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RATIONAL COOPERATION IN ONE-SHOT SIMULTANEOUS PD-SITUATIONS1 

 
 

 PART 1: Nash Equilibria for Symmetric Games With Fixed Forecast Probabilities 
 
 "Game theory emanates from games such as chess or poker.  Everyone knows that in 

these games players have to think ahead and devise a strategy based on expected 
countermoves from the other player.   Such strategic interaction also characterizes many 
economic situations". 

     1994 Nobel citation for game theorists (Nash, Harsanyi, Selten) 
 
 
I.   INTRODUCTION 
 
 Given, as suggested in the Nobel citation, that players are going to base their strategic decisions on 
their expectations of each other's actions, they have an interest in avoiding mistaken expectations.  We thus 
might want to consider the possibility that players are more likely to form expectations of each other's 
actions when those expectations are correct rather than mistaken.  However, game theory has traditionally 
assumed players' expectations of each other's actions are statistically independent of whether such 
expectations will be confirmed or falsified by each other's actual behavior. 
 
 Suppose we thus consider how to model strategic interaction when guided by expectations that are 
statistically related to whether they will end up confirmed or falsified by the eventually revealed actions of 
other players.  The following discussion presents a theory motivated in part by strategic relationships in 
"prisoner's dilemma" type situations (hereafter called PD-situations).  To facilitate exposition, the two 
players in a PD-situation are hereafter referred to as "Adam" and "Eve"; so that we can easily distinguish the 
two players by their pronouns, "he" and "she", or "his" and "her", and so on.  
 
 A well known intuition for such situations is that since Adam would do relatively better for himself 
by defecting regardless of what Eve might do, it doesn't make any difference what he expects she will do.  
Even if he could forecast Eve's choice very accurately (perhaps even perfectly) Adam would still do better 
for himself by defecting rather than cooperating.  Since this same inference applies to Eve, then the only 
result consistent with rationally self-interested players is for both Adam and Eve to always defect on each 
other regardless of what their forecasts of each other's choices might be.  In short, rationally self-interested 
players will be better off always ignoring any expectations they may have about each other's potential 
cooperation, even though they both know that they would both be better off from mutually cooperating 
rather than always defecting.   
 
 Despite the above intuition, we will show that being able to forecast another player's actual 
cooperation better than pure chance can change Adam and Eves' strategic incentives in a one-shot 
simultaneous PD-situation.   In particular, we will show that if they both have such ability (to forecast each 
other's actual choices better than pure chance), then "conditionally cooperative" Nash equilibria may also 
exist in addition to the traditional "always defect" equilibrium.  By "conditionally cooperative" we mean 

                                                   
1
   Discussions in Saarbrucken, Germany during May-June 1994 and Fairfax, Virginia during September-October 1994 led one of us (RAH) to combine 

previous work in imperfect choice theory with noncooperative game theory to derive the main theoretical implications described below.  The  present paper 
is the first article resulting from our collaboration.  We would like to thank the Volkswagen Foundation for financial support.  In addition, we wish to thank 
the following persons for discussion and comments: Kenneth Arrow, Robert Axelrod, Ken Binmore, James Buchanan, Jürgen Eichberger, Robert Frank, 
Hartmut Kliemt, Christian Koboldt, Mathias Leder, Doug North, Joe Oppenheimer, Schmidt-Mohr, Andrew Schotter, Vernon Smith, Ulrich Witt. The 
usual disclaimer applies. 
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Adam and Eve do not cooperate because of a behavioral "disposition" to act cooperatively, but rather they 
selectively cooperate contingent on their forecasting each other will also cooperate (cooperate if and only if 
each other is forecasted to cooperate).  Adam and Eve  thereby "contingently respond" to their forecasts of 
each other, rather than always defecting  regardless of their forecasts.  Moreover, such contingent 
responding is motivated solely in order to maximize Adam's own expected payoff, given the way Eve 
responds to her forecast (including the option of ignoring her forecast); and vice versa concerning Eve's 
motivation for contingently responding to her forecasts of Adam's potential cooperation. 
 
 A key reason why conditionally cooperative equilibria have not been analyzed before is that 
traditional analysis assumes Eve believes the likelihood of Adam's cooperation, whatever it might be, is the 
same no matter what she chooses.  Suppose, however, Adam can forecast Eve's actual choice better than 
pure chance (so that  he is more likely to forecast Eve's cooperation when she actually cooperates rather 
than defects), and contingently responds to his forecast if and only if he forecasts Eve will also cooperate 
(thereby cooperating exactly as often as he forecasts Eve's cooperation).  Doing so implies Adam is more 
likely to cooperate when Eve actually cooperates rather than defects; which thereby implies Eve's expected 
payoff may drop if she actually defects relative to that acheivable from actually cooperating.   A similar 
implication applies to Adam's expected payoff if Eve can forecast his actual cooperation better than pure 
chance, and she also contingently responds to her forecast.   Thus, it may be optimal for both Adam and Eve 
to contingently respond to their forecasts (rather than always defecting), given each other does so.  This 
means contingent responding  may be a "self-enforcing" Nash equilibrium, if Adam and Eve can both 
forecast each other's actual choices better than pure chance.   
 
 Another reason why conditionally cooperative equilibria have not been analyzed before is that 
traditional analysis assumes Adam and Eve use "exogenous messages" to forecast each other's potential 
cooperation; meaning the correlation between their individual messages exists independently of how Adam 
or Eve might respond to them.  Such exogenous messages might be uncorrelated with each other (for 
example, when players observe independently flipped coins), or they might be correlated with each other 
(for example, when players observe temperatures at nearby locations). 
 
 Suppose, however, Adam and Eve can forecast each other's actual cooperation better than pure 
chance, but Eve decides to ignore her forecast (by always defecting regardless of her forecast) while Adam 
decides to contingently respond to his forecast (by cooperating if and only if he forecasts her cooperation).  
Eve's response strategy implies Adam is less likely to forecast her cooperation (because she always defects 
regardless of her forecast, and he is less likely to forecast her cooperation when she actually defects rather 
than cooperates); which in turn implies Adam is more likely to defect (because he contingently cooperates 
only if he forecasts her cooperation).  This further implies Eve is also less likely to forecast Adam's 
cooperation (because he is more likely to defect, and she is also less likely to forecast his cooperation when 
he actually defects rather than cooperates).  Thus, the likelihood of either Adam or Eve forecasting each 
other's cooperation itself depends on both of their strategies about whether to ignore or contingently respond 
to their individual expectations, or "forecast-messages", about each other's potential cooperation.  That is, 
the likelihood of receiving their individual forecast-messages "endogenously" depends on how both players 
decide to respond to them (instead of being exogenous to their response strategies, as implied for coin flips 
or temperature observations). 
 
 The preceding implications mean Adam and Eve can forecast each other's actual cooperation better 
than pure chance only with messages endogenously correlated with how they actually respond to them.  
That is, what matters to forecasting better than pure chance is not the correlation between players'messages 
per se, but instead whether their forecast-messages are correlated with how they will actually respond to 
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them.2  However, as noted above, traditional analysis assumes players use only exogenous information 
sources; thereby never investigating the strategic incentives implied by players endogenously forecasting 
each other's actual choices better than pure chance. 
 In what follows, we will analyze the above two themes; namely, the strategic implications of players 
forecasting each other's actual choices better than pure chance, and the necessity of endogenous messages 
required to achieve such forecasting ability.  In order to focus on the essential logic as simply as possible, 
this paper analyzes only "symmetric" PD-situations in which both players' basic payoffs, strategy sets 
(about ignoring or contingently responding to their forecasts), and forecast-probabilities are the same.  The 
sequel to this paper3  analyses the general case for any PD-situation, whether symmetric or not; also 
allowing players' to "endogenously" vary their forecast-probabilities to maximize their individual expected 
payoffs. 
 
 Within the scope of symmetric PD-situations, this paper proceeds as follows.  Section II presents 
the main definitions and theorems characterizing when contingently-responding (to players' forecasts about 
each other) is a Nash equilibrium in addition to always-defecting (where players always ignore their 
forecasts).  Section III derives explicit formulas for calculating numerical examples to illustrate the formal 
analysis.  Section IV calculates three examples.  The third example illustrates that conditionally cooperating 
can be a Nash equilibrium no matter how close players' forecasting ability gets to the limit of forecasting no 
better than pure chance.  Section V further analyses the intuition behind the analysis, similar to that 
described above.  Section VI formally links the analysis to the above distinction between endogenous versus 
exogenous information sources.  Section VII compares the resulting analysis with traditional game theory 
models allowing either "mixed strategies" or "correlated equilibria".  Section VIII discusses more general 
issues about strategically interdependent choices creating incentives toward statistically interdependent 
behavior; plus a further discussion of why always defecting is not implied by "revealed preference" theory.  
Section IX briefly describes how conditionally cooperative equilibria imply a behavioral sensitivity to 
changes in the relative differences between players' PD-payoffs; in general agreement with numerous 
previous experiments.  Section X outlines companion papers which further develop related theory and 
experimental topics.  Section XI concludes with a brief discussion about the historical significance of 
cooperation in one-shot PD-situations.   
 
 
II.   DEFINITIONS & NASH EQUILIBRIA 
 
DEFINITION 1 (Prisoner's Dilemma or PD-Situations) 
 
 Four payoff levels arise in prisoner's dilemma or PD-type situations: R, the "reward" from both 

players mutually cooperating; P <  R, the relative "penalty" from both players mutually defecting on 
each other; T > R, the "temptation payoff" from unilaterally defecting when the other player 
cooperates; S < P, the "sucker's payoff" from unilaterally cooperating when the other player defects. 
 These inequalities are equivalent to the following ordinal PD-payoff ranking: T > R > P > S. 

 
DEFINITION 2 (Conditional Forecast Probabilities) 

                                                   
2   In particular, such messages must be correlated with those "states of mind" which lead players to make actual choices; 
or with whatever behavioral mechanisms actually generate their choices (as discussed in Section VI below). 

     3  For an outline of this paper, see Section X below. 
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 1. Let Adam's actual choice to cooperate or defect be denoted by CA and DA respectively; and 

similarly for Eve's actual choices, denoted CE and DE.  Also let CA
f and DA

f denote that Adam 
forecasts Eve will actually choose CE and DE respectively; and similarly for Eve's forecasts of 
Adam's actual choice, denoted CE

f and DE
f.   

 
 2. Adam's conditional probability of "rightly forecasting" CA

f when Eve actually chooses CE is 
denoted, rA = p(CA

fCE).  Conversely, his conditional probability of "wrongly forecasting" CA
f when 

Eve actually chooses DE is denoted, wA = p(CA
fDE).  Analogous definitions apply to Eve's 

conditional chance of either rightly or wrongly forecasting Adam's actual cooperation, denoted rE = 
p(CE

fCA) and wE = p(CE
fDA) respectively.  The (r, w) probabilities are written without subscripts 

when they may refer to either player's forecasts. 
 
 
DEFINITION 3 (Positive versus Zero Forecasting Ability) 
 
 Adam can forecast Eve will actually choose CE "better than pure chance" if and only if he is more 

likely to forecast her cooperation when she actually chooses CE than when she does not; so that rA > 
wA is possible.  Adam is then said to have "positive forecasting ability".  Otherwise, Adam can 
forecast "no better than pure chance", and is said to have "zero forecasting ability"; if rA ≡ wA is 
the only possibility.  Analogous definitions apply to Eve's forecasting ability.   

 
COMMENTS: 
  
1. Consider an experimental setting where Adam and Eve are separated from time t1 to t2; during 
which they must each choose privately with no communication between them.  At a later time t3 their actual 
choices are revealed to each other.  Let D denote the time interval from t1 to t2.  Adam and Eve may have 
had opportunity to communicate before D, but whatever they may have said cannot "bind" them to any 
particular choice once they are physically separated during D.  Moreover, because they are separated, 
neither player knows who actually chose first or second during D.  Nevertheless, they can still attempt to 
forecast (while separated during D) what each other's eventually revealed choice will turn out to be at t3; 
where t3  necessarily occurs after D is completed. 
 
2. In the above setting, forecasting better than pure chance (rA > wA) means Adam is more likely to 
forecast Eve's cooperation when her eventually revealed choice will confirm rather than falsify his forecast 
(because she actually chose to cooperate rather than defect during D). 
 
3. Forecasting no better than pure chance means Adam's likelihood of forecasting Eve's cooperation is 
independent of whether her eventually revealed choice will confirm or falsify his forecast.  For example, 
suppose Adam rolls a six-sided die to forecast Eve's revealed choice at t3; and forecasts her cooperation or 
defection if the number (1, 2, 3, 4) or (5, 6) respectively faces upward when the die stops moving.  Then the 
likelihood of Adam forecasting Eve's cooperation is 2/3 regardless of what her eventually revealed choice 
turns out to be; so that (rA, wA) = (2/3, 2/3). 
 
4. Recent experiments by Robert Frank, et. al. asked players to both choose between C or D, and 
forecast the action chosen by the other player during a separation interval D like that discussed above. The 
subjects in these experiments were able to forecast each other's actual cooperation better than pure chance 
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in one-shot simultaneous PD-situations with explicit money payoffs4.  For example, the conditional forecast 
probabilities generated in two different experiments were (r, w) = (.88, .62) and (r, w) = (.89, .59); resulting 
from sample sizes of 122 and 198 respectively.  We thus have direct experimental evidence that positive 
forecasting ability is possible in empirical situations with PD-payoffs (T > R > P > S). 
 
 
DEFINITION 4 (Response Strategies: Conditionally Cooperating versus Always Defecting) 
 
 1. A "response-strategy" is an ordered pair XYA; where X is Adam's actual choice when he 

forecasts Eve will choose CE, and Y is his actual choice when he forecasts Eve will choose DE.  The 
subscript A thus refers to Adam's actual responses to forecasting Eve will either cooperate or defect 
respectively.  The ordered pair XYE similarly represents Eve's actual choices in response to 
forecasting Adam will either cooperate or defect respectively. 

