes temperatures abov® @@renheit, and follows the response strategpoperating himself if and only if
he observes temperatures satisfying this foregpstiteria. Given Adam'assumedesponse strategy, if he chooses to
cooperate then he must have observed a tempeeadtave 98 which in turn implies Eve is likely to observersiar
temperatures (because her temperature observatiensorrelated with his temperature observationEhus, the
likelihood of Eve's observed temperatures dependsdam's actual choice, for agiwenresponse strategy that Adam
might follow. On the other hand, the likelihood B¥e's observed temperatures is independent othahéidam
actually follows or deviates from any given respoegategy. For example, the likelihood of it lgehrot (say above
90% where Eve lives has nothing to do with how Adaighnrespond when it is also hot where he livesybether
he might change the way he responds when he feelsftet, forecasting Adam's actual choice requires to forecast
whether he will actually follow or deviate from ahypothetically given response strategy. If shewcado the latter
by "feeling hot", then such feelings are also wesh in forecasting Adam's actual choice; no méaittev correlated
their observed temperatures might be.

8 Similar principles are used by "lie-detectorshiegh measure small changes in physiological symgtgiie skin
perspiration, pulse rate, or muscle tension) treab#iected by a person's internal state of méndh as an awareness
of being truthful or not about one's past actioniture intentions.
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3. The above mentioned messages may depend on tgpmef "short-range" or "face to face"
situation in order for such messages to be religblgeived by the players involved. Even thouglyth
will be separated (without further communicatiorjem they must actually choose between cooperating
versus defecting, messages like those mentionedeahay help them infer through "introspection” what
each other is likely to do. Such "private" intresfion may be mistaken, and would not necessaailg h
any "causal" influence on the other player's acttate of mind. Nevertheless, when combined with
appropriate "short-range" prior communication, play private introspections (while separated) maght
least be more correlated than using a pure chaechanism such as rolling a die; or trying to fostca
each othger's state of mind with exogenously cdedlaignals like temperatures observed at different
locations:

4, Another possibility might be endogenously catell "focal points” originally discussed by
Schelling (1960), and recently formalized by Sug@E®O5). For example, players with with a common
historical or cultural background might be ableus® "most frequently mentioned" labels (1995, page
547) associated with cooperating or defecting 1p kerrelate their individual expectations aboutewh
each other is likely to cooperate or not. Stilbdmer possibility might involve players exchanging
"linguistic messages" about their attitude towaagheother's cooperating or not. For example, Adam
might say to Eve that only "scumbags" would cheasomebody el$& Such linguistic messages may
produce "emotional responses" within each pldyemich are correlated with those future statesioid
(while players are separated) leading to theiraathoices.

5. Despite the above possible examples (of endagdnaorrelated signals), we do not wish to
endorse any patrticular interpretation or theoryualdiow players might forecast each other's strategi
behavior (better that pure chance); except to atysomething beyond exogenously correlated message
must be involved. Instead, we wish to investightetheoretical implications of players of playkeving

9 Subjects in many PD-experiments report thabsmection about themselves and the other subjeottst of view"
played a role in their actual decisions. In daiog subjects do not suggest their introspectioms hd'causal” effect
on other subjects; just that they hope to get dlbaon someone else's likely thinking through tbein deliberations.
Given the recurrence of such reports, it may bettwpaying attention to them theoretically, rattiean only
analyzing the effects of using exogenous messagees(which cannot forecast better than pure @édmcTheorem
4).

10 Experiments of such examples are recentlyggsd by Elinor Ostrom (1994; "Frontiers of Redeamto the

Design of Institutions," Seminar in Political Ecomg John F. Kennedy School of Government, Harvaniv/érsity,

April 1994. Related research involving comparafie& studies of American Indian cultures is atiscussed by
Stephen Cornell & Joseph P. Kalt (1995 a,b,c).

11 Emotional responses may also be correlatedohitihges in players’ subjective evaluations of thasic payoffs.
However, Theorems 1-3 above imply that potentinges in (T, R, P, S) amdt necessary to affect a rational
player's strategic incentives; because these timsoagsume given payoffs unaffected by changeserd' ability to
forecast each other's actual choices. Neverthalegkgenous messages (especially those embodyinguéstic
structure evolved from previous historical or crdtuexperience) may affect players' subjectiveefelabout their
individual payoffs, as well as their beliefs abtha likelihood of each other actually cooperatitigreby leading to
additional fruitful analysis about the resultingeirdependendence between these two effects. Fonpe, as
discussed in Section IX below, conditionally cogtiee equilibria are sensitive to changes intke sf T - R, P - S,
R - Peven without reversing the ordinal PD payoff ranking T > R > P > S. Consequently, a noticeable behavioral
sensitivity in PD-situations may result from lingtic communication conveying ideas about "morality"
"trustworthiness", social "roles" or "norms", ebgcause such communication may alter the relaipeeds players'
subjectively perceived payoff differences. If gmir equilibrium probability of cooperating can affectedwithout
reversing the ordinal payoff rankilig> R > P > S; as shown earlier by Theorem 2 aratdllary 1 above.
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more than zero forecasting ability, however suchitabmight be achieved in practical situations fhwit
human or animal players. Theorems 1 and 2 abopédyithere is a "rationally self-enforcing incentive
for players to find some means of forecasting striatbehavior better than pure chance, even foisboée
PD-situations with the ordinal payoff ranking (TR>> P > S) still satisfied. Consequently, both ham
and biological evolution may have found ways ofrags systematically responding to this incentige, t
the mutual advantage of the various kinds of pwjerolved.

6. The sequel to this papelinks the above discussion (comments 1-4) to gelditerature in
experimental psychology directly concerned with ihgerfect "detection" of signals, callesignal
detection theory® Doing so enables one to construct a more getieeaky in which players' forecast
probabilities (k, wa; re, We) are not held fixed (as assumed in this paperstehd, these probabilities are
themselves "endogenously chosen" by the playeosdar to more effectively make use of (endogenous)
messages that might help them improve their sti@fegecasting ability.

