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Abstract Emerging smart manufacturing technologies combine physical produc-

tion networks with digital IT systems, resulting in complex smart factory networks,

which are especially vulnerable to IT security risks, such as IT component non-

availabilities. Companies must employ extensive IT security measures to secure

their production facilities. However, complex network structures and inherent

dependencies of smart factory networks complicate corresponding investment

decisions and increase the need for appropriate decision support. We develop a risk

assessment model that supports companies in the investment decision-making

process regarding IT security measures by identifying and evaluating the most

critical areas of the information network while considering the underlying pro-

duction network. For this purpose, IT availability risks are quantified by means of

graph theory, matrix notation, and value-at-risk. Our model provides a structured

approach and considers network structures and interdependencies. The insights

gained by our model present a profound economic basis for investment decisions on

IT security measures. By applying our model in an exemplary real-world setting, we

analyze various IT security measures and their risk reduction effect.
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1 Introduction

Technological trends, such as the Internet of Things (IoT), cyber-physical systems

(CPS), and other smart manufacturing technologies turn conventional production

facilities into so-called smart factories (Lasi et al. 2014). There, CPS enable

machinery and products to control and monitor production processes collaboratively

and to optimize themselves and the production processes (Yoon et al. 2012; Schuh

et al. 2014; Hessman 2013). Suppliers, customers, and vendors are increasingly

integrated into the production infrastructure, resulting in IT-dependent, intercom-

pany smart factory networks, with complex interdependencies. Thereby, the

connection of physical production and digital information enables the flexible

production of individualized goods, while simultaneously increasing efficiency

(Radziwon et al. 2014). Besides manifold potential benefits, a number of new risks

arise in smart factory networks. For instance, the digital transformation of

production facilities bears considerable investment risks considering the substantial

investment volumes that are often required. At the same time, technological risks

arise due to the fast development cycles of digital technologies. Given the

coordinative role of humans in complex production processes, the importance of

humans as a possible source of error for operational risks but also as an object to be

protected in the context of safety is also increasing (Hertel 2015). This is

accompanied by the increasing complexity of the overall socio-economic system of

the smart factory network, which increases the criticality of random and negligent

errors and disturbances (Tupa et al. 2017; Geisberger and Broy 2015). Besides these

general risks, especially IT security risks are of central importance as smart factory

networks rely on communication and real-time information synchronization and,

thus, depend on the underlying IT systems, which are mandatory for the reliable

operation of the production infrastructure (Zuehlke 2010; Yoon et al. 2012; Tupa

et al. 2017). Therefore, smart factory networks are concurrently increasingly

vulnerable to IT security risks as they are no longer isolated and closed systems

(Yoon et al. 2012; Smith et al. 2007; Tupa et al. 2017). Besides other dimensions of

IT security risks including access, accuracy, or accountability, this involves

especially IT availability risks. These are becoming one of the most critical threats

for companies, as non-availabilities of IT systems significantly hamper the reliable

operation of dependent production components, and eventually cause their complete

failure (Amiri et al. 2014). Although many companies are extensively engaged in

digital transformation, the associated risks are often underestimated or not

considered. However, this is of utmost importance as the consequences of IT

availability risks in form of business interruptions might lead to considerable

damage potentials. These damage potentials are increased by just-in-time and just-

in-sequence production principles and ultimately result in severe monetary losses.

This especially holds true for highly integrated, interdependent supply networks in

which the failure of one company can cause interruptions in the entire supply
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network. Accordingly, companies must assign considerable investment volumes to

IT security measures to secure their production facilities against IT availability risks

and to prevent economic harm. However, the variety of potential measures, the

increasing complexity of smart factory networks, and especially the inherent

dependency structures significantly complicate the identification of the most critical

areas of IT systems with regard to potential threat scenarios. Thus, companies

require well-founded approaches that support a comprehensive assessment of IT

availability risks and, based on that, enable well thought out investment decisions

regarding IT security measures in the course of their IT security strategy.

Due to the outlined complex interdependencies in smart factory networks, a

corresponding risk assessment model for IT availability risks must consider—

besides specific characteristics of smart factory networks—that non-availability of

IT systems interrupts the operation of the dependent production infrastructure (Lee

2008; Lucke et al. 2008; Zuehlke 2010). Additionally, increasing interconnected-

ness contributes to this increased vulnerability as local failures causing non-

availabilities of IT systems can lead to disruptions in the entire value network

(Amin et al. 2013; Hallikas et al. 2004). Local failures include, amongst others,

simple technical failures, incorrect capacity planning, human errors, natural

disasters, or intentional attacks on IT systems. For example, targeted denial-of-

service attacks can cause a non-availability of IT components, affecting the

functionality of the production network and reducing its productivity (Lucke et al.

2008; Zuehlke 2010; Amin et al. 2013). Numerous examples illustrate this threat

potential. First, the German Federal Office for Information Security (abbreviated as

BSI) mentions in its status report on information security that hackers attacked a

steel plant by intruding its office network. After advancing into the production

control network and attacking the control components of the blast furnace, the blast

furnace was left in an ‘‘undefined status’’ and could not be shut down in a controlled

manner. As a result, the blast furnace and other parts of the plant were severely

damaged (BSI 2014). This illustrates that due to ongoing interconnectedness,

investments in IT security measures are of critical significance, even in traditional

production facilities. Another example is the Stuxnet worm attack in 2010, which

targeted industrial control systems in high-security infrastructures, such as atomic

plants. The Stuxnet incident revealed that the interconnectedness of applications

presents a serious security issue and demonstrated that even the control system’s

disconnection from the Internet as well as personal access restrictions are

insufficient as protection for industrial control systems (Karnouskos 2011).

Considering these threat scenarios, companies must employ IT security measures

to secure their CPS infrastructure against IT availability risks. Appropriate IT

security measures include, but are not limited to, redundancies through backup

components, industrial hardware with integrated IT security mechanisms, intrusion

detection systems, or appropriate service-level agreements (Byres and Lowe 2004;

Cardenas et al. 2008; Yadav and Dong 2014; Zambon et al. 2007).

Given the variety of potential IT security measures, in combination with limited

personal and financial resources, the corresponding investment decisions regarding

IT security measures must be based on a profound economic basis, considering

costs, benefits, and risk aspects (Cavusoglu et al. 2004; Gordon et al. 2003; Huang
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2010). For this, the most critical areas of a smart factory network’s IT system must

be identified and evaluated with a structured approach, to invest available funds in

the most effective way (i.e., reducing IT availability risks to the best possible

extent). Thereby, an analysis must consider the diverse, complex network structures

and dependencies between the physical production world and the digital IT systems

of the smart factory network. To support companies in their corresponding decision

processes, we develop a structured approach for the identification and evaluation of

a smart factory network’s most critical areas regarding IT availability risks and

formulate the following two research questions:

RQ1 How can a smart factory network, consisting of dependent and connected

production components and IT systems, be modeled and formalized?

RQ2 How can IT availability risks of IT systems in a smart factory network be

quantified to identify the most critical nodes?

To answer these research questions, we first model and formalize the smart

factory networks’ general setting by means of graph theory and matrix notation.

Then, we quantify IT availability risks by applying the risk measure Value at Risk

(VaR). While there are a few multi-criteria decision-making approaches that try to

integrate interdependencies, causes, and effect relations like the DANP approach of

Ramkumar and Jenamani (2015) for the assessment of sustainability induced in

supply chains by e-procurement, approaches are missing that consider a monetary

financial perspective, analyze root causes and damage potentials, and transfer these

to a monetary basis. Against this backdrop, our approach focusses on the root causes

of damage and the resulting propagation effects within smart factory networks and

uses VaR as a suitable risk measure, which indicates damage with a confidence

level, to condense the effects and, thus, provide a monetary valuation that is

suitable for management practice due to the wide spread and acceptance of VaR as a

standard risk measure. In particular, our approach allows for analyzing the

damaging effects that result from failures of single IT components by taking into

account the manifold and complex interdependencies in smart factory networks. By

means of this, it enables companies to identify the most critical IT components and

to derive a solid design of their smart factory information network. Further, our

results demonstrate that the criticality of an IT component is determined by

numerous factors that have to be considered in the risk assessment. Accordingly, our

approach addresses a relevant real-world problem and contributes to literature and

practice as it enables a structured analysis of increasingly complex smart factory

networks under consideration of not only direct but also indirect dependencies

among the components of the smart factory network, propagation effects and the

resulting damages. Key findings and contributions include:

• We find that the complex network structures and direct and indirect dependency

relationships have a considerable influence on the effects of IT availability risks.

Thus, a targeted degree of interconnectedness and a solid design of the smart

factory network is crucial for IT security.

• Various influencing factors such as dependency relationships to other compo-

nents, the degree of productivity interference on the production process, affected
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process steps, respective damage potentials, utilization of production compo-

nents, and compensation effects influence the criticality of IT components and

have to be considered.

