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Abstract 
 
This paper analyzes the optimal level of public debt when taxes are used not only for funding 
public expenditures but also for correcting externalities from climate change. Taking into account 
externalities implies that the optimal policy deviates from tax smoothing. Provided cumulative 
marginal damages are larger from today’s than from tomorrow’s emissions, the internalization of 
externalities decreases [increases] optimal debt if tax rates are on the increasing [decreasing] side 
of the Laffer curve. The reversed holds if the cumulative marginal damages increase over time. 
Allowing for endogenous adaptation investments reduces the deviation from tax-smoothing, but 
nevertheless increases optimal debt. 
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1 Introduction

The substantial social and economic costs of environmental degradation arising from cli-

mate change have been thoroughly detailed, amongst others, by Tol (2002a, 2002b) and

Stern (2008). For this matter, it should be of little surprise that the problem of global

warming is one of the most important topics in the current political debate. In recent

years, it became apparent that governments have to take measures to both mitigation, i.e.

decelerating climate change, and adaptation, i.e. coping with the consequences of altered,

less favorable environmental conditions (see, e.g., the Paris Agreement in United Nations,

2015). Interestingly, the discussion on policy implementation often quickly shifts to ques-

tions of financing and, thus, the impact of climate policy on the public budget balance.

On the one hand, there is hope for co-benefits, for instance, when revenues from carbon

pricing enable the decision maker to cut distortionary taxes on labor or capital (see, e.g.,

Goulder, 1995, and Proost and Van Regemorter, 1995, for the ‘double dividend’ theory)

or public debt. On the other hand, investments in adaptation technologies or subsidies

towards renewable energy production are generally expensive and put additional strains

on the public budget. These effects are of particular relevance, as many countries, not

only in Europe but worldwide, struggle with the sustainability of public finance in the

wake of the Great Recession and the Covid-19 pandemic.

This paper contributes to the discussion on the fiscal implications of climate policy.

We investigate the rather unexplored but – as argued above – highly policy relevant rela-

tion between emissions taxation and public debt. In doing so, we take a normative point

of view and address the following research question: when a tax is implemented not only

to satisfy public spending requirements, but also to lower greenhouse gas emissions and

internalize the associated environmental externality, will it create incentives to decrease or

increase the optimal level of public debt? At first glance, one might conjecture that taking

into account the internalization of environmental externalities will create additional tax

revenues that can be used to lower optimal public debt. However, the central insight of

our analysis is that the impact of the environmental externality on optimal public debt

may be of either sign, depending on whether the cumulative marginal environmental dam-

ages caused by one unit of emissions are decreasing or increasing over time and whether

the optimal tax rates are on the increasing or decreasing side of the Laffer curve.

In order to derive this insight, we employ Barro’s tax-smoothing approach (Barro,
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1979 and 1989) and adapt it to suit our requirements by introducing environmental exter-

nalities. We develop a two-period model, where a representative household consumes two

goods in each period, one of which pollutes the environment. Emissions are assumed to

accumulate over time as a stock and cause environmental damage. The household pays an

emissions tax upon consumption of the polluting good. The tax fulfills a dual role by, first,

internalizing an environmental externality and, second, providing funds for exogenously

given public expenditures. In addition, in the first period, spending requirements can be

met through issuing public debt which has to be repaid in the second period. Emissions

tax rates and public debt are set such that the household’s welfare is maximized.

For a better understanding, the detailed results from analyzing this model are visu-

alized in Table 1. As a benchmark, we first consider the case without an environmental

cumulative optimal optimal revenues and debt if τ1 and τ2 on ...

marginal damages tax rates ... increasing side of Laffer curve ... decreasing side of Laffer curve

MD1 = MD2 = 0 τ1 = τ2 R1 = R2

⇒ tax smoothing by optimal debt b

MD1 > MD2 > 0 τ1 > τ2 R1 > R2 R1 < R2

⇒ negative effect on optimal b ⇒ positive effect on optimal b

0 < MD1 < MD2 τ1 < τ2 R1 < R2 R1 > R2

⇒ positive effect on optimal b ⇒ negative effect on optimal b

MDt=cumulative marginal damages from period t consumption; τt = optimal tax rate in period t;

Rt = optimal tax revenue in period t; b = optimal public debt in period 1; t = 1, 2

Table 1: Main results

externality and, i.e. without marginal damages. In this case, optimal tax rates remain

constant over time in order to minimize the present value of the excess burden associ-

ated with taxation. Constant tax rates imply constant tax revenues and, thus, optimal

public debt is positive [negative] only if the expenditure requirement is larger [smaller] in

the first period than in the second period. This represents the traditional tax-smoothing

argument of public debt derived by Barro (1979, 1989). Starting from this benchmark,

we find that introducing an environmental externality may induce the optimal policy to

deviate from tax smoothing. If the cumulative marginal environmental damages from

first-period consumption are larger [smaller] than those from second-period consumption,

the first-period tax rate will be higher [lower] than the second-period tax rate as the

internalization incentive is stronger [weaker] in the first period. In addition, if both tax
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rates are on the increasing side of the Laffer curve, tax revenues in the first period are

larger [smaller] than those in the second period. Compared to the tax-smoothing level,

we therefore obtain a negative [positive] effect on the optimal level of public debt. For

example, if spending requirements are constant over time optimal public debt becomes

negative [positive]. This implication is inverted if both tax rates are on the decreasing

side of the Laffer curve. Then, tax revenues are larger [lower] in the second period and we

obtain a positive [negative] effect on the optimal level of public debt. We show that these

results hold independently of whether tax revenues from the Pigouvian internalization of

the environmental externality are already sufficient to finance the spending requirements

or whether optimal tax rates need to deviate from the Pigouvian level.

As an extension, we also take endogenous adaptation investments into account. The

decision maker can then choose to invest in a technology which requires upfront effort

in the first period and adapts the economy to better cope with pollution in the second

period. Thus, we further extend the model by adding an endogenous margin to public

spending, while the standard tax-smoothing analysis of Barro (1979, 1989) takes spending

requirements as exogenously given. Since adaptation investments alleviate the environ-

mental damages experienced from emissions, we move closer to the benchmark without

environmental externalities and the optimal tax rates turn out to deviate less from the

tax-smoothing principle. Hence, we find that adaptation will shrink the wedge between

first- and second-period tax rates previously induced by the environmental externality.

Yet, investing in the technology always creates an incentive to issue more debt in order to

finance adaptation effort in the first period. That is, if accumulating public debt [savings]

was optimal before, adaptation now leads to a higher total level of debt [lower savings].1

The plenitude of cases for which we derive results raises the question which combi-

nation of tax rate locations on the Laffer curve and cumulative damage curves is most

relevant. In the latter respect, we argue that, in the context of climate change, the cu-

1As a remark, note that the alleviating effect of adaptation on the deviation from tax-smoothing

tax rates intuitively also holds if adaptation reduces already the first-period damages, and not only the

second-period damages as assumed in our formal model. The reason is that the model then becomes even

closer to the benchmark case without an environmental externality. In contrast, if adaptation requires

investments not only in the first period but also in the second period, again in contrast to our formal

model, then intuitively the effect of adaptation on optimal debt may be reversed, if optimal adaptation

investments are larger in the second period than in the first period.
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mulative marginal damages from emissions might be higher in the first period. Many

greenhouse gases, especially carbon dioxide, are characterized by exceedingly long atmo-

spheric lifetimes and negligible decay rates (see for instance Archer et al., 2009). Hence,

the earlier a unit of the greenhouse gas is emitted, the larger are the cumulative damages

caused by this unit. The optimal emissions tax rates should then decrease over time.2

In contrast, it is less straightforward to determine whether emissions tax rates are more

likely to be located on the increasing or decreasing side of the Laffer curve. Frequently

cited, Trabandt and Uhlig (2011) provide empirical evidence suggesting that labor and

capital taxes are typically located on the increasing side of the Laffer curve. However, it is

not clear whether this finding can also be applied to other kinds of taxes. For instance, in

a recent study of the corporate income tax in Canada, Dahlby and Ferede (2018) obtain

much less consistent results regarding the location of the tax rate on the Laffer curve.