 
 2. An ordered pair XYA or XYE thus reflects the strategic perspective suggested in the Nobel 

citation quoted at the beginning; namely,  "everyone knows that ... players have to think ahead and 
devise a strategy based on expected countermoves from the other player."  Such ordered pairs are 
thus called "response strategies".  The A and E subscripts are deleted when the response strategy 
XY may refer to either  player.   

 
 2. The response strategy DD means to "always defect" no matter what the other player is 

forecasted to do, and CD means to "conditionally cooperate" if and only if the other player is also 
forecasted to cooperate. 

 
 
COMMENTS: 
 
1. The strategy combination (DDA, DDE) represents the traditional "dominant strategy" solution for 
simultaneous, single-shot PD-situations; where both players always defect no matter what they might 
forecast about each other's choice.  (DDA, DDE) thus implies both players have zero chance of actually 
cooperating. 
 
2. On the other hand, the strategy combination (CDA, CDE) does not imply any general "disposition" 
or "tendency" for players to cooperate; but instead represents a "conditional strategy" to potentially 
cooperate contingent on what each player forecasts the other player will actually do.  Consequently, (CDA, 
CDE) does not imply either player will necessarily cooperate or not.  Instead, it implies positive probabilities 
of either zero, one, or both players actually cooperating. 
 
3. A pair of response strategies (XYA, XYE) might be interpreted as a possible "agreement" in which 
Adam and Eve exchange promises to respond to their forecasts of each other's choice according to XYA and 
XYE respectively.  By this we do not necessarily mean Adam and Eve have actually met and discussed such 
an agreement.  Rather, their behavior is consistent with a "hypothetical agreement" having been made.   
 

                                                   
4  See chapter 7 of Passions Within Reason, W. W. Norton, 1991, by Frank; and "The Evolution of One-Shot 
Cooperation: An Experiment," Ethology and Sociobiology, 14, 1993, pp. 247-256, by Frank, Gilovich, & Regan. 
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 However, care should be taken to avoid this interpretation, because the term "hypothetical 
agreement" does not mean there is any "moral obligation" or some other cost associated with violating 
promises, thereby causing players to act potentially contrary to their self-interest in the absence of such an 
agreement.  We are instead dealing with rationally self-interested players who never keep agreements 
"because" they promised to do so.  Rather, they make promises only when it is already in their self-interest 
to keep them in the first place.  Such players will thus give credence only to truly "self-enforcing" 
agreements which do not require any potential "commitment device" or "enforcement mechanism" beyond 
their own self-interest in order to motivate voluntary compliance. 
 
4. Therefore, a strategy combination (XYA, XYE) may not involve any actual exchange of promises or 
any explicit agreement actually communicated between the players.  It can nevertheless be used to represent 
the behavior of rational players who follow strategies only when doing so is truly "self-enforcing" in order to 
maximize their own expected payoff given each other's strategy.  That is, no actual agreement, enforcement 
mechanism, or anything else is needed to explain such players' behavior beyond what their rational self-
interest already implies.  Subsequent discussion thus refers only to self-enforcing strategies; as defined 
next.     
 
 
DEFINITION 5 (Self-Enforcing Strategies and Nash Equilibrium) 
 
 A pair of response strategies (XYA, XYE) is "self-enforcing" if and only if it is optimal (expected 

payoff maximizing) for each player to actually follow its strategy conditional on the other player 
also following its strategy; so that neither player has a unilateral incentive to deviate from its 
response strategy.  Such a strategy combination thus represents a Nash equilibrium. 

 
 As noted in the introduction, this paper focuses on "symmetric" PD-situations in order to develop 
the essential logic of the analysis as simply as possible.  Symmetric situations mean players' strategy sets, 
basic payoffs, and forecast probabilities are the same for both Adam and Eve. 
 
DEFINITION 6 (Symmetric PD-Situations) 
 
 Let S = {DD, CD} denote the above defined pair of strategies for responding to a player's forecast 

of the other player's actual choice to either cooperate or defect, and let ξ = (T,R,P,S) denote a set of 
basic payoffs potentially received by a player.  A "symmetric" one-shot PD-situation means both 
players have the same basic payoffs x and same strategy set S; as well as the same conditional 
forecast probabilities, denoted (rA, wA) = (rE, wE) = (r, w).  Such a symmetric one-shot simultaneous 
PD-game is denoted, PD(S, ξ, r, w). 

 
 
 The next definition is introduced in order to characterize when particular strategy combinations 
from S  ́S represent self-enforcing Nash equilibria.5 
                                                   
5  Besides {DD, CD} there are two other possible response strategies {CC, DC}; corresponding to always cooperating 
regardless of one's forecast, and defecting if and only if the other player is forecasted to cooperate (the opposite to 
strategy CD).  Neither of these strategies can be Nash equilibria no matter what players' forecast probabilities might be.  
Consequently, they are omitted in order to focus on the essential logic in this paper.  The sequel to this paper (Part II; 
see Section X below) explicitly includes all four response strategies; also allowing players to "endogenously" vary their 
forecast probabilities.   
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DEFINITION 7 (Sufficiently Reliable Forecasts) 
 
 A player's forecast of the other player's actual choice is "sufficiently reliable" if and only if,  
 
    r(R - S) - w(T - P) ≥ P - S; 
 or equivalently,        (1) 
    (r - w)[R - P] ≥ (1 - r)[P - S] + w[T - R]; 
 
 where R - P is the net gain from mutual cooperation over mutual defection; T - R is the net gain 

from unilaterally defecting (when the other player cooperates); and P - S is the net loss from 
unilaterally cooperating (when the other player defects). 

 
 
DEFINITION 8 (Cooperation Line) 
 
 The set of (r, w) probabilities which exactly satisfy inequality (1) is called the cooperation line.  (r, 

w) points on or above this line satisfy inequality (1); points below this line violate inequality (1). 
 
NOTE: 
 
1. Figure 1 shows a "unit probability box" with a cooperation line implied from inequality (1); along 
with the formulas for the top and left intercepts of the line.  Notice that players' basic payoffs x = (T, R, P, 
S) uniquely determine the slope and position of the line [because the intercept formulas depend only on 
these payoffs]. 
 
 FIGURE 1 ABOUT HERE 
 
2. With inequality (1) and its corresponding cooperation line defined, we can now describe the 
possible self-enforcing strategies for any symmetric one-shot simultaneous game, PD(S,ξ,r,w). 
 
 
THEOREM 1 (Self-Enforcing, Nash-Equilibrium Strategies)  
 
The following statements characterize when potential strategy combinations from S × S represent self-
enforcing Nash equilibria for any symmetric one-shot simultaneous game, PD(S, ξ, r, w).  
 
 1. If players' forecasts of each other's actual choice are not sufficiently reliable [meaning (r, w) 

violates inequality (1), so that (r, w) lies below the cooperation line], then (DDA, DDE) is the unique, 
dominant-strategy Nash equilibrium.  Hence, (DDA, DDE) is the only possible self-enforcing Nash 
equilibrium. 

 
 2. If players' forecasts are sufficiently reliable [meaning (r, w) satisfies inequality (1), so that 

(r, w) lies on or above the cooperation line], then (DDA, DDE) and (CDA, CDE) are both Nash 
equilibria.  Hence, both (DDA, DDE) and (CDA, CDE) are self-enforcing strategy combinations. 

 
COMMENTS (Theorem 1 is proven in the Appendix): 
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1. Frank's experiments (1991, 1993) directly support Theorem 1.  In particular, subjects in his 
experiments did not cooperate due to a stable "personality type" or "disposition"; as argued by Gauthier, 
Howard, and others.  Rather, they cooperated when they forecasted the other player would also cooperate.  
Frank's summary of experimental results is instructive (1991; pages 141-142): 
 
 "these findings ... should not be interpreted as evidence of stable personality types called cooperators and 

defectors.  On the contrary, we found that at least some of our subjects did not consistently follow either 
strategy: 13 of them (21 percent) cooperated with one of their partners but not with the other. ... A pattern 
observed in all three versions of the experiment ... was for subjects to behave in the same way they predicted 
their partners would.  In the basic version, for example, 83 percent of the subjects who predicted their partners 
would cooperate also cooperated themselves.  Similarly, 85 percent of the subjects who predicted defection 
also defected themselves." 

 
2. The intercept formulas for the cooperation line in Figure (1) imply it can be shifted arbitrarily close 
to the 450-line corresponding to zero forecasting ability (where r = w) by reducing T - R and P - S 
sufficiently relative to R - P; while still preserving the ordinal payoff ranking, T>R>P>S.  Consequently, 
forecasting better than pure chance (r > w) implies there exist payoffs for which "conditionally cooperating" 
according to (CDA, CDE) is a self-enforcing equilibrium even though the ordinal PD-payoff ranking (T > R 
> P > S) is still satisfied.  That is, (CDA, CDE) can be a self-enforcing equilibrium no matter how close we 
get to the limit of zero forecasting ability.  This implication is more precisely described in the following 
definition, theorem, and corollary.  
 
DEFINITION 9 (Cost-Benefit Ratio for PD Cooperation) 
 
 1. Let x = max[T - R, P - S], and y = R - P. The variable x is a measure of the opportunity cost 

of cooperating; either from forsaking a potential net gain T - R by unilaterally defecting on the other 
player's cooperation; or from risking a potential net loss P - S by unilaterally cooperating when the 
other player defects.  The variable y measures the potential benefit from mutually cooperating 
compared to mutually defecting. 

 
 2. x/y can thus be interpreted as a "cost-benefit ratio" which measures the potential costs from 

cooperating relative to the potential benefits from doing so, compared to otherwise mutually 
defecting.  

 
THEOREM 2 (Forecasting Better Than Pure Chance Implies Inequality (1) Holds As x/y → 0) 
 
 1. Forecasting better than pure chance (r > w) implies there exist PD-payoffs (T > R > P > S) 

such that inequality (1) is satisfied for sufficiently small but still positive x/y > 0;  so that players' 
forecasts are guaranteed to be sufficiently reliable as the cost-benefit ratio  x/y → 0. 

 
DEFINITION 10 (Pure Prisoner's Dilemma Games) 
 
 1. Let PD(S, r, w) denote the set of all symmetric one-shot simultaneous PD-games,  

PD(S,ξ,r,w); such that players' strategy sets and forecast probabilities equal respectively S and (r, 
w).   
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 2. PD(S, r, w) is then called a "pure prisoner's dilemma" if and only if (DDA, DDE) is the only 
self-enforcing equilibrium for all PD[S, ξ = (T,R,P,S), r, w] that satisfy the ordinal payoff ranking,   
T > R > P > S.  

 
COROLLARY 1 (Resolution of the "Paradox of PD-Cooperation") 
 
 PD(S, r, w) is a pure prisoner's dilemma if and only if neither player can forecast the other player's 

actual choice better than pure chance; so that r = w is satisfied.    Otherwise, forecasting better than 
pure chance (r > w) guarantees there exist T > R > P > S such that (CDA, CDE) is a self-enforcing 
Nash equilibrium for the corresponding one-shot simultaneous game PD[S, x = (T,R,P,S), r, w].  

 
COMMENT: Corollary 1 implies the ordinal payoff ranking traditionally associated with PD-situations 
(T > R > P > S) is not sufficient to guarantee defection is a "dominant strategy".  That is, (DDA,DDE) is not 
necessarily the unique dominant equilibrium; so that (DDA, DDE) may not be the only possible self-
enforcing equilibrium between the players.  Rather, (CDA, CDE) may also be a self-enforcing equilibrium so 
long as players can forecast each other's actual choice better than pure chance.  Consequently, any positive 
forecasting ability better than pure chance implies a whole range of one-shot PD-situations are now 
compatible with "rationally cooperating"; thereby resolving the seeming "paradox" of rational behavior 
never allowing cooperation in such situations.    
 
 
III.  STATISTICAL FORMULAS FOR CALCULATING EXAMPLES 
 
 In order to calculate explicit examples of Theorem 1, we must first explain how to calculate "joint 
choice-probabilities" of Adam and Eves' actual choices to either cooperate or defect.   
 
DEFINITION 11 (Joint-Probabilities of Players' Actual Choice Combinations) 
 
 The "joint choice-probabilities" of both players actually cooperating, only one of them actually 

cooperating, or both players actually defecting are denoted respectively; p(CA, CE), p(CA, DE), p(DA, 
CE), p(DA, DE). 

 
 
These joint-probabilities determine the likelihood of Adam and Eve actually receiving each of their four PD-
payoffs (T, R, P, S).  Their expected payoff formulas are denoted respectively, 
 
   UA = Rp(CA, CE) + Sp(CA, DE) + Tp(DA, CE) + Pp(DA, DE) (2a) 
 
   UE = Rp(CA, CE) + Tp(CA, DE) + Sp(DA, CE) + Pp(DA, DE) (2b) 
 
 
DEFINITION 12 (Players' Individual Choice Probabilities)   
 
 The following conditional and unconditional "choice probabilities" are defined for Adam: uA = 

p(CACE), 1 - uA = p(DACE), vA = p(CADE), 1 - vA = p(DADE); and zA = p(CA), 1 - zA = p(DA).  
Analogous definitions apply to Eve's choice probabilities: uE = p(CECA), 1 - uE = p(DECA), vE = 
p(CEDA), 1 - vE = p(DEDA); and zE = p(CE), 1 - zE = p(DE).  Players' conditional choice 
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probabilities (which depend on each other's choices) are thus represented with the letters u and v, 
and their unconditional choice probabilities are represented with the letter z.  Subscripts are deleted 
when (u, v, z) may refer to either Adam or Eve's choice probabilities. 

