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ABSTRACT 

Pure strategy Markov perfect equilibria (MPE ) in dynamic cake 
sharing problems are analyzed. Each player chooses under perfect 
information how much to eat from the current cake and how much 
to leave to the next period. The left over cake grows according to a 
given growth function.  With linear  utilities and strictly concave 
increasing growth function the only symmetric equilibrium with 
continuous strategies is the trivial equilibrium in which a player 
eats the whole cake whenever it is his turn to move. This is quite 
different than in the corresponding single person decision problem 
(or at a social optimum) where the cake grows from small initial 
values towards the steady state. A non-trivial equilibrium with a 
positive  steady  state  exist  in  the  game.  In  such  an  equilibrium 
strategies cannot be continuous. When utilities are concave and the 
growth function is linear, a nontrivial MPE  with a positive steady 
state may not exist.
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1. Introduction

Pure strategy Markov perfect equilibria (MPE ) in dynamic cake

sharing problems are analyzed. Each player chooses under perfect in-

formation how much to eat from an existing cake and how much to

leave to the next period. The left over cake grows according to a given

growth function. With linear utilities and strictly concave increas-

ing growth function the only symmetric equilibrium with continuous

strategies is the trivial equilibrium in which a player eats the whole

cake whenever it is his turn to move. This is quite different than in the

corresponding single person decision problem (or at a social optimum)

where the cake grows from small initial values towards the steady state.

A non-trivial equilibrium with a positive steady state exist in the game.

In such an equilibrium strategies cannot be continuous. When utilities

are concave and the growth function is linear, a nontrivial MPE with

a positive steady state may not exist.

The result about continuous symmetric equilibria is rather surpris-

ing. For example, Battaglini et.al (2011) study symmetric continuous

Markov equilibria in a public goods provision game with almost perfect

information, and they find that there exists a continuum of equilibria

with different steady states. There are monotone equilibria (players’ in-

vestment are increasing functions of the state), and also equilibria with

cycles. In their model growth function is linear and utility functions

concave.

The classical papers by Levhari and Mirman (1980) and Fershtman

and Nitzan (1991) demonstrate that there can be overexploitation of

the resource or too little investment in the public good production.

The free rider and underinvestment problem show up very dramatically

in the continuous equilibria of this paper, since the stock can never

increase. A short explanation is in order.

If there were an MPE in continuous strategies in which the stock

is increasing from some initial state, then we can show that actually

the stock should be growing at the next state as well, and so on. It

follows that the stock is growing to some limit state, and continuity

of strategies would make that limit state a steady state. But it turns

out that then a player has an incentive either to deviate from that

(supposed) steady state back to the increasing path, or, to jump from

that increasing path ”too early” to the steady state.
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While positive steady states cannot exist at continuous symmetric

equilibria (Theorem 3, p. 9), such a steady state exists in equilibrium

with discontinuous strategies (Theorem 4, p. 11). We show that, when

the discount factor is sufficiently high, the steady state level of the stock

can be inefficiently high and agents consume too little as compared to

the social optimum.

The reason is that when Markov strategies are used, there are less

possibilities to punish deviations than when history dependent strate-

gies are used. More precisely, to make it unprofitable for agent i to

consume too much at a steady state, it must not be profitable for agent

j to jump immediately back to steady state if the current state is just

below the steady state. A way to guarantee this is that a deviation

from steady state is responded by eating the whole stock. This is cred-

ible if the steady state stock is very large and steady state consumption

small. But even when discontinuous strategies are allowed, the result

holds that in equilibrium the steady state cannot be approached from

below by an increasing path (Theorem 1, p. 5).

The paper is organized in the following way. The model is presented

in Section 2. Results are stated and proved in Section 3. Alternative

formulations of the models are shortly discussed in Section 4.

