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Summary

In this thesis, we consider theory and applications in non-linear cointegration, in particular
within the dynamic mixture cointegrated VAR framework called the Autoregressive Conditional
Root (ACR) cointegrated model. These and similar models have found applications to many
different data series within macroeconomics and finance. The thesis is comprised of four chapters,
where the chapters one through three are concerned with the ACR model framework and the
fourth discusses a parameter identification problem seen in the ACR model, but also in other
similar non-linear autoregressive models.
In chapter one, we present the ACR cointegrated framework, including a number of novel

extensions, namely a constant in the cointegration relations, allowing for multiple regimes and
letting the covariance matrices of the error terms be regime dependent. We provide a represen-
tation theory for the process and give conditions for stationarity. We consider likelihood-based
inference on all parameters, when the cointegration relations are estimated and show that, con-
trary to the case when the cointegration relations are fixed from the outset, asymptotic theory is
non-standard. More precisely, the asymptotic distribution of the maximum likelihood estimator
is a nuisance parameter depend function of Brownian motions.
In chapter two, we introduce an encompassing framework based on generalized linear restric-

tions that facilitates estimation of many differently specified ACR cointegrated models. An EM
algorithm for estimating the parameters under these restrictions is presented and its performance
is evaluated through a small Monte Carlo simulation study. We further discuss testing based on
likelihood ratio statistics for two separate cases; a regular and an irregular case. The irregular
case refers to statistics where nuisance parameters are unidentified under the null hypothesis,
while the regular case refers to tests where no such problems occur. We show for the regular
case that the asymptotic theory developed in chapter one can be applied give convergence in
distribution of the likelihood ratio test. In the irregular case, a uniform central limit theory is
needed. While such theory is not provided here, we conjecture that it exists as it does other, sim-
ilar models. Given the non-standard asymptotic distributions, simulation based techniques are
required for inference and we propose a bootstrap algorithm to simulate the distributions of the
test statistics. The performance of the bootstrap algorithm is investigated through simulations.
Chapter three considers an application of the ACR cointegrated framework to the prices of

two of the major crude oil benchmarks, the West Texas Intermediate (WTI) and the Brent.
Moreover, the chapter discusses an alteration of the ACR cointegrated model. That is, in
chapter one, the asymptotic theory is derived under the assumption that the constant in the
cointegration relations is not included in the switching probability functions. Chapter three
shows that with a few modifications to the theory of chapter one, such a specification is indeed
easily covered. The results from the empirical analysis supports the presence of non-linearities
related to a decoupling of the WTI from historical benchmarks observed around 2011. Evidence
in favor of non-linearities is less pronounces when this period is excluded from the sample and
we use a linear cointegrated VAR to find that the WTI historically and until 2011 has been
weakly exogenous.
Chapter four focuses on a parameter identification problem that arises in the ACR framework

as well as in other models such as the smooth transition autoregressive models. We discuss the
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origin of this problem, which turns out to be linked to the fact that both certain specifications of
the ACR model and the logistic smooth transition autoregressive (LSTAR) model, approximates
the Threshold Autoregressive (TAR) model as the investigated parameter diverges. This has as
a consequence that the likelihood becomes flat in some directions and rippled in others, mak-
ing numerical optimization tedious. We propose a reparametrization that facilitates numerical
analysis. Moreover, we discuss information criteria as selection tools between the LSTAR and
TAR models and show by simulations that these consistently select the correct model.
The thesis also points to some areas of interest for future research within these frameworks. In

particular, asymptotic theory is needed for the likelihood ratio test in the irregular case, discussed
in chapter two. Likewise, asymptotic theory for the bootstrap algorithm proposed in chapter
two needs developing and more simulation studies could be considered to better understand
small sample performances. Chapter three makes obvious that the ACR cointegrated models
lacks adapted misspecification tests. Finally, the model-selection based on information criteria
discussed in chapter four was not verified theoretically, since it is unclear how the likelihood
ratio statistic behaves when the true data generating process is a TAR model. Investigating this
issue further with the goal of developing a proper test statistic for selection between smooth and
non-smooth regime switching models is clearly of interest.
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Resumé

I denne afhandling behandles teori og anvendelser af modeller for ikke-lineær kointegration,
særligt såkaldte Autoregressive Conditional Root (ACR) modeller. Disse og lignende model-
ler er blevet anvendt bredt til analyse af forskellige tidsrækker indenfor makroøkonomi og
makofinansiering. Afhandlingen består af fire kapitler, hvoraf tre kapitler beskæftiger sig med
ACR-modelrammen og det fjerde diskuterer et parameteridentifikationsproblem som ses i ACR-
modellen, men også i andre lignende ikke-lineære modeller.
I kapitel ét præsenteres ACR-kointegrationsmodellen med en række nye udvidelser. Mere

præcist bliver teorien for modellen udvidet til at tillade for et konstantled i kointegrationsrela-
tionerne, modellen udvides til at kunne indeholde flere regimer og der tallades for at fejlledsko-
variansmatricerne kan være regimeafhængige. Vi giver en repræsentationsteori for processen og
opsætter betingelser for stationaritet. Ydermere udvikler vi den asymptotiske teori for det til-
fælde hvor kointegrationsparametrene er estimeret og viser at, i modsætning til tilfældet hvor
disse ikke er estimeret, fås asymptotisk teori der ikke kan baseres på approximationer med χ2-
fordelingen. Mere præcist vises det, at de asymptotisk fordelinger er funktioner af brownske
bevælgelser, der afhænger af de estimerede parametre.
I kapitel to introduceres en metode, baseret på generaliserede lineære restriktioner, som letter

estimering og specificering ACR cointegrerede modeller. En EM -algoritme til at estimere para-
metrene under disse restriktioner udledes og dennes egenskaber analyseres gennem et mindre
Monte Carlo simulationsstudie. Vi diskuterer yderligere kvotienttest for to separate tilfælde: et
regulært tilfælde og et irregulært tilfælde. Det irregulære tilfælde refererer til tests, hvor så-
kaldte nuissanceparametre ikke er identificeret under nulhypotesen, mens det regulære tilfælde
refererer til test hvor der ikke opstår sådanne problemer. Vi viser for det regulære tilfældet,
at den asymptotiske teori udviklet i kapitel ét, kan anvendes og giver konvergens i fordeling af
kvotienttestet. I det irregulære tilfælde er der behov for en uniform central grænseværdisætning
som ikke er dækket af teorien fra kapitel ét. Vi formoder, at en sådan teori eksisterer som det
er tilfældet for andre, nært beslægtede modeller. Da de asymptotiske fordelinger afhænger af de
estimerede parametre, er simulationsbaserede metoder nødvendige. Vi foreslår en bootstrapalgo-
rithme til brug for estimering af de relevante fordelinger og undersøger algoritmens egenskaber
gennem simuleringer.
Kapitel tre kigger på en anvendelse af ACR-kointegrationsmodellen på to centrale råoliepriser,

mere præcist prisen på West Texas Intermediate (WTI) og prisen på Brent. Desuden diskuterer
kapitlet en ændring af ACR-kointegrationsmodellen som den blev præsenteret i kapitel ét, nemlig
at regimeskiftsandsynlighederne inddrager konstanten i kointegrationsrelationerne. Vi verificerer
at den asymptotiske teori udledt under denne ændring, med små justeringer svarer til den der
blev udledt i kapitel ét. Resultaterne fra den empiriske analyse støtter ikke-lineare effekter
relateret til en afkobling af WTI fra sit historiske benchmark niveau relativt til andre råoliepriser,
som skete i begyndelsen af 2011. Omvendt er indikationerne til fordel for ikke-lineariteter mindre
udtalte når modellen estimeres på en stikprøve der udelukker denne periode. Vi finder gennem
estimering af en lineær kointegreret VAR for at finde, at WTI historisk har været svagt eksogen
op til 2011.
Kapitel fire fokuserer på et parameteridentifcationsproblem, som forkommer i ACR-kointegrationsmodeller
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samt i andre modeller såsom STAR modeller. Vi diskuterer oprindelsen af dette problem, som
viser sig at være tilknyttet til, at begge modeller approksimerer en såkaldt Threshold Autore-
gression (TAR), når den undersøgte parameter divergerer. Dette har som konsekvens, at like-
lihoodfunktionen bliver flad i nogle retninger og rillet i andre, hvilket besværliggør numerisk
optimering. Vi foreslår en omparametrisering der letter de numeriske aspekter. Derudover dis-
kuterer vi informationskriterier som udvælgelsesmetode mellem LSTAR og TAR modeller, og vi
viser ved simuleringer, at disse vælger den rigtige model når antallet af observations er stort.
Afhandlingen peger også på nogle områder der kunne have interesse for den videre forskning

på dette område. Specielt er der behov for asymptotisk teori for kvotienttests i det irregulære
tilfælde der behandles i kapitel to. Ligeledes vil det være af interesse at udvikle asymptotisk
teori for den bootstrapalgoritme som blev foreslået i kapitel to. Kapitel tre gør klart, at ACR-
kointegrationsmodellen mangler misspecifikationstests. Endelig er modeludvælgelsen baseret på
informationskriterier diskuteret i kapitel fire, er ikke verificeret teoretisk, da det er uklart, hvor-
dan kvotienttestet (og dermed også informationskriterierne) opfører sig, når den sande, datage-
nerererende proces er en TAR model. At undersøge dette spørgsmål yderligere med det formål
at udvikle et test for valg mellem glatte og aprupte regimeskiftmodeller er klart af interesse.
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1 Likelihood-based inference in dynamic
mixture cointegrated VAR models

This chapter is based on joint work with Paolo Paruolo1 and Anders Rahbek2.

We consider likelihood-based asymptotic inference in a general class of regime-
switching, or dynamic-mixture, cointegrated vector error correction models. This
framework allows for epochs of non-stationary behavior, asymmetric error correc-
tion and switching error covariance; this extends previously-introduced classes of
processes. Unlike previous results on non-linear switching cointegrated models, we
discuss asymptotic inference on all parameters, including the cointegrating vectors
and switching covariances. To do so, we introduce a new functional central limit
theory for non-stationary switching processes, find explicit conditions for existence
of moments and derive limiting distributions.

1.1 Introduction

This paper discusses general dynamic-mixture models with cointegration, called Autoregressive
Conditional Root (ACR) cointegrated models. We study properties of ACR processes and
related likelihood-based inference. Members of this class were introduced in Bec and Rahbek
(2004). Non-linear cointegrated models have found many applications in macroeconomics and
finance; key examples include studies of purchasing power parities, term structures of interest
rates, forward parities, see inter alia Corradi et al. (2000); Lo and Zivot (2001); Hansen and
Seo (2002); Seo (2003); Bec and Rahbek (2004); Psaradakis et al. (2004); Bec et al. (2006);
Kapetanios et al. (2006); Clarida et al. (2006); Bec et al. (2008); Lof (2012).
This paper introduces several novelties. First, we introduce the general class of ACR processes.

This is shown to be a flexible class of non-stationary and regime-switching processes which nests
several ones found in the literature. In particular the processes in Bec and Rahbek (2004) and
Bec et al. (2008) are special cases. Secondly, we discuss likelihood inference on all parameters
in the model, including the cointegration parameters. We derive limit distributions and discuss
the accuracy of the asymptotic approximation with a small Monte Carlo simulation study.
The ACR class is a comprehensive one. It allows for multiple regimes, some with, and some

without, mean-reverting behavior; the processes have epochs of unstable (even explosive, and
hence in particular, bubble-like) behavior, that are brought to an end by epochs of mean-
reverting behavior. Similarly to linear cointegrated processes, some linear combinations of the

1Research Officer at the European comission, Joint Research Center
2Professor in econometrics at University of Copenhagen.
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

process are stationary, while the whole process is non-stationary. Also in this case, cointegraton
is associated with the presence of a linear attractor set.3

Moreover, the adjustment towards the attractor set is regime-dependent, with probabilities
that govern switching among states which depend on observable stationary variables, including
deviations from the attractor set. This gives rise to very general specifications that, similarly
to Saikkonen (2005, 2008), allow for asymmetric adjustment. Several papers have argued in
favor of asymmetric adjustment, see e.g., Hansen and Seo (2002) and Kılıç (2011), or (possibly
asymmetric) polynomial models, see, e.g. Baghli (2005); Escribano (2004). A different class of
models with non-linear adjustment has been discussed in Kristensen and Rahbek (2010, 2013),
who consider cointegrated non-linear smooth transition models without regime switching.4

We also allow for regime-dependent covariances, reflecting time-varying volatility, which is
found widely in applications, see the discussion in Cavaliere et al. (2010a).
The new extended ACR class is naturally also related to Markov Switching (MS) models,

see Hamilton (1994, Chapter 22) and Lange et al. (2011). However, MS and ACR processes
differ in a fundamental way: the ACR class has probabilities of switching that depend on
past observables, and it is an ‘observation-driven’ class of processes; conversely, MS are usually
examples of ‘parameter-driven’ processes, see Cox (1981).
We provide a full theory for inference on all parameters, including the cointegrating pa-

rameters, which hitherto have been assumed known in existing literature on regime-switching
cointegrated models. A new representation theory is provided, which decomposes the process
into a stationary and geometrically ergodic term, a linear deterministic trend and a stochastic
trend. Also a new functional central limit theory for switching processes is introduced.
The cointegration parameters are found to be super-consistent, including T and T 3/2 rates

of convergence, while remaining parameters are found to be standard T 1/2 consistent, where
T denotes the number of time periods. Interestingly, and in line with Kristensen and Rahbek
(2010, 2013) for smooth transition models which do not include switching, inference is found to
be not block-orthogonal between the cointegration parameters and the remaining parameters,
and moreover that the asymptotic distributions depend on nuisance parameters.
The rest of the paper is organized as follows. Section 1.2 describes the class of ACR coin-

tegrated class of processes of interest. Section 1.3 provides the representation theory. Section
1.5 illustrates the ACR process class via simulation. Section 1.4 presents leading specifications.
Section 1.6 discusses identification, Section 1.7 presents properties of the QMLE and discusses
likelihood-based inference. Section 1.8 concludes. Proofs are placed in Appendices.
The following notation is used throughout: “ w→” and “ p→” denote weak convergence and

convergence in probability, respectively as T → ∞. The dimension of the system is denoted n
and na is the number of elements in a vector a. The cointegration rank is denoted by r, and we
define β as an n × r matrix of rank, r < n. β⊥ indicates any n × (n− r) matrix of rank n − r
for which β′β⊥ = 0. We also let β̄ := β (β′β)−1, such that the orthogonal projection identity
can be written as In = β̄β′ + β̄⊥β

′
⊥, where In is the identity matrix of size n. We use c to

denote a generic constant; vech (A) and vec (A) indicate the column-stacking operators that act
3See Gao and Phillips (2011) and Karlsen et al. (2007) and references therein on estimation of non-linear
cointegrating relations.

4See also the discussion of smooth transition models as an approximation to threshold models in Seo (2011).
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1.2 The ACR cointegrated process

on the lower triangular portion of A and the whole of A respectively; ‖·‖ denotes a norm and
|·| for the absolute value of a number. We further use use the fact that DΩvech (Ωj) = vec (Ωj),
DΛvech (Λ) = vec (Λ) where D· are duplication matrices of appropriate dimensions, see e.g.
Magnus and Neudecker (1999, Chapter 3). In the same line of though, In is used as the identity
matrix of size (n× n). We write the indicator function of a > b as 1 {a > b}. For partial
derivatives of a scalar function f with respect to vectors u, v, w say, we make use of the notation

∂uf := ∂f

∂u′
, ∂2

uvf := ∂2f

∂u∂v′
and ∂3

uvwf := ∂svec
(
∂2
uvf

)
,

see e.g. Magnus and Neudecker (1999).
For a set of square matricesM := {Mi}ki=1 we indicate by

Mk =
{

k∏
i=1

Mi : Mi ∈M, i = 1, 2, ..., k
}

and we employ the definition of joint spectral radius

ρ (M) = lim sup
k→∞

(
sup

M∈Mk

‖M‖
) 1
k

, (1.1)

see e.g. Liebscher (2005). Note that for a set M consisting of a single square matrix M ,
M := {M} , the joint spectral radius ρ (M) = ρ (M) is the spectral radius of the matrix M .

1.2 The ACR cointegrated process

In this section we define the class of processes of interest, the cointegrated ACR processes. This
can be seen as a non-linear extension of the linear cointegration model, see Johansen (1996) and
Saikkonen (2008); Kristensen and Rahbek (2010, 2013). The non-linearity is introduced through
a regime-switching mechanism; the probability of switching among states is taken to depend on
past, observable, stationary variables, including cointegrating relations. Importantly, the ACR
class allows one to model, inter alia, different speeds of return to equilibrium depending on the
distance of the process from equilibrium. Moreover it also models time-changing volatility.

1.2.1 Dynamics given the states

We describe the ACR process in steps: we first describe the dynamics of observables given the
states, and subsequently we describe the probability of switching among different states. An
n-dimensional ACR cointegrated process is defined as the process, Xt, generated by the equation,

∆Xt =
∑
j∈M

1 {st = j}
(
αjβ

?′X?
t−1 + Γj∆Xt−1 + Vjεt

)
with εt ∼ i.i.d. (0, In) , (1.2)

where, when k > 1 we define ∆Xt :=
(
∆X ′t : ∆X ′t−1 : ... : ∆X ′t−k+2

)′
, X?

t =
(
X ′t−1 : 1

)′, ∆ is
the first difference operator, ∆Xt = Xt − Xt−1 and k is the number of lags of Xt included in
the model. When k = 1 we suppress ∆Xt. The stochastic, univariate, switching variable st
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

is unobserved, and takes values in the set M := {1, 2, ...,m}. The n-dimensional innovation εt
has mean 0 and covariance matrix In, and it has some well-defined density with respect to the
Lebesque measure, see the following Definition 1.1.
Below we consider the probability pjt of st = j conditional on the realization of Xt−1, ∆Xt−1

and st−h, h ≥ 1. The specification of pjt is given for different regime switching mechanisms,
including smooth transition ones.
As will be shown below, it is fundamental for the interpretation of the cointegrating properties

of the process Xt, that some non-empty subset M1, say, of the states M, M1 ⊆M, imply ‘mean-
reverting’ behavior, and that these mean-reverting states are reached with probability tending
to one for large deviations from equilibrium. A process specified in this way will be referred to
as an ACR cointegrated process.
For the ACR cointegrated process the coefficients appearing in the ∆Xt equation can be

interpreted by appealing to linear cointegration terminology. In fact, as shown in the next
section, the matrix β? := (β′ : β′D)′ in (1.2) collects the cointegration vectors β of dimension
n × r, as well as the intercept term βD of dimension 1 × r. The regime-specific adjustment
matrices αj and short-run dynamics matrices Γj := (Γj,1 : ... : Γj,k−1) are of dimensions n × r
and n × n (k − 1), respectively. Finally Ωj = VjV

′
j indicate regime-specific covariances, where

Vj are assumed to be n× n matrices of full column rank.
The random variables εt and st are assumed to be independent conditionally on their past,

and moreover that their distributions depend only on (parts of) Zt−1, where Zt := (X ′tβ : ∆X′t)
′.

More precisely, we assume that for any Borel-measurable set A and j ∈M,

st, εt | (Xq, sq)q=−k,...,t−1
D=st, εt | Zt−1, (1.3)

Pr (st = j, εt ∈ A | Zt−1) = Pr (εt ∈ A | Zt−1) Pr (st = j | Zt−1) ,

where D= indicates equality in distribution. Moreover, the innovations εt are assumed independent
of Zt−1,

Pr (εt ∈ A | Zt−1) = Pr (εt ∈ A) (1.4)

for any Borel-measurable set A. Finally, the conditional distribution of st is allowed to depend
on (a subset zt of) Zt, that is Pr (st = j | Zt−1) = Pr (st = j | zt−1); in the following we indicate
this probability as

pjt := Pr (st = j | zt−1) . (1.5)

The vector of variables zt that enters in the specification of pjt is a function of Zt := (X ′tβ : ∆X′t)′,
which we write as zt = ψ′Zt = ψ′ββXt + ψ′∆∆Xt, with ψ :=

(
ψ′β : ψ′∆

)′
conformable with the

partition of Zt. Observe that ψ is a fixed selection matrix and is not considered a parameter to
be estimated. Concrete specifications for pjt are discussed in Section 1.4; these probabilities are
indexed by a vector of coefficients indicated by γ in the following.

1.2.2 Mean-reverting states and transition probabilities

We next define mean-reverting states and illustrate the condition for the process to reach these
states with probability one as deviations from the attractor set become large.
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1.2 The ACR cointegrated process

We allow for multiple mean-reverting states, collected in M1, and possibly non-mean-reverting
states, M2 say, such that M = M1 ∪M2. The idea is to ensure that the system has a dynamic
behavior in these states similar to linear cointegration in M1, while in the remaining M2 states
there are no requirements for the dynamics. In particular, if the model is specified with M = M1

and only one state, the cointegrated ACR process reduces to the classic (non-switching) linear
cointegrated VAR process. The further requirement mentioned, that is that M1 is reached
with probability tending to one for large deviations, implies that indeed the ‘cointegrating’, or
mean-reverting, behavior is overall dominating the dynamics of the process.
More precisely, collect the regimes in the two subsets, M1 = {1, ...,m1} and M2 = {m1 +

1, ...,m}, such that M = M1 ∪M2. Then the regimes in M1 are called ‘mean-reverting’ if

ρ (AM1) < 1, where AM1 := {Aj , j ∈M1} (1.6)

and

Aj :=


Aj1 · · · · · · Ajk

In 0 0 0

0 . . . 0 0
0 0 In 0

 , Aj1 :=
(
Ir + β′αj + β′Γj1β̄ β′Γj1β̄⊥
β′⊥αj + β′⊥Γj1β̄ β′⊥Γj1β̄⊥

)
,

Aji :=
(

β′ (Γji − Γji−1) β̄ β′Γjiβ̄⊥
β′⊥ (Γji − Γji−1) β̄ β′Γjiβ̄⊥

)
, i = 2, ..., k,

with Γjk := 0. Here Aj is the companion matrix of regime j in the companion form representation
of process (1.2), namely

Yt =
∑
j∈M

1 {st = j} (AjYt−1 + Ujt) = AtYt−1 + Ut (1.7)

where Uj := J (αjβ′D + Vjεt) and Yt :=
(
Y ′t : Y ′t−1 : · · · : Y ′t−k+1

)′
, Yt := (X ′tβ : ∆X ′tβ⊥)′, J :=

(In : 0)′.
It is interesting to compare the requirement (1.6) with the usual conditions for cointegration

in a linear VAR. In the latter case, the so-called I(1) conditions5 are stated directly in terms
of the cointegrating parameters β, the adjustment coefficients α and the short-run dynamics
matrices Γh. In the present case, one needs to resort to the companion form representation, and
to the notion of generalized spectral radius, because a Moving Average representation of the
process involves companion matrices Aj multiplied in all possible orders.
As formally stated in Theorem 1.4 below, β′Xt and ∆Xt are found to be stationary, and hence

Xt cointegrated, in the system governed by the coefficient matrices in AM1 . This is sufficient
to ensure that the same applies in general, provided the probability to access M1 goes to 1 as
‖zt−1‖ increases. This ensures that the dynamics governed by the coefficient matrices in AM1 ,
i.e. the dynamics of the states in M1, are dominating.
Formally we require that with probability tending to one as ‖zt−1‖ increases, the states M1

5See Johansen (1996) inter alia.
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

are reached, i.e. ∑
j∈M1

pjt → 1 for ‖zt−1‖ → ∞. (1.8)

We call this the stability requirement for pjt. Observe that M1 and M2 allow for asymmetric
adjustment behavior, and hence generalize the formulation of Bec and Rahbek (2004) and Bec
et al. (2008), while incorporating the asymmetries introduced in Saikkonen (2005, 2008).
We finally collect the assumptions on the process in the following formal definition.

Definition 1.1. [ACR cointegrated process] A process Xt generated by (1.2), with εt and st

conditionally independent, see (1.3), εt with p.d.f. with respect to Lebesque measure, positive at
the origin, and independent of the past (see (1.4)), probability of switching pjt in (1.5) satisfying
mean-reverting (or stable) behavior (1.8) for a non-empty set of states M1 ⊆ M, see (1.6), is
called an ‘ACR cointegrated process’.

From (1.3) we need to specify the conditional probabilities of switching to regime j. The choice
of parametrization for these predicted state probabilities has to satisfy the stability requirement
in equation (1.8); we discuss some of the possible choices below. In the asymptotic results, we
consider a generic parametric specification of pjt satisfying regularity conditions as a function
of zt−1 and of the vector of parameters, γ.

1.3 Representation

In this section, we give a representation theorem for ACR cointegrated processes defined in the
previous section. We first introduce a mild assumption on the moments.

Assumption 1.2. [Moments] The n-dimensional vector sequence {εt} has moments of order
2q, E

(
‖εt‖2q

)
<∞, for some q ≥ 1.

We next introduce more notation and a technical assumption. Because Zt is a function of the
state variables Yt in (1.7), and we also write zt = η′Yt for an appropriate nY × nz matrix η of
full column rank.
In terms of the companion form representation in eq. (1.7), we next state an assumption

concerning the short-term dynamics of the process. In particular this assumption is not needed
if k = 1 or if the Γj parameters are identical across regimes or when M2 is empty.

Assumption 1.3. [Control over drift function] There exists some i ∈ M1 such that one has
(Aj − Ai) η⊥ = 0 for any j ∈M2.

We can then state the following representation results.

