ECDNETOR

Make Your Publications Visible.

A Service of

Working Paper

Aggregating and Updating Information

Discussion paper, No. 73

Provided in Cooperation with:

Aboa Centre for Economics (ACE), Turku

Suggested Citation: Salonen, Hannu (2012) : Aggregating and Updating Information, Discussion paper, No. 73, Aboa Centre for Economics (ACE), Turku

This Version is available at: https://hdl.handle.net/10419/233289

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Hannu Salonen
 Aggregating and Updating Information

Aboa Centre for Economics Discussion Paper No. 73 Turku 2012

The Aboa Centre for Economics is a joint initiative of the economics departments of the University of Turku and Åbo Akademi University.

Copyright © Author(s)

ISSN 1796-3133

Printed in Uniprint Turku 2012

Hannu Salonen
 Aggregating and Updating Information

Aboa Centre for Economics
Discussion Paper No. 73
March 2012

Abstract

We study information aggregation problems where to a set of measures a single measure of the same dimension is associated. The collection of measures could represent the beliefs of agents about the state of the world, and the aggregate would then represent the beliefs of the population. Individual measures could also represent the connectedness of agents in a social network, and the aggregate would reflect the importance of each individual. We characterize the aggregation rule that resembles the Nash welfare function. In the special case of probability aggregation problems, this rule is the only one that satisfies Bayesian updating and some well-known axioms discussed in the literature.

JEL Classification: C71, D63, D74
Keywords: belief aggregation, belief updating, Nash welfare function

Contact information

hannu.salonen(at)utu.fi

Acknowledgements

I thank Hannu Nurmi for useful comments.

1. Introduction

We study information aggregation problems where to a set of measures a single measure of the same dimension is associated. The collection of measures could represent the beliefs of agents about the state of the world, and the aggregate would then represent the beliefs of the population. Individual measures could also represent the connectedness of agents in a social network, and the aggregate would reflect the importance of each individual. We characterize the aggregation rule (the Nash rule) that resembles the Nash welfare function (Kaneko 1979).

This is done both in the case the measures are probability distributions and in the case of non-normalized measures. In the special case of probability aggregation problems, the Nash rule rule is the only one that satisfies Bayesian updating on top of some standard axioms. While probability measures seem natural in belief aggregation problems, non-normalized measures could be better suited in some network applications, for example.

Crès, Gilboa and Vieille (2011) and Gilboa, Samet and Schmeidler (2004) are recent papers where belief aggregation or belief and preference aggregation problems are studied. In Crès et.al (2011) there is decision maker and a number of experts who all have the same utility function but different set of prior beliefs (probability measures) over the states. The problem is how to determine the beliefs for the decision maker in a reasonable way. Gilboa et.al (2004) study utilitarian aggregation of preferences and beliefs in the social choice context: when are society's welfare function and beliefs representable as weighted averages of those of individual agents.

The same machinery that for decades has been used to analyze social choice problems can be applied to all kinds of belief or opinion aggregation problems. Recently these tools have been applied to the analysis and construction of citation indices and internet search engines (see e.g. Palacios-Huerta and Volij 2004, Slutski and Volij 2006). For recent papers dealing with judgement aggregation from the logical point of view, see e.g. List and Polak (2010) or Nehring and Puppe (2010).

The paper is organized in the following way. In Section 2 the notation and aggregation rules are introduced. The axioms are introduced in Section 3. The main results are given in Section 4.

2. Preliminaries

A measure μ on S satisfies (i) $\mu(E) \geq 0$, for each event $E \subset S$; (ii) $\mu(\emptyset)=0$; and (iii) $\mu\left(E \cup E^{\prime}\right)=\mu(E)+\mu\left(E^{\prime}\right)$ for all disjoint events $E, E^{\prime} \subset S$. We may denote the measure of singletons $\{s\}$ by $\mu(s)$ instead of $\mu(\{s\})$. Inequality $m(E)<m\left(E^{\prime}\right)$ means $m_{i}(E)<$ $m_{i}\left(E^{\prime}\right)$ for all $i \in N$; inequality $m_{i}<m_{i}^{\prime}$ means $m_{i}(E)<m_{i}^{\prime}(E)$ for all nonempty $E \subset S$; inequality $m<m^{\prime}$ means $m_{i}<m_{i}^{\prime}$ for all $i \in N$. Given a measure μ on S and $E \subset S$, the restriction of μ to E is a measure $\mu_{\mid E}$ on S defined by $\mu_{\mid E}(A)=\mu(A \cap E)$ for every $A \subset S$.