VIl. COMPARISON WITH STANDARD THEORY & "CORRELATELEQUILIBRIUM"

Standard decision theory analyzes two general whags players' actual choices might be statistically
related to each other: "mixed strategies", and r&tated equilibrium" theory introduced by Robert
Aumanr?; as discussed in the following comments.

1. First consider mixed strategies. This meang edayer uses some kind of random process (such
as flipping a coin or rolling a die), which is aetted independently of the random devices usedlogro
players. The signals resulting from using suchiasvare thus statistically independent of eachrothith
zero correlation between any pair of signals olesetwy different players independent of how theyhnig
actually respond to such signals. Thus, mixedegiias are a special case of players using an aroge
message source, whose signals are also totallynefeded with each other. Theorem 4 thereby imsplie
any such message source is a worthless guide eoafsting players' actual strategic choices (b#iten
pure chance). Hence, Corollary 1 above implies pleeyers are involved in a "pure" PD-situatiormene
both of them always defecting on each other {PDDg) is the only self-enforcing strategy combination f
any ordinal payoff ranking, T > R > P > S. MoregvEheorem 2 above implies that such behavior is
completely invariant to changes in the cost-bemafib x/y associated with potential cooperatianjang

as x/ly > 0 [corresponding to T > R > P > S]. Th#er theoretical prediction has been routinely
contradicted in past experiments. Such experinheuiastions are further discussed below in Sed¥on
and in a sequel to this paper (Part Ill).

2. Next consider "correlated equilibrium” analysislere players have the opportunity to observe
messages that may be highly correlated with eduwdr ginstead of being limited to uncorrelated slg @
assumed for mixed strategies. However, any paetecdirelation between players' signals is stiiased

12 Part I, briefly outlined in Section X below.

13 See David Green & John Swe&ggnal Detection Theory and Psychophysitsbert Kreiger, New York, 1974;
James EganSignal Detection Theory and ROC Analygl€ademic Press, New York, 1975; and John Swets,
"Measuring the Accuracy of Diagnostic Systenglence240, June 3, 1988, pp. 1285-1293.

14 See Robert Aumann, "Subijectivity and Correfatioc Randomized Strategie¥jurnal of Mathematical
Economics 1974, 1, pp. 67-96; and "Correlated Equilibrium as an [Esgion of Bayesian Rationality,”
EconometricaJanuary 198755(1), pp. 1-18. See also pages 53-6Game Theoryby Fudenberg & Tirole, MIT
Press, 1991.
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to be invariant to their response strategies rdgssdof what choices may actually result from their
strategies. Consequently, players have accesgmmelyogenous message sources; which (by Theorem 4)
still have zero ability to forecast their actualagtgic choices. Thus, despite the correlationveen
different signals, such messages will not help gisymprove their forecasting ability above purarate.
Rationally self-interested players would therefsti# always defect regardless of the relative sagrsus
benefits of potentially cooperating [so long as tbst-benefit ratio x/y > 0, by Theorem 2 and Clargl

1].

3. It is easy to verify that standard analysis pitesallowing correlated messages, neverthelelks sti
assumes only exogenous message sources. The izaineited to look at standard textbooks in game
theory, and find those sections discussing copélahessages for one-shot simultaneous games. For
example, see pages 316-319 of Binmore's (1992pbdekt Fun and Games Often a text's formal
definitions are illustrated by showing a matrixttbantains joint probabilities of different combiitas of
players' forecast-message sets @hd M), denoted p(M, Mg), p(M - Ma, Mg), p(Ma, M - Mg), p(M -

Ma, M - Mg). For example, see Figure 7.17(b) on page 316iroh8re's text. The message probabilities
in this figure are assumed fixed, and used to depiobabilities of one player's messages conditioma

the other player's potentially observed messageslijliding individual message probabilities withéach

row or column of the matrix by the sum of the proiies over that row or column respectively].

Deriving conditional message probabilities in thigove manner guarantees they must all be
independent of players' actual choices and thedpamese strategies which produce such choices.
Consequently, the implications discussed in Commgrand 2 above still hold, irrespective of the sage
correlation shown (but held exogenously fixed)He thessage probability matrix. The same conclusion
also applies whenever the formal equations usedktime players' expected payoff calculations assume
fixed message probabilities as players conditiash sialculations on their hypothetically making eliéint
choices.

4. For example, Aumann's formal definition and teeo characterizing a correlated-equilibrium
(1987, pages 3-P assume fixed message probabilities irrespectivehatther players actually follow or
deviate from any given decision rtfidor responding to their messages. He also dissuaa abstract
interpretation involving "Bayesian rationality" aridtates of the world" defined so as to includeheac
player's actual choice. No matter what interpi@tatnight be suggested, Theorem 4 above about zero
forecasting ability still applies so long as fixewssage probabilities are assumed in the formaltiems
representing players' expected payoff calculatimasresponding to them hypothetically changingrthei
response strategies). Consequently, an exogenessage source with zero forecasting ability id stil

15 In particular, exogenously fixed message priitiab are assumed in Aumann's definition 2.1 age4 (defining
a correlated equilibrium), and in proposition 2r8page 6 (characterizing which choice probabilisgrdbutions are
correlated equilibria); as well as in his "main drem" on page 7 (linking Bayesian rationality torretated
equilibrium). Exogenously fixed message probabditare also assumed in the figures Aumann usesptesent
numerical examples of correlated equilibria; susfigures 2-5 on pages 4-5, and figures 7-8 onpagel6.

16 Notice as shown in Table 4 that players' mespagbabilities are not assumed given, and thed tasdetermine
their best choices. Instead, players' messagebilidies are themselves derived as a partial aumesece of their self-
enforcing equilibria; which in turn endogenouslypdad on players' forecasting abilities (represertigdtheir

conditional forecast probabilities). In short, yeles' message probabilities are derived partly ftbeir strategic
decisions, instead of being assumed independemén @nd used to derive such decisions.
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implicitly assumed in Aumann's Bayesian rationalitterpretation of correlated equilibrium. Thetéat
(Bayesian rationality) interpretation is furthesalissed in the Appendi%.

