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1 Introduction
We analyze the optimal way to subsidize a risky innovative project with scarce public funds.
A project can generate both private and (external) social benefits, but it requires an initial
funding. The regulatory intervention is justified by the external social benefits. Indeed, it
is common to consider that innovation activities have positive spillovers of multiple sorts
that justify subsidies at the various stages of the innovation process. Notably, pilot and
demonstration plants are a key step between the lab and the industrial scaling, but they
are risky and capital-intensive activities. Even though the analysis developed is general, the
present work is motivated by the transition to a low-carbon economy. The recent COVID
pandemics has triggered recovery plans in many countries. These plans are seen as an
opportunity to promote the energy transition through a green industrial policy as it was the
case after the 2007-2008 financial crisis (Rodrik; 2014).

Subsidies to low-carbon innovative projects are justified by both a lack of carbon pricing
and knowledge externalities, likely to be large because of the youth and future growth of
green technologies in the energy, mobility, and agricultural sectors (Greaker et al.; 2018;
Hepburn et al.; 2020). Private companies do finance innovative projects, and scarce public
funds should be targeted toward projects that would lack private funding but asymmetric
information constraints the ability of a public agency to optimally screen projects. Public
loans with a payback conditional on the project success are a common tool (e.g. Rodrik;
2014) that might help reduces rents. Rodrik (2014) revisits the traditional criticisms raised by
economists (poor selection by government and rent-seeking) and illustrates its argumentation
with several case studies. He notably stresses that failures and bankruptcies, far from being
a sign of policy failure, are likely events given the intrinsic uncertainty of many projects. He
notes that a public agency should give due attention to the information available to both
parties along the deployment process, a point largely ignored in most papers.

We develop a partial equilibrium model in which a public agency acting on behalf of the
state subsidizes risky projects carried out by a firm. The firm invests in a project that may
succeed or fail, the probability of success depends upon the type of the project and the effort
of the firm. Only successful projects generate private and social benefits. Without subsidies,
some (low-type) projects would not be launched while others (high-type) would be. The
agency can propose a couple of nonnegative subsidies conditional on success or failure.

Our aim is to investigate how the information structure influences the design of incentive
schemes. We consider symmetric structures, where both the agency and the firm have
identical information on the probability of success. Two extreme cases are studied with either
imperfect or perfect information. We also consider an asymmetric information structure in
which the firm is better informed than the agency. In the latter case an adverse selection
issue arises on top of moral hazard.

Under perfect information, moral hazard coupled with the non-negativity of subsidies
prevent the agency from implementing the first-best scheme. In that case, the agency should
only subsidize success in order to incentivize the firm to make an effort (high-powered in-
centives). The success subsidy plays the dual role of both increasing the profitability of
projects and the effort made by the firm. If the latter role dominates, the firm obtains a
rent. Whereas the effort is distorted away from the first-best, the selection of projects is
not, and all projects that would be deployed in a first-best situation are deployed in that
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configuration. With imperfect information, the situation is similar, both the firm and the
agency ignoring the type of the project, and given the linearity of our model, it is as if they
were facing a project with an average type.

Under asymmetric information, adverse selection explains the existence of windfall profit:
some projects that would be financed even without subsidy are subsidized. A subsidy condi-
tional on failure, which is similar to a loan, reduces these rents. This is so because high-type
projects are more likely to succeed and thus receive a lower expected subsidy. The effort
exerted by the firm is suboptimal and fewer projects are financed than under symmetric
information. With adverse selection only, subsidy should only be conditional on failure and
success not rewarded. When both adverse selection and moral hazard are at play, a deli-
cate balance between adverse selection and the power of incentives determines the optimal
scheme. The shape of the distribution of types plays an important role that we further
investigate with two polar cases: a uniform and a binomial distribution. Strikingly, with a
uniform distribution, under fairly general conditions, only failure should be subsidized and
the incentives are low powered. With a binomial distribution, the structure of the scheme
depends on the frequency of the high types, and the more frequent they are the lower the
power of incentives.

Based on the previous results, we investigate the respective values of information for the
agency and the firm to move from one information structure to another one. Through the
detailed analysis of an illustrative example, we show that the firm benefits from acquiring
more information, i.e., for the firm to move from a symmetric imperfect information environ-
ment to an asymmetric one, but then the agency should move from the asymmetric case to
the symmetric perfect information case. The value of information along this process may be
altogether negative for the agency but it is always an incremental best response. It would be
positive if the social benefit is high, and then calibrating the scheme for all possible types to
induce the effort of the firm is beneficial to the agency, in spite of the fact that the constraint
for inducing the firm to launch the project would be more stringent than when the high-type
rents are averaged with low-type losses.

Several articles in environmental economics discuss the issue of financing green projects
under asymmetric information. Fischer (2005) provides an insightful analysis of the issue of
“additionality” in the design of CDM.1 Mason and Plantinga (2013) consider the optimal
design of contracts for carbon offsets with asymmetric information.2 To our knowledge, the
issue of windfall profits from innovative risky green projects has not been studied.3

From a more theoretical perspective, our analysis is related to the literature on mechanism
design with both adverse selection and moral hazard.4 In this respect our model features

1Zhang and Wang (2011) empirical analysis does cast some doubt about the additionality of Chinese
CDM.

2Within the agricultural sectors, the design of agri-environmental schemes raises similar issues (e.g. Wu
and Babcock; 1996; Engel et al.; 2008), and a related concerns is the “stacking” of green payments: a farmer
maybe rewarded twice, for biodiversity and greenhouse gases reduction for the same action (Woodward;
2011; Lankoski et al.; 2015).

3There is a large literature on the coordination between environmental and innovation policy in dynamic
models, most notably endogenous growth models, Smulders et al. (2014) provide a survey, and Greaker et al.
(2018) is a recent contribution that highlights that even with a long-lived patent green research subsidies are
justified.

4Mixed models are covered in Chapter 7 in Laffont and Martimort (2002).
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a risk-neutral principal and a risk-neutral agent, and constrained incentive schemes. The
principal (the agency) is constrained to propose a single couple of non-negative subsidies.
A key element of our analysis is that some projects would be financed without the scheme,
making the participation constraint dependent on the type. Some papers have introduced
some of these restrictions (e.g. Lewis and Sappington; 2000a,b; Quérou et al.; 2015). The
article by Ollier and Thomas (2013) is the closest to the present work; it introduces ex-
post participation constraint (the firm should recover its cost even if the project fails) in a
mixed model relatively similar to ours.5 They notably show that because of countervailing
incentives pooling is optimal and the principal should only reward success. This is the case
in our setting when moral hazard issues dominate, but we also show that there are situations
in which subsidies are used in both cases or there is a reward only in the case of failure. The
key difference is the absence of a fixed cost in Ollier and Thomas (2013), which limits adverse
selection issues: there is no need to finance low-profitability projects but only to motivate
efforts. Finally, rewarding failure could also be justified by the risk-aversion of the agent,
as in the work of Gary-Bobo and Trannoy (2015) on students loans, but this justification
is absent from our model since we consider risk-neutral actors (both the public agency and
firms).

The rest of the paper is organized as follows: In Section 2 the general model and the
various information structures are introduced. In Section 3 we study the optimal scheme
for each information structure, and a complete resolution for two specific probability dis-
tributions of success, namely uniform and binomial. An illustrative example is studied at
length in Section 4 to discuss the respective values of information. Section 5 generalizes
our results to two simple extensions: the introduction of an uncertain market phase in the
deployment process of the project, and imperfect observability of the outcome of the project
by the agency. Policy implications and extensions are discussed in the last section.

2 The model

2.1 The general setting
Consider the following situation. A given innovative project may or may not be initiated by
a firm. The decision to initiate the project is represented by a binary variable δ ∈ 0, 1. If
δ = 1, the project is initiated and the firm incurs a fixed cost F . The project either succeeds
or fails. In case of success, the firm gets a private revenue R, and a social external benefit b
is generated. In case of failure neither private nor external benefits are created. If a project
is not initiated, δ = 0, the reference payoffs are zero, and no fixed cost is incurred. The
probability of success depends on the type of the project θ and the effort of the firm e with
θ and e ∈ [0, 1]: p(e, θ) ∈ [0, 1], and p(0, θ) = θ. Types are distributed according to the
cumulative distribution function G(θ), continuously differentiable with G′(θ) = g(θ). The
effort e induces a cost f(e, θ). The cost function is assumed to be increasing with respect to
e and decreasing with respect to θ, and the cross derivative is negative (the marginal cost to
increase the probability of success is decreasing with the type).

5In Subsection 5.2. they replace the ex-post participation constraint by a limited liability constraint,
making their model closer to ours.
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The firm and the regulatory agency (henceforth the agency) know F , R, b, G(θ), and
f(e, θ). Both entities observes whether a project is initiated and its outcome, i.e., failure or
success. The agency does not observe the effort of the firm. We will consider several cases
regarding the information about the type θ of the project.

The question at stake for the agency is to select an incentive scheme (s1, s2). The firm
may either accept or reject the incentive scheme. If it accepts the scheme it initiates the
project (δ = 1), makes an effort e, and gets s1 in case of success (probability p(e, θ)) and
s2 in case of failure (probability 1 − p(e, θ). Therefore, we refer to s1 as rewarding success
and to s2 as rewarding failure. For the sake of realism, both s1 and s2 are nonnegative. And
without loss of generality, we certainly have:

0 ≤ s1 ≤ b and 0 ≤ s2 ≤ F.

For convenience we also define the bonus as s = s1 − s2 so that: 0 ≤ s ≤ b.
The profit of the firm if the project is of type θ is

π(δ, e, θ, s1, s2) = δ[p(e, θ)(R + s1) + (1− p(e, θ))s2 − (F + f(e, θ))]. (1)

Under similar conditions, the surplus of the agency is written as:

v(δ, e, θ, s1, s2) = δ[p(e, θ)(b− s1)− (1− p(e, θ))s2]. (2)

We also introduce the welfare, which is the sum of the agency surplus and firm profits:

w(δ, e, θ) = v + π = δ[p(e, θ)(R + b)− F − f(e, θ)]. (3)

The non-negativity constraint on subsidies implies that in most cases considered the
agency will only be able to implement a second-best solution. For the sake of comparison,
we shall also identify the first-best solution.

