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Abstract

This paper investigates the effects of temporal aggregation when the aggregation

frequency is variable and possibly stochastic. The results that we report include, as

a particular case, the well-known results on fixed-interval aggregation, such as when

monthly data is aggregated into quarters. A variable aggregation frequency implies

that the aggregated process will exhibit time-varying parameters and non-spherical

disturbances, even when these characteristics are absent from the original model.

Consequently, we develop methods for specification and estimation of the aggregate

models and show with an example how these methods perform in practice.
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1. Introduction

There are two traditional approaches for dealing with time aggregation issues. The

consequences of fixed-interval time aggregation in discrete-time models (for example,

data generated monthly but recorded quarterly) have been thoroughly investigated by

Telser (1967), Brewer (1973), Wei (1981), Weiss (1984), and Marcellino (1999), among

others. The analysis of continuous-time models from fixed-interval observed data ap-

pears, for example, in the work of Sims (1971), Geweke (1978) and Stock (1987, 1988).

This paper addresses a more general problem instead: the possibility that discrete-time

processes evolve at irregular (usually stochastic) intervals, whether because this time

scale is native to the data generating process (DGP) or whether because it reflects the

frequency of data recording. This question is central in economics for example, where

behavioral models often describe the timing of certain economic events as endogenously

determined, but it arises in other disciplines as well.

A brief taxonomy of the universe of possibilities allowed by variable time intervals

demonstrates its wide applicability. Denominate the time scale at which the data are

generated original-time scale and use the subscript τ to index variables. In general, the

recording schedule of the data will not coincide with the original-time scale. Denominate

this data recording frequency as the aggregate-time scale and use the subscript t to index

variables. Depending on the variability of the intervals in each of these time scales, we

distinguish the following four types of aggregation:

original-time-scale τ Aggregate time-scale t

Type I Regularly spaced Regularly spaced

Type II Irregularly spaced Regularly spaced

Type III Regularly spaced Irregularly spaced

Type IV Irregularly spaced Irregularly spaced

The traditional analysis of time aggregation described in the first paragraph corre-

sponds to type I aggregation. Examples of type II aggregation are common in finance,

where time series are analyzed at daily or even weekly frequencies even though trans-

action intensities in these markets vary anywhere between seconds to hours. More for-

mally, Jordà (1999) shows that partial adjustment models (such as a model of inventory

adjustment) naturally generate irregularly spaced data in original-time although em-
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pirical analyses necessarily rely on aggregated quarterly or monthly data at best. The

classical literature on business cycle analysis initiated by Burns and Mitchell (1946),

the literature on time deformation introduced by Stock (1987), and data recording with

missing observations are examples of type III aggregation. Finally, type IV aggregation

can be found in finance, where tick by tick financial data are often “thinned” by some

statistical procedure (see Engle and Russell, 1998) to distinguish between uninformed

and informed trades. The thinning process delivers a new series in which aggregate-

time is also irregularly spaced. These examples illustrate the encompassing nature of

the unifying framework we present for dealing with time aggregation.

The more interesting results in the paper correspond to situations in which the

frequency of aggregation is variable, such as when it is the realization of a stochastic

point process. In this case, the aggregate-time processes have time-varying parameters

and non-spherical disturbances even when these characteristics are absent in original-

time. These properties are important considerations in terms of forecasting, estimation

and testing since they explain in which directions aggregate models are likely to be

misspecified and in which way this misspecification can be corrected. Consequently,

we derive the representation of the aggregated data generating process (DGP) and

derive maximum likelihood (ML) estimators for its parameters. The resulting models

improve the estimation of structural parameters and provide more accurate forecasts,

as illustrated with an example on inventory decisions.

The paper is organized as follows. Section 2 introduces the general framework we use

and presents the results on the representation of the aggregate-time DGP. Section 3 deals

with estimation and inference. Section 4 proposes practical methods and models to deal

with time aggregation problems. Section 5 presents the example on inventory decisions.

Section 6 summarizes and concludes. All the technical derivations are gathered in the

Appendix.

2. Time Scale Transformation of Discrete-Time Models

This section studies the transformation of a generic discrete-time ARMA process into

the corresponding aggregate-time process. We begin by introducing the notation and

framework to be used hereafter and then derive the conditional generating mechanisms

with a simple example. The formal derivation of the general results can be found in the
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appendix A.

Consider a generic stochastic process that evolves in original-time τ , namely, y =

{yτ}∞τ=1. The available data, however, are the realizations of a different process, x

= {xt}∞t=1, whose elements are functions of those of y and is said to evolve in aggregate-
time t. As an example, if y is a quarterly stock variable observed at an annual frequency,

then

x1 = y4, x2 = y8, x3 = y12, ... (2.1)

This type of aggregation will be referred to as point-in-time sampling. If we had con-

sidered a flow variable instead, the process for x would be

x1 = y4 + y3 + y2 + y1, x2 = y8 + y7 + y6 + y5, x3 = y12 + y11 + y10 + y9, ...

(2.2)

Sometimes, the aggregated data could be the result of a weighted average of the original

variable, possibly with time-varying weights. In general, let wj,i denote the weight

corresponding to the aggregate-time period j for the ith power of the original-time, lag

operator, Ziyτ = yτ−i. For example, if yearly data were generated by taking weighted
averages of quarterly data, we could use the previous notation to indicate this as

x1 =
³
w1,0Z

0 +w1,1Z
1 +w1,2Z

2 +w1,3Z
3
´
y4 (2.3)

= w1,0y4 +w1,1y3 +w1,2y2 +w1,3y1;

x2 =
³
w2,0Z

0 +w2,1Z
1 +w2,2Z

2 +w2,3Z
3
´
y8

w2,0y8 +w2,1y7 +w2,2y6 +w2,3y5;

...

Assuming that the weights are constant, as it is done in traditional research on time

aggregation, it is easy to see that each of the wj,i =
1
4 in expression (2.3). We will refer

to this type of aggregation as phase-averaged sampling.