VIIl. FURTHER INTERPRETATION AND RELATED THEORY

1. Statistically Independent Choice Is A Degereebset of Possible Choice Distributions

Recall what &veryone knowsaccording to the Nobel citation quoted at theilieigg; namely,
"players have to think ahead and devise a strategpeth on the expected countermoves from the other
player" As also discussed above, this strategic petsgetnplies that players have a self-enforcing
incentive to forecast each other's "expected coonmees” better than pure chance; that is, in fognsinch
expectations when they are more likely to be cordit rather than falsified by each other's eventuall
revealed choices. To the extent they achieveothjisctive , Theorem 1 implies (GPCDg) may be a self-
enforcing equilibrium for certain one-shot PD-sttaas; which in turn implies by Theorem 3 that thei
actual choices may therehypt be statistically independent.

Consequently, the strategic interdependence emtbddi one-shot PD-situations may motivate
rationally self-interested players to forecast eattters' behavior well enough to imply their acttiadices
are not statistically independent. Actually sudieg in doing so may not be easy, but there isaduhal"
incentive in trying to do so, because the gCDDg) equilibrium which thereby might be achieved Paret
dominates the (DR DDg) equilibrium.

More generally, we suggest there is likewise amaintuition for rationally self-interested plage
believing thatstrategicallyinterdependent choices may also leadtttistically interdependent choices;
not just for one-shot PD-situations, but poteniddir any situation where strategically interdepamd
consequences exist. For example, as modeled ior@ims 1-3 above, strategically interdependent
consequences may imply (self-enforcing) "forecgsiintentives” motivating rational players to make
statistically interdependent choices. Given suchsjbilities, it may not be fruitful to impose arpégori
restriction against theoretically investigatingtistically interdependent behavior. Yet, many praations
of nonglgoperative game theory allow only statidfiicendependent mixed-strategies into the formal
analysis.

To get a further perspective of what is involvedsuch a methodological restriction, consider the
joint probability distribution of players' actuahaice combinations, denoted [p(CCe), p(Da, Cg), p(Ca,
De), p(Da, Dg)]. Let S denote the set of all joint-probabildistributions [all those distributions whose
individual probabilities are non-negative and senohe]. Note that these joint-probabilities arguised
to determine the likelihood of any specific pay@f R, P, S) actually being received by a playEhis is
because both players' actual choices are necessatgtermine the specific payoff received by either
player. Consequently, only the joint probabilitgtdbution of players' actual choices ultimatelgtters to

17 Part 2 of the Appendix shows that there ishannsistency in Aumann's Bayesian interpretatighich when
resolved implies that Bayesian rationality is cetesit with players using either exogenous or enutmgge information
sources.

18 For example, Binmore's 1992 game theory texth(on and Gamg@sstates on pages 232-233: "A standard
assumption for a noncooperative analysis ... isttiearandom devices used by the players in imphimg their mixed
strategies armdependent This should always be assumed to be the casssusbmething is said to the contrary.”
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Adam or Eve when they evaluate the desirabilitgltdrnative strategies like CD versus DD (condibn
cooperating versus always defecting).

Now consider the following relationship discusssdFishburn (1982, pages 87-88). any joint-
probability distribution generated by statisticaiigependent choices must satify,

P(G, Ce)P(Da, De) = p(Ga, De)p(Da, Ce) (18)

Only a subset of "measure zero" within S can fyagiguation (18); which means "almost all" joint-
probability distributionscannot be generated from statistically independent bemaviConsequently,
statistically independent behavior representsegéderate subset” within S. This implication sstgthe
narrow range of potential cases one is limited to riot investigating situations where strategic
interdependence also gives rise to statisticalgrifependent behavior.

2. Statistically Interdependent Choice and th@#ss of Expected Utility

The above discussion also relates to using eggdedtlity maximization to represent the meaning
of rational behavior under uncertainty. In pafcuthe original expected utility axioms were deglto
nonstrategic situations; where events beyond asidecmaker's control affected its achieved utilifyor
example, uncertain weather conditions may affeet fthure yield from planting a particular crop. A
plausible assumption for such situations is thatstrategic events are statistically independertctibns
taken by the decision maker. Such independenchdéas a key ingredient in formal axiomatizations of
expected utility since the early proofs of Savage won Neuman-Morgenstern.

However, when applied to game theory situatiotisero"events" may result from the "expected
countermoves” of other players. Such intrinsicallyategic events may no longer be statistically
independent of any particular player's decisiosss@ggested above. Nevertheless, a major reason fo
assuming statistically independent behavior isres@rve the formal justification for maximizing eqbed
utility in explicit game theory settings. How thés one to allow for the possibility of statistigal
interdependent choices without giving up an axignatstification of expected utility theory in the
process?

The following answer is suggested; nam#alyassume players each have a subjective preference
ordering applied directly to the set of potentiairjt-probability distributionsS. The reason for doing so
is that, as noted in the preceding section, orilst jprobabilities of players' actual choice comlimas
ultimately determine the likelihood of Adam or Eveceiving any specific payoff, and hence the
desirability to them of any strategically generatettertainty about which specific payoffs they will
ultimately receive.

Expected utility axioms can then be applied diyetd players' subjective preferences over S;
thereby motivating players to maximize the expecttiity of those joint probability distributions hich
are feasible under different strategic situatioather than limiting theoretical investigation tdegenerate

19 Statistically independent choices imply eacintjprobability equals the multiple of the corresging
unconditional choice probabilities: p{Cg) = zazz, P(Ga, De) = za(1 - %), p(Da, Co) = (1 - 2)Z, p(Da, D) = (1 -
z2)(1 - ). These equalities immediately imply equality).18
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subset within S). In this way we can formally jiysthe use of expected utility thedfywithout
presupposing the nature of statistical interdepeceleesulting from different strategic situatiorisstead,
such situations can be left open to determine wieateehavioral and statistical relationships aresggtent
with the incentives, decision-making abilities, dackcasting abilities of the players involved.