Let $\operatorname{supp}(\mu)=\{s \in S \mid \mu(S)>0\}$ be the support of a measure μ on S. A measure with an empty support is called a null measure and we denote it by μ^{0}. Given a profile $m=\left(m_{i}\right)_{i \in N}$ of measures on S, let $\operatorname{supp}(m)=\left\{s \in S \mid m_{i}(s)>0\right.$, for all $\left.i \in N\right\}$ be the intersection of the supports of the measures m_{i}. If there is any risk of confusion we will state explicitly whether $\operatorname{supp}(m)$ means the support of a single measure or a profile of measures.

An aggregation problem is a triple $P=(N, S, m)$, where N is a nonempty finite subset of natural numbers $\mathbb{N}=\{0,1, \ldots\}, S$ is a nonempty finite set, and $m=\left(m_{i}\right)_{i \in N}$ is a profile of measures m_{i} on S, where $n=|N|$ is the cardinality of N. We denote the set of all aggregation problems (or simply problems) by \mathcal{P}. We may study the subclass of problems with a common $\operatorname{support}\left(\operatorname{supp}\left(m_{i}\right)=\operatorname{supp}\left(m_{j}\right)\right.$, for all $i, j \in N$) denoted by $\mathcal{P}^{c s}$, and a special case of this, the problems with full support $\left(\operatorname{supp}\left(m_{i}\right)=S\right.$, for all $\left.i \in N\right)$ denoted by \mathcal{P}^{+}. If we want to study subclasses of problems with a given set of agents N or states S, we may denote these classes by $\mathcal{P}^{N}, \mathcal{P}^{N, S}, \mathcal{P}^{+, N}$ e.t.c.

An interpretation of the model is that N is the set of agents, S is the set of states of the nature, and m_{i} is the measure for agent i representing his beliefs about what is the true state s. Another possible interpretation is that S is the set of alternatives from which the society must choose one element, and the measure m_{i} represents the preferences of agent i. A third interpretation is that N is the set of authors, S is the set of articles in academic journals, and $m_{i}(s)$ denotes the number of times author i has cited article s. More generally, since tastes and beliefs are opinions and citations reflect opinions as well, we may say that the measures m_{i} represent the opinions of the agents.

An aggregation rule is a function f sucht that $f(P)$ is a measure on S for each aggregation problem $P=(N, S, m) \in \mathcal{P}$. Depending on the interpretation of the aggregation problem $P, f(P)$ may be interpreted as an aggregate belief of the society, or as a social preference, or as a "general opinion".

We say that a problem $P=(N, S, m)$ is a probability aggregation problem, if each m_{i} is a probability measure and $f(P)$ should also be a probability measure. Note that this subclass of problems is different than the ones defined above, since the definition also restricts the class of feasible rules.
2.1. Some well-known aggregation rules. The Average rule f^{A} is the best known rule. It is defined by $f^{A}(P)(s)=\frac{1}{n} \sum_{i \in N} m_{i}(s)$ for every $s \in S$, for each problem $P=(N, S, m)$.

The Median rule f^{M} is defined as follows for every problem $P=$ (N, S, m) (see e.g. Balinski and Laraki 2007, Barthelemy and Monjardet 1981). Given $s \in S$, let $f^{M}(P)(s)$ be the median of the components of the vector $m(s)$. In case where the successive elimination of greatest and least values of the coordinates of the vector $m(s)$ leaves us with two components $m_{i}(s)$ and $m_{j}(s)$, we define the median to be the average of these values. For example, if $m(s)=(1,1,3)$, then the median is 1 , but if $m(s)=(1,1,3,3)$, then the median is 2 .
The Borda rule f^{B} is also quite well-known (see e.g. Nurmi and Salonen 2008, Saari 2006, Young 1974). Let $b_{i}(P)(s)=\mid\left\{s^{\prime} \in S \mid m_{i}\left(s^{\prime}\right) \leq\right.$ $\left.m_{i}(s)\right\} \mid$ for all $s \in S$, and let $f^{B}(P)(s)=\frac{1}{n} \sum_{i \in N} b_{i}(P)(s)$, for all problems $P=(N, S, m)$. Note that if for each i the measures $m_{i}(s)$ are different for different states s, we get the standard form of the Borda rule. The Borda rule is often defined as the sum $\sum_{i \in N} b_{i}(P)(s)$. For all practical purposes the two versions are the same.