The examples presented in expressions (2.1)-(2.3) correspond to a constant frequency

of aggregation, k, which is fixed at k = 4 in the examples (four quarterly observations

per year). In this paper we depart from this traditional case by allowing k to vary over

time, such as when it is the realization of a stochastic process. Therefore, we will endow

k with a time subscript and denote it as kt. Notice that kt is the number of original-time
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intervals in the aggregate-time period t. Using the notational elements introduced thus

far, it is natural to express the process x with the following generic notation,

x ={xt}∞t=1 =
n
Wt(Z)yϕ(t)

o∞
t=1
; ϕ(t) =

tX
j=1

kj. (2.4)

so that

x1 = W1(Z)yk1 =
k1−1X
i=0

w1,iy(k1−i),

x2 = W2(Z)y(k1+k2) =
k2−1X
i=0

w2,iy(k1+k2)−i,

...

The general mapping from y to x described in expression (2.4) will allow us to treat

time aggregation comprehensively and will be used to derive the representation of the

DGP for x given that of y, for a general aggregation scheme.

Although one can derive the density of x from the finite dimensional cumulative

density of y using standard techniques for the linear transformation of random variables

(see Mood et al., 1974), this derivation is intractable in practice because it involves high-

dimensional marginalization and integration. In this paper we follow an approach that is

common in the literature, and assume that the original-time process y follows a generic

ARMA process, and then derive the DGP for x using algebraic methods instead. Brewer

(1973), Wei (1981), Weiss (1984) and Marcellino (1999) provide results for k constant.

Here, we extend these results to allow for a time-varying k, the aggregation frequency.

Consider a simple example of an AR(1) process in original-time

yτ = ρyτ−1 + eτ , eτ ∼ i.i.d.(0,σ2e), (2.5)

and assume that y is a stock variable and that the aggregation frequency is k = 4 with

point-in-time sampling, so that the aggregate-time process x is as in (2.1). Without

loss of generality, pre-multiply expression (2.5) by the auxiliary polynomial (1 + ρZ +

ρ2Z2 + ρ3Z3) to obtain

yτ = ρ4yτ−4 + eτ + ρeτ−1 + ρ2eτ−2 + ρ3eτ−3, (2.6)
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thus allowing one to express x in aggregate-time as

xt = ψxt−1 + ut, ut ∼ i.i.d.(0,σ2), (2.7)

with the obvious correspondences, ψ = ρ4 and σ2 = (1 + ρ2 + ρ4 + ρ6)σ2e .

Relaxing the assumption that k is constant means we now have to premultiply both

sides of (2.5) by a different auxiliary polynomial at each time period t. Specifically,

when t = 1 and τ = k1, the polynomial is (1 + ρZ + ...+ ρk1−1Zk1−1); when t = 2 and
τ = k1 + k2, the polynomial is (1 + ρZ + ... + ρk2−1Zk2−1); and so on. Therefore, the
aggregate-time equivalent expression to (2.7) is now

xt = ψtxt−1 + ut, ut ∼ i.i.d.(0,σ2t ), (2.8)

with ψt = ρkt and σ2t = (1 + ρ2 + ...+ ρ2(kt−1))σ2e .
Several conclusions can be drawn from this simple example, which are properly

generalized in appendix A. First, the coefficients of the aggregated process x are time-

varying whenever kt is variable. Second, although the order of the autoregressive poly-

nomial is typically preserved, the aggregate-time process x will often have an MA com-

ponent as well. For a point-in-time sampling scheme, the MA component will usually

be of order p−1, where p is the AR order in original-time, while under phase-averaging
the usual order is p (lower/higher values can be obtained when p− q > kt/q − p ≥ kt,
where q is the MA order in original-time). Third, these properties apply to stationary,

integrated or even explosive original-time processes. Finally, while we derive all of the

results assuming a variable kt, the traditional results found in the literature with k

constant can be obtained as special cases of our framework.

These conclusions raise a number of issues that we tackle below. In particular, the

AR(1) example suggests that the aggregate-time process will have time-varying para-

meters and time-varying volatility. Both of these features have important implications

from the point of view of specification and testing. It suggests that constant parameter

specifications will provide unsatisfactory approximations to the structural parameters

of the model and will forecast poorly — the conditional information relating kt is unused.

Even if we momentarily entertained that a constant parameter specification provided

adequate estimates, the time-varying nature of the residual variance suggests one needs

to be particularly careful in making inference. The next section derives the maximum

likelihood estimator (MLE) for the aggregate-time process and establishes its asymp-

totic distribution. However, it is important to transcend the ideal theoretical results
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into practical solutions of general time aggregation problems. This is the emphasis of

section 4.

3. Maximum Likelihood Estimation

This section sketches the derivation of the maximum likelihood estimators for the pa-

rameters of the aggregate-time DGP, assuming that the sequence {kt} is observed.
Appendix B provides full details and discusses conditions for the asymptotic normality

of the estimators. When kt = k, ∀t, the aggregate model will be an ARMA model with
constant parameters, for which traditional modelling and estimation results are readily

available. Thus, here we concentrate on situations where kt fluctuates over time instead

— this results in models with time-varying parameters, as we have seen in the previous

section.

Let Xt−1 = {xt−1, xt−2, ...}, Kt−1 = {kt−1, kt−2, ...}, and assuming fixed initial condi-
tions, the joint likelihood for a sample of T observations can be written as the product

of the conditional densities,

L(Ξ) =
TY
t=p

f(xt|Xt−1;Kt−1; ζt). (3.1)

However, this expression is ill suited for the derivation of the ML estimators for {bζt,
t = p, ..., T} since the number of parameters is typically larger than the number of
available observations. Alternatively, the likelihood can be reparametrized in terms of

the native parameters of the original-time process y, say θ, and then the maximum

likelihood estimators of θ can be used to obtain those of ζt by exploiting the mapping

from θ to ζt derived in Appendix A.

Appendix B proposes a general Kalman filter based approach for the derivation of

L(Ξ(θ)) = L(θ), that is, the expression of the joint likelihood function in terms of the

orginal-time parameters θ. This approach essentially consists in casting the original-

time and aggregate-time ARMA processes in state space form. Then one can write the

Kalman filter equations, derive the prediction errors, and use them to construct the

likelihood function. These derivations are based on Harvey (1989, Ch. 6), and extend

his results to the case of a time varying aggregation frequency and generic aggregation

weights. The resulting likelihood is an expression that depends on the original-time

parameters but is based on the aggregate-time data.
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The next section explores alternative practical modeling strategies when the sto-

chastic nature of kt is also explicitely taken into consideration.