3. Revealed Preference Theory & Cooperation vapstfisction In PD-Situations

The traditional intuition about defecting alwayainy the best strategy in PD-situations (discussed
in the introduction) has been so strong that sdrmeertsts have argued this intuition is a logicakddéogy
implied from the very meaning of players' "reveafm@ferences". For example, Binmore has recently
endorsed this conclusion (1994, pages 104 - 1@iyen that conditionally cooperating can be a self-
enforcing Nash equilibrium by Theorem 1 above, wiefly explain why always defecting is not a
tautological result of revealed preference theoi@onsider in particular Binmore's argument, which
combines revealed preference theory with a versi@avage's "sure-thing" principle.

1. Following Binmore (page 105), we write two releebpreference statements about how Adam will
actually choose between two options s and t depgrathi his knowledge about the truth or falsity aie
proposition P.

R1 Adam chooses s over t when he knows P rentaiesio matter what he chooses.
R2 Adam chooses s over t when he knows P remalses o matter what he chooses.

Thus, Adam will reveal (by actually choosing) &fierence for s over t when he knows the validity
of P (either true or false) is independent of wiethooses. But what if the validity of P itsedpeénds on
what Adam chooses; not necessarily totally, buhaes partially in that the likelihood of P beingdr
depends on Adam's revealed choice? For examgipose P is more likely to be true if Adam chooses s
rather than t. Consider then a third revealedepesice statement.

R3 Adam chooses s over t when he knows the liketihaf P being true depends of what he chooses.

Notice that statement R3 allows the validity abRiepend on what Adam chooses, but statements
R1 and R2 do not. Consequently, R3 cannot betaltaical implication of R1 and R2.

2. Now apply the last conclusion to PD-situatiogdditing options s and t refer to Adam's choosing
to defect and cooperate respectively, and lettingibte the proposition, "Eve chooses to coopérdtee
reason for doing so is that if Eve conditionallyoperates with positive forecasting ability, ther still
cooperate with greater probability when Adam adyuztiooses cooperation over defection (because CD
and g > wg imply ue > v, by Theorem 3 above). Thus, with positive foréogsability, the validity of P
(meaning the likelihood of Eve choosing to cooperatay in fact depend on what Adam actually chaoses
Consequently, statement R3 applied to Adam chgdsia PD-situation cannot be a tautological restlt
statements R1 and R2 (which assume Eve's choieghi@r cooperate or not is the same no matter what
Adam actually chooses).

20 The main theorems of this paper also holddh“expected utility theories" are used insteadaalitional expected
utility; such as Fishburn's SSB theory; see Macfli®85).
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3. The above comments suggest a way of rewritimgnBre's statement of the sure-thing principle
(page 107) so as to be consistent with revealefénerece theory, as shown next. The phrases in the
square brackets are added to his statement in traheake explicit what is required for it to be simtent

with revealed preference statements R1 and R2.

"If Adam will choose to defect both when he kndixe will choose to cooperate [no matter what
he chooses], and when he knows Eve will not chéosmoperate [no matter what he chooses];
then the sure-thing principle says he must alsmshdo defect no matter what he might believe
about the likelihood of her prospective choice jfisled he also believes her likelihood, whatever it
might be, is the same no matter what he chooses].

The above statement makes clear that the surg-ginciple does not imply Adam will always
defect in PD-situations, except at the limit of@ésrecasting ability. This is because £rwe) is the only
case where Eve's likelihood of cooperating is imselent of Adam's choice even if she conditionally
responds to her forecast (that is, even if sheord according to GI. Consequently, it is not a
tautology (either from revealed preference thearfyam the sure-thing principle) that rational pday will
necessarily choose defection in PD-situations, gxae the limit where they cannot forecast eaclerh
actions better than pure chance.

IX. PREDICTING BEHAVIORAL SENSITIVITY TO PD-PAYOFB: PAST EXPERIMENTS

1. Recall the intercept formulas for the cooperafioe in Figure 2, which are shown below for
convenience. These intercept values for r andendanoted with a superscript *, and are writternouit
subscripts A or E because they are the same fargayers if their basic payoffs (T, R, P, S) dre $ame.

ro= R-P Fehler! Schalterargument nicht angegeben. &
R-P)+(T-R)
* P - S .
w = Fehler! Schalterar gument nicht angegeben. (29)

" (P-S)+ (T-R)

As already discussed, these formulas imply theperation line will shift arbitrarily close to the
45 line (in the unit probability box) correspondirmzero forecasting ability, as the two payoff difleces
T - R and P - S get sufficiently small relativeRe P. This possibility also corresponds to thet-dmenefit
ratio for cooperating in PD-situations x/y droppmgfficiently close to zero. Consequently, condiitly
cooperative equilibria (CR CDg) necessarily come into play as x/y drops suffitjerso long as players
can forecast each other's actual choices bettempthee chance.

2. The last conclusion implies that for any giveretasting skill better than pure chance (represent
by ra > wa and g > wg), cooperative choices resulting from (GIZDg) are more [less] likely to happen as
the cost-benefit ratio x/y gets smaller [largeiThus, Theorem 1 implies that conditionally coopigeat
behavior will be sensitive to changes in playeasit payoffs even when the ordinal ranking T >R >S

is preserved. Moreover, such "behavioral sengjtivé directly related to the two payoff differesc@ - R
and P - S compared to R - P. This general pafignich is now a formally derived consequence of
rationally self-interested behavipagrees with the results of many earlier experisien

21 See for example, Liebrand et. al. (1992), Rapof1966), Coombs (1973), Strobe & Frey (1982jni8ons,
Dawes, & Orbell (1984)
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In fact, this pattern has been so widely obsethad researchers (in economics, political science,
sociology, psychology, etc.) have coined terms uggest why behavioral sensitivity to these payoff
differences is "intuitively likely" to happen. Fekample, the term "greed" is associated with titergial
"net profit" T - R from taking advantage of somesnmoperation; and the term "fear" is associatitid w
the "aversion” to potentially loosing P - S comphte a guaranteed minimum payoff P from defectiAg.
recent survey of the literature concerning behaid?D-situations by Liebrand et, al (1992, pageslT)
suggests the systematic nature of this observeerpat

"There is strong support for the generality ofuience of different payoff structures. ... payaffisture has
been shown to be strong not only in experimentakwiout also in field studies. ...two motives, naniear
and greed, may lead one to choose noncooperativblgth motives are important. People are mé&edyito
cooperate to the extent that they loose less byamation when others do not cooperate. Similpdpple are
more likely to cooperate to the extent that thein dass by taking advantage of, or free riding the
cooperation of others.”