2.2 The information structures and the respective incentive pro-
grams

An information structure specifies the information of the agency and the firm about the
type of the project, i.e., its probability of success. We consider symmetric and asymmetric
structures. For symmetric ones, either both players have perfect information about the type
(Case 1) or they do not know the type, and their information is called imperfect (Case 2).
For an asymmetric structure the firm knows its type but the agency does not (Case 3). For
Cases 1 and 2 there is a moral hazard issue. For Case 3 there are both moral hazard and
adverse selection issues. In all cases the firm chooses to initiate the project or not, δ = 1, 0,
and its effort e by maximizing its profit. The agency maximizes its expected surplus.

We now formalize the program to be solved for each information structure.

• Case 1: Perfect information.
For each θ the agency selects (s1(θ), s2(θ)) in order to maximize

v(δ, e, θ, s1, s2)

subject to
(δ, e) = argmaxπ(δ, e, θ, s1, s2).
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• Case 2: Imperfect information
The agency selects (s1, s2) to maximize∫ 1

0
v(δ, e, θ, s1, s2)g(θ)dθ

subject to
(δ, e) = argmax

∫ 1

0
π(δ, e, θ, s1, s2)g(θ)dθ.

• Case 3: Asymmetric information
The agency selects (s1, s2) to maximize∫ 1

0
v(δ, e, θ, s1, s2)g(θ)dθ

subject to
(δ, e) = argmax π(δ, e, θ, s1, s2), ∀θ ∈ [0, 1].

2.3 The specification for the effort function f(e, θ)
We will make use of the following linear quadratic specification to be defined for 0 ≤ e ≤ 1:

p(e, θ) = θ + e(1− θ) (4)

f(e, θ) = (1− θ)γ2 e
2 (5)

This formulation can be motivated by considering that a project is constituted of a
continuum of technical steps: for a project of type θ a share θ of steps have already been
completed (in the lab) and (1−θ) steps remain to be completed (with the pilot) to guarantee
success. A given level of effort has a larger impact on projects with an initially low probability
of success, but it is more costly.6

The profit of a firm could be rewritten as:

π(1, e, θ, s1, s2) = [θ(R + s1) + (1− θ)s2 − F ] + (1− θ)
[
e(R + s1 − s2)− γe2

2

]
.

The net benefit from effort is encompassed in the last bracketed term. The effort exerted by
a firm does not depend on the type θ but only on the bonus s. It is:

e(s) = min{R + s

γ
, 1}. (6)

6Rewriting cost as a function of the probability of success gives:

φ(p, θ) = γ

2
(p− θ)2

1− θ , for p > θ, = 0 otherwise.

The function φ(p, θ) satisfies the technical assumptions in Ollier and Thomas (2013). It is increasing with
respect to p and decreasing with respect to θ, and the cross derivative is negative (the marginal cost to
increase the probability of success is decreasing with the type), which ensures that the probability of success
is decreasing with the type, for a given bonus s.
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This property greatly facilitates the analysis because the effort of the firm will not depend
on the information available to the firm. Observe that the property is also true for the effort
that maximizes welfare: it is simply equal to min{R+b

γ
, 1}.

The following technical assumption will be needed in some results. It ensures that all
efforts considered are strictly lower than 1.

Assumption 1. The slope of the marginal cost of effort is larger than the marginal social
benefit: γ > R + b.

2.4 Business As Usual, First Best, Pigouvian Solution
Business As Usual refers to the situation in which there is no subsidy and firms are informed
about their types, while First Best refers to the allocation that maximizes welfare. For each
project there are two choices: whether to initiate the project and the level of effort. Business
As Usual and First Best could be described by threshold types, respectively denoted θBAU
and θFB, such that projects with a larger type are initiated, and by effort levels eBAU and
eFB.

The threshold θBAU is the lowest type, such that a project is initiated by an informed
firm without any regulation π(1, e(0), θ, 0, 0) ≥ 0. With our specification, eBAU = R/γ and
the profit is π(1, e, θ, 0, 0) = [θR− F ] + (1− θ)R2/2γ so that:

θBAU = 1
R

2Fγ −R2

2γ −R . (7)

The following assumptions make the problem interesting. They ensure that some projects
are initiated without subsidy while some are not.

Assumption 2. Some projects are profitable without subsidies: F < R.

Assumption 3. Not all projects are initiated without subsidies: R2 < 2γF .

As regards First Best, eFB = (R + b)/γ, and all projects with p(eFB, θ)(R + b) ≥ F +
f(eFB, θ) are initiated. The threshold θFB, if positive, solves p(eFB, θFB)(R + b) = F +
f(eFB, θFB). We have:

θFB = max
{ 1
R + b

2Fγ − (R + b)2

2γ − (R + b) , 0
}

(8)

Note that eFB > eBAU and θFB ≤ θBAU . Furthermore θFB ≥ 0 if and only if (R+ b)2 ≤ 2Fγ
and, as b increases, θFB decreases from θBAU to 0.

Subsidies will have the dual role of triggering the initiation of projects and motivating
effort. In each information structure, the optimal second best scheme relative to the first
best may induce a selection bias–projects that should be socially implemented are not; a
suboptimal effort by the firm; and, therefore, welfare may not be maximized.

In order to clarify the difference between the schemes analyzed here and standard Pigou-
vian regulation, it is worth considering the optimal regulation with an unlimited set of
instruments. With informed firms (Cases 1 and 3), the first best can be decentralized with
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s1 = b and s2 = 0, which corresponds to a Pigouvian subsidy.7 However, the agency surplus
is not maximized with such a scheme and firms get a rent. If the agency were able to tax
profits with a proportional tax then a 100% profit tax realigns the agency objective with
social welfare (V = W and Π = 0), and s1 = b both implements the first best and maxi-
mizes the agency surplus (V = W FB); information asymmetry is then irrelevant. This result
resonates with the fact that in a Ramsey optimal taxation framework the optimal corporate
tax on pure profit is 100% (Munk; 1978). And the present framework can be interpreted as
an optimal taxation exercise with fairness concerns but a limited set of instruments.

3 Solving the incentive programs for the different in-
formation structures

3.1 Case 1: Perfect information
In this pure moral hazard setting the type of the project θ is known by the firm and the
agency, but the agency can observe neither the effort nor its cost. We shall show that
rewarding success only is the second best solution and detail the corresponding scheme. The
first best is not achieved.

We now describe the optimal second best scheme (s1, s2) as a function of the type θ of the
project. The agency should decide whether to ensure the deployment of a project as soon as
θ ≥ θFB and whether to further motivate effort. First, if the agency ensures the deployment
of a project, it is optimal to do so by rewarding success and not failure because it maximizes
the effort of the firm. Second, three cases may occur: the optimal subsidy could be null for
θ ≥ θBAU , it could ensure a null profit to the firm for θ < θBAU , or it could be larger to
further increase the effort. Let us denote s1B(θ) as the subsidy that ensures a null profit,
and s1A(θ) as the subsidy that maximizes the agency surplus without the profit positivity
constraint ( note that v(1, e(s1), θ, s1, 0) is a quadratic function of s1). It is easily seen that:

s1B(θ) = γ
θ

1− θ

[√
1 + 2F

γ

1− θ
θ2 − 1

]
−R (9)

and
s1A(θ) = b−R

2 − γ θ

2(1− θ) (10)

Note that s1A(θ) is relevant only if s1A(θ) ≥ max{s1B(θ), 0}; otherwise the project is not
initiated. The best of the three occurrences depends on the values of the parameters b, γ,
R, and F . Since s1A(θ) is increasing with b while s1B(θ) is independent of b, for given values
of γ, R and F , there will be a critical value of b, denoted as b∗(θ), such that s1A(θ) should
be preferred for b ≥ b∗(θ) while s1B(θ) should be preferred if b ≤ b∗(θ).

The following proposition holds.

Proposition 1. At the optimal scheme (s∗1(θ), s∗2(θ)) only success is rewarded (s∗2 = 0), and
a project is initiated if and only if θ ≥ θFB.

7The fixed cost F does not by itself justify the implementation of a subsidy because projects are infinites-
imally small.
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For all θ ≥ θFB, the optimal subsidy is conditional on success and equal to max{s1A, s1B, 0},
with s1A, s1B given by equations (10) and (9).

If b is sufficiently large and F small, s∗1 = s1A > 0 and the firm gets a positive profit.
Otherwise, the firm gets its BAU profit which is null for θ < θBAU .

The proof is in Appendix A.1. We can interpret the choice of the agency as follows. If
θBAU ≤ θ, it may be worthwhile to induce more effort by selecting s1A(θ) rather than s1 = 0.
If θ ≤ θBAU , s1B(θ) compensates the firm for its private loss while s1A(θ) induces a larger
effort and gives some profit to the firm. Both s1A(θ) and s1B(θ) are decreasing functions of θ
but their ranking may not be monotonous with respect to θ. Figure 1 illustrates a situation
in which the best scheme is to choose s1A for low values of θ then s1B up to θ = θBAU and
then s1 = 0. As b decreases, it may be that the optimal sequence is s1B, s1A, s1B, s1 = 0.
For low b it will be s1B, s1 = 0.

Figure 1: The optimal subsidy s∗1 ( s∗2 = 0) with respect to θ for R = 1.5, F = 1, γ = 12 and
b = 10 (θFB = 0 so that all types should be initiated).

The first best cannot be achieved with an incentive scheme that respect the non negativity
constraints but it can be with a negative subsidy s2. At the first best welfare is maximized
and the firm gets its BAU profit, otherwise it does not adhere to the scheme. The proof of
this lemma is straightforward.

Lemma 1. The first best is obtained with a scheme such that:
- if θ ≤ θFB, no subsidy is proposed and the project is not initiated,
- if θ ≥ θFB, the optimal scheme is such that s1 − s2 = b and π = πBAU .
The agency surplus is then v = p(e, θ)(b − (s1 − s2)) − s2 = −s2, and the subsidy s2 is

negative and could be interpreted as a tax on undue profit.

For completeness, note that a flat subsidy has no influence on the effort, which remains
at eBAU . It can only be optimal if the agency would not observe the outcome of the project.
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3.2 Case 2: Imperfect information for both
Because both π and v are linear with respect to θ this case is a simple replication of Case 1
in which θ is replaced by its expected value.