4. Practical Modelling Strategies

A transformation of the time scale from τ -time to t-time will yield an aggregate-time

process xt and a sequence {kt} corresponding to the variable frequency of aggregation.
The next subsection assumes that both xt and kt are observable and that the practi-

tioner’s task is to estimate the parameters of interest by jointly modelling these two

stochastic processes. At first, it may seem unrealistic to assume that kt is observed,

however, it is common in finance to operate with data that evolve at different time

frequencies (for example, quotes, trades, financial information and macroeconomic in-

formation are recorded anywhere from a few seconds on average, all the way up to

quarterly frequency). One solution is to aggregate all the data into a common time

scale and use well established multivariate techniques for the analysis. In such a con-

text, although it has been customary to disregard the manner in which the data is

aggregated, there is nothing that prevents practitioners from recording the variable kt.

In fact, in some of our own work (Jordà and Marcellino, in press) we have found this

variable to be very useful indeed.

The second subsection discusses methods for modelling xt when the kt are unobserv-

able instead. This scenario is more closely related to the classical discussion of time

aggregation in the literature. However, the distinct possibility that in certain contexts

kt cannot be regarded as constant, suggests that one cannot rely on traditional models

but instead one has to rely on specifications that can accommodate the time-varying

nature of the conditional mean and variance coefficients. As we will see, one practical

solution is to rely on Hamilton’s (1989) Markov switching-regimes model.

4.1. Stochastic and observable kt : The ACI Model

Given observations on the aggregate-time process xt and the aggregation frequency kt,

it will be of interest to model their joint distribution conditional on past information,

the distribution of y, and the aggregation weighting polynomial Wt(Z). Since kt rep-

resents the number of original-time observations over which aggregation takes place at

aggregate-time t, it is natural to think of kt as taking a finite number of integer val-
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ues so that kt ∈ {0, 1, 2, ..., N} . Momentarily entertain the simplifying assumption that
P (kt = j|Xt−1,Kt−1; θk) = P (kt = j) = pj , then the joint distribution of xt and kt can
be factored by the product rule of probability as

f(xt, kt = j|Xt−1,Kt−1; θ) = g(xt|kt = j,Xt−1,Kt−1; θx) · pj (4.1)

Assuming the xt are Gaussian, their conditional distribution becomes

g(xt|kt = j,Xt−1,Kt−1; θx) = 1√
2πσ(j)t

exp

(
− (xt − µ(j)t)2

2σ(j)2t

)
(4.2)

where µ(j) and σ(j) are indexed by j to indicate that they depend on the value of

the frequency of aggregation for that period as in expression (2.8), for example. Given

expressions (4.1) and (4.2), the joint likelihood of the data can be expressed as

f(xt, kt = j|Xt−1,Kt−1; θ) = pj√
2πσ(j)t

exp

(
− (xt − µ(j)t)2

2σ(j)2t

)
(4.3)

If kt is observable but with a one period delay instead, then the unconditional density

of xt has to be used. The end result will be a mixture of normal distributions, which is

obtained by summing up (4.3) over all the possible values of kt, specifically

P (xt|Xt−1,Kt−1; θx) =
NX
j=0

f(xt, kt = j|Xt−1,Kt−1; θx). (4.4)

Expressions (4.3) and (4.4) describe the basic intuition behind the steps necessary

to jointly model xt and kt so it is time to become more ambitious with regard to the

simplifying assumption P (kt = j) = pj . As we discussed, kt records the number of

original-time observations aggregated per aggregate-time interval t and is best thought

of as an integer-valued variable with positive support. Therefore, a natural distributional

assumption for this type of variable is the Poisson distribution. For example, the typical

Poisson regression framework would specify the conditional mean (or intensity) of this

Poisson process, say λt, as a function of xt−1 with the following simple expression,

P (kt = j|Xt−1,Kt−1; θk) = e−λtλjt
j!

log(λt) = ω + δxt−1 (4.5)
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thus ensuring that the parameter space (in this case ω and δ) is unconstrained. Such a

model has a long tradition and its MLE properties are well developed. Expression (4.5)

is not completely satisfactory because it restricts the nature of the time series process

for kt. Consequently, one could consider adding lags of both kt and xt into more general

expressions of (4.5). In Jordà and Marcellino (in press) we have had success with a more

general specification that we denominated the autoregressive conditional intensitymodel

(ACI). This specification seems more natural for a time series process and for a one-lag

specification, it consists in specifying the conditional mean of the Poisson process as

log(λt) = ω + αlog(λt−1) + βkt−1 + δxt−1 ACI(1, 1) (4.6)

This specification of the conditional intensity function ensures that the conditional mean

remains strictly positive without restricting the parameter space. The term log(λt−1)
parsimoniously endows the conditional mean with an exponentially declining depen-

dence on infinite lags of kt and xt and can be seen as a natural analog to a typical ARMA

model in the linear time series tradition. Thus, stationarity requires that |α+ β| < 1,
when δ = 0. Jordà and Marcellino (in press) apply this ACI model to explain the be-

havior of price-quote spreads in the foreign exchange market as indicators of market

liquidity. We find that by allowing the parameters of the time series process that ex-

plains the size of the price-quote spread to depend on the arrival intensity of these

quotes, the model fit improves significantly relative to competing specifications. We

attribute this improved performance in large part on being more careful in accounting

for the type of aggregation that is the central topic of this paper. The MLE for the

ACI model is disarmingly simple and we refer the reader to that paper for more details.

Once the marginal density of kt has been specified with the ACI model for example, one

can rely on the product rule of probability and exogeneity arguments (see Engle et al.,

1983) to estimate the conditional model for xt (given by aggregation formulae similar to

(2.8)) and the marginal model for kt separatly, giving consistent and efficient estimates

of all the parameters.