2. The Model

Let the growth function be xt+1 = f(xt − ct), t = 0, 1, 2 . . ., where f

is a strictly concave increasing function satisfying f ′(0) = ∞, f(0) = 0,

and where the consumption ct in period t satisfies 0 ≤ ct ≤ xt. There

are two players, i = 1, 2. Player 1 chooses every odd period t his

consumption level c1,t, and player 2 chooses her consumption c2,t every

even period t. Both players have a linear utility function u(c) = c

over per period consumption levels c, and both players have a discount

factor δ ∈ (0, 1). Both players maximize the discounted sum of their

own consumption.

We look at pure strategy Markov perfect equilibria (MPE) of this

game. In our setting, a Markov strategy for player i = 1, 2 is a function

ci that to each level x of the stock associates the current consumption

ci(x), 0 ≤ ci(x) ≤ x. Markov perfect equilibrium is a subgame perfect

equilibrium such that players use Markov strategies. A equilibrium

path {xt}t≥0 starting from an initial value x0 is the path generated by

equilibrium strategies. If player i moves at x0, then x1 = f(x0−ci(x0))
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and for each odd t (even t), xt+1 = f(xt − cj(xt)), j 6= i (xt+1 =

f(xt − ci(xt))), i, j = 1, 2.

Example 1. Let us outline the solution of a corresponding single person

decision problem. The Bellman equation of such a problem is

V (x) = maxc
{

c+ δV
(

f(x− c)
)}

(1)

Applying the envelope theorem we get

V ′(x) = δV ′
(

f(x− c)
)

f ′(x− c) (2)

At a steady state, x̄ = f(x̄− c̄). From equation (2) we get that

f ′(x̄− c̄) = 1/δ. (3)

Hence x̄ − c̄ = (f ′)−1(1/δ), and so x̄ satisfies x̄ = f
(

(f ′)−1(1/δ)
)

,

and then c̄ can be solved from x̄− c̄ = (f ′)−1(1/δ).

To have a numerical example, we will use square root as the growth

function, f(x− c) =
√
x− c, and in that case equation (3) reduces to

√
x̄− c̄ = x̄ = δ/2. (4)

The corresponding steady state consumption is

c̄ = x̄(1− x̄) =
δ

2

(

1− δ

2

)

(5)

The optimal strategy c is the following (in general as well in square

root case, since utility is linear). If x > x̄, then c(x) = x − x̄ + c̄. If

0 < x < x̄, then c(x) = 0 as many periods as it takes for x to grow

to x̄. (Consumption in the last period in this path is such that the

steady state is reached in the following period.) In other words, the

most rapid approach path is employed. In the special case of the square

root growth function, we have

c(x) =







x− (δ/2)2, if x ≥ δ/2;

max{0, x− (δ/2)2}, if x < δ/2.
(6)

The game situation is quite different. There is a trivial MPE in

which player i eats the whole cake whenever it is his turn to make a

choice. The reason is simple: if it is player i’s turn and he thinks that

player j 6= i will always in the future eat the whole cake, then the only

rational choice for i is to eat the whole cake as well.
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There exists a nontrivial equilibrium with a positive steady state.

But unlike in the single person case, cake can not grow in equilibrium,

as will be shown in the next section.

3. Results

Let us prove first that even if an MPE has a positive steady state

x̄ > 0, the equilibrium strategy profile c cannot be such that the steady

state could be reached from an initial state x < x̄.

Theorem 1. Let c = (c1, c2) be an MPE such that there is a steady

state x̄ > 0. Then there cannot be an initial state x0 < x̄ such that the

equilibrium path {xt}t≥0 converges to x̄.

Proof. Suppose x̄ is reached from x0 < x̄ in finite time. Then there

is a least T such that x̄ = f(xT − ci(xT )), xT < x̄. But then at the

steady state x̄, player j would deviate to a strategy c′j such that xT =

f(x̄−c′j(x̄)), which would give hime strictly more utility than the steady

state consumption c̄ that satisfies x̄ = f(x̄ − c̄) (or c̄ = x̄ − f−1(x̄)).

This is because c′j(x̄) > cj(x̄), and given the strategy ci, player j would

get discounted utility c′j(x̄)/(1− δ2).