• Due to the large number of possible IT security measures, these must be

assessed in an economically sound manner, taking into account the cost–benefit

aspect and its effect on the overall system. For this, our structured approach

helps to assess risks associated with the ever increasing interconnection within

smart factories, to assess where interconnections and dependencies should be

deliberately avoided and where redundancies should be deliberately created,

e.g., by means of backup servers or cloud-based modules.

• Insights gained by our approach provide practitioners with a risk assessment tool

that supports companies with risk-oriented guidance regarding a solid design of

their smart factory and identifies the most critical IT components for the

derivation of an appropriate IT security strategy.

The remainder of our paper is organized as follows: Sect. 2 provides an overview

of the theoretical background. In Sect. 3, we outline the basic idea and develop a

risk assessment model to address our research questions. In Sect. 4, we demonstrate

the applicability of the developed risk assessment model by analyzing an exemplary

real-world scenario and conducting sensitivity analyses. Finally, Sect. 5 provides

managerial implications before Sect. 6 presents a conclusion, and denotes

limitations and an outlook on further research.

2 Theoretical background and research methodology

Subsequently, we provide a comprehensive overview of the theoretical background

and our research methodology. First, we discuss scientific and application-oriented

literature regarding smart factory networks, and specify the associated role of IT

systems. Then, we substantiate the significance of related IT availability risks, and

define central requirements for an adequate risk assessment approach regarding IT

availability risks in smart factory networks. Second, we examine the corresponding

literature, and carve out the research gap. And third, we outline the methodological

approach applied to address this research gap.

2.1 Smart factory networks and corresponding IT availability risks

Given the advancements of smart manufacturing technologies and the innovative

nature of smart factory networks, scientific literature is constantly evolving and

contains a diverse body of literature (e.g., see Haller et al. 2009; Iansiti and Lakhani

2014; Turber and Smiela 2014; Strozzi et al. 2017). Further, there are numerous

studies and application-oriented examples of research institutes exploring and

describing the implementation of smart manufacturing technologies (e.g., see

Hessman 2013; Lucke et al. 2008; Radziwon et al. 2014; Yoon et al. 2012; Zuehlke

2010; Shariatzadeh et al. 2016; Zhong et al. 2017). In corporate practice, we can

observe that IoT-based technological solutions such as radio frequency
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identification (RFID) are widely implemented enabling, for example, the real-time

acquisition of data and the real-time monitoring of objects within production

processes (Lucke et al. 2008; Fleisch and Thiesse 2007; Zhong et al. 2017).

However, the comprehensive and holistic implementation of smart manufacturing

technologies in production facilities serving as test beds remains object to laboratory

research facilities, such as SmartFactoryKL, or pilot facilities, such as the Siemens

Electronic Works Facility or the WITTENSTEIN bastian’ Production Facility

(Hessman 2013; Zuehlke 2010; Schlick et al. 2014). This was also found in a

dynamic literature review performed by Strozzi et al. (2017). To structure the

diverse body of literature on smart factories, they performed a combination of

systemic literature review and bibliographic network analysis. Thereby, they

revealed that the biggest literature stream focusses on RFID technology and agent-

based intelligent decision support system architecture, both aspects concerning

monitoring and scheduling of production processes. Further, they found that

research focusses on ‘‘models, frameworks, and architectures related to the

implementation of the Smart Factory […], along with high-level ‘landscape’

analyses.’’ A recent example of such research is the work of Jung et al. (2017), in

which a reference factory design and improvement activity model is introduced for

designing new and improving existing factories. The model highlights interrela-

tionships of implemented technologies and provides an indication for further

improvements through sensors, software tools, or gathered data. Another finding of

the study by Strozzi et al. (2017) is that research focuses more on topics related to

the development and adoption of software tools and cloud applications instead of

topics related to the adoption of new technologies in manufacturing processes. For

instance, Shariatzadeh et al. (2016) develop an IoT platform-based system

architecture and a generic framework for communication interfaces between the

digital factory and the smart factory. Other researchers address the potential of the

digital twin concept in regard to near-real time data acquisition and analysis (e.g.,

see Uhlemann et al. 2017; Borodulin et al. 2017; Qi and Fao 2018). In summary, it

can be concluded that scientific contributions ‘‘propose conceptual works and

experiments, and rarely actual test-beds and lessons learned from the practice are

described and discussed’’ (Strozzi et al. 2017).

Another shortcoming of the current literature is the lack of a common definition

of the term smart factory, although widely used in both scientific literature and

practice (Radziwon et al. 2014). Based on a collection of different definitions,

Radziwon et al. (2014) define the smart factory as a ‘‘manufacturing solution that

provides such flexible and adaptive production processes that will solve problems

arising on a production facility […].’’ Hermann et al. (2015) define the smart factory

as a ‘‘factory where CPS communicate over the IoT and assist people and machines

in the execution of their tasks’’. They further describe, that ‘‘within the modular

structured Smart Factories […], CPS monitor physical processes, create a virtual

copy of the physical world and make decentralized decisions’’. Based on

SmartFactoryKL and adopting the idea of IoT, Zuehlke (2010) describes that a

‘‘factory-of-things will be composed of smart objects which interact based on

semantic services.’’ Yoon et al. (2012) describe a smart factory as a ‘‘factory system

in which autonomous and sustainable production takes place’’. And Lucke et al.
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(2008) envision the smart factory as a ‘‘real-time, context-sensitive manufacturing

environment that can handle turbulences in production using decentralized

information and communication structures for an optimum of production

processes.’’

These definitions reflect the specific characteristics of smart factory networks,

such as their modular design, which enables functionalities like flexibility,

reconfigurability, and adaptability (Brettel et al. 2014; Radziwon et al. 2014;

Zuehlke 2010). These functionalities enable smart factory networks to respond to

circumstances and turbulences in the real-time production, such as the non-

availability of single production components (Lucke et al. 2008). Further, smart

factory networks attempt to offer increased productivity, optimized processes,

improved capacity utilization, and reduced lead times, as well as enhanced energy

and resource efficiency (Brettel et al. 2014; Chui et al. 2010; Radziwon et al. 2014;

Schuh et al. 2014; Yoon et al. 2012; Shrouf et al. 2014). These benefits contribute to

the ability to produce highly individualized products in low batch sizes in a

considerably short time-to-market, at costs comparable to those of mass production

(Lasi et al. 2014). This is of central importance for future competitiveness in all

manufacturing industries, as customer expectations shift toward mass customiza-

tion, shorter innovation cycles, and customer participation models (Lasi et al. 2014;

Yoon et al. 2012; Iansiti and Lakhani 2014; Turber and Smiela 2014).

The characteristics of smart factory networks are facilitated through concepts

such as IoT and production-oriented CPSs, which involve smart objects, such as

intelligent machinery and products. CPS integrate computing and communication

capabilities in physical production processes to combine the cyber and physical

world (Lee et al. 2015; Wang et al. 2016). Smart objects are connected over the

Internet, or other network infrastructures, to form dynamic, intelligent, and self-

controlling networks (Broy et al. 2012; Schuh et al. 2014). Within these networks,

smart objects control and monitor the production process collaboratively through

machine-to-machine communication and exchange information to optimize them-

selves and the production process (Brettel et al. 2014; Hessman 2013; Schuh et al.

2014; Yoon et al. 2012). Hence, smart objects represent elementary components of

the collaborative production infrastructure (Zuehlke 2010; Yoon et al. 2012).

Although smart objects control and optimize themselves autonomously on a

workflow level, central IT systems are required for an overarching planning and

coordination of decentralized smart objects. For example, central IT systems must

provide parameters and framework conditions to define a possible course of action

for the autonomous control and optimization of smart objects (Schuh et al. 2014).

These IT systems are connected with other internal and external networks to

facilitate information exchange and collaboration within the supply network. The

necessary infrastructure is typically company specific and can be on-premise, cloud-

based, or a hybrid form of both (Zuehlke 2010; Yoon et al. 2012; Karnouskos and

Colombo 2011; Colombo et al. 2013; Shrouf et al. 2014; Haller et al. 2009).

Due to the high level of interconnectedness between production and IT

components, the operation of the physical production process depends on the

flawless operation of IT services. Consequently, smart factory networks face new IT

security threats that concern the four dimensions of IT security risks availability,
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access, accuracy, and accountability (Westerman and Hunter 2009). Thereby, the

threats stem from four channels: (1) software bugs and hardware malfunctions, (2)

open Internet protocols and shared networks, (3) the numerous parties involved, and

(4) a large number of field devices that can be accessed (Amin et al. 2013). IoT and

smart manufacturing technologies change requirements on IT security (Wegner

et al. 2017) and ‘‘the concept of Industry 4.0 generates new categories of risks […]

because of the increase of vulnerabilities and threats’’ (Tupa et al. 2017). Tupa et al.