4.2. Stochastic, non-observable kt : The Markov Switching-Regimes Model

In many situations the practitioner will observe xt but not kt, yet suspect that the

observed data are the result of time aggregation with variable frequency. This would
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prevent us from directly using the ACI model introduced above. Instead, we need a

flexible model that will allow for variation in the parameters of the conditional mean and

variance, dependence in the unobserved frequency of aggregation kt, yet be restrictive

enough that the model can be estimated in practice. A specification that meets all of

these requirements is based on assuming that the integer-valued kt can take on a small

number of values, say kt ∈ {1, 2, ...N} such that P (kt = j|Xt−1,Kt−1; θk) is an N-state
Markov chain, that is

P (kt = j|Xt−1,Kt−1; θk) = P (kt = j|kt−1 = i) = pij (4.7)

for i, j = 1, 2, ..., N. This assumption can be generalized as in Lam (1990), Durland and

McCurdy (1994), and Diebold, Lee and Weinbach (1994) but we restrict our attention

to the basic formulation for clarity. Based on (4.3) and (4.7), it is immediately apparent

that this specification can be viewed as a special case of the popular Markov switching-

regimes (MSR) model proposed in Hamilton (1989), and the doubly stochastic model

proposed by Tjøstheim (1986). A simple example will illustrate the particulars of this

correspondence.

Consider the following, original-time, ARMA(2,0) model

yτ = ρ1yτ−1 + ρ2yτ−2 + ετ ετ ∼ N(0,σ2ε) (4.8)

and assume kt = {1, 2}, that is, for every original-time period there is some probability
that the corresponding observation will be recorded or that it will be skipped. The

two-state Markov chain that describes kt is P (kt = j|kt−1 = i) = pij for i, j = 1, 2.

Consequently, the resulting aggregated-time process is as follows for each of the four

possible combinations of events:

for kt = 1, and kt−1 = 1,

xt = ρ1xt−1 + ρ2xt−2 + ut ARMA(2, 0)

ut = ετ ; E(ut) = 0; E(u2t ) = σ2ε

for kt = 1, and kt−1 = 2,

xt = (ρ21 + ρ2)xt−1 + ρ1ρ2xt−2 + ut ARMA(2, 0) (4.9)

ut = ετ + ρ1ετ−1; E(ut) = 0; E(u2t ) = σ2ε(1 + ρ21)

10



for kt = 2, and kt−1 = 1,

xt =

Ã
ρ21 + ρ2
ρ1

!
xt−1 − ρ2

ρ1
xt−2 + ut − ρ2

ρ1
ut−1 ARMA(2, 1) (4.10)

ut = ετ ; E(ut) = 0; E(u2t ) = σ2ε

and for kt = 2, and kt−1 = 2,

xt = (ρ21 + 2ρ2)xt−1 − ρ22xt−2 + ut − ρ2ut−1 ARMA(2, 1) (4.11)

E(ut) = 0; E(u2t ) = σ2ε(1 + ρ21 + ρ22)

Following Hamilton (1994), define the new variable st which characterizes the regime

at date t as follows

st = 1 if kt = 1 and kt−1 = 1, st = 2 if kt = 2 and kt−1 = 1,
st = 3 if kt = 1 and kt−1 = 2, st = 4 if kt = 2 and kt−1 = 2,

so that, given our assumptions, st follows a four state Markov chain with transition

matrix

P =


p11 0 p11 0

p12 0 p12 0

0 p21 0 p21

0 p22 0 p22

 .

Appendix C contains the expression for the conditional densities and the form that the

estimation algorithm proposed by Hamilton (1994) takes in this case. However, except

for the parametric restrictions implied by time aggregation on the coefficients of the

conditional mean and variance, estimation of the model poses no additional difficulties.

The next section illustrates some of the nuances of the theoretical discussion carried

thus far with a simple example.

5. An example: Time aggregation and structural inference

Time aggregation issues are not popular with empirical practitioners. The usual justi-

fication for this attitude is that the DGP is never observed and therefore, econometric
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models need always be approximations to the true model. Thus, time aggregation is

but one of the dimensions of this approximation problem. Furthermore, the prescrip-

tions deriving from traditional time aggregation studies amount to few useful empirical

remedies. From the point of view of forecasting, there is little advantage in knowing

the process is time-aggregated since conditional mean forecasts still rely on constant

parameter specifications that are well understood. Once one accounts for the additional

serial correlation features induced by time aggregation, little else can be done.

In contrast, we have introduced the notion that time aggregation can occur over a

variable number of original-time observations. Such a scenario has significant implica-

tions for empirical work, as we have justified in the previous sections. The resulting

aggregated processes will exhibit time-varying parameters in the conditional mean and

variance, even if these features were absent in the original-time process. Consequently,

we have recommended ways in which to specify statistical models that account for these

features. Accounting for the variability in the aggregation frequency is helpful in im-

proving forecast performance and is important for inference. In this section we put

these ideas to work with a simple version of an inventory control problem.

The example we analyze is based on a classical stock-adjustment model (see Ca-

ballero and Engel, 1993) of the form

zτ = µ+ (1− α)zτ−1 + ετ ετ
iid∼ WN(0,σ2); α ∈ [0, 1] (5.1)

where zτ denotes a disequilibrium variable, whose specific definition will become clear

momentarily; and α is the speed of adjustment parameter. For example, if this ad-

justment process is an (S,s) type of adjustment, then α = 1 but the timing of such

adjustments will be stochastic — it will be determined by the crossing of the barriers

(S,s). If the adjustment process is linear/quadratic instead, then α < 1, depending on

the underlying nature of the adjustment costs. The model in expression (5.1) has a

long tradition and has been applied widely to explain inventory behavior, investment

dynamics, short-run changes in employment, pricing policies, and other economic phe-

nomena.

The example we investigate here is an inventory model based on glass container

data from the Census Bureau’s monthly survey Manufacturers’ Shipments, Inventories

and Orders — also known as the M-3 report. The sample ranges from January 1991
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to December 2001 and is not seasonally adjusted. Three main advantages justify our

choice: (1) the data is based on 16 manufacturing plants which diminishes cross-sectional

aggregation issues; (2) the data is reported in physical units of one thousand gross

(one thousand gross = 144,000) rather than in dollars, thus avoiding accounting and

questionable valuation methods that tend to introduce measurement error; and (3) the

data are not seasonally adjusted, which unlike most economic applications, is preferable

when investigating inventory behavior.