Suppose then xt < xt+1 and limt xt = x̄. Let vi(x) be the equilibrium

value function at state x for player i when the equilibrium c = (c1, c2)

is played.

Step 1. We study first what kind of restrictions to the equilibrium

we get when deviations from the steady state must be unprofitable,

and also deviations from the path {xt} to the steady state must be

unprofitable.

If steady state x̄ has been reached, then it must not be profitable for

player i to eat x̄− f−1(xt−1) so that the next state would be xt−1. We

must have

x̄− f−1(xt−1) + δ2vi(xt) ≤
x̄− f−1(x̄)

1− δ2
,

which can be simplified to

(1− δ2)δ2vi(xt) ≤ f−1(xt−1)(1− δ2) + x̄δ2 − f−1(x̄). (7)

When the state is xt−2 it must not be profitable for i to eat xt−2 −
f−1(x̄) (instead of eating the equilibrium amount xt−2 − f−1(xt−1)) so

that the next state would be the steady state x̄. We must have
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xt−2 − f−1(x̄) + δ2
[

x̄− f−1(x̄)

1− δ2

]

≤ xt−2 − f−1(xt−1) + δ2vi(xt),

which can be simplified to

f−1(xt−1)(1− δ2) + x̄δ2 − f−1(x̄) ≤ (1− δ2)δ2vi(xt). (8)

The inequalities in (7) and (8) must both be equalities, and hence we

get

(1− δ2)
[

δ2vi(xt)− f−1(xt−1)
]

= x̄δ2 − f−1(x̄). (9)

Replacing t by t + 2 equation (9) becomes

(1− δ2)
[

δ2vi(xt+2)− f−1(xt+1)
]

= x̄δ2 − f−1(x̄). (10)

Equations (9) and (10) imply

δ2
[

vi(xt+2)− vi(xt)
]

= f−1(xt+1)− f−1(xt−1). (11)

Step 2. We study next what kind of restrictions to the equilibrium we

get from the fact that it cannot be profitable for a player to create a

cycle xt → xt−1 → xt

Given the state xt, player i could deviate and eat xt − f−1(xt−1)

so that the state next period would be xt−1, and the state after two

periods would be xt again. This deviation must not be profitable:

xt − f−1(xt−1)

1− δ2
≤ xt − f−1(xt+1) + δ2vi(xt+2), (12)

which can be simplified to

f−1(xt+1)− f−1(xt−1) ≤ δ2
[

− xt + f−1(xt+1) + vi(xt+2)− δ2vi(xt+2)
]

.

By (11), since ci(xt) = xt − f−1(xt+1), this becomes

δ2
[

vi(xt+2)− vi(xt)
]

≤ δ2
[

− ci(xt)− δ2vi(xt+2) + vi(xt+2)
]

. (13)

But since −ci(xt) − δ2vi(xt+2) = −vi(xt), the inequalities in (12) and

(13) must be equalities. Therefore

vi(xt) =
xt − f−1(xt−1)

1− δ2
, for all t. (14)

Final Step. From the restrictions obtained in Step 1 and Step 2, we can

now conclude that value function must take the form vi(xt) = xt +B,

for a constant B, and from this we can finally reach a contradiction

needed to prove the Lemma.
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By inserting vi(xt) from (14) into the equation (9) and simplifying

we get

δ2xt − f−1(xt−1) = x̄δ2 − f−1(x̄). (15)

By replacing t in (15) by t + 2, we get

δ2xt+2 − f−1(xt+1) = x̄δ2 − f−1(x̄). (16)

Equations (15) and (16) imply

δ2
[

xt+2 − xt

]

= f−1(xt+1)− f−1(xt−1),

and using equation (11) this becomes

vi(xt+2)− vi(xt) = xt+2 − xt. (17)

Let x0 be any initial value such that the increasing equilibrium path

{xt} converges to the steady state x̄ and player i has the move at x0.