Even more important for our purposes, to the best of our knowledge there is no evidence

with regard to the Laffer curve of emissions taxes. Intuitively, if the internalization ob-

jective of such taxes outweighs revenue-raising incentives, the optimal tax rates may well

be found on the decreasing side of the Laffer curve. Yet, providing empirical evidence of

this assertion is beyond the scope of our analysis and left for future research.

We contribute to the literature in two ways. First, we add an additional dimension

to the discussion on the fiscal implications of climate policy. As already mentioned above,

the double dividend is a prominent topic in this strand of literature, see e.g. Bovenberg

and De Mooij (1994), Proost and Van Regemorter (1995), Parry (1995) and Goulder

(1995). This literature generally addresses the question whether an emissions tax, in

addition to its positive effect of increasing environmental quality by reducing emissions,

can also improve the efficiency of the tax system by reducing other distortionary taxes.

A related topic is discussed in the recent study by Franks et al. (2017). In a dynamic

general equilibrium model, these authors investigate whether emissions taxation attains

a higher welfare level than taxation of mobile capital, even if environmental externalities

are ignored. However, none of these papers examines the link between emissions taxation

and optimal public debt, which is the main contribution of our analysis.

Second, our paper introduces the issue of climate change into the literature on public

2Note that this conclusion is also consistent with the optimal tax path suggested by the Green Para-

dox analyzed in Sinn (2012), even though the Green Paradox is not analyzed within a tax-smoothing

framework, but in the context of the exploitation of non-renewable natural resources.
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debt. The existing literature can basically be divided into positive studies explaining

the accumulation of public debt, like the political economy models of, e.g., Persson and

Svensson (1989), Tabellini and Alesina (1990) and Woo (2003), and normative studies

investigating optimal public debt, like the tax-smoothing theory by Barro (1979, 1989).

Our analysis relates to the normative approach and, as already stated above, shows that

in the presence of a taxable, polluting consumption good, the optimal public deficit may

be non-zero, even if spending requirements are constant over time. To the best of our

knowledge, studies that explicitly investigate the relation between public debt and envi-

ronmental issues are scarce in the debt literature. As an exception, in a recent working

paper Boly et al. (2019) employ the concept of a stock of environmental quality to de-

rive a trade-off between public debt and ‘environmental debt’. Furthermore, Fodha and

Seegmuller (2014) examine the welfare effect of an environmental abatement policy which

may either be funded by tax revenues or public debt in a fully dynamic model. They find

that pollution abatement should not be conducted at the costs of increased debt when the

capital stock is low. Finally, ignoring emissions taxation, Catalano et al. (2020) investi-

gate the impact of fiscal policy on public investments in climate change adaptation. The

authors show that early debt-funded adaptation spending has a long-run beneficial effect

even though negatively affecting the debt-to-GDP ratio initially. While these papers also

investigate the link between public debt and environmental issues, none of them takes into

account the dual role of taxation as a means of financing public spending and correcting

environmental externalities. Hence, in contrast to our analysis, they cannot investigate

the implications of climate policy on the tax-smoothing role of public debt.

Our paper is organized as follows. In Section 2 we introduce the basic framework. In

Section 3, we analyze the optimal tax and debt policy. In Section 4, we investigate how

our findings are affected when the economy can adapt to pollution by means of investing

in an adaptation technology. The final section concludes the paper.

2 Model

2.1 Private Sector

We consider an economy with a representative household that lives for two periods, 1 and

2. In period t = 1, 2 the household consumes a composite good Y in quantity yt and a
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polluting good X in quantity xt. The household’s utility in period t is given by

ut = yt + V (xt), (1)

with V ′ > 0 and V ′′ < 0. Without loss of generality, we normalize the household’s

discount rate to zero, so the present value of the household’s utility reads w = u1 + u2.

In each period, the household receives an exogenous endowment of a numeraire good

normalized to one. We assume that goods Y and X can be produced from the endowment

by a one-to-one-technology. Hence, the prices of both goods are equal to one. Good Y is

untaxed, whereas good X is taxed by a unit tax with tax rate τt in period t. The household

may receive a lump-sum transfer zt from the government in period t. For simplicity, we

ignore private savings. The private budget constraint in period t is

yt + (1 + τt)xt = 1 + zt. (2)

Tax rates and lump-sum transfers are taken as given by the household. The household

chooses consumption in order to maximize the present value of its utility. Inserting (2)

into (1), the maximization problem can be written as

max
x1,x2

w =
∑
t=1,2

{
V (xt) + 1 + zt − (1 + τt)xt

}
.

The first-order condition with respect to xt reads

V ′(xt) = 1 + τt, t = 1, 2. (3)

This condition equates the household’s marginal utility to the after-tax price of good

X in period t. Hence, the household’s optimal consumption of good X in period t is

a function of the tax rate in period t. Formally, equation (3) implies xt = X(τt) with

X ′(τt) = 1/V ′′ < 0 and X ′′(τ) = −V ′′′/V ′′3 ≥ 0.3

2.2 Government

In addition to taxing good X, the government may raise revenues in the first period

through issuing public debt b which has to be repaid in the second period. As for the

3Here, we implicitly assume V ′′′ ≥ 0, which is satisfied, for example, if V is quadratic or if V is

monotone and has monotone derivatives. In the latter case, V ′′′ > 0 is implied by V ′ > 0 and V ′′ < 0.
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private discount rate, we normalize the interest rate on public debt to zero. Public policy

pursues two goals. First, revenues from taxation and debt are used to finance public

spending requirements in both periods. In the basic model, we follow the tax-smoothing

literature and assume exogenously given spending requirements g1 ≥ 0 and g2 ≥ 0 in

both periods. Second, the government uses taxation in order to internalize the pollution

externality caused by private consumption of good X. In period 1, this externality is

reflected by the damage function D1(x1) with D′1 > 0 and D′′1 ≥ 0. In period 2, the

damage function reads D2(x2 + γx1) with D′2 > 0, D′′2 ≥ 0 and γ ≥ 0. The parameter

γ allows distinguishing between flow pollution (γ = 0) and stock pollution (γ > 0).

Greenhouse gas emissions and climate change provide an example for the latter case.

Formally, the government’s welfare maximization problem can be stated as

max
{b,τt,zt}t=1,2

w =
∑
t=1,2

{
V [X(τt)] + 1 + zt − (1 + τt)X(τt)

}
−D1[X(τ1)]−D2[X(τ2) + γX(τ1)], (4)

subject to

τ1X(τ1) + b = g1 + z1, τ2X(τ2)− b = g2 + z2, (5)

z1 ≥ 0, z2 ≥ 0. (6)

According to (4), the government maximizes the present value of the household’s utility

net of environmental damages, taking into account the public budget constraints given

in (5) and the household’s consumption reactions determined by xt = X(τt). Moreover,

due to (6) we restrict the policy space to non-negative lump-sum transfers. The reason

is that we follow the tax-smoothing literature referred to in the introduction and focus

on the case where the government has to use distortionary taxation in order to meet its

spending requirements. If we would allow for negative transfers, the government would

have an incentive to use these transfers in order to finance the spending requirements in

a non-distortionary way. Note that we nevertheless need the transfers since, in contrast

to the previous tax-smoothing literature, in our framework tax revenues may exceed the

spending requirements due to the government’s second goal of internalizing the pollution

externality. Hence, in our framework the transfers only exist in order to redistribute back

potential excess revenues from the emissions tax in a non-distortionary way. As shown
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below, (6) will be binding – and z1 and z2 will vanish – in the (most realistic) case where

emissions tax revenues are not sufficient to finance the public spending requirements.