Theorem 1.4. Consider an ACR cointegrated process in definition 1.1 and let Assumptions 1.2
and 1.3 hold with q ≥ 1. Then the following properties apply:

1. The process Yt in (1.7) is geometrically ergodic, with finite moments of order 2q. In
particular, the initial value Y0 can be given a distribution such that Yt and hence, β′Xt

and β′⊥∆Xt (and hence also ∆Xt) are stationary. For this choice of initial values, define
the expectations µ1 := E (β′Xt), µ2 := E (β′⊥∆Xt) and the de-meaned stationary processes
vt := β′Xt − µ1, ξt := β′⊥∆Xt − µ2.
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1.4 Specification of pjt

2. The law of large numbers applies to any measurable function f (β′Xt−i,∆Xt−i; i = 0, 1, ...),
with E (f (·)) <∞.

3. The process Xt has representation

Xt = τt+ β⊥

t∑
i=1

ξi + β̄ (vt + µ1) + β⊥β
′
⊥X0, (1.9)

where τ := β⊥µ2, κ := β⊥µ2⊥.

Proof. The proof is given in Appendix 1.A.

Theorem 1.4 establishes that ACR processes have cointegration properties similar to the ones
of linear cointegrated processes. Eq. (1.9) in fact shows that Xt can be decomposed into a
linear trend, n − r random walks, a stationary component and initial values. This result is a
consequence of the fact that Yt is a geometrically ergodic Markov chain.
The role of Assumptions 1.2 and 1.3 for the results of the representation Theorem 1.4 is the

following. Assumption 1.2 is needed for the existence of moments and for the working of the
drift criterion. Assumption 1.3 is also needed in the drift criterion to control the directions of Yt
not entering pjt, in (1.5), which are controlled via requirement (1.8) on their mean-revertion.

1.4 Specification of pjt

In this section we discuss parametric specifications for pjt in (1.5) that impose restriction (1.8)
for the mean-reverting states. As illustrated in the example process in the previous section,
specifications of these transition probabilities can be hierarchical, in the sense that probabilities
are first assigned to the classes M1 and M2, and then to the conditional probability of state h
within class Mj . Of course, non-hierarchical alternatives are also possible.
Here we focus on hierarchical specifications, because they allow to incorporate condition (1.8)

in a straightforward way. Specifically, we indicate as pt = Pr (st ∈M1 | zt−1) the probability
that st belongs to the mean-reverting states in M1; the conditional probabilities for st to be in
state j given that j ∈Mi, i = {1, 2} are indicated as πjt·i = Pr (st = j | j ∈Mi, zt−1), where we
recall that zt = ψ′Zt = ψ′ββXt + ψ′∆∆Xt. This gives

pjt := Pr (st = j | zt−1) =

ptπjt·1 for j ∈M1

(1− pt)πjt·2 for j ∈M2,
(1.10)

Note that
∑
j∈M1 pjt = pt by construction. Condition (1.8) can be incorporated in this specifi-

cation by ensuring that pt → 1 for increasing ‖zt−1‖.
Some possible specifications of pt and πjt·i are given in the following subsections; the complete

vector of parameters involved in these specifications is indicated by γ. The parameters in the
first layer specification are indicated by %, the ones of the second layer specification by ζ, with
γ = (%′ : ζ ′)′. Before discussing specifications, we first state smoothness conditions needed in the
likelihood analysis on the switching probability pjt as a function both of the parameter vector
γ and of z.
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

Assumption 1.5. [Smoothness of pjt] The first, second and third order derivatives of log pjt
w.r.t. z and γ exist and are bounded as ‖z‖ → ∞ uniformly over γ, such that

‖∂u log pjt‖ ≤ c,
∥∥∥∂2

uv log pjt
∥∥∥ ≤ c and

∥∥∥∂3
uvw log pjt

∥∥∥ ≤ c,
where c are generic constants and u, v, w ∈ {z, γ}.

The smoothness condition of pjt holds for the following specifications, as verified in Appendix
1.F.

1.4.1 First layer specifications

An exponential specification for pt is

pt = 1− exp (−g (zt−1; %)) , with g (zt−1; %) = (zt−1 − µ) Λ (zt−1 − µ) , (1.11)

where Λ is a square, positive definite matrix of order nz, and µ ∈ Rnz ; here % :=
(
vech (Λ)′ : µ′

)′
.

Note that as ‖zt−1‖ → ∞, one has g (zt−1; %)→∞ and pt → 1 as required in (1.8).
Exponential specifications are popular in the smooth transition literature is (see. e.g. Teräsvirta

et al. (2010b)). This specification of pt is symmetric in z around µ, i.e. deviation zt−1 − µ and
− (zt−1 − µ) give the same value of pt. The exponential specification can be made asymmetric
in several ways; one possibility is to replace g (zt−1; %) in (1.11) with g (zt−1; %)h (zt−1; %) where
h (zt−1; %) = 0.5 + (1− exp (−$′zt−1))−1 is a logistic function, with $ ∈ Rnz .
A different possibility is to select pt as a logistic distribution function given by,

pt = exp (g (zt−1; %))
exp (g (zt−1; %)) + 1 , g (z; %) = (zt−1 − µ)′ Λ (zt−1 − µ)−$ (1.12)

where $ is a (non-negative) scalar and other parameters are defined as in (1.11), and % :=(
vech (Λ)′ : µ′ : $

)′
. Again here, for ‖zt−1‖ → ∞ one has g (zt−1; %) → ∞ and pt → 1 as

required in (1.8). Different specifications exists, but the ones reported above are the most
popular; in particular the exponential appears to work well in our illustrations below.

1.4.2 Second layer specifications

For the second-layer probabilities πjt·i, one may select a multinomial logistic specification,

πjt·i = πj·i (zt−1) =
exp

(
ζ ′j (zt−1 − µ)

)
∑
`∈Mi

exp
(
ζ ′` (zt−1 − µ)

) (1.13)

with
∑
j∈Mi

πjt·i = 1, i = {1, 2}. All unrestricted ζj parameters are collected in the vector ζ.
Again, other specifications are of course possible.
Note that the hierarchical specification nests the one in Bec and Rahbek (2004) and Bec et al.

(2008) which corresponds to choosing (1.12), with m = 2, m1 = 1, and

g (zt−1; %) = a+ b ‖zt−1‖ = −Λµ+ Λ ‖zt−1‖

8



1.5 A simulated process

Table 1.1: The Joint Spectral Radius of regimes in S1 and the regime specific characteristic roots
eigiA1 M1 0.8728 0.1000 -0.5728 0.0000
eigiA2 M1 0.8240 0.1130 -0.5370 0.0000
eigiA3 M2 1.0000 0.1000 -0.5000 0.0000

JSR Interval [0.8728; 0.8828]

where % = (a, b)′, $ = 0 and ‖zt‖ =
√
z′tzt.

1.5 A simulated process

In this section, we report the simulated path of an ACR process that satisfies the assumptions
of Theorem 1.4. Let M1 = {1, 2}, and M2 = {3}, Xt = (x1t, x2t)′ with k = 2 in (1.2) with
εt ∼ i.i.dN (0, I2), Ωj = VjV

′
j = σ2

j · I2, σ2
1 = 0.01, σ2

2 = 0.05, σ2
3 = 0.1, α1 = (−0.2, 0)′,

α3 = (0.0)′, β? = (1,−1,−1)′ and Xt−1 = Xt−1. We restrict the short run parameters to be the
same across regimes, i.e.

Γ1 = Γ2 = Γ3 =
(
−0.5 0.3
0.0 0.1

)
.

Moreover, we select zt = β′Xt with pjt = pjtπjt1 {j ∈M1}+ (1− pjt) 1 {j ∈M2} for j = 1, 2, 3
where pt = 1− exp

(
−Λ (zt−1 − µ)′ (zt−1 − µ)

)
with Λ = 3 and µ = 1. Finally, we choose

πjt·1 = exp
(
ζ ′2 (zt−1 − µ)

)
/
(
1 + exp

(
ζ ′2 (zt−1 − µ)

))
(1.14)

with ζ2 = 3.
We first verify that this process satisfies the assumptions of Theorem 3: εt is Gaussian and

hence satisfies the definition as well as Assumption 1.2 for any q; the condition in (1.3) is
satisfied by pjt due to the choice of the function pt. Moreover, Assumption 1.3 is satisfied
because Γ1 = Γ2 = Γ3. In order to verify that the joint spectral radius in (1.1) is less than one,
we use the Gripenberg Algorithm, see Gripenberg (1996) and Jungers (2009), as implemented
in the JSR louvain toolbox for MATLAB. In Table 1.1, we report the calculated roots of each
regime as well as the joint spectral radius with an accuracy of 0.001; the table shows that the
system satisfies the mean reverting conditions.
The stylized system incorporates the novel elements, while still being fairly simple. The

series are seen to be comoving and contain an upward trend which is a consequence of the
asymmetric regime structure resulting in τ0 6= 0, where τ0 was defined in (1.9). The inclusion of
the constant is what gives the nonzero mean in the cointegration relations, graph (B). Note also
the sustained deviations from equilibrium, which are generated by the fact that the inner regime
is a regime with no error correction and cointegration. Finally, (C) depicts the regime predicted
state probabilities as functions of the cointegration relations. Here, the choice of the switching
probability structure becomes visible; it is clearly seen that for zt−1 ≈ 1, the probability of being
in regime three is close to one, while large positive deviations result in a regime switch to regime
two and large negative deviations result in a regime switch to regime one. This stylized system
incorporates all of the novel elements that we introduce, while still being fairly simple. The
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

Figure 1.1: Illustration of an ACR cointegrated system
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1.6 Parameter Identification and Normalization

series of graphs given in figure 1.1 illustrates the behavior of the system.

1.6 Parameter Identification and Normalization

With Xt defined in (1.2) the parameters to be estimated are given by: (i) the parameters which
enter the equilibrium correction part directly, that is αj , β?, Γj and Ωj = VjV

′
j for j ∈ M ;

and (ii) the parameters that govern the switching through the probabilities pjt (collected in the
vector, γ), also with j ∈M. In this section we discuss identification.

1.6.1 Identification of the cointegrating parameters

As in the linear case, the cointegration matrix is only identified up to a normalization; in the
following we introduce a coordinate system that imposes identification. Making use of the results
from Theorem 1.4, we present a normalized version of β, where the stationary and non-stationary
directions are separated in a way that eases the presentation of the asymptotic results.
Define the true value β?0 of β? as (β′0 : 0′)′; we wish to normalize β? as β̃? so as to make

β̄?′0 β̃
? = Ir; this is accomplished by setting β̃? := β?(β̄′0β)−1. We next decompose β̃? into

relevant components. If τ0 6= 0 as defined in Theorem 1.4, we use orthogonal projections on the
space spanned by β0, τ0 and κ0, where κ0 := (β0 : τ0)⊥. This gives

β̃? − β?0 = (κ̄?0 : τ?0 : in+1)


κ′0β̃

τ ′0β̃

β̃D

 =: (κ̄?0 : τ?0 : in+1)
(

b

bD

)

where b := (b′κ : b′τ )′ :=
(
β̃′κ0 : β̃′τ0

)′
, κ?0 := (κ′0 : 0)′, τ?0 := (τ ′0 : 0)′, in+1 is the last column in

In+1 and bD := β̃D := βD(β̄′0β)−1 by definition.
Using this parametrization, we can rewrite the term αjβ

?′X?
t as αj(β′β̄0)β̃?′X?

t =: α̃j β̃?′X?
t ,

where β̃? is identified and α̃j := αj(β̄′0β)−1 is the corresponding identified adjustment coefficient
in regime j. Observe that

αjβ
?′X?

t−1 = α̃j β̃
?′X?

t = α̃j
(
β?′0 X

?
t +

(
b′ : b′D

)
(κ̄?0 : τ?0 : in+1)′X?

t

)
= α̃j

(
β′0Xt + b′Xt−1 + b′Di

′
n+1

)
. (1.15)

where (κ̄?0 : τ?0)′X?
t decomposes the process Xt in the various components given in Theorem 1. In

addition, we have used the definition Xt := (κ̄0 : τ0)′Xt. This also identifies αj as α̃j . The same
reasoning is applied to the parameters in γ that govern pjt, where β′Xt = β′0Xt+ b′ (κ̄0 : τ0)′Xt,
where b := (b′κ : b′τ )′. For the sake of notational ease, we shall not distinguish notationally
between α̃j , γ̃ and αj , γ in the following and we define further .

Remark. While convenient for deriving the results on the asymptotic theory of the QMLE
estimator, the identification principles given here are not necessarily the most convenient to
implement in practice. Alternatives that might be preferred when taking the model to the data
are the linear restrictions discussed in Johansen (1996) or their generalizations given by Boswijk
and Doornik (2004). We discuss these further in chapter two.
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

The regime specific covariance matrices of the error terms, Ωj = VjV
′
j . To avoid degenerate

distributions, we consider the vectors as vech(Ωj).
Identification of the probability parameters entering the regime pjt will be dependent on the

choice of the switching structure and can be considered on a case by case basis.

1.6.2 Rate of convergence and T - normalizations

We collect the parameters to be estimated into nθ-dimensional parameter vector, θ, defined as

θ :=
(
vec

(
b′
)′ : vec

(
b′D
)′ : vec (α)′ : vec (Γ)′ : vech (Ω)′ : γ′

)′
:=
(
vec

(
b′
)′ : ϑ′)′ , (1.16)

where α := (α1 : α2 : ... : αm), Γ := (Γ1 : Γ2 : ... : Γm), ϑ := (vec (b′D)′ : vec (α)′ : vec (Γ)′ :
vech (Ω)′ : γ′)′, where vech (Ω) =

(
vech (Ω1)′ : · · · : vech (Ωm)′

)′
. Separating θ into the sub-

groups vec (b) and ϑ proves practical for deriving the asymptotic results because of the difference
in the speed of convergence.
It turns out that ϑ is T

1
2 - consistent while the different directions of b given by bκ and bτ are

T - and T
3
2 - consistent, respectively. In particular, in order to define the different normalizations,

we define

Wvec(b)T := Ir ⊗WbT := Ir ⊗ diag
(
TIn−r−1, T

2
)
, WT := Tdiag

(
Wvec(b)T , Inϑ

)
. (1.17)

1.7 Likelihood analysis

We state the log-likelihood function as a function of the vector of parameters, θ. The Gaussian
log-likelihood is given by LT (θ) =

∑T
t=1 `t (θ) where

`t (θ) = log

∑
j∈M

pjt (θ)φjt (θ)

 , (1.18)

and the function φjt (θ) denotes the Gaussian density for a specific regime j and is given by

log φjt (θ) = −1
2
(
n log (2π) + log |Ωj |+ ε′jtΩ−1

j εjt
)
, with (1.19)

εjt := ∆Xt − αjβ?′X?
t−1 − Γj∆Xt−1 (1.20)

= ∆Xt − αj
(
β′0Xt−1 + b′Xt−1 + b′Di

′
n+1

)
− Γj∆Xt−1

In the following, we often omit to indicate explicitly that `t (θ), φjt (θ) and pjt (θ) are functions
of θ. When computing derivatives, it is useful to write `t = log

(∑
j∈M expλjt

)
where we define

λjt := log (pjtφjt), which are well defined because pjt, φjt > 0 thanks to the model specification.
In fact, it is simple to verify that ∂θ`t =

∑
j∈M p

?
jt∂θλjt, where

p?jt := pjtφjt∑
i∈M pitφit

= Pr (st = j | Zt, Zt−1) , (1.21)

give the filtered probability of being in regime j at time t given past and current observables.
Note the difference between the switching probability pjt from (1.10) and the filtered probability,

12



1.7 Likelihood analysis

p?jt, given by (1.21). Estimation of the parameter can be done by direct numerical optimization
of the likelihood or by using EM-algorithms such as those discussed in Bec and Rahbek (2004),
Bec et al. (2008) and chapter two of this thesis, where we discuss estimation and bootstrap-based
testing in detail.

1.7.1 Properties of the QMLE

The likelihood-based inference is based on the representation results in Theorem 1.4, which
has a number of implications. In particular it implies convergence results for the derivatives of
the log-likelihood function with respect to the parameters. To formalize them, first recall that
∂θ`t =

∑
j∈M p

?
jt∂θλjt, and observe that, in particular,

∂vec(b′)λjt = h′vjt ⊗Xt−1, hvjt := α′jΩ−1
j εjt + ψ′β (∂z log pjt)′ .

Remark that ∂vec(b′)λjt contains the cumulation of hκt := κ̄′∆Xt−1, which is shown in Theorem
1.4 to be a stationary, mean zero function of the geometrically ergodic process. It is hence useful
to define

ht :=
(
h′vt : h′κt : h′ϑt

)′
, hvt :=

∑
j∈M

p?jth
′
vjt, hϑt :=

∑
j∈M

p?jt∂ϑλjt. (1.22)

Specific expressions of ∂·λjt for the various components of the parameter vector ϑ are reported
in the Appendices.
We consider the properties of the estimator in a local neighborhood of θ0, the true values of

the parameter vector, θ, from (1.16). The following two theorems give convergence of the score
and the asymptotic distribution of the maximum likelihood estimator.

Theorem 1.6. Define ht as in (1.22) calculated at θ0, and its long-run variance Σ := Σ (0) +∑∞
i=1 (Σ (i) + Σ′ (i)) where Σ (i) := cov (ht, ht+i). With Σ positive definite, and under Assump-

tions 1.2-1.5 with q = 2, then as T →∞

1√
T

[T ·]∑
t=1

ht
w→ B (·) :=

(
B′v (·) ,B′κ (·) ,B′ϑ (·)

)′
, (1.23)

where, B (·) is a Brownian motion with covariance Σ and the subscripts v, κ and ϑ correspond
to the partitioning of ht in (1.22).

Proof. The proof is given in Appendix 1.B.

Theorem 1.7. Let Assumptions 1.2-1.5 hold with q = 3; and let θ and WT be defined as in
(1.16) and (1.17). Then with θ0 being the true value for θ, there exists a unique maximum point
θ̂ of LT in the neighborhood N =

{
θ :
∥∥∥∥T− 1

2W
1
2
T

(
θ̂ − θ0

)∥∥∥∥ < ε

}
for some ε > 0, which satisfies

W
1
2
T

(
θ̂ − θ0

)
w→ H−1S, where S :=

 vec
(∫ 1

0 F (s) dBv (s)′
)

Bϑ (1)

 ,
F (s) :=

(
Bκ (s)
s

)
, H :=

( ∫ 1
0 F (s)F (s)′ ds⊗ Σvv

∫ 1
0 F (s) ds⊗ Σvϑ∫ 1

0 F (s)′ ds⊗ Σϑv Σϑϑ

)
,

13



1 Likelihood-based inference in dynamic mixture cointegrated VAR models

and Σsu are blocks of Σ conformable with (1.23).

Proof. The proof is given in Appendix 1.C.

Contrary to the case of the linear cointegrated VAR model, the asymptotic distribution is
not mixed Gaussian and hence there is no straight forward way to normalize the parameter
estimates and obtain nuisance parameter free distributions of standard test statistics. This
finding is equivalent to what has been found in other models of cointegration with non-linear
adjustment, see inter alia Hansen and Seo (2002), Kristensen and Rahbek (2010, 2013) and
Seo (2011). The consequence is that it is cumbersome to evaluate relevant statistics such as
confidence intervals for the estimated parameters, since the distributions of these statistics must
be simulated on a case by case basis. Note that if the cointegration relations are known from the
outset, most asymptotics are standard normal and one avoids having to rely on simulation based
techniques as is otherwise necessary, see Bec and Rahbek (2004); Bec et al. (2008). However,
testing for a reduction in the number of regimes will be non-standard in general (regardless of
whether or not β is considered fixed) due to the fact that some or all of the parameters in the
switching probability function will vanish when imposing the null hypothesis. A special case of
this test is the test for linearity, which essentially evaluates whether the number of regimes in a
given model can be reduced to one. The test for linearity has been discussed extensively in the
literature, see among others Davies (1987), Hansen (1996), Caner and Hansen (2001), Hansen
and Seo (2002) and Kristensen and Rahbek (2013).

1.8 Conclusion

We have presented a series of novel extensions to the literature on the ACR model. More pre-
cisely, we have considered asymmetric regime-switching structures and likelihood-based inference
when the cointegration relations are considered unknown and when the error covariance matrix
is regime dependent. Our results on the asymptotic theory are in line with recent research on
similar models and show that the asymptotic distribution of the QMLE in the cointegrated ACR
model is non-standard and nuisance parameter dependent. In chapter two, we look an estima-
tion algorithm designed for this framework and at a bootstrap resampling scheme for simulating
the distributions of test statistics of interest.
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1.A Proof of Theorem 1.4

1.A Proof of Theorem 1.4

The claim in (i) is shown in Lemma 1.8 below. The claim in (ii) follows by the LLN for
geometrically ergodic processes, see Jensen and Rahbek (2007). For the claim in (iii), observe
that

Xt =
(
ββ′ + β⊥β

′
⊥

)
Xt = ββ′Xt + β⊥β

′
⊥

t∑
i=1

∆Xt + β⊥β
′
⊥X0,

Then add and subtract β⊥µ2t and βµ1 to obtain

Xt = β⊥µ2t+ β⊥

t∑
i=1

(
β′⊥∆Xi − µ2

)
+ ββ′Xt + β⊥β

′
⊥X0

=:τt+ β⊥

t∑
i=1

ξi + β (vt + µ1) + β⊥β
′
⊥X0

where τ := β⊥µ2, ξi := β′⊥∆Xi − µ2 and vt := β′Xt − µ1.

Lemma 1.8. Under Assumptions 1.2-1.3, Yt =
(
Y ′t , ..., Y

′
t−k−1

)′
defined in (1.7) is a geometri-

cally ergodic Markov Chain, with E ‖Yt‖2q <∞.

Proof. By similar arguments as in Bec and Rahbek (2004) and Assumptions 1.2-1.3, Yt =(
Y ′t , ..., Y

′
t−1
)′ given in (1.7) is a Markov Chain on R(k−1)ny for which the drift criterion in Meyn

and Tweedie (1993, Theorem 15.0.1 (iii)) can be applied, as it is irreducible, aperiodic and
compact subsets, K, of R(k−1)ny are small. Let ‖·‖ denote the Euclidean distance.
We use the drift function proposed by Saikkonen (2008) and Liebscher (2005),

g (y) = 1 +
N−1∑
l=0

ρ−2ql sup
A∈AlM1

‖Ay‖2q , (1.24)

where N and q are positive integers; q = 1 corresponds to the choice in Saikkonen (2008)
and q = 1/2 corresponds to the one in Liebscher (2005). Note also that the definition implies
g (y)− 1 > ||y||2q.
For notational convenience, we set Ey (·) := E (·|Yt−1 = y). Moreover, we denote η′y as yη

with η being a selection matrix that picks out those elements of Yt−1 which affect the probability
of switching. Remark that for some i ∈ M1 as given by the definition of the ACR process, we
can rewrite Yt as

Yt = (1 {st ∈M1} (At − Ai) + Ai)Yt−1 + 1 {st ∈M2} (At − Ai) ηη′Yt−1 + Ut
=: BtYt−1 + Ctη′Yt−1 + Ut.

We wish to evaluate Ey [g (Yt)] and hence

Ey

 sup
A∈AlM1

‖AYt‖2q
 = Ey

 sup
A∈AlM1

‖ABty + A (Ctyη + Ut)‖2q
 . (1.25)

First, note that since i ∈ M1, it holds by definition of Bt that Bt ∈ AM1 and so for any power,
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

n > 0, we have

Ey

 sup
A∈AlM1

‖ABty‖2n
 ≤ sup

A∈Al+1
M1

‖Ay‖2n . (1.26)

Next, recall that Ut :=
∑
j∈M 1 {st = j} J (µ+ Vj) εt such that with E

[
‖εt‖2n

]
< ∞ one has

E
[
‖Ut‖2n

]
<∞. One finds

Ey [‖Ctyη + Ut‖]n ≤ Ey [‖Ctyη‖+ ‖Ut‖]n

≤ c
n∑
i=0

(
n

i

)
‖yη‖n−iEy

[
‖Ct‖n−i ‖Ut‖i

]
≤ c

n∑
i=0

(
n

i

)
‖yη‖n−i

√
Ey ‖Ct‖2(n−i)Ey ‖Ut‖2i

≤ c
n∑
i=0

(
n

i

)
‖yη‖n−i

√
q(yη)

≤ c ‖yη‖n
√
q(yη) (1.27)

where we have used Ey
[
‖Ctyη‖n−i

]
≤ ‖yη‖n−iEy

[
‖Ct‖n−i

]
and we have applied the notation

q(yη) := 1− p(yη), with p(yη) = Pr(st+1 = 1|η′Yt = yη), see below (1.2).