Then by induction we get from (17) that

vi(x2t) = x2t +
[

vi(x0)− x0

]

, ∀t = 1, 2 · · · (18)

Denoting B =
[

vi(x0)− x0

]

we get

v(x2t) = x2t +B = x2t − f−1(x2t+1) + δ2
[

x2t+2 +B
]

, (19)

since ci(x2t) = x2t − f−1(x2t+1). This implies

(1− δ2)B = δ2x2t+2 − f−1(x2t+1) (20)

Hence by equation (16),

B =
x̄δ2 − f−1(x̄)

1− δ2
. (21)

Since (7) must hold as equality, and vi(xt) = xt +B, we have

x̄− f−1(xt−1) + δ2
[

xt +B
]

= xt +B,

from which we can solve B:

B =
δ2xt − f−1(xt−1)

1− δ2
+

x̄− xt

1− δ2
. (22)

Equations (15), (21) and (22) impy that x̄ = xt, a contradiction. �

A strategy profile c = (c1, c2) is symmetric, if c1(x) = c2(x) for all x.

The next result says that there cannot exists a symmetric MPE with

continuous strategies ci such that in equilibrium x1 = f(x0 − ci(x0)) >

x0 for some initial value x0. Hence the stock cannot be increasing in

such an equilibrium.
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Theorem 2. If (c1, c2) is a symmetric MPE with continuous strategies

ci, then x1 = f(x0 − ci(x0)) ≤ x0 for all initial values x0.

Proof. Let vi(x) the the equilibrium payoff of player i when he has

the move and the current state is x. Since (c1, c2) is a symmetric

equilibrium, we have v1 = v2 = v and c1 = c2. Let us abuse notation

slightly in this proof and denote c = c1 = c2. Suppose that x0 < x1 =

f(x0− c(x0)) for some x0. Using equilibrium strategy at x0 must be at

least as profitable as eating the amount x0 − f−1(x0) now so that the

opponent would have to eat c(x0) at state x0 next period. That is,

v(x0) ≥ x0 − f−1(x0) + δ2v(x1). (23)

The equilibrium value v(x0) satisfies

v(x0) = x0 − f−1(x1) + δ2v(f(x1 − c(x1))). (24)

Equations (23) and (24) imply that

f−1(x0)− f−1(x1) + δ2v(f(x1 − c(x1))) ≥ δ2v(x1). (25)

Since f−1(x0)− f−1(x1) < 0, and f(x1 − c(x1)) = x2, we get that

v(x2) = v(f(x1 − c(x1))) > v(x1). (26)

But this means that x2 > x1, since the value function v is strictly

increasing as is easily shown.

By induction, xt+1 > xt for all t ≥ 0. The increasing sequence {xt}
is bounded above by the fixed point x∗ of f . Since f is strictly concave

and increasing and f ′(0) > 1 > 0 = f(0), a unique fixed point x∗ > 0

exists. Hence the sequence {xt} has a limit, say x̂.

Since equilibrium strategy c is continuous, we have that

lim
t→∞

c(xt) = c(x̂) ≡ ĉ.

Since |xt+1−f(xt− c(xt))| −→ 0 as t −→ ∞, x̂ must be a steady state:

x̂ = f(x̂− ĉ). But then {xt} is an increasing sequence converging to a

steady state, a contradiction with Theorem 1. �

Theorem 3. If (c1, c2) is a symmetric MPE with continuous strategies

ci, then there are no positive steady states x̄ > 0 and ci(x) = x for all

x.

Proof. Suppose that there is a positive steady state x̄ > 0.