3. Despite the above "generally observed" pattéragitional analysis of PD-situations has tended t
either ignore them (by arguing the experiments @b adequately simulate "real” PD-situations) or
categorize these patterns as illustrating "irratfbbehavior (because zero behavioral sensitigithe only
rational solution permitted by traditional analysi§ heorems 1,2 and Corollary 1 above enablefardiit
interpretation which predicts behavioral sensijivid "fear" and "greed" motives as a consequence of
rational self-interest.

4, Another hypothesis relates to these theorermrandly, preplay communication may help players
improve their ability to forecast each other's hétraafter they are separated, but before choosing
themselves to cooperate or defect while separétedepy raising r relative to w for each play@r)f so,
then conditionally cooperative equilibria are mékely to arise for any given payoff structure [laese
players' (r, w) probabilities are more likely to be or above any given cooperation line impliedttogir
payoff structure]. We would then see a positink ivhereby more "preplay" communication stimulates
more "within play" cooperation (even without anpdiing commitments being enforceable once players ar
separated). This general pattern also agreesmwetly experiments. Much of this data can thus also be
explained as the predicted consequence of ratsmtiainterest.

5. A number of other predictions can be calculatedl implemented experimentally with the
intercept formulas (19). This is because changésd payoff structure may not only shift the caagien

line in or out, but also simultaneously rotateniteither direction. We can thereby use equati@93 {0
calculate predictions that have not been testedrbefThese are briefly discussed in the next@ectiFor
now the main point is that we are no longer limitedtheorizing in a manner that cannot explain any
behavioral sensitivity in one-shot PD-situations,lang as the ordinal payoff ranking (T > R > P>i5)
preserved.

X. FURTHER THEORY AND EXPERIMENTS: PARTS Il & IlI

22 This may happen because preplay communicatinimvolve messages endogenously correlated wéers'
states of mind when they actually choose (rathesn tkogenous messages), as discussed earliettion9gc A more
"intimate”, "face to face" preplay setting may hplpyers identify or "detect" such endogenous ngessa

23 See for example, Orbell, van de Kragt, & Daye338), Nisbet & Wilson (1977), Radnoff & Weidndro66),
Dawes, McTavish, & Shakley (1977).
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Preceding analysis focused on symmetric PD-gamesdier to show why conditional cooperation
can be a self-enforcing Nash equilibrium in a reéy simple but rigorous manner [despite the "dwemit
strategy" intuition discussed in the introductionthe "revealed preference" intuition discusse8éation
VIII(3)]. Subsequent papers develop the analysiBout players' payoffs or forecast probabilitiesiny
the same; showing that similar results hold ingbaeeral case. These papers are briefly outlinetd ne

Part Il. Nash Equilibria With Endogenous, Joirfiilgasible Forecast Probabilities

1. This paper allows players' forecast probabdlite differ, and be "endogenously” varied by each
player. The analysis draws on a large literatarééhavioral psychology about imperfect detectibn o
messages, called "signal detection thebhyDoing so ensures that assumptions about thetitatinature

of players' forecasting skills are not arbitrariipecified, but instead conform to empirically viedf
regularities extensively studied by experimentgthslogists.

2. Because of the strategic interdependenciesviadoin simultanous games, one player's forecast
probabilities cannot be arbitrarily selected indegmt of another player's forecast probabilities.
Nevertheless, there is a well defined structurgjaiftly-feasible" forecast probabilities in oneethPD-
situations which can be precisely characterizedin@pso shows that players can independently stleit
forecasting strategies provided they are jointlsfble, and that similar results to Theorem 1 rezsuig
hold without any further restrictiorfs.

3. Other theoretical topics are also discusseces@linclude an analysis of certain questions ssich a
"Newcomb's paradox"; showing that better forecgstbility brings with it an unavoidable instability

the probability of cooperating near the limit offeet forecasting. As a result, stable cooperatiay not
result from ever more accurately correlated choiges PD-situation. Similar analysis also appt@she
"twin paradox".

4. One can also incorporate the opportunity cosplafers choosing to improve their strategic
forecasting abilities; showing for example thatisitalways worth forecasting well enough to sustain
conditionally cooperative equilibria as the costdsfi ratio x/y gets small enough. On the othendha
weak assumptions imply that it is never worth fasging well enough to sustain conditionally coofieea
equilibria as the cost-benefit ratio x/y gets sudfitly large.

Part lll. Empirical Implications and New Experintgn

As suggested in the above title, this paper facoseempirical and experimental issues. If pldyers
individual payoffs are not equal, then two cooperatines (one for each player) result from thelgsia.
These can be independently varied relative to edbhbr, resulting in new experimental cases. Other
experiments involve "boundary cases" near the hwhiere the ordinal payoff ranking (T >R >P > §) i
reversed. Such experiments help one determineethéve predictive power of alternative theorids o
cooperative behavior in PD-situations. None of¢hpredictions would be theoretically possiblet(iba

24 See the references in footnote 12 above; dsawdbavies (1969), Egan (1967), McNicol (1972)h8man &
Greenberg (1970), Swets & Pickett (1982), and TariRauk, & Atkinson (1970).