To ease notation in the following evaluation, we set Ft = ABty and Gt = A (Ctyη + Ut) and
write,

Ey

 sup
A∈AlM1

‖AYt‖2q
 = Ey sup

A∈AlM1

(
‖Ft +Gt‖2

)q
≤ Ey sup

A∈AlM1

(
‖Ft‖2 +

∣∣∣(Gt + 2Gt)′Gt
∣∣∣)q

= Ey sup
A∈AlM1

q∑
i=0

(
q

i

)
‖Ft‖2(q−i)

∣∣∣(Gt + 2Ft)′Gt
∣∣∣i

≤ Ey sup
A∈AlM1

‖Ft‖2q

︸ ︷︷ ︸
(a)

+
q∑
i=1

(
q

i

)
Ey sup

A∈AlM1

(
‖Ft‖2(q−i)

∣∣∣(Gt + 2Ft)′Gt
∣∣∣i)

︸ ︷︷ ︸
(b)

Term (a) is treated in (1.26). For the generic term in the sum in (b), one has, using ‖ABty‖2 ≤
‖Bty‖2 ‖A′A‖, that

Ey sup
A∈AlM1

(
‖Ft‖2(q−i)

∣∣∣(Gt + 2Ft)′Gt
∣∣∣i)

= Ey sup
A∈AlM1

(∣∣∣(Bty)′A′ABty
∣∣∣q−i ∣∣∣((Ctyη + Ut) + 2Bty)′A′A (Cty + Ut)

∣∣∣i)

≤ Ey sup
A∈AlM1

((
‖Bty‖2

∥∥A′A∥∥)q−i (‖(Ctyη + Ut) + 2Bty‖
∥∥A′A∥∥ ‖Ctyη + Ut‖

)i)
≤ sup

A∈AlM1

∥∥A′A∥∥q Ey (‖Bty‖2(q−i) ‖(Ctyη + Ut) + 2Bty‖i ‖Ctyη + Ut‖i
)
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1.A Proof of Theorem 1.4

≤ cEy
(
‖Bty‖2(q−i) (‖Ctyη + Ut‖+ 2 ‖Bty‖)i ‖Ctyη + Ut‖i

)
≤ c

i∑
k=0

(
i

k

)
Ey
(
‖Ctyη + Ut‖k+i ‖Bty‖2q−i−k

)

≤ c
i∑

k=0

(
i

k

)√
Ey ‖Ctyη + Ut‖2(k+i)Ey ‖Bty‖2(2q−i−k)

≤ c
i∑

k=0

(
i

k

)√
‖yη‖2(k+i)

√
q(yη) ‖y‖2(2q−i−k)

= c
i∑

k=0

(
i

k

)
‖yη‖(k+i) ‖y‖(2q−i−k) q(yη)

1
4

= c

(‖yη‖
‖y‖

)i
‖y‖2q q(yη)

1
4

i∑
k=0

(
i

k

)(‖yη‖
‖y‖

)k

= c

(‖yη‖
‖y‖

)i
‖y‖2q q(yη)

1
4

(
1 + ‖yη‖

‖y‖

)i
≤ ci ‖y‖2q

(‖yη‖
‖y‖

)i
q(yη)

1
4

Note that ‖yη‖ / ‖y‖ ≤ 1, so that c(1 + (‖yη‖ / ‖y‖)i) ≤ 2c which gives the new constant. Hence,

(b) =
q∑
i=1

(
q

i

)
Ey sup

A∈Al

(
‖Ft‖2(q−i)

∣∣∣(Gt + 2Ft)′Gt
∣∣∣i)

≤
q∑
i=1

(
q

i

)
ci ‖y‖2q

(‖yη‖
‖y‖

)i
q(yη)

1
4

≤ q(yη)
1
4 ‖y‖2q−1 ‖yη‖

q∑
i=1

(
q

i

)
ci

(‖yη‖
‖y‖

)i−1
= cq(yη)

1
4 ‖y‖2q−1 ‖yη‖ =: ul (y) ,

where (1 + ‖yη‖ / ‖y‖)q−1 maxi ci ≤ 2q−1 maxi ci which gives the new constant. Thus,

Ey sup
A∈AlM1

‖AYt‖2q ≤ sup
A∈Al+1

M1

‖Ay‖2q + ul(y).

Next note that, it holds for the ACR cointegrated process that ρ (AM1) < 1 and hence, we
can find a real number ρ ∈ (ρ (AM1) , 1) and an integer N such that supA∈ANM1

‖A‖ ≤ ρN , see
Liebscher (2005, eq: (33)). This implies from (1.26) that

sup
A∈ANM1

‖Ay‖2q ≤ ρ2qN ‖y‖2q . (1.28)

Define

u(y) :=
N−1∑
l=0

ρ−2qlul(y) = cq(yη)
1
4 ‖y‖2q−1 ‖yη‖ .

Taking conditional expectations in (1.24) and inserting (1.28) one finds

Ey(g (Yt)− 1) ≤
N−1∑
l=0

ρ−2ql

 sup
A∈Al+1

S1

‖Ay‖2q + ul(y)


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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

=
N−1∑
l=0

ρ−2ql sup
A∈Al+1

M1

‖Ay‖2q + u(y)

=
N−1∑
l=1

ρ−2q(l−1) sup
A∈AlM1

‖Ay‖2q + ρ−2q(N−1) sup
A∈ANM1

‖Ay‖2q + u(y)

≤
N−1∑
l=1

ρ−2q(l−1) sup
A∈AlM1

‖Ay‖2q + ρ2q ‖y‖2q + u(y)

=
N−1∑
l=0

ρ−2q(l−1) sup
A∈AlM1

‖Ay‖2q + u(y) = ρ2q (g(y)− 1) + u(y) (1.29)

≤ ρ2q + 1
2 (g(y)− 1)− 1− ρ2q

2 ||y||2q + u(y)

= ρ2q + 1
2 (g(y)− 1) + ||y||2q

(
u(y)
||y||2q

− 1− ρ2q

2

)

In the last two lines we have used the fact that

ρ2q (g(y)− 1) = ρ2q + 1
2 (g(y)− 1)− 1− ρ2q

2 (g(y)− 1)

≤ ρ2q + 1
2 (g(y)− 1)− 1− ρ2q

2 ||y||2q

because g(y)− 1 ≥ ||y||2q, see the definition of g in (1.24). Consider now

u(y)
||y||2q

= c
‖y‖2q−1

||y||2q
q(yη)

1
4 ‖yη‖ = cq(yη)

1
4
‖yη‖
‖y‖

which we represent as a product of a(y) := cq(yη)
1
4 and b(y) := ‖yη‖

‖yη‖+‖yη⊥‖
, where ‖y‖ =

‖yη‖ + ‖yη⊥‖ is the orthogonal decomposition of ||y|| on η and its orthogonal complement.
When ‖y‖ → ∞, either ‖yη‖ or ‖yη⊥‖ diverge, or both. When ‖yη‖ → ∞ (irrespectively of
whether ‖yη⊥‖ diverges or not) one has a(y)→ 0 by definition of the ACR cointegrated process
and b(y) is bounded by 1; hence the product a(y)b(y) → 0. When ‖yη⊥‖ → ∞ and ‖yη‖ is
bounded, one has that b(y)→ 0 and a(y) is bounded, so that a(y)b(y)→ 0. Hence we conclude
that u(y)

||y||2q → 0 as ‖y‖ → ∞. This implies that one can define a compact set K = {y : ||y|| ≤ R},

with R large enough so for ||y|| > R one has that u(y)
||y||2q ≤

1−ρ2q

2 . Hence on Kc one has

Eyg (Yt) <
ρ2q + 1

2 g(y).

It follows that the condition in Meyn and Tweedie (1993, Theorem 15.0.1 (iii)) is satisfied and
that Yt is a geometrically ergodic Markov Chain with finite moments of order 2q. This completes
the proof.
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1.B Proof of Theorem 1.6

1.B Proof of Theorem 1.6

As in Kristensen and Rahbek (2010, Proof of Theorem 2), Theorem 1.6 holds by applying the
functional central limit theorem (FCLT) in Meyn and Tweedie (1993, Theorems 17.4.2 and
17.4.4). Below, we first establish that ht in (1.22) has mean zero, and that ht is a function of a
geometrically ergodic Markov Chain Zt, where the variance of ht is bounded by the drift function
that applies to Zt. These conditions are sufficient for Meyn and Tweedie (1993, Theorems 17.4.2
and 17.4.4) to hold, as in Kristensen and Rahbek (2010, Proof of Theorem 2).
We first state a lemma on the first (conditional) moments of quantities involving p?jt and pjt,

which are used in proving that ht in (1.22) has mean zero.

Lemma 1.9. With p?jt := E (1 {st = j} | Zt, Zt−1), pjt := E (1 {st = j} | Zt−1) defined in (1.21),
(1.10) and Zt = (X ′tβ,∆X′t)

′, the following holds:

E
(
p?jt | Zt−1

)
= pjt, (1.30)

E
(
p?jtεt | Zt−1

)
= 0, (1.31)

E
(
p?jt

(
εjtε

′
jt − Ωj

)
| Zt−1

)
= 0, (1.32)

E

∑
j∈M

p?jt (∂· log pjt)′ | Zt−1

 = 0. (1.33)

Moreover, with Mt measurable with respect to At := (Z ′t, Z ′t−1)′ but not with respect to Zt−1

alone, we have
E
((
p?jt − pjt

)
Mt | Zt−1

)
= cov (1 {st = j} ,Mt | Zt−1) . (1.34)

Proof. Eq. (1.30) holds by applying iterated expectations. Next, because εjt in (1.20) is a
function of At, and 1 {st = j} · εjt = 1 {st = j} · Vjεt, one has

E
(
p?jtεjt | Zt−1

)
= E (E (1 {st = j} | At) εjt| Zt−1) = E (E (1 {st = j} εjt| At) | Zt−1)

= E (1 {st = j} Vjεt | Zt−1) = E (1 {st = j} | Zt−1)VjE (εt | Zt−1) = 0,

where the last equality follows from the fact that εt is i.i.d. with 0 mean and εt and st are
independent conditionally on Zt−1. This proves (1.31). Similarly,

E
(
p?jt

(
εjtε

′
jt − Ωj

)
| Zt−1

)
= E

(
E (1 {st = j} | At)

(
εjtε

′
jt − Ωj

)
| Zt−1

)
= E

(
E
(
1 {st = j}

(
εjtε

′
jt − Ωj

)
| At

)
| Zt−1

)
= E

(
1 {st = j}

(
Vjεtε

′
tV
′
j − Ωj

)
| Zt−1

)
= E (1 {st = j} | Zt−1)E

(
Vjεtε

′
tV
′
j − Ωj | Zt−1

)
= 0,

where the last equality follows from the fact that Ωj = VjV
′
j and εtε′t is i.i.d. with mean I and

εt and st are independent conditionally on Zt−1. This proves (1.32). Next we prove that

m∑
j=1

p?jt∂· log pjt =
m−1∑
j=1

(
1
pjt

(
p?jt − pjt

)
+ 1
pmt

m−1∑
i=1

(
p?jt − pjt

))
∂·pjt, (1.35)
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which implies (1.33) applying (1.30) because pjt and ∂·pjt are measurable with respect to
Zt−1. Eq. (1.35) is proved noting that, because pmt = 1 −

∑m−1
i=1 pit, one has ∂· log pmt =

∂· log
(
1−

∑m−1
i=1 pit

)
= −

(
1−

∑m−1
i=1 pit

)−1 (∑m−1
i=1 ∂·pit

)
and hence

m∑
j=1

p?jt∂· log pjt =
m−1∑
j=1

p?jt
pjt
∂·pjt −

m−1∑
j=1

1−
∑m−1
i=1 p?it

1−
∑m−1
i=1 pit

∂·pjt

=
m−1∑
j=1

(
p?jt
pjt
− 1−

∑m−1
i=1 p?it

1−
∑m−1
i=1 pit

)
∂·pjt

=
m−1∑
j=1

((
1

pjtpmt

)(
1−

m−1∑
i=1

pit

)
p?jt −

(
1−

m−1∑
i=1

p?it

)
pjt

)
∂·pjt

=
m−1∑
j=1

1
pjtpmt

(
p?jt − pjt −

m−1∑
i=1

pit
(
p?jt − pjt

)
+
m−1∑
i=1

(p?it − pit) pjt

)
∂·pjt

=
m−1∑
j=1

(
1
pjt

(
p?jt − pjt

)
+ 1
pmt

m−1∑
i=1

(
p?jt − pjt

))
∂·pjt.

Finally consider

cov (1 {st = j} ,Mt|Zt−1) = E ((1 {st = j} − E (1 {st = j} |Zt−1))Mt|Zt−1)

= E (E ((1 {st = j} − E (1 {st = j} |Zt−1))Mt|At) |Zt−1)

= E (E ((1 {st = j} − E (1 {st = j} |Zt−1)) |At)Mt|Zt−1)

= E ((E (1 {st = j} |At)− E (1 {st = j} |Zt−1))Mt|Zt−1)

= E
((
p?jt − pjt

)
Mt|Zt−1

)
,

which gives (1.34).

Lemma 1.10. Under Assumptions 1.2-1.5, ht in (1.22) has 0 mean, E(ht) = 0.

Proof. Using results in Lemma 1.9,

E(∂vec(b′D)λt | Zt−1) = E(
∑
j∈M

p?jtε
′
jt | Zt−1)Ω−1

j αj = 0

E
(
∂vec(αi)λt | Zt−1

)
= vec

(
Ω−1
i E (p?itεit | Zt−1)X?′

t−1β
?
)′

= 0

E
(
∂vec(Γi)λt | Zt−1

)
= vec

(
Ω−1
i E (p?itεit | Zt−1) ∆X′t−1

)′
= 0

E
(
∂vec(Ωi)λt | Zt−1

)
= vec

(1
2E

(
p?itΩ−1

i

(
εitε
′
it − Ωi

)
Ω−1
i | Zt−1

))′
= 0

E (∂γλt | Zt−1) = E

∑
j∈M

p?jt (∂γ log pjt) | Zt−1

′ = 0

E (hbt | Zt−1) =
∑
j∈M

(
αjΩ−1

j E
(
p?jtεjt | Zt−1

))
+ E

∑
j∈M

p?jt (∂z log pjt)′ | Zt−1

 = 0.

Finally, by Theorem 1.4 one has E (∆X ′tκ) = 0.
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Lemma 1.11. Under Assumptions 1.2-1.5, ht is a function of the Markov chain Zt :=
(
Y′t−1, υ

′
t, ε
′
t

)′ ∈
Rn(k−1) × [0, 1]× Rn, where Yt−1 is given in (1.7) and υt is i.i.d. and uniformly distributed on
[0, 1]. Zt satisfies the drift criterion with drift function

gq (y, υ, ε) = gq (y) + υ′υ + ε̄′ε̄. (1.36)

where υ := (υ ⊗ υ), ε̄ := (ε⊗ ε), and gq (y) is the drift function used in the proof of Theorem
1.4; hence Zt is a geometrically ergodic Markov Chain with bounded 2q moments. Moreover, for
q ≥ 2, one has ‖h (y, υ, ε)‖2 ≤ c (gq (y, υ, ε)).

Proof. First we represent st as a function of υt and Yt−1, where υt is i.i.d. and uniformly
distributed on [0, 1]; we write st = s (Yt−1, υt) where

s (y, υ) =
∑
j∈M

j · 1
υ ∈

j−1∑
i=1

pi (y) ;
j∑
i=1

pi (y)


 .

Next note that pjt and ∂· log pjt are functions of Yt−1; moreover, see (1.2), ∆Xt is a function of
Zt. This proves that ht is a function of Zt.
In order to show that Zt is a geometrically ergodic Markov Chain, we apply the same strategy

as in Lemma 1.8, using that Zt :=
(
Y′t−1, υ

′
t, ε
′
t

)′ is a time-homogenous Markov Chain satisfying
the criteria given there, using the drift function gq (y, υ, ε) in (1.36). By similar arguments as in
the proof of Theorem 1.4, it can be shown that the Markov Chain Zt is geometrically ergodic
and has finite moments of order 2q. In order to prove ‖h (y, υ, ε)‖2 ≤ c (gq (y, υ, ε)), first note
that

gq (y) = 1 + ‖y‖2q +
N−1∑
l=1

ρ−2ql sup
A∈AlM1

‖Ay‖2q ≥ 1 + ‖y‖2q .

Inspection of h (y, υ, ε) shows that each component of the h vector in ‖h (y, υ, ε)‖q gives a contri-
bution bounded by c

(
‖y‖2q + ‖ε‖2q + 1

)
, where the 2q exponent comes from the derivatives with

respect to Ωi. Hence ‖h (y, υ, ε)‖q ≤ c
(
‖y‖2q + ‖ε‖2q + 1

)
, and, because, ε′ε = ‖ε‖4, υ′υ = ‖υ‖4

one finds

‖h (y, υ, ε)‖2 ≤ c
(
‖y‖4 + ‖ε‖4

)
≤ c

(
g2 (y) + ‖ε‖4 + ‖υ‖4

)
≤ c (gq (y, υ, ε)) .

1.C Proof of Theorem 1.7

We give the proof for Theorem 1.7, mimicking Bec and Rahbek (2004, Proof of Theorem
5) and Kristensen and Rahbek (2010, Proof of Theorem 5). For consistency, the conditions
(i)-(iii) in Kristensen and Rahbek (2010, Lemma 11) are verified with UT = T−1WT and
QT (θ) = T−1LT (θ), where WT is the weight matrix given in (1.17) and LT is the log-likelihood
function defined in (1.18). Condition (i) holds by the definition of the likelihood function and by
Assumption 1.5. Conditions (ii)− (iii) are verified in Lemmas 1.12, 1.20 and 1.26 below, which
discuss weak limits of the score, hessian and third derivatives, respectively. Specifically, denoting
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

subsequent increments in θ as dθ,dθ†, dθ‡ and letting dθT := W
− 1

2
T dθ, dbT := T−

1
2W

− 1
2

bT db, one
has

dQT
(
θ0;U−

1
2

T dθ
)

= T−
1
2 dLT (θ0; dθT ) = op (1)

d2QT

(
θ0;U−

1
2

T dθ, U−
1
2

T dθ
)

= d2LT
(
θ0; dθT ,dθ†T

)
w→ H∞

(
dθ,dθ†

)
and

d3QT

(
θ;U−

1
2

T dθ, U−
1
2

T dθ, U−
1
2

T dθ
)

= T
1
2 d3LT

(
θ; dθT , dθ†T , dθ

‡
T

)
= Op

(
‖dθ‖

∥∥∥dθ†∥∥∥ ∥∥∥dθ‡∥∥∥) .
The verification of these conditions proves consistency.
The form of the asymptotic distribution is proved verifying condition (iv) in Kristensen and

Rahbek (2010, Lemma 12), with νT = T such that ν
1
2
T U
− 1

2
T = W

− 1
2

T . This condition follows from
Lemma 1.12 which gives

dQT
(
θ0; ν

1
2
T U
− 1

2
T dθ

)
= d logLT (θ0; dθT ) w→ S∞ (dθ) .

Consequently, we have W
1
2
T

(
θ̂ − θ0

)
w→ dθ∞, where θ∞ satisfies S∞ (dθ) = H∞ (dθ,dθ∞) for

all directions dθ and with S∞ (dθ) and H∞ (dθ,dθ∞) given in Lemmas 1.12 and 1.20. This
completes the proof of Theorem 1.7.

Lemma 1.12. Given Assumptions 1.2-1.5 apply with q = 2. Then

dLT (θ0; dθT ) =: ST (dθT ) w→ S∞ (dθ) ,

where S∞ (dθ) is a function of Brownian motions given by

S∞ (dθ) :=
(
Bϑ (1)′ , vec

(∫ 1

0
F (s)′ dBb (s)

)′)′
dθ =: Sdθ

with F (s) :=
(
Bκ (s)′ , s, 1

)′
, where Bκ, and Bϑ are Brownian motions defined in Theorem 1.6.

Proof: The proof is divided into the following Claims 1.13-1.18, where we index the score
conformably with the various parameters in θ.

Claim 1.13. ST (dbT ) w→ vec
(∫ 1

0 F (s) dBv (s)′
)′

vec (db′) .

Claim 1.14. ST (dbDT ) w→ Bvec(β′D) (1)′ vec (d (b′D)) .

Claim 1.15. ST (dαiT ) w→ Bvec(αi) (1)′ vec (dαi) .

Claim 1.16. ST (dΓiT ) w→ Bvec(Γi) (1)′ vec (dΓi) .

Claim 1.17. ST (dΩiT ) w→ Bvech(Ωi) (1)′ vech (dΩi) .

Claim 1.18. ST (dγT ) w→ Bγ (1)′ dγ.
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1.C Proof of Theorem 1.7

Verification of Claim 1.13: Write β = β0 + (κ̄0 : τ̄0) b and recall that λjt = log φjt + log pjt
and zt−1 := ψ′Zt−1 =: ψ′ββ′Xt−1 + ψ′∆∆Xt−1, where ψ = (ψ′β : ψ′∆)′ is partitioned comfortably
with Zt :=

(
(β′Xt−1)′ : ∆X′t−1

)′
. Differentiation gives

dλjt
(
db′
)

= ε′jtΩ−1
j αjdb′Xt−1 + ∂z log pjtψ′βdb′Xt−1

=
(
ε′jtΩ−1

j αj + ∂z log pjtψ′β
)

db′Xt−1

Hence with hvt :=
∑
j∈M p

?
jthvjt, one has d`t (vec(db′)) = (vec (Xt−1h

′
vt))
′ vec(db′) so that, by

Theorem 3.1 in Hansen (1992), and Theorem 1.6 one has

ST (dbT ) w→ vec
(∫ 1

0
F (s) dBv (s)′

)′
vec

(
db′
)
.

Verification of Claim 1.14 : Similarly, consider β? = β?0 + (κ?0 : τ0 : in+1) (b′, b′D)′ so that
dλjt (db′D) = ε′jtΩ−1

j αjdb′D. Hence

d`t
(
vec(db′D)

)
=
∑
j∈M

p?jtε
′
jtΩ−1

j αjvec(db′D),

which implies ST (dbDT ) w→ Bvec(β′D) (1)′ vec (d (b′D)) by Theorem 1.6.

Verification of Claims 1.15, 1.16, 1.17 and 1.18: Start by considering Claim 1.15. It holds
by Lemma 1.31 that,

ST (dαiT ) = T−
1
2

T∑
t=1

p?it

(
X?′
t−1β

? ⊗ ε′itΩ−1
i

)
vec (dαi) .

which, by Theorem 1.6, implies ST (dαT ) w→ Bvec αi (1)′ vec (dα). By similar arguments,

ST (dΓiT ) = T−
1
2

T∑
t=1

p?it

(
∆X′t−1 ⊗ ε′itΩ−1

i

)
vec (dΓi)

w→ Bvec Γi (1)′ vec (dΓ)

Next, consider Claim 1.17. By Lemma 1.31, one obtains

ST (dΩiT ) = −T−
1
2

1
2

T∑
t=1

p?it

(
vec

(
Ω−1
i

(
εitε
′
it − Ωi

)
Ω−1
i

))′
DΩvech (dΩi)

w→ Bvech Ωi (1)′ vech (dΩi)

To show validity of Claim 1.18, observe that by Theorem 1.6

ST (dγT ) = T−
1
2

T∑
t=1

∑
j∈M

p?jt∂γ log pjtdγ
w→ Bγ (1)′ dγ.

Before stating Lemma 1.20 and 1.26, we provide some auxiliary results.
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

Lemma 1.19. Let d log pujt (respectively d log φujt) indicate d log pjt (θ; dθu) (respectively d log φujt)
and d2 log puvjt (respectively d2 log φuvjt ) indicate d2 log pjt (θ; dθu; dθv) (respectively d2 log φjt (θ; dθu; dθv)),
where dθu,dθv indicate any of dθ,dθ†; then at θ = θ0 one has

E

∑
j∈M

p?jt

(
d log pujt d log pvjt + d2 log puvjt

)∣∣∣∣∣∣Zt−1

 = 0, (1.37)

E

∑
j∈M

p?jt

(
d log φujt d log φvjt + d2 log φuvjt

)∣∣∣∣∣∣Zt−1

 = 0. (1.38)

Proof. First note d2 log puvjt = 1
pjt

d2puvjt − d log pujt d log pvjt, such that

∑
j∈M

p?jt

(
d log pujt d log pvjt + d2 log puvjt

)
=
∑
j∈M

(
p?jt/pjt

)
d2puvjt .

Proceeding as in proof of Lemma 1.9, one finds that

m∑
j=1

p?jt
pjt

d2puvjt =
m−1∑
j=1

(
1
pjt

(
p?jt − pjt

)
+ 1
pmt

m−1∑
i=1

(
p?jt − pjt

))
d2puvjt .

and hence, the result follows by applying conditional expectations and noting that d2puvjt is Zt−1

measurable.

Lemma 1.20. Provided Assumptions 1.2-1.5 apply, the following weak convergence result holds

d2LT
(
θ0; dθT , dθ†T

)
=: HT

(
dθT ,dθ†T

)
w→ H∞

(
dθ,dθ†

)
,

where H∞
(
dθ,dθ†

)
is a non-degenerate distribution that depends on model specific nuisance

parameters. With θ defined in (1.16), H∞
(
dθ,dθ†

)
is given by

H∞
(
dθ,dθ†

)
= −dθ′

 (∫ 1
0 F (s)F (s)′ ds⊗ Σvv

) (∫ 1
0 F (s) ds⊗ Σvθ

)(∫ 1
0 F (s)′ ds⊗ Σvϑ

)
Σϑϑ

 dθ†

=: −dθ′Hdθ†

where F (s) was defined in Lemma 1.12.

Proof: First note that the second order derivative of the log-likelihood function can be written
as

d2LT
(
θ; dθ,dθ†

)
=

T∑
t=1

∑
j∈M

p?jt

{
(dλjt (dθ))′ dλjt

(
dθ†
)

+ d2λjt
(
dθ,dθ†

)}

−
T∑
t=1

∑
j∈M

p?jtdλjt (dθ)

∑
j∈M

p?jtdλjt
(
dθ†
)′ . (1.39)

By Theorem 1.4 and the definition of λjt given in section 1.7, it holds that for the parameters
collected in ϑ (cf. (1.16)), dλjt (dϑ) and d2λjt (dϑ) are functions of the stationary and geometri-
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cally ergodic Markov Chain Zt given in Lemma 1.11. Hence, the law of large numbers in Jensen
and Rahbek (2007) applies to (1.39) such that

T∑
t=1

∑
j∈M

p?jt

{
(dλjt (dϑT ))′

(
dλjt

(
dϑ†T

))
+ d2λjt

(
dϑT , dϑ†T

)}
p→ 0

and

−
T∑
t=1

∑
j∈M

p?jtdλjt (dϑT )

∑
j∈M

p?jtdλjt
(
dϑ†T

)′ p→ −dϑ′Σϑϑdϑ,

where the first result holds by use of Lemma 1.35 and the second holds by Theorem 1.6 and
the Continuous Mapping Theorem. Due to non-stationarity in the directions of db, the Claims
1.21-1.25 are verified one by one.