Let us denote θ̄ =
∫ 1

0 θg(θ)dθ, the expected type. For an uninformed observer, either the
firm or the agency, the probability of success of a project for an effort e is :∫ 1

0
p(θ, e)g(θ)dθ = p(θ̄, e).

And the expected profit of a firm is∫ 1

0
π(δ, e, θ, s1, s2)g(θ)dθ =

∫ 1

0
δ
[
p(θ, e)(R + s1) + (1− p(θ, e))s2 − F

]
g(θ)dθ

= π(δ, e, θ̄, s1, s2).

And similarly for the agency, so that the situation is as if information is perfect and the
type equal to θ̄, its expected value. Proposition 1 applies, replacing θ with θ̄: only success is
subsidized, the project is initiated if and only if θ̄ ≥ θFB, and the firm gets a rent (a profit
larger than its BAU value) if the external benefit b is sufficiently large.

3.3 Case 3: Asymmetric information
This case is clearly the most complex one. We cannot completely solve it in full generality
but we can get some important insights into the solution. First, we consider a “pure” adverse
selection situation, without any effort, and demonstrate that the optimal scheme is to only
reward failure.

Second, we derive the solution under two specific probability distributions for θ: either
a uniform distribution or a binomial one over two possible θ, a low probability of success
or a high probability of success. We show that rewarding failure is a robust solution with a
uniform distribution, whereas, with a binomial distribution, the optimal solution would be
to reward success if the probability of success is low while it would be to reward failure if
the probability of success is high. For intermediate situations both subsidies would be used.

3.3.1 Pure adverse selection

The problem of additionality and windfall profit appears in its simplest form in a pure
adverse selection problem, in which no efforts is exerted.8 We shall assume in that section
that γ = +∞, so e = 0 and p = θ.

The agency does not know the ex-ante probability of success p = θ of a given project.
The sole remaining purpose of the incentive scheme is to select projects to be initiated. The
optimal second best scheme consists in rewarding failure and it does not get the first best.
We shall further discuss how it departs from a flat subsidy s1 = s2.

8To be fully rigorous, in a standard adverse selection model effort would be exerted and contractible, the
agency would propose a contract e, s1, s2 to firms, it would be relatively similar to the case without effort
since all firms would make the same effort, but with an additional regulatory variable.
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The threshold type θ̃ at which expected profit is null is (from eq 1 with e = 0) :

θ̃(s1, s2) = F − s2

R + s1 − s2
. (11)

If R+s1 > s2, as will be the case at relevant schemes, all θ ≥ θ̃ will be initiated. The agency
surplus can be rewritten:

V (s1, s2) =
∫ 1

θ̃(s1,s2)
[θ(b− s1)− (1− θ)s2]g(θ)dθ. (12)

The first best threshold type is:

θFB = F

R + b
, (13)

and the threshold type without any subsidy is:

θBAU = θ̃(0, 0) = F

R
(14)

Decompose the problem of the agency in two steps.
Step 1: given a targeted threshold probability θt the agency minimizes the expected cost

of the subsidy:

C(θt) = min
s1,s2

∫ 1

θt
max{θs1 + (1− θ)s2, 0}dG(θ), s.t. θ̃(s1, s2) = θt.

It will be enlightening to make explicit the impact of non negativities for the subsidies. If
the subsidy could be negative, then firms might be better off investing without subscribing
to the scheme, and they do so if the expected subsidy is negative. This possibility explains
the maximum function in the integrand. Indeed, if the subsidies are constrained to be non
negative then an investing firm subscribes to the scheme. This will give rise to Lemma 2.

Step 2: the optimal choice of θt maximizes V = b
∫ 1
θt pg(p)dp− C(pt). This will give the

proposition that follows.

Lemma 2. Whatever the targeted threshold type θt, the scheme that minimizes the expected
cost of the subsidy is:

• For non negative subsidies, s1 = 0 and s2 = (F − θtR)/(1 − θt). The profit of a firm
of type θ ∈ (θt, 1] is positive, and the agency surplus is lower than welfare minus BAU
profit.

• For unconstrained subsidies, s2 = F and s1 = F −R + ε with ε infinitely small. Then
the profits of firms that subscribe to the subsidy are null, and the surplus of the agency
is equal to welfare minus the BAU profit: W (θt)− ΠBAU .

11



The proof is in Appendix A.2.

$

Proba θ1θBAUθFB θt

R− F

−F
s2 − F
s2 − F

R + b− F

R + s1 − F

ΠBAU

Figure 2: Expected subsidy as a function of the firm type: the red area is equal to the total
expected subsidy (weighted by g(θ)).

The result of Lemma 2 is illustrated in Figure 2. Given a couple s1, s2 the red area
corresponds to the total expected subsidy, and the dashed line depicts a change of the
subsidy line associated with an increase of s2 and a reduction of s1 that leaves the threshold
firm unchanged. As can be seen such a change reduces the total expected subsidy by reducing
the expected subsidy obtained by high-type firms. High-type firms succeed more frequently
than the threshold type. They more frequently get the subsidy in case of success, and less
frequently the subsidy in case of failure; the expected subsidy is then reduced by rewarding
more failure and less success. At the extreme it is optimal to reward only failure in order to
limit windfall profit.

We shall now show that without positivity constraints, the optimal value of θt is θFB and
the first best is achieved, while θFB ≤ θt ≤ θBAU with constraints. Let us denote θSB as
the optimal value of θt(s1, s2) in the second best approach. Indeed the following proposition
holds:
Proposition 2. At the optimal scheme
• For non negative subsidies, the first best is not achieved, the optimal scheme rewards
failure only with s1 = 0, and s2 ≥ 0 is such that:

(i) s2 = 0 and θSB = θBAU if

b ≤ R3

F (R− F )

∫ 1

F/R
(1− θ)g(θ)dθ (15)

(ii) otherwise s2 > 0 and θFB ≤ θSB ≤ θBAU with θSB defined by the following implicit
equation:

θSB = θFB + 1
g(θSB)

R− F
b+R

∫ 1

θSB

1− θ
(1− θSB)2dG (16)

12



• For unconstrained subsidies, the optimal scheme is such that θt = θFB, and the first
best is achieved. The profit of firms that subscribe to the scheme is null, and the agency
surplus is equal to W FB − ΠBAU .

See Appendix A.3 for the proof. It is relatively straightforward to establish that a menu
of subsidies cannot improve the situation whenever Assumption 1 holds. Whatever the initial
subsidy couple proposed (s1, s2), there is no room for maneuver: the agency cannot propose
another couple (s′1, s′2) that would be both more interesting to a firm of type θ > θ̃(s1, s2) and
less costly to the agency. The first condition is equivalent to θs′1 + (1− θ)s′2 > θs1 + (1− θ)s2
and the second to θs′1 + (1− θ)s′2 < θs1 + (1− θ)s2. Note that the above reasoning does not
rest on the positivity constraints but on the risk neutrality of the principal and the agent.

3.3.2 Some general results

If the cost of effort is finite, both adverse selection and moral hazard are at work, and the
optimal scheme cannot be characterized without additional assumptions on the distribution
of types. The analysis of the general situation helps us to understand which mechanisms
justify the subsidization of success or failure.

Again, we denote θ̃(s1, s2), the threshold type such that a project is initiated if and only
if its type is above that threshold.9 The effort is e(s1 − s2), given by equation (6), and θ̃, if
positive, is the solution of π(1, e, θ̃, s1, s2) = 0, that is:

p(e, θ)(R + s1 − s2) + s2 − (F + f(e, θ)) = 0 (17)

The agency surplus is:

V =
∫ 1

θ̃
[p(e, θ)(b− s1)− (1− p(e, θ))s2]g(θ)dθ. (18)

The choice of either of the subsidies s1 and s2 has three effects: (i) on the selection of
projects via its influence on θ̃, (ii) on the effort via s1 − s2, and (iii) on the total expected
transfer to firms. As is usual in agency problems, the agency trades off efficiency for rents.

It is illuminating to isolate the selection of projects from the precise design of subsidies.
Instead of considering the two variables s1 and s2, we rewrite the profit of the firm and
agency surplus as functions of s and θ̃. Injecting equation (17) into the expression (1) gives
the profit of a firm as a function of s and θ̃:

π = [p(e, θ)− p(e, θ̃)](R + s)− [f(e, θ)− f(e, θ̃)] (19)

And, with a slight abuse of notation, the agency surplus can be rewritten:

V (s, θ̃) =
∫ 1

θ̃

{
[p(e, θ)(R + b)− (F + f(e, θ))]

− [p(e, θ)− p(e, θ̃)](R + s) + [f(e, θ)− f(e, θ̃)]
}
g(θ)dθ. (20)

9For any subsidy couple (s1, s2) we have 0 < R + s1 − s2 since s2 ≤ F < R ≤ R + s1. It follows that
π(1, e, θ, s1, s2) is increasing with respect to θ so that projects with a type above a threshold are initiated,
and those below are not.
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For a given θ̃, a change of s has the following effect on the agency surplus:10

∂V

∂s
=
∫ 1

θ̃
[pe(R + b)− fe]e′(s)dG(θ)−

∫ 1

θ̃
[p(e, θ)− p(e, θ̃)]dG(θ)

=
∫ 1

θ̃
[pe(b− s)]e′(s)dG(θ)−

∫ 1

θ̃
[θ − θ̃]dG(θ)(1− e)

= 1
γ

∫ 1

θ̃

{
(1− θ)(b− s)− (θ − θ̃)(γ −R− s)

}
g(θ)dθ. (21)

The first line makes use of pe(R+ s) = fe for all θ, which cancels the influence of s via e
on the second line of eq. (20). In the second line, fe is replaced by pe(R + s) for all θ, and
the third line makes use of equation (6).

There are two effects: effort is increased (first term) and the expected subsidy transferred
to firms is increased (second term). The expected subsidy is increased because a high-type
firm is more likely to succeed p(e, θ) > p(e, θ̃) and get the s1 subsidy. So any change
of the scheme that transfers subsidy from failure to success while keeping constant the
expected subsidy of the threshold firm has a positive effect on the expected subsidy of
initiated projects. This gives the following proposition, which characterizes the optimal
second best threshold θSB.