25 The basic result is that conditionally coogeeastrategy combinations (GDCDg) can be self-enforcing Nash
equilibria if and only if both players' jointly fednle forecast probabilities can lie on or abovedboperation line; so
that inequality (1) is satisfied.
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for rationally self-interested players) without @stigating the strategic implications of positieescasting
ability, and endogenous versus exogenous messageeso

Xl. CONCLUSION: THE HISTORICAL IMPORTANCE OF ONBSHOT COOPERATION

Traditional analysis shows that cooperation canmoeh easier to achieve once a one-shot PD-
situation is repeated; especially when such repetinight continue indefinitely. Perhaps most eutly
observed cooperation in the field is due at leagtdrt to the incentive effects of long term, "neent"
relationships. Even if this is actually the cas®e-shot relationships may still have an esserdlalto play
in the development of cooperative individual bebagind social institutions. Consider what mighpen
with no possibility of successful one-shot coopergtand ask the following question. Namely, vabul
repeated relationships get started and continuastijowithout the possibility of successful one-sho
relationships to initiate them, or to sustain thémomething happens that temporarily interruptsni
Even if we could imagine players somehow "skippidgéctly to stable long-run relationships withauny
successful one-shot relationships, what would hafit@e players involved lacked the cognitive gypilo
conceive of consequences beyond the near future?

Think of these questions especially in terms ohgtorical progression involving numerous self-
interested individuals who interact over a longcgssion of relatively short-run situations. Rethd
earlier discussion about endogenous (rather thagemous) messages being necessary to forecaseanoth
player's actual choices better than pure chaneealRalso that such messages may be discernablegth
various forms of "close range" or “face to face'moaunication involving "body language”, "facial
expression"”, "emotion", "vocal patterns", and sa oisuch close range communication has been
systematically evidenced in a number of nonhumaecisp, especially primatés. Most biologists also
believe that animal communication is selfishly mated?” Moreover, such communication also routinely
arises either in actual short run situations, ositnations where the individuals involved lackfiignt
cognitive ability to "self-recognize” more than tiear future.

Consequently, a selfishly rational potentialeintive toward cooperation in these situations may
become historically significant when augmented wéthough short-range communication ability to
overcome the opposite incentive (by improving imtlixals' skill at detecting signals “"endogenously
correlated" with their actual choices; so that dtiowlally cooperative behavior becomes a self-aifoy
Nash equilibrium). Theorems 1 and 4 may thus émpdme of "nature's secrets”; namely, a way of
motivating rationally self-interested cooperatiaer in the most difficult one-shot type PD-situaidhat
typically arisebefore extended social cooperation evolves. Without ploitential incentive (characterized
by Theorem 1), and the communication skills negdedilize endogenous messages (required by Theorem
4 to achieve positive forecasting ability), theciof longer-run exchange and organization relatigrs’
eventually typical of human societies may neverhewolved in the first place.

% See for example, Bonner (1980), Smith (1977),\&fiidon (1975).
%" See for examplghe Selfish Gen®ichard Dawkins (1976).

28 Including both market trading and contract tieteships (hierarchy, hybrid, network) within nomket
organizations studied in "transaction cost" analffsillowing Coase, Alchain, Williamson).
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APPENDIX

All of the theorems besides Theorem 1 either evggn in the main text, or follow easily from thefiditions
which apply to them. Thus, only Theorem 1 is promext.

Part 1. Proof of Theorem 1

Recall we are dealing with symmetric PD-situaigrhere both player's conditional forecast prolitedsilare
equal [ so that g wa) = (r5, Wg) = (r, w)]; and start with determining the fourpexcted payoff levels for Adam
depending on whether and Eve conditionally coopsranhd/or always defects. If they both alwaysagethen both
are guaranteed to get payoff P; so we thus have,

Up = p[DD4, DDg, (r, W), x=(T,R,P,S)] = P (Ala)

Next assume Adam conditionally cooperates while Blways defects [strategy pair (&DDg)]. Using
implication (7b) and (7a) for Adam and Eve respetyiimplies, (U,va) = (r, w) and (g, vg) = (0, 0). Next substitute
these into equations (5a,b) to obtain players' nditional probabilities of cooperating,a(zzz) = (w,0); and then
substitute these values along with, ) = (r, w) and (g, vg) = (0, 0) into the left-hand probability multiples

equations (3a,b,c,d) to obtain players' distributtdchoice probabilties, [pEG Ce), p(Da, Ce), P(Ca, Dg), p(Da, Dg)]
=[0,0,w, 1 -w]. Then substitute these values equation (2a) to obtain Adam's expected pdgufiula,

Ua = PY[CDa, DDg, (r,w), x=(T,R,P,S)] = wS+(1-w)P 18)

A similar sequence of substitutions [using (7a)(dv) depending on which player always defectsugers
conditionally cooperates respectively] obtains fdilowing formulas, for Adam's expected payoffs &irategy pairs

(DDa, CDg) and (CL, CDg):
f[DDa, CDg, (r, w), x = (T, R, P, S)] = wT + (1 -w)P (1)
and

f[CDa, CDg, (r, W), x = (T, R, P, S)] = zrR + z(1 - NS +{Z)wT + (1 - 2)(1 - w)P

= z[fR+(1-1S]+ (1-2)wT + (w)P] (A1d)
_ w+ w(l - w) _ w _ w
where 1-@-wWr-w 1-(-w) 1-r+wg, (Ale)

Note that similar reasoning implies the same foamtibr Eve's expected payoffs, by reversing thed\E& subscripts
in (Ala,b,c,d), and using the right-hand probapitiultiples of equations (3a,b,c,d).