Claim 1.21. HT

(
dbT , db†T

)
w→ −tr

{(
db†
)′ ∫ 1

0

(
F (s)F (s)′ ds

)
dbΣbb

}
.

Claim 1.22. HT

(
dbT , dα†T

)
w→ −tr

{
vec

(
dα†i

) ∫ 1
0

(
F (s)′ ds

)
dbΣbα

}
.

Claim 1.23. HT

(
dbT , dΓ†T

)
w→ −tr

{
vec

(
dΓ†i

) ∫ 1
0

(
F (s)′ ds

)
dbΣbΓ

}
.

Claim 1.24. HT

(
dbT , dΩ†iT

)
w→ tr

{
vech

(
dΩ†i

) ∫ 1
0

(
F (s)′ ds

)
dbΣbΩ

}
for all i ∈M.

Claim 1.25. HT

(
dbT , dγ†T

)
w→ −tr

{(
dγ†

) ∫ 1
0

(
F (s)′ ds

)
dbΣbγ

}
.

Verification of Claim 1.21: By Lemma 1.32 we have that the second order derivative of the
log-likelihood function in direction

(
dbT , db†T

)
, and evaluated in the true parameter, θ0, is given

by

HT

(
dbT ,db†T

)
=−

T∑
t=1
X ′t−1dbTϕbtϕ′btdb

†′
TXt−1 − T−1

T∑
t=1
X ′t−1W

− 1
2

bT db

×
∑
j∈M

p?jt

{
vjtv

′
jt − α0jΩ−1

0j α0j + ψβ
(
∂2
zz log pjt

)
ψ′β

}
db†′W−

1
2

bT Xt−1 (1.40)

where vjt := α′0,jΩ−1
0,jεjt + ψβ (∂z log pjt)′ and ϕbt :=

∑
j∈M p

?
jt

(
α′jΩ−1

j εjt + ψ1 (∂z log pjt)′
)
.

Moreover, we define

ft :=
∑
j∈M

p?jt

(
vjtv

′
jt − α′0jΩ−1

0j α0j + ψβ
(
∂2
zz log pjt

)
ψ′β

)
.

The expectation of ft conditional on Zt−1 is given by:

E [ft | Zt−1] = E

∑
j∈M

p?jt

{
α′0jΩ−1

0j α0j + ψβ (∂z log pjt)′ (∂z log pjt)ψ′β
}
| Zt−1


+E

[
−α′0jΩ−1

0j α0j + ψβ
(
∂2
zz log pjt

)
ψ′β | Zt−1

]
=

∑
j∈M

pjt

{
ψβ (∂z log pjt)′ (∂z log pjt)ψ′β − ψβ

(
∂2
zz log pjt

)′
ψ′β

}
= 0.
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where we have used Lemma 1.9. Next, observe that

X ′[Ts]db =

 X ′[Ts]κ0

X ′[Ts]τ0

′ (db)
with κ0, τ0 given in section 1.6.1 and with s ∈ [0; 1]. Using the results given in Verification of
Claim 1.13 along with the Continuous Mapping Theorem, we get that

W
− 1

2
bT X[Ts]X ′[Ts]W

− 1
2

bT
w→
(
Bκ (s)
s

)′(
Bκ (s)
s

)
.

Since ft has mean zero and is a function of the stationary and geometrically ergodic Zt−1 (cf.
Lemma 1.11), it holds by Kristensen and Rahbek (2010, Lemma 13) that

sup
m
E |E [ft | Zt−m]| → 0 as m→∞.

Then by Hansen (1992, Theorem 3.3), we have

sup
0≤s≤1

∣∣∣∣∣∣T−1
dTse∑
t=1

W
− 1

2
bT Xt−1X ′t−1W

− 1
2

bT ft

∣∣∣∣∣∣ p→ 0.

Thus, it is verified that,

−T−1
T∑
t=1
X ′t−1W

− 1
2

bT db (ft) db†′W−
1
2

bT Xt−1 = op (1) .

Rewrite X ′t−1W
− 1

2
bT dbϕbtϕ′btdb†′W

− 1
2

bT Xt−1 using the definition ωt = ϕbtϕ
′
bt−E [ϕbtϕ′bt] := ϕbtϕ

′
bt−

Σbb and the trace operator to obtain:

−T−1
T∑
t=1
Xt−1W

− 1
2

bT dbϕbtϕ′btdb†W
− 1

2
bT Xt−1

= −tr
{

db†′T−1
T∑
t=1

W
− 1

2
bT Xt−1X ′t−1W

− 1
2

bT dbΣbb

}

−tr
{

db†′T−1
T∑
t=1

W
− 1

2
bT Xt−1X ′t−1W

− 1
2

bT dbωt

}
(1.41)

First, observe that since ωt is a function of the stationary process, Zt−1 (cf. Lemma 1.11), and
has mean zero, it applies by Kristensen and Rahbek (2010, Lemma 13) that,

sup
m
E |E [ωt | Zt−m]| → 0 : as : m→∞.

Consequently, by Hansen (1992, Theorem 3.3) and

sup
0≤s≤1

∣∣∣∣∣∣tr
(db†

)′
T−1

[Ts]∑
t=1

W
− 1

2
bT Xt−1X ′t−1W

− 1
2

bT dbωt


∣∣∣∣∣∣ p→ 0,
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demonstrating that the first term in (1.41) is op (1). Collecting the results, we obtain the weak
convergence result,

HT

(
dbT ,db†T

)
w→ −tr

{(
db†
)′ ∫ 1

0

(
F (s)F ′ (s) ds

)
dbΣbb

}
as was desired.

Verification of Claim 1.22 and 1.23: By Lemma 1.32, the second order derivative in direction(
dbT ,dα†i,T

)
is given by

HT

(
dbT ,dα†i,T

)
= 1 {j = i}T−1

T∑
t=1
X ′t−1W

− 1
2

bT dbp?it
(
α′0i

(
Ω−1

0i εitε
′
it − I

)
Ω−1

0i dα†iβ
?′
0 X

?
t−1

)

+1 {j = i}T−1
T∑
t=1
X ′t−1W

− 1
2

bT dbp?it (∂z log pit)′ εitΩ−1
0i dα†iβ

?′
0 X

?
t−1

−T−1
T∑
t=1
X ′t−1W

− 1
2

bT dbϕbtϕ′αitvec
(
dα†i

)
, (1.42)

with ϕαit := p?it

(
β′X?

t−1 ⊗ ε′itΩ−1
i

)
. Consider the conditional expectation of the three first

terms, for which Lemma 1.9 can be used along with the assumption of conditional independence
between st and εt given in (1.3) to show that

E
[
p?it

(
α′0i

(
Ω−1

0i εitε
′
it − I

)
+ ψβ (∂z log pit)′ εit

)
| Zt−1

]
= 0.

Consequently, we may define a mean zero sequence, ft, as

ft := p?it

(
α′0i

(
Ω−1

0i εitε
′
it − I

)
+ ψβ (∂z log pit)′ εit

)
Ω−1

0i dα†iβ
?′
0 X

?
t−1.

Next, since ft is a function of the stationary and geometrically ergodic process, Zt−1, and has
mean zero; then by Kristensen and Rahbek (2010, Lemma 13) it also holds that

sup
0≤s≤1

E |E [ft | Zt−m]| → 0 as m→∞

and hence Hansen (1992, Theorem 3.3) can once again be applied to ensure

sup
0≤s≤1

∣∣∣∣∣∣T−1
dTse∑
t=1
Xt−1W

− 1
2

bT ft

∣∣∣∣∣∣ p→ 0,

such that the first three terms disappear asymptotically. Now, consider the second term in (1.42)
which, using the definition ωt := ϕbtϕ

′
αit − E

[
ϕbtϕ

′
αit

]
= ϕbtϕ

′
αit − Σbαi can be rewritten as

−T−1
T∑
t=1
X ′t−1dbϕbtϕ′αitvec

(
dα†i

)
= −tr

{
vec

(
dα†i

)
T−1

T∑
t=1
X ′t−1W

− 1
2

bT dbTΣbαi

}
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−tr
{

vec
(
dα†i

)
T−1

T∑
t=1
X ′t−1W

− 1
2

bT dbTωt

}
.

By similar arguments as above we obtain

−T−1
T∑
t=1
X ′t−1W

− 1
2

bT dbϕbtϕ′αitvec
(
dα†i

)
w→ −tr

{
vec

(
dα†i

) ∫ 1

0

(
F ′ (s) ds

)
dbΣbαi

}
.

Using α := (α1 : · · · : αm) , we have

HT

(
dbT , dα†T

)
w→ −tr

{
vec

(
dα†

) ∫ 1

0

(
F ′ (s) ds

)
dbΣbα

}
where

Σbα = [Σbα1 : · · · : Σbαm ]

and Σbα = Cov (ϕbt, ϕαt). By similar arguments, it can be shown that for Γ := (Γ1 : ... : Γm),
one has

HT

(
dbT ,dΓ†T

)
w→ −tr

{
vec

(
dΓ†

) ∫ 1

0

(
F ′ (s) ds

)
dbΣbΓ

}
with

ΣbΓ = [ΣbΓ1 : · · · : ΣbΓm ]

and ΣbΓ = Cov (ϕbt, ϕΓt).

Verification of Claim 1.24: From Lemma 1.32, we have that

HT

(
dbT ,dΩ†i,T

)
= −T−1

T∑
t=1
X ′t−1W

− 1
2

bT dbp?it
(
α′0jΩ−1

0j εjt + ψβ (∂z log pjt)′
)

×tr
{1

2Ω−1
0,i
(
Ω0,i − εitε′it

)
Ω−1

0i dΩ†i
}

+T−1
T∑
t=1
X ′t−1W

− 1
2

bT dbp?it
(
α′0jΩ−1

0j dΩ†jΩ
−1
0j εjt

)

+T−1
T∑
t=1
X ′t−1W

− 1
2

bT dbϕbtϕ′ΩitDΩvech
(
dΩ†i

)
,

with ϕΩit := 1
2p
?
it

(
vec

(
Ω−1
i (εitε′it − Ωi) Ω−1

i

))′
DΩ. First note that by independence of εjt and

st, and and using Lemmas 1.9 along with the Assumption 1.2 (in particular symmetry of εt), we
have

E

[
p?itα

′
0iΩ−1

0i εittr
{1

2Ω−1
0i
(
Ω0i − εitε′it

)
Ω−1

0i dΩ†i
}
| Zt−1

]
= 0.

By similar arguments, it holds that

E

[
ψβ (∂z log pit)′ p?ittr

{1
2Ω−1

0i
(
Ω0i − εitε′it

)
Ω−1

0i dΩ†i
}
| Zt−1

]
= 0,
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and
E
[
p?it

(
α′0iΩ−1

0i dΩ†iΩ
−1
0i εit

)
| Zt−1

]
= 0,

such that the first two terms has conditional expectation zero. Hence, we can define the sta-
tionary sequence

ft := −p?it
(
α′0iΩ−1

0i εit + ψ′β (∂z log pit)′
)

tr
{1

2Ω−1
0i
(
Ω0i − εitε′it

)
Ω−1

0i dΩ†i
}

with mean zero. Again, the mixing property,

sup
0≤s≤1

E |E [ft | Zt−m]| → 0 as m→∞

holds, since ft is stationary with mean zero. Hence, Theorem 3.3. from Hansen (1992) can be
applied to ensure

sup
0≤s≤1

∣∣∣∣∣∣T−1
dTse∑
t=1
Xt−1W

− 1
2

bT ft

∣∣∣∣∣∣ p→ 0,

showing that the first two terms are zero asymptotically. Again, define ωt = ϕbtϕ
′
Ωit−E

[
ϕbtϕ

′
Ωit

]
=

ϕbtϕ
′
Ωit − ΣbΩiand observe that by similar arguments as before, we have,

T−1
T∑
t=1
X ′t−1W

− 1
2

bT dbϕbtϕ′Ωitvech
(
dΩ†i

)
w→tr

{
vech

(
dΩ†i

) ∫ 1

0

(
F ′ (s) ds

)
dbΣbΩi

}
which holds for all i ∈M as desired.

Verification of Claim 1.25: Consider the second order derivative of the log-likelihood function
in direction

(
dbT ,dγ†T

)
,

HT (dbT , dγT ) = T−1
T∑
t=1
X ′t−1W

− 1
2

bT db

ϕbt (∂γ log pt) +
∑
j∈M

p?jtψβ
(
∂2
zγ log pt

)dγ†

−T−1
T∑
t=1
X ′t−1W

− 1
2

bT dbϕbtϕ′γtdγ†

Next, observe that by use of Lemmas 1.9 and 1.19,

E

ϕbt (∂γ log pt) +
∑
j∈M

p?jtψβ
(
∂2
zγ log pt

)
| Zt−1


= E

∑
j∈M

p?jtα
′
0jΩ−1

0j εjt (∂γ log pt) +
{
ψβ (∂z log pjt)′ (∂γ log pt) + ψβ

(
∂2
zγ log pt

)}
| Zt−1


=

∑
j∈M

α′0jΩ−1
0j E

[
p?jtεjt | Zt−1

]
(∂γ log pt)
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+
∑
j∈M

pjt
{
ψβ (∂z log pjt)′ (∂γ log pt) + ψβ

(
∂2
zγ log pt

)}
= 0.

Hence, we define a stationary sequence we mean zero,

ft :=

vt (∂γ log pt) +
∑
j∈S

p?jtψβ
(
∂2
zγ log pt

) .
It holds by similar arguments as above that

sup
0≤s≤1

E |E [ft | Zt−m]| → 0 as m→∞

and thereby

sup
0≤s≤1

∣∣∣∣∣∣T−1
dTse∑
t=1
X ′t−1W

− 1
2

bT ft

∣∣∣∣∣∣ p→ 0,

which shows that the first term is zero asymptotically. For the final term, we make use of the
definition ωt = ϕbtϕ

′
γt − Σbγ and write

−T−
1
2

T∑
t=1
X ′t−1W

− 1
2

bT dbϕbtϕ′γtdγ† = −tr
{

dγ†T−1
T∑
t=1
X ′t−1W

− 1
2

bT dbΣvu

}

−tr
{

dγ†T−1
T∑
t=1
X ′t−1W

− 1
2

bT dbωt

}
.

By similar arguments as above it holds that

HT

(
dbT , dγ†T

)
w→ −tr

{
dγ†

∫ 1

0

(
F ′ (s) ds

)
dbΣbγ

}
which was desired.

Lemma 1.26. Given Assumptions 1.2-1.5, we have that

sup
θ∈NT (θ0)

∣∣∣T 1
2 d3LT

(
θ; dθT ,dθ†T , dθ

‡
T

)∣∣∣ = Op
(
‖dθ‖

∥∥∥dθ†∥∥∥ ∥∥∥dθ‡∥∥∥) (1.43)

for the neighborhoods of θ0 given by

NT (θ0) =
{
θ :
∥∥∥∥T− 1

2W
1
2
T (θ − θ0)

∥∥∥∥ < e

}
,

where WT is defined in (1.17).

Proof. Observe initially that by Lemma 1.33, the third order derivative of the log-likelihood
function is given by

d3LT
(
θ; dθ,dθ†, dθ‡

)
=

T∑
t=1

∑
j∈M

{
d2p?jt

(
dθ†,dθ‡

)
dλjt (dθ) + dp?jt

(
dθ†
)

d2λjt
(
dθ,dθ‡

)
+ dp?jt

(
dθ‡
)

d2λjt
(
dθ,dθ†

)
+ p?jtd3λjt

(
dθ,dθ†, dθ‡

)}
, (1.44)
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where p?jt and λjt are given in section 1.7. It holds that,

dp?jt
(
dθ†
)

= p?jtdλjt
(
dθ†
)
− p?jt

∑
i∈M

p?itdλit
(
dθ†
)
,

d2p?jt

(
dθ†, dθ‡

)
=

∑
i∈M−j

(
dp?jt(dθ‡)p?it + p?jtdp?it(dθ‡)

) (
dλjt

(
dθ†
)
− dλit

(
dθ†
))

+ p?jt
∑

i∈M−j

p?it

(
d2λjt

(
dθ†, dθ‡

)
− d2λit

(
dθ†,dθ‡

))
,

where M−j := M\{j} = { i ∈M, i 6= j} and

d3λjt
(
dθ,dθ†,dθ‡

)
= d3 log pjt

(
dθ,dθ†,dθ‡

)
+ d3 log φjt

(
dθ,dθ†, dθ‡

)
.

Now, using that the filtered probabilities p?jt are trivially bounded since 0 < p?jt < 1 and applying
the triangle inequality, one has

supθ∈NT (θ0)

∣∣∣T 1
2 d3LT

(
θ; dθT , dθ†T ,dθ

‡
T

)∣∣∣ ≤c1
(
supθ∈NT (θ0)

∣∣∣T 1
2 Ξ1

(
dθT , dθ†T , dθ

‡
T

)∣∣∣)
+ c2

(
supθ∈NT (θ0)

∣∣∣T 1
2 Ξ2

(
dθT ,dθ†T ,dθ

‡
T

)∣∣∣)
+ c3

(
supθ∈NT (θ0)

∣∣∣T 1
2 Ξ3

(
dθT ,dθ†T ,dθ

‡
T

)∣∣∣)
where we have introduced the definitions,

Ξ1
(
dθ,dθ†,dθ‡

)
:=

T∑
i=1

dλjt (dθ) dλit
(
dθ†
)

dλht
(
dθ‡
)
,

Ξ2
(
dθ,dθ†,dθ‡

)
:=

T∑
i=1

dλjt (dθ) d2λit
(
dθ†, dθ‡

)
,

Ξ3
(
dθ,dθ†,dθ‡

)
:=

T∑
i=1

d3λjt
(
dθ,dθ†,dθ‡

)
,

and c1, c2 and c3 are generic constants counting the number of instances of each term. This
shows that in the following, we can limit our attention to checking the conditions,

supθ∈NT (θ0)

∣∣∣T 1
2 Ξ1

(
dθT ,dθ†T , dθ

‡
T

)∣∣∣ = Op
(
‖dθ‖

∥∥∥dθ†∥∥∥ ∥∥∥dθ‡∥∥∥) , (1.45)

supθ∈NT (θ0)

∣∣∣T 1
2 Ξ2

(
dθT ,dθ†T , dθ

‡
T

)∣∣∣ = Op
(
‖dθ‖

∥∥∥dθ†∥∥∥ ∥∥∥dθ‡∥∥∥) , (1.46)

and
supθ∈NT (θ0)

∣∣∣T 1
2 Ξ3

(
dθT ,dθ†T , dθ

‡
T

)∣∣∣ = Op
(
‖dθ‖

∥∥∥dθ†∥∥∥ ∥∥∥dθ‡∥∥∥) . (1.47)

We verify these conditions for a number of key examples collected in Claims 1.28-1.30, which
are then subsequently verified. For the remaining cases, the arguments will be the same and
the requirements to existence of moments be inferior or similar to those given in the presented
claims.

Claim 1.27. supθ∈NT (θ0)

∣∣∣T 1
2 d3LT

(
θ; dbT ,db†T ,db

‡
T

)∣∣∣ = Op
(
‖db‖

∥∥∥db†∥∥∥ ∥∥∥db‡∥∥∥).
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Claim 1.28. supθ∈NT (θ0)

∣∣∣T 1
2 d3LT

(
θ; dγT ,dγ†T , dγ

‡
T

)∣∣∣ = Op
(
‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥) .
Claim 1.29. supθ∈NT (θ0)

∣∣∣T 1
2 d3LT

(
θ; dαjT , dα†iT ,dα

‡
hT

)∣∣∣ = Op
(
‖dαj‖

∥∥∥dα†i∥∥∥ ∥∥∥dα‡h∥∥∥).
Claim 1.30. supθ∈NT (θ0)

∣∣∣T 1
2 d3LT

(
θ; dΩjT , dΩ†iT ,dΩ‡hT

)∣∣∣ = Op
(
‖dΩj‖

∥∥∥dΩ†i
∥∥∥ ∥∥∥dΩ‡h

∥∥∥) .
Before turning to verifications of the Claims 1.27-1.30, observe that with θ ∈ NT (θ0), we can

write
b?′ =

(
b′ : b′D

)
=
(
b′κ : b′τ : b′D

)
=
(
T−

1
2 b′κ,T : T−1b′τ,T : b′D

)
where ‖bκ,T ‖ < e, ‖bτ,T ‖ < e, and bD is a constant such that

(
b′ : b′D

)
X ?t−1 = T−

1
2 b′κκ

′
0Xt−1 + T−1b′ττ

′
0Xt−1 + b′D (1.48)

This has in particular as a consequence that with θ ∈ NT (θ0),

∥∥(b′ : b′D)X ?t−1
∥∥ =

∥∥b′Xt−1 + b′Di
′
n+1

∥∥
≤ c

(∥∥∥T− 1
2 b′κκ

′
0Xt−1

∥∥∥+
∥∥∥T−1b′ττ

′
0Xt−1

∥∥∥+ 1
)

and thus for some integer, a, one has by the triangle inequality

T−1
T∑
t=1

∥∥(b′ : b′D)X ?t−1
∥∥a ≤ cT−1

T∑
t=1

(
T−

a
2
∥∥κ′0Xt−1

∥∥a + T−a
∥∥τ ′0Xt−1

∥∥a + 1
)

≤ cT−1
T∑
t=1

(
T−

a
2
∥∥κ′0Xt−1

∥∥a + T−a
∥∥τ ′0Xt−1

∥∥a + 1
)

In addition, by Theorem 1.4, and for some a ≥ 2q with q given in assumption 1.2,

cT−1
T∑
t=1

(
T−

a
2
∥∥κ′0Xt−1

∥∥a + T−a
∥∥τ ′0Xt−1

∥∥a + 1
)

= Op (1) (1.49)

Next, observe that ∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥ =
∥∥∥T− 1

2κ′0Xt−1 + T−1τ ′0Xt−1
∥∥∥

and thus by the same arguments, and for a ≥ 2q, one has

T−1
T∑
t=1

∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥a = Op (1) . (1.50)

The inequalities ‖xy‖ ≤ ‖x‖ ‖y‖ ,‖x+ y‖ ≤ ‖x‖ + ‖y‖, ‖x− y‖ ≤ ‖x‖ + ‖y‖ and ‖x‖ ‖y‖ ≤
‖x‖2 + ‖y‖2 are used repeatedly in the following.

Verification of Claim 1.27: The terms of interest are

T
1
2 Ξ1

(
dbT , db†T ,db

‡
T

)
=T

1
2

T∑
t=1

dλjt (dbT ) dλit
(
db†T

)
dλht

(
db‡T

)
,

T
1
2 Ξ2

(
dbT , db†T ,db

‡
T

)
=T

1
2

T∑
t=1

dλjt (dbT ) d2λjt
(
db†T , db

‡
T

)
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and

T
1
2 Ξ3

(
dbT , db†T ,db

‡
T

)
= T

1
2

T∑
t=1

d3λjt
(
dbT , db†T , db

‡
T

)

= T
1
2

T∑
t=1

d3 log pjt
(
dbT , db†T , db

‡
T

)
We have ∣∣∣T 1

2 Ξ1
(
dbT ,db†T , db

‡
T

)∣∣∣
≤cT

1
2

T∑
t=1
‖dλjt (dbT )‖ ‖dλjt (dbT )‖ ‖dλjt (dbT )‖

≤cT−1
T∑
t=1

((
‖∆Xt‖+

∥∥β′0Xt−1
∥∥+

∥∥b′Xt−1
∥∥+ ‖∆Xt−1‖+ 1

) ∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥)3
×

‖db‖
∥∥∥db†∥∥∥ ∥∥∥db‡∥∥∥ .

Using (1.49) and (1.50) with q ≥ 3, we write

cT−1
T∑
t=1

(
‖∆Xt‖6 +

∥∥β′0Xt−1
∥∥6 +

∥∥b′Xt−1
∥∥6 + ‖∆Xt−1‖6 +

∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥6
+ 1

)
= Op (1)

Next, we have∣∣∣T 1
2 Ξ2

(
dbT , db†T ,db

‡
T

)∣∣∣
≤T

1
2

T∑
t=1
|dλjt (dbT )|

∣∣∣d2λjt
(
db†T , db

‡
T

)∣∣∣
≤cT−1

T∑
t=1

((
‖∆Xt‖+

∥∥β′0Xt−1
∥∥+

∥∥b′Xt−1
∥∥+ ‖∆Xt−1‖+ 1

) ∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥ ‖db‖)×((∥∥β′0Xt−1
∥∥+

∥∥b′Xt−1
∥∥+ ‖∆Xt−1‖+ 1

) ∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥2
)∥∥∥db†∥∥∥ ∥∥∥db‡∥∥∥

≤cT−1
T∑
t=1

(
‖∆Xt‖2 +

∥∥β′0Xt−1
∥∥2 +

∥∥b′Xt−1
∥∥2 + ‖∆Xt−1‖+ 1

)2
×

∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥3
‖db‖

∥∥∥db†∥∥∥ ∥∥∥db‡∥∥∥ .
Again, ignoring cross terms and with q ≥ 3 and using (1.49) and (1.50), one has

cT−1
T∑
t=1

(
‖∆Xt‖4 +

∥∥β′0Xt−1
∥∥4 +

∥∥b′Xt−1
∥∥4 + ‖∆Xt−1‖4 +

∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥6
+ 1

)
= Op (1) .