The Nash rule f^{G} is based on the Nash welfare function (Kaneko 1979), and the idea can be applied in the present context as well. It is defined by $f^{G}(P)(s)=\sqrt[n]{\prod_{i \in N} m_{i}(s)}$ for each $s \in S$, for each problem $P=(N, S, m)$. The superscript G refers to the fact that $f^{G}(P)(s)$ is the geometric average of the individual $m_{i}(s)$-values.

The Norm rules $f^{E N}, f^{S N}$ are based on the Euclidean norm and sup -norm, respectively. The rule $f^{E N}$ is defined by $f^{E N}(P)(s)=$ $n^{-1 / 2} \sqrt{m_{1}(s)^{2}+\cdots+m_{n}(s)^{2}}$ for each $s \in S$, for each problem $P=$ (N, S, m). Define $f^{S N}$ by $f^{S N}(P)(s)=\sup \left\{\left|m_{1}(s)\right|, \ldots,\left|m_{n}(s)\right|\right\}$ for
each $s \in S$, for each problem $P=(N, S, m)$. Note that the norm rule corresponding to the city block norm $\left|m_{1}(s)\right|+\cdots+\left|m_{n}(s)\right|$ is the Average rule f^{A}.

The rules defined above can be defined in such a way that they are applicable in probability aggregation problems as well. There are many ways to do it. Suppose the subclass of problems is such that $f(P)(S)>0$, and each m_{i} is a probability measure, for every problem $P=(N, S, m)$ in this subclass. Then a probability aggregation rule f^{\times} can be defined by $f^{\times}(P)(s)=f(P)(s) / f(P)(S)$ for every $s \in S$. We call f^{\times}the multiplicative normalization of f.

3. Properties of aggregation rules

Now we present some properties or axioms that aggregation rules could satisfy. For a more comprehensive treatment of different aggregation procedures and their properties, see e.g. Nurmi (2002).

We don't specify in each case the subclass of problems where the axiom in question should be applicable. Instead, we specify in our theorems the subclass where the rules are defined, and axioms are then restricted to this subclass as well. This way we may use the axioms in a more flexible manner. For example, if we analyze the class of problems with full support, then Regularity (defined below) has no bite. Notable exception to this practice is the axiom Bayesian updating that is designed specifically for probability aggregation problems.

Given agent sets N and M with equally many members, let π : $N \longrightarrow M$ be any bijection, and given an n-tuple m of measures, let πm be an n-tuple of profiles such that $\pi m_{\pi(i)}=m_{i}$. In other words, the agent $\pi(i)$ has the same measure in profile πm as person i has in profile m. Given an aggregation problem $P=(N, S, m)$ and a bijection $\pi: N \longrightarrow M$, define another aggregation problem $Q=(M, S, \pi m)$, which is otherwise the same as P except that agent $\pi(i) \in M$ has been given the measure m_{i} of agent $i \in N$.

Axiom 1 (Anonymity, AN). For aggregation problems $P=(N, S, m)$ and $Q=(N, S, \pi m)$, and for every bijection $\pi: N \longrightarrow M$ it holds that $f(Q)=f(P)$.

Let S and T be two finite sets with the same number of elements. Given an aggregation problem $P=(N, S, m)$ and a bijection $\pi: S \longrightarrow$
T, define another aggregation problem $Q=(N, T, m)$, which is otherwise the same as P except that elements $s \in S$ are replaced by elements $\pi(s) \in T$.

Axiom 2 (Neutrality, NE). For aggregation problems $P=(N, S, m)$ and $Q=(N, T, m)$, and for every bijection $\pi: S \longrightarrow T$, it holds that $f(P)(s)=f(Q)(\pi s)$ for every $s \in S$.

Anonymity says that the labels of the agents do not matter, while Neutrality says that labels of the states do not matter. All the rules defined in Section 2.1 satisfy Neutrality and Anonymity. These rules satisfy also the following axiom called Unanimity.

Axiom 3 (Unanimity, UN). If $m_{1}=\cdots=m_{n}=\mu$ in an aggregation problem $P=(N, S, m)$, then $f(P)=\mu$.