(2017) argue that ‘‘the connection of cyber-space, sophisticated manufacturing of

technologies and elements, and using outsourcing of services [are] the main factors

increasing vulnerability’’ and that ‘‘the implementation of Industry 4.0 has shown

that the connections between humans, systems and objects have become a more

complex, dynamic and real-time optimized network’’. For instance, central

components of an IT infrastructure like an on-premise server are no longer the

only critical components of an information network. In fact, all components,

including remote manufacturing equipment and internal and external sensors,

become critical as ‘‘industrial control systems are becoming the target for malicious

cyber intrusions’’ (Wegner et al. 2017). Further, SCADA systems, that control

manufacturing processes, were initially designed to operate on closed networks.

With IoT applications, SCADA systems are increasingly based on cloud technology

resulting in increased interconnectivity and, ultimately, vulnerability (Eden et al.

Eden 2017). Therefore, ‘‘the challenge to maintain availability will increase as

manufacturing evolves from a centralized system supported by external suppliers to

a distributed system in which production occurs closer to the point of use’’

stretching potential points of failure (Wegner et al. 2017).

Given this increasing dependency of the production infrastructure on the reliable

functioning of the IT services and the real-time constraint of smart factory networks,

especially non-availabilities, that is, the non-usability of an on-demand service, is

becoming one of the most critical threats in smart factory networks (Amiri et al.

2014; Cardenas et al. 2008; Lee 2008). Non-availabilities can be caused by events

including intentional attacks, such as denial-of-service attacks, simple human errors,

random technical failures, or incorrect capacity planning (Amin et al. 2013).

Further, the smart factory’s interconnectivity and IT-based integration with its

supply network, aside from the benefits incurred through improved collaboration,

increase IT availability risks because former protective barriers are at least partially

removed and the amount of potential entry points increases (Eden et al. 2017; Smith

et al. 2007). For example, modern industrial control systems are connected to office

networks and external systems for information exchange, and are no longer isolated

through air gaps (Byres 2013). A study by Byres and Lowe (2004) emphasizes this

increased vulnerability and reveals that security incidents increasingly stem from

external sources (70%), compared to internal sources (30%). They mention the

increasing interconnection of critical systems and resulting interdependencies as a

reason for this development, among others. In combination with the highly

interconnected information network of a smart factory, a non-availability of one

component can spread in the entire network resulting in cascading failures (Amin

et al. 2013). These reinforce the initial failure and can lead to the loss of the

operational capability of the entire smart factory network (Danziger et al. 2016).
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Consequently, IT availability risks play a major role in smart factory networks, and

companies must apply corresponding IT security measures.

In this context, comprehensive IT availability risk management in smart factory

networks requires economically profound analyses, and a structured, methodolog-

ical approach to identify and quantify existing IT availability risks and to lay the

ground for corresponding IT security investments. For this purpose, the most critical

components of the IT system must be identified based on the effects of a

component’s non-availability on the production process. An adequate risk

assessment approach must take account of smart factory networks’ specific

characteristics. Thereby, the modeling of corresponding dependency structures

represents an essential requirement for the analysis of resulting cascade failures in

the production process. Thus, we formulate the following requirements for an

appropriate risk assessment approach for smart factory networks, which is able to

support investment decisions regarding IT security measures: (R1) the network

structures of the IT system, including dependencies between IT components, must

be considered. (R2) The production system’s interdependencies and network

structures must be considered. (R3) Losses in the production process caused by IT

non-availabilities must be quantified and assigned to responsible IT components,

while considering the production infrastructure’s dependencies on the IT system.

2.2 Approaches regarding the assessment of IT availability risks

Risk assessment is an elementary step within the risk management cycle that can be

structured along the four phases of (1) identification, (2) assessment, (3) control, and

(4) monitoring (Hallikas et al. 2004; Harland et al. 2003). The goal of risk

assessment is to identify and evaluate risks in order to decide on appropriate security

measures. For this, companies engaged in smart factory networks require

appropriate structured approaches for the evaluation of IT availability risks that

fulfill the stated requirements R1–R3 due to the aforementioned, specific challenges

of smart factory networks (Tupa et al. 2017). For risk assessment within information

systems, there exist a magnitude of different approaches within the literature. While

some suggest frameworks and approaches for information systems in general, others

place a special focus on the characteristics of their respective application field as

vulnerabilities and accompanying losses are highly specific, due to characteristics

such as IT architecture, or business operations’ varying dependencies on IT

services.

Based on a structured review of 125 risk assessment approaches for information

systems, Shameli-Sendi et al. (2016) develop a taxonomy that structures risk

assessment approaches along the four categories appraisement, perspective,

resource valuation, and risk measurement. Thereby, appraisement differentiates

risk assessment approaches from a methodological perspective into quantitative,

qualitative, and hybrid approaches (Shameli-Sendi et al. 2016). Quantitative

methods deploy mathematical functions, objective measurements, and quantitative

data to evaluate risk (Karabacak and Sogukpinar 2005; Suh and Han 2003; Sun et al.

2006). For example, the risk assessment framework developed by Jaisingh and Rees

(2001) uses the quantitative risk measure VaR to assess IT security risks. The
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derived information can then be used to analyze the relationship between the cost of

security measures and the risk reduction effects achieved. Niesen et al. (2016)

develop a conceptual framework for data-driven risk assessment based on real-time

operational data that becomes available in smart factory environments. By means of

their approach, live monitoring of different types of risk becomes feasible.

However, their approach does not allow the consideration of specific types of IT

related threats, especially availability risks, as appropriate data and relevant

indicators are missing. This shows that quantitative approaches often face a lack of

necessary detailed data. Further, disadvantages include time-consuming and

expensive calculation processes, the complex implementation in practice, and the

difficult interpretation of results (Shameli-Sendi et al. 2016). In contrary, qualitative

methods use descriptive variables to evaluate the likelihood of occurrence, and the

impact of IT non-availability (Caralli et al. 2007; Aagedal et al. 2002). As they do

not rely on accurate historical data and are much easier to understand and

implement in contrast to quantitative methods, they are widely used in practice

(Shameli-Sendi et al. 2016). For instance, Silva et al. (2014) develop a multi-

dimensional risk management model based on Failure Mode and Effect Analysis

(FMEA) and fuzzy theory that analyses five dimensions of information security

risks: access to information and systems, communication security, infrastructure

(hardware and networks), security management, and secure information systems

development. Thereby, FMEA provides a structured approach for assessing failure

modes according to three risk factors occurrence, severity, and detection that are

assessed by expert estimations. The derived results provide information regarding

the criticality of the investigated failures that produce vulnerabilities to the

company’s information system. Eom et al. (2007) develop a risk assessment

approach for the evaluation of assets regarding their degree of contribution to

related business processes. For this, they apply with Delphi teams a qualitative risk

analysis methods. Besides the merits of qualitative approaches, shortfalls are that

they often lack measurable detail and monetary results to support investment

decision making considering cost-efficiency and that results are often times

subjective and prone to errors and imprecision (Shameli-Sendi et al. 2016). To

overcome the weaknesses of sole quantitative or qualitative approaches, there are

hybrid methods combining both types to enable a simple and fast qualitative

assessment as well as detailed quantitative analysis for more critical aspects (Yadav

and Dong 2014; Rainer et al. 1991; Shameli-Sendi et al. 2016). For example, the

initial quantitative risk assessment method developed by Zambon et al. (2007)

considers the IT architecture and dependencies between IT constituents, based on a

time-dependent model for business processes. Based on this, they extend their

model to a qualitative model for the analysis of availability risks in IT architectures,

requiring only commonly available input data (Zambon et al. 2011).

Another category for risk assessment approaches introduced by Shameli-Sendi

et al. (2016) is risk measurement that differentiates approaches into the two types

non-propagated and propagated. While approaches of the non-propagated type

neglect the propagation of an attack impact on dependent nodes, risk assessment

approaches of the propagated type consider impact propagation in networks to

obtain a more precise picture of damage potential (Shameli-Sendi et al. 2016).
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Regarding non-propagated types, Zhong et al. (2017) develop a quantitative

approach based on RFID and laser scanners to visualize the manufacturing

environment for the real-time observation of production and detection of risks and

disturbances. Although their model enables real-time monitoring, it does not allow

to analyze the causes of occurring failure propagation and, thus, lacks the possibility

to analyze dependency structures. Further, it lacks the possibility to quantify the

resulting damages from occurring failures and disturbances within the production

process. In contrast, there are some approaches that consider propagation effects

within information systems. For instance, Fenz et al. (2011) develop a software-

based risk management methodology that supports investment decision making

while considering the business criticality of information assets based on their

involvement in business processes. Ackermann and Buxmann (2010) develop a risk

assessment model for IT-based service networks that supports IT security

investment decisions. This model quantifies IT security risks in relation to different

IT security measures, and considers dependencies between different services of the

network (i.e., transferred data). Finally, Papa et al. (2011) develop a qualitative risk

assessment model for Supervisory Control and Data Acquisition (SCADA)

embedded systems, focusing on availability risks. Their model calculates corre-

sponding risk scores for each SCADA element, considers effects for the entire

system, and determines protection measures to reduce risk. Despite these examples,

Shameli-Sendi et al. (2016) state that there are only few risk assessment approaches

that consider propagation effects, although these are essential to assess the entire

damage potential caused by attacks and errors in complex network environments to

provide a profound basis for economically sound investment decisions.