 
 
COMMENTS: 
 
1. The reason for defining both conditional and unconditional choice probabilities is that positive 
forecasting ability (r > w) implies that players' individual choices may not be statistically independent of 
each other, if either player conditionally responds to its forecast according to CD.  Consequently, the joint-
probabilities used in equations (2a,b) cannot necessarily be calculated by multiplying players' unconditional 
choice probabilities, zA and zE.  For example, p(CA, CE) can be expressed as either of the following two 
multiples: p(CACE)p(CE) = uAzE, or p(CECA)p(CA) = uEzA.  These two multiples do not simplify to the 
single multiple zAzE except for statistically independent choices, such that zA = uA  and zE = uE. 
 
 
2. Each of the joint-probabilities in equations (2a,b) can similarly be expressed as two probability 
multiples [by reversing the order of conditional probabilities used to calculate each joint-probability]: 
 
 
    p(CA, CE) =  uAzE = uEzA     (3a) 
 
    p(DA, CE) = (1 - uA)zE = vE(1 - zA)    (3b) 
 
    p(CA, DE) = vA(1 - zE) = (1 - uE)zA    (3c) 
 
    p(DA, DE) = (1 - vA)(1 - zE) = (1 - vE)(1 - zA)   (3d) 
 
3. Adding equations (3a) and (3b) implies, zE = uEzA + vE(1 - zA).  Similarly adding equations (3c) and 
(3d) (plus rearranging terms) also implies, zA = uAzE + vA(1 - zE).  We thus have the following two equations 
for players' unconditional choice probabilities: 
 
    zA = uAzE + vA(1 - zE)  &    zE = uEzA + vE(1 - zA)   (4a,b) 
 
Equations (4a,b) imply that players' unconditional choice probabilities (zA, zE) are statistically 
interdependent with each other and with both of their conditional choice probabilities (uA, vA, uE, vE).   
 
4. Adam's unconditional chance of cooperating thereby depends on his conditional chance of 
cooperating when Eve cooperates or not, which depends on how her unconditional chance of cooperating 
depends on her conditional chance of cooperating when Adam cooperates or not, which in turn depends on 
Adams's unconditional chance of cooperating, and so on; leading to a statistical "infinite regress".  For 
example, suppose we interpret the statistical relationships of equations (4a,b) as players "thinking" about 
responding to each other.  Such hypothetical responding leads to an infinite regress whereby Adam 
considers his likely response knowing Eve is also considering how to respond to his likely response, and 
knowing Eve knows that he knows she is responding to his likely response, and so on. 
 
5. Despite the statistical interdependence and infinite regress just noted, we can still obtain 
determinant values for both players' unconditional chances of cooperating or not.  The reason is that 
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equations (4a,b) are linear in all their variables; so that we can solve them simultaneously for (zA, zE) as 
functions of the remaining variables (uA, vA, uE, vE).  The resulting formulas give a determinant statistical 
prediction of both players' unconditional likelihood of cooperating or not: 
 

 A
A E A E

A A E E

z  =  u v  +  v (1 -  v )

1 -  (u  -  v )( u  -  v )
Fehler! Schalterargument nicht angegeben. &

 E
E A E A

A A E E

z  =  u v  +  v (1 -  v )

1 -  (u  -  v )( u  -  v )
Fehler! Schalterargument nicht angegeben. (5a,b) 

 
 
Notice that no infinite regress to ever higher "meta-levels" of hypothetical responding arises in equations 
(5a,b).  Instead, there is only "one-round" of mutual statistical interdependence between players' actual 
choices; which leads directly to determinant calculations of the probabilities of these choices.   
 
6. By substituting (5a,b) into (3a,b,c,d), players' joint probabilities can be written as functions of their 
conditional choice probabilities (uA, vA, uE, vE).  This in turn implies that players' expected payoff formulas 
(2a,b) can also be expressed as functions of these same variables, plus their PD-payoffs ξ = (T,R,P,S).  
These two expected payoff functions are written:   
 
  UA = πA[(uA, vA), (uE, vE); ξ]  &   UE = πE[(uA, vA), (uE, vE); ξ]  (6a,b) 
 
 7. Next consider how players' conditional forecast and conditional choice probabilities are related.  
Recall that response strategy DD implies a player always defects or never cooperates regardless of its 
forecast of the other player's choice; which implies it also never cooperates regardless of the other player's 
actual choice. We thus have the following implication, 
 
 DD implies (u, v) = (0, 0); for either player's conditional choice probabilities   (7a) 
 
On the other hand, response strategy CD implies that a player cooperates exactly as often as it forecasts the 
other player will cooperate [because CD means it cooperates if and only if it forecasts the other player will 
also cooperate].  We thus have the implication, 
 
 CD implies (u, v) = (r, w); for either player's conditional choice probabilities  (7b) 
 
8. By substituting (7a) or (7b) into (5a,b) and then substituting into (3a,b,c,d), the players' four joint-
probabilities [p(CA, CE), p(DA, CE), p(CA, DE), p(DA, DE)] become functions of their conditional forecast 
probabilities, (rA, wA) and (rE, wE), plus their pair of response strategies (XYA, XYE); where XYA and XYE 

respectively denote Adam and Eves' response strategies from S = {DD, CD}.  Each player's expected payoff 
formula (2a,b) thereby also becomes a function of both players' conditional forecast probabilities and both 
of their response strategies; plus their basic payoffs x = (T,R,P,S).  We can thus re-express players' 
expected payoff functions (6a,b) as follows, 
 
 
   UA = πA[(rA, wA), (rE, wE); (XYA, XYE); ξ]    (8a) 
 
   UE = πE[(rA, wA), (rE, wE); (XYA, XYE); ξ]    (8b) 
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 Note the above substitutions [(7a) or (7b) into (5a,b)] also imply that formulas (5a,b) for players' 
unconditional choice probabilities (zA, zE) are functions of their forecast probabilities and their response 
strategies;  denoted as follows, 
 
   zA = zA[(rA, wA), (rE, wE); (XYA, XYE)]    &    zE =  zE[(rA, wA), (rE, wE); (XYA, XYE)]    (8c,d) 
 
 
9. Finally, recall that Theorem 1 applies to symmetric games where players' conditional forecast 
probabilities are equal.  Expected payoffs functions (8a,b) can thus be simplified to, 
 
 
 UA = πA[(r, w); (XYA, XYE); ξ]  &  UE = πE[(r, w); (XYA, XYE); ξ]  (9a,b) 
 
 
 
 
IV.  EXAMPLES WITH ZERO AND POSITIVE FORECASTING ABILITY 
 
1.   Example With Zero Forecasting Ability 
 
 With the above equations and statistical relationships formally specified in (2a,b) - (9a,b), we can 
now calculate examples of Theorem 1.  First consider an example with zero forecasting skill, corresponding 
to r = w; such as (r, w) = (.5, .5) for both players, and (T,R,P,S) = (10, 8, 6, 4) for both players.  It is easy to 
see that (.5,.5) lies below the cooperation line implied by (10, 8, 6, 4) [because (.5)(8 - 4) - (.5)(10 - 6) = 0 < 
(6 - 4) = 2]; so that inequality (1) is violated. Thus, (DDA,DDE) is the unique dominant equilibrium 
according to Part 1 of Theorem 1.  Let us show how to verify this result for the one-shot simultaneous game 
PD[S,(10,8,6,4),.5,.5]. 
 
1. First calculate players' joint-probabilities implied from the strategy pair (DDA, DDE).  Substituting 
implication (7a) into equations (5a,b) implies, (zA, zE) = (0, 0);.  Further substituting into equations 
(3a,b,c,d) implies that players' joint-probabilities all equal 0 except for the chance of them both defecting 
which equals 1.  That is, [p(CA, CE), p(DA, CE), p(CA, DE), p(DA, DE)] = (0, 0, 0, 1).  This is of course what 
one would expect, since (DDA, DDE) implies both players always defect (hence never cooperate) regardless 
of their forecasts. 
 
2. Next calculate the joint-probabilities implied from the strategy pair (CDA, CDE).  Substituting (7b) 
into (5a,b) implies, 
 
 

   A 2 Ez  =  
(.5)(.5) +  (.5)(1 -  .5)

1 -  (.5 -  .5)
 =  

.25 +  .25

1
 =  .5 =  z Fehler! 

Schalterargument nicht angegeben.  (10) 
 
 
Thus, (zA, zE) = (.5, .5); which further implies by substituting into (3a,b,c,d), that players' joint-probabilities 
satisfy, [p(CA, CE), p(DA, CE), p(CA, DE), p(DA, DE)] = (.25, .25, .25, .25). 
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3. Next calculate the joint-probabilities implied from the strategy pair (CDA, DDE).  Calculations like 
those in steps 1 and 2 above imply; (zA, zE) = (.5, 0), and [p(CA, CE), p(DA, CE), p(CA, DE), p(DA, DE)] = (0, 
0, .5, .5).  Note that either (7a) or (7b) must be used in substituting into (5a,b) and (3a,b,c,d), depending on 
which player uses strategy DD or CD respectively.  Similar calculations also imply the latter joint-
probabilities equal respectively (0, .5, 0, .5), for the strategy pair (DDA, CDE). 
 
4. With the preceding three steps finished, we can calculate players' expected payoffs according to 
formulas (2a,b).  For example, strategy pair (CDA, CDE) implies, 
 
 
   UA = πA[(.5, .5); (CDA, CDE); (10, 8, 6, 4)] = 10(.25) + 8(.25) + 6(.25) + 4(.25) = 7  (11a) 
 
  
   UE = πE[(.5, .5); (CDA, CDE); (10, 8, 6, 4)] = 10(.25) + 6(.25) + 8(.25) + 4(.25) = 7  (11b) 
 
 
 Table 1 summarizes the above joint-probability and expected payoff calculations implied from 
different combinations of strategies from S = {DD, CD}.  The strategic implications of Table 1 can be 
represented with a traditional "normal" form strategy matrix.  The numbers in the matrix are the expected 
payoffs (UA, UE) shown in Table 1, which result from players choosing different combinations of strategies 
CD or DD.  Note how the strategy matrix implies (DDA, DDE) is the unique dominant strategy equilibrium; 
as also implied by Part 1 of Theorem 1.  This equilibrium implies a degenerate joint-probability distribution 
(0, 0, 0, 1); shown in Table 1. 
 
 TABLE 1 & ITS STRATEGY MATRIX ABOUT HERE 
 
2.   Example With Positive Forecasting Ability 
 
 Consider the same example as before, except that now players have positive forecasting skill, such 
as (r, w) = (.9, .3) for both players. In this situation, (.9, .3) lies above the cooperation line [because (.9)(8 - 
4) - (.3)(10 - 6) = 2.4 > (6 - 4) = 2]; so that inequality (1) is satisfied.  Thus, Part 2 of Theorem 1 implies 
(DDA, DDE) and (CDA, CDE) are both self-enforcing Nash equilibria for the one-shot simultaneous game, 
PD[S, (10, 8, 6, 4), .9, .3].  Let us calculate as in the prior example to verify this result. 
 
 
1. First calculate (zA, zE) for the strategy pair (CDA, CDE) by substituting (7b) into (5a,b), to obtain: 
 
 

 A 2 2 Ez  =  
(.9)(.3) +  (.3)(1 -  .3)

1 -  (.9 -  .3)
 =  

.27 -  .21

1 -  (.6)
 =  

.48

.64
 =  .75 =  z Fehler! 

Schalterargument nicht angegeben.   (12) 
 
 Thus, (zA, zE) = (.75, .75); which further implies by substituting into (3a,b,c,d), that players' joint-
probabilities satisfy, [p(CA, CE), p(DA, CE), p(CA, DE), p(DA, DE)] = (.675, .075, .075, .175).  These 
probabilities are calculated by substituting (7b) into (5a,b), and then substituting into (3a,b,c,d), to obtain: 
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  p(CA, CE) = zArE = zErA = (.75)(.9) = .675     (13a) 
 
  p(DA, CE) = (1 - rA)zE = (1 - .9)(.75)= wE(1 - zA) = (.3)(1 - .75) = .075  (13b) 
 
  p(CA, DE) = zA(1 - rE) = (.75)(1 - .9) = (1 - zE)wA = (1 - .75)(.3) = .075  (13c) 
 
  p(DA, DE) = (1 - zA)(1 - wE) = (1 - zE)(1 - wA) = (1 - .75)(1 - .3) = .175  (13d) 
 
2. In like manner, players' joint-probabilities can be calculated for the other three strategy pairs 
{(CDA,DDE), (DDA, CDE), (DDA, DDE)}; except that both (7a) and (7b) must be used depending on which 
player uses strategy DD or CD respectively.  Table 2 summarizes these joint-probabilities and associated 
expected payoff calculations implied by different strategy combinations of either DD or CD.  As in the first 
example, the strategic implications of Table 2 are represented in a normal form strategy matrix.  The 
numbers in the matrix are the expected payoffs (UA, UE) resulting from players choosing different 
combinations of response strategies CD or DD. 
 
 TABLE 2 & ITS STRATEGY MATRIX ABOUT HERE 
 
 Note how the strategy-matrix implies there are two Nash equilibria, (CDA, CDE) and (DDA, DDE); in 
accordance with Part 2 of Theorem 1.  Consequently, "always defecting" regardless of what players forecast 
about each other [corresponding to (DDA, DDE)] is not the only Nash equilibrium.  Rather, each player 
"conditionally-cooperating" according to CD is an optimal strategic reaction to the other player also 
conditionally cooperating in the same manner; so that (CDA, CDE) becomes a self-enforcing equilibrium. 
3.  Example With A Small PD Cost-Benefit Ratio 
 
 The next example illustrates Theorem 2 and Corollary 1, about (CDA, CDE) being a self-enforcing 
equilibrium even with little positive forecasting skill above pure chance; provided the PD cost-benefit ratio 
x/y is sufficiently small but still positive [see Definition 9 above].  In particular, suppose players' basic 
payoffs are x = (25.2,  25,  5,  4.8); which implies, x = .2, y = 20, and x/y = .01.  Suppose also players can 
forecast each others' actual choice only slightly better than pure chance; such as (r, w) = (.53, .5).  This 
means each player has only 53 to 50 odds of rightly rather than wrongly forecasting the other player's actual 
cooperation.  For example, Adam has 50-50 odds of mistakenly forecasting Eve's cooperation when her 
eventually revealed choice will falsify his prediction [because she actually chose to defect].  On the other 
hand, Adam has only slightly more favorable 53 to 47 odds of correctly forecasting Eve's cooperation when 
her eventually revealed choice will confirm his prediction [because she actually chose to cooperate].  
 