A natural definition for z in this context is the ratio of inventories to shipments,

which we will adopt here. Figure 1 displays this ratio for the whole sample of 132

observations. Estimation of expression (5.1) by conventional methods in aggregate-

time, without further considerations, yields the following estimates

zt = 0.54
(0.12)

+ 0.71
(0.06)

zt−1 + 0.18ut ut ∼ N(0, 1) (5.2)

with a Durbin-Watson statistic of 2.13 and a log-likelihood value of 43.50 (under the

assumption of Gaussianity). These estimates imply an estimate of bα = 0.29 or 29%

adjustment per period, which is considerably higher than other estimates of inventory

behavior in the literature (Jordà 1999 and references therein report values in the neigh-

bourhood of 5%), but much closer to what economic theory would predict.

Based on economic fundamentals, there are strong reasons to suspect that the

original-time scale and the observed-time scale do not coincide. If inventories are ad-

justed according to (S,s) rules for example, then the observed data will be aggregated

over time-varying intervals of original-time observations. Accordingly, it is natural to

experiment with some of the solutions advanced in section 4. Specifically, since we do

not observe the frequency of aggregation, we will use the Markov switching-regimes

model presented in subsection 4.2. Furthermore, since we are interested in showing

that the coefficients of the model adhere to the predictions of time aggregation, we do

not impose the cross-regime coefficient restrictions described in that subsection. Con-

sequently, we estimated a version of the model with three states (because we have 132

observations, we have to be careful not to estimate regimes with very few observations),

whose estimates we report below,
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State 1: zt = 0.13
(0.17)

+ 0.99
(0.09)

zt−1 + 0.37
(0.12)

ut

State 2: zt = 0.39
(0.08)

+ 0.72
(0.05)

zt−1 + 0.17
(0.09)

ut

State 3: zt = 0.60
(0.13)

+ 0.58
(0.06)

zt−1 + 0.33
(0.12)

ut

(5.3)

with log-likelihood 60.83, substantially larger than the value of 43.50 obtained for the

estimates in (5.2). The estimates in (5.3) suggest that state 1 correspond to aggregate-

time periods in which there are no adjustments, so that bα = 0. State 2 suggests these
periods correspond to one original-time adjustment, with bα = 0.28 or 28%. State 3

corresponds to two original-time adjustments. If this regime were to be the result of

time aggregation, as we have hypothesized, then we would expect the coefficient estimate

on zt−1 to be 0.722 = 0.52, which is indeed within a conventional 95% confidence interval
around the estimated value of 0.58. Notice also that the implied estimate for α from

state 3 is bα = 0.24 or 24% (derived from (1− bα)2 = 0.58), very close to the 28% estimate
from state 2.

The results of the Markov switching-regimes model are very encouraging and lend

support to our views on time aggregation. However, the estimates of α under either

the model in (5.2) or (5.3) are very similar, suggesting that there is little gain in going

through the trouble of estimating a more complicated model, other than possibly for

forecasting improvement (from jointly forecasting the state and the value of zt). The

explanation for this can be readily found by noticing that the steady-state probabili-

ties for each regime imply that the average aggregation frequency is 0.87 original-time

intervals per aggregate-time interval (this is calculated as 53% of the time there is no

adjustment over the aggregate-time period; 7% of the time there is one adjustment;

and 40% of the time there are two adjustments), which is rather close to a one-to-one

match of original-time and aggregate-time intervals. In other situations or if the data

had been reported at a quarterly frequency instead, we would expect a more significant

mismatch between time-scales and therefore, a more significant role for the techniques

we advocate.
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6. Conclusions

Time scale transformations are quite common, since there is often a mismatch between

the generation and the collection of the data. This mismatch poses serious problems for

estimation of structural parameters, testing of hypotheses of interest, and forecasting

with standard time series models. The effects can be even more dramatic when the

frequency of aggregation varies over time, perhaps because it is itself a random variable.

In this paper we have highlighted these problems, but also suggested solutions by

explicitly keeping into account the presence of time scale transformations. We have

developed maximum likelihood techniques for estimation and inference on the original

parameters of interest, suggested new models for the aggregated process — such as the

autoregressive conditional intensity model — and proposed alternative explanations for

adopting already existing nonlinear specifications, such as the Markov regime-switching

model. An example on an inventory adjustment model highlights the potential for the

techniques and considerations we have presented.

7. Appendix A - Aggregate DGP, ARMA case

Assume the original-time process y evolves according to a generic stochastic linear dif-

ference equation

Φ(Z)yτ = Ψ(Z)ετ (7.1)

where Φ(Z) = 1− φ1Z − φ2Z
2 − ...− φpZ

p; Ψ(Z) = 1− ψ1Z − ψ2Z
2 − ...− ψqZ

q and

ετ ∼WN(0,σ2).
The corresponding aggregate-time process, x, can be derived by finding, at each

aggregate-time period t, the polynomial Bt(Z), such that Bt(Z)Φ(Z) = Ct(L), just as

we did to obtain expression (2.8). The MA component of xt can then be easily derived

from the autocovariance of Bt(Z)Ψ(Z)ετ in aggregate-time.

We introduce some additional notation to find the coefficients of the polynomial

Bt(Z). Define

γt
gt×1

= (−φ1,−φ2, ...,−φp, 0, ..., 0)0

βt
bt×1

= (βt,1,βt,2, ...,βt,bt)
0 (7.2)
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so that Bt(Z) =
³
1 + βt,1Z + βt,2Z

2 + ...+ βt,btZ
bt
´
, with bt =

Pp−1
j=0 kt−j − p and

gt = bt + p. Next, define the rectangular matrix Γt

Γt
gt×bt

=



1 0 0 ... 0 0 0

−φ1 1 0 ... 0 0 0

−φ2 −φ1 1 ... 0 0 0

... ... ... ... ... ... ...

−φp −φp−1 −φp−2 ... ... ... ...

0 −φp −φp−1 ... ... ... ...

0 0 −φp
... ... ... ... ... ... ...

... ... ... ... 1 0 0

... ... ... ... −φ1 1 ...