These three axioms are standard in the literature. The next one is a version of the well-known axiom the appears already in Arrow's seminal work (Arrow 1963).

Axiom 4 (Independence of Irrelevant Alternatives, IIA). Let $P=$ (N, S, p) and $Q=(N, S, q)$ be two aggregation problems such that $p(s)=q(s)$ and $p\left(s^{\prime}\right)=q\left(s^{\prime}\right)$ for some $s, s^{\prime} \in S$. Then $f(P)(s)<$ $f(P)\left(s^{\prime}\right)$ if and only if $f(Q)(s)<f(Q)\left(s^{\prime}\right)$.

All the rules defined in Section 2.1 satisfy this axiom except the Borda rule.

Axiom 5 (Individual Scale Covariance, ISC). For all $i \in \mathbb{N}$ there is a strictly increasing continuous function $b_{i}: \mathbb{R}_{++} \longrightarrow \mathbb{R}_{++}$such that the following holds. If problems $P=(N, S, p)$ and $Q=(N, S, q)$ are such that for some $i \in N, q_{i}=a p_{i}$ for some $a>0$, and $q_{j}=p_{j}$ for all $j \neq i, j \in N$, then $f(Q)=b_{i}(a) f(P)$.

Individual scale covariance says that if we multiply agent i 's opinions by a positive constant, then the aggregated beliefs are also multiplied by some positive constant. This axiom is needed in applications where only the ratios $m_{i}(s) / m_{i}\left(s^{\prime}\right)$ and $f(P)(s) / f(P)\left(s^{\prime}\right)$ of individual and aggregate opinions matter. Because if ISC is satisfied, scaling the measure m_{i} up or down has no effect on these ratios.

Axiom 6 (Common Scale Covariance CSC). If $P=(N, S, p)$ and $Q=(N, S, q)$ are two problems such that $q=a p$ for some $a>0$, then $f(Q)=a f(P)$.

Common scale covariance says that if we multiply the opinions of all agents by the same constant then the aggregate opinion will be multiplied by the same constant. All rules in Section 2.1 except the Borda rule satisfy CSC but only the Nash rule f^{G} satisfies both ISC and SC.

Axiom 7 (Expert Proofness, EP). Let $P=(N, S, p)$ and $Q=(N \backslash$ $\{i\}, S, q)$ be two aggregation problems such that $i \in N, p_{j}=q_{j}$, for all $j \in N \backslash\{i\}$, and $p_{i}=f(Q)$. Then $f(P)=f(Q)$.

If agent i adopts the aggregated opinions of the other agents $j \in$ $N \backslash\{i\}$, then the aggregated opinions of the enlarged population N are the same as the aggregated opinions of $N \backslash\{i\}$. One interpretation is that the public already has a quite good idea of what the opinions in the society are, and they may have adjusted a little bit their own views as a response. Then if an expert comes and makes the societies opinions common knowledge, the public has no reason to adjust their opinions any more. We will show in Section 4 that all the rules defined in Section 2.1 satisfy EP.
The following axiom is closely related to IIA.
Axiom 8 (Updating, UP). If $P=(N, S, m)$ and $Q=\left(N, E, m_{\mid E}\right)$ are such that $E \subset S$ and $E \neq \emptyset$, then $f(Q)=f(P)_{\mid E}$.

We will show in Section 4 that every rule that satisfies UP satisfies also IIA. The only rule in Section 2.1 that does not satisfy UP is the Borda rule. The following axiom is the well-known Bayesian updating property. It's domain is the class of probability aggregation problems.

Axiom 9 (Bayesian Updating, BUP). Let $P=(N, S, p)$ and $Q=$ (N, E, q) be two probability aggregation problems such that $E \subset S$, $p_{i}(E)>0$ and q_{i} is derived from p_{i} by the Bayes rule for all $i \in N$. Then the probability measure $f(Q)$ is derived from the probability measure $f(P)$ by the Bayes rule.

Bayesian updating seems so natural that one may wonder whether it has any bite at all. However, even the best-known aggregation rule, the Average rule, fails to satisfy this axiom. The following axiom makes sense in all kinds of aggregation problems.

Axiom 10 (Regularity, REG). Given $P=(N, S, m)$, it holds that $f(P)(s)=0$ if and only if $m_{i}(s)=0$ for all $i \in N$, for a given $s \in S$.