With these formulas, the proof of Theorem 1 fokogirectly from a simple property of convex combtiimas
applied to two amounts X and Y; namely,

X3Y ifand onlyif p(X)X + [1 - p(X)]Y 3Y; forany p(X)30 (A2a)
Note that (A2a) is also equivalent to,

Y > X ifandonlyif Y > p(X)X +[1-p(X)]Y for any p(X) >0 (A2b)
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From this point on, we assume w > 0, in order prihe traditional result that DEtrictly dominates CD (for
both players), if inequality (1) is violated. Ottwise, DD only weakly dominates CD if w = 0. Tladtér case, w = 0,
does not affect Part 2 of Theorem 1, about CD lasog a Nash equilibrium when inequality (1) igisteed [because
(1) requires only the weak inequality 3 insteadaddtrict inequality >]. The traditional dominasitategy result is
equivalent to the above formulas satisfying, (A*ajAlb) and (Alc) > (Ald) for Adam's expected pésoand
similarly for Eve's expected payoffs [by switchitlie A and E subscripts in (Ala,b,c,d)]. Thus, tiaaitional
dominant strategy result holds if the following guolities hold [also applying to Eve's expectedoffaypy switching
subscripts]:

p*[DDa, DDg, (1, W), X] > B[CDa, DDg, (r, w), x] U P >wS + (1 - w)P, forw >0 (A3a)
pA[DDAv CDE! (r! W), X] > pA[CDAv CDE! (r! W), X] 0
WT+(1L-w)P > z[rR+ (1-1S]+ (1-z)w (1-w)P] (A3b)

W
z= —— >0

for 1-r+w 0 (A3c)

Notice that inequality (A3a) follows from implicah (A2b) by letting X = S, Y = P, and p(X) = w. dvkver,
inequality (A3b) also corresponds to an examplanpiication (A2b); where X = [fR + (1 -1)S], Y =T + (1 -
w)P], and p(X) = z. Thus, inequality (A3b) is egalent to determining whether the following inedtydiolds:

WT+@1-w)P]> [rR+(1-n)S] (A4)

Algebraic manipulation of inequality (A4) directfields the following inequality, which is tloppositeto the
first version of inequality (1) in Definition 7 difie main test. That is, inequality (A4) is equivdlto P -S> r(R - S) -
w(T - P); so that inequality (A4) is equivalent(tp w) violating inequality (1). Thus, violating inequality (1) jries
[along with inequality (A3a), which was also jusibsvn to hold] that DR is a dominant strategy for Adam. Similar
reasoning also implies [by reversing subscriptnd B] that D is likewise a dominant strategy for Eve. Hence, (
w) violating inequality (1) implies strategy paD,, DDg) is the unique dominant strategy Nash equilibriwmich
proves Part 1 of Theorem 1.

Next consider what happens when inequality (A4@¥ersed, so that [rR + (1 -r)S] 3 [wT + (1 - W)®hich
is equivalent to (r, wiatisfyinginequality (1). This is an example of implicatik3a) by letting X = [rR + (1 - 1)S],
Y = [wT + (1 - w)P], and p(X) = z; which in turn jplies by formulas (Alc,d) that'fCDa,CDg,(r, W),x] 3 P{DDa,
CDg, (r, w), xX]. Similar reasoning implies the sameduality also applies to Eve's expected payoffsréversing
subscripts A and E]. That is, (r, w) satisfyingduiality (1) also implies §CDa, CDg, (r, W), X] 3 g{CDa, DDg, (r,
w),X].

The latter two inequalities mean that satisfyingguality (1) implies that CD has higher expectagoff than
DD (for either Adam or Eve) if the other player oses DD. That is, (r, w) satisfying inequality (thplies strategy
CD is an optimal decision for either player fromagtgy set S = {CD, DD}, given the other playeadelects strategy
CD. Thus, (r, w) satisfying inequality (1) impli@SD,, CDg) is a Nash equilibrium.

Recall also that, as shown above, inequality jA8ayuaranteed for any w > 0, and holds weakly3d
[regardless of whether inequality (1) holds]. Anitar inequality to (A3a) also holds for Eve byeesing subscripts
A and E [regardless of whether inequality (1) Bbld Thus, inequality (1) implies (DD, DDg ) is still a Nash
equilibrium. Hence, (r, w) satisfying inequal{tl) implies (C,,CDg) and (DD.., DDe ) are both Nash equilibria;
which proves Part 2 of Theorem 1.

Part 2. Aumann's Bayesian Interpretation of Gated Equilibrium
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We now further discuss Aumann's interpretationt tBayesian rationality implies that the probability
distribution of players' choice combinations isoarelated equilibrium. There is an inconsistemchiis interpretation,
which is discussed in points 8-9 below, and resblwepoint 10 (showing that Bayesian rationalitg@sistent with
players using either exogenous or endogenous iatiymsources, as discussed in Section VI of thHa teat). To do
so, the following definitions are introduced fodedst two players i = (1, ... n) deciding howeaspond to information
about other players' choices besides their owrcehoi

1. W denotes the set of all conceivable "stateb@fvorld"; with individual states denoted w T \W; denotes
player i's action partition of W; meaning the sealbdistinct actions for player i. Each elemeft\, denoted al A,

is a subset;al W; corresponding to a smallest distinguishadidéion for player i. Mdenotes player i's message
partition of W; meaning the set of all distinct s@ges that player i can observe. Analogous,teach element i
M;, is a subset ml W; corresponding to a smallest observable nusska player i.

2. A=A .. A,anda=(a..., a1 A; where a denotes an n-tuple of players' agtjiealled an action profile.
Similarly defineM =M ... "M, and m = (m ..., m) | M; where m is an n-tuple on players' messagaied a
message profile. Let G denote a countable prabasilace over W; where s 1 G represents a prababistrioution
over all potential states in W. s is called atkstistribution”.