Proposition 3. The optimal couple (s∗1, s∗2) is such that the bonus s∗ = s∗1− s∗2 is lower than
b, the effort exerted by firms is then suboptimal and fewer projects are selected than in the
first-best θSB > θFB.

Furthermore if both subsidies are positive, they satisfy:∫ 1

θ̃
(1− θ)dG(θ)(b− s∗) =

∫ 1

θ̃
[θ − θ̃]dG(θ)(γ − (R + s∗)), (22)

and θSB solves

p(e, θ)(R + b)− [F + f(e, θ)] = [1−G(θ)][pθ(e, θ)(R + s)− fθ(e, θ)]. (23)

The proof is in Appendix A.4. In Appendix A.10, we characterize the optimal menu when
subsidies are not constrained and firms need the regulator’s consent to initiate a project.
Equation (22) exhibits the trade-off between efficiency (left-hand side) and rent extraction
(right-hand-side), and it is reminiscent of the equation satisfied by the optimal menu (cf
Appendix A.10).

Several comments are in order that point out the significance of restricting subsidies to
be non negative. First, if subsidies are restricted to be non-negative, the expected subsidy
received by a firm is positive whatever its type, which is not necessarily true if subsidies
can be negative. If s1 < 0, then high-type firms will not subscribe to the scheme and their
projects will be initiated with purely private funding. A second threshold should then be
introduced for projects that do not subscribe to the scheme.

10A change of s that keeps θ̃ fixed is equivalent to a change of s1 and a corresponding change of s2 with
ds = ds1 − ds2, and from eq. (17) we get p(e, θ̃)ds1 + (1− p(e, θ̃))ds2 = 0. A change of θ̃ for a given s only
necessitates a change of s2 exactly offset by a change of ds1 = ds2.
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Second, the disentangling between the choice of θ̃ and the bonus s is feasible as long as
neither non-negativity constraints on subsidies is binding. If one of these two constraints is
binding, either s1 = 0 or s2 = 0, then the choices of the bonus and the threshold type can
no longer be made independently. This will be further illustrated in the next section.

Third, the surplus of the agency V (s, θ̃) is not necessarily concave with respect to s
without further assumptions on the distribution of types. This non-concavity arises because
a larger bonus induces more efforts which reduces the gap between the probabilities of success
of high-type and low-type projects and thus the rent to high-types. Formally, from equation
(21), the agency surplus is quadratic with respect to s with a second-order coefficient:∫ 1

θ̃
[(θ − θ̃)− (1− θ)]g(θ)dθ =

∫ 1

θ̃
(θ − θ̃)

[
g(θ)− g(1 + θ̃ − θ)

]
dθ (24)

the sign of which depends on the shape of G and the threshold θ̃.11

3.3.3 Moral hazard and adverse selection with a uniform distribution on θ

The following two propositions provide a first remarkable insight on the qualitative structure
of the solution. With a uniform distribution of types over [0, 1], the coefficient of s in ∂V

∂s
is

null (eq.21), and the surplus of the agency V is either everywhere increasing or decreasing
with respect to s, whatever the threshold θ̃. The following proposition can then be deduced.

Proposition 4. With a uniform distribution of types θ over [0, 1], s∗1 = 0 and s2 > 0, only
failure only should be subsidized.

The proof is in Appendix A.5. This proposition may be interpreted as follows. On the
one hand, a positive subsidy s1 encourages effort, which is the more valuable the lower the θ
and the higher the b. On the other hand, it opens the way for windfall profit for high-type
projects. With a uniform distribution on θ, these two effects annihilate each other and a
positive subsidy s2 is good enough. The agency is better off rewarding only failure.

The robustness of this result depends on two features. First, as long as the probability
distribution over θ remains sufficiently flat and large, we may expect that the result will
remain true. Second, the importance of Assumption 1: γ > (R + b) should be stressed in
the reasoning. The cost of effort should be sufficiently large or the social benefit should be
sufficiently low to ensure that it is not optimal that all projects succeed with probability
1. Otherwise, the optimal bonus should be high enough to ensure that the probability of
success equals 1 and the selection of projects is only a matter of cost comparison. The
following proposition may be seen as a counterpoint to Proposition 4: if encouraging effort
is not too costly, or if the social benefit is quite large, all projects should be encouraged and
will succeed, and the adverse selection problem evaporates. Interestingly, in that case the
subsidy in case of failure is never paid, since all projects succeed, but still it is necessary to
incentivize firms to exert a proper effort.

11In general, multiple local maxima might arise, and a side consequence is that even if the optimal couple
of subsidy within S+ is composed of positive subsidies, the optimal couple of subsidies within the broader
class S can be different and have a negative component.
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Proposition 5. If Assumption 1 is not satisfied, i.e. γ < R + b, there is a local maximum
for unconstrained subsidies such that all projects succeed with probability 1:

s = γ −R⇒ e(s) = 1,

and
R + b− (F + f(1, θ̃)) = 1−G(θ̃)

g(θ̃)
γ

2 . (25)

This local optimum can be achieved through constrained subsidies if γ is below a threshold.

See Appendix A.6 for the proof.

3.3.4 Moral hazard and adverse selection with a binomial distribution on θ

As a counterpart to a uniform distribution of types θ over the whole interval [0, 1], Case
1 with full information could be seen as an extreme case of a distribution centered around
a particular type, it is then optimal to reward success. We shall introduce a binomial
distribution and formally show that the optimal scheme continuously shifts from rewarding
success to rewarding failure as the weight of distribution moves from low types to high types.

More specifically, we consider two types: θL and θH with θL < θH . The probability
of type θH is denoted as λ. We analyze the influence of λ over the optimal scheme. The
following assumption is introduced to get the results.

Assumption 4. We take (R + b) <
√

2Fγ (i.e. θFB > 0) and θL and θH such that θFB <
θL < θBAU and θBAU < θH .

To get insight into the structure of the optimal second best scheme, start with a situ-
ation in which the cost of effort γ is very high. Rewarding failure only is optimal. As γ
decreases, for low values of λ it may become worthwhile to induce a low-type firm to make
an effort through rewarding success, the incremental rent for the high-type firm being more
than compensated. How do these two situations of rewarding success and rewarding failure
combine together? As λ increases the balance between the benefit accruing from a higher
effort from a low-type firm should exactly balance the increase in the rent of the high-type
firm. The following lemma precisely defines the relationship between s1 and s2 for these
intermediary situations.12

Lemma 3. If both subsidies are strictly positive the optimal scheme (s∗1, s∗2) satisfy:

s∗1 − s∗2 = b− γλ(θH − θL)
(1− θL)− 2λ(θH − θL)(1− eFB), (26)

and s∗2 is such that the profit of the low-type firm is null, it solves:

s∗2 = F − θL(R + (s∗1 − s∗2))− (1− θL)(R + (s∗1 − s∗2))2

2γ (27)
12In Appendix we show that in such a situation there are two potential benefits to using a menu with

unconstrained subsidies, i.e. inducing different effort levels depending on the type of the firm and taxing
profits. Still the optimal menu leaves a gap as compared with the first best: asymmetry of information
generates some inefficiency independently of constraints on the incentive schemes.
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The proof is in Appendix A.9. We now characterize the optimal second best scheme for
all values of λ.

Proposition 6. The optimal scheme (s∗1, s∗2) depends on three thresholds λ1, λ2 and λ3 as
follows:
− for 0 < λ ≤ λ1 : s∗1 > 0 and s∗2 = 0; s∗1 = s1B(θL) given by equation (9)
− for λ1 < λ < λ2 : s∗1 > 0 and s∗2 > 0 given by Lemma 3 ;
− for λ2 < λ < λ3 : s∗1 = 0 and s∗2 > 0 such that π(1, e, θL, 0, s∗2) = 0 :

s∗2 = R− γ + γ

[
1− 2

γ

R− F
1− θL

]1/2

− for λ3 < λ ≤ 1 : s∗1 = 0 and s∗2 = 0.
The profit of a low-type firm is always null, a high-type firm gets a windfall profit as long

as λ < λ3.

Proof in Appendix A.9.

4 An illustrative example and the values of informa-
tion for the firm and the agency

In this section we discuss the role of the institutional design in the relationship between the
agency and the firm. More precisely we compare the agency surplus and the firm profit for
each one of the information structures. We also compare the benefit of using the optimal
second best constrained incentive scheme relative to a simple flat subsidy, i.e. using the best
scheme in which s1 = s2.

We derive the value of information as the players moves from one information structure to
another one.13 More precisely, suppose that neither the agency nor the firm have information
on θ, and suppose further that the agency does not observe the outcome of the project, it
can only use a flat scheme. Does the agency have an incentive to acquire information on the
outcome of the project to use the conditional scheme associated with Case 2? Then, does
the firm have an incentive to acquire information on θ to be in Case 3? At this point does
the agency have an incentive to also get information on θ to be in Case 1?

Using an illustrative example we compute these values and show that, ordinarily, all along
this process the value is positive for the respective player. However we also show that the
global value for the agency when moving from Case 2 to Case 1 may be negative. In such a
case, more information is not beneficial for the agency but, incrementally, the best response
is to pursue the acquisition process.

For this illustrative example we take F = 1, R = 1.5, b = 2 and γ = 12. We have
θFB = .16 and θBAU = .64. To highlight the impact of a high social benefit we also consider
b = 10 for a uniform distribution: then θFB = 0, and the agency induces a large effort for
small values of θ by choosing s1A. The optimal schemes for each case are given in Appendix
B.1.

13In this analysis we assume that both players know in which information structure they are. Both private
and public information structures are considered, secret information is not (Levine and Ponssard; 1977).
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4.1 Uniform distribution
4.1.1 Payoffs

We calculate the agency surplus and the firm profit for each case and each set of subsidies,
second best and flat. The numerical results are reported in Table 4.1.1. For all information
structures, the payoffs refer to the expected value over θ.

Uniform (b=2) Imperfect Asymmetric Perfect
SB Agency .949 .786 .932

Firm 0 .167 .097
Welfare .949 .953 1.029

Flat Agency .922 .712 .906
Firm 0 .221 .097

Welfare .922 .933 1.003

.
Uniform (b=10) Imperfect Asymmetric Perfect
SB Agency 5.568 4.801 5.896

Firm 0 .387 .235
Welfare 5.568 5.188 6.131

Flat Agency 5.422 4.353 5.625
Firm 0 .261 097

Welfare 5.422 4.614 5.722

Table 1: Surplus of the agency and firm’s profit with a uniform distribution for b = 2 and
b = 10. For each agent, for each scheme, the maximum payoff with respect to the information
structure is in bold.