 Given the explicit calculation steps presented for the above examples, we omit further detailed 
calculations, and only summarize the relevant results similar to Tables 1 and 2 above, along with the 
associated strategy matrix.  These results are shown in Table 3 and its associated strategy matrix. 
 
 TABLE 3 & ITS STRATEGY MATRIX ABOUT HERE 
 
 Note how the strategy matrix derived frm Table 3 implies (CDA, CDE) is a self-enforcing Nash 
equilibrium, despite players forecasting only slightly better than pure chance.  This agrees with Theorem 1, 
since inequality (1) is satisfied; (.53)(25 - 4.8) - (.5)(25.2 - 5) = .606 > (5 - 4.8) = .2.  Moreover, the 
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(CDA,CDE) equilibrium is both "Pareto dominant" and "risk dominant"6 over the (DDA, DDE) equilibrium.  
This means (CDA, CDE) satisfies Harsanyi & Selten's' "equilibrium selection" criteria, as well as many other 
such criteria.  (CDA, CDE) may thus be the only really "stable" strategy equilibrium.  Yet these conclusions 
follow even though players are able to forecast only slightly better than using a purely random device like 
flipping a coin to determine whether the other player will actually cooperate or defect. 
 
 In cases where both T - R and P - S are equal, it is easy to determine the threshold where examples 
like preceding one are possible. In particular, if the numerator of the cost-benefit ratio x/y satisfies, x = T - 
R = P - S, then inequality (1) is equivalent to: 
 

   r -  w  
x

x +  y
≥ Fehler! Schalterargument nicht angegeben. where y 

= R - P    (14) 
 
In the preceding example, inequality (14) implies r - w must be at least (.2)/(15.2) ≅ .0099; which is 
satisfied for (r, w) = (.51, .5).  Thus, only 51 to 50 odds of rightly rather than wrongly forecasting the other 
player's cooperation is sufficient for (CDA, CDE) to be a self-enforcing equilibrium in the preceding 
example. 
 
 
 
 
 
V.   INTUITIVE EXPLANATION FOR THE (CDA, CDE) EQUILIBRIUM 
 
 Recall implication (7b) that Eve's conditional choice probabilities and conditional forecast 
probabilities are necessarily equal whenever she conditionally cooperates in response to her forecast of 
Adam's actual choice [CDE implies (uE, vE) = (rE, wE)].  Consequently, if Eve can forecast Adam's actual 
choice better than pure chance [rE > wE], then uE > vE is necessarily also implied by CDE.  That is, 
conditionally cooperating and positive forecasting ability together imply Eve is more likely to actually 
cooperate when Adam actually cooperates than when Adam actually defects.  Moreover, the converse 
proposition  also holds.  That is, uE > vE implies both CDE and rE > wE  must also hold [because responding 
according to DDE implies (uE, vE) = (0, 0) by implication (7a); and rE = wE implies uE = vE for either DDE or 
CDE].  We thus have the following  result.  
 
THEOREM 3 (Characterizing When u > v Is Satisfied) 
 
 u > v if and only if a player responds according to CD and can forecast the other player's actual 

choice better than pure chance (r > w).  The absence of subscripts means this implication applies to 
both Adam or Eve. 

         

                                                   
6  Risk dominance follows because a 50-50 randomization between expected payoffs 15.3 and 4.9 exceeds a 50-50 
randomization between expected payoffs 15.1 and 5; see pages 20-21 of, Game Theory, by Fudenberg & Tirole 
(1991).  See also, A General Theory of Equilibrium in Games, by John Harsanyi & Reinhard Selten, MIT Press, 
(1988). 
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COMMENTS: 
 
1. We can use Theorem 3 to help explain why (CDA, CDE) can be a self-enforcing equilibrium.  To do 
so, consider Figure 2 which shows a standard way of deriving the traditional dominant strategy PD-solution; 
corresponding to both players "always defecting" regardless of what they might forecast about each other's 
actual choice, (DDA, DDE).  The two straight lines show Adam's expected payoff from actually cooperating 
(the lower line) or actually defecting (the upper line) as a function of Eve's unconditional probability of 
actually cooperating on the lower axis, zE = p(CE).  Since the two lines never cross, actually defecting is 
Adam's best response regardless of zE. 
 
 FIGURE 2 ABOUT HERE 
 
2. However, Theorem 3 implies there is not a single unconditional probability of Eve actually 
cooperating; if she can forecast Adam's actual choice better than pure chance and responds to her forecast 
according to CDE.  Rather, positive forecasting ability combined with conditionally cooperating (if and only 
if she forecasts Adam will cooperate) together imply Eve has two conditional choice probabilities, uE > vE.  
When this happens Adam's expected payoff from actually cooperating can be higher than from actually 
defecting, as illustrated by points E and F in Figure 2. 
 
3. The reason for points like E and F is that uE > vE implies Adam is no longer limited to exactly 
vertical comparisons of points on his two expected payoff lines (corresponding to a single unconditional 
probability zE).  Instead, Adam compares non-vertical points displaced by the horizontal difference  
between uE and vE.  Such comparisons are no longer guaranteed to favor actually defecting over actually 
cooperating.  Similar reasoning  applies to Eve when she compares her expected payoffs from cooperating 
versus defecting.  She likewise is not limited to verticle comparisons if Adam can forecast her actual choice 
better than pure chance and responds to his forecasts according to CDA; so that Theorem 3 also implies uA > 
vA. 
 
4. Thus, if Adam and Eve can both forecast each other's actual choices better than pure chance,  then 
conditionally cooperating may have higher expected payoff than always defecting for each of them, given 
each other also conditionally cooperates.  This implication in turn implies that both players conditionally 
cooperating (CDA, CDE) may be a self-enforcing Nash equilibrium; as formally characterized in Part 2 of 
Theorem 1 above.  For example, if T - R equals P - S, then inequality (14) above implies (CDA, CDE) is a 
self-enforcing equilibrium whenever the difference between (u = r) and (v = w) exceeds x/(x+y) for both 
Adam and Eves' conditional choice and forecast probabilities.  Otherwise, inequality (1) and its associated 
cooperation line can be used to determine which combinations of these probabilities imply (CDA, CDE) is a 
self-enforcing equilibrium. 
 
 
VI.  FORECASTING ABILITY & ENDOGENOUS VS EXOGENOUS MESSAGE SOURCES 
 
 Let us further examine the statistical relationships between players' forecasts of each other's 
choices.  Recall that a superscript f denotes a player's forecast of the other players' actual choice; so that CA

f 
and CE

f signify that Adam and Eve forecast each other will cooperate.  
 
1. We can think of such forecasts as  messages about what the other player's actual choice is expected 
to be.  For example, CA

f  might represent a message to Adam; such as "Eve's actual choice is expected to 
be CE".   Such  a message may or may not be confirmed by Eve's eventually revealed choice.  Consequently, 
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it is up to Adam to decide whether to disregard this message (by always defecting regardless of Eve's 
expected choice, DDA), or to respond to it in a contingent manner (by conditionally cooperating based on 
Eve's expected choice, CDA). Similar strategic options (DDE or CDE) are available to Eve in deciding how to 
respond to her  expectations about Adam's actual choice. 
 
2. Recall from equations (8c,d) that players' unconditional choice probabilities (zA, zE) are functions of 
their forecast probabilities and their response strategies, denoted zA[(rA, wA), (rE, wE); (XYA, XYE)] and 
zE[(rA, wA), (rE, wE); (XYA, XYE)].  We can thus calculate players' unconditional probabilities of forecasting 
each others' cooperation (receiving messages  CA

f and CE
f  about each other) as follows: 

 
  p(CA

f) = qA[(rA, wA), (rE, wE); (XYA, XYE)]   =   rAzE + wA(1 - zE)   (15a) 
 
 and 
 
  p(CE

f)  = qE[(rA, wA), (rE, wE); (XYA, XYE)]   =   rEzA + wE(1 - zA)   (15b) 
 

  zA = zA[(rA, wA), (rE, wE); (XYA, XYE)]   = A E A E

A A E E

u v  +  v (1 -  v )

1 -  (u  -  v )( u  -  v )
Fehler! 

Schalterargument nicht angegeben.  (15c) 
 where 

  zE =  zE[(rA, wA), (rE,wE); (XYA, XYE)]   = E A E A

A A E E

u v  +  v (1 -  v )

1 -  (u  -  v )( u  -  v )
Fehler! 

Schalterargument nicht angegeben.  (15d) 
 and 
  [DD implies (u, v) = (0, 0)] & [CD implies (u, v) = (r, w)]; for either player          (15e) 
 
 
3. We can use (15a,b,c,d,e) to calculate players' unconditional probabilities of them receiving 
messages (CfA,Cf

E), depending on their forecast probabilities and response strategies.  For example, 
consider strategy pair (CDA,CDE); which implies by (15e) that (u, v) = (r, w) for both players.  Substituting 
the latter equalities into (15c,d), and then  into (15a,b), we obtain by algebraic manipulation the following 
formulas: 
 

p(C ) =  r w  +  w (1 -  w )

1 -  (r  -  w )( r  -  w )
A
f A E A E

A A E E

Fehler! Schalterargument nicht angegeben.    &

 p(C ) =  r w  -  w (1 -  w )

1 -  (r  -  w )( r  -  w )
E
f E A E A

A A E E

 Fehler! Schalterargument nicht 

angegeben.(16a,b) 
 
 
Formulas (16a,b) are essentially the same as (15c,d), except that (r, w) is substituted for (u, v) for both 
players.  This is because (CDA,CDE) implies both players cooperate exactly as often as they forecast each 
other's cooperation; so that their unconditional chance of cooperating equals their unconditional chance of 
forecasting each other's cooperation. 
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 Next consider strategy pair (DDA, CDE).  Using (15e) and substituting into (15c,d) implies  (zA, 1 - 
zA) = (0,1) and (zE, 1 - zE) = (wE, 1 - wE); which in turn implies by (15a,b) that  p(CA

f) = rAwE + wA(1 - wE) 
and p(CE

f) = wE.  Similar reasoning applied to strategy pair (CDA,DDE) implies analogous results, except 
subscripts A and E are reversed; so that  p(CA

f) = wA and p(CE
f) = rEwA + wE(1 - wA). 

 
  Finally, consider strategy pair  (DDA,DDE).  Again using  (15e) and substituting into (15c,d) 
implies  (zA, 1 - zA) = (0,1) and (zE, 1 - zE) = (0, 1); which in turn implies by (15a,b) that  p(CA

f) = wA and 
p(CE

f) = wE.  Table 4 displays the above calculations for different strategy pairs. 
 
 
 TABLE 4 & TABLE 5 ABOUT HERE 
 
 Notice from Table 4 that players' forecast-message probabilities  [p(CA

f), p(CE
f)] depend on their 

strategy combination.  For example, the probability of Adam forecasting Eve's cooperation (by receiving 
message CfA) drops as either player shifts from conditionally cooperating to always defecting; dropping to 
[rAwE + wA(1 - wE)]  if he unilaterally switches from CDA to DDA, and dropping further to wA if Eve alone 
or both of them switch from CDE to DDE.  Table 5 gives two numerical examples where both players 
forecast probabilities are either (r, w) = (.9,.3), or (r, w) = (.51, .5).  In the first case,  message Cf

A has a 
75% chance of being received for strategy pair (CDA, CDE), dropping to a 48% chance for strategy pair 
(DDA, CDE), and dropping further to a 30% chance for strategy pairs (CDA, DDE) and (DDA, DDE). 
 
5. Consider first the example with (r, w) = (.9, .3), and note the above mentioned drop from a 75% 
chance to a 48% chance of Adam receiving forecast-message CA

f.  Since he knows that Eve's forecast-
message CE

f depends on the likelihood of his actual cooperation (because she is more likely to forecast his 
cooperation when he actually cooperates than when he does not), Adam knows Eve is less likely to 
cooperate if he decides to ignore his forecast-message and always defect instead.  He is then less likely 
himself to forecast her cooperation (less likely to receive forecast-message CA

f), because his likelihood of 
forecasting her cooperation also drops when doing so is less likely to be confirmed by her actual choice.  
Consequently, Adam anticipates that he will be less likely himself to forecast Eve's cooperation if he 
switches from conditionally cooperating to always defecting (from CDA to DDA).  The latter conclusion 
means that players realize the likelihood of their own forecast about each other depends on how they 
decide to respond to those forecasts.  That is, the likelihood of receiving forecast-message CA

f depends on 
whether Adam ignores it or not. 
 
6. Next consider the second example in Table 5 with (r, w) = (.51, .50).  The differences between 
Adam's forecast-message probabilities for different strategy combinations are much smaller than in the 
first example.  Nevertheless, as noted at the end of Section IV, these small differences are  sufficient to 
enable just enough forecasting ability (above pure chance),  so that (CDA, CDE) is still a self-enforcing 
Nash equilibrium when the cost-benefit ratio x/y = .01 [such as the case when (T, R, P, S) = (25.2, 25, 5, 
4.8) in the earlier example].  Thus, what might seem like a negligible deviation from pure-chance 
forecasting can still make a major difference in the strategic opportunities available to players.  For 
example, with the payoffs just mentioned, the two strategy equilibria (CDA, CDE) and (DDA, DDE) 
correspond to a difference of 15.11 versus 5  respectively in both players' expected payoffs.  
 