0 0 0 ... −φ2 −φ1 1



. (7.3)

and denote Γ∗t
bt×bt

and γ∗t
bt×1

as the counterparts to Γt and γt in expressions (??) and

(7.3) obtained by deleting the rows kt−j for j = 0, 1, 2, ..., p − 1. This notation now
permits us to introduce two propositions that characterize the dynamic properties of

aggregate-time processes.

Proposition 1. If y is the original-time process in expression (7.1), k = {kt}∞t=1 and
x is the aggregate time process obtained from a point-in-time sampling scheme, such

that x = {xt}∞t=1 = {yk1, y(k1+k2), y(k1+k2+k3), ...} then x follows the linear stochastic
difference equation

Ct(L)xt = Ht(L)υt υt ∼WN(0, ξ2t ) (7.4)

The coefficients of Ct(L) = (1 − ct,1L − ct,2L2 − ... − ct,pLp) are the kt−j+1 rows of
−Γt(Γ∗t )−1γ∗t + γt for j = 1, ..., p The coefficients of Ht(L) = (1− ht,1L− ...− ht,rtLrt)
and ξ2t are the solutions to the non-linear system

rtX
i=0

h2t,iξ
2
t−i =

bt+qX
i=0

π2t,iσ
2

−ht,jξ2t−j +
(rt−j)X
i=1

h(t−j),iξ2t−j−iht,(j+i) = −πt,lσ2 +
bt+q−lX
i=1

π(t−j),iσ2πt,(l+i) (7.5)

for j = 1, ..., rt,where the πs are the coefficients ofΠt(Z) = Bt(Z)Ψ(Z); andl=
Pj
m=1 kt+1−m.
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Proof. First derive the AR component of x from that of y given that the aggregation

scheme is point-in-time. As mentioned before, for each period t, we want to find a

polynomial, Bt(Z), such that

Bt(Z)Φ(Z) = 1− ct,1Zkt − ct,2Z(kt+kt−1) − ...− ct,pZ(kt+kt−1+...+kt−p+1) = Ct(L)
(7.6)

Without placing any restriction on Bt(Z), the coefficient of Z
i in Bt(Z)Φ(Z) coincides

with the ith element of the vector Γtβt + γt. In order for (7.6) to hold, so that the

appropriate coefficients in Bt(Z)Φ(Z) are zero, it must be that Γ
∗
tβt+γ

∗
t = 0 from where

it follows that the coefficients of Bt(Z) are βt = −(Γ∗t )−1γ∗t . Notice that the columns
of Γ∗t are linearly independent so this matrix is full rank and its inverse always exists.
The coefficients of Ct(L) are the rows kt−j+1 of the vector Γtβt+γt = −Γt(Γ∗t )−1γ∗t +γt

for j = 1, ..., p. Therefore, in general, the order of Ct(L) (the AR component of x) is at

most p, the same as the order of Φ(Z) (the AR component of y).

Next, derive the MA component by defining the following variables

ζt = Bt(Z)Ψ(Z)ε(bt+q) = Πt(Z)ε(bt+q)

ζt−1 = Bt−1(Z)Ψ(Z)ε(bt−1+q) = Πt−1(Z)ε(bt−1+q) (7.7)

...

such that

cov(ζt, ζt) =
bt+qX
i=0

π2t,iσ
2 (7.8)

cov(ζt, ζt−j) = −πt,lσ2 +
(bt+q−l)X
i=1

π(t−j),iσ2πt,(l+i) for j = 1, ..., rt

cov(ζt, ζt−j) = 0 for j > rt

where in general rt = p−1 (lower/higher values can be obtained when p−q > kt/q−p ≥
kt). Expression (7.8) is the autocovariance function of a time-varying MA process. The

corresponding autocorrelation function therefore has to be equal to that of the MA

component in the generating mechanism of x and its coefficients have to satisfy (7.5).

In practice, the MA coefficients can be obtained from the corresponding autocovariance

function through a Kalman filter approach (see Hamilton, 1994, p. 391) or using the

method in Wilson (1972).
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Finally, it is easy to show that υt is the residual of a projection of ζt on υt−1,υt−2, υt−3, ...
This ensures that the error terms from the aggregate-time-scale process are serially un-

correlated. The υt are random linear combinations of independently and identically

distributed WN(0,σ) random variables ετ .

Before analyzing aggregation by phase averaging, let γt,βt and Γt be defined as in

(7.2) and (7.3) but with bt =
Pp
j=0 kt−j − p− 1 instead. In addition, define

λt
gt×1

=

Ã
1

kt
ekt ,−

dt,1
kt−1

ekt−1 ,−
dt,2
kt−2

ekt−2, ...,−
dt,p
kt−p

ekt−p

!0
,

where ekt is a 1×kt vector of ones and the dt,i are the coefficients of Li in the aggregate
AR polynomial Dt(L). Let λ

∗
t be the bt×1 vector obtained by deleting the rows kt−j of

λt for j = 0, 1, ..., p − 1. This notational considerations allow us to introduce the next
proposition.

Proposition 2. If x is generated by (7.1), k = {kt}∞t=1 , Wt(L) = (1 + Z + Z
2 + ...+

Z(kt−1))/kt and x = {xt}∞t=1 =
n
Wt(L)yϕ(t)

o∞
t=1

with ϕ(t) =
Pt
i=1 ki ∀t then

Dt(L)xt = Mt(L)ut for ut ∼WN(0, ν2t ) (7.9)

The coefficients of Dt(L) are the solutions to the linear system of p equations cor-

responding to the rows kt−j+1 of Γt(Γ∗t )−1(λ∗t − γt) + γt = λt for j = 1, ..., p and

βt = (Γ
∗
t )
−1(λ∗t − γ∗t ). The coefficients of Mt(L) = (1 −mt,1L− ... −mt,stLst) are the

solutions to the non-linear system

stX
i=0

m2t,iν
2
t−i =

bt+q−lX
i=0

θ2t,iσ
2

−mt,jν2t−j +
st−jX
i=1

m(t−j),iν2t−j−imt,(j+i) = −θt,lσ2 +
bt+q−lX
i=1

θ(t−j),iσ2θt,(l+i); (7.10)

for j = 1, ..., st, where Θt(Z) = Bt(Z)Wt(Z)Ψ(Z); andl=
Pj
n=1 kt+1−n.