4.1.2 The values of information

Start with the case of imperfect information with a flat scheme. The agency surplus is .922.
Getting information about the outcome of the project allows the agency to use a conditional
scheme, here rewarding success. Its surplus reaches its maximum (.949). The firm’s profit
remains at zero, its BAU level. While the distribution of profit depends on the scheme, its
expectation does not. With both schemes (flat and SB) the expected gain from profitable
projects (high types) is compensated by the expected losses from unprofitable ones (low
types).

The firm would then like to acquire information on θ, and its profit would increase from
zero to .167 while the agency surplus would decline from .949 to .786. At this stage the
agency would like to also acquire this information, and its surplus would increase to .932.
Note that the firm profit would decrease from .167 to .097.

Altogether comparing imperfect and perfect information (with second best schemes) we
see that the agency surplus decreases from .949 to .932 while the firm profit increases from
0 to .097. This illustrates that the two players have antagonistic incentives regarding the
information acquisition process: an offensive view versus a defensive view. The reason
for the latter is because the zero profit constraint is more stringent knowing θ than taken
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in expectation over θ. The benefit of calibrating the scheme using s1A(θ) and s1B(θ) (cf.
Proposition 1) to elicit the effort is not worthwhile for the agency, while it is for the firm
(.097 instead of 0).

The analysis is different with a large social benefit. With b = 10, the perfect information
case is better than the imperfect one: 5.896 versus 5.568 respectively. The fine calibration
of the reward is now also beneficial for the agency.

It is interesting to see that while for the agency conditional schemes dominate flat ones
whatever the information structure, this is not true for the firm for b = 2 but it is for b = 10.
Note also that welfare is maximal for perfect information whatever the scheme, while we saw
that the agency would prefer imperfect information if b = 2.

4.2 Binomial distribution
Consider now a binomial distribution over θ. Two types are introduced: θFB ≤ θL = .3 <
θBAU and θH = .75 > θBAU . A low-type firm would not implement the project, but it would
be socially valuable to do so. A high-type firm would implement the project without subsidy.
The probability of type θH is denoted as λ, and it is known to both the agency and the firm.
It will be useful to denote θ̄(λ) = (1 − λ)θL + λθH and λBAU the solution of θ̄(λ) = θBAU .
With θBAU = 0.64 we get λBAU = .76.

4.2.1 Payoffs

The numerical results depend on λ. We take λ = .3 and report the corresponding payoffs in
Table 4.2.1.

It is worth recalling the meaning of the information structure. Imperfect means that
neither the agency nor the firm knows the true value of θ. They play a game of averages,
applying Proposition 1 for the expected value for θ̄(λ = .3) = .435. Asymmetric means that
the firm knows the true value of θ but the agency does not. We use Proposition 6. It turns
out that with λ = .3 we are precisely at the point where the second best scheme is to reward
failure. Appendix B.1 details the optimal schemes (both second best and flat) for all values
of λ. Perfect information means that both the agency and the firm know the true value of
θ. We again use Proposition 1 for θL and θH and take the expectation over λ.

Binomial Imperfect Asymmetric Perfect
SB Agency .763 .535 .739

Firm 0 .096 .045
Welfare .763 .631 .784

Flat Agency .717 .527 .672
Firm 0 .190 .045

Welfare .717 .717 .717

Table 2: Surplus of agency and firm profit with a binomial distribution for b = 2.
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4.2.2 The values of information

Comparing Tables 4.1.1 and 4.2.1, we see that they provide similar rankings. Again the
agency would prefer to remain in an imperfect situation rather than in a perfect one (getting
.763 instead of .739). The firm has an incentive to move from imperfect to asymmetric
(getting .096 instead of 0). If it does so the agency is induced to acquire more information
as well to get .739 instead of .535. This provides some robustness for our analysis of the
incentives to acquire information.

With asymmetric information, the agency rewards failure with the uniform or binomial
distributions. Interestingly the incremental gain from using reward failure rather than a flat
subsidy for the agency may or may not be larger than the corresponding incremental loss
for the firm. Consider the change of welfare: for a uniform distribution it goes from .933 to
.953 (gains for the agency exceed losses for the firm), while for the binomial distribution it
goes from .717 to .631 (losses for the firm exceed gains for the agency). Rewarding failure
maximizes the surplus for the agency, and reduces the windfall profit of the firm, but it needs
not increase the welfare.

5 Simple extensions

5.1 The final outcome is not known ex-ante
In practice, R&D projects go through several stages from the lab to the market, and each of
these stages could be subsidized and subject to informational asymmetry. As a first extension
to model that dynamic, each project could be decomposed into two stages: a technical and
a market stage. In the technical stage, a pilot plant is built to prove the concept of the
innovation, a fixed cost is incurred, and the project might succeed or fail. In the market
stage, in the case of technical success, the product might be commercialized or not. The
revenue generated in the market stage R, conditional on technical success, is a random
variable that is eventually observed by both the agency and the firm when realized, but it
might be better anticipated by the firm than the agency. The probability distribution of R
is H(R), which is known ex ante to both the firm and the agency. Since one would expect
that the environmental benefit of an innovation depends on the quantity produced and sold,
we consider that it is a non-decreasing function of R: b(R).

There is now an interim stage, between the technical and market stages, at which the
outcome of the technical stage (success or failure) is observed by both parties. Moreover, the
firm learns at the interim stage the future revenue R of the market stage while the agency
does not. Indeed it is likely that in knowing the details of the technical stage the firm will
be in a good position to forecast its future market and the associated revenue. We assume
that R may include some set up cost so that its minimal value may be negative; denote Rmax

as its maximal value.The firm decides whether to commercialize the good, and it could be
subsidized to do so.

Our analysis can be extended to such situations using backward induction.14 At the
interim stage the fixed cost F is sunk so that if R < 0 the firm would not market the

14See Kirneva (2018) for a more complete study of this extension.
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product on a business as usual basis while the agency would as long as R + b(R) > 0.
Let RFB be the threshold revenue at which the agency would like to market the product:
RFB + b(RFB) = 0. The interim stage is easily solved through a conditional reward s3 such
that:

s3(R) =


0 if R < RFB

−R if RFB < R < 0
0 if 0 < R

Define R̄ and b̄ as the expected outcomes seen from ex ante conditional on using the optimal
interim solution. That is:

R̄ =
∫ Rmax

RF B
(R + s3(R))dH(R) and b̄ =

∫ Rmax

RF B
(b(R)− s3(R))dH(R)

. Our analysis of the one stage game can now be applied substituting R and b by R̄ and
b̄ respectively.The optimal scheme then consists of a couple of subsidies conditional on the
technical outcome (s1 and s2) together with s3(R) conditional on the market outcome.

5.2 The outcome is imperfectly observable
There may be situations in which the agency does not perfectly observe the outcome of the
project. This opens an opportunity for manipulation from the firm. If the agency were to
reward failure, the firm may pretend that a success is a failure. In the following we limit
ourselves to an extension of Section 3.3.1 (pure adverse selection) and show that as long as
the agency receives an informative signal the solution is not qualitatively affected, though
its efficiency is deteriorated (the threshold project is higher).

Let α1 be the probability of observing a signal of failure if the project is a success and α2
the probability of observing a signal of failure if the project fails. We assume that α2 ≥ α1,
a perfect signal corresponds to α2 = 1 and α1 = 0, and an uninformative signal corresponds
to α2 = α1. The subsidy obtained by a firm is α1s2 + (1 − α1)s1 in case of success and
α2s2 + (1− α2)s1 in case of failure. The threshold project is then:

θ̃(α1s2 + (1− α1)s1, α2s2 + (1− α2)s1),
and the expected total subsidy is∫ 1

θ̃

{
θ
[
(1− α1)s1 + α1s2

]
+ (1− θ)

[
(1− α2)s1 + α2s2

]}
dG(θ)

Corollary 1. If the success and failure of a project are not perfectly observable, the optimal
scheme remains of the form s1 = 0 and s2 > 0. The second best threshold type, the expected
subsidy, the agency surplus, the welfare, and the profit of firms only depend on the ratio
α1/α2.
• If α1 = 0 (success is perfectly observed), then, whatever α2, at the optimal second best
scheme, the threshold probability, welfare and s2 do not depend on α2 and correspond
to the perfect observability situation.

• Otherwise, with a uniform distribution, the threshold probability is higher and welfare
and the agency surplus are lower than in the case with a perfect signal.

See Appendix A.7 for the proof.
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6 Policy recommendations and extensions
This article is concerned with public financing of risky R&D projects for the energy transi-
tion. Public financing is justified because of the discrepancy between socially and privately
profitable projects. In such a context the question of what information is available to each
party is crucial for the design of the relevant incentive scheme because moral hazard and
adverse selection may be at work. The schemes to be considered are non negative subsidies,
i.e., rewarding success and/or rewarding failure.

We show that rewarding success is a good strategy in cases of symmetric information
structures while, ordinarily, rewarding failure is a good strategy for asymmetric ones. Such
a drastic qualitative change emphasizes the major role of a proper identification of the
underlying information structure in a real context. This is particularly so because of the
high value of information for the firm. Clearly the firm is in a better situation than the
agency to acquire information, and to keep it private.

These findings justify the importance of the empirical recommendations made by Rodrik
(2014) for an agency in charge of monitoring a green policy. Let us review three of them
briefly. Embeddedness: rather than considering the contracting process as a given arm’s
length relationship, make the informational design part of the issue to discuss its role in the
efficiency of the contracting process. Discipline: clarify ex-ante objectives, build an evalua-
tion protocol on what is to be observed, and introduce a sunset clause for renewing support
while avoiding a not credible threat to stop funding, i.e., design appropriate conditional in-
centives. Gaming: beware that private investors are likely to seek informational advantages
and manipulate outcomes. We think that our formalization provides helpful guidelines for
implementing these recommendations in a relevant way.