The solution to the government’s welfare maximization problem (4)–(6) can be char-

acterized with the help of the Lagrangian

L =
∑
t=1,2

{
V [X(τt)] + 1 + zt − (1 + τt)X(τt)

}
−D1[X(τ1)]−D2[X(τ2) + γX(τ1)]

+λ1[τ1X(τ1) + b− g1 − z1] + λ2[τ2X(τ2)− b− g2 − z2],

where λ1 and λ2 are the Lagrange multipliers associated with the budget constraint in

period 1 and period 2, respectively. The Kuhn-Tucker first-order conditions read

Lb = λ1 − λ2 = 0, (7)

Lτ1 = −X(τ1)−
{
D′1[X(τ1)] + γD′2[X(τ2) + γX(τ1)]

}
X ′(τ1)

+ λ1

[
X(τ1) + τ1X

′(τ1)
]

= 0, (8)

Lτ2 = −X(τ2)−D′2[X(τ2) + γX(τ1)]X
′(τ2) + λ2

[
X(τ2) + τ2X

′(τ2)
]

= 0, (9)

Lλ1 = τ1X(τ1) + b− g1 − z1 = 0, (10)

Lλ2 = τ2X(τ2)− b− g2 − z2 = 0, (11)

and the slackness conditions are

Lz1 = 1− λ1 ≤ 0, z1 ≥ 0, z1Lz1 = 0, (12)

Lz2 = 1− λ2 ≤ 0, z2 ≥ 0, z2Lz2 = 0, (13)

where in (8) and (9) we used (3). For the second-order conditions to be satisfied, the

determinant |H| of the bordered Hessian needs to be negative. We determine |H| in

Appendix A and will verify that |H| < 0 in all relevant cases considered below.

3 Optimal Tax and Debt Policy

To analyze the government’s welfare maximum characterized by conditions (7)–(13), we

first examine the public budget constraints (10) and (11). Adding both equations gives

the government’s intertemporal budget constraint

τ1X(τ1) + τ2X(τ2) = g1 + g2 + z1 + z2, (14)
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stating that the present value of tax revenues (LHS) has to be equal to the present value

of public spending and transfers (RHS). Subtracting (11) from (10) yields

b =
g1 − g2

2
+
τ2X(τ2)− τ1X(τ1)

2
+
z1 − z2

2
. (15)

In the subsequent analysis, we will use (15) in order to compute the optimal level of

public debt. Basically, the equation has the same meaning as in previous studies on tax

smoothing without pollution. The first term on the RHS shows the central tax-smoothing

argument: Public debt is used to equalize variations in exogenous public spending. The

reason is that without externalities the optimal tax policy minimizes the excess burden of

taxation by charging constant tax rates over time. Consequently, tax revenues also remain

constant such that the second term on the RHS vanishes. In contrast, we will show that

tax revenues may vary over time in our analysis with environmental externalities. Thus,

taxation can affect the optimal debt policy via the second term on the RHS of (15).4

Specifically, if tax revenues in the second period, τ2X(τ2), are larger than tax revenues

in the first period, τ1X(τ1), then the second term on the RHS of (15) is positive, providing

an additional rational for public debt. To determine tax revenues in period t associated

with the tax rate τt, we make use of the Laffer curve defined as

R(τt) = τtX(τt). (16)

We impose the following quite general assumption on the shape of the Laffer curve.

Assumption A1. The Laffer curve R(τ) is twice continuously differentiable and satisfies

R′(τ) = X(τ)+τX ′(τ) T 0 if and only if τ S τ̄ with τ̄ > 0, R′′(τ) = 2X ′(τ)+τX ′′(τ) < 0,

R(0) = 0 and lim
τ→∞

R(τ) < (g1 + g2)/2 < R(τ̄).

This assumption states that the Laffer curve is inverted u-shaped with a unique maximum

at the positive tax rate τ̄ and vanishing tax revenues at a zero tax rate. The latter

properties in Assumption A1 ensure that maximal revenues at τ̄ are more than enough to

4As stated above, in the (most realistic) case where emissions tax revenues are not sufficient to fund

the public spending requirements, the transfers z1 and z2 are zero, so they have no impact on public debt

via the third term on the RHS of (15). If taxation revenues exceed the spending requirements, optimal

transfers will turn out to be positive, but only the sum z1 + z2 will be determined by the optimality

conditions. Since we introduced the transfers only to redistribute excessive tax revenues, it is natural to

assume z1 = z2 in the case with positive transfers in order to abstract from further effects on public debt.
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meet the spending requirements. Together with the inverted u-shape of the Laffer curve,

this implies that there are additional tax rates τ ≷ τ̄ on both sides of the Laffer curve

which generate sufficient revenues for funding total public spending g1 + g2.

Next, we rewrite the first-order conditions of welfare maximization in order to identify

conditions under which tax rates and revenues differ across the two periods. From (7) we

obtain λ1 = λ2 =: λ. Using this in (8) and (9) yields

λ =
X(τ1) +

{
D′1[X(τ1)] + γD′2[X(τ2) + γX(τ1)]

}
X ′(τ1)

X(τ1) + τ1X ′(τ1)
, (17)

λ =
X(τ2) +D′2[X(τ2) + γX(τ1)]X

′(τ2)

X(τ2) + τ2X ′(τ2)
, (18)

Since λ ≥ 1 > 0 from the slackness conditions (12) and (13), the respective nominator and

denominator on the RHS of (17) and (18) must have the same sign. They may be either

both positive or both negative, in each of these equations. The implications, however,

depend on whether the slackness conditions are binding or not. As a benchmark, we start

with the case where consumption does not cause environmental damages and obtain the

following result, which is proven in Appendix B.

Proposition 1. If D1 ≡ D2 ≡ 0, then the optimal policy is characterized by z1 = z2 = 0,

τ1 = τ2 = τ and b = (g1 − g2)/2, where τ is implicitly determined by τX(τ) = (g1 + g2)/2

and lies on the increasing side of the Laffer curve R(τ).

Proposition 1 replicates the results from the previous tax-smoothing literature: If good

X does not cause externalities, the only purpose of taxation is to meet the spending

requirements. Since taxation is distortionary, the government chooses tax rates that

minimize the excess burden. The minimum is obtained when the tax rates and, thus,

tax revenues are constant over time (τ1X(τ1) = τ2X(τ2)). Due to the excess burden of

taxation, the government will not generate more revenues than required for exogenous

spending, so transfers are zero in both periods (z1 = z2 = 0). As a result, equation (15)

reduces to b = (g1 − g2)/2, i.e. public debt or savings will only occur if the exogenous

spending requirements are non-constant over time. More precisely, a strictly positive level

of debt [savings] is optimal if spending is larger [lower] in period 1 than in period 2.