Further, there is no assessment approach, thus far and to the best of our

knowledge, for IT availability risks in smart factory networks, that is, no existing

approach that considers the specific characteristics of smart factory networks and

consequently fulfills the stated requirements R1–R3. However, the consideration of

network structures including dependencies between IT components and the

production system’s interdependencies and network structures, as well as the

transfer of damage potentials to a monetary valuation represent a necessary step in

the course of an appropriate risk assessment within smart factory networks. Such an

approach is necessary to support organizations with risk-oriented guidance in

deducing reasonable investment strategies with regard to IT security measures. As

the modeling of dependency structures under consideration of propagation effects

represents an essential requirement in this endeavor, we aim to address this research

gap in the following section by developing a first approach based on graph theory

and matrix notation. We chose graph theory and matrix notation as these are widely

used and easily comprehensible methods to depict network structures and complex

dependency relations and allow the consideration of characteristics of smart factory

networks. Further, we apply VaR as an accepted and widely used standard risk

measure to quantify damage potentials with a confidence level and to provide a

monetary valuation that is suitable for management practice.

Business Research (2019) 12:523–558 533

123



2.3 Research approach and applied concepts

To answer the research questions raised in Sect. 1, under consideration of the

requirements set forth in Sect. 2.1, we develop a structured approach for an

appropriate assessment of IT availability risks in smart factory networks. This

approach uses graph theory and matrix notation methods, as they are widely utilized

methods for formalized representation and the analysis of complex and interde-

pendent networks. For example, Wagner and Neshat (2010), Faisal et al. (2006), and

Buldyrev et al. (2010) use graph theory and matrix notation to analyze risk in supply

chains and critical infrastructures regarding vulnerability, risk mitigation, and

cascading failures in interdependent networks. Graph theory enables a relatively

simple and transparent application of our approach. These are two important

characteristics, since our model represents a first approach that should be easy to use

and should have a certain degree of scalability. Besides graph theory, there are other

approaches for the formalized representation of networks such as petri nets or

system dynamics if other priorities are to be set, for example, if the analyses should

be more detailed or more detailed stochastics (e.g., stochastic recovery times)

should be used (e.g., Arns et al. 2002; Wu et al. 2007; Fridgen et al. 2014).

However, in our opinion, graph theory seems to be an appropriate method for a first

attempt, especially for reasons of transparency and complexity reduction. Further,

we apply the risk measure VaR for the quantification of IT availability risks, as it is

a widely utilized risk measure for downside risks.

To develop and analyze our model, we use the research paradigm introduced by

Meredith et al. (1989). This approach structures research into a ‘‘continuous,

repetitive cycle of description, explanation, and testing.’’ By going through these

stages in an iterative process, the description and explanation of an observable

economic fact in a structured manner are possible. First, we formally describe

cause-and-effect-relationships that determine the threat potential of an IT compo-

nent (e.g., the basic structures and dependencies of smart factory networks). As new

findings cannot always be derived from practical observations, we use a formal

deductive modeling approach. Afterward, we discuss and explain the derived

findings and give practical recommendations. An application in an exemplary real-

world scenario indicates the utility of our risk assessment model as an appropriate

and profound basis for decision support regarding IT security investments and

serves as a starting point for its empirical validation. However, the testing of the

findings shall be subject to future case study research.

3 Risk assessment model

Our risk assessment model considers relevant smart factory characteristics and

identifies the most critical IT components of a smart factory’s information network

concerning IT availability risks by quantifying the corresponding threat potentials.

In the following subsection, we describe the elementary steps of the model as shown

in Fig. 1. The basic idea of our risk assessment model is to analyze the threat

potential posed by the non-availability of an information network’s IT component to
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the production network of a smart factory. This threat potential arises as the

functionality and productivity of the production network depend on the reliable

operation of the information network. In order to quantify the resulting threat

potentials, we apply graph theory and matrix notation as well as VaR. The results

gained by our model are of central importance to ensure a cost-efficient usage of

usually scarce IT budget and to support companies’ investment decisions since

available funds for IT security measures must be invested in the most efficient way.

First, we present an abstraction of the smart factory’s general setting, including its

basic structures and relations (Sect. 3.1). Based on this abstraction, we then describe

our risk quantification algorithm. At this, we model and formalize the smart factory

structure by means of graph theory and matrix notation (Sect. 3.2). Subsequently,

the threat potential of each IT component is quantified (Sect. 3.3).

3.1 General setting

The basic structure of a smart factory consists of two connected networks: the

production network and the information network, as illustrated in Fig. 2. First, there

are different manufacturing machines in the production network performing various

production procedures. These machines process products and are organized in

process steps, whereby a certain process step contains machines with identical

capabilities. Manufacturing machines are equipped with embedded systems, which

consist of electronic hardware (e.g., a microchip) and a software component. The

embedded systems enable the manufacturing machines to control themselves

autonomously to a certain point, and to synchronize process information via the

information network. Hence, we consider the embedded systems as parts of the

information network. In addition to the embedded systems, the information network

comprises further components performing various IT services crucial for the reliable

operation of the smart factory. These IT services range from machine control and

(3.1) General Setting: Abstraction 
of Basic Structures and 
Relations

(3.2) Modeling and Formalizing via 
Graph Theory and Matrix 
Notation 

(3.3) Risk Quantification 
Approach to Identify 
Critical Nodes

Fig. 1 Methodical procedure of the model development

Smart Factory

Production Network

Information Network

CustomerSupplier

IT Component

Production Component

Information Flow

Product Unit Flow

Fig. 2 Simplified structure of the smart factory
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manufacturing execution, to enterprise level and machine communication applica-

tions. The different applications may be hosted on on-premise hardware or are

obtained as cloud-based solutions. The respective IT infrastructure is also

considered as an IT service.

As a result, a hierarchical structure emerges inducing functional dependencies

between IT components. These functional dependencies exist directly between two

IT components (e.g., applications depend on the server) or indirectly over at least

one other IT component (e.g., an embedded system depends on the server over an

application hosted on that server). A company may also include redundancies

within the information network through backup components to secure certain IT

services and to prevent single-point failures. If all IT services operate reliably, the

manufacturing machines are able to coordinate themselves in a highly flexible and

adaptive manner. This includes, for example, the adjustment of the product flow in

the case of a manufacturing machine’s non-availability. In addition to manufac-

turing components, there are suppliers vertically and horizontally integrated into the

supply network, and customers receiving the completed products. Both are defined

as parts of the production network due to their importance and because local

interruptions affect the smart factory. Considering the integration of external

partners into a smart factory’s IT system, both suppliers and customers are

connected through external data interfaces. Given the dependencies within and

between these networks, a diverse and complex dependency structure emerges, in

which the production components depend on several components of the information

network for functionality. This dependency structure is of central relevance in our

model, because it provides the basis for the quantification of the IT component’s

availability risks. Based thereupon, we analyze the consequences of an IT

component’s non-availability by deriving unprocessed units, which occur in a fixed

time period. By analyzing the resulting risk values of all IT components, we are able

to prioritize IT components in terms of their threat potential to the production

network.

In the following subsection, we outline the algorithm and its assumptions (see

Fig. 3) in more detail. First, we formalize and model the basic structures of the

smart factory and its networks by means of graph theory and matrix notation. The

resulting smart factory dependency structure lays the groundwork for the risk

quantification based on VaR, which will be discussed in the subsection afterwards.

Value-at-Risk 
of  each IT 
Component
(Matrix )

Direct Dependencies of 
Production Network on 
Information Network 
(Matrix )

Fig. 3 Operational steps of the risk assessment algorithm
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3.2 Modeling of the smart factory

In the following, we describe, model, and formalize the smart factory’s two

connected and dependent networks. Thereby, we elaborate on the underlying

assumptions regarding the basic structures and characteristics of both networks,

their components, and their connections and dependencies.1

Assumption 1 (A1) The production network P consists of a finite set of smart

production components pi with i ¼ 1; . . .;m 2 N (nodes) performing specific

production procedures and a finite set of arcs (edges) connecting the production

components.

The smart production components pi perform production procedures to process

product units u 2 N and are assigned to a process step l with l ¼ 1; . . .; L 2 N in

correspondence to their respective production task. The suppliers and customers are

modeled to be a part of the production network and are also denoted as production

components pi. The capabilities of production components are identical within a

process step l, but differ between process steps. Regardless of the process step, each

production component pi has a given capacity qi 2 N to process a given number of

units u in the considered time period. In combination with current capacity

utilization qui 2 N of a production component, idle capacity qii 2 N of a

production component can be derived by Eq. (1):

qii ¼ qi � qui with qui � qi: ð1Þ
If a process step l consists of more than one production component, product units

can be flexibly routed to any of the assigned production components, under

consideration of respective idle capacities. Therefore, utilization of the smart

factory and individual production components are important factors determining the

smart factory’s flexibility and adaptability.