As a matter of fact the motivation for this article comes from numerous discussions we
had with the state agency in charge of the program launched in France in 2010 known as
the Investments for the Future Programme. It covers a period of 10 years (2010–2020), for
a total budget of 57 Be, and several types of activities,15 among which there are innovative
activities for the energy transition. This last part, of a total budget of 4 Be, is monitored
by ADEME.16 Each year, ADEME opens calls for innovative projects on some predefined
areas. Each project is examined on its own merit, and a selection is made. Then ADEME
proposes a contract to each eligible project and the firm accepts or rejects the contract. Over
the 2010–2015 period, ADEME financed more than 250 projects in areas such as renewable
energy, zero emission vehicles, and green chemistry. Similar programs exist in other countries,
notably the SunShot initiative in the US, launched in 2011 with the aim of driving down the
cost of solar energy.17

Initially ADEME only used flat subsidies that would simply compensate the firm for
launching an unprofitable but socially valuable project (based on a reference scenario, which
is similar to our Case 1, perfect symmetric information). However, evidence of windfall
profits appeared quite clearly in some projects. This led the agency to introduce repayable
advances, that is subsidies to be paid back in case of success. This recall our analysis of Case
2, asymmetric information. In some instances, the empirical difficulty to clearly observe

15https://www.gouvernement.fr/secretariat-general-pour-l-investissement-sgpi
16http://www.ademe.fr/en/investments-for-the-future
17https://www.energy.gov/eere/solar/sunshot-initiative
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success led the agency to define intermediary technical steps and have repayable advances
paid partially back along the way to avoid being manipulated. These empirical observations
indirectly suggested the issues to be studied in the current investigation.

From a theoretical standpoint more work would be worthwhile. First, from a pure techni-
cal point, the robustness of our results should be tested with more general functional forms.
It would also be interesting to incorporate the dynamic aspects of innovation and decompose
a project into several technical steps that need to be completed. The timing of these steps
and the determination of a stopping point, a time at which a project is abandoned, would be
worth analyzing. To such end the burgeoning literature on experimentation with new ideas
under asymmetric information could be inspiring (e.g. Bergemann and Hege; 1998, 2005).
Second, in terms of the architecture of the formalization, the information structure may
involve another party. Quite often the state agency plays the role of a middleman between
the firm and the banking system. Indeed, at first, the asymmetry of information is much
more acute between the firm and the banking system (which induces a capital market fail-
ure) than between the firm and the state agency (which has much higher technical expertise
than a bank). The formalization should explicitly analyze how the contractual arrangement
between the state agency and the firm should evolve as the asymmetry between the bank
and the firm reduces over time.
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Appendix

A Proofs

A.1 Proof of Proposition 1
• First step: The project is initiated if and only if θ ≥ θFB

If θ < θFB, the joint surplus of the agency and the firm is negative whatever the subsidy
scheme that triggers initiation, therefore the agency is not willing to make the firm initiate
the project and no subsidy are required.

If θ ≥ θFB, the agency can set s1 = b and s2 = 0, the project is initiated and the agency
surplus is null. Therefore, the agency can obtain a positive surplus for θ > θFB with an
optimal scheme that triggers the initiation of the project.
• Second step: s∗2 = 0:

Let us consider that θ > θFB. The regulator maximizes its surplus (eq. 2) subject to the
non-negativity constraints on profit (eq.1) and subsidy s1 and s2. The Lagrangien is:

L = v(1, θ, e(s1 − s2), s1, s2) + µ0π + µ1s1 + µ2s2

With µ0 the Lagrange multiplier associated to the initiation constraint, µi the multiplier
associated with the non-negativity constraint of si, i = 1, 2. At the optimum:18

pe(e, θ)[b− (s1 − s2)]e′ − (1− µ0)p+ µ1 = 0 (28)

− pe[b− (s1 − s2)]e′ − (1− µ0)(1− p) + µ2 = 0 (29)

And the corresponding slackness conditions. Summing the two equations gives

µ1 + µ2 + µ0 − 1 = 0 (30)

At least one of the µi is positive, otherwise µ0 = 1 and s∗1 − s∗2 = b. The agency surplus
is then −(1 − p)s∗2 < 0, which cannot be optimal. Consequently, µ1 + µ2 > 0 and µ0 < 1
(from eq. (30)). Then, from equation (29)

µ2 = (1− µ0)(1− p) + pe[b− (s∗1 − s∗2)]e′ > 0

and s∗2 = 0.

• Third step: Expressions of the optimal subsidy
There are four possible cases: i) s∗1 = 0 and π > 0, ii) s∗1 = 0 and π = 0, iii) s∗1 > 0 and

π > 0, or, iv) s∗1 > 0 and π = 0.
Case i) corresponds to “business as usual” no subsidy is used and the project is imple-

mented with suboptimal effort. Case ii) corresponds to a situation in which the project is
not profitable and it is not worth subsidizing it.

18The derivative of the profit of the firm with respect to si does not directly involve e′ by an envelop
argument.
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In case iii) s∗1 > 0 and π > 0 then pe[b− s∗1]e′ = p, and in case iv) s∗1 > 0 and π = 0 then
pe[b− s∗1]e′ − p = −µ0p ≤ 0.

The subsidy s1A(θ) defined by equation (10) is the solution of pe[b− s∗1]e′ = p, if positive.
And s1B(θ) is the solution of π(1, θ, e(s1), s1, 0) = 0, if positive. Replacing e by (R + s1)/γ
in eq. (1) gives a second order equation in (R+ s1) with one positive root given by equation
(9).

If s∗1 > 0 and π > 0 then s∗1 = s1A, and if s∗1 > 0 and π = 0 then s∗1 = s1B. Furthermore,
by concavity of v, if both expressions s1A and s1B are positive the optimal subsidy is the
larger of the two, otherwise it is null.

Ranking of the subsidies:
Some properties of the subsidies should be noted: s1B(θFB) = b if θFB > 0 and s1B(θBAU) =

0, while s1A < b for all θ.
From the two expressions (10) and (9) the sign of the difference s1B − s1A is the sign of:

θ

1− θ

[√
1 + 2F

γ

1− θ
θ2 − 1

]
− R

γ
−
[
b−R

2γ − 1
2

θ

1− θ

]

=
√
x2 + 2F

γ
(1 + x)− b+R

2γ − 1
2x with x = θ

1− θ
the sign of which is the sign of the second degree polynomial:

P (x) =def

[
4x2 + 8φ(1 + x)

]
− [β + x]2 = 3x2 − (2β − 8φ)x+ (8φ− β2) (31)

in which β = (b + R)/γ < 1 (by Assumption 1) and φ = F/γ which is lower than R/γ
(by Assumption 2) and larger than (R/γ)2/2 (by Assumption 3). And we have θFB > 0
if and only if 2φ > β2 (from 8). The full characterization of the possible cases is cumber-
some.However, despite our three assumptions, there is still a lot of room for maneuver in the
choice of parameters. The two following corollary provide conditions on parameters F , b, R
and γ such that only s1B is used for all θ.The third provide conditions so that s1A is used.

Corollary A1. If F > (b + R)2/2, that is, θFB > 0, then s1A < s1B for all θ so that the
optimal subsidy is max{s1B(θ), 0} for all θ ∈ [0, 1], and the firm gets no extra profit.

Proof. The discriminant of P (x) (eq. 31) is 16[β2 − 2βφ − 6φ + 4φ2] which is negative if
φ > β2/2, and P (0) = 8φ− β2 > 0 so that P (x) > 0 for all x and s1B > s1A.

Corollary A2. If F > γ(1−
√

3/2)(' 0.134γ), then for all b such that (R+ b) < γ and all
types θ > θFB, the optimal subsidy is max{s1B(θ), 0} and the firm gets no extra profit.

Proof. The discriminant of P (x) has the sign of β2 − 2βφ − 6φ + 4φ2 which is increasing
with respect to β (since φ < 1) and therefore lower than 1 − 8φ + 4φ2 which is equal to
4(1− φ)2 − 3 which is negative if and only if φ > 1−

√
3/2

Corollary A3. If F < (R+ b)2/(8γ), then, θFB = 0 and the optimal subsidy is equal to s1A
for small θ, for larger θ the optimal subsidy switches to s1B and eventually to 0.

If F is slightly larger than (R + b)2/(8γ), then θFB = 0 and the optimal subsidy is equal
to s1B for small θ, for intermediate θ the optimal subsidy switches to s1A, then switches back
to s1B and eventually to 0.

26



Proof. First, F < (R+ b)2/(8γ) < (b+R)2/2 so that θFB = 0 for F below or slightly larger
than (R + b)2/(8γ). Second, we have

P (0) = 8F
γ
− (R + b)2

γ2 < 0

So P (0) < 0 gives that s1B(0) < s1A(0) and so s∗1 = s1A(0) for small θ. Then, we know that
P (.) has a unique positive root (the other is negative), so that for θ below that root (actually
x = θ/(1 + θ) is the argument of P ) s1A is used, then s1B(θ) until it is null.

If F is slightly larger than the threshold, then P (0) > 0, but one can show that P ′(0) < 0
so that the first root of P (.) is close to zero, the optimal subsidy switches from s1B to s1A
from there, and then back to s1B after the second root of P (.).

A.2 Proof of Lemma 2
Consider a change of the subsidy couple that keeps θt unchanged: θtds1 + (1 − θt)ds2 = 0.
For θ > θt the effect of this change on the expected subsidy received by the firm of type θ
is: (θ − θt)(ds1 − ds2) which is negative if ds2 > 0. Therefore, to reduce C(θt) the agency
should increase s2 and reduce s1.

A.3 Proof of Proposition 2
The threshold probability as a function of s2 is θ̃(0, s2), the derivative of welfare with respect
to s2 is:

− [θ̃b− (1− θ̃)s2]g(θ̃) ∂θ̃
∂s2
−
∫ 1

θ̃
(1− θ)g(θ)dθ (32)

the first term is the benefit from the marginal project, the second term is the increased
subsidy to all more profitable projects. the derivative of the threshold probability is

∂θ̃

∂s2
= 1− θ̃
R− s2

= (1− θ̃)2

R− F

the derivative of welfare could then be rewritten:

[θ̃(R + b)− F ]g(θ̃)(1− θ̃)2

R− F
−
∫ 1

θ̃
(1− θ)g(θ)dθ (33)

At s2 = 0 θ̃ = F/R and the derivative of welfare is negative if

[F (R + b)− FR]g(F/R) 1
R

(1− F/R)2

R− F
≤
∫ 1

θ̃
(1− θ)g(θ)dθ

point (i) follows. Otherwise, the optimal subsidy cancels the derivative of welfare and point
(ii) describes the first order condition.
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A.4 Proof of Proposition 3
The agency surplus is positive for s1 = s2 = 0, and if s1− s2 ≥ b it is non-positive, therefore,
at the optimum scheme s1 − s2 < b.