Having established the classical tax-smoothing benchmark, we can now turn to the

case with externalities. Due to (17) and (18), for D1, D2 6= 0 there are two important
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differences to the case without externalities. First, λ may be equal to one such that the

slackness conditions are not binding and, second, tax rates may be on the decreasing side

of the Laffer curve. To ease exposition, in the subsequent analysis we always assume both

tax rates are on the same side of the Laffer curve.5 Starting with the binding case, we

obtain the following proposition that is proven in Appendix C.

Proposition 2. If D1, D2 6= 0 and λ > 1, then the optimal policy is characterized by

(i) z1 = z2 = 0.

(ii) τ1 T τ2 if and only if D′1 + γD′2 T D′2.

(iii) If D′1 + γD′2 < −x1/X ′1 and D′2 < −x2/X ′2, then τ1 and τ2 are both on the increasing

side of the Laffer curve and τ1 > D′1 + γD′2 and τ2 > D′2. Moreover,

b T
g1 − g2

2
⇔ D′1 + γD′2 S D′2.

(iv) If D′1 + γD′2 > −x1/X ′1 and D′2 > −x2/X ′2, then τ1 and τ2 are both on the decreasing

side of the Laffer curve and τ1 < D′1 + γD′2 and τ2 < D′2. Moreover,

b T
g1 − g2

2
⇔ D′1 + γD′2 T D′2.

Let us first take a look at the optimal tax-transfer policy characterized in parts (i) and (ii)

of Proposition 2. In order to understand these results, notice that D′1 + γD′2 and D′2 re-

flect the Pigouvian levels of emissions taxation, i.e. the cumulative marginal environmental

damages that one unit of emissions from first-period consumption and second-period con-

sumption, respectively, causes over its whole lifetime in the atmosphere. If the slackness

conditions are binding (λ > 1), then taxing good X according to these Pigouvian levels

would not generate enough tax revenues to satisfy the spending requirements. Hence, if

the tax rates are on the increasing [decreasing] side of the Laffer curve, the government has

to set them above [below] the Pigouvian levels in order to generate more tax revenues and

to meet the spending requirements (formally, this property is contained in part (iii) [part

(iv)] of Proposition 2). As shown in part (i) of Proposition 2, transfers z1 and z2 are not

needed in this case, since there are no excess tax revenues from Pigouvian internalization

of the environmental externalities. Nevertheless, according to part (ii) of Proposition 2,

optimal tax rates are positively correlated with the cumulative marginal damages in the

5From the intuition behind these results, which we intensively discuss below Proposition 2, it should

become immediately obvious what happens if both tax rates are on different sides of the Laffer curve.
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sense that the tax rate is always higher in the period in which consumption of good X is

associated with larger cumulative marginal damages, even though tax rates deviate from

their Pigouvian level and are thus not equal to the cumulative marginal damages.

The consequences of this emissions tax policy for optimal public debt is characterized

in parts (iii) and (iv) of Proposition 2. The basic insight from these results is that the

presence of environmental externalities can influence the optimal debt level as b may

deviate from (g1−g2)/2, which is the optimal debt level under tax smoothing in the absence

of externalities. To illustrate this, first consider the case where cumulative marginal

damages are larger in the first than in the second period (D′1 +γD′2 > D′2), so the optimal

tax rate is higher in period 1 than in period 2 (τ1 > τ2) according to part (ii) of Proposition

2. This situation is displayed in Figure 1.

τ̂2 τ̂1 τ̃1τ̃2

R(τ)

τ

b < g1−g2
2

b > g1−g2
2

Figure 1: The Laffer curve and optimal public debt

If the cumulative marginal damages are relatively low (D′1 + γD′2 < −x1/X ′1 and D′2 <

−x2/X ′2), we obtain part (iii) of Proposition 2 and optimal tax rates like (τ̂1, τ̂2) on the

increasing side of the Laffer curve. Tax revenues are then larger in period 1 than in

period 2, implying a negative effect on the optimal level of debt, i.e. b falls short of the

tax-smoothing level (g1 − g2)/2. In contrast, if the cumulative marginal damages are

relatively high (D′1 + γD′2 > −x1/X ′1 and D′2 > −x2/X ′2), part (iv) of Proposition 2 holds

and the optimal tax rates are represented by (τ̃1, τ̃2) on the decreasing side of the Laffer

curve. Tax revenues are then larger in period 2 than in period 1 and we obtain a positive

effect on the optimal level of debt, i.e. b is above the tax-smoothing level (g1 − g2)/2.

Not displayed in Figure 1 is the case where the cumulative marginal damages are smaller

in the first than in the second period (D′1 + γD′2 < D′2). Accordingly to part (ii) of

12



Proposition 2, the optimal tax rate is then larger in period 2 than in period 1 and all the

results illustrated in Figure 1 are reversed.

To sum up, the impact of environmental externalities on optimal public debt depends

on the time path of cumulative marginal damages, on the one hand, and the tax rates’

location on the Laffer curve, on the other hand. We obtain four cases with different

implications for optimal public debt. In order to illustrate that for each of these four

cases there is a non-empty set of parameter constellations satisfying the conditions of the

respective case, we present a numerical example with a linear-quadratic specification of

our model. The utility function for good X in period t is given by V (xt) = (1 + α)xt −
βx2t/2 with α, β > 0. The damage function in period 1 and 2 reads D1(x1) = δ1x1 and

D2(x2 + γx1) = δ2(x2 + γx1), respectively, with δ1, δ2 > 0. The household’s first-order

condition (3) then yields the demand function X(τt) = (α − τt)/β. The Laffer curve in

period t is R(τt) = (ατt − τ 2t )/β with a maximum at τt = α/2 and zero tax revenues at

τt = 0 and τt = α. In the following, we present only numerical examples in which the

optimal tax rates are between 0 and α. This ensures positive consumption levels and

tax revenues in both periods. The second-order conditions for a welfare maximum are

always satisfied under the linear-quadratic specification. Details on this and the numerical

examples displayed in Table 2 are relegated to Appendix D.

Parameter values Optimal Policy Side of Laffer Marg. damages

α β γ δ1 δ2 g1 g2 τ1 τ2 b λ curve: τt T α/2 δ1 + γδ2 T δ2

5.0 1.0 1.0 0.1 0.1 1.0 1.0 0.26 0.16 −0.22 1.01 increasing decreasing

5.0 1.0 0.1 0.1 0.2 1.0 1.0 0.17 0.25 0.18 1.01 increasing increasing

1.0 1.0 0.1 0.9 0.9 0.2 0.2 0.75 0.70 0.01 1.50 decreasing decreasing

1.0 1.0 0.1 0.7 0.9 0.2 0.2 0.69 0.76 −0.02 1.28 decreasing increasing

Table 2: Numerical examples

Note that in all these examples the slackness conditions are binding (since λ > 1) and

the tax-smoothing level of debt would be zero (since g1 = g2). In the first two examples,

optimal tax rates are below α/2 and, thus, on the increasing side of the Laffer curve.

In the first [second] example, cumulative marginal damages are decreasing [increasing],

since δ1 + γδ2 is larger [smaller] than δ2, implying that it is welfare maximizing to issue

a negative [positive] level of debt. The third and fourth example may be interpreted
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analogously. Hence, the numerical exercise in Table 2 provides examples for each of the

four cases identified in Proposition 2.

While this illustrates that each of the four cases is possible from a theoretical per-

spective, it is worthwhile to establish which of these cases is most likely for policy advise.