Proof. This time, we want to determine the polynomial Bt(Z) such that

Bt(Z)Φ(Z) =

Ã
ωkt(Z)− dt,1Zktωkt−1(Z)− dt,2Z(kt+kt−1)ωkt−2(Z)− ...

−dt,pZ(kt+...+kt−p+1)ωkt−p(Z)

!
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where ωkt =
³P(kt−1)

i=0 Zi
´
/kt so that Bt(Z)Φ(Z)yτ = Dt(L)xt. For such a restriction

to be satisfied, it must be that Γ∗tβt + γ∗t = λ∗t which requires βt = (Γ∗t )−1(λ∗t − γ∗t ).
This in turn implies that Γt(Γ

∗
t )
−1(λ∗t − γt) + γt = λt. Now we need to determine the

coefficients of Dt(L). Given the expressions for λt and λ∗t this can be accomplished
by solving the linear system of p equations which correspond to the rows kt−j+1 of
Γt(Γ

∗
t )
−1(λ∗t − γ∗t ) + γt = λt, j = 1, .., p. The proof for the coefficients of the MA

component is similar to that of Proposition 1.

When kt = k ∀t, propositions 1 and 2 simplify to the results obtained by Brewer
(1973), Wei (1981), Weiss (1984) and Marcellino (1999). Following Marcellino (1999),

propositions 1 and 2 can be readily extended to multivariate processes as long as the

aggregation frequency, {kt}∞t=1, is common to all the elements of the vector process.

8. Appendix B - ML estimation

This appendix describes ML estimation of the aggregate-time process xt using the

Kalman filter. We begin with the state space expression for the orginal-time ARMA(p,q)

process in (7.1), namely

yτ = z0ατ , ατ = Sατ−1 + eτ , (8.1)

E(α0) = α0, V (α0) = P0, E(eτα0) = 0 ∀τ ,
z0 = [1 − ψ1 − ψ2 ... − ψr−1] ,

S =



φ1 φ2 ... φr−1 φr

1 0 ... 0 0

0 1 ... 0 0

...

0 0 ... 1 0

 , eτ =



ετ

0

0

...

0

 ,

where r = max(p, q + 1), ατ is an r-dimensional vector of state variables, τ = 1, ..., T ,

and we further assume that ετ is Normally distributed.

Next, define the variables

si =
iX
j=1

kj , i = 1, ..., N, (8.2)
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where N is the number of aggregate-time periods, s0 = 0, sN = T , and

βsi−1+ri =
riX
j=1

wi,ri−jysi−1+j , β0 = 0, ri = 1, ..., ki,

where wi,ri−j are the weights in Wt(Z) in (2.5), so that

βτ = ϕτβτ−1 + z0ατ = ϕτβτ−1 + z0Sατ−1 + z0eτ ,

ϕτ =

(
0 τ = si−1 + 1,
1 otherwise.

The state space representation for the aggregated process in τ time (SSR(τ)) is

yτ = g0γτ , γτ = Dτγτ−1 +Rητ , τ =si , i = 1, ..., N, (8.3)

g0 =

·
0
1×r 1

¸
, γτ = [ατ βτ ]

0 ,

Dτ =

"
S 0

z0S ϕτ

#
, R =

"
I 0

z0 0

#
, ητ =

"
eτ

0

#
.

From SSR(τ) we can also derive a state space representation for the aggregated

process in aggregate-time, i.e. in t time (SSR(t)). It is

xt = g
0γt, γt =

"
Skt 0

z0(Wkt − I) 0

#
γt−1 +

"
I 0

0 z0

# "
ηαt
ηβt

#
,

with Wj =
Pj
s=0 S

s, ηαt =
Prt
j=1 S

rt−jest−1+j, η
β
t =

Pkt
j=1Wkt−rtest−1+rt .

Derivation of the ML estimators for the original-time parameters is made more

convenient by adopting the SSR(τ) in (8.3). Defining the optimal estimators of γτ by

cτ , with covariance matrix Στ , the Kalman filter equations are:

cτ |τ−1 = Dτcτ−1 (8.4)

Στ |τ−1 = DτΣτ−1D0τ +RQR
0

cτ =

(
cτ |τ−1 τ 6= si, i = 1, ..., N

cτ |τ−1 +Στ |τ−1g0h−1τ g(xτ − g0cτ |τ−1) otherwise

Στ =

(
Στ |τ−1 τ 6= si, i = 1, ...,N

Στ |τ−1 +Στ |τ−1g0h−1τ gΣτ |τ−1 otherwise

c0 =

"
α0

0

#
, Σ0 =

"
P0 0

0 0

#
,
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where hτ = g0Στ |τ−1g, and Q is the variance of ητ . The relevant prediction errors are

vτ = yτ − byτ |τ−1 = g0(γτ − cτ |τ−1), τ = si, i = 1, ...,N.

Hence, the likelihood can be written as

logL(θ) =
1

N

NX
i=1

log f(xi|Xi−1; θ) = −1
2
log 2π − 1

2N

NX
i=1

log hsi −
1

2N

NX
i=1

v2si
hsi
.

Maximization of this expression with respect to θ = (φi, i = 1, ..., p, ψj, j = 1, ..., q, σ)

yields the ML estimators of the parameters of the original-time model, bθ. The formulae
in propositions 1 and 2 can then be used to recover the ML estimators of the parameters

of the aggregated process.

The following assumption collects all the conditions required to derive the properties

of the ML estimators bθ:
ML Assumptions

i) θ ∈ Θ and Θ is a compact subset of Rk.

ii) f(xi|Xi−1; θ) is a random function continuously differentiable of order 2 on Θ a.s.,

i = 1, 2, ... .

iii) (a) {f(xi|Xi−1; θ)}, (b) {∇θf(xi|Xi−1; θ)}, (c) {∇2θf(xi|Xi−1; θ)} are a.s. Lipschitz-
L1.

iv) The elements of (a) {f(xi|Xi−1; θ)}, (b) {∇θf(xi|Xi−1; θ)}, (c) {∇2θf(xi|Xi−1; θ)}
are near epoch dependent of size −1 on (Θ, ρ), where ρ is any convenient norm on
Rk.

v) The elements of (a) {f(xi|Xi−1; θ)}, (b) {∇θf(xi|Xi−1; θ)}, (c) {∇2θf(xi|Xi−1; θ)}
are r−dominated on Θ uniformly in i = 1, 2, ..., r > 2.

vi) The sequence {QN(θ)}={N−1
PN
i=1E(log f(xi|Xi−1; θ))}, has identifiably unique

maximizers {θ∗} on Θ, interior to Θ uniformly in N .

vii) Defining {QN(θ)}={N−1PN
i=1 log(f(xi|Xi−1; θ))}, then (a) {B∗N} = {V ar[N1/2∇θQN(θ

∗)]},
(b) {A∗N} = {∇2θQN(θ∗)} are uniformly positive definite.
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Conditions i) and ii) guarantee the existence of an estimator bθ, such that
QN(bθ) = inf

θ∈Θ
QN(θ), a.s.