Concerning the selection of projects, several cases should be distinguished according to
the sign of the two subsidies at the optimum:

i If s1 > 0 and s2 > 0: the derivative of V with respect to s, expressed in eq. (21), is
null and eq. (22) is satisfied.
θSB cancels the derivative of V , given by eq. (20), with respect to θ̃ which gives (23).

ii If s1 ≥ 0 and s2 = 0: then s1 < b and at θSB

0 = p(e, θSB)(R + s1)− [F + f(e, θSB)] from eq. (17) (34)
< p(e, θSB)(R + b)− [F + f(e, θSB)] (35)
< p(eFB, θSB)(R + b)− [F + f(eFB, θSB)] (36)

therefore, θSB > θFB less projects are selected than at the first best.

iii If s1 = 0 and s2 > 0: the above method cannot be applied, the first order condition
should be considered. The threshold θ̃ cannot be chosen independently from the bonus
s = −s2, and s2 cancels the derivative of V given by eq. (18) so

p(e, θ̃)(b+ s2)− s2 =
∫ 1

θ̃
[pe.(b− s2)e′ + (1− p)] dG(θ)

/[
−∂θ̃/∂s2

]
and injecting eq. (17) the left hand side is p(e, θ̃)(R+b)− [F +f ] which is then strictly
positive, since ∂θ̃/∂s2 < 0, and together with the fact that e < eFB = implies that
θSB < θFB.

A.5 Proof of Proposition 4
The second order coefficient of s is given by eq. (24), and with a uniform distribution over
[0, 1] it is null.

Therefore, the derivative of V with respect to s is (from eq. (21)):

∂V

∂s
= 1
γ

∫ 1

θ̃

[
(1− θ)b− (θ − θ̃)(γ −R)

]
dθ

<
b

γ

∫ 1

θ̃

[
(1− θ)− (θ − θ̃)

]
dθ since γ −R > b

= 0

V is strictly decreasing with respect to s so s1 = 0 (otherwise s can be decreased while
keeping θ̃ constant).
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A.6 Proof of Proposition 5
From equation (6), e(s) = 1 for s ≥ γ−R so that from equation (21), V is flat for s ≥ γ−R,
and by continuity it is increasing for s slightly below. It is then locally optimal for any
targeted threshold to set s = γ −R.

With e = 1, the cost of a project of type θ is then F + (1− θ)γ/2, and the agency surplus
can then be written : V = (1 − G(θ̃))[(R + b) − (F + (1 − θ̃)γ/2)]. The maximization of
which gives equation (25).

With s = γ−R, p(e, θ) = 1 and a firm profit is π = (R+s)−[F+f ] = γ+s2−F−(1−θ)γ/2.
The selection of projects is ensured by setting s2 = F − (1 + θ̃)γ2 , and s1 = s + s2 =
F + (1− θ̃)γ2 −R.

Both are non-negative for a sufficiently small γ.

A.7 Proof of corollary 1
Let us denote σ1 = α1s2 + (1 − α1)s2 and σ2 = α2s2 + (1 − α2)s2 the subsidies obtained in
case of success and failure respectively.
• For unconstrained subsidies: with the couple of subsidy: s1 = F − α2R/(α2 − α1) and

s2 = F + (1 − α2)R/(α2 − α1), the expected subsidies are σ1 = F and σ2 = F − R which
implement the first best.
• For non-negative subsidies::
1. s1 = 0 and s2 > 0: The reasoning of Lemma 1 can be reproduced: an increase of σ2

coupled with a reduction of σ1 that leaves θ̃ unchanged reduces the total expected subsidy.
Consequently it is optimal to set s1 = 0 and s2 > 0.

2. Then, with s1 = 0, σ1 = xσ2 with x = α1/α2 and the threshold probability is
θ̃(xσ2, σ2), the regulator surplus is

V (xσ2, σ2) =
∫ 1

θ̃

[
θ(b− xσ2)− (1− θ)σ2

]
dG(θ)

and welfare is W (θ̃(xσ2, σ2)).
3. If α1 = 0: then x = 0 and the surplus of the regulator, the profit of firms, and total

welfare could all be written as functions of σ2 without any other dependence on α2. The
optimum second best scheme is then similar to the scheme described by Proposition 2 with
α2s2 being independent of α2.

4. Otherwise, for α1 > 0: then x > 0,
4.1. Let us prove that θSB is increasing with respect to x, to do so we first write the first

order condition:
- the total derivative of the threshold type w.r.t. σ2 is:

dθ̃

dσ2
= − 1− (1− x)θ̃

R− (1− x)σ2

the first order condition satisfied at the optimal scheme is
[
θ̃ − θFB

]
g(θ̃) 1− (1− x)θ̃

R− (1− x)σ2
=
∫ 1

θ̃

[
θx+ (1− θ)

]
dG(θ)
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and with a homogeneous distribution it gives:

θ̃ = θFB + R− (1− x)F
R + b

1
2(1− x)

[
1− x2(

1− (1− x)θ̃
)2

]

- θSB increases with respect to x (brutal calculations): The right hand side of the first order
condition above side is a decreasing function of θ̃, and it is increasing with respect to x: Its
derivative is

(1− θ̃)
2(R + b)

2Fx+R[(1− θ̃)2 − xθ̃(1 + θ̃)](
1− (1− x)θ̃

)3

the sign of which is the sign of 2Fx + R[(1 − θ̃)2 − xθ̃(1 + θ̃)] which is positive (using that
θ̃ < F/R).

4.2. The effect of x on the regulator surplus at the optimal scheme, by an envelop
argument, it is

∂V

∂s1
(xσ2, σ2)σ2

which is negative.
Welfare is decreasing with respect to θ̃ as long as θ̃ > θFB, so it is decreasing with respect

to x.

A.8 Proof of Lemma 3
To alleviate notation the probability p(e, θL) and p(e, θH) are denoted with subscripts: pL(e)
and pH(e), and the profits πL and πH .

If both s∗1 and s∗2 are positive, then low type projects are implemented (otherwise one
would apply Proposition 1 to high type) and their profits are null (otherwise the subsidies
could be reduced). The regulator surplus is then

v(s1, s2) = (1− λ)
[
pL(b− s1)− (1− pL)s2

]
+ λ

[
pH(b− s1)− (1− pH)s2

]
(37)

and the optimal scheme satisfies the following equation
∂v

∂s1

∂πL
∂s2
− ∂v

∂s2

∂πL
∂s1

= 0

that is
∂v

∂s1
(1− pL)− ∂v

∂s2
pL = 0

which gives, denoting s∗ = s∗1 − s∗2:

λ[pH(1− pL) + (1− pH)pL] =
[
(1− λ)∂p

∂e
(e, θL) + λ

∂p

∂e
(e, θH)

]
(b− s∗)e′

λ[pH − pL] =
[
(1− λ)(1− θL) + λ(1− θH)

]
(b− s∗) 1

γ

λ(θH − θL)(γ − (R + s∗)) =
[
(1− λ)(1− θL) + λ(1− θH)

]
(b− s∗)

which then gives equation (26). Equation (27) corresponds to πL = 0.
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A.9 Proof of Proposition 6
The solution s∗1 = s∗2 = 0 corresponds to the situation in which L firms do not enter. The
regulator surplus in that situation is:

V1(λ) = λpHb

In all other situations, if one of the optimal subsidy is positive, L firms do enter (from
Proposition 1, if only H firms enter then it is optimal to set s1 = s2 = 0). The regulator
surplus when L firms enter is

V2 = (1− λ)[pL(b− s1)− (1− pL)s2] + λ[pH(b− s1)− (1− pH)s2]

that can be equivalently defined as a function of s = s1 − s2 and s2:

V2(λ, s, s2) = (1− λ)[pL(b− s)− s2] + λ[pH(b− s)− s2]

and the constraint s1 ≥ 0 is then s+ s2 ≥ 0.
The problem of the regulator can be decomposed in two steps: first maximize V2 and

then compare the maximum obtained with V1.
Let us consider the maximization of V2 subject to πL ≥ 0, s2 ≥ 0 and s + s2 ≥ 0 and

denote s∗∗(λ) and s∗∗2 (λ) the solution, and s∗∗1 = s∗∗+ s∗∗2 . The problem can be simplified by
transforming the three constraints πL ≥ 0, s2 ≥ 0 and s+ s2 ≥ 0 into two constraints on s,
by parameterizing everything by s.
• At the maximum πL = 0: by contradiction, if πL > 0 then s∗∗2 = 0 and s∗∗1 is larger

than s1B (which cancels πL, it is defined by eq. 9) and solves

[(1− λ)∂pL
∂e

+ λ
∂pH
∂e

](b− s1)e′ = (1− λ)pL + λpH

then ∂pL/∂e(b−s∗∗1 )e′ > pL that is s∗∗1 < s1A(θ) (given by eq. 10) which is lower than s1B(θ)
when (R + b) ≥ 2

√
2Fγ (proof of Proposition 1), a contradiction.

• We can then define s2(s):

s2(s) = F −max
e

[p(e, θL)(R + s)− f(e, θL)]

it is decreasing with respect to s with s′2(s) = −pL. And s1(s) = s+s2(s) is strictly increasing
with respect to s (s′1 = 1− p).
- For s = −R, s2(−R) = F and the associated s1 is F −R < 0.
- At s = s1B, the profit πL(e, s1B, 0) is null so that s2(s1B) = 0, and s > s1B ⇔ s2(s) < 0.
Note also that s1B < b.
- At s = 0, s2(0) is positive equal to −πL(e, 0, 0).
- Define s the solution of s + s2(s) = 0, it is between −R and 0. The corresponding s2 is
such that πL(e, 0, s2) = 0.