7. The formulas in Table 4 and the numerical examples in Table 5 imply the likelihood of players 
receiving their forecasting-messages is not independent of how they respond to these messages.  That is, 
p(CA

f) and p(CE
f) are not independent of players' strategy decisions [CD or DD].  Rather, the likelihood of 

a player's forecast-message itself "endogenously" depends on how both players' decide to respond to their 
own messages.  Suppose players instead used an "external" or "exogenous" message source to forecast 
each other's cooperation.  For example, suppose they used a naturally correlated message source such as 
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temperature observations at different locations to forecast each other's cooperation (by each player picking 
a certain range of temperatures for which the other player's cooperation is forecasted if a temperature 
within this range is observed).  Or suppose they set up an artificial message source by having an electronic 
random number generator send to each of them correlated signals; where players decide how they will 
respond to their own signal by either cooperating or defecting. 
 
 Consider a key feature of any such "exogenous" message source that might be used by Adam and 
Eve in a PD-situation.  Let M denote the set of potentially observed signals from such a message source, 
with individual signals observed by Adam and Eve denoted mA and mE. Suppose Adam decides to 
cooperate in response to certain signals, denoted MA ⊂ M; and defect whenever a message mA ∈ (M  - MA) 
is received.  Eve similarly selects a subset of potential messages ME ⊂ M, and cooperates if and only if she 
observes a message mE ∈ ME.  Subsets MA and ME thus correspond to Adam and Eves' forecasting 
messages CfA and Cf

E; that is, [Cf
A ⇔ mA ∈ MA] and [Cf

E ⇔ mE ∈ ME].  An exogenous information source 
implies for any potential message received by Eve, mE ∈ M, the probability of Adam receiving a 
message mA ∈ MA is fixed independently of both Adam or Eves' response strategies, regardless of what 
actions such strategies might lead them to actually choose.  That is, p(mA∈ MAmE) is invariant to 
Adam or Eve's strategy decisions CD or DD, regardless of whether C or D is actually chosen by 
responding according to either strategy.  For example, the correlation between thermometer readings at 
different locations is independent of what someone might do after looking at one of the thermometers, or 
what someone else might do after looking at the other thermometer. 
 
8. The above property (of exogenous message sources) implies Eve can determine the likelihood of 
Adam observing mA ∈ MA conditional on her observing mE ∈ ME.  However, she cannot determine from 
mE ∈ ME the likelihood of Adam actually cooperating or defecting in response to observing mA ∈ MA.  
That is, the probability of Eve observing mE ∈ ME conditional on Adam observing mA ∈ MA is the same 
regardless of whether Adam actually cooperates or not in response to observing mA ∈ MA [as well as 
the same regardless of how she actually responds to observing mE ∈ ME].  This is a general result for 
any information source whose signal-correlation is independent of players' response strategies which lead 
them to make actual choices; as stated in the next definition and theorem. 
 
 
DEFINITION 16 (Forecast Probabilities For Exogenous Message Sources) 
 
 Let a set M represent any message source for which the conditional probability p(mAmE) 

between any pair of Adam and Eves' messages mA,mE ∈ M is independent of both players' 
strategy decisions (CD or DD), no matter what actual choices (C or D) might actually result from 
these decisions.  M is then said to be an exogenous message source; otherwise M is said to be an 
endogenous message source.  Also, let MA and ME be any two subsets of M that Adam and Eve 
might use to forecast each other's cooperation; meaning CA

f ⇔ mA ∈ MA, and CE
f ⇔ mE ∈ ME.  

Their resulting conditional and unconditional forecast probabilities are denoted, 
 
  rA(MA) = p(mA ∈ MACE)   rE(ME) = p(mE ∈ MECA) 
          and      (17a) 
  wA(MA) = p(mA ∈ MADE)   wE(ME) = p(mE ∈ MEDA) 
   zA(MA) = p(mA ∈ MA)          and     zE(ME) = p(mE ∈ ME)  (17b) 
 
 
 
THEOREM 4 (Exogenous Message Sources Imply Zero Forecasting Ability) 
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 Let M be any exogenous message source.  Then the resulting forecast probabilities defined in 

(17a) are equal to players' respective unconditional forecast probabilities defined in (17b); which 
thereby implies both players have zero ability to forecast each other's actual cooperation better 
than pure chance.  That is, the following identities necessarily hold: 

 
   rA(MA) ≡ wA(MA)  ≡ zA(MA)   and   rE(ME) ≡ wE(ME)  ≡ zE(ME); 
 
   for any exogenous message source M,  and for all MA Ì M, ME Ì M 
 
COMMENTS:7 
 
1. Theorem 4 implies any exogenous message source is a worthless guide to forecasting players' 
actual choices in a strategic PD-situation.  This is an intuitive result, since rational players would not 
expect to forecast each other's strategic behavior successfully with messages that are only correlated with 
other messages, but not with their actual responses to any given message either of them might receive.  For 
example, we might paraphrase the Nobel citation quoted at the beginning in the following way,  
 
 "Everybody knows in games like chess or poker, that players would not attempt to forecast expected 

countermoves from the other player by observing exogenous signals such as correlated temperature 
readings.  Instead, they would try to discern signals correlated with each other's actual choices, or 
with those 'states-of-mind' which lead each of them to make actual choices." 

 
2. As suggested by the preceding statement, forecasting strategic behavior (better than pure chance) 
requires players to discern signals (endogenously) correlated with each other's actual "state of mind", or 
with whatever cognitive or behavioral mechanisms actually generate their behavior.  For example, a 
human player's actual state of mind might be correlated with "facial expression," "body language," "tone 
of voice," and so on; or with its "perceived consequences" related to potentially received payoffs such as 
(T, R, P, S).  Nonhuman players like birds and monkeys might be governed by relatively more 
"instinctive" mechanisms that also produce observable symptoms correlated with body language, facial 
expression; or with certain forms of "emotion",  "vocal patterns", and so on.8 
 

                                                   
7  Care must be given to avoid possible misinterpretation of Theorem 4.  Suppose Adam forecasts Eve's cooperation if 
 he observes temperatures above 900  fahrenheit, and follows the response strategy of cooperating himself if and only if 
he observes temperatures satisfying this forecasting criteria.  Given Adam's assumed response strategy, if he chooses to 
cooperate then he must have observed a temperature above 900; which in turn implies Eve is likely to observe similar 
temperatures (because her temperature observations are correlated with his temperature observations).  Thus, the 
likelihood of Eve's observed temperatures depends on Adam's actual choice, for any given response strategy that Adam 
might follow.  On the other hand, the likelihood of Eve's observed temperatures is independent of whether Adam 
actually follows or deviates from any given response strategy.  For example, the likelihood of it being hot (say above 
900) where Eve lives has nothing to do with how Adam might respond when it is also hot where he lives, or whether 
he might change the way he responds when he feels hot.  Yet, forecasting Adam's actual choice requires Eve to forecast 
whether he will actually follow or deviate from any hypothetically given response strategy.  If she cannot do the latter 
by "feeling hot", then such feelings are also worthless in forecasting Adam's actual choice; no matter how correlated 
their observed temperatures might be. 

     8  Similar principles are used by "lie-detectors"; which measure small changes in physiological symptoms (like skin 
perspiration, pulse rate, or muscle tension) that are affected by a person's internal  state of mind; such as an awareness 
of being truthful or not about one's past actions or future intentions.  
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3. The above mentioned messages may depend on some type of "short-range" or "face to face" 
situation in order for such messages to be reliably perceived by the players involved.  Even though they 
will be separated (without further communication) when they must actually choose between cooperating 
versus defecting, messages like those mentioned above may help them infer through "introspection" what 
each other is likely to do.  Such "private" introspection may be mistaken, and would not necessarily have 
any "causal" influence on the other player's actual state of mind.  Nevertheless, when combined with 
appropriate "short-range" prior communication, players' private introspections (while separated) might at 
least be more correlated than using a pure chance mechanism such as rolling a die; or trying to forecast 
each other's state of mind with exogenously correlated signals like temperatures observed at different 
locations.9 
 
4. Another possibility might be endogenously correlated "focal points" originally discussed by 
Schelling (1960), and recently formalized by Sugden (1995).  For example, players with with a common 
historical or cultural background might be able to use "most frequently mentioned" labels (1995, page 
547) associated with cooperating or defecting to help correlate their individual expectations about when 
each other is likely to cooperate or not.  Still another possibility might involve players exchanging 
"linguistic messages" about their attitude toward each other's cooperating or not.  For example, Adam 
might say to Eve that only "scumbags" would cheat on somebody else10.  Such linguistic messages may 
produce "emotional responses" within each player11, which are correlated with those future states of mind 
(while players are separated) leading to their actual choices. 
 
5. Despite the above possible examples (of endogenously correlated signals), we do not wish to 
endorse any particular interpretation or theory about how players might forecast each other's strategic 
behavior (better that pure chance); except to say that something beyond exogenously correlated messages 
must be involved.  Instead, we wish to investigate the theoretical implications of players of players having 

                                                   
9  Subjects in many PD-experiments report that introspection about themselves and the other subject's "point of view" 
played a role in their actual decisions.  In doing so, subjects do not suggest their introspections have a "causal" effect 
on other subjects; just that they hope to get a handle on someone else's likely thinking through their own deliberations. 
 Given the recurrence of such reports, it may be worth paying attention to them theoretically, rather than only 
analyzing the effects of using exogenous message sources (which cannot forecast better than pure chance, by Theorem 
4).      

10   Experiments of such examples are recently discussed by Elinor Ostrom (1994; "Frontiers of Research into the 
Design of Institutions," Seminar in Political Economy, John F. Kennedy School of Government, Harvard University, 
April 1994.  Related research involving comparative field studies of American Indian cultures is also discussed by 
Stephen Cornell & Joseph P. Kalt (1995 a,b,c). 

11  Emotional responses may also be correlated with changes in players’ subjective evaluations of their basic payoffs. 
 However, Theorems 1-3 above imply that potential changes in (T, R, P, S) are not necessary to affect a rational 
player's strategic incentives; because these theorems assume given payoffs unaffected by changes in players' ability to 
forecast each other's actual choices.  Nevertheless, endogenous messages (especially those embodying a linguistic 
structure evolved from previous historical or cultural experience) may affect players' subjective beliefs about their 
individual payoffs, as well as their beliefs about the likelihood of each other actually cooperating; thereby leading to 
additional fruitful analysis about the resulting interdependendence between these two effects.  For example, as 
discussed in Section IX below, conditionally cooperative equilibria are sensitive to changes in the size of T - R, P - S, 
R - P even without reversing the ordinal PD payoff ranking T > R > P > S.  Consequently, a noticeable behavioral 
sensitivity in PD-situations may result from linguistic communication conveying ideas about "morality", 
"trustworthiness", social "roles" or "norms", etc; because such communication may alter the relative size of players' 
subjectively perceived payoff differences.  If so, their equilibrium probability of cooperating can be affected without 
reversing the ordinal payoff ranking T > R > P > S; as shown earlier by Theorem 2 and Corollary 1 above.  
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more than zero forecasting ability, however such ability might be achieved in practical situations with 
human or animal players.  Theorems 1 and 2 above imply there is a "rationally self-enforcing incentive" 
for players to find some means of forecasting strategic behavior better than pure chance, even for one-shot 
PD-situations with the ordinal payoff ranking (T > R > P > S) still satisfied.  Consequently, both humans 
and biological evolution may have found ways of perhaps systematically responding to this incentive, to 
the mutual advantage of the various kinds of players involved. 
 
6. The sequel to this paper12 links the above discussion (comments 1-4) to a large literature in 
experimental psychology directly concerned with the imperfect "detection" of signals, called signal 
detection theory.13  Doing so enables one to construct a more general theory in which players' forecast 
probabilities (rA, wA; rE, wE) are not held fixed (as assumed in this paper).  Instead, these probabilities are 
themselves "endogenously chosen" by the players in order to more effectively make use of (endogenous) 
messages that might help them improve their strategic forecasting ability. 
 
 
VII.  COMPARISON WITH STANDARD THEORY & "CORRELATED EQUILIBRIUM" 
 
Standard decision theory analyzes two general ways that players' actual choices might be statistically 
related to each other: "mixed strategies", and "correlated equilibrium" theory introduced by Robert 
Aumann14; as discussed in the following comments.  
 
1. First consider mixed strategies.  This means each player uses some kind of random process (such 
as flipping a coin or rolling a die), which is activated independently of the random devices used by other 
players.  The signals resulting from using such devices are thus statistically independent of each other, with 
zero correlation between any pair of signals observed by different players independent of how they might 
actually respond to such signals.  Thus, mixed strategies are a special case of players using an exogenous 
message source, whose signals are also totally uncorrelated with each other.  Theorem 4 thereby implies 
any such message source is a worthless guide to forecasting players' actual strategic choices (better than 
pure chance).  Hence, Corollary 1 above implies that players are involved in a  "pure" PD-situation; where 
both of them always defecting on each other (DDA, DDE) is the only self-enforcing strategy combination for 
any ordinal payoff ranking, T > R > P > S.  Moreover, Theorem 2 above implies that such behavior is 
completely invariant to changes in the cost-benefit ratio x/y associated with potential cooperation, so long 
as x/y > 0 [corresponding to T > R > P > S].  The latter theoretical prediction has been routinely 
contradicted in past experiments.  Such experimental questions are further discussed below in Section IX, 
and in a sequel to this paper (Part III).    
 