A2 The information network C consists of a finite set of IT components cs with

s ¼ 1; . . .; k 2 N and a finite set of arcs connecting the IT components.

IT components cs of the information network C perform various IT services s.

Thereby, each IT service is provided by one IT component and may be backed up by

a redundant IT component, denoted as cs:2. Depending on the specific layout of the

information network, different types of IT components can be included, such as

hardware components, software modules, embedded systems, and external data

interfaces. This flexibility enables the adaption of the algorithm to any information

network layout (e.g., on-premise vs. cloud-based) without changing the algorithm’s

overall approach. Considering the layout and hierarchical structure of the

information network and its IT services, there are direct functional dependencies

between IT components, such as the dependency of an application on its host server.

Binary information network dependency matrix DC;C defined by Eq. (2) represents

all direct functional dependencies:

1 The reader might find it helpful to reference to Fig. 4 while reading the following subsections to better

comprehend the used notations.
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DC;C ¼
dc1;c1 � � � dc1;ck

..

. . .
. ..

.

dck ;c1 � � � dck ;ck

2
64

3
75: ð2Þ

The numerical value of the binary variable dcs;cs
2 0; 1f g expresses whether there

is a direct functional dependency between two IT components.

A3 Production components depend either directly or indirectly on IT components

in regard to functionality.

As already described, the smart production components’ ability to synchronize

information via the information network C is an essential requirement for reliable

functioning of the production network. The resulting direct functional dependencies

of production components on IT components are expressed using the binary direct

functional dependency matrix DC;P, defined by Eq. (3):

DC;P ¼
dc1;p1 � � � dc1;pm

..

. . .
. ..

.

dck ;p1 � � � dck;pm

2
64

3
75: ð3Þ

Thereby, binary variable dcs;pi
equals one for the dependency relationship

between production components and their respective embedded systems, as the

latter establishes the connection to the information network and is the interface

between smart production components and digital information flow. For all other IT

components, variable dcs;pi
equals zero, since production components are not

directly connected with them. However, production components can still depend

indirectly on those IT components, as IT services are unavailable if IT components

providing those services are unavailable. This is due to the transitivity of IT

component failures, meaning that, for example, the failure of a server affects

production components through the triggered failure of a software application

(Zambon et al. 2007). Further, existing redundancies in the information network

must be considered, as redundant IT components prevent single-point failures of

backed up components, thereby influencing the dependency structure of the smart

factory (Cardenas et al. 2008). To consider both direct and indirect functional

dependencies and redundancies in the information network, we apply a set of matrix

calculations based on matrix algebra, which will be not explained in full detail, but

be briefly described in the following.

First, we determine all direct and indirect functional dependencies within the

information network by raising matrix DC;C to higher powers, according to the

algorithm by Festinger et al. (1949), and combining the resulting matrices in the

binary matrix �DC;C. Multiplying matrix �DC;C with the direct functional dependency

matrix DC;P delivers all indirect functional dependencies of production components

on IT components (matrix �DC;P). Adding the matrices DC;P and �DC;P results in the

direct and indirect functional dependency matrix ��DC;P, containing both the direct

and indirect functional dependencies of production components on IT components.

We now adjust matrix ��DC;P for possible redundancies based on the number of IT
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components cs available for the execution of an IT service s. In particular, if a

production component depends on more than one IT component, the dependency is

removed because the failure of a redundant IT component is backed up. First, we

aggregate the available IT components of each IT service s in a binary matrix ZS;C,

and only the main IT components of each IT service s in matrix ~ZS;C. Multiplying

matrix ZS;C with matrix ��DC;P delivers matrix �ZS;P, which represents the number of

available IT components for each production component with regard to an IT

service s. Subsequently, all values of �ZS;P, which do not equal one, are set to zero.

This results in the binary matrix ��ZS;P with all production components depending

only on one IT component with regard to an IT service s. Lastly, we multiply matrix
��ZS;P with the transposed main IT component matrix _ZC;S to derive the dependency

matrix D�
C;P, as defined by Eq. (4). The resulting dependency matrix D�

C;P defined by

Eq. (4) contains all direct and indirect functional dependencies of production

components on IT components and considers redundancies in the information

network. Thereby, the binary variable d�
cs;pi

2 0; 1f g equals one if there is a direct or

indirect functional dependency; otherwise, d�
cs;pi

equals zero:

D�
C;P ¼

d�
c1;p1

� � � d�
c1;pm

..

. . .
. ..

.

d�
ck ;p1

� � � d�
ck;pm

2
64

3
75: ð4Þ

So far, dependency matrix D�
C;P, as a central artifact of our algorithm and

essential for the risk quantification approach, was derived considering the

production network (A1), the information network (A2), and the functional

dependencies between the two networks (A3). These steps lay the ground for the

risk quantification approach, which identifies and evaluates critical IT components

regarding IT availability risks.

3.3 Risk quantification approach

The risk quantification approach determines the unprocessed units caused by the

non-availability of an IT component based on the smart factory’s dependency

structure. The resulting VaR values represent the central results of our model and

enable the identification of the most critical IT components. The following section

elaborates on the risk quantification approach and its assumptions in more detail.

A4 The non-availability of an IT component restricts the productivity of

dependent production components.

As technical failures and attacks result in the non-availability of the affected IT

component, we assume that an IT component fails completely and do not consider

partial functionality interferences. Accordingly, a failing IT component cs is not

able to provide its IT service s and interferes dependent production components’

productivities, leading to decreased production capacities. Thereby, we observe the

consequences of an IT component’s non-availability in a fixed time period and

assume that the IT component failure occurs at the beginning of the considered

Business Research (2019) 12:523–558 539

123



period and lasts until its end. The production components’ interference differ for

each IT component and can range from a partial capacity reduction, (e.g., through a

restricted automation) to a complete failure. The interference degree of each IT

component is expressed by the exogenous interference degree variable �rcs
2 0; 1f g

and is based on expert estimations. Applying an exogenous input parameter is a

reasonable approach because experienced company experts can adequately assess

the effects of an IT component’s non-availability on its dependent production

components based on their knowledge and expertise. Further, it would be possible to

differentiate the interference degree of an IT component on a more detailed level for

each production component. However, for reasons of simplicity, we break down the

required data on a reasonable and manageable granularity level and assume that an

IT component’s interference degree is identical for all production components.

Multiplying the values of the dependency matrix D�
C;P with �rcs

according to Eq. (5)

derives the interference variable rcs;pi
2 0; 1f g, expressing the degree of produc-

tivity reduction of a production component pi; if an IT component cs; fails:

rcs;pi
¼ �rcs

� d�
cs;pi

: ð5Þ

If a productivity reduction occurs, 0\rcs;pi
� 1; otherwise, rcs;pi

¼ 0: If the

reduced capacity is less than the utilization, that is, the interference cannot be

absorbed by idle capacity, the productivity reduction causes initially unprocessed

units vcs;pi
at the production component pi, as calculated by Eq. (6):

vcs;pi
¼ max qui � qi � 1� rcs;pi

� �
; 0

� �
: ð6Þ

A5 Initially unprocessed units vcs;pi
, caused by the interference of an affected

production component, can be (partially) compensated by other production

components.

The smart factory’s ability to flexibly combine the production components in

temporary production lines enables the compensation for initially unprocessed units

vcs;pi
: However, the compensation is only possible if compensating production

components possess the same production capabilities and, hence, belong to the same

process step l as the affected production component. Further, compensating

production components must have idle capacity left. The compensable units wcs;pi

provided by a compensating production component are calculated as described by

Eq. (7):

wcs;pi
¼ max qi � 1� rcs;pi

� �
� qui; 0

� �
ð7Þ

After deriving the initially unprocessed units and the compensable units on a

production component level, we aggregate both values separately for each process

step l: By subtracting the compensable units wcs;l from the initially unprocessed

units �vcs;l on the process step level according to Eq. (8), the unprocessed units vcs;l

per process step l after the compensation effect can be derived:

vcs;l ¼ max �vcs;l � wcs;l; 0
� �

ð8Þ

A6 Unprocessed units vcs;l at a process step l; cause a continual production failure

in following process steps due to the lack of workable units.
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As we assume that each unit of process step l þ 1 requires one unit from the

preceding process step l, production failures are passed through all subsequent

process steps. This production failure cycle continues until the last process step is

reached. Further, the number of unprocessed units might increase in later process

steps if the IT component’s non-availability also affects that process step.

Accordingly, we transfer the unprocessed units vcs;l to following process steps with

further matrix calculations. The resulting unprocessed units matrix V�
C;L defined by

Eq. (9) represents all unprocessed units v�cs;l
per process step l after consideration of

the compensation effect and continual production failure:

V�
C;L ¼

v�c1;1 � � � v�c1;L

..

. . .
. ..