As already intensively discussed in the introduction, a falling time path of the cumulative

marginal damages seems plausible, at least in case of climate change. In terms of our

formal model, γ is then close to one and D′1 +γD′2 = D′1 +D′2 > D′2. This reflects the idea

that the earlier a unit of greenhouse gas is emitted, the larger are the cumulative damages

caused by this unit. Given the mixed empirical results with respect to the Laffer curve

of labor, capital and corporate taxes (e.g. Trabandt and Uhlig, 2011 and Dahlby and

Ferede, 2018) and the non-availability of Laffer curve estimates for emissions taxes, it is a

more intricate puzzle to judge whether emissions tax rates are located on the increasing

or decreasing side of the Laffer curve. As the focus of this paper is on the theoretical

analysis of the relation between environmental externalities and optimal public debt, we

leave the empirical analysis of this relation for future research.

Finally, we briefly turn to the scenario where the slackness conditions are non-binding

(λ = 1) and tax revenues from the Pigouvian internalization of the externality are already

sufficient to meet the government’s spending requirements. While this scenario seems to

be less likely in practice, it is useful from a theoretical point of view since the basic insights

from Proposition 2 will turn out to generalize to the non-binding case. Appendix E proves

Proposition 3. If D1, D2 6= 0 and λ = 1, then the optimal policy is characterized by

(i) z1 = z2 =
(D′1 + γD′2) ·X(D′1 + γD′2) +D′2 ·X(D′2)

2
− g1 + g2

2
> 0.

(ii) τ1 = D′1 + γD′2 T D′2 = τ2 if and only if D′1 + γD′2 T D′2.

(iii) If D′1 + γD′2 < −x1/X ′1 and D′2 < −x2/X ′2, then τ1 and τ2 are both on the increasing

side of the Laffer curve. Moreover

b T
g1 − g2

2
⇔ D′1 + γD′2 S D′2.

(iv) If D′1 + γD′2 > −x1/X ′1 and D′2 > −x2/X ′2, then τ1 and τ2 are both on the decreasing

side of the Laffer curve. Moreover

b T
g1 − g2

2
⇔ D′1 + γD′2 T D′2.
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As becomes obvious from parts (iii) and (iv) of Proposition 3, with respect to the optimal

debt level we obtain qualitatively the same results as in Proposition 2: Depending on

whether the optimal tax rates are on the increasing or decreasing margin of the Laffer curve

and depending on the relation of the cumulative marginal damages in the two periods,

introducing externalities into the tax-smoothing analysis may increase or decrease the

optimal debt level. The difference to Proposition 2 is that the optimal tax rates are now

at their Pigouvian levels (equal to the cumulative marginal damages) and that transfers

are positive. The reason is that Pigouvian internalization of the externality requires taxes

that are high enough to overfulfill the spending requirements. Hence, positive transfers

amount to the difference between tax revenues and the exogenous spending requirement.6

4 Adaptation to Climate Change

So far, we assumed that the government’s expenditures g1 and g2 were exogenously given

and unproductive. In this section, we extend our basic model and take into account the

option to invest in an adaptation technology today that reduces the future welfare loss

from pollution damages. Formally, we suppose that the government has the opportunity

to invest a in period 1, funding the adaptation technology T (a) in period 2 with positive

but decreasing returns, i.e. T ′(a) > 0 and T ′′(a) < 0. In order to reduce the number

of possible cases, we assume in this section that the slackness conditions are binding

and the revenues from Pigouvian internalization are not yet enough to finance public

expenditures (z1 = z2 = 0). Moreover, we ignore the traditional tax-smoothing argument

of public debt by assuming that the exogenously given spending requirements are constant

over time (g1 = g2 = g). In (5), the first-period budget constraint therefore changes to

τ1X1(τ1)+b = g+a, while the second-period budget constraint now reads τ2X2(τ2)−b = g.

Marginal damages in period 1 are still equal to D1(x1), while marginal damages in period 2

are now given by the damage function D2[x2+γx1, T (a)] with D2,X := ∂D2/∂(x2+γx1) >

0, D2,XX := ∂2D2/∂(x2+γx1)
2 ≥ 0, D2,T := ∂D2/∂T (a) < 0, D2,TT := ∂2D2/∂T (a)2 ≥ 0.

Hence, adaptation investments in period 1 improve the adaptation technology in period 2

6As for the binding case, it is straightforward to identify numerical examples for each of the four cases

contained in Proposition 3. In fact, we obtain such examples, if in Table 2 we simply replace g1 = g2 = 1

by g1 = g2 = 0.1 in the first two rows and g1 = g2 = 0.2 by g1 = g2 = 0.02 in the last two rows. Details

on these numerical examples can be obtained upon request.
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that, in turn, reduces second-period damages at non-increasing rates. This setup reflects

that adaptation investments often have no instantaneous effect, either because the scale of

the project requires some time lag or because adaptation will only become effective when

global warming has exceeded a critical level. For instance, T (a) can represent construction

of sea defense walls protecting lowlands from rising sea levels.

The government again maximizes the household’s welfare subject to the modified

public budget constraints specified above and subject to the non-negativity constraint

a ≥ 0. In Appendix F, we show that the welfare-maximizing investment level is strictly

positive if the adaptation technology satisfies the Inada condition lima→0 T
′(a) = ∞. In

the following, we proceed on the assumption that this condition is satisfied and that the

optimal adaptation investment level is a > 0. We now examine how a positive investment

level affects the deviation of τ1 and τ2 from the tax-smoothing principle as well as the

effect on optimal public debt b, in comparison to a situation where adaptation is not

available. In order to ensure tractability of this analysis, we confine ourselves to the linear-

quadratic example already used in the previous section. Thus, consumption demand and

the Laffer curve in period t are still given by X(τt) = (α−τt)/β and R(τt) = (ατt−τ 2t )/β,

respectively. Taking adaptation into account, the damage functions are now specified as

D1(x1) = δ1x1 and D2

[
x2 +γx1, T (a)

]
= δ2

[
x2 +γx1−

√
a
]
, so the adaptation technology

is specified as T (a) = −
√
a. Notice that, for this specification, we obtain the optimal

policy in the absence of adaptation as a special case, if in the first-order conditions of the

welfare maximum we ignore the optimality condition for a and set a = 0 in the remaining

optimality conditions. Hence, the impact of adaptation a on the optimal policy (τ1, τ2, b)

can be determined by running a comparative static analysis of the welfare maximum with

respect to a and letting a increase from 0 (adaptation not available) to a strictly positive

value a > 0 (adaptation available). Details on this analysis can be found in Appendix G.

Subtracting the second-period budget τ2X2(τ2)− b = g from the first-period budget

τ1X1(τ1) + b = g + a and using R(τt) = τtX(τt), we obtain the central equation

b =
a

2
+
R(τ2)−R(τ1)

2
. (19)

According to (19), adaptation exerts a direct positive effect on optimal debt as public debt

is used to distribute the costs of adaptation over both periods. In addition, adaptation

also influences the optimal tax rates τ1 and τ2 such that we observe an indirect effect via
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changes in the tax revenues R(τ1) and R(τ2). Differentiating (19), the overall effect is

db

da
=

1

2
+

1

2

[
R′(τ2)

dτ2
da
−R′(τ1)

dτ1
da

]
. (20)

Equation (20) shows that the effect of adaptation on optimal debt will typically devi-

ate from 1/2, i.e. from an equal distribution of adaptation costs across both periods. In

general, the bracketed term in (20) indicates that optimal debt will additionally be influ-

enced by an unequal change in the tax revenues in each period. For the linear-quadratic

specification, we show in Appendix G that the change in period t tax revenues equals

dR(τt)

da
=

dτt
da
R′(τt) =

R′(τt)
2

R′(τ1)2 +R′(τ2)2
. (21)

Substituting (21) into (20) yields

db

da
=

1

1 + [R′(τ1)/R′(τ2)]2
. (22)

From this expression we already see that the overall effect of adaptation on optimal debt

will always be positive. However, whether the indirect effect via changes in tax revenues

amplifies or mitigates the direct effect, i.e. whether the total effect is larger or smaller

than 1/2, depends on the relation between R′(τ1) and R′(τ2), thus, on the exact location

of the optimal tax rates on the Laffer curve. In Appendix G we prove

Proposition 4. Consider a linear-quadratic specification of the model with adaptation,

i.e. assume V (xt) = (1 + α)xt − βx2t/2, D1(x1) = δ1x1 and D2

[
x2 + γx1, T (a)

]
= δ2

[
x2 +

γx1 −
√
a
]

with α, β, δ1, δ2 > 0. Optimal adaptation is then strictly positive (a > 0), and

τ1 T τ2 if and only if δ1 + γδ2 T δ2, as in the version of the model without adaptation.