Assume first that there is another steady state ȳ = x̄ − ε < x̄ such

that x̄ ≤ f(x̄ − ε). That is if at ȳ an agent does not eat anything
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then the next period state is at least x̄. Since both steady states are

reachable from the other steady state by one step, necessary equilibrium

conditions at these steady states are:

x̄− ε− f−1(x̄− ε)

1− δ2
≥ x̄− ε− f−1(x̄) + δ2

[

x̄− f−1(x̄)

1− δ2

]

, (27)

x̄− f−1(x̄)

1− δ2
≥ x̄− f−1(x̄− ε) + δ2

[

x̄− ε− f−1(x̄− ε)

1− δ2

]

. (28)

Equation (27) states that it must not be profitable to jump from the

steady state ȳ = x̄ − ε to x̄, and equation (28) says that it must not

be profitable to jump from steady state x̄ to ȳ = x̄ − ε. Solving the

system (27)-(28) gives us

f−1(x̄)− f−1(x̄− ε) = δ2ε. (29)

Denote c̄ = c(x̄), the consumption at the steady state x̄, and let c(x̄−ε)

be the consumption at the steady state x̄ − ε. Using steady state

equations, we can rewrite (29) as

x̄− c̄− (x̄− ε) + c(x̄− ε) = δ2ε,

from which we can solve

c(x̄− ε) = c̄− ε(1− δ2). (30)

Then at the steady state x̄− ε we must have

x̄− ε = f(x̄− ε− c̄+ ε(1− δ2)) = f(x̄− c̄− εδ2),

a contradiction since ε > 0.

Therefore, if there are two steady states x̄ and y, ȳ < x̄, then f(ȳ) <

x̄ and x̄ cannot be reached from ȳ at one step. It follows that any

decreasing sequence {x̄t}t of positive steady states x̄t > 0 must be

finite. So there is a least positive steady state ȳ > 0.

If 0 < x0 < ȳ, then x1 < f(x0 − c(x0)). Now there cannot be

equilibrium path x0 > x1 > x2 > x3 > 0 since then the player who

eats at x0 the amount c(x0) = x0 − f−1(x1) has a profitable deviation

c′ = x0 − f−1(x3). It follows that c(x0) = x0 must hold at each x0 < ȳ.

But then c cannot be continuous at ȳ. This contradiction implies

that there cannot exist any steady state x̄0 > 0. By Theorem 2, x1 <

f(x0 − c(x0)) must hold at every initial value x0, and hence by the

previous paragraph c(x) = x for all x. �
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If symmetry and continuity assumptions are relaxed, we do have

nontrivial equilibrium with a positive steady state x̄ > 0.

Theorem 4. There is an MPE with a steady state stock x̄ > 0 satis-

fying δ2x̄− f−1(x̄) = 0. The equilibrium strategies ci, i = 1, 2 are

ci(x) =







x− f−1(x̄), if x ≥ x̄;

x, if x < x̄.

Proof. The proposed equilibrium strategies have the following property.

If the cake is at least as great as the steady state level x̄, a player eats

so much that steady state is reached in the next period. If the cake is

smaller than the steady state level, then a player eats the whole cake.

Hence there is no growth in this equilibrium. Let us verify that the

strategies given above indeed form an MPE.

Note that at a steady state, x̄ = f(x̄ − c̄), where c̄ = ci(x̄), and

hence c̄ = x̄ − f−1(x̄). Hence x̄ can be sustained as a steady state in

equilibrium only if

x̄ ≤ x̄− f−1(x̄)

1− δ2
. (31)

This must hold because the right hand side of this inequality is the

discounted sum of consumption at a steady state, and the left hand

side is the utility if the cake x̄ is eaten at once. Equation (31) implies

that

δ2x̄− f−1(x̄) ≥ 0. (32)

Actually (32) holds as equality,

δ2x̄− f−1(x̄) = 0. (33)

instead of just satisfying the inequality.

To see this, note that if (32) holds as a strict inequality, and i would

observe the current state x is only a little bit smaller than x̄, then i

could choose c so that steady state would be reached in the next period.

That is, c = x− f−1(x̄). Since j is expected to stay at the steady state

if steady state is reached, this would give i a strictly larger discounted

payoff than eating the whole cake x immediately, because

x− f−1(x̄) +
δ2 [x̄− f−1(x̄)]

1− δ2
> x, iff

δ2x̄ > f−1(x̄).

9



Therefore (33) must hold when the strategies given in the Theorem

are used. �

In the special case when the growth function is the square root, we

have the following.