.

v�ck ;1
� � � v�ck ;L

2
64

3
75: ð9Þ

A7 Unprocessed units v�cs;l
at a process step l cause monetary losses.

The losses caused by unprocessed units reflect the value added during the

production process in the respective process steps. The losses are assigned

proportionally to each process step according to the respective activities performed

in each process step. Process step-specific loss values are necessary because

different impact locations of IT component failures cause different effects in the

production network. For example, a production failure in the first process step

results in no processed units; in contrast, a production failure in an advanced process

step results in semi-finished units, which present a value because their time-to-

market is shorter due to their advanced production state. The information about

process step-specific loss values is available through accounting and performance

measurement methods, such as activity-based costing and, hence, can be easily

assessed and applied as exogenous input parameters to our model (Cooper and

Kaplan 1991). Based thereupon, we apply the VaR to quantify the consequences of

an IT component’s non-availability in the considered time period. The VaR is a

downside risk measure and a ‘‘standard benchmark’’ (Duffie and Pan 1997, p. 3) for

the measurement of a company’s exposure to financial risks, i.e., potential loss. For

a given time period and probability (or confidence level) ð1� aÞ, the VaR is defined

as the loss over the time period that is exceeded with probability a (Duffie and Pan

1997; Jorion 2006). We apply the VaR in our model for risk quantification as loss

values corresponding to an IT component’s non-availability are not fixed and may

vary due to market-induced interference factors and random effects, such as price

and demand fluctuations. Therefore, we assume that losses are normally distributed

with an expected loss value ll and a standard deviation rl per unprocessed unit u for

each process step l, expressed in monetary units (in US$). The use of a normal

distribution is justifiable because variations of the value added are driven by market

parameters, causing both positive and negative deviations. However, other

distributions, such as the lognormal distribution, can be used, if the normal

distribution is inappropriate in specific applications. The definition of a confidence

level ð1� aÞ takes into account the risk attitude. In most cases, no sufficient

historical data basis exists to derive loss values and standard deviations solely by
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means of statistical analyses. Therefore, the loss extends and probabilities must be

estimated by experts (Hovav and D’Arcy 2003; Gordon and Loeb 2002; Mercuri

2003). Additionally, the excessive amounts of production-related data could be used

to support these expert estimations (Lucke et al. 2008). With this information, the

VaR of each IT component cs for each process step l, denoted as xcs;l, can be derived

by Eq. (10), with Nð1�aÞ being the ð1� aÞ quantile of the normal distribution:

VaR ¼ xcs;l ¼ ll � v�cs;l

� �
þ Nð1�aÞ � rl � v�cs;l

� �
: ð10Þ

The risk value matrix XC;L, defined by Eq. (11), represents all VaR values of each

IT component cs for each process step l:

XC;L ¼
xc1;1 � � � xc1;L

..

. . .
. ..

.

xck ;1 � � � xck ;L

2
64

3
75: ð11Þ

The row sums
PL

l¼1 xcs;l of matrix XC;L show the total VaR, caused by the non-

availability of an IT component cs. Ranking these values derives a priority order

regarding the IT component’s threat potential. This represents the central result of

our risk assessment model, quantifying the consequences of an IT component’s non-

availability.

Our model’s described risk quantification approach enables the consideration of

diverse and complex network structures and dependencies between the production

and information networks of the smart factory (A4). Further, with the compensation

effect (A5) and continual production failure (A6), the model considers two key

characteristics of a smart factory: the flexible combination of production compo-

nents and the unit flow dependencies within the production network. By determining

the resulting unprocessed units, and by quantifying the corresponding financial

damage based on VaR (A7), the model derives a risk value vector, with risk values

for each IT component. This information enables management to identify the

information network’s components most critical to the production network and to

ground the corresponding investment decisions regarding IT security measures on a

profound basis.

4 Exemplary application

In the following section, we demonstrate the applicability of our risk assessment

model in an exemplary smart factory that is oriented on a real-world scenario of

producing customized sports shoes. Afterwards, we conduct sensitivity analyses

regarding the capacity utilization and the impact of varying loss potential

estimations to evaluate the basic effects of two major influencing factors. Finally,

we analyze the risk reduction effects of different IT security measures by comparing

the model’s results based on the with-and-without-principle to demonstrate the

model’s application in an investment decision process. We refrain from comparing

our model and its results with other risk assessment methods for reasons of
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evaluation, as we doubt the value of such a comparison due to the lack of

comparable methods. Although there are other methods for the assessment of

information risks such as the discussed FMEA model by Silva et al. (2014) or the

model by Zambon et al. (2007), none of them incorporates the specific

characteristics of smart factory networks, such as network structures or network

interdependencies. However, this would be necessary for a meaningful and

conclusive comparison with our model. Instead, we believe that further evaluation

of our model in concrete real-world scenarios, with real-world data, is a promising

next step for future research activities.

4.1 Exemplary smart factory setting

The smart factory in our application example is an automated production facility

for the custom production of sports shoes.2 The factory produces sports shoes,

which are customized by customers online with regard to shoe type, fabrics, and

colors. The company is deploying smart manufacturing technologies in the

factory to produce the shoes in the shortest time possible. This enables the

highly flexible custom production of sport shoes in a batch size of one, at costs

comparable to mass production. Figure 4 illustrates the exemplary setting of the

smart factory.

The customer (p7) customizes a sports shoe on the sports goods manufacturer’s

online platform. Once completed, a data interface (c11) automatically transmits the

order to the smart factory. In correspondence to the customers’ specifications, the

necessary semi-finished parts are ordered automatically from the supplier (p1). For

this purpose, another data interface (c5) connects the supplier with the smart factory.

Once the raw materials are received, smart manufacturing machines first stitch the

parts of the shoes together (p2, p3, and p4), then conglutinate the stitched parts (p5

and p6). All machines, that is, sewing machines and conglutination machines, are

equipped with embedded systems (c6; c7; c8; c9; and c10) connecting the machines

with the information network and enabling their communication. The information

c2.1

c1

c3 c4c2.2

c5

c6

c7

c8

c9

c10

c11

IT Component

Production Component

Information Flow

Product Unit Flow

p4

p5

p6

p2

p1

p7

p3

Supplier
(l=1) Customer

(l=4)

Server Communication 
ModuleSCADA Modules

Production Step 1:
Stitching of Parts (l=2)

Production Step 2:
Conglutination of Parts (l=3)

Fig. 4 Exemplary smart factory

2 The smart factory example is geared to the ‘‘SPEEDFACTORY’’ research project, funded by the

German Federal Ministry of Economics and Energy (2015).
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network contains a communication module (c4), facilitating information synchro-

nization between smart manufacturing machines, and providing all required

optimization parameters. By synchronizing status information, such as utilization,

idle capacity, and queued orders, the smart manufacturing machines optimize

product flow through the production process. Further, SCADA modules (c2:1, c2:2,

and c3) for the manufacturing machines control and monitor the assigned machines’

production activities. The SCADA module c2:1 controls the sewing machines p2, p3,

and p4, and SCADA module c3 controls the conglutination machines p5 and p6.

Thereby, sewing machine p2 has an additional backup module (c2:2) securing the

main module (c2:1). Accordingly, the backup module is an existing redundancy. All

software modules (c2:1, c2:2, c3, and c4) are hosted on a company-owned server (c1),

located on the premises of the smart factory. The assignment of the IT components

to the respective IT services is illustrated in Table 1.

The non-availability of IT components causes different interference degrees for

the dependent production components (see Table 2). Thereby, non-availability of

the server (c1) causes a complete standstill of the dependent production components

because all software services are interrupted. The non-availability of a software

module causes an interference of 75% because either the information synchroniza-

tion is disrupted or machine control functions are no longer provided. However, the

affected machines’ emergency routines enable a partial continuity of the production

process. As a result, the production machines are only able to produce 25% of their

actual capacity. The non-availability of an embedded system causes an interference

of 50% because the dependent production components’ information synchronization

is hampered. Lastly, the non-availability of a data interface causes an interference of

50% because either the automated ordering process with the supplier is hampered

and manual backup processes do not achieve the same efficiency, or the customer’s

ability to customize products is restricted.

Once the production of an order is completed, the sports shoes are shipped to the

customer. The smart factory has a capacity of 120 units and a utilization rate of

Table 1 IT component assignment

IT service s 1 2 3 4 5 6 7 8 9 10 11

Main IT component c1 c2:1 c3 c4 c5 c6 c7 c8 c9 c10 c11

Backup IT

component

c2:2

Table 2 Interference degrees of IT components

IT component cs c1 c2:1 c2:2 c3 c4 c5 c6 c7 c8 c9 c10 c11

Interference

degree �rcs

100% 75% 75% 75% 75% 50% 50% 50% 50% 50% 50% 50%
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100%. The production components’ capacities, utilizations, and idle capacities are

shown in Table 3.