2. Next consider "correlated equilibrium" analysis.  Here players have the opportunity to observe 
messages that may be highly correlated with each other, instead of being limited to uncorrelated signals as 
assumed for mixed strategies.  However, any potential correlation between players' signals is still assumed 
                                                   
12  Part II, briefly outlined in Section X below. 

13  See David Green & John Swets, Signal Detection Theory and Psychophysics, Robert Kreiger, New York, 1974; 
James Egan, Signal Detection Theory and ROC Analysis, Academic Press, New York, 1975; and John Swets, 
"Measuring the Accuracy of Diagnostic Systems," Science, 240, June 3, 1988, pp. 1285-1293. 

14  See Robert Aumann, "Subjectivity and Correlation in Randomized Strategies,"Journal of Mathematical 
Economics, 1974, 1, pp. 67-96; and "Correlated Equilibrium as an Expression of Bayesian Rationality," 
Econometrica, January 1987, 55(1), pp. 1-18.  See also pages 53-60 of Game Theory, by Fudenberg & Tirole, MIT 
Press, 1991. 



 

 

page 23 
 

to be invariant to their response strategies regardless of what choices may actually result from their 
strategies.  Consequently, players have access only to exogenous message sources; which (by Theorem 4) 
still have zero ability to forecast their actual strategic choices.  Thus, despite the correlation between 
different signals, such messages will not help players improve their forecasting ability above pure chance.   
Rationally self-interested players would therefore still always defect regardless of the relative costs versus 
benefits of potentially cooperating [so long as the cost-benefit ratio x/y > 0, by Theorem 2 and Corollary 
1]. 
 
3. It is easy to verify that standard analysis, despite allowing correlated messages, nevertheless still 
assumes only exogenous message sources.  The reader is  invited to look at standard textbooks in game 
theory, and find those sections discussing correlated messages for one-shot simultaneous games.  For 
example, see pages 316-319 of Binmore's (1992) textbook, Fun and Games.  Often a text's formal 
definitions are illustrated by showing a matrix that contains joint probabilities of different combinations of 
players' forecast-message sets (MA and ME), denoted p(MA, ME), p(M - MA, ME), p(MA, M - ME), p(M - 
MA, M - ME). For example, see Figure 7.17(b) on page 316 of Binmore's text.   The message probabilities 
in this figure are assumed fixed, and used to derive probabilities of one player's messages conditional on 
the other player's potentially observed messages [by dividing individual message probabilities within each 
row or column of the matrix by the sum of the probabilities over that row or column respectively]. 
 
 Deriving conditional message probabilities in the above manner guarantees they must all be 
independent of players' actual choices and their response strategies which produce such choices.  
Consequently, the implications discussed in Comments 1 and 2 above still hold, irrespective of the message 
correlation shown (but held exogenously fixed) in the message probability matrix.  The same conclusion 
also applies whenever the formal equations used to define players' expected payoff calculations assume 
fixed message probabilities as players condition such calculations on their hypothetically making different 
choices.   
 
4. For example, Aumann's formal definition and theorem characterizing a correlated-equilibrium 
(1987, pages 3-7)15 assume fixed message probabilities irrespective of whether players actually follow or 
deviate from any given decision rule16 for responding to their messages.  He also discusses an abstract 
interpretation involving "Bayesian rationality" and "states of the world" defined so as to include each 
player's actual choice.  No matter what interpretation might be suggested, Theorem 4 above about zero 
forecasting ability still applies so long as fixed message probabilities are assumed in the formal equations 
representing players' expected payoff calculations (corresponding to them hypothetically changing their 
response strategies).  Consequently, an exogenous message source with zero forecasting ability is still 

                                                   
15  In particular, exogenously fixed message probabilities are assumed in Aumann's definition 2.1 on page 4 (defining 
a correlated equilibrium), and in proposition 2.3 on page 6 (characterizing which choice probability distributions are 
correlated equilibria); as well as in his "main theorem" on page 7 (linking Bayesian rationality to correlated 
equilibrium).  Exogenously fixed message probabilities are also assumed in the figures Aumann uses to represent 
numerical examples of correlated equilibria; such as figures 2-5 on pages 4-5, and figures 7-8 on pages 14-16.  

16  Notice as shown in Table 4 that players' message probabilities are not assumed given, and then used to determine 
their best choices.  Instead, players' message probabilities are themselves derived as a partial consequence of their self-
enforcing equilibria; which in turn endogenously depend on players' forecasting abilities (represented by their 
conditional forecast probabilities).  In short, players' message probabilities are derived partly from their strategic 
decisions, instead of being assumed independently given and used to derive such decisions.   
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implicitly assumed in Aumann's Bayesian rationality interpretation of correlated equilibrium.  The latter 
(Bayesian rationality) interpretation is further discussed in the Appendix.17     
 
 
 
VIII.  FURTHER INTERPRETATION AND RELATED THEORY 
 
1.  Statistically Independent Choice Is A Degenerate Subset of Possible Choice Distributions 
 
 Recall what "everyone knows" according to the Nobel citation quoted at the beginning; namely, 
"players have to think ahead and devise a strategy based on the expected countermoves from the other 
player."  As also discussed above, this strategic perspective implies that players have a self-enforcing 
incentive to forecast each other's "expected countermoves" better than pure chance; that is, in forming such 
expectations when they are more likely to be confirmed rather than falsified by each other's eventually 
revealed choices.  To the extent they achieve this objective , Theorem 1 implies (CDA, CDE) may be a self-
enforcing equilibrium for certain one-shot PD-situations; which in turn implies by Theorem 3 that their 
actual choices may thereby not be statistically independent. 
 
 Consequently, the strategic interdependence embodied in one-shot PD-situations may motivate 
rationally self-interested players to forecast each others' behavior well enough to imply their actual choices 
are not statistically independent.  Actually succeeding in doing so may not be easy, but there is a "natural" 
incentive in trying to do so, because the (CDA, CDE) equilibrium which thereby might be achieved Pareto 
dominates the (DDA, DDE) equilibrium. 
 
 More generally, we suggest there is likewise a natural intuition for rationally self-interested players 
believing that strategically interdependent choices may also lead to statistically interdependent choices; 
not just for one-shot PD-situations, but potentially for any situation where strategically interdependent 
consequences exist.  For example, as modeled in Theorems 1-3 above, strategically interdependent 
consequences may imply (self-enforcing) "forecasting-incentives" motivating rational players to make 
statistically interdependent choices.  Given such possibilities, it may not be fruitful to impose an a priori 
restriction against theoretically investigating statistically interdependent behavior.  Yet, many presentations 
of noncooperative game theory allow only statistically independent mixed-strategies into the formal 
analysis.18 
 
 To get a further perspective of what is involved in such a methodological restriction, consider the 
joint probability distribution of players' actual choice combinations, denoted [p(CA, CE), p(DA, CE), p(CA, 
DE), p(DA, DE)].  Let S denote the set of all joint-probability distributions [all those distributions whose 
individual probabilities are non-negative and sum to one].  Note that these joint-probabilities are required 
to determine the likelihood of any specific payoff (T, R, P, S) actually being received by a player.  This is 
because both players' actual choices are necessary to determine the specific payoff received by either 
player.  Consequently, only the joint probability distribution of players' actual choices ultimately matters to 

                                                   
17   Part  2 of the Appendix shows that there is an inconsistency in Aumann's Bayesian interpretation; which when 
resolved implies that Bayesian rationality is consistent with players using either exogenous or endogenous information 
sources. 

18  For example, Binmore's 1992 game theory textbook (Fun and Games) states on pages 232-233: "A standard 
assumption for a noncooperative analysis ... is that the random devices used by the players in implementing their mixed 
strategies are independent.  This should always be assumed to be the case unless something is said to the contrary."       
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Adam or Eve when they evaluate the desirability of alternative strategies like CD versus DD (conditionally 
cooperating versus always defecting). 
 
 Now consider the following relationship discussed by Fishburn (1982, pages 87-88): any joint-
probability distribution generated by statistically independent choices must satisfy,19  
 
    p(CA, CE)p(DA, DE) = p(CA, DE)p(DA, CE)   (18) 
 
 Only a subset of "measure zero" within S can satisfy equation (18); which means "almost all" joint-
probability distributions cannot be generated from statistically independent behavior.  Consequently, 
statistically  independent behavior represents a "degenerate subset" within S.  This implication suggests the 
narrow range of potential cases one is limited to by not investigating situations where strategic 
interdependence also gives rise to statistically interdependent behavior. 
 
 
2.   Statistically Interdependent Choice and the Axioms of Expected Utility 
 
  The above discussion also relates to using expected utility maximization to represent the meaning 
of rational behavior under uncertainty.  In particular, the original expected utility axioms were applied to 
nonstrategic situations; where events beyond a decision maker's control affected its achieved utility.  For 
example, uncertain weather conditions may affect the future yield from planting a particular crop.  A 
plausible assumption for such situations is that nonstrategic events are statistically independent of actions 
taken by the decision maker.  Such independence has been a key ingredient in formal axiomatizations of 
expected utility since the early proofs of Savage and von Neuman-Morgenstern. 
 
 However, when applied to game theory situations, other "events" may result from the "expected 
countermoves" of other players.  Such intrinsically strategic events may no longer be statistically 
independent of any particular player's decisions, as suggested above.  Nevertheless, a major reason for 
assuming statistically independent behavior is to preserve the formal justification for maximizing expected 
utility in explicit game theory settings.  How then is one to allow for the possibility of statistically 
interdependent choices without giving up an axiomatic justification of expected utility theory in the 
process? 
 
 The following answer is suggested; namely, to assume players each have a subjective preference 
ordering applied directly to the set of potential joint-probability distributions S.  The reason for doing so 
is that, as noted in the preceding section, only joint probabilities of players' actual choice combinations 
ultimately determine the likelihood of Adam or Eve receiving any specific payoff, and hence the 
desirability to them of any strategically generated uncertainty about which specific payoffs they will 
ultimately receive. 
 
 Expected utility axioms can then be applied directly to players' subjective preferences over S; 
thereby motivating players to maximize the expected utility of those joint probability distributions which 
are feasible under different strategic situations (rather than limiting theoretical investigation to a degenerate 

                                                   
19  Statistically independent choices imply each joint-probability equals the multiple of the corresponding 
unconditional choice probabilities: p(CA, CE) = zAzE,  p(CA, DE) = zA(1 - zE), p(DA, CE) = (1 - zA)zE, p(DA, DE) = (1 - 
zA)(1 - zE).  These equalities immediately imply equality (18).  
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subset within S).  In this way we can formally justify the use of expected utility theory20 without 
presupposing the nature of statistical interdependence resulting from different strategic situations.  Instead, 
such situations can be left open to determine whatever behavioral and statistical relationships are consistent 
with the incentives, decision-making abilities, and forecasting abilities of the players involved. 
 
 
3.  Revealed Preference Theory & Cooperation versus Defection In PD-Situations 
 
 The traditional intuition about defecting always being the best strategy in PD-situations (discussed 
in the introduction) has been so strong that some theorists have argued this intuition is a logical tautology 
implied from the very meaning of players' "revealed preferences".  For example, Binmore has recently 
endorsed this conclusion (1994, pages 104 - 107).  Given that conditionally cooperating can be a self-
enforcing Nash equilibrium by Theorem 1 above, we briefly explain why always defecting is not a 
tautological result of revealed preference theory.  Consider in particular Binmore's argument, which 
combines revealed preference theory with a version of Savage's "sure-thing" principle. 
 
1. Following Binmore (page 105), we write two revealed preference statements about how Adam will 
actually choose between two options s and t depending on his knowledge about the truth or falsity of some 
proposition P. 
 
 R1 Adam chooses s over t when he knows P remains true no matter what he chooses. 
 
 R2 Adam chooses s over t when he knows P remains false no matter what he chooses.  
 
 Thus, Adam will reveal (by actually choosing) a preference for s over t when he knows the validity 
of P (either true or false) is independent of what he chooses.  But what if the validity of P itself depends on 
what Adam chooses; not necessarily totally, but perhaps partially in that the likelihood of P being true 
depends on Adam's revealed choice?  For example, suppose P is more likely to be true if Adam chooses s 
rather than t.  Consider then a third revealed preference statement. 
 
R3 Adam chooses s over t when he knows the likelihood of P being true depends of what he chooses. 
 
 Notice that statement R3 allows the validity of P to depend on what Adam chooses, but statements 
R1 and R2 do not.  Consequently, R3 cannot be a tautological implication of R1 and R2. 
 
2. Now apply the last conclusion to PD-situations by letting options s and t refer to Adam's choosing 
to defect and cooperate respectively, and letting P denote the proposition, "Eve chooses to cooperate."  The 
reason for doing so is that if Eve conditionally cooperates with positive forecasting ability, then she will 
cooperate with greater probability when Adam actually chooses cooperation over defection (because CDE 
and rE > wE imply uE > vE, by Theorem 3 above).  Thus, with positive forecasting ability, the validity of P 
(meaning the likelihood of Eve choosing to cooperate) may in fact depend on what Adam actually chooses. 
 Consequently, statement R3 applied to Adam choosing in a PD-situation cannot be a tautological result of 
statements R1 and R2 (which assume Eve's choice to either cooperate or not is the same no matter what 
Adam actually chooses). 
 

                                                   
20   The main theorems of this paper also hold if "non-expected utility theories" are used instead of traditional expected 
utility; such as Fishburn's SSB theory; see Machina (1985). 
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3. The above comments suggest a way of rewriting Binmore's statement of the sure-thing principle 
(page 107) so as to be consistent with revealed preference theory, as shown next.  The phrases in the 
square brackets are added to his statement in order to make explicit what is required for it to be consistent 
with revealed preference statements R1 and R2. 
 
 "If Adam will choose to defect both when he knows Eve will choose to cooperate [no matter what 

he chooses], and when he knows Eve will not choose to cooperate [no matter what he chooses]; 
then the sure-thing principle says he must also choose to defect no matter what he might believe 
about the likelihood of her prospective choice [provided he also believes her likelihood, whatever it 
might be, is the same no matter what he chooses].    