3. Let P = M ~ A denote the set of all potentialssege and action profiles; with individual pairs of
message/action profiles denoted p = (m, a) | P =AM For any subset X | W representing an evertl{iding player i
choosing an action;d A; or observing a message inM], the probability of X implied by s is denoted,

o(X) = zwDXa(C‘“‘)O. For any collection of two or more sets [suctXa¥, Z, ...], let C(X, Y, Z,.)=(XC Y
C Z C ..) denote the intersection of these séfben the joint probability of a collection of everthappening
simultaneously is denoted,

oX, Y, Z,...) =X, axy.z. 7 2 2) (A5)

For example, s[p = (m, a)] is the probability opair of players' message/action profiles p = (rh,R)
meaning the probability of states w contained mititersection of all the message and action events M, and al
Aj] associated with a particular message/action lprpf (m, a). From a Bayesian perspective, edtought of as
a common "prior" probability distribution of plagbeliefs about the likelihood of potential state$ W; including
the likelihood of potential combinations of obsdima/action profiles simultaneously arising. If wish these beliefs
to be subjective to particular players, then eadesotes player i's subjective prior distributidrpotential states w 1
W.

4, (P, G, § is called player i's "subjective information mtigerhich describes player i's subjective beliddipat
the likelihood of all potential pairs of player§servation/action profiles pl P.

5. Following Aumann, consider an "outside obserparspective, where each player i must evaluate st/
to respond to its observed messages or "signalsVim Quoting Aumann (1987; page 8),

In analyzing the situation, each player i ... @drignore the possibility of his receiving a sigdiferent than
the one he actually got, even though he knowshthatid not actually get such a signal. This isalise the
other players do not know what signal he got. Playemust take the ignorance of the other players into
account when deciding on his own course of actio, he cannot do this if he does not explicitlyude in

[his information] model signals other than the beeknows he got.

6. Also following Aumann (1987; page 7), considdratvhappens when each player knows nothing beyond
observing himself choose an action; so that his@@; and message artitions of the state space W coincide. That
is, Mi = A for all i; meaning m= g are indistinguishable events for each player ictvtn turn means M = A. Then
apply this knowledge situation to the above quotatso that the "signals” referred to in the guotatepresent each
player i observing himself choosing actiqrieecause player i's actions "are" his signals; m for all m TM]. In

such a situation, player i knows that although ditteer players do not know what specific action hese,they
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nevertheless know he cannot have chosen differébratty what he actually observed himself choose tgviea his
observed action might have bgerConsequently, player i knows that all the othlayers assign zero probability to
any such "conceivable event", corresponding tehising differently than he actually observed kifichoosing.

7. The latter conclusion is formally implied foryasubjective information model (P,@,ever a state space W.
To see this, note that M = A implies P = M ~ A ="AA; so that there exist "conceivable” or "hypoiteit
observation/action profiles (a, a¢) T P such thistdabecausg tig¢ for some player i. The latter inequality implibe
intersection C(a, a¢) = A [because the elemendspafrtition A are disjoint subsets whose intersection is thezefo
empty]; which in turn implies from equation (A%t §a, a¢) = 0 whenever a ! ac¢.

Thus, player i knows that any hypothetical evehere he chooses differently than what he actuakbeored
himself choosing will be assigned zero probabitifyall the other players. Moreover, player i assigns zero
probability to any such hypothetical event, becdusealso knows any two distinguishable actiond a& represent
disjoint events that never happen simultaneously.

8. The last conclusion of step 7 implies that playjenows that the true state of the world w T Wshbave
hypothetically changed whenever he hypotheticaliytemplates changing his action from any giveroacé 1 A;;
because no single w can simultaneously be containeeb disjoint subsets of W whose intersectioarigpty [aC a¢

= /]. Consequently, Aumann's definition (1987,e@y of player i being "Bayes ratiorstl[a single] w" either does
not make sense conceptually; or at least is amitfufrway of defining Bayesian rationality wheragérs know nothing
more than their observed actions. With such lichiteowledge, Bayesian rationality necessarily rezpdifferent
states of the world to be hypothetically compardtenvplayer i compares his expected payoffs fronothgtically
choosing different actioriecause hypothetically having chosen differenioastimplies different states must have
hypothetically occurred This does not mean player i ever knows exaetigt specific state w T W exists when he
chooses; just that w must be different than whaitld have been had he chosen differently.

9. The latter conclusion of step 8 implies theolalhg inference: if a player's information equais observed
action and he contemplates hypothetically choodliffgrently; then he necessarily also contemplatéferent
information (about which specific state w T W es)sif he chooses differently; which in turn implitee relative
likelihood of other player's actions conditional luis different information may thereby also beatit if he chooses
differently [choosing differently implies the true state of Wwgld must be different; which implies the likeldtbof
other players' actions may also be different fatiffierent state of the wofjd Consequently, player i cannot assume
in such a situation that the probabilities of othlyers' actions (conditional on his choosing gimgn action) are the
same if he contemplates hypothetically deviatimnfrchoosing that action [that is, player i canrsguane that the
probabilities of other players' actions are siatiflyy independent of changes in his own hypotladfichosen action].

Yet, such an independence is what Aumann (198fliditly assumes in his formal theorem charactegz
correlated equilibrium distribution (propositiorB2on page 6). This is because the conditionabaisiities of other
players' choices (denoteg/Bpx in Aumann'’s notation) are held fixed as a playpothetically changes its actions (in
Aumann's proof of proposition 2.3). Consequemlymann's formal characterization of a correlatedildggium is
inconsistent with his other assumptions: that gdayer knows what action he chooses; and thasstéithe world are
"comprehensively defined" to include his own chqeleng with everyone else's choices).

10. A simple way to avoid the preceding incomsisy is to recognize that Aumann's two assumptfooted
just above) do not require that players' subjectivier distributions simply "exogenous” information sources, as
described in Definition 16 of the main text. Ira&tethese prior distributions are consistent witthtbexogenous" and
"endogenous” information sources; where the latews the conditional probabilities between playenessages
p(m¥m) to depend on their profile of actual choices.affis, each player's prior distribution is also sistent with
s(m;, m¥a) * §m,mY:ac¢) for some at a¢ 1 A; wherés, mYza) equals the ratio o{isy, m, a) divided by &), and
similarly for s(m;, m¥%a¢). In short, assuming Bayesian players' (wive paior distributions;®ver potential states w
TW) does not presuppose whether their prior kel#ibw exogenous or endogenous information sources
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