4.2 Analysis of basic scenario

By applying our risk assessment model to the exemplary smart factory, we can

identify the IT components most critical to the production network. First, the matrix

calculations obtain all functional dependencies of production components on IT

components. The derived dependency matrix D�
C;P is multiplied by the interference

degrees �rcs
, illustrated in Table 2. Based thereupon, we derive the unprocessed units

v�cs;l
according to the risk quantification approach. In combination with the expected

losses and standard deviations noted in Table 4, we calculate the threat potential

based on the VaR for each IT component cs, with a confidence level ð1� aÞ of 95%.

The resulting risk value matrix XC;L, noted in Table 5, presents the total threat

potential (
P4

l¼1 xcs;l) posed by the non-availability of each IT component cs.

The derived information regarding the threat potential of individual IT

components, and their rank in relation to other IT components, identifies the most

critical IT components. Additionally, the results of our risk assessment model reveal

the following insights:

• The server of the smart factory (c1) causes the maximum possible threat

potential, with a VaR of $7169, as its non-availability results in a complete

standstill in the production network.

• The supplier data interface (c5) ranks third, and before the SCADA modules

(fourth and fifth, respectively), although the supplier data interface has a lower

interference degree than the SCADA modules. This can be explained by the

impact location of the failing IT components. The supplier data interface

influences the first process step, in contrast to the SCADA modules, which

influence later process steps. Therefore, an interesting insight is that the impact

location in the production network is an important factor because the supplier

data interface’s restriction causes production failures in all subsequent process

steps of our smart factory example. Further, the SCADA module for the sewing

machines has a partial backup, which reduces its threat potential.

Table 3 Capacity and utilization of production components

Production component pi p1 p2 p3 p4 p5 p6 p7

Capacity qi (units) 120 40 40 40 60 60 120

Utilization qui (units) 120 40 40 40 60 60 120

Table 4 Loss values of process steps

Process step l 1 2 3 4

Expected loss ll ($) 5 10 10 15

Standard deviation rl ($) 1.5 3 3 4.5
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• The embedded systems of the conglutination machines (c9 and c10) rank seventh

and before the sewing machines’ embedded systems (c6, c7 and c8), although

they affect a later process step. This is due to the utilization of the conglutination

machines, which with 60 units are more substantial than the sewing machines’

40 units and, hence, lead to higher threat potentials.

Of course, the complexity of the exemplary smart factory is limited and,

therefore, the server’s first rank may seem obvious. However, smart factory

networks in practice are far more complex and unmanageable because they consist

of considerably more production components and IT components, inducing a highly

complex dependency structure. Further, we assumed a symmetric setting regarding

the production components’ capacities within a process step, meaning that all

production components in a process step possess identical capacities. This might

also differ in practice, as machines are constantly developed and production

facilities typically grow over time, resulting in a heterogeneous machinery pool.

Nevertheless, the results and insights of our application clearly indicate the need for

decision support through a structured approach that assesses the availability risks of

individual IT components. With the information provided by our risk assessment

model, the focal company’s management can discuss potential IT security measures

and can profoundly ground corresponding investment decisions.

4.3 Sensitivity analysis

We conduct sensitivity analyses in the following subsections to evaluate the results

and basic effects of the two major influencing factors, that is, the utilization and loss

potentials. Thereby, we use the smart factory setting from our demonstration

example above.

4.3.1 Utilization variation

For the utilization variation, we increase the utilization of all production

components gradually, from 1 to 100%, and evaluate the effects on the VaR values

of the IT components and the VaR sum. Thereby, the VaR sum
Pk

s¼1

PL
l¼1 xcs;l

� �
of

the risk value matrix XC;L makes no statement regarding the information network’s

total threat potential because our model analyzes scenarios with individual IT

component failures. However, the VaR sum can be used as an indicator of the

vulnerability of the production network to IT component non-availabilities. All

other parameters, such as interference degrees and loss potentials, are kept constant.

The effects of an increasing utilization on our model’s results can be seen in Fig. 5.

The VaR sum increases with an increasing utilization because more units are in

the production process. However, the slope of the curve is not linear and illustrates

four kink points at which the slope increases. The kink points are caused by IT

components whose non-availabilities have no effect up to a certain utilization

threshold. This effect can be seen in more detail in Fig. 6, which shows the curve of

each IT component relative to the utilization. One reason for the kink points is an

interference degree less than 100%. Depending on the utilization, the restricted
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production components can still process some or even all, product units with their

reduced capacity. For example, the software modules (c2, c3, and c4) have an

interference degree of 75%. Accordingly, the non-availability of the communication

module (c4) and the SCADA module (c3) has no effect until the threshold reaches

25%. The sewing machines’ SCADA module (c2:1) causes no losses even until the

threshold reaches 50% because of its partial backup. The embedded systems have an

even higher threshold. First, this is caused by the interference degree of 50%, but

also by the compensation effect for utilizations less than 100%. Accordingly, the

threshold of the embedded system is 75% (c9 and c10) and 83%, respectively (c6, c7,

and c8). Thereby, the sewing machines’ embedded systems have a higher threshold

because three machines are available for compensation within the stitching step, in

contrast to two machines in the conglutination step.

4.3.2 Loss potential variation

In addition to the utilization, we analyze the impact of loss potential estimations on

the results of our model in the example smart factory scenario to demonstrate the

effects of inaccurate expert estimations. Thereby, we multiply the loss values ll and

rl with a variable b to demonstrate the effects of an underestimation (b\1),

respectively an overestimation (b[ 1). All other input parameters are constant. The

effects of deviating loss potential estimations for different, higher utilizations are

shown in Fig. 7, with 0:5� b� 1:5: The underestimation of loss potentials results in

lower, and the overestimation in higher, threat potentials. Accordingly, the curves

show an ascending slope. Thereby, the slope of a curve increases for higher

utilizations.
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Of course, there are other influencing factors aside from utilization and loss

potentials, such as the smart factory’s network structure, and the interference

degrees of IT components. However, varying other factors does not change the

fundamental tendencies and effects described in this section.

4.4 IT security measure analysis

In the following, we analyze various IT security measures for our smart factory

example by comparing the model’s results based on the with-and-without principle.

This demonstrates our model’s applicability for the economic analyses of potential

IT security investments and, thus, for the profound support of valuable investment

decisions. For this, we compare the VaR sum of our basic scenario setting ($29,346)

to settings with additional IT security measures and apply the VaR sum as an

indicator for the vulnerability of the production network to IT component non-

availabilities. This determines the impact of an IT security measure on the

production network’s vulnerability, and hence, enables a risk-oriented evaluation.

Accordingly, the results can be used as a basis for investment decisions. As our

model is based on the smart factory’s network structure, it is highly suitable to

analyze structure-based IT security measures.

For instance, these include redundancies in the information network. However,

we also want to note other process-based measures. As we demonstrated during the

sensitivity analyses, reduced loss potentials in specific process steps can reduce the

overall threat potential. Thus, improving processes to reduce loss potentials is an

effective way to reduce an overall threat potential. As loss potentials are input

parameters in our model, it is not possible to explain the cause-effect chain of

process-based measures and the reduced loss potentials as their effect. However, our

model can illustrate the impact of reduced loss potentials on the production

network’s vulnerability to IT component non-availabilities if the reduced loss

potentials are used as adjusted input parameters. Structure-based measures are

supposed to be highly effective against IT availability risks, including redundancies

within the information network. Thereby, measures such as backup IT components

or cloud-based applications influence dependency relations by preventing single-

point failures of IT components. For example, the basic scenario of our example

application contains a redundancy, securing the SCADA service for sewing machine

p2 due to the partial backup SCADA module (c2:2). Without the redundancy, the

VaR increases to $30,915. Accordingly, the partial backup component reduces the
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VaR sum by 5.1%. In the following, we add further IT security measures, as

illustrated in Fig. 8, to the information network, in addition to the already existing

partial backup component (c2:2).

Installing a backup server (1) is an appropriate IT security measure because our

model in the example application revealed that the server (c1) is the most critical IT

component. The VaR sum decreases to $22,178, which equals a reduction of 24.4%

in comparison to the basic scenario, because of this security measure. The hereby

occurring trade-off between the high investment volume and the risk reduction

effect demonstrates that our algorithm is of value because it enables a risk-oriented

evaluation of investment alternatives and allows for the profound grounding of

investment decisions. The second measure is a cloud-based backup for the

communication module (c4) (2). Cloud-based applications are especially effective

because they not only remove the direct dependency of production components on

the locally hosted, secured application, but they also remove the indirect

dependency of production components on the server if the production components

do not depend on other applications hosted on that server. This is, for example, the

case for the supplier (p1) and the customer (p7), whose data interfaces only depend

on the server because of the communication module (c4). Accordingly, the cloud-

based backup communication module also removes the customer and supplier’s

dependencies on the server, and reduces the VaR sum by 21.4% to $23,704. The last

measure analyzed is the complete switch of the communication module, from a

module hosted on a company-owned server to a cloud-based module (3). As a result,

the communication module no longer depends on the functioning of the server;

hence, functional dependencies within the information network are removed.