Next, by assumption 1.5, one has∣∣∣T 1
2 Ξ3

(
dbT , db†T , db

‡
T

)∣∣∣
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≤T
1
2

T∑
t=1

∣∣∣d3 log pjt
(
dbT ,db†T , db

‡
T

)∣∣∣
=T−1

T∑
t=1

∣∣∣∣vec
(
ψ′βdb†′W−

1
2

bT Xt−1X ′t−1dbW−
1
2

bT ψβ

)′
×

∂3
zzz log pjtψ′βdb‡′W

− 1
2

bT Xt−1

∣∣∣∣
≤cT−1

T∑
t=1

(∥∥β′0Xt−1
∥∥+

∥∥b′Xt−1
∥∥+ ‖∆Xt−1‖

) ∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥3
‖db‖

∥∥∥db†∥∥∥ ∥∥∥db‡∥∥∥
where by similar arguments as before

cT−1
T∑
t=1

(∥∥β′0Xt−1
∥∥2 +

∥∥b′Xt−1
∥∥2 + ‖∆Xt−1‖2 +

∥∥∥∥W− 1
2

bT Xt−1

∥∥∥∥6
+ 1

)
= Op (1) .

Thus in summary,

sup
θ∈NT (θ0)

∣∣∣T 1
2 Ξ1

(
dbT ,db†T , db

‡
T

)∣∣∣ = Op
(
‖db‖

∥∥∥db†∥∥∥ ∥∥∥db‡∥∥∥) ,

sup
θ∈NT (θ0)

∣∣∣T 1
2 Ξ2

(
dbT , db†T , db

‡
T

)∣∣∣ = Op
(
‖db‖

∥∥∥db†∥∥∥ ∥∥∥db‡∥∥∥)
and

sup
θ∈NT (θ0)

∣∣∣T 1
2 Ξ3

(
dbT , db†T , db

‡
T

)∣∣∣ = Op
(
‖db‖

∥∥∥db†∥∥∥ ∥∥∥db‡∥∥∥)
as desired.

Verification of Claim 1.28: Using Lemmas 1.31, 1.32 and 1.33, it is clear that we need to
verify

T
1
2 Ξ1

(
dγT , dγ†T ,dγ

‡
T

)
= T−1

T∑
t=1

(d log pjt (dγ))
(
d log pit

(
dγ†

)) (
d log pht

(
dγ‡

))
= Op

(
‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥) ,

T
1
2 Ξ2

(
dγT ,dγ†T , dγ

‡
T

)
= T−1

T∑
t=1

(d log pjt (dγ))
(
d2 log pit

(
dγ,dγ‡

))
= Op

(
‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥) ,
and

T
1
2 Ξ3

(
dγT ,dγ†T , dγ

‡
T

)
= T−1

T∑
t=1

(
d3 log pjt

(
dγ,dγ†,dγ‡

))
= Op

(
‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥) .
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1.C Proof of Theorem 1.7

For the first term, observe that by Assumption 1.5, we have

∣∣∣T 1
2 Ξ1

(
dγT , dγ†T ,dγ

‡
T

)∣∣∣ ≤cT−1
T∑
t=1
‖Zt−1‖3 ‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥
≤cT−1

T∑
t=1

∥∥∥(X ′t−1β : ∆Xt−1
)′∥∥∥3
‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥
≤cT−1

T∑
t=1

(∥∥β′0Xt−1
∥∥3 +

∥∥b′Xt−1
∥∥3 + ‖∆Xt−1‖3

)
‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥ .
and by similar arguments are in Verification of Claim 1.27, with q ≥ 2, one has

cT−1
T∑
t=1

(∥∥β′0Xt−1
∥∥3 +

∥∥b′Xt−1
∥∥3 + ‖∆Xt−1‖3

)
= Op (1) .

For the second and third terms, we have again by Assumption 1.5 that

∣∣∣T 1
2 Ξ2

(
dγT , dγ†T ,dγ

‡
T

)∣∣∣ ≤ cT−1
T∑
t=1
‖Zt−1‖2 ‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥
and ∣∣∣T 1

2 Ξ3
(
dγT ,dγ†T , dγ

‡
T

)∣∣∣ ≤ cT−1
T∑
t=1
‖Zt−1‖ ‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥ .
which are bounded given the results from before. Hence, it holds that

sup
θ∈NT (θ0)

∣∣∣T 1
2 Ξ1

(
dγT ,dγ†T ,dγ

‡
T

)∣∣∣ = Op
(
‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥) ,
sup

θ∈NT (θ0)

∣∣∣T 1
2 Ξ2

(
dγT ,dγ†T ,dγ

‡
T

)∣∣∣ = Op
(
‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥) ,
and

sup
θ∈NT (θ0)

∣∣∣T 1
2 Ξ3

(
dγT ,dγ†T , dγ

‡
T

)∣∣∣ = Op
(
‖dγ‖

∥∥∥dγ†∥∥∥ ∥∥∥dγ‡∥∥∥)
as desired.

Verification of Claim 1.29: The terms we need to consider are given by

T
1
2 Ξ1

(
dαjT ,dα†iT , dα

‡
hT

)
= T−1

T∑
t=1

(d log φjt (dαj))
(
d log φit

(
dα†i

)) (
d log φht

(
dα‡h

))
,

T
1
2 Ξ2

(
dαjT , dα†iT ,dα

‡
hT

)
= T−1

T∑
t=1

(d log φjt (dαj))
(
d2 log φit

(
dα†i ,dα

‡
i

))
,

and

T
1
2 Ξ3

(
dαjT ,dα†iT ,dα

‡
hT

)
= T−1

T∑
t=1

d3 log φjt
(
dαj , dα†i , dα

‡
h

)
= 0,
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

which shows T−
1
2 Ξ3 (·) is bounded by definition. Observe next that using the results from

Lemmas 1.31, 1.32 and 1.33, it holds that

|d log φit (dαi)| =
∣∣∣tr{Ω−1

j ε′jtdαjβ?′X?
t−1

}∣∣∣
≤ c

(
‖εjt‖2 +

∥∥β′0Xt−1
∥∥+

∥∥b′Xt−1
∥∥+ 1

)
‖dαj‖

≤ c
(
‖∆Xt‖2 +

∥∥β′0Xt−1
∥∥2 +

∥∥b′Xt−1
∥∥2 + ‖∆Xt−1‖2 + 1

)
‖dαj‖

∣∣∣d2 log φit
(
dα†i ,dα

‡
i

)∣∣∣ =
∣∣∣tr{Ω−1

j X?′
t−1β

?dα†′j dα‡jβ
?′X?

t−1

}∣∣∣
≤ c

(∥∥β′0Xt−1
∥∥2 +

∥∥b′Xt−1
∥∥2 + 1

)
‖dαj‖ .

Hence, we obtain

∣∣∣T 1
2 Ξ1

(
dαj , dα†i ,dα

‡
h

)∣∣∣ ≤cT−1
T∑
t=1

(
‖∆Xt‖2 +

∥∥β′0Xt−1
∥∥2 +

∥∥b′Xt−1
∥∥2 + ‖∆Xt−1‖2 + 1

)3
×

‖dαj‖
∥∥∥dα†j∥∥∥ ∥∥∥dα‡j∥∥∥

≤cT−1
T∑
t=1

(
‖∆Xt‖6 +

∥∥β′0Xt−1
∥∥6 +

∥∥b′Xt−1
∥∥6 + ‖∆Xt−1‖6 + 1

)
×

‖dαj‖
∥∥∥dα†j∥∥∥ ∥∥∥dα‡j∥∥∥ ,

and ∣∣∣T 1
2 Ξ2

(
dαj , dα†i , dα

‡
h

)∣∣∣
≤cT−1

T∑
t=1

(
‖∆Xt‖2 +

∥∥β′0Xt−1
∥∥2 +

∥∥b′Xt−1
∥∥2 + ‖∆Xt−1‖2 + 1

)
×(∥∥β′0Xt−1

∥∥2 +
∥∥b′Xt−1

∥∥2 + 1
)
‖dαj‖

∥∥∥dα†j∥∥∥ ∥∥∥dα‡j∥∥∥
≤cT−1

T∑
t=1

(
‖∆Xt‖4 +

∥∥β′0Xt−1
∥∥4 +

∥∥b′Xt−1
∥∥4 + ‖∆Xt−1‖4 + 1

)
×

‖dαj‖
∥∥∥dα†j∥∥∥ ∥∥∥dα‡j∥∥∥ .

Applying the same arguments as in the proof of claim 1.27, it holds that

sup
θ∈NT (θ0)

∣∣∣T 1
2 Ξ1

(
dαj,T , dα†i,T ,dα

‡
h,T

)∣∣∣ = Op
(
‖dαj‖

∥∥∥dα†j∥∥∥ ∥∥∥dα‡j∥∥∥)
and

sup
θ∈NT (θ0)

∣∣∣T 1
2 Ξ2

(
dαj,T , dα†i,T ,dα

‡
h,T

)∣∣∣ = Op
(
‖dαj‖

∥∥∥dα†j∥∥∥ ∥∥∥dα‡j∥∥∥) .
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Verification of Claim 1.30: The terms that need to be checked are

T
1
2 Ξ1

(
dΩjT ,dΩ†iT ,dΩ‡hT

)
= T−1

T∑
t=1

(d log φjt (dΩj))
(
d log φjt

(
dΩ†j

)) (
d log φjt

(
dΩ‡j

))
,

T
1
2 Ξ2

(
dΩjT ,dΩ†iT ,dΩ‡hT

)
= T−1

T∑
t=1

(d log φjt (dΩi))
(
d2 log φit

(
dΩ†j , dΩ‡j

))
,

and

T
1
2 Ξ3

(
dΩjT , dΩ†iT , dΩ‡hT

)
= T−1

T∑
t=1

d3 log φjt
(
dΩi,dΩ†j ,dΩ‡j

)
.

Observe initially that using the definitions of dλjt (dΩj), d2λjt
(
dΩjdΩ†i

)
and d2λjt

(
dΩj , dΩ†i ,dΩ‡h

)
from Lemmas 1.31, 1.32 and 1.33, it holds that

|d log φjt (dΩj)| = |dλjt (dΩj)| ≤ c ‖εjt‖2 ‖dΩj‖ ,∣∣∣d2 log φit
(
dΩ†j , dΩ‡j

)∣∣∣ =
∣∣∣d2λjt

(
dΩjdΩ†i

)∣∣∣ ≤ c ‖εjt‖2 ‖dΩj‖
∥∥∥dΩ†i

∥∥∥
and ∣∣∣d3 log φjt

(
dΩi,dΩ†j , dΩ‡j

)∣∣∣ =
∣∣∣d3λjt

(
dΩj , dΩ†i ,dΩ‡h

)∣∣∣ ≤ c ‖εjt‖2 ‖dΩj‖
∥∥∥dΩ†i

∥∥∥ ∥∥∥dΩ‡h
∥∥∥ ,

such that

∣∣∣T 1
2 Ξ1

(
dΩjT , dΩ†iT ,dΩ‡hT

)∣∣∣ ≤ cT−1
T∑
t=1
‖εjt‖6 ‖dΩj‖

∥∥∥dΩ†i
∥∥∥ ∥∥∥dΩ‡h

∥∥∥ ,
∣∣∣T 1

2 Ξ2
(
dΩjT , dΩ†iT ,dΩ‡hT

)∣∣∣ ≤ cT−1
T∑
t=1
‖εjt‖4 ‖dΩj‖

∥∥∥dΩ†i
∥∥∥ ∥∥∥dΩ‡h

∥∥∥ ,
and ∣∣∣T 1

2 Ξ3
(
dΩjT , dΩ†iT ,dΩ‡hT

)∣∣∣ ≤ cT−1
T∑
t=1
‖εjt‖2 ‖dΩj‖

∥∥∥dΩ†i
∥∥∥ ∥∥∥dΩ‡h

∥∥∥ .
Now, notice that ignoring cross-terms, we obtain

cT−1
T∑
t=1
‖εjt‖6 ≤ cT−1

T∑
t=1

(
‖∆Xt‖6 +

∥∥β′0Xt−1
∥∥6 +

∥∥b′Xt−1
∥∥6 + ‖∆Xt−1‖6 + 1

)
,

which for θ ∈ NT (θ0) is bounded using the same arguments as in the proof of claim 1.27, such
that

sup
θ∈NT (θ0)

∣∣∣T 1
2 Ξ1

(
dΩjT ,dΩ†iT ,dΩ‡hT

)∣∣∣ = Op
(
‖dΩj‖

∥∥∥dΩ†i
∥∥∥ ∥∥∥dΩ‡h

∥∥∥) .
Similar results then follow for T

1
2 Ξ2 (·) and T

1
2 Ξ3 (·) only with lower requirements for the exis-

tence of moments.

37



1 Likelihood-based inference in dynamic mixture cointegrated VAR models

1.D Likelihood Derivatives

Let dcu· indicate dc· (θ; dθu), d2cuv· indicate d2c· (θ; dθu; dθv) and d3cuvw· indicate
d3c· (θ; dθu; dθv; dθw) where dθu,dθv and dθw indicate any of dθ,dθ†, dθ‡.

Lemma 1.31. The first order differential of `t is

d`ut =
∑
j∈M

p?jtdλujt (1.51)

where dλjt is defined in section 1.7. We have for any (j, i) ∈M2,

dλjt (db) = X ′t−1db
(
α′jΩ−1

j εjt + ψ′β (∂z log pjt)′
)

(1.52)

dλjt (dbD) = dbDα′jΩ−1
j εjt (1.53)

dλjt (dαi) = 1 {j = i}X?′
t−1β

?dα′iΩ−1
i εit. (1.54)

dλjt (dΓi) = 1 {j = i}∆X′t−1dΓ′iΩ−1
i εit (1.55)

dλjt (dΩi) = 1 {j = i} 1
2tr

{
Ω−1
i dΩiΩ−1

i

(
εitε
′
it − Ωi

)}
(1.56)

dλjt (dγ) = ∂γ log p′jtdγ. (1.57)

Proof. The derivation of the score follows by applying standard differential calculus, see e.g.
Magnus and Neudecker (1999).

Lemma 1.32. The second order differential of `t is

d2`uvt =
∑
j∈M

(
dp?vjt dλujt + p?jtd2λuvjt

)
=

=
∑
j∈M

p?jtdλvjtdλujt −
∑
j∈M

p?jtdλujt
∑
i∈M

p?itdλvit +
∑
j∈M

p?jtd2λuvjt

where
dp?vjt = p?jtdλvjt − p?jt

∑
i∈M

p?itdλvit (1.58)

and
d2λuvjt = d2 log puvjt + d2 log φuvjt . (1.59)

Next, we have for any (j, i, h) ∈M3,

d2λjt
(
db, db†

)
= X ′t−1db

(
ψ′β∂

2
zz log pjtψβ − α′jΩ−1

j αj
)

db†′Xt−1

d2λjt
(
db, db†D

)
= X ′t−1dbα′jΩ−1

j αjdb†D
d2λjt

(
db,dα†i

)
= 1 {j = i}X ′t−1db

(
dα†′j Ω−1

j εjt − α′jΩ−1
j dα†jβ

?′X?
t−1

)
d2λjt

(
db,dΓ†i

)
= −1 {j = i}X ′t−1db

(
α′jΩ−1

j dΓ†j∆Xt−1
)

d2λjt
(
db,dΩ†i

)
= −1 {j = i}X ′t−1db

(
α′jΩ−1

j dΩ†jΩ
−1
j εjt

)
d2λjt

(
db, dγ†

)
= X ′t−1dbψβ∂2

zγ log pjtdγ†
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1.D Likelihood Derivatives

and

d2λjt
(
dbD,db†D

)
= dbDα′jΩ−1

j αjdbD

d2λjt
(
dbD,dα†i

)
= 1 {j = i} dbD

(
dα†′j Ω−1

j εjt − α′jΩ−1
j dα†jβ

?′X?
t−1

)
d2λjt

(
dbD,dΓ†i

)
= −1 {j = i} dbD

(
α′jΩ−1

j dΓ†j∆Xt−1
)

d2λjt
(
dbD, dΩ†i

)
= −1 {j = i} db

(
α′jΩ−1

j dΩ†jΩ
−1
j εjt

)
d2λjt

(
db,dγ†

)
= dbDψβ∂2

zγ log pjtdγ†

and

d2λjt
(
dαi, dα†h

)
= −1{j = i = h}X?′

t−1β
?dα′jΩ−1

j dα†jβ
?′X?

t−1

d2λjt
(
dαi,dΓ†h

)
= −1{j = i = h}X?′

t−1β
?dα′jΩ−1

j dΓ†j∆Xt−1

d2λjt
(
dαi, dΩ†h

)
= −1{j = i = h}X?′

t−1β
?dα′jΩ−1

j dΩ†jΩ
−1
j εjt

d2λjt
(
dαi, dγ†

)
= 0

and

d2λjt
(
dΓi, dΓ†h

)
= −1{i = j = h}∆X′t−1dΓ′jΩ−1

j dΓ†j∆Xt−1

d2λjt
(
dΓi,dΩ†h

)
= −1{i = j = h}∆X′t−1dΓ′jΩ−1

j dΩ†jΩ
−1
j εjt

d2λjt
(
dΓi, dγ†

)
= 0

and

d2λjt
(
dΩi,dΩ†h

)
=− 1{i = j = h}1

2
(
tr
{

Ω−1
j dΩ†jΩ

−1
j dΩjΩ−1

j

(
εjtε

′
jt − Ωj

)}
+tr

{
Ω−1
j dΩjΩ−1

j dΩ†jΩ
−1
j

(
εjtε

′
jt − Ωj

)}
+tr

{
Ω−1
j dΩjΩ−1

j dΩ†j
})

d2λjt
(
dΩi, dγ†

)
=0

and
d2λjt

(
dγ,dγ†

)
= dγ′

(
∂2
γγ log pjt

)′
dγ†

Proof. The results follow by applying standard matrix differential calculus, see e.g. Magnus and
Neudecker (1999).

Lemma 1.33. The third order differential of the log-likelihood contribution from (1.18) is given
by

d3`t
(
θ; dθ,dθ†,dθ‡

)
=
∑
j∈M

{
d2p?jt

(
dθ†,dθ‡

)
dλjt (dθ) + dp?jt

(
dθ†
)

d2λjt
(
dθ,dθ‡

)
+ dp?jt

(
dθ‡
)

d2λjt
(
dθ,dθ†

)
+ p?jtd3λjt

(
dθ,dθ†, dθ‡

)}
,
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1 Likelihood-based inference in dynamic mixture cointegrated VAR models

where

d2p?jt

(
dθ†, dθ‡

)
=

∑
i∈M−j

(
dp?jt(dθ‡)p?it + p?jtdp?it(dθ‡)

) (
dλjt

(
dθ†
)
− dλit

(
dθ†
))

+ p?jt
∑

i∈M−j
p?it

(
d2λjt

(
dθ†, dθ‡

)
− d2λit

(
dθ†,dθ‡

))

and
d3λjt

(
dθ,dθ†,dθ‡

)
= d3 log pjt

(
dθ,dθ†,dθ‡

)
+ d3 log φjt

(
dθ,dθ†,dθ‡

)
.

Moreover,

d3λjt
(
db,db†,dΓ‡i

)
=0,

d3λjt
(
db,db†,db‡D

)
=0,

d3λjt
(
db, db†,db‡

)
=vec

(
ψ′βdb†′Xt−1X ′t−1dbψβ

)′
× ∂3

zzz log pjtψ′βdb‡′Xt−1,

d3λjt
(
db, db†,dα‡i

)
=− 1 {j = i} 2X ′t−1dbdα‡′j Ω−1

j αjdb†′Xt−1

d3λjt
(
db,db†, dΩ‡i

)
=1 {j = i}X ′t−1dbα′jΩ−1

j dΩ‡jΩ
−1
j αjdb†′Xt−1,

dλ3
jt

(
db, db†,dγ‡

)
=1 {j = i} vec

(
ψ′βdb†′Xt−1X ′t−1dbψβ

)′
×

∂3
zzγ log pjtdγ‡,

and

d3λjt
(
db; db†D, db

‡
D

)
=d3λjt

(
db; db†D,dγ

‡
)

= d3λjt
(
db, db†D,dΓ‡h

)
= 0,

d3λjt
(
db,db†D, dα

‡
h

)
=− 1 {j = i} 2X ′t−1dbdα‡′j Ω−1

j αjdb†′D,

d3λjt
(
db,db†D, dΩ‡h

)
=1 {j = i}X ′t−1dbα′jΩ−1

j dΩ‡jΩ
−1
j αjdb†′D,

and

d3λjt
(
db; dα†i ,dγ

‡
)

=0,

d3λjt
(
db,dα†i ,dΓ‡h

)
=− 1 {i = j = h}X ′t−1dbdα†′j Ω−1

j dΓ‡j∆Xt−1,

d3λjt
(
db,dα†i , dα

‡
h

)
=− 1{i = j = h}2X ′t−1β

?dα†′j Ω−1
j dα‡jdb

′Xt−1,

d3λjt
(
db,dα†i , dΩ‡h

)
=1{i = j = h}X ′t−1db

×
(
α′jΩ−1

j dΩ‡jΩ
−1
j dα†jβ

?′X?
t−1 − dα†′j Ω−1

j dΩ‡jΩ
−1
j εjt

)
and

d3λjt
(
db,dΓ†i ,dΓ‡h

)
= d3λjt

(
db; dΓ†i ,dγ

‡
)

= 0,

d3λjt
(
db,dΓ†i ,dΩ‡h

)
= 1{j = i = h}X ′t−1dbα′jΩ−1

j dΩ‡jΩ
−1
j dΓ†j∆Xt−1,
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1.D Likelihood Derivatives

and

d3λjt
(
db, dΩ†i ,dΩ‡h

)
= −2X ′t−1dbα′jΩ−1

j dΩ‡jΩ
−1
j Ω−1

j dΩ†jΩ
−1
j εjt

d3λjt
(
db, dΩ†i ,dγ

‡
)

= 0,

and
d3λjt

(
db,dγ†,dγ‡

)
= vec

(
dγ†X ′t−1db

)′
∂3
zγγ log pjtdγ‡.

Next,

d3λjt
(
dbD,db†D, db

‡
)

=d3λjt
(
dbD,db†D,db

‡
)

= dλ3
jt

(
dbD, db†D,dγ

‡
)

=d3λjt
(
dbD,db†D,dΓ‡i

)
= 0,

d3λjt
(
dbD,db†D, dα

‡
i

)
=− 1 {j = i} 2dbDdα‡′j Ω−1

j αjdb†′D
d3λjt

(
dbD, db†D,dΩ‡i

)
=1 {j = i} dbDα′jΩ−1

j dΩ‡jΩ
−1
j αjdb†′D,

and

d3λjt
(
dbD,dα†i , dα

‡
h

)
=dλ3

jt

(
dbD,dα†i , dγ

‡
)

= d3λjt
(
dbD, dα†i , dΓ‡i

)
= 0,

d3λjt
(
dbD,dα†i ,dΩ‡i

)
=1{i = j = h}dbD

×
(
α′jΩ−1

j dΩ‡jΩ
−1
j dα†jβ

?′X?
t−1 − dα†′j Ω−1

j dΩ‡jΩ
−1
j εjt

)
and

d3λjt
(
dbD, dΓ†i , dΩ‡h

)
= 0

d3λjt
(
dbD,dΩ†i , dΩ‡h

)
= −2dbDα′jΩ−1

j dΩ‡jΩ
−1
j Ω−1

j dΩ†jΩ
−1
j εjt.

Next, we have

d3λjt
(
dαi, dα†h,dα

‡
l

)
= d3λjt

(
dαi; dα†h,dΓ‡l

)
= d3λjt

(
dαi; dα†h,dγ

‡
)

= d3λjt
(
dαi, dΓ†h, dΓ‡l

)
= d3λjt

(
dΓi,dΓ†h,dΓ‡l

)
= d3λjt

(
dΓi,dΓ†h, dγ

‡
)

= dλjt
(
dΩi, dΩ†h,dγ

‡
)

= 0

and

d3λjt
(
dαi,dα†h, dΩ‡l

)
=1{j = i = h = l}X?′

t−1β
?dα′jΩ−1

j dΩjΩ−1
j dα†jβ

?′X?
t−1

d3λjt
(
dαi, dΓ†h, dΩ‡l

)
=1 {i = j = h = l}X?′

t−1β
?dα′jΩ−1

j dΩ‡jΩ
−1
j dΓ†j∆Xt−1

d3λjt
(
dΓi, dΓ†h,dΩ‡l

)
=− 1{j = i = h = l}∆X′t−1dΓjΩ−1

j dΩ‡jΩ
−1
j dΓ†j∆Xt−1

dλjt
(
dΩi, dΩ†h,dΩ‡l

)
=1{j = i = h = l}1

2tr
{

Ω−1
j dΩ‡jΩ

−1
j dΩ†jΩ

−1
j dΩjΩ−1

j

(
εjtε

′
jt − Ωj

)}
+ 1{j = i = h = l}1

2tr
{

Ω−1
j dΩ†jΩ

−1
j dΩ‡jΩ

−1
j dΩjΩ−1

j

(
εjtε

′
jt − Ωj

)}

41



1 Likelihood-based inference in dynamic mixture cointegrated VAR models

+ 1{j = i = h = l}1
2tr

{
Ω−1
j dΩ†jΩ

−1
j dΩjΩ−1

j dΩ‡jΩ
−1
j

(
εjtε

′
jt − Ωj

)}
+ 1{j = i = h = l}1

2tr
{

Ω−1
j dΩ‡jΩ

−1
j dΩjΩ−1

j dΩ†jΩ
−1
j

(
εjtε

′
jt − Ωj

)}
+ 1{j = i = h = l}1

2tr
{

Ω−1
j dΩjΩ−1

j dΩ‡jΩ
−1
j dΩ†jΩ

−1
j

(
εjtε

′
jt − Ωj

)}
+ 1{j = i = h = l}1

2tr
{

Ω−1
j dΩjΩ−1

j dΩ†jΩ
−1
j dΩ‡jΩ

−1
j

(
εjtε

′
jt − Ωj

)}
+ 1

2tr
{

Ω−1
j dΩ‡jΩ

−1
j dΩjΩ−1

j dΩ†
}

+ 1
2tr

{
Ω−1
j dΩjΩ−1

j dΩ‡jΩ
−1
j dΩ†

}
and finally,

d3λjt
(
dγ,dγ†, dγ‡

)
= vec

(
dγ†dγ′

)′
∂3
γγγ log pjtdγ‡.