Corollary 1. If f(x − c) =
√
x− c then the steady state of Theorem

1 is x̄ = δ2, and the equilibrium strategies are

ci(x) =







δ2(1− δ2), if x ≥ δ2

x, if x < δ2.

Remark 1. Equilibrium strategies in Theorem 4 and Corollary 1 are

neither continuous nor monotone. Discontinuity takes place at the

steady state x̄. Nonmonotonicity: ci(x) = x > ci(x̄) when x < x̄ is

very close to x̄, but ci(x) = x < ci(x̄) when x < x̄ is very close to 0.

Remark 2. Equilibria in Theorem 4 and Corollary 1 are symmetric,

but symmetry was a result not an assumption.

Remark 3. The equilibrium value functions vi satisfy vi(x) = x. This

follows immediately when x < x̄. When x ≥ x̄, v(x) = x holds since

staying at the steady state x̄ gives as much utility as eating the cake x̄

immediately.

Remark 4. Since utilities are linear, the social optimum would corre-

spond to the problem where the sum of players’ utilities is the objective

function. The solution is the one found in Example 1. Note that steady

state x̄ = δ2 in the game situation is larger than the steady state δ/2

at the social optimum, iff δ > 1/2.

Remark 5. The unique equilibrium in the finite horizon version of the

game is the trivial equilibrium: ci(x) = x for all x.

4. Variations of the Model

4.1. Model 1.1. Suppose players move during the same period under

perfect information so that player 1 moves first. Assume also that the

time interval between choices is so short that the cake cannot grow

during that time. There is no MPE with a positive steady state. To

10



see this, suppose that x̄ > 0 is a steady in equilibrium c = (c1, c2).

Then

x̄ = f
(

x̄− c1(x̄)− c2(x̄− c1(x̄))
)

If c1(x̄) = x̄− f−1(x̄), then c2(x̄− c1(x̄)) = 0. But then player 2 would

deviate and choose c2(x) = x when the size of cake is x and it is his

turn to choose. So there cannot exist and MPE with a positive steady

state.

4.2. Model 1.2. Players move in the same period under perfect infor-

mation but the first mover is chosen by flipping a fair coin. Now there

is anMPE with a steady state x̄ > 0. At a steady state, the first mover

eats the whole surplus x̄ − f−1(x̄) and the second mover gets zero. If

x > x̄, then the first mover eats x− f−1(x̄) and the second mover gets

zero so that steady state is maintained. If x < x̄, then whoever has the

move, eats the whole cake. A necessary condition for these strategies

to form an MPE is that the second mover doesn’t want to deviate at

the steady state by eating the whole residual cake f−1(x̄). That is, we

must have
1

2

[

δ(x̄− f−1(x̄))

1− δ

]

≥ f−1(x̄). (34)

This holds, if

δx̄ ≥ (2− δ)f−1(x̄). (35)

At the greatest steady state x̄, (35) and (36) must hold as equalities.

In the case f(x− c) =
√
x− c, the steady state will be

x̄ =
δ

2− δ
. (36)

4.3. Model 1.3. Assume the move structure is the same as in the

original model, but that utility functions u is strictly concave with

u(0) = 0 and u′(0) = ∞. The growth function is linear: xt+1 =

(1 + r)(xt − ct). We assume that the growth rate is the inverse of the

discount factor, so δ = 1/(1 + r).

It can be shown that in the single person case any positive initial

state x0 > 0 is also a steady state. The steady state consumption level

is c = x0(1− δ).

A necessary condition for a positive steady state x̄ > 0 in the two-

person game is that it is not profitable to eat the (steady state) cake

at once. This holds if

u(x̄(1− δ)) ≥ u(x̄)(1− δ2). (37)
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For example, if u(x) = xα, 0 < α < 1, then equation (37) implies that

(1− δ)α

1− δ2
≥ x̄1−α. (38)

If δ = 0.9 and α < 0.72, then (38) cannot be satisfied, so there cannot

be any MPE with a positive steady state.
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