Conditions iii)-(a), iv)-(a), and v)-(a) impose, respectively, smoothness, memory, and

moment conditions on {f(xi|Xi−1; θ)} to ensure that QN(θ)−QN (θ)→ 0 a.s. uniformly

in Θ (Gallant and White,1988, Theorem 3.18). Under the additional condition vi),bθ − θ∗ a.s.→ 0 (Gallant and White, 1988, Theorem 3.19) which ensures the estimator bθ is
consistent for θ∗. Under the additional conditions iii)-(b), iv)-(b), v)-(b), and vii)-(a),
the asymptotic distribution of B

∗−1/2
N N1/2∇θQN(θ

∗)0 is N(0, Ik) (Gallant and White,
1988, Corollary 5.5). Further conditions on the matrix of second derivatives in iii)-(c),

iv)-(c), v)-(c) and vii)-(b), and from a mean value expansion of ∇θQN(bθ) around θ∗,
ensure the asymptotic distribution of B

∗−1/2
N A∗NN1/2(bθ − θ∗) is N(0, Ik) (Gallant and

White, 1988, Theorem 5.7). Moreover, given that the model is correctly specified and

the information matrix equality holds, A
∗1/2
N N1/2(bθ − θ∗) is asymptotically distributed

as N(0, Ik) (White, 1994, Theorem 6.5). If we complement our original hypothesis of an

ARMA process with i.i.d. normal errors for yτ with the assumption that the eigenvalues

of S in (8.1) are inside the unit circle, then the conditions ii) to v) and vii) are satisfied.

Actually, xt also follows an ARMA process, as we saw in Appendix A, and its conditional

distribution is also normal.

Condition vi) deserves more discussion. It requires the parameters in original-time,

θ, to be globally identifiable (Rothenberg, 1971) in aggregate-time. Standard conditions

for identification of ARMA models, e.g. Hannan (1971), are necessary but not sufficient

for vi) to hold, because temporal aggregation can transform globally identifiable para-

meters into locally identifiable or non identifiable parameters. For example, two AR(1)

processes in original-time with parameters β and −β, after point-in-time sampling with
kt = k and k even, are both transformed into an AR(1) with parameter β

k, so that only

|β| is identifiable. An even worse case is aggregation by point-in-time sampling of an
MA(q) process with kt > q: the aggregated process becomes white noise. See, e.g., Mar-

cellino (1998) for conditions that preserve identification through temporal aggregation,

and Hinnich (1999) for a discussion of aliasing in the frequency domain.
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9. Appendix C - Aggregate Markov Switching model

We now discuss the details of the estimation of the Markov Switching model in Section

4.2.

The four conditional densities corresponding to each of the four states are given by

f(xt|Xt−1, st = 1, θ) =
1√
2πσε

exp

(
− (xt − ρ1xt−1 − ρ2xt−2)2

2σ2ε

)

f(xt|Xt−1, st = 2, θ) =
1q

2πσ2ε(1 + ρ21)
exp

(
− ¡xt − (ρ21 + ρ2)xt−1 − ρ1ρ2xt−2

¢2
2σ2ε(1 + ρ21)

)

f(xt|Xt−1, st = 3, θ) =
1√
2πσε

exp


−
³
xt −

³
ρ21+ρ2
ρ1

´
xt−1 + ρ2

ρ1
xt−2 + ρ2

ρ1
ut−1

´2
2σ2ε


f(xt|Xt−1, st = 4, θ) =

1q
2πσ2ε(1 + ρ21 + ρ22)

exp

(
− ¡xt − (ρ21 + 2ρ2)xt−1 + ρ22xt−2 − ρ22ut−1

¢2
2σ2ε(1 + ρ21 + ρ22)

)

Let ηt denote a 4 × 1 vector that collects the above four densities. Collect the

conditional probabilities P (st = l|It; θ) for l = 1, 2, 3, 4 in a 4 × 1 vector denoted bξt|t.
Further, denote bξt+1|t as a 4 × 1 vector whose lth element represents P (st+1 = l|It, θ).
Hamilton (1994) shows that optimal inference and forecasts for each date t in the sample

can be found by iterating on the following pair of equations

bξt|t =

³bξt|t−1 ¯ ηt
´

10
³bξt|t−1 ¯ ηt

´ (9.1)

bξt+1|t = P · bξt|t (9.2)

where 10 is a 4×1 vector of ones and the symbol ¯ denotes element by element multipli-
cation. Given a starting value, bξ1|0 and an assumed value for the population parameter
θ, one can iterate on (9.1) and (9.2) for t = 2, 3, ..., T calculate the values of bξt|t andbξt+1|t for each date t in the sample.

Furthermore, Hamilton (1994) shows that the log-likelihood for the observed data

evaluated at the value θ that was used to perform the iterations, can also be calculated
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as a by-product of this algorithm from

L(θ) =
TX
t=2

logf(xt|It−1, θ), f(xt|It−1, θ) = 10
³bξt|t−1 ¯ ηt

´
(9.3)

For a given θ, the value of the log-likelihood implied by that value of θ is given by

(9.3). The value of θ that maximizes the log-likelihood can be determined numerically.

Further details on the estimation algorithm just described, inference on the transition

probabilities pij, and forecasting can be found in Hamilton (1994).
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Figure 1 – Ratio of Inventories to Shipments of Glass Containers. Sample, January 
1991 to December, 2001, Not Seasonally Adjusted. 
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