Proof. The derivations follows by standard matrix calculus applying the notation from Magnus
and Neudecker (1999).

1.E Auxiliary Lemmas

Lemma 1.34. With φjt defined in (1.19), it holds that

E

∑
j∈M

p?jt

(
(d log φjt (θ; dθ))′

(
d log φjt

(
θ; dθ†

))
− d2 log φjt

(
θ; dθ; dθ†

))
| Zt−1

 = 0.

Proof. Note first that for some parameter, A ∈ {θ}r Ω, one has

d log φjt (θ; dA) = −tr
{

Ω−1
j εjt (θ) dε′jt (θ; dA)

}
,

d2 log φjt
(
θ; dA,dA†

)
= −tr

{
Ω−1
j dεjt

(
θ; dA†

)
dε′jt (θ; dA)

}
and

(d log φjt (θ; dA))′
(
d log φjt

(
θ; dA†

))
=tr

{
Ω−1
j εjt (θ) εjt (θ)′Ω−1

j dεjt (θ; dA) dε′jt
(
θ; dA†

)}
.

Note further that

E
[
(d log φjt (θ; dA))′

(
d log φjt

(
θ; dA†

))
| Zt−1

]
= tr

{
Ω−1
j dεjt (θ; dA) dε′jt

(
θ; dA†

)}
= d2 log φjt

(
θ; dA,dA†

)
.

Next, observe that for some parameter Ωi ∈ {Ω1,Ω2, ...,Ωm} it holds that

d log φjt (θ; dΩi) = −1 {j = i} 1
2tr

{
Ω−1
j dΩj

}
+ 1

2tr
{

Ω−1
j εjtε

′
jtΩ−1

j dΩj

}
= −1 {j = i} 1

2tr
{

Ω−1
j dΩj − Ω−1

j εjtε
′
jtΩ−1

j dΩj

}
= −1 {j = i} 1

2tr
{(
In − Ω−1

j εjtε
′
jt

)
Ω−1
j dΩj

}
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and

(d log φjt (θ; dΩi))′
(
d log φjt

(
θ; dΩ†h

))
=1 {j = i = h} 1

4tr
{

Ω−1
j dΩj

}
tr
{

Ω−1
j dΩ†j

}
+ 1 {j = i = h} 1

4tr
{

Ω−1
j εjtε

′
jtΩ−1

j dΩjΩ−1
j εjtε

′
jtΩ−1

j dΩ†j
}

− 1 {j = i = h} 1
4tr

{
Ω−1
j dΩj

}
tr
{

Ω−1
j εjtε

′
jtΩ−1

j dΩ†j
}

− 1 {j = i = h} 1
4tr

{
Ω−1
j dΩ†j

}
tr
{

Ω−1
j εjtε

′
jtΩ−1

j dΩj

}
and

d2 log φjt
(
θ; dΩj ,dΩ†j

)
=1 {j = i = h} 1

2tr
{

Ω−1
j dΩ†jΩ

−1
j dΩj

}
− 1 {j = i = h} 1

2tr
{

Ω−1
j dΩ†jΩ

−1
j εjtε

′
jtΩ−1

j dΩj

}
− 1 {j = i = h} 1

2tr
{

Ω−1
j εjtε

′
jtΩ−1

j dΩ†jΩ
−1
j dΩj

}
Moreover, using E

[
εjtε

′
jt | Zt−1

]
= Ωj it holds that

E [d log φjt (θ; dΩj) | Zt−1] = −1 {j = i} 1
2E

[
tr
{(
In − Ω−1

j εjtε
′
jt

)
Ω−1
j dΩj

}
| Zt−1

]
= 0,

and

E
[
(d log φjt (θ; dΩj))′

(
d log φjt

(
θ; dΩ†j

))]
=1 {j = i = h} 1

4E
[
ε′jtΩ−1

j dΩjΩ−1
j εjtε

′
jtΩ−1

j dΩ†jΩ
−1
j εjt | Zt−1

]
− 1 {j = i = h} 1

4tr
{

Ω−1
j dΩ†j

}
tr
{

Ω−1
j Ω−1

j dΩj

}
.

Now, assuming εjt symmetric, we have

E
[
(d log φjt (θ; dΩj))′

(
d log φjt

(
θ; dΩ†j

))]
=1 {j = i = h} 1

2tr
{

Ω−1
j dΩjΩ−1

j dΩ†j
}

+ 1 {j = i = h} 1
4tr

{
Ω−1
j dΩ†j

}
tr
{

Ω−1
j dΩj

}
− 1 {j = i = h} 1

4tr
{

Ω−1
j dΩ†j

}
tr
{

Ω−1
j dΩj

}
=1 {j = i = h} 1

2tr
{

Ω−1
j dΩjΩ−1

j dΩ†j
}
.

Finally, it holds that

E
[
d2 log φjt

(
θ; dΩj , dΩ†j

)
| Zt−1

]
=1 {j = i = h} 1

2tr
{

Ω−1
j dΩ†jΩ

−1
j dΩj

}
− 1 {j = i = h} tr

{
Ω−1
j dΩ†jΩ

−1
j dΩj

}
=− 1 {j = i = h} 1

2tr
{

Ω−1
j dΩ†jΩ

−1
j dΩj

}
,
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such that

E

∑
j∈M

p?jt

(
(d log φjt)′ (d log φjt)− d2 log φjt

)
| Zt−1

 = 0

as was desired.

Lemma 1.35. With dλjt given in section 1.7.1, we have that

E

∑
j∈M

p?jt

(
(dλjt (dϑ))′ dλjt

(
dϑ†

)
− d2λjt

(
dθ,dϑ†

))
| Zt−1

 = 0,

where ϑ is give by (1.16).

Proof. First observe that

(dλjt (dϑ))′ dλjt
(
dϑ†

)
− d2λjt

(
dϑ,dϑ†

)
= (d log φjt (θ; dϑ))′ d log φjt

(
θ; dϑ†

)
− d log φjt

(
θ; dϑ, dϑ†

)
+ (d log pjt (θ; dϑ))′ d log pjt

(
θ; dϑ†

)
− d2 log pjt

(
θ; dϑ; dϑ†

)
+ (d log pjt (θ; dϑ))′ d log φjt

(
θ; dϑ†

)
+ (d log φjt (θ; dϑ))′

(
d log pjt

(
θ; dϑ†

))
Now, it holds by Lemmas 1.34 and 1.19 that

E

∑
j∈M

p?jt (d log φjt (θ; dϑ))′ d log φjt
(
θ; dϑ†

)
− d log φjt

(
θ; dϑ, dϑ†

)
| Zt−1

 = 0,

and

E

∑
j∈M

p?jt (d log pjt (θ; dϑ))′ d log pjt
(
θ; dϑ†

)
− d2 log pjt

(
θ; dϑ; dϑ†

)
| Zt−1

 = 0.

Observe next that all cross products,

(d log pjt (θ; dϑ))′
(
d log φjt

(
θ; dϑ†

))
and (d log φjt (θ; dϑ))′

(
d log pjt

(
θ; dϑ†

))
are zero. This completes the proof.

1.F Smoothness of probability parametrization

In this Appendix, we verify that Assumption 1.5 is satisfied by the specifications in Section 1.4.
Note that log pjt = log pt+ log πjt.1 for j ∈M1 and log p = log (1− pt) + log πjt.2 for j ∈M2. We
show that Assumption 1.5 holds separately for log pt and log πjt.i; this implies that Assumption
1.5 holds for log pjt.
We hence let p indicate either pt or πjt.i, and write p = f (exp (g)) where f (x) = 1 − 1/x

and g (z; %) = (z − µ) Λ (z − µ) for the exponential specification of pt, f (x) = x/ (x+ 1) and
g (z; %) = (z − µ) Λ (z − µ)−$ for the logistic specification of pt, f (x) = x/ (x+ c) and g (z; ζ) =
ζ ′jz for the logistic specification of πjt.i.
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We note that for all specifications p > 0 and that

∂u log p = p−1∂up,

∂uv log p = −p−2 (∂up)′ (∂vp) + p−1∂uvp,

∂uvw log p = 2p−3
(
(∂up)′ ⊗ (∂vp)′

)
∂wp− p−2

(
(∂vp′ ⊗ I)∂uwp+ (I ⊗ (∂up)′)∂vwp

)
+

−p−2vec (∂uvp) ∂wp+ p−1∂uvwp,

where, indicating the j-th derivative of f as f (j)(x) and letting f (j) = f (j)(exp (g)),

∂up = exp (g) f (1)∂ug,

∂uvp = exp (2g) f (2) (∂ug)′ (∂vg)

+ exp (g) f (1) (∂ug)′ (∂vg) + exp (g) f (1)∂uvg, (1.60)

∂uvwp = 2 exp (2g) f (2)vec
(
(∂ug)′ (∂vg)

)
∂wg

+ exp (2g) f (3)vec
(
(∂ug)′ (∂vg)

)
∂wg

+ exp (2g) f (2)
(
(∂vg′ ⊗ I)∂uwg + (I ⊗ (∂ug)′)∂vwg

)
+ exp (2g) f (2)vec

(
(∂ug)′ (∂vg)

)
∂wg

+ exp (g) f (1)vec
(
(∂ug)′ (∂vg)

)
∂wg

+ exp (g) f (1)
(
(∂vg′ ⊗ I)∂uwg + (I ⊗ (∂ug)′)∂vwg

)
+ exp (2g) f (2)vec (∂uvg) ∂wg

+ exp (g) f (1)vec (∂uvg) ∂wg + exp (g) f (1)∂uvwg. (1.61)

In the following, we show that (i) exp (jg) f (j) = O (exp (−‖g‖)) with j = 1, 2 and (ii) ∂ug, ∂uvg,
∂uvwg are at most quadratic in ‖z‖ for large ‖z‖. Conditions (i) and (ii) are sufficient to ensure
that Assumption 1.5 holds for log pjt because all terms in (1.60) contain one term exp (jg) f (j)

multiplied by products of ∂ug, ∂uvg, ∂uvwg. We next discuss conditions (i) and (ii) in turn.

Condition (i). For the case f (x) = 1 − 1/x in the exponential specification of pt, one has
f (j) (x) = (−1)j+1 j!x−(j+1) so that exp (jg) f (j) = exp (jg) (−1)j+1 j! exp (− (j + 1)g)) = O (exp (−‖g‖)).
For the case f (x) = x/ (x+ c) in the logistic specification of pt (with c = 1) and in the lo-
gistic specification of πjt.i, one finds f (j) (x) = (−1)j+1 j! (x− c)−(j+1) so that exp (jg) f (j) =
exp (jg) (−1)j+1 j! (exp (−g)− c)−(j+1) = O (exp (−‖g‖)). Hence in both cases one has exp (jg) f (j) =
O (exp (−‖g‖)) with any j = 1, 2, ....

Condition (ii). It is simple to verify that ∂ug, ∂uvg, ∂uvwg are at most quadratic in ‖z‖. In
fact, in the case g (z; %) = (z − µ) Λ (z − µ), the first derivatives are ∂µg = −∂zg = −2 (z − µ)′ Λ,
∂vecΛg = (z − µ)⊗ (z − µ), the second derivatives are

∂µzg = ∂zµg = −∂µµg = −∂zzg = 2Λ,

∂vecΛµg = −∂vecΛzg = − (I ⊗ (z − µ))− ((z − µ)⊗ I) , ∂vecΛvecΛg = 0,
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and third order derivatives (where here (uvw) means uvw in any order)

∂µzvecΛg = ∂zµvecΛg = −∂µµvecΛg = −∂zzvecΛg = 2I,

∂(zµµ)g = ∂(µzz)g = ∂zzzg = ∂µµµg = 0,

∂vecΛvecΛzg = ∂vecΛvecΛµg = 0, ∂vecΛµzg = −∂vecΛzzg = c.

Similar derivations apply for g (z; %) = (z − µ) Λ (z − µ)−$, which is a translation of the above
case, and to the linear case g (z; ζ) = ζ ′jz.
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2 Estimation and testing in dynamic mixture
cointegrated VAR models

We discuss model selection, estimation and testing within the ACR cointegrated
model discussed in chapter one. A framework based on generalized linear restrictions
is used to consider estimation of restricted models. We discuss construction of like-
lihood ratio tests, in two separate cases. First, a regular case, where all parameters
are identified under the null hypothesis; and second, an irregular case, where some
parameters are unidentified under the null hypothesis. We apply the asymptotic the-
ory given in chapter one to derive the asymptotic distribution of the likelihood ratio
test in the regular case. In both cases asymptotic inference is non-standard and the
distributions are nuisance parameter dependent. We propose a bootstrap algorithm
to simulate these distributions and investigate its performance through simulations.

2.1 Introduction

In chapter one, the dynamic mixture cointegrated VAR model called the Autoregressive Con-
ditional Root (ACR) cointegrated model was introduced and the asymptotic theory for the
maximum likelihood estimator was derived. This chapter takes a more practical approach and
considers estimation and testing by building an encompassing framework that allows for anal-
ysis of a wide range of differently specified ACR cointegrated models. The framework is based
on the principles of generalized linear restrictions of the type discussed in Boswijk and Doornik
(2004). These principles turn out to be practical not only for identifying the cointegration vector
and imposing testable restrictions, but also provides a convenient way of selecting which of the
model parameters are chosen to be switching. Moreover, we show that it is straight forward to
modify the estimators of the EM algorithm from Bec and Rahbek (2004) and Bec et al. (2008) to
allow for generalized linear restrictions and to accommodate for estimation of the cointegration
relations. The properties of the extended EM algorithm in small samples is evaluated through
a simple Monte Carlo simulation study, using the example system discussed in chapter one,
section 1.5 as the data generating process.
Next, we discuss implementation and asymptotic theory of the likelihood ratio test. In par-

ticular, testing in two different cases is considered. First, a regular case where all parameters
are identified under the null and under the alternative; and second an irregular case where some
parameters are unidentified under the null. The irregular case is well known from the literature
on non-linear autoregressive models since it arises in particular when one wishes to test for lin-
earity, see inter alia Davies (1987); Andrews and Ploberger (1994); Hansen (1996); Caner and
Hansen (2001) and Kristensen and Rahbek (2013). The asymptotic theory developed in chapter
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one is applied to show convergence in distribution of the likelihood ratio test in the regular case,
while the theory for the irregular case still needs to be developed, since the results of Kristensen
and Rahbek (2013) are not directly transferable. However, we do believe that such a theorem
can be worked out and we state a convergence result for the irregular case as a conjecture. For
both the regular and the irregular cases, the distributions of the test statistics are nuisance
parameter depend when the cointegration vectors are estimated. Consequently, inference based
on χ2 approximations is invalid and instead, these distributions must be simulated on a case by
case basis.
We introduce a semi-parametric, model-based bootstrap algorithm that relies on resampling

of the estimated residuals. This algorithm applies principles from the bootstrap literature on
linear dynamic models discussed in, inter alia Bose (1988); Horowitz (2001); Lahiri (2003);
Kreiss and Paparoditis (2011); Cavaliere and Taylor (2008); Cavaliere et al. (2010a,b, 2012).
The performance of the proposed bootstrap algorithm is investigated through simulation.
This chapter is structured as follows. Section 2.2 presents the model and discusses specifica-

tion and estimation subject to generalized linear restrictions. Section 2.2.4 contains a Monte
Carlo simulation experiment illustrating the small sample properties of the maximum likelihood
estimator based on the EM algorithm. Section 2.3 discusses hypothesis testing based on likeli-
hood ratio statistics. Section 2.4 presents the bootstrap algorithm and investigates its validity
through two simulation experiments. Finally, section 2.5 concludes
We use the same definitions for standard matrices and operators as in chapter one.

2.2 Model specification and estimation

In this section, we briefly present the model, discuss model specification based on generalized
linear restrictions and introduce an iterative algorithm for estimation under these restrictions.

2.2.1 The model

The n-dimensional ACR cointegrated process, Xt, is generated by the equations

∆Xt =
∑
j∈M

1 {st = j}
(
αjβ

?′X?
t−1 + Γj∆Xt−1 + Vjεt

)
=

∑
j∈M

1 {st = j} (ΦjUt−1 + Vjεt) with εt ∼ i.i.d. (0, In) , (2.1)

where the same definitions as in chapter one, section 1.2 have been used. In addition, we intro-
duce the collecting variable, Ut, is defined as Ut = (X?′

t β
?,∆X′t)

′ and the collecting parameters
Φj = (αj ,Γj), Φ := (Φ1 : · · · : Φm) and Ω := (Ω1 : · · · : Ωm). The parameters are collected into
the vector

Θ =
(
vec

(
β?′
)′ : vec (Φ)′ : vec (Ω)′ : γ′

)′
=

(
vec

(
β′
)′ : β′D : vec (Φ)′ : vec (Ω)′ : γ′

)′
.

We denote the regime switching probability as pjt := P (st = j | zt−1; γ), where zt := ψ′Zt,

48



2.2 Model specification and estimation

Zt = (X ′tβ,∆X′t)
′ and ψ is some selection matrix. The vector, γ, is the parameter indexing the

probability function. Note that Ut 6= Zt since only Ut contains the constant term in the cointe-
gration relations. For a full description of the model, the necessary assumptions for stationarity
and ergodicity of the process as well as examples of predicted state probabilities, see chapter
one.

2.2.2 Model selection and identification of parameters

When applying the ACR cointegrated model to data, it will often be of interest to fix some of
the parameters across regimes from the outset and to impose identifying restrictions on other
parameters. We will denote the vector of freely varying elements of Θ as θ, where

Θ = HΘθ + hΘ

with HΘ is a selection matrix and hΘ a normalizing vector such as discussed by Boswijk and
Doornik (2004). We further partition θ such that

θ :=
(
ϕ′ : $′ : ω′ : δ′

)′ (2.2)

where ϕ, $, ω and δ are the freely varying elements of vec (β?′), vec (Φ), vec (Ω) and δ, respec-
tively.

Example 2.1. As an example, consider the simulated process given in chapter one, section
1.5. In this system, the short run parameters, Γj , where set to be equal across regimes, i.e.
Γ1 = Γ2 = Γ3. This condition ensures that assumption 1.3 is satisfied despite having non-
stationary regimes and having that the switching only depends on β′Xt−1. Hence that model
is a special case of the model given in (2.1). We can enforce this property by introducing the
selection matrix HΦ and a normalizing vector hΦ, such that

vec (Φ) =
(
vec (α1)′ : vec (Γ)′ : vec (α2)′ : vec (Γ)′ : vec (α3)′ : vec (Γ)′

)′
= HΦ

(
vec (α1)′ : vec (Γ)′ : vec (α2)′ : vec (α3)′

)′
+ hΦ

= HΦ$ + hΦ

where

HΦ =



I2 0 0 0
0 I4 0 0
0 0 I2 0
0 I4 0 0
0 0 0 I2

0 I4 0 0


and hΦ = 012×1.

The vector of freely varying parameters of Φ is then given by $. Observe further that since Ωj

for all j ∈M are symmetric matrices we set

vec (Ω) =
(
vech (Ω1)′D′n : vech (Ω2)′D′n : vech (Ω3)′D′n

)′
= HΩω + hΩ
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where HΩ = diag (Dn,Dn,Dn), hΩ = 09×1 and ω = (ω′1 : ω′2 : ω′3)′, with ωj = vech (Ωj) where

Ωj =
(
ω11,j ω12,j

ω12,j ω22,j

)

for all j ∈ {1, 2, 3}. For identification of the cointegration relations we introduce Hβ and hβ

such that
vec

(
β?′
)

=
(
H ′β : H ′βD

)′ (
ϕ′β : ϕ′βD

)′
+ hβ? =: Hβ?ϕ+ hβ?

and H = (02×1 : I2)′ and hβ? = (1 : 01×2)′. Finally, recall that the probability parameters
for this example are given by γ = (Λ : µ : ζ1 : ζ2 : ζ3)′ and that the regime structure was such
that M1 = {1, 2}, and M2 = 3. The parameters entering the second layer regime switching
specification were ζ = (ζ1 : ζ2 : ζ3)′, one needs to set ζ1 = ζ3 = 0 to identify ζ. We can once
again impose that identification through the matrix Hγ and the vector hγ such that

γ = (Λ : µ : 0 : ζ2 : 0)′ = Hγ (Λ : µ : ζ2)′ + hγ =: Hγδ + hγ .

In all the we obtain the unrestricted parameters of the selected, identified model as given by
(2.2).

2.2.3 Maximum likelihood estimation

The Gaussian (log-)likelihood as a function of θ can be written as

LT (θ) =
T∑
t=1

`t (θ) =
T∑
t=1

∑
j∈M

log (pjtφjt) (2.3)

with pjt defined in the previous section and φjt given by

log φjt = −1
2 log (2π)− 1

2 log (Ωj)−
1
2ε
′
jtΩ−1

j εjt

and
εjt := ∆Xt − αjβ?′X?

t−1 − Γj∆Xt−1 = ∆Xt − ΦjZt−1.

Define further the filtered probabilities,

p?jt := P (st = 1 | Zt, Zt−1) = pjtφjt∑
j∈M pjtφjt

which play a central role in the following estimation algorithm.
The algorithm considered here is an extension of the ones given in Bec et al. (2004) and

Bec et al. (2008). As noted in Bec et al. (2008), maximizing the likelihood using the updating
recursions discussed in the following is equivalent to applying an EM algorithm. It turns out
that the EM-loglikelihood to be maximized in the so-called M-step is given by

LEMT (θ) =
T∑
t=1

∑
j∈M

p?jt (log pjt + log φjt) . (2.4)
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2.2 Model specification and estimation

Closed form estimators for $ and ω given p?jt are provided in Lemmas 2.12 and 2.13 found in
Appendix 2.A. The cointegration parameters, ϕβ, and the probability parameters, γ, do not
have closed form estimators and numerical methods are used for those.

Algorithm 2.2. Algorithm for maximizing the likelihood

1. Set initial values for the parameters, denoted ϕ̂1, $̂1, ω̂1 and δ̂1 and calculate the value of
the likelihood function at the initial step, LT (θ1).

2. Set the iteration number to i = 2.

3. Update the filtered probabilities, to obtain p̂?jt,i using ϕ̂i, $̂i, ω̂i and δ̂i.

4. Find ϕ̂i by numerically maximizing (2.4) with respect to ϕ holding $̂i−1, ω̂i−1, δ̂i−1 and
p?jt,i fixed.

5. Calculate $̂i using (2.12) from Lemma 2.12 holding p̂?jt,i fixed.

6. Calculate ω̂i using (2.13) from Lemma 2.13 holding p̂?jt,i fixed.

7. Find δ̂i by numerical maximization of (2.4) with respect to δ holding $̂i, ϕ̂i, ω̂i and p?jt,i,
fixed.

8. Calculate LT (θi)− LT (θi−1) and update the iteration number, i = i+ 1.

9. Repeat steps 3-8 until LT (θi)− LT (θi−1) < c, for some small value c.

Remark 2.3. Good candidates for initial values of the parameters of interest can be an important
part of estimating ACR cointegrated models, in particular when the dimension of the system
grows. Unfortunately there is no sure method to easily identify good initial values. One can use
that $ and ω are less sensitive to initial values and that given p?jt, closed form estimators are
available. That is, a fairly robust procedure for finding good initial values is to do a grid search
over the parameters entering the switching probability, namely ϕb and δ, while estimating ϕβD ,
$ and ω using the EM algorithm. This procedure is the generalization of the profile likelihoods
proposed in Bec et al. (2008). The problem is that, when many parameters enter the switching
probability, the curse of dimensionality will result in an unreasonably severe computational
burden. Thus, this approach is in particular infeasible when estimations are done inside the
bootstrap algorithms.
When choosing grids for initial value searches, it will often be necessary to do a little trial

an error to find the relevant regions of the parameters space. However, one can often take
some useful considerations on the shape of the likelihood function and the properties of zt into
account. An example is discussed in chapter four, where the switching probability is logistic. In
that case, the likelihood function can be rippled in the direction of some probability parameters
and of the cointegration vectors, meaning that the grid should be dense in these directions. In
contrast, the likelihood function will in direction only have few local maxima but large flat areas.
Both observations are related to the fact that a limiting model for the logistic cointegrated ACR
model is a threshold error correction model (see e.g. Balke and Fomby (1997); Hansen and
Seo (2002); Seo (2011)) which is known to have a non-smooth likelihood function. Indeed, if
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2 Estimation and testing in dynamic mixture cointegrated VAR models

one finds that the likelihood is very sensitive to initial values for some parameters, it might be
prudent to simplify the switching probability function, fix some of the troublesome parameter
or change framework to e.g. the threshold error correction framework.

Remark 2.4. Observe that the restriction matrices can be chosen such that Φ1 = Φ2 = ... = Φm

and Ω1 = Ω2 = ... = Ωm, which has the consequence that the model becomes linear. Hence,
defining estimation in terms of the restriction principles given above allows for modeling linear
cointegration models within the more general ACR cointegrated framework.