The impact of adaptation on optimal fiscal policy is described by the following statements:

(i)
dR(τt)

da
> 0 for t = 1, 2.

(ii) If τ1 and τ2 are both on the increasing side of the Laffer curve, then

db

da


∈
(
1
2
, 1
)
,

= 1
2

∈
(
0, 1

2

)
,

and
dR(τ1)

da
− dR(τ2)

da


< 0, if δ1 + γδ2 > δ2,

= 0, if δ1 + γδ2 = δ2,

> 0, if δ1 + γδ2 < δ2.
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(iii) If τ1 and τ2 are both on the decreasing side of the Laffer curve, then

db

da


∈
(
0, 1

2

)
,

= 1
2

∈
(
1
2
, 1
)
,

and
dR(τ1)

da
− dR(τ2)

da


> 0, if δ1 + γδ2 > δ2,

= 0, if δ1 + γδ2 = δ2,

< 0, if δ1 + γδ2 < δ2.

Notice first that the insights from part (ii) of Proposition 2 generalize to our model spec-

ification with endogenous adaptation. That is, optimal emissions tax rates are higher in

the period where consumption emissions causes the higher cumulative marginal damages

(τ1 T τ2 if and only if δ1 +γδ2 T δ2). Optimal adaptation investments are strictly positive

(a > 0), since the adaptation technology T (a) = −
√
a satisfies the Inada condition.

The most important insight from Proposition 4 regards the impact of adaptation on

optimal fiscal policy. In order to finance the additional expenditures for optimal adapta-

tion, the government increases optimal tax revenues in both periods, see dR(τt)/da > 0

in part (i) of Proposition 4, as well as optimal debt, see db/da > 0 in all cases of parts

(ii) and (iii) of Proposition 4. Moreover, adaptation reduces the deviation of the optimal

tax rates from the tax-smoothing principle, i.e. tax rates (or, equivalently, tax revenues)

in the two periods move closer together. This can be seen from the sign of the change in

the difference between tax revenues, i.e. dR(τ1)/da − dR(τ2)/da in parts (ii) and (iii) of

Proposition 4, which depends on the location of the tax rates on the Laffer curve and the

development of the cumulative marginal damages. The sign of this expression also deter-

mines whether the direct effect of adaptation on optimal debt is amplified or mitigated

by the indirect effect, i.e. whether debt increases by more or less than 1/2.

To provide an example, we focus on one case from parts (ii) and (iii) of Proposition 4

and leave the discussion of the other cases to the reader.7 Suppose optimal tax rates are on

the decreasing side of the Laffer curve and cumulative marginal damages are decreasing,

so we are in part (iii) of Proposition 4 with δ1 + γδ2 > δ2. This case is illustrated in

Figure 2. Due to δ1 + γδ2 > δ2, the government chooses a higher tax rate in the first

period than in the second period, τ1 > τ2, and issues a positive level of debt, b > 0.

The optimal tax rates in the absence of adaptation are simply denoted by τ1 and τ2. If

adaptation becomes available, the government reduces both tax rates from τ1 and τ2 to τa1

7We can again provide a numerical example for each of the several cases contained in Proposition 4

in order to show that each case is satisfied by a non-empty set of parameter constellations. Details on

this numerical exercise can be obtained from the authors upon request.
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dR(τ2)

dR(τ1)

R(τ)

τ

b > 0

Figure 2: Effect of adaptation on tax rates and public debt

and τa2 , respectively, in order to increase tax revenues in both periods. However, investing

in adaptation leads to a more significant drop in the first-period tax rate. This implies

a larger gain of tax revenues in period 1, see dR(τ1)/da − dR(τ2)/da > 0 in part (iii) of

Proposition 4, and the difference in tax revenues, R(τ2)−R(τ1), falls. The opportunity of

adaptation therefore moves optimal taxation closer to the tax-smoothing principle. The

intuition is that adaptation reduces second-period environmental damages, so overall the

importance of pollution is reduced and we are closer to a world without externalities.

Remember that, nevertheless, optimal public debt increases due to the direct financing

effect of adaptation investment. Under the conditions of Figure 2, this direct effect is

mitigated by the indirect effect, since optimal debt is positive and the difference between

first- and second-period tax revenues decreases. Hence, adaptation increases optimal debt

by less than 1/2, as shown by db/da ∈ (0, 1/2) in part (iii) of Proposition 4.

5 Conclusion

In this paper, we introduce a taxable emissions externality into the standard tax-smoothing

framework of public debt. When the government levies an emissions tax not only to raise

funds for public expenditures but also in order to restrict private consumption of a pol-

luting good, adhering to a balanced budget rule is no longer optimal even if spending

requirements are constant over time. Instead, running a deficit at the end of the first

period is welfare maximizing either if the tax rates are on the increasing side of the Laf-
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fer curve and cumulative marginal damages from pollution increase over time or if the

tax rates are on the decreasing side of the Laffer curve while marginal damages decrease

over time. In contrast, for constant spending requirements public savings turn out to

be optimal if the tax rates are on the increasing side of the Laffer curve and cumulative

marginal damages are decreasing or if the tax rates are on the decreasing side of the Laffer

curve and cumulative marginal damages are increasing. In either of these cases, the opti-

mal policy prescribes non-constant tax rates and a non-balanced public budget, deviating

from the tax-smoothing principle. In an extension, we introduce adaptation to climate

change as an endogenous spending margin. As this technology attenuates environmental

damages, we move closer to the tax-smoothing solution with weaker incentives to impose

non-constant tax rates. Nevertheless, investments in the adaptation technology always

create an additional incentive to increase public debt.