Regularity is satisfied in the class \mathcal{P} by all the other rules defined in Section 2.1 except the Borda rule and the Nash rule. The Nash rule satisfies REG on the class $\mathcal{P}^{c s}$ of common support problems.

4. Results

All the rules defined in Section 2.1 are Expert proof.

Lemma 1. The Average rule, the Borda rule, the Median rule, the Nash rule, and the Norm rules $f^{E N}$ and $f^{S N}$ satisfy $\boldsymbol{E P}$.

Proof. Let $P=(N, S, p)$ and $Q=(N \backslash\{i\}, S, q)$ be two problems as in the axiom EP.

It is straightforward to verify that the Average rule satisfies EP.
Take the Borda rule f^{B} and consider the problems $P^{\prime}=(N, S, b(P))$ and $Q^{\prime}=(N, S, b(Q))$, where $b_{i}(P)$ is the measure derived from agent i 's Borda scores $b_{i}(P)(s)$ in the problem $P=(N, S, p)$, and $b_{j}(Q)$ is derived from agent j 's Borda scores $b_{j}(Q)(s)$ in the problem $Q=$ $(N \backslash\{i\}, S, q)$.

Since $p_{i}\left(s^{\prime}\right)<p_{i}(s)$ iff $b_{i}(P)\left(s^{\prime}\right)<b_{i}(P)(s)$, the problem P^{\prime} is obtained from P by applying strictly increasing transformations to the measures p_{i}. Similarly, Q^{\prime} is obtained from Q by applying strictly increasing transformations to the measures q_{j}. Since the Borda scores b_{i} depend only on the ordinal ranking of states s, the individual Borda scores satisfy $b_{i}\left(P^{\prime}\right)(s)=b_{i}(P)(s)$ and $b_{j}\left(Q^{\prime}\right)(s)=b_{j}(Q)(s)$.

Since $p_{i}(s)=f^{B}(Q)(s)=\frac{1}{n-1} \sum_{j \in M} b_{j}(Q)(s)$ and $b_{j}(P)=b_{j}(Q)$ for every $j \in M$, we have

$$
\frac{1}{n} \sum_{j \in N} b_{j}(P)(s)=\frac{1}{n}\left[\sum_{j \in M} b_{j}(Q)(s)+\frac{1}{n-1} \sum_{j \in M} b_{j}(Q)(s)\right],
$$

which implies $f^{B}\left(P^{\prime}\right)(s)=f^{B}\left(Q^{\prime}\right)(s)$. Since $b_{i}\left(P^{\prime}\right)(s)=b_{i}(P)(s)$ and $b_{j}\left(Q^{\prime}\right)(s)=b_{j}(Q)(s)$, we have that $f^{B}(P)(s)=f^{B}(Q)(s)$, so the Borda rule satisfies EP.
The Median rule has the property that for all $s \in S, p_{i}(s)=$ $f^{M}(Q)(s)$ and this is the median of the vector $q(s)$. But then $p_{i}(s)$ is the median of the coordinates of the vector $p(s)$ as well, and so f^{M} satisfies EP.

Let $P=(N, S, p)$ and $Q=(N \backslash\{i\}, S, q)$ be as stated in EP, and define $M=N \backslash\{i\}$. Then for each $s \in S$,

$$
f^{G}(P)(s)=\left[\prod_{j \in M} p_{j}(s)\left(\prod_{j \in M} p_{j}(s)\right)^{1 /(n-1)}\right]^{1 / n}=f^{G}(Q)(s)
$$

and therefore the Nash rule satisfies EP.
If we use the Norm rule $f^{E N}$, we have

$$
f^{E N}(Q)(s)=(n-1)^{-1 / 2} \sqrt{\sum_{j \neq i} m_{j}(s)^{2}}
$$

which implies

$$
f^{E N}(P)(s)=n^{-1 / 2} \sqrt{\sum_{j \neq i} m_{j}(s)^{2}+(n-1)^{-1} \sum_{j \neq i} m_{j}(s)^{2}}
$$