Remark 2.5. Observe that in fact, an estimator conditional on the predicted state probabilities
for ϕβD can be found in this case. However, in chapter three we show that the theory given in
chapter one can be modified such that βD is allowed to enter the probability of switching and in
that case, no closed form estimator will be available for ϕD. The EM-algorithm as it is written
in algorithm 2.2 works for both cases and is thus retained here.

Remark 2.6. This algorithm clarifies the extensions to earlier algorithms since excluding the step
for calculating ϕ̂i reduces the algorithm to multiregime versions of the ones discussed in Bec
and Rahbek (2004) and Bec et al. (2008). However, other alternatives could be considered for
maximizing (2.3). For example, the numerical optimization step for calculating ϕ̂i and δ̂i could
be collected into a single step where the EM-logliklihood is maximized with respect to

(
ϕ̂′i, δ̂

′
i

)′
.

2.2.4 Performance of the MLE

In this section, we evaluate the performance of the presented, extended EM-algorithm through
a simple Monte Carlo simulation study that uses the example from chapter one, section 1.5 as
a data generating process.

Monte Carlo simulations of the estimator

With a total of M = 104 replications, Table 2.1 reports the first summary statistics, including
estimated bias (Bias), root mean square error (RMSE), the 5% and 95% percentiles as well
as the median (Median). Note that even for a moderate sample of T = 500 all parameters
are seen to have close to zero bias and small root mean square error, except for the transition
parameters Λ and ζ2. In particular, note that the distribution of ζ2 is skewed with a think right
tail. This is an artifact of the identification difficulties for logistic shape parameters, an effect
that is discussion in detail in chapter four. Moreover, ζ2 only enters the likelihood when the
process is in regimes belonging to M1, which will tend to enhance this problem.
To investigate these effects for different true values of Λ and ζ2, we consider simulations for

combinations of true values for Λ and ζ2. These are given in table 2.2. Observe that for larger
values of Λ, ζ2 is better identified since more observations will enter regimes in M1. It it also
seen that the bias and root mean square errors grow a lot when the true value of the parameter
grows. This is in particular the case for ζ2 and is a consequence of the logistic structure of this
switching probability, which makes the likelihood flatten out in the direction of ζ2.
In cases with identification difficulties for the probability parameters, one may consider the

option to fix one (or even both) of these parameters at some value(s). Doing so would not affect
the actual shape of the estimated transition function and these numerical problems would cease
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2.2 Model specification and estimation

Table 2.1: Monte Carlo simulations of small sample properties of the Maximum Like-
lihood estimator.

Parameters True Bias RMSE 5 % Percentile Median 95 % Percentile

ϕ̂β -1.000 -0.000 0.008 -1.014 -1.000 -0.986
ϕ̂βD -1.000 -0.012 0.171 -1.329 -0.997 -0.758

α̂1,1 -0.200 -0.004 0.037 -0.267 -0.203 -0.145
α̂2,1 0.000 0.001 0.016 -0.024 0.001 0.028
α̂2,1 0.000 -0.003 0.039 -0.071 -0.001 0.056
α̂2,2 0.200 0.015 0.057 0.138 0.207 0.320
α̂3,1 0.000 0.003 0.070 -0.110 0.004 0.115
α̂3,2 0.000 -0.006 0.076 -0.135 -0.003 0.112

Γ̂11 -0.500 0.003 0.026 -0.539 -0.497 -0.454
Γ̂21 0.000 -0.003 0.026 -0.046 -0.002 0.041
Γ̂12 0.300 -0.003 0.037 0.235 0.297 0.358
Γ̂22 0.010 0.002 0.037 0.042 0.102 0.163

ω̂11,1 0.010 -0.000 0.002 0.007 0.010 0.014
ω̂12,1 0.000 -0.000 0.001 -0.002 -0.000 0.002
ω̂22,1 0.010 -0.000 0.002 0.007 0.010 0.013
ω̂11,2 0.050 -0.001 0.011 0.031 0.048 0.069
ω̂12,2 0.000 -0.000 0.008 -0.013 -0.000 0.012
ω̂22,2 0.050 -0.001 0.011 0.031 0.048 0.069
ω̂11,3 0.100 -0.000 0.010 0.084 0.100 0.117
ω̂12,3 0.000 -0.000 0.07 -0.012 -0.000 0.011
ω̂22,3 0.100 -0.000 0.010 0.084 0.100 0.118

Λ̂ 3.000 0.305 0.960 2.168 3.158 4.884
µ̂ 1.000 -0.010 0.095 0.835 0.990 1.142
ζ̂2 3.000 10.484 54.619 1.934 3.023 33.291
The sample size is 500 and the number of replications is 10000.
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Table 2.2: Monte Carlo Simulations for different values of the probability parameters,
Λ and ζ2.

Parameters True Bias RMSE 5 % Percentile Median 95 % Percentile

Λ̂ 1.000 0.115 0.364 0.640 1.064 1.736
ζ̂2 1.000 1.761 21.790 0.513 0.998 2.135

Λ̂ 1.000 0.137 0.351 0.697 1.082 1.735
ζ̂2 2.000 11.077 54.272 1.153 1.968 35.621

Λ̂ 1.000 0.152 0.346 0.730 1.094 1.745
ζ̂2 3.000 22.984 75.094 1.535 3.013 173.48

Λ̂ 2.000 0.168 0.674 1.306 2.080 3.303
ζ̂2 1.000 0.197 5.283 0.547 0.997 1.819

Λ̂ 2.000 0.196 0.645 1.394 2.098 3.258
ζ̂2 2.000 4.255 33.34 1.273 2.008 7.318

Λ̂ 2.000 0.236 0.641 1.464 2.134 3.334
ζ̂2 3.000 14.218 62.255 1.780 3.031 62.131

Λ̂ 3.000 0.230 0.984 1.963 3.090 4.949
ζ̂2 1.000 0.197 7.080 0.544 1.007 1.698

Λ̂ 3.000 0.238 0.913 2.051 3.104 4.855
ζ̂2 2.000 2.908 29.225 1.333 2.024 4.139

Λ̂ 3.000 0.305 0.960 2.168 3.158 4.884
ζ̂2 3.000 10.484 54.619 1.934 3.023 33.291

The sample size is 500 and the number of replications is 10000 for each set of parameters.
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to exist. Moreover, the limit theory provided in chapter one would still apply for the remaining
parameters.

2.3 Testing hypotheses

Testing hypothesis in this framework can be done using the same type of linear restrictions as
was considered for model selection above. For testing purposes, we introduce the additional
over-identifying restrictions. That is, we can write

θ = Hθυ + hθ

where Hθ and hθ specifies the additional restrictions on θ that we wish to test and υ is the vector
of freely varying parameters under those restrictions. We denote θ̃ as the restricted parameter
vector, i.e. the parameter vector where the freely varying elements are given by υ; and θ̂ as the
unrestricted parameter vector given by (2.2) .

2.3.1 The regular case

Using the definitions given in the previous section, the likelihood ratio test statistic has the form

LRT
(
θ̂, θ̃
)

= −2
[
LT

(
θ̃
)
− LT

(
θ̂
)]

(2.5)

The asymptotic properties follow directly from the asymptotic theory for the estimators given
in chapter one, Theorem 1.7, and are stated in the following Theorem 2.7.

Theorem 2.7. With the ACR cointegrated process defined in chapter one, definition 1.1, using
a suitably defined normalizing matrix WT , and provided assumptions 1.2-1.5 are satisfied with
q ≥ 3, then the following weak convergence result applies to the likelihood ratio test defined in
(2.5),

LRT
(
θ̂, θ̃
)

w→ V (θ0)′V (θ0) ,

where
V (θ) =

(
H ′θ,⊥H (θ0)−1Hθ,⊥

)−1/2
H ′θ,⊥H (θ0)−1 S (θ0) ,

and where S (θ0) and H (θ0) are the limits of W−
1
2

T ST (θ0) and W
− 1

2
T HT (θ0)W−

1
2

T as T → ∞
with the definitions,

ST (θ0) := ∂LT (θ)
∂θ

|θ=θ0 and HT (θ0) := ∂2LT (θ)
∂θ∂θ

|θ=θ0 .

Proof. The proof is given in Appendix 2.B.

2.3.2 The irregular case

The result in the previous section applies to tests where all freely varying parameters are iden-
tified under the null. However, in the ACR cointegrated model (as in many other non-linear
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models) a number of typical hypothesis of interest will result in unidentified parameters under
the null. This is for example the case when testing for linearity where the switching variable
st disappears under the null, and the parameters in the predicted state probabilities no longer
enter the likelihood. In that case, one may apply supremum statistics similar to those considered
in e.g. Davies (1987); Andrews and Ploberger (1994); Hansen (1996); Caner and Hansen (2001)
and Kristensen and Rahbek (2013).
In the following, denote the subset of the probability parameters that vanish under the null

as % ⊆ γ and specify the parameter vector as θ = (η′, %′)′. The vanishing parameters are defined
such that % ∈ Ξ where Ξ is compact and Ξ ⊂ Rn% . We write the supremum statistic in terms of
these parameters, i.e.

sup
%∈Ξ

LRT (η̂, η̃, %) = sup
%∈Ξ

(−2 [LT (η̃)− LT (η̂, %)]) (2.6)

where η̂ is estimated in the unrestricted model and η̃ is estimated under the null.
Kristensen and Rahbek (2013) provide asymptotic theory for this case in a similar framework.

They show that the score of their likelihood function is an asymptotically tight partial sum
process for which a uniform Donsker theorem applies, see also van der Vaart and Wellner (1996,
Chapter 2.12). Using our notation, the score of the likelihood function in Kristensen and Rahbek
(2013) can be written as

ST (η, %) =
T∑
t=1

f (Ut−1 : η, %) εt (2.7)

where εt is the error term of their model. The function, f (·), is some sufficiently smooth
function of Ut−1, η and in particular of the vanishing parameters, %1. The form given in (2.7) is
a also known as a so-called residual-market empirical process, see e.g. Stute (1997); Stute et al.
(1998) and Escanciano (2007). Observe that the score of the ACR likelihood function takes on
a different form. From chapter one, section 1.7.1 we have that

ST (η, %) =
T∑
t=1

∑
j∈M

p?jt∂θλjt (2.8)

where both p?jt and λjt are functions of η, % and of Ut and Ut−1 (not only of Ut−1). Hence, the
separation between the errors and some function of parameters and lagged values of the process,
f (·), seen in (2.7) does not apply to the ACR cointegrated framework and so, the results from
Kristensen and Rahbek (2013) do not carry over easily.
To show that a similar result holds for the ACR cointegrated framework, one would thus need

to develop an independent theorem of uniform weak convergence of (2.8). This is not done here
and we state instead the following conjecture.

Conjecture 2.8. With the ACR cointegrated process defined in chapter one, definition 1.1,
using a suitably defined normalizing matrix WT and provided assumptions 1.2-1.5 are satisfied
with q ≥ 3, then the following weak convergence result applies to the likelihood ratio test defined

1In fact, here Ut contains βD which is not included in the framework of Kristensen and Rahbek (2013). However,
to avoid unnecessarily complicated notation we ignore that fact here.
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in (2.5),

sup
%∈Ξ

LRT (η̂, η̃, %) w→ sup
%∈Ξ

V (η0, %)′V (η0, %) ,

where
V (η0, %) =

(
H ′θ,⊥H (η0, ρ)−1Hθ,⊥

)−1/2
H ′θ,⊥H (η0, ρ)−1 S (η0, %)

where S (η0, %) and H (η0, %) are the limits of W−
1
2

T ST (η0, %) and W−
1
2

T HT (η0, %)W−
1
2

T as T →∞
where

ST,W (η0, %) := ∂LT (θ)
∂θ

|η=η0 and HT,W (η0, %) := ∂2LT (θ)
∂θ∂θ

|η=η0

and the subscript W indicates that the terms are normalized correctly according to the individual
speeds of convergence of the parameter estimates.

Note that here, we have only treated the likelihood ratio test since this is most easily imple-
mented in the bootstrap algorithms. However, similar results will hold for Lagrange multiplier
and Wald tests for the same reasons as those given in Kristensen and Rahbek (2013).

2.4 Bootstrapping

We propose a model-based bootstrap algorithm for simulating the distributions of the test
statistic which resamples the estimated residuals. However, the innovations of the ACR model,
εt, are unobserved and not straight forwardly calculated. As an estimator, we use

ε̂t = E

∑
j∈M

1 {st = j}V −1
j ε̂jt | Zt, Zt−1

 =
∑
j∈M

p?jtV
−1
j ε̂jt (2.9)

where ε̂jt are the estimated, regime specific residuals. A different estimator in form of so-called
prediction error distributions, was given in Bec et al. (2008) could be also be used. However,
the estimator proposed here is somewhat more straight forward.

Algorithm 2.9. A bootstrap algorithm for estimating distributions of the likelihood ratio test
statistics.

1. Estimate the model under the null to obtain θ̃.

2. Control that the estimated model under the null satisfies assumptions 1.2-1.5, from chapter
one.

3. Obtain the estimated residuals, ε̃t, using (2.9) and the regime specific residuals,

ε̃jt = ∆Xt − α̃j β̃?′Xt−1 − Γ̃j∆Xt−1.

4. To ensure a zero mean for the empirical distribution of the bootstrap innovations, recenter
the estimated ACR residuals,

ε̃ct = ε̃t −
1
T

T∑
t=1

ε̃t,
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and denote their empirical distribution as ẼT = 1
T

∑T
t=1 1 {ε̃ct � x}.

5. Set the iteration number to i = 1.

6. Obtain the bootstrap innovations for iteration i,
{
ε̂bt,i

}
t=1,...,T

, by resampling ε̂ct indepen-

dently and with replacement from ẼT .

7. Generate a bootstrap sample,
{
Xb
t,i

}
t=1,...,T

, using

Xb
t,i = Xb

t−1,i +
∑
j∈M

1 {st = j}
(
α̃j β̃

?′X?b
t−1,i + Γ̃j∆Xbt−1,i + Ṽj ε̂

b
t,i

)

where
(
Xb

0,i, X
b
−1,i, ..., X

b
−k,i

)
= (X0, X−1, ..., X−k) and where st is drawn from a multino-

mial distribution with probability pbjt =
(
st = j | zbt−1, γ̂

b
i

)
of drawing regime j.

8. Estimate the model under null to obtain θ̃bi and estimate the model under the alternative
using θ̃bi as initial values to obtain θ̂bi .

9. Calculate an instance of the statistic of interest,

LRbT,i

(
θ̃bi , θ̂

b
i

)
= −2

(
LT

(
θ̃bi

)
− LT

(
θ̂bi

))
or

sup
%∈Ξ

LRbT,i

(
η̃bi , η̂

b, %
)

= sup
%∈Ξ

(
−2
[
LT

(
η̃bi

)
− LT

(
η̂i
b, %
)])

.

10. Increment the iteration number, i = i+ 1.

11. Repeat steps 5-10 many times and generate bootstrap empirical distributions of the statics
of interest,

TbT
(
θ̃bi , θ̂

b
i

)
= 1
M

M∑
i=1

1
{
LRbT,i

(
θ̃bi , θ̂

b
i

)
� x

}
or

and

UbT
(
η̃bi , η̂

b
i , %
)

= 1
M

M∑
i=1

1
{

sup
%∈Ξ

LRbT,i

(
η̃bi , η̂

b, %
)
� x

}
.

Remark 2.10. The i.i.d resampling method used to obtain the bootstrap innovations given in
the presented algorithm will eliminate any left over structure conditional variance of the error
terms. If one wishes the bootstrap to replicate the presence of such a structure, a so-called wild
bootstrap resampling scheme can be considered. Here, the bootstrap innovations are generated
such that

ε̃bt,i = nt,iε̃t

and nt,i is an i.i.d (0, 1) random variable, see e.g. Wu (1986), Liu (1988), Mammen (1993),
Davidson and Flachaire (2008), Cavaliere et al. (2010a), and Kristensen and Rahbek (2013).
Observe that Kristensen and Rahbek (2013) suggests a wild bootstrap based on the normal
distribution as a candidate for nt,i. However, in this framework it seems to work better when
applying the so-called Rademacher distribution. The reason is that using the Rademacher
distribution will make the kurtosis of ε̃bt,i match the kutosis of ε̃t, while the normal distribution
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will give a multiplication of 3 and thus heavier tails in the bootstrap innovations. Of course many
other distributions could be considered, see Davidson and Flachaire (2008) for a comprehensive
discussion.

Remark 2.11. In Algorithm 2.9, step 8, we use the estimated values under the null as initial values
for the unrestricted model. This procedure avoids potential negative values of the likelihood ratio
test as was observed in Kristensen and Rahbek (2013). It does not ensure that one obtains the
best possible maximum at each replication, but neither would using any other set of initial values.
This procedure thus seems to be the better option. Of course, with infinite computational power,
dense grid searches for optimization would be a useful method for avoiding the problem with
local maxima all together.

Algorithm 2.9 provides asymptotically valid estimates of the distributions of the likelihood
ratio tests in both the regular and irregular cases if

TbT,i
(
θ̂, θ̃
)

w→p V (θ0)′V (θ0) and UbT
(
η̂bi , η̃

b
i , %
)

w→p sup
%∈Ξ

V (η0, %)′V (η0, %)

where w→p denotes weak convergence in probability as defined by Gine and Zinn (1990) and one
would therefore prefer to verify this formally. However, even in the simplest possible scenario of
a stationary univariate ACR process, the necessary limit theory is not available and hence the
performance of the proposed algorithm will be evaluated through simulations. Note finally that
if the cointegration vectors are considered fixed from the outset, then the asymptotic theory for
the likelihood ratio statistic in (2.5) is standard χ2, while the asymptotic distribution of (2.6)
will still be nuisance parameter depend and will require simulation, see Bec and Rahbek (2004)
and Bec et al. (2008) for more details on the regular case with fixed cointegration relations.

2.4.1 Numerical analysis of the bootstrap

Let Xt = (x1t, x2t)′ be a two-dimensional vector generated by the equation

∆Xt = st
(
α1β

?′X?
t−1 + V1εt

)
+ (1− st)

(
α2β

?′X?
t−1 + V2εt

)
(2.10)

where εt ∼ i.i.dN (0, 1) and the remaining parameters are defined as in section 2.2.1. The
switching probability is given by,

p1t = P (st = 1 | Zt−1) = 1− exp
(
−γz2

t−1

)
= 1− P (s1 = 0|Zt−1) = 1− p2t

with zt := ψ′Zt = β′Xt. We impose the following identifying and model selective restrictions.
The selection matrices are given by Hβ? = (01×2 : I2)′ HΦ := I4, HΩ = diag (Dn,Dn) and
Hγ = 1; and the corresponding vectors are hβ = (1 : 01×2)′, hΦ = 02×1, hΩ = 06×1 and hγ = 0.
The freely varying parameters are defined accordingly.
As a data generating process, we use the following parameter values, α1 = (−0.5 : 0.2)′,

α2 = (0 : 0)′, Ω1 = 0.01 · In, Ω2 = 0.05 · In β? = (1 : −1 : 0)′ and γ = 1.
We investigate the properties of two example test statistics using the bootstrap algorithm

to simulation the distributions. The first is a regular case statistic, where all parameters are
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identified under the null and under the alternative. The second in an irregular case statistic,
where a number of parameters are unidentified under the null.

Case I: No error correction of x2t

Consider a frequently tested hypothesis in empirical applications, namely that of no error cor-
rection of a certain variable. In the cointegrated VAR models, this translates into testing for a
zero row in the error correction parameter, α. In the linear setup, this amounts to test for weak
exogeneity, but that is not generally the case in this setup. The hypothesis that x2t does not
error correct can be stated as,

H0 : a2,1 = a2,2 = 0

where ai,j is the i’th element in vector αj for j ∈ {1, 2}. This hypothesis represents additional
restrictions on the parameter vector, θ, which can be introduced using properly defined Hθ, hθ
and υ. In this case, we set Hθ = diag (Hβ? , GΦ, HΩ, Hγ) with

GΦ =


1 0
0 0
0 1
0 0


and hθ = 0nθ . The statistic of interest is the likelihood ratio given in (2.5).

Case II: Linearity

Let Xt = (x1,t, x2,t)′ be generated from

∆Xt = αβ?′X?
t−1 + εt, (2.11)

where εt ∼ i.i.N (0,Ω) and α and β? where α = (−0.5, 0.2), β? = (1,−1, 0)′ and Ω = 0.01 · In.
As discussed previously, this model is a sub-model of the ACR cointegrated model model since
(2.11) emerges when imposing the following null on the parameters of (2.10);

H0 : α1 = α2 and Ω1 = Ω2.

Imposing this condition on the system will eliminate st from (2.10) making γ abundant. Hence,
to test this hypothesis, one must apply the supremum statistics discussed in section 2.3 and the
statistic we wish to analyze is given by

max
%∈Ξ̇

LRT (η̂, η̃, %) = max
%∈Ξ̇

2 [LT (η̂)− LT (η̃, %)] ,

and here % = γ.
Observe that we seek to obtain the maximum of the likelihood over the vanishing parameter to

get the maximal likelihood ratio statistic. Hence, computationally there is no difference between
the two example cases. In both, the problem with obtaining local maxima under the null or the
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2.4 Bootstrapping

Table 2.3: Empirical rejection frequencies

Simulating under the null Simulating under the alternative

T 10 % 5 % 1% 10 % 5 % 1%

250 0.095 0.047 0.009 1.000 0.999 0.994
500 0.095 0.045 0.005 1.000 1.000 1.000
1000 0.108 0.053 0.009 1.000 1.000 1.000

(a) Case I

Simulating under the null Simulating under the alternative

T 10 % 5 % 1% 10 % 5 % 1%

250 0.059 0.027 0.003 0.998 0.992 0.961
500 0.072 0.027 0.005 1.000 1.000 1.000
1000 0.067 0.033 0.006 1.000 1.000 1.000

(b) Case II

alternative inside the bootstrap replications is present, however perhaps more so in this case
where γ does not enter the likelihood under the null and it is unclear how this problem affects
the of the bootstrap. Similar considerations are done in Kristensen and Rahbek (2013), where
negative likelihood ratios were observed.

Empirical rejection frequencies

We evaluate the performance of the bootstrap algorithms by estimating the empirical rejection
frequencies when generating data under the null and under the alternative respectively. To
produce the empirical rejection frequencies, the likelihood ratio statistics are estimated and
evaluated against a bootstrap distributions M = 1000 times. The bootstrap distributions are
generated with B = 399 bootstraps. The resulting estimated rejection frequencies are provided
in table 2.3.

The bootstrap statistics in the regular case seems very well behaved, displaying perfect em-
pirical power and close to correct empirical size. The test statistic in the irregular case is not
as well behaved since the estimated empirical size seem to undershoot the correct values. This
result might be linked to numerical problems with estimation when a parameter is unidentified
under the null. Interestingly, when conducting a similar experiment for the estimated systems
in chapter three, we do not observe these size distortions and they might hence also be related
to a poor choice of parameters in this example. The results do, however, point out some of the
difficulties that can arise when applying this methodology, underlining the need for more anal-
ysis of the small sample behavior of the proposed bootstrap and in particular, for a theoretical
verification of the method in the irregular case.
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2.5 Conclusion

We have presented a modified EM algorithm for estimation of ACR cointegrated models with
general linear restrictions. Some small sample properties of the EM algorithm are discussed
through simulations and it is found that estimators for all parameters, safe certain parameter in
the probability of switching, are well behaved. In practical applications, it can be considered to
fix the parameters that cause problems, in which case the inference on the remaining parameters
remains the same.
Numerical analysis of the methods indicate that the regular test have close to correct empirical

size while the test in the irregular case is undersized. A better understanding of why this occurs
for the irregular case would be useful, in particular one could investigate whether it is related to
the numerical difficulties of estimating the non-linear model on data generated under the linear
null.
For future research, it would be of interest to develop a theorem to replace conjecture 2.8

and to verify analytically that the proposed bootstrap algorithm is asymptotically valid. As an
alternative to the bootstrap, one could look at direct simulations of the asymptotic distribu-
tions, using a similar method to that discussed in Kristensen and Rahbek (2010, Theorem 7).
Analyzing the validity of such a scheme and investigating its numerical properties, in particular
in the irregular case. Note however that such a procedure is inherently asymptotic and as an
alternative one could use a fully parametric bootstrap, simulating the behavior of the likelihood
ratio statistics for some T � T and with, say, normally distribution innovations instead of
the resampled error used in algorithm 2.9. The two approaches would approximate the same
asymptotic statistic and hence which is more useful becomes a question of numerically stability,
computational speed and ease of implementation.

62



2.A Estimators for the EM-algorithm

2.A Estimators for the EM-algorithm

Lemma 2.12. Define $ as the vector that satisfies

vec (Φ) = HΦ$ + hΦ

for a selection matrix HΦ and a normalizing vector hΦ. An estimator for $̂ conditional on the
filtered probabilities, p?jt, for j ∈M, is given by

$̂ =
(
H ′ΦMHΦ

)−1 (YHΦ − h′ΦMHΦ
)

(2.12)

where
Y :=

(
vec

(
∆X′U?

1Ω−1
1

)′
, . . . , vec

(
∆X′U?

mΩ−1
m

)′ )′ ,
M :=


(
Ω−1

1 ⊗U′U?
1

)
0 0

0 . . . 0
0 0

(
Ω−1
m ⊗U′U?

m

)


and
∆X :=

(
∆X ′1, ...,∆X ′T

)′
, U :=

(
U ′1, ..., U

′
T

)′
and

U?
i :=

(
p?j1U

′
1, ..., p

?
jTU

′
T

)′
for j ∈M.