While our paper provides a theoretical analysis of the relation between environmental

externalities and optimal public debt, it is an interesting and important task for future

research to empirically assess this relation. In terms of our analysis, it is of particular

importance to estimate Laffer curves for emissions taxes and to find out on which side

of the Laffer curve optimal tax rates are located. In addition, it is likewise important to

assess the time path of cumulative marginal environmental damages. Empirical insights

on the Laffer curve of emissions taxes and the cumulative marginal damages can then

immediately be applied to our analysis, in order to provide guidance for policy makers

whether they should optimally increase or decrease public debt as a response to a more

intensive use of emissions taxation. Such an empirical analysis is comprehensive and,

thus, beyond the scope of the present paper and left for future research.
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Appendix

(A) Determinant of the bordered Hessian of (7)–(11). The bordered Hessian H of the system

of equations (7)–(11) can be written as

H =



Lλ1λ1 Lλ1λ2 Lλ1b Lλ1τ1 Lλ1τ2

Lλ2λ1
Lλ2λ2

Lλ2b Lλ2τ1 Lλ2τ2

Lbλ1
Lbλ2

Lbb Lbτ1 Lbτ2

Lτ1λ1 Lτ1λ2 Lτ1b Lτ1τ1 Lτ1τ2

Lτ2λ1
Lτ2λ2

Lτ2b Lτ2τ1 Lτ2τ2



=



0 0 1 x1 + τ1X
′
1 0

0 0 −1 0 x2 + τ2X
′
2

1 −1 0 0 0

x1 + τ1X
′
1 0 0 Lτ1τ1 −γD′′

2X
′
1X

′
2

0 x2 + τ2X
′
2 0 −γD′′

2X
′
1X

′
2 Lτ2τ2


, (23)

with

Lτ1τ1 = −X ′
1 − (D′

1 + γD′
2)X ′′

1 − (D′′
1 + γ2D′′

2 )X ′2
1 + λ1(2X ′

1 + τ1X
′′
1 ), (24)

Lτ2τ2 = −X ′
2 −D′

2X
′′
2 −D′′

2X
′2
2 + λ2(2X ′

2 + τ2X
′′
2 ), (25)

and xt = X(τt),X
′
t := X ′(τt), X

′′
t := X ′′(τt), D

′
t := D′(xt) and D′′

t := D′′(xt). Calculating the determi-

nant of H with standard methods gives

|H| = (x1 + τ1X
′
1)2Lτ2τ2 + (x2 + τ2X

′
1)2Lτ1τ1 + 2γ(x1 + τ1X

′
1)(x2 + τ2X

′
2)D′′

2X
′
1X

′
2. (26)

(B) Proof of Proposition 1. From D1 ≡ D2 ≡ 0 and (17) and (18) we obtain

λ = X(τ1)/[X(τ1) + τ1X
′(τ1)], λ = X(τ2)/[X(τ2) + τ2X

′(τ2)]. (27)

Since λ ≥ 1 > 0 and X(τt) > 0, it follows X(τt) + τtX
′(τt) > 0 for t = 1, 2. Hence, in each period the

optimal tax rate is on the increasing side of the Laffer curve. As X ′(·) < 0, we have X(τt) + τtX
′(τt) <

X(τt) and therefore (27) implies λ > 1 and z1 = z2 = 0 by the slackness conditions (12) and (13).

Moreover, (27) shows that τ1 and τ2 are determined by the same equation implying τ1 = τ2 = τ . Inserting

this into the intertemporal budget constraint (14) gives τX(τ) = (g1 + g2)/2. Finally, substituting

τ1 = τ2 = τ and z1 = z2 = 0 into (15) yields b = (g1 − g2)/2.

22



(C) Proof of Proposition 2. Part (i) immediately follows from λ > 1, (12) and (13). In order to

prove part (ii), rewrite (17) and (18) as

F (τ1) = G1(τ1, τ2), F (τ2) = G2(τ2, τ1), (28)

with

F (τ) := τ − 1− λ
λ

X(τ)

X ′(τ)
, F ′(τ) := 1− 1− λ

λ

[X ′(τ)]2 −X(τ)X ′′(τ)

[X ′(τ)]2
T 0, (29)

and

G1(τ1, τ2) :=
D′

1[X(τ1)] + γD′
2[X(τ2) + γX(τ1)]

λ
,

∂G1(τ1, τ2)

∂τ1
=

{
D′′

1 [·] + γ2D′′
2 [·]
}
X ′(τ1)

λ
≤ 0, (30)

G2(τ2, τ1) :=
D′

2[X(τ2) + γX(τ1)]

λ
,

∂G2(τ2, τ1)

∂τ2
=
D′′

2 [·]X ′(τ2)

λ
≤ 0 (31)

where the signs of ∂G1(τ1, τ2)/∂τ1 and ∂G2(τ2, τ1)/∂τ2 follow from D′′
t [·] ≥ 0 and X ′(τt) < 0. Hence, G1

and G2 are non-increasing functions in τ1 and τ2, respectively, while F (τ) may be increasing or decreasing

in its only argument τ . Consider first the case where F (τ) is increasing in τ . This case is illustrated in

Figure 3. In the left panel of this figure, we consider the case where τ1 and τ2 are such that D′
1+γD′

2 > D′
2

τ

G1(τ, τ2)

G2(τ, τ1)

F (τ)

τ1τ2
τ

G2(τ, τ1)

G1(τ, τ2)

F (τ)

τ2τ1

Figure 3: Proof of Proposition 2 part (ii)

and, thus, G1(τ, τ2) lies above G2(τ, τ1). It immediately follows that τ1 > τ2. In the right panel, τ1 and

τ2 are such that D′
1 + γD′

2 < D′
2 and G1(τ, τ2) lies below G2(τ, τ1). Hence, we obtain τ1 < τ2. If τ1

and τ2 are such that D′
1 + γD′

2 = D′
2, then G1(τ, τ2) and G2(τ, τ1) are identical and we obtain τ1 = τ2

(not displayed in Figure 3). The same line of reasoning applies if the function F (τ) is decreasing but not

steeper than G1(τ, τ2) and G2(τ, τ1) (also not displayed in Figure 3). This completes the proof of part

(ii). Note that it is not possible that F (τ) is decreasing and steeper than G1(τ, τ2) and G2(τ, τ1). In this

case, it can be shown that Lτ1τ1 > 0 and Lτ2τ2 > 0 and, thus, the bordered Hessian is |H| > 0, i.e. the

second-order conditions of welfare maximization are violated.8

8We can rewrite (25) as Lτ2τ2 = (2λ2 − 1)X ′
2 −D′′

2X
′2
2 − (D′

2 − λ2τ2)X ′′
2 . From (9) we obtain D′

2 −
λ2τ2 = (λ2 − 1)X2/X

′
2. Inserting this expression into the second derivative of the Lagrangian gives
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Next turn to part (iii). If D′
1 + γD′

2 < −x1/X ′
1 and D′

2 < −x2/X ′
2, (17) and (18) imply x1 +

τ1X
′(τ1) > 0 and x2 + τ2X

′(τ2) > 0, i.e. both tax rates are on the increasing side of the Laffer curve.

Moreover, rearranging (17) and (18) in this case gives τ1 > D′
1 + γD′

2 and τ2 > D′
2. Taking into account

part (ii) and that both tax rates are on the increasing side of the Laffer curve, we obtain τ1X(τ1) S τ2X(τ2)

if and only if D′
1 +γD′

2 S D′
2. Using this together with z1 = z2 = 0 in (15) proves the result with respect

to optimal debt b in part (iii). Finally, the proof of part (iv) is perfectly analogous to that of part (iii).

(D) Details on the numerical examples in Table 2. Under the linear-quadratic specification and

binding slackness conditions (z1 = z2 = 0), the intertemporal budget constraint (14) becomes

ατ1 − τ21
β

+
ατ2 − τ22

β
= g1 + g2. (32)

The function for optimal debt (15) equals

b =
g1 − g2

2
+
ατ2 − τ22 − (ατ1 − τ21 )

2β
. (33)

The first-order conditions (17) and (18) for welfare maximization can be written as

λ =
α− τ1 − δ1 − γδ2

α− 2τ1
, λ =

α− τ2 − δ2
α− 2τ2

. (34)

For a given parameter constellation (α, β, γ, δ1, δ2, g1, g2), we solve the system of equations (32)–(34) with

respect to the optimal policy (τ1, τ2, b, λ) with the help of the software Mathematica. In order to prove

the second-order conditions note that from (24) and (25) we obtain

Lτ1τ1 = Lτ2τ2 =
1− 2λ

β
< 0 (35)

since λ > 1. The determinant of the bordered Hessian (26) turns into

|H| = 1− 2λ

β3

[
(α− 2τ2)2 + (α− 2τ1)2

]
< 0. (36)

Hence, under the linear-quadratic specification of our model, the second-order conditions of welfare

maximization are always satisfied.