but then $f^{E N}(P)(s)=f^{E N}(Q)(s)$ as desired.
The proof for sup -norm rule $f^{S N}$ is easy and omitted.
We show next that the axiom UP implies IIA.
Lemma 2. If a rule f satisfies $\boldsymbol{U P}$, then it satisfies IIA.
Proof. Suppose f satisfies UP. Let $P=(N, S, p)$ and $Q=(N, S, q)$ be two aggregation problems as in the statement of IIA: $p(s)=q(s)$ and $p\left(s^{\prime}\right)=q\left(s^{\prime}\right)$ for two members $s, s^{\prime} \in S$. Then by UP, $f\left(P^{\prime}\right)=f(P)_{\mid E}$ and $f\left(Q^{\prime}\right)=f(Q)_{\mid E}$. But $P^{\prime}=Q^{\prime}$ because $p_{\mid E}=q_{\mid E}$, and therefore f satisfies IIA.

We give next an axiomatic characterization of the Nash rule on the class of full support aggregation problems \mathcal{P}^{+}. First we characterize a one-parameter family of rules.

Theorem 1. Let f be a rule satisfying $\boldsymbol{A} \boldsymbol{N}, \boldsymbol{I S C}, \boldsymbol{C S C}, \boldsymbol{N E}$, and $\boldsymbol{U P}$ on the class of full support problems $\mathcal{P}^{+, N}$ with a given set of agents N. Then for some $a>0, f=a f^{G}$, or $f(P)$ is the null measure μ^{0} for all $P \in \mathcal{P}^{+, N}$.

Proof. Clearly the rule that assigns the null measure to every problems satisfies these axioms. So suppose f is another rule satisfying the axioms AN, ISC, CSC, NE and UP.

Let $P=(N, S, m) \in \mathcal{P}^{+, N}$ be any problem and take any $s \in S$. By UP, $f(Q)=f(P)_{\mid\{s\}}$ where $Q=\left(N,\{s\}, m_{\mid\{s\}}\right)$. By the full support assumption, $m_{i}(s)>0$ for every $i \in N$.

Let q^{i} be the vector such that $q_{i}=1$ and $q_{j}=m_{j}(s)$ for all $j \neq i$, and let $Q^{i}=\left(N,\{s\}, q^{i}\right)$. Note that $m_{i}(s)=m_{i}(s) q_{i}^{i}$. Then by ISC, $f(Q)=b_{i}\left(m_{i}(s)\right) f\left(Q^{i}\right)$, where b_{i} is the continuous strictly increasing function in the axiom ISC.

Let $q^{i j}$ be the vector such that $q_{i}^{i j}=q_{j}^{i j}=1$ and $q_{j}^{i j}=m_{j}(s)$ for all $j \neq i, j$, and let $Q^{i j}=\left(N,\{s\}, q^{i j}\right)$. Then $f(Q)=b_{j}\left(m_{j}(s)\right) b_{i}\left(m_{i}(s)\right) f\left(Q^{i j}\right)$ by ISC.

Let P^{\prime} be a problem that is otherwise like P except in problem P^{\prime} player i has a measure $m_{i}^{\prime}=m_{j}$ and player j has the measure $m_{j}^{\prime}=m_{i}$. Derive Q^{\prime} from P^{\prime} in the same ways as Q was derived from P above, and construct $q^{\prime i j}$ in the same fashion as $q^{i j}$.

By AN, $f(P)=f\left(P^{\prime}\right)$ and $f(Q)=f\left(Q^{\prime}\right)$, and therefore we must have $b_{j}\left(m_{j}(s)\right) b_{i}\left(m_{i}(s)\right)=b_{j}\left(m_{i}(s)\right) b_{i}\left(m_{j}(s)\right)$. Since $m_{i}(s)$ and $m_{j}(s)$ are arbitrary positive numbers, and functions b_{i} and b_{j} are strictly increasing, we must have that $b_{i}=b_{j}$. Since players i and j were arbitrarily chosen, $b_{1}=\cdots=b_{n} \equiv b$.

Applying ISC recursively, we get that $f(Q)=\prod_{i} b\left(m_{i}(s)\right) f\left(Q^{N}\right)$, where $Q^{N}=(N,\{s\}, \mathbf{1})$ and $\mathbf{1}=(1, \ldots, 1)$. In the special case $m_{1}(s)=$ $\cdots=m_{n}(s)=a$, we get that $f(Q)=b(a)^{n} f\left(Q^{N}\right)$. But by CSC, we must have $b(a)^{n}=a$, or equivalently $b(a)=\sqrt[n]{a}$.