However, the production components still depend on the cloud-based communi-

cation module for the corresponding communication IT service because there is no

redundant backup for that service. Accordingly, the VaR only decreases by 3.1% to

$28,450.

5 Managerial implications

Subsequently to the exemplary application, sensitivity analysis, and IT security

measure analysis, we discuss managerial implications derived from the development

of our risk assessment model in the following:

c1.1

On-premise Server
c1.2

Backup
Server

c4.2

On-premise Server
Main Communication

Module

c4.1

On-premise Server
Cloud-based

Communication Module

c4

Cloud-based
Backup

(1) Backup Server (2) Cloud-based Backup Communication Module (3) Cloud-based Communication Module

Fig. 8 Exemplary IT security measures
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1. The results gained in the course of our research clearly indicate the need for

decision support through a structured approach. The complexity that arises from

the multitude of direct and indirect dependencies in ever complex smart factory

information networks and the resulting propagation effects of failures can no

longer be mastered by human decision makers alone due to an increasing lack

of transparency. In this regard, our structured approach presents a risk-oriented

guidance for practitioners in the course of their digital transformation.

2. There is a multitude of different IT security measures that companies can apply

as part of their IT security strategy. These differ in their modes of action, but

ultimately their effect on the possible extent of damage is decisive. Thereby,

some IT security measures target specific critical components in the informa-

tion network, in particular structural IT security measures such as redundancies

through backup systems. In contrast, other IT security measures have a more

holistic effect on the information network such as process-related IT security

measures, e.g., reduced damage potentials through improved recovery mea-

sures. Here, our structured approach serves as guidance in the derivation of an

appropriate IT security strategy. It supports investment decisions on a profound

economic basis, as it helps to identify the most critical IT components and

quantifies the threat potentials resulting from propagation effects.

3. A decisive lever for the IT security strategy is the degree of interconnectedness

within the smart factory information network. Companies are faced with the

question of where interconnectedness makes sense and creates added value and

where air gaps should be deliberately made or redundancies should be created.

For this, our approach provides a risk-oriented guidance for the solid design of

smart factory information networks.

4. The insights gained by the sensitivity analysis demonstrate the importance of

the utilization as an influencing factor. We were able to show that the threat

potential increases with an increasing utilization because risk reduction effects,

such as the compensation ability, decrease gradually. Considering the high

utilization of smart factories through automation and optimization technologies

as key benefits, the threat potentials posed by IT availability risks will be rather

high in smart factories (Radziwon et al. 2014; Schuh et al. 2014).

5. The insights gained by the loss potential sensitivity analysis demonstrate that

the underestimation or overestimation of loss values has a greater effect on the

model’s results in application scenarios with high utilizations. Therefore,

considering the probable high utilization of smart factories, the loss potential

estimation’s accuracy is of crucial importance for risk quantification to derive

accurate results.

6. Our risk assessment model examines IT availability risks primarily on the

internal company level. In times of comprehensive, cross-company, Internet-

based interconnection of information systems, however, the supply chain level

becomes particularly important for companies’ IT security strategy. For this

purpose, our approach can also be extended across companies to make the

prevailing complexity tangible and controllable.
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The described managerial implications are highly relevant as they indicate

aspects of IT security and IT availability risks in smart factory information networks

that have to be considered when deciding on a suitable IT security strategy.

Accordingly, they provide valuable guidance for companies in the course of their

digital transformation.

6 Conclusion, limitations, and further research

The increasing adoption of smart manufacturing technologies promises great

potential, leading to a paradigm shift in manufacturing. The emerging smart factory

networks constitute automated and flexible production facilities and can efficiently

produce individualized products in low batch sizes at a cost-efficient level. However,

the criticality of IT systems and the interconnectedness of IT and production systems

cause an increase in the vulnerability to IT availability risks. Considering this threat

scenario, companies must employ extensive IT security measures to secure their

production facilities. However, the highly complex, interconnected, and interdepen-

dent smart factory networks complicate investment decisions regarding possible IT

security measures. Thus, decision makers face significant difficulties regarding the

allocation of available funds in the most efficient way.

Therefore, we develop a risk assessment model for the quantification and

evaluation of IT availability risks in smart factory networks that serves as the basis

for corresponding investment decisions. We first model and formalize the smart

factory networks’ general setting, with its basic structures and relations, by means of

graph theory and matrix notation. Then, we quantify IT availability risk by applying

the VaR. Our research contributes to the literature and practice as it enables a

structured analysis of increasingly complex smart factory networks under consid-

eration of not only direct but also indirect dependencies. While other risk

assessment approaches like multi-criteria decision models often times address

different dimensions of damage and do not consider root causes, our approach

focusses on propagation effects and the resulting damages within smart factory

networks. Accordingly, our research is rooted in the propagation and damaging

effects based on the complex interdependencies in smart factory networks. Our

structured approach helps to assess the risks associated with the ever increasing

interconnection within smart factories, to assess where interconnections and

dependencies should be deliberately avoided and where redundancies should be

deliberately created, e.g., by means of backup servers or cloud-based modules.

Hence, the insights gained by our model provide practitioners with a risk-oriented

guidance regarding the solid design of smart factory networks in the course of their

digital transformation. Further, it helps to identify the most critical IT components

and consequently offers a profound economic basis for corresponding investment

decisions regarding IT security mitigation measures. Thus, it also supports the

derivation of an appropriate IT security strategy. Based on the results of our model,

other subsequent approaches, such as multi-criteria decision-making models, can

then be applied. For example, based on a multi-criteria decision model, an optimal

portfolio of IT security measures could be derived by taking into account different
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decision criteria and dimensions. Corresponding approaches already exist, for

example, in the area of cloud computing, for which Shameli-Sendi and Cheriet

(2014) propose a risk assessment model based on fuzzy multi-criteria decision-

making or Akinrolabu et al. (2018) propose a cloud supply chain cyber risk

assessment model which applies decision support analysis and supply chain

mapping for the identification, analysis and evaluation of cloud risks. Besides the

risk-oriented guidance as the basis for subsequent decision making, our risk

assessment model provides the possibility to consider a cross-company view

regarding the effects of interorganizational information systems, as cross-company

ecosystems increases constantly in the course of the ongoing digitalization. We

demonstrate the model’s applicability in a setting based on an exemplary real-world

scenario, and conduct sensitivity analyses. Our results demonstrate that the

criticality of an IT component is determined by numerous factors: the dependency

relationships to production components, the degree of productivity interference

caused by the IT component failure, the IT component failure’s impact location

within the production process, loss potentials in the respective process steps, the

utilization of dependent production components, and the extent of the possible

compensation effect. The variety of these influencing factors and their complex

interplay clearly indicate the need for a risk assessment model enabling a structured

analysis and supporting investment decisions.

Nevertheless, there are some limitations to our results, which represent potential

areas for further research. First, we do not consider the possibility of negative,

upward feedback effects within the information network. For example, a failing

machine, which cannot upload information due to its failing embedded system, in

turn affects the overall system. Additionally, we apply our risk assessment model in

an exemplary application to demonstrate its applicability and its basic functionality.

For further evaluations, it would be beneficial to apply our model in different real-

world scenarios, with real-world data. Further, our model focuses on IT availability

risks. The incorporation of other dimensions of IT security risk, such as accuracy,

access, and accountability, would further increase the model’s value regarding the

identification of critical IT components. Another area for further research is the

trade-off between the risk reduction effects of idle capacity and accompanying

opportunity costs, which should be addressed by an optimization model built from

our risk assessment model. Additionally, investment decisions regarding IT security

measures include other aspects, such as the overall investment budget and the

relation between a measure’s efficiency and the required investment volume, which

are not addressed in this paper.

Other than these limitations, we made certain model assumptions that limit the

model’s applicability, but that, in our opinion, are reasonable to keep the model’s

complexity moderate. Nevertheless, relaxing some model assumptions offers

potential areas for the model’s further development. First, our model assumes that

IT components fail completely because technical failures and attacks result in the

complete non-availability of IT components. Partial functionality interferences of IT

components are not considered. As this could occur in some specific threat scenarios,

such as data manipulations, the inclusion of this aspect could be a potential extension

of our model. Second, our model analyzes the event of an IT component’s non-
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availability and its implications in a fixed time period. Thus, another substantial

extension would involve including a timing component and, thus, developing our

approach further to a continuous-time model. Third, though our model considers

individual interference degrees for the respective IT components, we assume that an

IT component’s non-availability causes identical interference degrees on all

dependent production components. We believe that this approach is reasonable

because it includes the interference degrees on a detailed IT component level. A

further differentiation on the production component level would cause an increase in

complexity, while the added value seems questionable. However, a further

differentiation of interference degrees on a production level would be possible.

Despite these limitations, we strongly believe that the developed risk assessment

model presents a substantial step toward the profound management of IT

availability risks in smart factory networks and supports the corresponding

investment decision process. This is of particular importance because the continuous

progression of IoT, CPS, and other smart manufacturing technologies requires the

ongoing development of appropriate risk assessment methods.
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