(E) Proof of Proposition 3. For λ = 1 equation (17) and (18) can be written as

x1 + (D′
1 + γD′

2) ·X ′
1

x1 + τ1X ′
1

= 1 =
x2 +D′

2 ·X ′
2

x2 + τ2X ′
2

, (37)

Lτ2τ2 =
[
(2λ2 − 1)(X ′

2)2 − D′′
2X

′3
2 + (1 − λ2)X2X

′′
2

]/
X ′

2. If F (τ) is decreasing and steeper than G2, it

is straightforward to show with the help of (29) and (31) that the bracket term in Lτ2τ2 is negative and,

thus, Lτ2τ2 > 0. In the same way we can show Lτ1τ1 > 0 if F (τ) is decreasing and steeper than G1. Using

theses signs in (26) and taking into account that we focus on the case where both tax rates are on the

same side of the Laffer curve, i.e. sign{x1 + τ1X
′
1} = sign{x2 + τ2X

′
2}, we obtain |H| > 0.
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It follows that the optimal tax rates are τ1 = D′
1 +γD′

2 and τ2 = D′
2 which proves part (ii) of Proposition

3. For D′
1+γD′

2 < −x1/X ′
1 and D′

2 < −x2/X ′
2, equation (37) implies that τ1 and τ2 are on the increasing

side of the Laffer curve. As we assume z1 = z2, the optimal debt level in (15) becomes

b =
g1 − g2

2
+
D′

2 ·X(D′
2)− (D′

1 + γD′
2) ·X(D′

1 + γD′
2)

2
. (38)

Since the tax rates are on the increasing side of the Laffer curve, we immediately obtain the result for b

in part (iii), which completes the proof of part (iii). The proof of part (iv) is analogous. Finally, inserting

(38) into (10) and (11) and solving with respect to z1 and z2 shows part (i) of Proposition 3.

(F) Proof of an interior solution with respect to welfare-maximizing adaptation. The La-

grangian for the modified welfare-maximization problem in the presence of adaptation reads

L =
∑
t=1,2

{
V
[
X(τt)

]
+ 1− (1 + τt)X(τt)

}
−D1

[
X(τ1)

]
−D2

[
X(τ2) + γX(τ1), T (a)

]
+ λ1

[
τ1X(τ1) + b− g − a

]
+ λ2

[
τ2X(τ2)− b− g

]
. (39)

We obtain the first-order conditions

Lb = λ1 − λ2 = 0, (40)

Lτ1 = −X(τ1)−
{
D1,X [X(τ1)] + γD2,X [X(τ2) + γX(τ1), T (a)]

}
X ′(τ1)

+ λ1

[
X(τ1) + τ1X

′(τ1)
]

= 0, (41)

Lτ2 = −X(τ2)−D2,X [X(τ2) + γX(τ1), T (a)]X ′(τ2) + λ2

[
X(τ2) + τ2X

′(τ2)
]

= 0, (42)

Lλ1
= τ1X(τ1) + b− g − a = 0, (43)

Lλ2
= τ2X(τ2)− b− g = 0, (44)

as well as the slackness conditions for adaptation investments

La = −D2,T [X(τ2) + γX(τ1), T (a)]T ′(a)− λ ≤ 0, a ≥ 0, aLa = 0. (45)

As long as the adaptation technology satisfies the Inada condition lima→0 T
′(a) =∞, the latter condition

implies a > 0, since for a→ 0 we have La →∞ > 0 and La ≤ 0 is violated.

(G) Proof or Equation (21) and Proposition 4. In order to derive the marginal effect of adaptation

on the tax rates used in (21), note that we can view (40)–(44) as a system of 5 equations that determine

the 5 variables (b, τ1, τ2, λ1, λ2) as a function of a. Due to the linear-quadratic specification of the model,

we obtain D1,X + γD2,X = δ1 + γδ2 and D2,X = δ2. Hence, adaptation a influences (b, τ1, τ2, λ1, λ2) only

via equation (43). We employ Cramer’s Rule to obtain

dτt
da

=
|Jτt |
|J |

, (46)
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where J represents the Jacobian of (40)–(44) and Jτt denotes the adjusted Jacobian in which the column

containing the derivatives with respect to τt is substituted for by the replacement vector of a containing

the derivatives with respect to a. The Jacobian J coincides with the bordered Hessian in (23). Hence, in

the linear-quadratic example, we obtain

|J | = |H| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1 R′(τ1) 0

0 0 −1 0 R′(τ2)

1 −1 0 0 0

R′(τ1) 0 0 (1− 2λ)/β 0

0 R′(τ2) 0 0 (1− 2λ)/β

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1− 2λ

β

[
R′(τ1)2 +R′(τ2)2

]
< 0, (47)

where we used λ1 = λ2 = λ > 1 and R′(τt) = xt + τtX
′(τt)X(τ). In order to obtain Jτ1 (Jτ2), we

substitute the replacement vector (−Lλ1a,−Lλ2a,−Lba,−Lτ1a,−Lτ2a)
′

= (1, 0, 0, 0, 0)
′

for the fourth

(fifth) column in the determinant of (47). The adjusted Jacobian can then be computed as

|Jτt | =
1− 2λ

β
R′(τt). (48)

Dividing (48) by (47) results in

dτt
da

=
R′(τt)

R′(τ1)2 +R′(τ2)2
. (49)

which completes the proof of equation (21).

In order to proof Proposition 4, note first that we can show τ1 T τ2 if and only if δ1 + γδ2 T δ2

by the same steps as in Proposition 2, since for this proof we only need equations (41) and (42) which

do not depend on a under the linear-quadratic model specification. To proof part (i) of Proposition

4 simply verify that (21) is always positive. It remains to show parts (ii) and (iii) of Proposition 4.

Consider first part (ii) and focus on the case δ1 + γδ2 > δ2, so τ1 > τ2. Since both tax rates are

on the increasing side of the Laffer curve in this case, R′′(τt) = −2/β < 0 implies R′(τ1) < R′(τ2).

Hence, the effect in (49), while positive in both periods, is larger on τ2 than on τ1. Since τ2 was

initially lower than τ1 in the absence of adaptation, this implies that the wedge between the tax rates

decreases. The same holds true with respect to the changes of tax revenues captured by (21), so we

obtain dR(τ1)/da − dR(τ2)/da < 0. The effect of a on public debt in (22) is db/da ∈ (1/2, 1) since

R′(τ1)/R′(τ2) < 1 due to R′(τ2) > R′(τ1) > 0. In the opposite case, if δ1 + γδ2 < δ2, we observe that

τ1 < τ2. Then, R′(τ1) > R′(τ2) > 0 implies that dτ1/da > dτ2/da, dR(τ1)/da − dR(τ2)/da > 0 and

db/da ∈ (0, 1/2). Finally, for constant marginal damages δ1 + γδ2 = δ2, we have τ1 = τ2 and, thus,

R′(τ1) = R′(τ2), dτ1/da = dτ2/da, dR(τ1)/da − dR(τ2)/da = 0 and db/da = 1/2, which completes the

proof of part (ii) of Proposition 4. The proof of part (iii) can be conducted analogously if we recall that

on the decreasing side of the Laffer curve R′(τt) < 0, which means that (49) is negative. Therefore, both

tax rates decrease in response to a marginal increase in a.
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