It follows that

$$
\begin{equation*}
f(P)(s)=\left[\sqrt[n]{\prod_{i=1}^{n} m_{i}(s)}\right] f\left(Q^{N}\right) \tag{1}
\end{equation*}
$$

Now the value $f\left(Q^{N}\right)$ must be the same for all $s \in S$ by NE, so $f\left(Q^{N}\right)=a$, for some $a>0$, for all $s \in S$. But the constant a must be the same for all problems $P^{\prime}=\left(N, S^{\prime}, m^{\prime}\right)$.

To see this, note that in the axiom ISC the functions b_{i} of agents $i \in N$ were defined to be the same for all problems. In particular, b_{i} did not depend on the profile of measures m or the state space S. If we have some other problem $P^{\prime}=\left(N, S^{\prime}, m^{\prime}\right)$, then by UP and NE, we get again that equation (1) holds, when m_{i} is replaced by m_{i}^{\prime} and $Q^{N}=(N,\{s\}, \mathbf{1})$ is replaced by $Q^{\prime N}=\left(N,\left\{s^{\prime}\right\}, \mathbf{1}\right)$. But NE implies that these can be viewed as the same problem and hence they must
have the same solution, so $f\left(Q^{N}\right)=f\left(Q^{\prime N}\right)$. So the values $f(P)$ and $f\left(P^{\prime}\right)$ are different only if m and m^{\prime} are different
Remark 1. If $f(P)=\mu^{0}$ for all P, then $f=0 \cdot f^{G}$, so the theorem gives a characterization of a one-parameter family $\mathcal{F}=\left\{a f^{G} \mid a \geq 0\right\}$ of rules.

Remark 2. Theorem 1 does not say that the parameter a of the family \mathcal{F} could not depend on N.

If we add Unanimity to the list of axioms of Theorem 1, the only possible solution is the Nash rule f^{G} and the agent set N need not be the same in every problem.

Theorem 2. Let f be a rule satisfying AN, ISC, CSC, NE, UN and $\boldsymbol{U P}$ on the class of full support problems \mathcal{P}^{+}, then $f=f^{G}$.

Proof. If $m_{1}=\cdots=m_{n}=\mu$ in equation (1), then by $\mathbf{U N}$ we get that $f\left(Q^{N}\right)=1$. Since this holds independently of N, we are done.
Remark 3. The Nash rule f^{G} satisfies all the axioms mentioned in Theorem 2 in the class \mathcal{P} of all problems. At the moment I don't know if there are other rules satisfying these axioms as well.

Remark 4. Theorems 1 and 2 extend immediately to the class $\mathcal{P}^{c s}$ of problems with common support, if we assume Regularity on top of the other axioms in these Theorems. To see this, let $S^{\prime} \subset S$ be the common support, and note that $m_{i}(s)=0$ for all $s \in S \backslash S^{\prime}$. But then REG and UP imply that $f(P)(s)=0$ for all $s \in S \backslash S^{\prime}$.

The Nash rule is Expert proof but not Regular on the set \mathcal{P} of all problems. We have the following.

Proposition 1. The Average rule, the Median rule and the Norm rules $f^{E N}$ and $f^{S N}$ satisfy $\boldsymbol{A N}, \boldsymbol{C S C}, \boldsymbol{E P}, \boldsymbol{N E}, \boldsymbol{R E G}, \boldsymbol{U N}$ and $\boldsymbol{U P}$ in the class \mathcal{P} of all problems.

Here is about main result concerning probability aggregation problems. Let $f^{G \times}$ be the multiplicative normalization of the Nash rule f^{G}.

Theorem 3. Suppose f is a rule that satisfies AN, ISC, CSC, NE, $\boldsymbol{U N}$ and $\boldsymbol{U P}$ on the class of full support problems \mathcal{P}^{+}, and that its multiplicative normalization f^{\times}satisfies $\boldsymbol{B} \boldsymbol{U P}$ on the class of probability aggregation problems in \mathcal{P}^{+}. Then $f=f^{G}$ and $f^{\times}=f^{G \times}$.

Proof. It follows from Theorem 2 that $f=f^{G}$, so we just have to show that its multiplicative normalization $f^{G \times}$ satisfies BUP.