The regulator’s objective is then equivalent to the maximization of

max
s
V2(λ, s, s2(s)) s.t. s ≤ s ≤ s1B
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The derivative of the objective function with respect to s is:

V(λ, s) =
[
(1− λ)∂pL

∂e
+ λ

∂pH
∂e

]
(b− s) 1

γ
− λ[pH − pL]

=
[
(1− λ)(1− θL) + λ(1− θH)

]
(b− s) 1

γ
− λ(θH − θL)(1− R + s

γ
)

=
[
(1− θL)− 2λ(θH − θL)

]
(b− s) 1

γ
− λ(θH − θL)(1− eFB) using ??

=(θH − θL)
[
(λ− λ)(b− s)/γ − λ(1− eFB)

]
in which

λ = 1− θL
2(θH − θL)

This derivative is strictly decreasing with respect to s as long as λ < λ. It is also
decreasing with respect to λ for s < s1B.

For all s ∈ [s, s1B] we have V(0, s) = (1− θL)(b− s)/γ > 0 and V(λ, s) < 0.
So we already know that s∗∗(0) = s∗∗1 (0) = s1B and s∗∗2 (0) = 0, and that, ∀λ > λ,

s∗∗(λ) = s: s∗∗1 (λ) = 0 and s∗∗2 (λ) = s2(s) the solution of

pL(e)R + (1− pL)s2 = F + fL(e)

And we can define :

• λ1 the solution of V(λ, s1B) = 0

• λ2 the solution of V(λ, s) = 0

Then the optimal solution as a function of λ is such that

• 0 ≤ λ < λ1: s∗∗(λ) = s∗∗1 (λ) = s1B and s∗∗2 (λ) = 0

• λ1 ≤ λ < λ2: s∗∗(λ) ∈ (s, s1B), s∗∗1 (λ) > 0 and s∗∗2 (λ) > 0

• λ2 ≤ λ ≤ 1: s∗∗(λ) = s, s∗∗1 (λ) = 0 and s∗∗2 (λ) = s2(s) > 0

Then, the regulator should compare V2 and V1, the difference V2 − V1 is decreasing with
respect to λ and positive for λ = 0 and negative for λ = 1 (by Proposition 1). There is then
a λ3 so that λ > λ3 implies s∗∗1 (λ) = s∗∗2 (λ) = 0.

A.10 Optimal menu without constraints
We provide a description of what would be the structure of a menu, with a general distri-
bution of types, if the subsidies are not constrained to be positive, and firms cannot initiate
the project without the regulator consent.

It is easier to work with the bonus s(θ) and consider s2(θ) as a fixed transfer. The agency
proposes a structured menu (s(θ), s2(θ))θ∈(0,1), a firm of type θ selecting the item (s(η), s2(η))
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has a profit π(θ, η) = p(e, θ)(R+ s(η)) + s2(η)− (F + f(e, θ)), and the first order condition
necessary for self selection is p(e, θ)s′(θ) + s′2(θ) = 0.

Using the standard methodology in contract design, denoting πm = π(θ, θ), its total
derivative is dπm/dθ = pθ(R + s) − fθ(e, θ) which only depends on the bonus s(θ) and not
s2(θ) because e does. Thanks to this relationship and an integration by part the surplus of
the agency can be written:

V =
∫ 1

θ̃

{[
p(e, θ)(R + b)− (F − f(e, θ))

]
g(θ)− dπm

dθ
[1−G(θ)]

}
dθ

The optimal bonus s(θ) should be such that

pe(b− s)
de

ds
= 1−G

g

d

ds

[
pθ(e, θ)(R + s)− fθ(e, θ)

]
and with our quadratic specification s(θ) solves:

(1− θ)(b− s) 1
γ

= 1−G(θ)
g(θ) (1− e(s)) = 1−G(θ)

g(θ) (γ −R− b) 1
γ

(38)

which looks like the equation (22) satisfied by a simple scheme (s, s2). We recover the usual
result that s = b for high types. The selection of projects is done with the choice of s2(θ̃)
the profit of the θ̃ firm being nul.

B The illustrating example

B.1 Optimal schemes for the illustrating example
B.1.1 Uniform distribution with b = 2

Case 1: Perfect information
• The optimal second best scheme: From Proposition 1, with our numerical values if

b ≥ 7.7 then s1A(θ) ≤ s1B(θ) for all θ. Hence for b = 2 the optimal second best scheme is:
- if θ ≤ θFB the optimal subsidy is null, the project is not initiated;
- if θFB ≤ θ < θBAU the optimal subsidy is s1B(θ), the project is initiated and the firm

gets no windfall profit;
- if θ ≥ θBAU the optimal subsidy is null, it is business as usual, the project is initiated

and the firm gets no windfall profit.
• The optimal flat scheme: with a flat scheme s1 = s2 and the effort does not depend on

the subsidy.The subsidy is then only used to incentivize the firm to initiate the project. We
first derive the subsidy which gets a zero profit for the firm. It is F − θR− (1− θ)R2/(2γ).
The corresponding surplus is positive if θ > .21. Altogether we get:

- if θ < .21, no subsidy and the project is not initiated;
- if .21 < θ < θBAU = .64 use s1(θ) = s2(θ) = F − θR − (1 − θ)R2/(2γ), the project is

initiated with zero profit for the firm;
- if θ > θBAU = .64 the project is initiated without subsidy and the firm gets its BAU

profit.
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Case 2: Imperfect information
We do as before with the expected value of type θ̄ = 0.5. For both the optimal second

best scheme and the optimal flat subsidy the firm gets a zero expected profit.More precisely:
- for the optimal second best scheme s1 = s1B(θ̄) = 0.36;
- for the optimal flat scheme s1 = s2 = 0.2.

Case 3: Asymmetric information
From Proposition 4 we know that the optimal second best scheme is such that s1 = 0.

The optimal value of s2 is obtained numerically, it is s2 = .704. The optimal flat scheme is
also obtained numerically: s1 = s2 = .27.

B.1.2 Uniform distribution with b = 10

Case 1: Perfect information
• Optimal second best scheme:

We now have θFB = 0 and the ranking between s1A(θ) and s1B(θ) depends on θ (cf Figure
1). The optimal second best scheme is again obtained using Proposition 1 and it is:

- if θFB = 0 ≤ θ ≤ .36 the optimal subsidy is s1A(θ), the project is initiated and the firm
gets some rent;

- if .36 ≤ θ < θBAU the optimal subsidy is s1B(θ), the project is initiated and the firm
gets zero profit;

- if θ ≥ θBAU the optimal subsidy is null, it is business as usual, the project is implemented
and the firm gets its BAU profit.
• Optimal flat scheme:

The flat subsidy which gets a zero profit for the firm is: F − θR − (1− θ)R2/(2γ). The
corresponding surplus is always positive. Altogether we get:

- if θFB = 0 < θ < θBAU = .64 use s1(θ) = s2(θ) = F − θR− (1− θ)R2/(2γ), the project
is initiated with zero profit for the firm;

- if θ > θBAU = .64 the project is initiated with no subsidy, either flat or second best,
and the firm gets its BAU profit.

Case 2: Imperfect information
While the optimal schemes differ whether b = 2 or b = 10 for perfect information, they

do not for imperfect one. It never pays for the agency to induce a larger effort than the one
needed to compensate the firm.

Case 3: Asymmetric information
From Proposition 4 we know that the optimal second best scheme is such that s1 = 0.

The optimal value of s2 is obtained numerically as s2 = .864. The optimal flat scheme is
obtained numerically. It is s1 = s2 = .344.

B.1.3 Binomial distribution

We detail the optimal schemes for all values of λ from 0 to 1.
Case 1: Perfect information

If both the agency and the firm know that θ is θL, since θFB ≤ θL < θBAU the optimal
second best subsidy is s1B(θL) (cf Proposition 1); the optimal flat subsidy is s1(θL) = s2(θL) =
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F−θLR−(1−θL)R2/(2γ); the project is implemented, the agency gets the associated surplus
and the firm zero profit;

If both the agency and the firm know that θ is θH , since θH ≥ θBAU the optimal subsidy
is null, it is business as usual; the project is implemented, the agency gets the BAU surplus
and the firm the BAU profit.
Case 2: Imperfect information

Both the agency and the firm know that θ is either θL or θH with respective probability
1− λ and λ.

For a given λ, to derive the optimal second best scheme we compare the agency surplus
either with BAU or with a scheme that triggers initiation (and π = 0) if necessary (λ <
λBAU).

The firm initiates the project through BAU for λ > λBAU , in that case the agency is
better off with no subsidy s1 = s2 = 0. For λ between 0 and λBAU we have s1 = s1B(θ̄(λ))
(cf Proposition 1) and s2 = 0.

For the optimal flat scheme one needs to compare the surplus obtained with a scheme
such that s1 = s2 = −π(1, eBAU , θ(λ), 0, 0), with its BAU surplus; The critical value of λ is
lower than λBAU , that is .64.
Case 3: Asymmetric information

In this case, the agency knows λ and the firm knows the true value of θ. We obtain the
second best scheme using Proposition 6. We can derive numerically the thresholds for λ to
approximately be λ1 = .1, λ2 = .3 and λ3 = .6. We recall the strucure of the solution:
− for 0 < λ ≤ λ1 : s∗1 > 0 and s∗2 = 0; s∗1 = s1B(θL) given by equation (9)
− for λ1 < λ < λ2 : s∗1 > 0 and s∗2 > 0 given by Lemma 3 ;
− for λ2 < λ < λ3 : s∗1 = 0 and s∗2 > 0 such that π(θL, e, 0, s∗2) = 0 :

s∗2 = R− γ + γ

[
1− 2

γ

R− F
1− θL

]1/2

− for λ3 < λ ≤ 1 : s∗1 = 0 and s∗2 = 0.
The profit of a low type firm is always null, a high type firm gets a rent as long as λ < λ3.
The optimal flat subsidy induces the BAU effort from the firm. For low values of λ it is

calibrated so that the firm gets zero profit with θL and a rent with θH . We get s1 = s2 =
F −θLR− (1−θL)R2/2γ = .43. For high values of λ there is no subsidy the firm only launch
the project iff θ = θH . The threshold value for λ can be derived to be .375.
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