 
 The above statement makes clear that the sure-thing principle does not imply Adam will always 
defect in PD-situations, except at the limit of zero forecasting ability.  This is because (rE = wE) is the only 
case where Eve's likelihood of cooperating is independent of Adam's choice even if she conditionally 
responds to her forecast (that is, even if she responds according to CDE).  Consequently, it is not a 
tautology (either from revealed preference theory or from the sure-thing principle) that rational players will 
necessarily choose defection in PD-situations, except at the limit where they cannot forecast each other's 
actions better than pure chance. 
 
 
IX.  PREDICTING BEHAVIORAL SENSITIVITY TO PD-PAYOFFS: PAST EXPERIMENTS 
 
1. Recall the intercept formulas for the cooperation line in Figure 2, which are shown below for 
convenience.  These intercept values for r and w are denoted with a superscript *, and are written without 
subscripts A or E because they are the same for both players if their basic payoffs (T, R, P, S) are the same. 
 

 *r  =  
R -  P

(R -  P) +  (T -  R)
Fehler! Schalterargument nicht angegeben.  &

 *w  =  
P -  S

(P -  S) +  (T -  R)
Fehler! Schalterargument nicht angegeben.  (19) 

 
 
 As already discussed, these formulas imply the cooperation line will shift arbitrarily close to the 
450-line (in the unit probability box) corresponding to zero forecasting ability, as the two payoff differences 
T - R and P - S get sufficiently small relative to R - P.  This possibility also corresponds to the cost-benefit 
ratio for cooperating in PD-situations x/y dropping sufficiently close to zero. Consequently, conditionally 
cooperative equilibria (CDA, CDE) necessarily come into play as x/y drops sufficiently, so long as players 
can forecast each other's actual choices better than pure chance. 
 
2. The last conclusion implies that for any given forecasting skill better than pure chance (represented 
by rA > wA and rE > wE), cooperative choices resulting from (CDA, CDE) are more [less] likely to happen as 
the cost-benefit ratio x/y gets smaller [larger].  Thus, Theorem 1 implies that conditionally cooperative 
behavior will be sensitive to changes in players' basic payoffs even when the ordinal ranking T > R > P > S 
is preserved. Moreover, such "behavioral sensitivity" is directly related to the two payoff differences T - R 
and P - S compared to R - P.  This general pattern (which is now a formally derived consequence of 
rationally self-interested  behavior) agrees with the results of many earlier experiments.21  
                                                   
21  See for example, Liebrand et. al. (1992), Rapoport (1966), Coombs (1973), Strobe & Frey (1982), Simmons, 
Dawes, & Orbell (1984)  
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 In fact, this pattern has been so widely observed that researchers (in economics, political science, 
sociology, psychology, etc.) have coined terms to suggest why behavioral sensitivity to these payoff 
differences is "intuitively likely" to happen.  For example, the term "greed" is associated with the potential 
"net profit" T - R from taking advantage of someone's cooperation; and the term "fear" is associated with 
the "aversion" to potentially loosing P - S compared to a guaranteed minimum payoff P from defecting.  A 
recent survey of the literature concerning behavior in PD-situations by Liebrand et, al (1992, pages 15-17) 
suggests the systematic nature of this observed pattern. 
 
 "There is strong support for the generality of influence of different payoff structures. ... payoff structure has 

been shown to be strong not only in experimental work, but also in field studies. ...two motives, namely fear 
and greed, may lead one to choose noncooperatively ... both motives are important.  People are more likely to 
cooperate to the extent that they loose less by cooperation when others do not cooperate.  Similarly, people are 
more likely to cooperate to the extent that they gain less by taking advantage of, or free riding on, the 
cooperation of others." 

 
3. Despite the above "generally observed" patterns, traditional analysis of PD-situations has tended to 
either ignore them (by arguing the experiments do not adequately simulate "real" PD-situations) or 
categorize these patterns as illustrating "irrational" behavior (because zero behavioral sensitivity is the only 
rational solution permitted by traditional analysis).  Theorems 1,2 and Corollary 1 above enable a different 
interpretation which predicts behavioral sensitivity to "fear" and "greed" motives as a consequence of 
rational self-interest. 
 
4. Another hypothesis relates to these theorems.  Namely,  preplay communication may help players 
improve their ability to forecast each other's behavior after they are separated, but before choosing 
themselves to cooperate or defect while separated (thereby raising r relative to w for each player).22  If so, 
then conditionally cooperative equilibria are more likely to arise for any given payoff structure [because 
players' (r, w) probabilities are more likely to be on or above any given cooperation line implied by their 
payoff structure].  We would then see a positive link whereby more "preplay" communication stimulates 
more "within play" cooperation (even without any binding commitments being enforceable once players are 
separated).  This general pattern also agrees with many experiments.23  Much of this data can thus also be 
explained as the predicted consequence of rational self-interest.  
 
5. A number of other predictions can be calculated and implemented experimentally with the 
intercept formulas (19).  This is because changes in the payoff structure may not only shift the cooperation 
line in or out, but also simultaneously rotate it in either direction.  We can thereby use equations (19) to 
calculate predictions that have not been tested before.  These are briefly discussed in the next section.  For 
now the main point is that we are no longer limited to theorizing in a manner that cannot explain any 
behavioral sensitivity in one-shot PD-situations, so long as the ordinal payoff ranking (T > R > P> S) is 
preserved. 
 
 
X.   FURTHER THEORY AND EXPERIMENTS: PARTS II & III 

                                                   
22  This may happen because preplay communication may involve messages endogenously correlated with players' 
states of mind when they actually choose (rather than exogenous messages), as discussed earlier in Section IV.  A more 
"intimate", "face to face" preplay setting may help players identify or "detect" such endogenous messages.    

23  See for example, Orbell, van de Kragt, & Dawes (1988), Nisbet & Wilson (1977), Radnoff & Weidner (1966), 
Dawes, McTavish, & Shakley (1977). 
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 Preceding analysis focused on symmetric PD-games in order to show why conditional cooperation 
can be a self-enforcing Nash equilibrium in a relatively simple but rigorous manner [despite the "dominant 
strategy" intuition discussed in the introduction, or the "revealed preference" intuition discussed in Section 
VIII(3)].  Subsequent papers develop the analysis without players' payoffs or forecast probabilities being 
the same; showing that similar results hold in the general case.  These papers are briefly outlined next. 
 
Part II.  Nash Equilibria With Endogenous, Jointly-Feasible Forecast Probabilities  
1. This paper allows players' forecast probabilities to differ, and be "endogenously" varied by each 
player.  The analysis draws on a large literature in behavioral psychology about imperfect detection of 
messages, called "signal detection theory".24  Doing so ensures that assumptions about the statistical nature 
of players' forecasting skills are not arbitrarily specified, but instead conform to empirically verified 
regularities extensively studied by experimental psychologists. 
 
2. Because of the strategic interdependencies involved in simultanous games, one player's forecast 
probabilities cannot be arbitrarily selected independent of another player's forecast probabilities.  
Nevertheless, there is a well defined structure of "jointly-feasible" forecast probabilities in one-shot PD-
situations which can be precisely characterized.  Doing so shows that players can independently select their 
forecasting strategies provided they are jointly feasible, and that similar results to Theorem 1 necessarily 
hold without any further restrictions.25 
 
3. Other theoretical topics are also discussed.  These include an analysis of certain questions such as 
"Newcomb's paradox"; showing that better forecasting ability brings with it an unavoidable instability in 
the probability of cooperating near the limit of perfect forecasting.  As a result, stable cooperation may not 
result from ever more accurately correlated choices in a PD-situation.  Similar analysis also applies to the 
"twin paradox". 
 
4. One can also incorporate the opportunity cost of players choosing to improve their strategic 
forecasting abilities; showing for example that it is always worth forecasting well enough to sustain 
conditionally cooperative equilibria as the cost-benefit ratio x/y gets small enough.  On the other hand, 
weak assumptions imply that it is never worth forecasting well enough to sustain conditionally cooperative 
equilibria as the cost-benefit ratio x/y gets sufficiently large.       
 
Part III.  Empirical Implications and New Experiments 
 
 As suggested in the above title, this paper focuses on empirical and experimental issues.  If players' 
individual payoffs are not equal, then two cooperation lines (one for each player) result from the analysis.  
These can be independently varied relative to each other, resulting in new experimental cases.  Other 
experiments involve "boundary cases" near the limit where the ordinal payoff ranking (T > R > P > S) is 
reversed.  Such experiments help one determine the relative predictive power of alternative theories of 
cooperative behavior in PD-situations.  None of these predictions would be theoretically possible (that is, 

                                                   
24  See the references in footnote 12 above; as well as Davies (1969), Egan (1967), McNicol (1972), Schulman & 
Greenberg (1970), Swets & Pickett (1982), and Tanner, Rauk, & Atkinson (1970). 

25  The basic result is that conditionally cooperative strategy combinations (CDA, CDE) can be self-enforcing Nash 
equilibria if and only if both players' jointly feasible forecast probabilities can lie on or above the cooperation line; so 
that inequality (1) is satisfied.  
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for rationally self-interested players) without investigating the strategic implications of positive forecasting 
ability, and endogenous versus exogenous message sources.  
 
 
XI.   CONCLUSION: THE HISTORICAL IMPORTANCE OF ONE-SHOT COOPERATION 
 
 
 Traditional analysis shows that cooperation can be much easier to achieve once a one-shot PD-
situation is repeated; especially when such repetition might continue indefinitely.  Perhaps most currently  
observed cooperation in the field is due at least in part to the incentive effects of long term, "recurrent" 
relationships.  Even if this is actually the case, one-shot relationships may still have an essential role to play 
in the development of cooperative individual behavior and social institutions.  Consider what might happen 
with no possibility of successful one-shot cooperation, and ask the following question.   Namely, would 
repeated relationships get started and continue robustly without the possibility of successful one-shot 
relationships to initiate them, or to sustain them if something happens that temporarily interrupts them?  
Even if we could imagine players somehow "skipping" directly to stable long-run relationships without any 
successful one-shot relationships, what would happen if the players involved lacked the cognitive ability to 
conceive of consequences beyond the near future? 
 
 Think of these questions especially in terms of an historical progression involving numerous self-
interested individuals who interact over a long succession of relatively short-run situations.  Recall the 
earlier discussion about endogenous (rather than exogenous) messages being necessary to forecast another 
player's actual choices better than pure chance.  Recall also that such messages may be discernable through 
various forms of "close range" or "face to face" communication involving "body language", "facial 
expression", "emotion", "vocal patterns", and so on.  Such close range communication has been 
systematically evidenced in a number of nonhuman species, especially primates.26  Most biologists also 
believe that animal communication is selfishly motivated.27  Moreover, such communication also routinely 
arises either in actual short run situations, or in situations where the individuals involved lack sufficient 
cognitive ability to "self-recognize" more than the near future. 
 
   Consequently, a selfishly rational potential incentive toward cooperation in these situations may 
become historically significant when augmented with enough short-range communication ability to 
overcome the opposite incentive (by improving individuals' skill at detecting signals "endogenously 
correlated" with their actual choices; so that conditionally cooperative behavior becomes a self-enforcing 
Nash equilibrium).  Theorems 1 and 4 may thus explain one of "nature's secrets"; namely, a way of 
motivating rationally self-interested cooperation even in the most difficult one-shot type PD-situations that 
typically arise before extended social cooperation evolves.  Without this potential incentive (characterized 
by Theorem 1), and the communication skills needed to utilize endogenous messages (required by Theorem 
4 to achieve positive forecasting ability), the kind of longer-run exchange and organization relationships28 
eventually typical of human societies may never have evolved in the first place.  

                                                   
26  See for example, Bonner (1980), Smith (1977), and Wilson (1975). 

27  See for example, The Selfish Gene, Richard Dawkins (1976). 

28  Including both market trading and contract relationships (hierarchy, hybrid, network) within nonmarket 
organizations studied in "transaction cost" analysis (following Coase, Alchain, Williamson). 
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 APPENDIX 
 
 
 All of the theorems besides Theorem 1 either are proven in the main text, or follow easily from the definitions 
which apply to them.  Thus, only Theorem 1 is proven next. 
 
Part 1.   Proof of Theorem 1 
 
  Recall we are dealing with symmetric PD-situations where both player's conditional forecast probabilities are 
equal [ so that (rA, wA) = (rE, wE) = (r, w)]; and start with determining the four expected payoff levels for Adam 
depending on whether and Eve conditionally cooperates and/or always defects.   If they both always defect, then both 
are guaranteed to get payoff P; so we thus have, 
 
   UA = pA[DDA, DDE, (r, w), x = (T, R, P, S)]   =   P   (A1a) 
 
 Next assume Adam conditionally cooperates while Eve always defects [strategy pair (CDA, DDE)].  Using  
implication (7b) and (7a) for Adam and Eve respectively implies, (uA,vA) = (r, w) and (uE, vE) = (0, 0).  Next substitute 
these into equations (5a,b) to obtain players' unconditional probabilities of cooperating, (zA, zE) = (w,0); and then 
substitute these values along with (uA,vA) = (r, w) and (uE, vE) = (0, 0) into the left-hand probability multiples of 
equations (3a,b,c,d) to obtain players' distribution of choice probabilties, [p(CA, CE), p(DA, CE), p(CA, DE), p(DA, DE)] 
= [0, 0, w, 1 - w].  Then substitute these values into equation (2a) to obtain Adam's expected payoff formula, 
 
  UA = pA[CDA, DDE, (r, w), x = (T, R, P, S)]   =   wS + (1 - w)P  (A1b) 
 
 A similar sequence of substitutions [using (7a) or (7b) depending on which player always defects versus 
conditionally cooperates respectively] obtains the following formulas, for Adam's expected payoffs for strategy pairs 
(DDA, CDE) and (CDA, CDE): 
 
    pA[DDA, CDE, (r, w), x = (T, R, P, S)] =   wT + (1 - w)P    (A1c) 
 
and 
 
    pA[CDA, CDE, (r, w), x = (T, R, P, S)] =  zrR + z(1 - r)S + (1 - z)wT + (1 - z)(1 - w)P 
 
           =  z[rR + (1 - r)S] +  (1 - z)[wT + (1 - w)P] (A1d) 
 

 where  
z =  

rw +  w(1 -  w)

1 -  (r -  w)(r -  w)
 =  

w

1 -  (r -  w)
 =  

w

1 -  r +  w 0  (A1e) 
 
 
Note that similar reasoning implies the same formulas for Eve's expected payoffs, by reversing the A and E subscripts 
in (A1a,b,c,d), and using the right-hand probability multiples of equations (3a,b,c,d). 
 