Take any probability aggregation problem $P=(N, S, p)$ with a full support. For any $s \in S$ we have $p_{i}(s)>0$, and so $f^{G}(P)(s)=$ $\left[\prod_{i} p_{i}(s)\right]^{1 / n}>0$ and $f^{G}(P)(A)=\sum_{s \in A}\left[\prod_{i} p_{i}(s)\right]^{1 / n}>0$ for every $A \subset S$. By the definition of the multiplicative normalization we have for any $s \in S$

$$
f^{G \times}(P)(s)=\frac{f^{G}(P)(s)}{f^{G}(P)(S)}
$$

Now update $f^{G \times}(P)$ on the nonempty event $E \subset S$ by using the Bayes rule:

$$
\begin{equation*}
\left.f^{G \times}(P)(s \mid E)=\frac{f^{G}(P)(s) / f^{G}(P)(S)}{f^{G}(P)(E) / f^{G}(P)(S)}\right)=\frac{f^{G}(P)(s)}{f^{G}(P)(E)} . \tag{2}
\end{equation*}
$$

Let $Q=(N, E, q)$ be related to P as in the axiom BUP. So q is derived from p by applying the Bayes rule: $q_{i}(s)=p_{i}(s) / p_{i}(E)$, for all $i \in N$, for all $s \in E$. Therefore $f^{G}(P)$ is computed by

$$
f^{G}(Q)(s)=\frac{\left[\prod_{i} p_{i}(s)\right]^{1 / n}}{\left[\prod_{i} p_{i}(E)\right]^{1 / n}}, \forall s \in E .
$$

The corresponding multiplicative normalization is computed by

$$
\begin{equation*}
f^{G \times}(Q)(s)=\frac{\left[\prod_{i} p_{i}(s)\right]^{1 / n} /\left[\prod_{i} p_{i}(E)\right]^{1 / n}}{\sum_{s \in E}\left[\prod_{i} p_{i}(s)\right]^{1 / n} /\left[\prod_{i} p_{i}(E)\right]^{1 / n}}, \forall s \in E . \tag{3}
\end{equation*}
$$

But the right hand sides of equations 2 and 3 are the same. Therefore $f^{G \times}$ satisfies BUP.

References

Arrow KJ (1963) Social Choice and Individual Values. Wiley, New York.
Balinski M, Laraki R (2007) A Theory of Measuring, Electing, and Ranking. Proceedings of the National Academy of Sciences 104: 8720-8725.

Barthelemy JP, Monjardet B (1981) The Median Procedure in Cluster Analysis and Social Choice Theory. Mathematical Social Sciences 1: 235-267.

Crès H, Gilboa I, Vieille N (2011) Aggregation of Multiple Prior Opinion. Journal of Economic Theory 146: 2563-2582.
Gilboa I, Samet D, Schmeidler D (2004) Utilitarian Aggregation of Beliefs and Tastes. Journal of Political Economy 112: 932-938.
List C, Polak B (2010) Introduction to Judgement Aggregation. Journal of Economic Theory 145:441-466.
Kaneko M (1979) The Nash Social Welfare Function. Econometrica 47: 423-435.
Nehring K, Puppe C (2010) Justifiable Group Choice. Journal of EConomic Theory 145: 583-602.
Nurmi H (2002) Voting Procedures under Uncertainty. Springer, Berlin, Heidelberg, New York.
Nurmi H, Salonen H (2008) More Borda Count Variations for Project Assesment. AUCO Czech Economic Review 2: 109-122.
Palacios-Huerta I, Volij O (2004) The Measurement of Intellectual Influence. Econometrica 72: 963-977.
Saari D (2006): Which Is Better The Condorcet or Borda Winner. Social Choice and Welfare 26: 107-129.
Slutski G, Volij O (2006) Scoring of Web Pages and Tournaments. Social Choice and Welfare 26:75-792.
Young HP (1974) An Axiomatization of Borda's Rule. Journal of Economic Theory 9: 43-52.

The Aboa Centre for Economics (ACE) is a joint initiative of the economics departments of the Turku School of Economics at the University of Turku and the School of Business and Economics at Åbo Akademi University. ACE was founded in 1998. The aim of the Centre is to coordinate research and education related to economics.

Contact information: Aboa Centre for Economics, Department of Economics, Rehtorinpellonkatu 3, FI20500 Turku, Finland.
www.ace-economics.fi

ISSN 1796-3133