 With these formulas, the proof of Theorem 1 follows directly from a simple property of convex combinations 
applied to two amounts X and Y; namely, 
 
  X ³ Y   if and only if  p(X)X + [1 - p(X)]Y ³ Y; for any p(X) ³ 0 (A2a) 
 
Note that (A2a) is also equivalent to, 
 
  Y > X   if and only if   Y >  p(X)X + [1 - p(X)]Y; for any p(X) > 0 (A2b)  
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 From this point on, we assume w > 0, in order prove the traditional result that DD strictly dominates CD (for 
both players), if inequality (1) is violated.  Otherwise, DD only weakly dominates CD if w = 0.  The latter case, w = 0, 
does not affect Part 2 of Theorem 1, about CD also being a Nash equilibrium when inequality (1) is statisfied [because 
(1) requires only the weak inequality ³ instead of a strict inequality  >].  The traditional dominant strategy result is 
equivalent to the above formulas satisfying, (A1a) > (A1b) and (A1c) > (A1d) for Adam's expected payoffs, and 
similarly for Eve's expected payoffs [by switching the A and E subscripts in (A1a,b,c,d)].  Thus, the traditional 
dominant strategy result holds if the following inequalities hold [also applying to Eve's expected payoffs by switching 
subscripts]:    
 
pA[DDA, DDE, (r, w), x] > pA[CDA, DDE, (r, w), x] Û P > wS + (1 - w)P,   for w > 0 (A3a) 
 
pA[DDA, CDE, (r, w), x] > pA[CDA, CDE, (r, w), x]   Û    
 
    wT + (1 - w)P  >  z[rR + (1 - r)S] +  (1 - z)[wT + (1 - w)P] (A3b) 
 

   for  
z =  

w

1 -  r +  w
 >  0

0    (A3c) 
 
 
 Notice that inequality (A3a) follows from implication (A2b) by letting X = S, Y = P, and p(X) = w.  Morever, 
inequality (A3b) also corresponds to an example of implication (A2b); where X = [rR + (1 - r)S], Y = [wT + (1 - 
w)P], and p(X) = z.  Thus, inequality (A3b) is equivalent to determining whether the following inequality holds: 
 
    [wT + (1 - w)P] >  [rR + (1 - r)S]    (A4) 
 
 Algebraic manipulation of inequality (A4) directly yields the following inequality, which is the opposite to the 
first version of inequality (1) in Definition 7 of the main test.  That is, inequality (A4) is equivalent to P - S > r(R - S) - 
w(T - P); so that inequality (A4) is equivalent to (r, w) violating inequality (1).  Thus, violating inequality (1) implies 
[along with inequality (A3a), which was also just shown to hold] that DDA is a dominant strategy for Adam.  Similar 
reasoning also implies [by reversing subscripts A and E] that DDE is likewise a dominant strategy for Eve.  Hence, (r, 
w) violating inequality (1) implies strategy pair (DDA, DDE) is the unique dominant strategy Nash equilibrium; which 
proves Part 1 of Theorem 1. 
 
 Next consider what happens when inequality (A4) is reversed, so that [rR + (1 - r)S] ³ [wT + (1 - w)P]; which 
is equivalent to (r, w) satisfying inequality (1).  This is an example of implication (A3a) by letting X = [rR + (1 - r)S], 
Y = [wT + (1 - w)P], and p(X) = z; which in turn implies by formulas (A1c,d) that pA[CDA,CDE,(r, w),x] ³ pA[DDA, 
CDE, (r, w), x].  Similar reasoning implies the same inequality also applies to Eve's expected payoffs [by reversing 
subscripts A and E].  That is, (r, w) satisfying inequality (1) also implies  pE[CDA, CDE, (r, w), x] ³ pE[CDA, DDE, (r, 
w),x]. 
 
 The latter two inequalities mean that satisfying inequality (1) implies that CD has higher expected payoff than 
DD (for either Adam or Eve) if the other player chooses DD.  That is, (r, w) satisfying inequality (1) implies strategy 
CD is an optimal decision for either player from strategy set S = {CD, DD}, given the other player also selects strategy 
CD.  Thus, (r, w) satisfying inequality (1) implies (CDA, CDE) is a Nash equilibrium.   
 
  Recall also that, as shown above, inequality (A3a) is guaranteed for any w > 0, and holds weakly if w³0 
[regardless of whether inequality (1) holds].  A  similar inequality to (A3a) also holds for Eve by reversing subscripts 
A and E  [regardless of whether inequality (1) holds].  Thus, inequality (1) implies (DDA., DDE ) is still a Nash 
equilibrium.   Hence, (r, w) satisfying inequality (1) implies (CDA,CDE) and  (DDA., DDE ) are both Nash equilibria; 
which proves Part 2 of Theorem 1. 
 
Part 2.   Aumann's Bayesian Interpretation of Correlated Equilibrium 
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 We now further discuss Aumann's interpretation that Bayesian rationality implies that the probability 
distribution of players' choice combinations is a correlated equilibrium.  There is an inconsistency in his interpretation, 
which is discussed in points 8-9 below, and resolved in point 10 (showing that Bayesian rationality is consistent with 
players using either exogenous or endogenous information sources, as discussed in Section VI of the main text).  To do 
so, the following definitions are introduced for at least two players i = (1, ... n) deciding how to respond to information 
about other players' choices besides their own choice. 
 
1. W denotes the set of all conceivable "states of the world"; with individual states denoted w Î W.  Ai denotes 
player i's action partition of W; meaning the set of all distinct actions for player i.  Each element of Ai, denoted ai  Î Ai, 
is a subset ai  Ì W; corresponding to a smallest distinguishable action for player i.  Mi denotes player i's message 
partition of W; meaning the set of all distinct messages that player i can observe.  Analogous to Ai, each element mi  Î 
M i, is a subset mi  Ì W; corresponding to a smallest observable message for player i. 
 
2. A = A1 ´ ...  ́An, and a = (a1, ... , an) Î A; where a denotes an n-tuple of players' actions, called an action profile. 
 Similarly define M = M1 ´ ... ´ Mn, and m = (m1, ... , mn) Î M; where m is an n-tuple on players' messages, called a 
message profile.  Let G denote a countable probability space over W; where s Î G represents a probability distribution 
over all potential states in W.  s is called a "state distribution".   
 
3. Let P = M  ́ A denote the set of all potential message and action profiles; with individual pairs of 
message/action profiles denoted p = (m, a) Î P = M ´ A.  For any subset X Ì W representing an event [including player i 
choosing an action ai Î Ai or observing a message mi Î M i], the probability of X implied by s is denoted, 
σ σ ωω(X) =  ( )  X∈� 0.  For any collection of two or more sets [such as X, Y, Z, ...], let Ç(X, Y, Z, ...) = (X Ç  Y 
Ç Z Ç ...) denote the intersection of these sets.  Then the joint probability of a collection of events happening 
simultaneously is denoted,  
 

    
σ σ ωω(X, Y, Z, ... ) =  ( )  (X,Y,Z,...)∈ ∩�

0    (A5) 
 
 For example, s[p = (m, a)] is the probability of a pair of players' message/action profiles p = (m,a) Î P; 
meaning the probability of states w contained in the intersection of all the message and action events (mj  Î Mj and aj Î 
Aj] associated with a particular message/action profile p = (m, a).   From a Bayesian perspective, s can be thought of as 
a common "prior" probability distribution of players' beliefs about the likelihood of potential states w Î W; including 
the likelihood of potential combinations of observation/action profiles simultaneously arising.  If we wish these beliefs 
to be subjective to particular players, then each si denotes player i's subjective prior distribution of potential states w Î 
W. 
 
4. (P, G, si) is called player i's "subjective information model"; which describes player i's subjective beliefs about 
the likelihood of all potential pairs of players' observation/action profiles pÎ P. 
 
5. Following Aumann, consider an "outside observer" perspective, where each player i must evaluate how best 
to respond to its observed messages or "signals" mi Î M i.  Quoting Aumann (1987; page 8), 
 
 In analyzing the situation, each player i ... cannot ignore the possibility of his receiving a signal different than 

the one he actually got, even though he knows that he did not actually get such a signal.  This is because the 
other players do not know what signal he got.  Player i must take the ignorance of the other players into 
account when deciding on his own course of action, and he cannot do this if he does not explicitly include in 
[his information] model signals other than the one he knows he got. 

 
6. Also following Aumann (1987; page 7), consider what happens when each player knows nothing beyond 
observing himself choose an action; so that his action Ai and message Mi partitions of the state space W coincide.  That 
is, Mi  = Ai for all i; meaning mi = ai are indistinguishable events for each player i; which in turn means M = A.  Then 
apply this knowledge situation to the above quotation; so that the "signals" referred to in the quotation represent each 
player i observing himself choosing action ai [because player i's actions  "are" his signals; ai = mi for all mi  Î Mi].  In 
such a situation, player i knows that although the other players do not know what specific action he chose, they 
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nevertheless know he cannot have chosen differently than what he actually observed himself choose (whatever his 
observed action might have been).  Consequently, player i knows that all the other players assign zero probability to 
any such "conceivable event", corresponding to his choosing differently than he actually observed himself choosing. 
 
7. The latter conclusion is formally implied for any subjective information model (P,G,si) over a state space W.  
To see this, note that M = A implies P = M  ́ A = A ´ A; so that there exist "conceivable" or "hypothetical" 
observation/action profiles (a, a¢) Î P such that a ¹a¢ because ai ¹ ai¢ for some player i.  The latter inequality implies the 
intersection Ç(a, a¢) = Æ [because the elements of a partition Ai are disjoint subsets whose intersection is therefore 
empty];  which in turn implies from equation (A5) that  si(a, a¢) = 0 whenever a ¹ a¢. 
 
 Thus, player i knows that any hypothetical event where he chooses differently than what he actually observed 
himself choosing will be assigned zero probability by all the other players.  Moreover, player i also assigns zero 
probability to any such hypothetical event, because he also knows any two distinguishable actions  ai ¹ ai¢ represent 
disjoint events that never happen simultaneously. 
 
8. The last conclusion of step 7 implies that player i knows that the true state of the world w Î W must have 
hypothetically changed whenever he hypothetically contemplates changing his action from any given action ai  Î Ai; 
because no single w can simultaneously be contained in two disjoint subsets of W whose intersection is empty [ai Ç ai¢ 
= Æ].  Consequently, Aumann's definition (1987, page 7) of player i being "Bayes rational at [a single] w" either does 
not make sense conceptually; or at least is an unfruitful way of defining Bayesian rationality when players know nothing 
more than their observed actions.  With such limited knowledge, Bayesian rationality necessarily requires different 
states of the world to be hypothetically compared when player i compares his expected payoffs from hypothetically 
choosing different actions [because hypothetically having chosen different actions implies different states must have 
hypothetically occurred].  This does not mean player i ever knows exactly what specific state w Î W exists when he 
chooses; just that w must be different than what it would have been had he chosen differently.    
 
9. The latter conclusion of step 8 implies the following inference:  if a player's information equals his observed 
action and he contemplates hypothetically choosing differently; then he necessarily also contemplates different 
information (about which specific state w Î W exists) if he chooses differently; which in turn implies the relative 
likelihood of other player's actions conditional on his different information may thereby also be different if he chooses 
differently [choosing differently implies the true state of the world must be different; which implies the likelihood of 
other players' actions may also be different for a different state of the world].  Consequently, player i cannot assume 
in such a situation that the probabilities of other players' actions (conditional on his choosing any given action) are the 
same if he contemplates hypothetically deviating from choosing that action [that is, player i cannot assume that the 
probabilities of other players' actions are statistically independent of changes in his own hypothetically chosen action].  
 
 Yet, such an independence is what Aumann (1987) implicitly assumes in his formal theorem characterizing a 
correlated equilibrium distribution (proposition 2.3 on page 6).  This is because the conditional  probabilities of other 
players' choices (denoted pjk/Skpjk in Aumann's notation) are held fixed as a player hypothetically changes its actions (in 
Aumann's proof of proposition 2.3).  Consequently, Aumann's formal characterization of a correlated equilibrium is 
inconsistent with his other assumptions: that each player knows what action he chooses; and that states of the world are 
"comprehensively defined" to include his own choice (along with everyone else's choices). 
 
10.   A simple way to avoid the preceding inconsistency is to recognize that Aumann's two assumptions (noted 
just above) do not require that players' subjective prior distributions si imply "exogenous" information sources, as 
described in Definition 16 of the main text.  Instead these prior distributions are consistent with both "exogenous" and 
"endogenous" information sources; where the latter allows the conditional probabilities between players' messages 
p(mi½mj) to depend on their profile of actual choices.  That is, each player's prior distribution is also consistent with 
si(mi, mj½a) ¹ si(mi,mj½a¢) for some a ¹ a¢ Î A;  where si(mi, mj½a) equals the ratio of si(mi, mj, a) divided by si(a), and 
similarly for si(mi, mj½a¢).  In short, assuming Bayesian players' (who have prior distributions si over potential states w 
Î W) does not presuppose whether their prior beliefs allow exogenous or endogenous information sources.  
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