Proof. Observe initially that the first order derivative of the likelihood contribution with respect
to Φ can be written as,

dLT (θ; vec (dΦ)) = (SΦ1,T , ...,SΦm,T ) vec (dΦ) = SΦ,Tvec (dΦ) .

and by Lemma 1.31 in chapter one. Using matrix notation, we get

dLT (θ; vec (dΦ)) = vec
(
U?′

1 ∆XΩ−1
1

)′
vec (dΦ1)

+ · · ·+ vec
(
U?′

1 ∆XΩ−1
m

)′
vec (dΦm)

−vec (Φ1)′
(
Ω−1

1 ⊗U?′
1 U

)
vec (dΦ1)

− · · · − vec (Φm)′
(
Ω−1
m ⊗U?′

mU
)

vec (dΦm)

= Y′vec (dΦ)− vec (Φ)′M′vec (dΦ)

=
(
Y′ − vec (Φ)′M′

)
vec (dΦ)

In terms of the restricted estimator, we get

dLt (θ; vec (d$)) =
(
Y′HΦ − (HΦ$ + hΦ)′M′HΦ

)
d$.

An estimator can thus be found as by solving for $ in

Y′HΦ − h′ΦM′HΦ − $̂′H ′ΦM′HΦ = 0
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which gives
$̂ =

(
H ′ΦMHΦ

)−1 (YHΦ − h′ΦMHΦ
)

Lemma 2.13. Define ω as the vector containing the freely varying elements of Ω such that

vec (Ω) = HΩω + hΩ.

Then for fixed filtered probabilities, p?it, an estimator for ω is given by

ω̂ =
(
H ′ΩPHΩ

)−1
H ′Ω (vec (E)−PhΩ) (2.13)

where

P =
T∑
t=1

diag (p?1tIn2 , ..., p?mtIn2) and Ê =
T∑
t=1

(
p?1tε̂1tε̂

′
1t, . . . , p

?
mtε̂mtε̂

′
mt

)
.

Proof. Consider the first order derivative of the log-likelihood function in direction Ω,

dLT (θ; dΩ) = (SΩ1 , . . .SΩm) vec (dΩ) = SΩvec (dΩ) .

By the results of Lemma 1.31 from chapter one, it holds that

SΩvec (dΩ) = −
∑
t=1

1
2 tr

{
p?1tΩ−1

1 dΩ1
}
− ...−

∑
t=1

1
2 tr

{
p?mtΩ−1

m dΩm

}
+
∑
t=1

1
2 tr

{
Ω−1

1 p?1,tε1tε
′
1tΩ−1

1 dΩ1
}

+ · · ·+
∑
t=1

1
2 tr

{
Ω−1
m p?mtεmtε

′
mtΩ−1

m dΩm

}
= vec (dΩ)′ S2vec (E)− vec (dΩ)′ S1vec (Ω)

where
S1 = PS2, andS2 = diag

((
Ω−1

1 ⊗ Ω−1
1

)
, ...,

(
Ω−1
m ⊗ Ω−1

m

))
.

Now, an estimator for ω can be found by solving

−H ′ΩS1 (HΩω̂ + hΩ) +H ′ΩS2vec (E) = 0

which yields

ω̂ =
(
H ′ΩS1HΩ

)−1
H ′Ω (S2vec (E)− S1hΩ)

=
(
H ′ΩS2PHΩ

)−1
H ′ΩS2 (vec (E)−PhΩ)

=
(
H ′ΩPHΩ

)−1
H ′Ω (vec (E)−PhΩ) .
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2.B Proof of Lemma 2.7

2.B Proof of Lemma 2.7

We mimic the proof given in proof of Theorem 4.9 (part i) in Kristensen and Rahbek (2013),
adapting their arguments to the present framework and notation. Observe initially that

θ̃ − θ0 = Hθυ̃ + g −Hθυ0 − g = Hθ (υ̃ − υ0)

and that the derivative in the direction of the freely varying parameters is given by

dθ̃ = dθ (υ; dυ) = Hθdυ.

Consider the a first order Taylor series expansion around the true value, θ0, of the first derivative
of the log-likelihood function evaluated under the imposed restrictions,

0 = dLT
(
θ0; dθ̃

)
+ d2LT

(
θ0; dθ̃, θ̃ − θ0

)
+ r (θ0)

= ST (θ0)′ dθ̃ +
(
θ̃ − θ0

)′
HT (θ0) dθ + r (θ0)

where r (θ0) is a remainder with higher order terms from the Taylor series expansion. We then
look at

0 = dLT
(
θ0;W−

1
2

T dθ̃
)

+ d2LT

(
θ0;W−

1
2

T dθ̃,
(
θ̃ − θ0

))
+ r (θ0)

= ST (θ0)′W−
1
2

T dθ̃ +
(
θ̃ − θ0

)′
HT (θ0)W−

1
2

T dθ̃ + r (θ0)

= ST (θ0)′W−
1
2

T dθ̃ +
(
θ̃ − θ0

)′
W

1
2
T W

− 1
2

T HT (θ0)W−
1
2

T dθ̃ + r (θ0)

:= ST,W (θ0)′Hθdυ + (υ̃ − υ0)′H ′θW
1
2
T HT,W (θ0)Hθdυ + r (θ0)

= ST,W (θ0)′Hθdυ + (υ̃ − υ0)′ U 1/2
T H ′θHT,W (θ0)Hθdυ + r (θ0)

where we have used that one can define a matrix UT , such that W
1
2
T

(
θ̃ − θ0

)
= HθU

1/2
T (υ̃ − υ0)

and where, to simplify notation in the following, we have used the definitions, ST,W (·) :=
W
− 1

2
T ST (·) and HT,W (·) := W

− 1
2

T HT (·)W−
1
2

T . By rearranging, we obtain

W
1
2
T

(
θ̃ − θ0

)
= HθU

1/2
T (υ̃ − υ0) = −Hθ

(
H ′θHT,W (θ0)Hθ

)−1
H ′θST,W (θ0) + op (1) ,

where it has been used that r (θ0) = op (1) by Lemmas (1.12)-(1.26) from chapter one. Hence,
it holds that

W
1
2
T

(
θ̃ − θ0

)
= HθU

1/2
T (υ̃ − υ0) w→ −Hθ

(
H ′θH (θ0)Hθ

)−1
H ′θS (θ0)′ ,

where H (θ0) := H∞,W (θ0) and S (θ0) := S∞,W (θ0) are the limits of the T -normalized Hessian
and the score evaluated at the true values. Using a second order Taylor’s expansion on the
likelihood ratio test in (2.5), we get

LRT
(
θ̂, θ̃
)

= −2
(
LT

(
θ̂
)
− LT

(
θ̂
)
− ST

(
θ̂
) (
θ̂ − θ̃

)
− 1

2
(
θ̂ − θ̃

)′
HT (θ?)

(
θ̂ − θ̃

))
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= 2ST
(
θ̂
) (
θ̂ − θ̃

)
+
(
θ̂ − θ̃

)′
HT (θ?)

(
θ̂ − θ̃

)
=

(
θ̂ − θ̃

)′
HT (θ?)

(
θ̂ − θ̃

)
where it holds for θ?, that

∣∣∣θ̂ − θ?∣∣∣ ≤ ∣∣∣θ̂ − θ̃∣∣∣, and since θ̂ maximizes LT
(
θ̂
)
, we have ST

(
θ̂
)

= 0.
Next, observe that

−W
1
2
T

(
θ̂ − θ̃

)
= −W

1
2
T

(
θ̂ − θ0

)
+W

1
2
T

(
θ̃ − θ0

)
= (HT,W (θ0))−1 ST,W (θ0)

−Hθ

(
H ′θHT,W (θ0)Hθ

)−1
H ′θST,W (θ0) + op (1)

w→ H (θ0)−1 S (θ0)−Hθ

(
H ′θH (θ0)Hθ

)−1
H ′θS (θ0)

:= P (θ0) S (θ0)

where

P (θ0) = H (θ0)−1 −Hθ

(
H ′θH (θ0)Hθ

)−1
H ′θ

= H (θ0)−1Hθ,⊥
(
H ′θ,⊥H (θ0)−1Hθ,⊥

)−1
Hθ,⊥H (θ0)−1

such that

LRT
(
θ̂, θ̃
)

w→ S (θ0)′ P (θ0)′H (θ0)P (θ0)S (θ0)

= S (θ0)′H (θ0)−1Hθ,⊥
(
H ′θ,⊥H (θ0)−1Hθ,⊥

)−1
H ′θ,⊥

×H (θ0)−1 H (θ0)H (θ0)−1

×Hθ,⊥
(
H ′θ,⊥H (θ0)−1Hθ,⊥

)−1
H ′θ,⊥H (θ0)−1 S (θ0)

= S (θ0)′H (θ0)−1Hθ,⊥
(
H ′θ,⊥H (θ0)−1Hθ,⊥

)−1

×H ′θ,⊥H (θ0)−1Hθ,⊥
(
H ′θ,⊥H (θ0)−1Hθ,⊥

)−1
H ′θ,⊥

× (H (θ0))−1 S (θ0)

= S (θ0)′ (H (θ0))−1Hθ,⊥
(
H ′θ,⊥H (θ0)−1Hθ,⊥

)−1
H ′θ,⊥ ×

(H (θ0))−1 S (θ0)

= V (θ0)′V (θ0)

where
V (θ0) =

(
H ′θ,⊥H (θ0)−1Hθ,⊥

)−1/2
H ′θ,⊥H (θ0)−1 S (θ0) .

This completes the proof.
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3 Non-linear cointegration analysis of crude oil
benchmarks

We analyze the dynamic behavior between two main crude oil benchmarks, the
American West Texas Intermediate (WTI) and the European Brent. The series are
analyzed using the ACR cointegrated model discussed in chapters one and two. The
cointegration relations are considered unknown and are estimated jointly with the re-
maining parameters. Non-linearities are allowed on the error-correction parameters,
short-run parameters and the parameters in the residual covariances. We moreover
allow the constant in the cointegration relations to enter the regime switching proba-
bility and show that the asymptotic theory given in chapter one goes through with a
few modifications. Having jointly estimated all parameters including the cointegra-
tion vectors, the asymptotic inference is non-standard and the bootstrap procedure
from chapter two is invoked to test hypothesis. We observe non-linearities linked
to a recent decoupling of the WTI crude oil price from the international market
and find that historically, the Brent crude price has been the only series reacting to
disequilibria.

3.1 Introduction

A vast number of crude oils are produced across the world and their corresponding individ-
ual prices on the international commodity markets will normally depends quality, geographical
placement, logistics and prices on other crudes. In particular the American West Texas Inter-
mediate (WTI) and the European Brent play central roles as benchmarks on the international
markets. Despite the geographical distance and the slight difference in quality, these commodi-
ties are very close substitutes and arbitrage behavior of economic agents should ensure a stable
price relationships, motivating the existence of cointegration. However, in addition to the factors
mentioned above, the price of crude oil in different regions may also depend on many politi-
cal instabilities in regions with high crude oil production, changes in the consumption patterns
following introductions of new technologies, financial or economic crises and so on, see e.g. Fat-
touh (2010). Therefore, the arbitrage among the spreads can be disrupted by numerous factors
resulting in dynamics that are not necessarily well captured by linear cointegration models.
In this chapter, we analyze monthly observations of the WTI and Brent price series using the

ACR model. The analysis is related to studies such as Hammoudeh et al. (2008), Fattouh (2010),
Mann (2012), Ghoshray and Trifonova (2014) and Liao et al. (2014), who apply different types
of threshold autoregressive analysis to these same and other series of crude oil prices, though
for different periods and data frequencies.
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This analysis differs from earlier studies on a number of important points. First, Fattouh
(2010) models the spreads directly as univariate self-exiting threshold autoregressions and thus
imposes the cointegration relation prior to the analysis and is unable to assess more elaborate
dynamics such as potential weak exogeneity of some of the analyzed crudes. Second, Ham-
moudeh et al. (2008) and Ghoshray and Trifonova (2014) uses a procedure advocated by Enders
and Siklos (2001) where an Engle-Granger type two-step approach is applied to extract cointe-
gration relations, which are then modeled within a so-called momentum threshold autoregressive
framework, where the regime switching depends on the size and direction of change in the de-
viations from long-run equilibrium. Such an approach is invalid in the ACR framework, since
one cannot ignore estimation of the cointegration vectors when conducting inference on the
other parameters. We thus consider joint maximum likelihood estimation of the cointegration
parameters along with the remaining parameters. This means that simulation-based methods
are required for conducting inference and we apply the bootstrap principle discussed in chapter
two. Finally, the method used in this chapter allows for changing short run parameters and
changing error covariance, both features that none of the previous papers include. Many other
approaches have been considered in the literature studying the dynamic behavior of crude oil
prices and a comprehensive literature review is given in Ghoshray and Trifonova (2014).
The data displays a curious decoupling of the series that happened in 2011 and has persisted

until now. This change in the behavior is picked up by the ACR model as a regime with weak
error correction mechanisms. Excluding this part of the data, we do not find strong support
for non-linearities since a linear model cannot be rejected in favor of the ACR model. We also
find that the non-linearities have played more important roles in periods of financial turmoil.
Finally, we observe that historically, the Brent crude has been reacting strongly to disequilibria,
while the WTI has been weakly exogenous.
This paper is structured as follows. Section 3.2 discusses a simple economic motivation for the

existence of (potentially non-linear) cointegration between the crude oil benchmarks. Section
3.3 presents the econometric model and discusses consequences for the asymptotic theory when
letting the constant in the cointegration vectors enter the regime switching probabilities. Section
3.4 presents the data and gives some discussions of key periods of interest. Section 3.5 gives
the results from estimation of the ACR and linear cointegrated VAR models. Finally, section 5
concludes.

3.2 Motivation

Since these crudes are close substitutes, arbitrage behavior should ensure that the spread cor-
rected for differences in quality and transaction costs is stable. A simple encompassing frame-
work for this pricing mechanism is the cost of carry model discussed by Alizadeh and Nomikos
(2004) and Fattouh (2010). The long run relationship between the crude oil prices is given by
the equation,

PBrent,t = PWTI,t − CBrent −D (3.1)

where PBrent,t and PWTI,t are specific log transformed crude oil prices and D is the premium
arising from differences in the quality of the crude oils. The term, CBrent, is the cost of carry
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3.3 Econometric model

including transportation, insurance, custom duty, pipeline tariffs etc. Econometrically, one
cannot distinguish between CBrent and D in the framework that is applied in the following,
where the constant in the cointegration relations will capture both CBrent and D.
The investigated crude oil streams differ on geographical location and slightly on quality.

The WTI is based at Cushing Oklahoma, US and the Brent has its base in the North Sea, see
Fattouh (2011). The WTI and Brent crudes are so-called light/sweet crudes. The abbreviations
“light” or “heavy” refers to the density of the crude oil. Generally, crude oils with lower density
will yield higher proportions of final petroleum products than heavier crudes. The “sweet” and
“sour” abbreviations refer to the amount of sulfur contained in the crude, where sweet crudes
contain less sulfur than sour crudes. The WTI is slightly lighter and sweeter than the Brent
and the Brent crude is subject to larger transportation costs, meaning that the WTI should be
traded at a premium over the Brent, see Fattouh (2010).

3.3 Econometric model

Suppose that the crude oil price series are given by Xt = (PBrent,t : PWTI,t)′, a process generated
by the equations,

∆Xt =
∑

j={1,2}
1 {st = j}

(
αjβ

?′X?
t−1 + Γj∆Xt−1 + Vjεt

)
=

∑
j={1,2}

1 {st = j} (ΦjUt−1 + Vjεt)

using the definitions from chapter two. Identification is introduced by setting β1 = 1 such
that β? = (1 : ϕβ : ϕβD)′ and the freely varying parameter is given by ϕ = (ϕβ : ϕβD)′. The
probability of switching as a function of the probability parameters, γ = (Λ : κ)′, and the
cointegration relations, ut = ψ′Ut, is given by

p1t = P (st = 1 | ut−1; γ) = 1− exp
(
−u′t−1Λut−1g (ut−1;κ)

)
= 1− p2t (3.2)

with
g (ut−1;κ) = 0.5 +

(
1 + exp

(
−κ′ut−1

))
This specification allows for the parameters to change when large deviations from the equilibrium
occur, with deviations measured by the squared cointegration relations. In addition, asymmetry
is allowed through g (ut−1;κ) such that the impact of a deviation from equilibrium on the
switching probabilities can differ depending on the sign of the deviation.
Observe that we have allowed ut−1 to enter the switching probabilities and that this has

some consequences for the theory developed in chapter one. First, consider the stability results
provided in section 1.4 and recall that the process written on companion form was given by

Yt =
∑
j∈M

1 {st = j} (AjYt−1 + Ujt) (3.3)

=
∑
j∈M

1 {st = j}
(
AjY?t−1 + Ejt

)
= AtY?t−1 + Et (3.4)
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where Ejt := JVjεt, Y?t :=
(
Y ?′
t : Y ′t−1 : · · · : Y ′t−k+1

)′
, Y ?

t := (X?′
t β

? : ∆X ′tβ⊥)′, J := (In : 0)′,
while Yt, Uj and Aj were given in chapter one. Previously, the switching was chosen to depend on
zt = ψ′Zt = η′Yt, whereas now, the switching will depend on ut = ψ′Ut = η′Y?t . Observe that the
selection matrix, η, is the same in the two specifications and hence, it is clear that the stability
results that applied to (3.4) will also apply to (3.3). The more important difference comes
from added contributions to the likelihood function. When including βD in the probability of
switching, the score, hessian and third order derivatives presented chapter one, no longer applies
in the direction of βD. In appendix 3.A we present the needed modifications of the score, hessian
and third order derivatives, and verify convergence results similar to those of chapter one for
these modified terms.
The parameters are estimated by maximum likelihood and the Gaussian log-likelihood as a

function of the parameter vector,

θ :=
(
vec

(
β?′
)′ : vec (Φ1)′ : vec (Φ1)′ : vech (Ω1)′ : vech (Ω2)′ : γ′

)′
,

is given by

LT (θ) =
T∑
t=1

`t (θ) =
T∑
t=1

∑
j∈M

log (pjtφjt) (3.5)

where pjt given in (3.2) which depends on past values of the process and with φjt given by

log φjt = −1
2 log (2π)− 1

2 log (Ωj)−
1
2ε
′
jtΩ−1

j εjt

where
εjt := ∆Xt − αjβ?′X?

t−1 − Γj∆Xt−1 = ∆Xt − ΦjZt−1.

The so-called filtered probabilities are given by

P (st = j | Zt) = p?jt = pjtφjt∑
j∈M pjtφjt

. (3.6)

In the discussions of the model fit, these are used as estimators for the unobserved regime
switching variable, st.
The parameters of the different models are estimated using the EM algorithm discussed in

chapter two. To find initial values for the algorithm, a grid search over the parameters that
enter the switching probability, i.e. ϕβ, ϕβD , Λ and κ is done. The remaining parameters,
Φ1, Φ2, vech (Ω1) and vech (Ω2) are estimated for each set of ϕβ, ϕβD , Λ and κ, using the
EM algorithm. This method is the four parameter equivalent of the profile likelihood approach
suggested by Bec et al. (2008) for the case of a specification with two probability parameters
and fixed cointegration relations.

3.4 Data

The data is obtained from Bloomberg at a monthly frequency from January 1987 to Februrary
2014, where each observation corresponds to the closing price observed the last trading day of
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the month. The period spans the era of the marked based pricing system, see Fattouh (2011).
We model the logarithmically transformed prices. These series, the first differences and the
spread are displayed in figure 3.1.
As mentioned in the introduction, the WTI crude should be trading at a premium over

the Brent. This has been true for most of the observed period, except for very short periods
of reversal and from about 2011, where a clear departure from this rule is observed. This
decoupling has arisen as a result of a drop in the price of WTI relative to other crudes. This is
not seen from graphs in figure 3.1, but is evident when comparing with other crude streams such
as the Dubai-Fateh (see figure 3.7 in Appendix 3.C). A common explanation for this anomaly is
a combination of increased crude oil and gas production in North America along with logistical
limitations in Cushing, Oklahoma, the delivery point for the WTI crudes, see e.g. Mann (2012)
and Fattouh (2011)1.
Other that the post 2010 decoupling, there are a couple of other key periods that need to be

mentioned. First, a sharp increase in both prices and their first differences is seen around 1990,
corresponding to the commencement of the (first) Iraqui war. Around 1997-1999 the oil prices
are seen to plunge and the first differences are again large in absolute terms compared to the
average. This period corresponds to the Asian financial crisis. Finally, in 2008, the breakout of
the global financial crisis spurs similar behavior in the series.

3.5 Results

We estimate the model both on the full sample and on a smaller sample that ends in Decem-
ber 31st 2010. It becomes evident that whether or not this period is included has important
consequences for the results. In particular, the non-linearities seem more important in the full
sample since they allow the model more flexibility to accommodate this change in the behavior
of the series.
The maximum likelihood estimates of table 3.1 show that the estimated cointegration relations

resembles the spread of the series corrected for a premium as discussed in section 3.2. Second,
one observes that the error correction coefficients in the outer regime are much smaller than in
the inner regime. This is also seen as the spectral radius in this regime is around 0.95, while
that of the inner regime is 0.65. The system is stationary since the joint spectral radius is
less than unity. Observe that this result is to a large extend driven by the period post 2010,
where the discussed decoupling has taken place and the outer regime is primarily identified by
observations in this period. That is clear from figure 3.2(c) where the filtered probabilities are
depicted. Figure 3.2(e) shows that the estimated level of asymmetry in the regime switching
probabilities has the effect that positive changes will result in a regime change faster than
negative changes would. Finally, observe that the variance of the error terms seem to be of an
order two larger in regime one that in regime two. The estimates are quite different when one
considers the period excluding observations at the end of the sample. Then the structure of
the regimes is reversed and the outer regime is more stable that the inner regime, though not
very much so. The estimated asymmetry of the switching probabilities is also less pronounced.

1See also U.S. Energy Information Administration, Today in Energy, June 28 2013, “Price difference between
Brent and WTI crude oil narrowing”
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3 Non-linear cointegration analysis of crude oil benchmarks

Figure 3.1: Graphical analysis of the series
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3.5 Results

Table 3.1: Maximum likelihood estimates
Full sample Before 2011

ACR Linear ACR Linear

ϕ̂1 -1.042 -1.090 -1.054 -1.043
ϕ̂2 0.197 0.347 0.239 0.201

α1,1 -0.044 -0.109 -0.143 -0.449
α2,1 0.011 0.078 0.393 0.033
Γ11,1 -0.424 -0.117 -0.730 -0.028
Γ21,1 -0.055 0.092 -0.549 0.112
Γ12,1 0.172 0.228 1.264 0.157
Γ22,1 -0.096 0.048 1.102 0.029
Ω11,1 0.005 0.010 0.032 0.010
Ω12,1 0.003 0.009 0.025 0.009
Ω21,1 0.005 0.008 0.021 0.009

α1,2 -0.242 - -0.351 -
α2,2 0.169 - 0.037 -
Γ11,2 0.025 - 0.007 -
Γ21,2 0.104 - 0.142 -
Γ12,2 0.228 - -0.012 -
Γ22,2 0.097 - -0.139 -
Ω11,2 0.011 - 0.007 -
Ω12,2 0.009 - 0.006 -
Ω21,2 0.008 - 0.006 -

Λ 84.160 - 169.54 -
κ 67.871 - -41.51 -

Spectral radius regime one 0.9595 0.8412 0.5926 0.6107
Spectral radius regime two 0.6500 - 0.6785 -
Joint spectral radius [0.9595 : 0.9695] - [0.6785 : 0.689] -
Log-likelihood value 986.238 890.698
T 326 326 288 288
The joint spectral radius is calculated using the jsr_louvain toolbox by Raphael Jungers, see
Jungers (2009).
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3 Non-linear cointegration analysis of crude oil benchmarks

Figure 3.2: Graphical analysis of the estimated ACR models
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The cointegration relation is again seen to be close to the spread corrected for the quality
and cost related price premium. For both modeled periods, and prior to the 2011 decoupling,
regime one is predominant mostly in the crisis periods indicating that the non-linearities in the
cut-off sample are most prominent when the markets are less stable. We also estimate linear
cointegrated VAR models for comparisons. They display clear stationarity and in particular
indicate that Brent crude seems to be error-correcting while the WTI does not. Standard errors
are not reported in table 3.1 since the distributions of t-statistics are non-standard and nuisance
parameter dependent in the ACR framework. Instead, table 3.3 tests a number of hypothesis of
interest using bootstrap methods to simulate the corresponding distributions.

Misspecification tests are not yet developed for the ACR cointegrated model and instead we
look at some properties of the estimated residuals to get indications of possible misspecification.
The residuals in the ACR model are unobserved due to the unobserved regime switching, and as
a substitute, we use the estimator proposed in chapter two, section 2.4. We display some graphics
of these residuals illustrating univariate properties and we calculate portmanteau statistics for
left-over autocorrelation, see e.g. Lütkepohl (2005) and Juselius (2006). The graphs are given
in appendix 3.B and display very few signs of autocorrelation in the residuals. When looking
at the ACF functions for the squared residuals, some indications of left-over heteroskedasticity
are seen. We observe from table 3.2 that the portmanteau statistics reject the null of no left-
over autocorrelation in for the models estimated on the full sample and thus picks up some
autocorrelation that is not easily seen in the ACF plots. Hence, the conclusions from the tests
below should be drawn with some caution for the full sample. They do not reject for the
model estimated on the small sample, indicating that the left-over autocorrelation reflect the
models difficulties in fitting the post 2011 decoupling. The portmanteau statistics for no left-
over autocorrelation in the squared errors also reject, giving indications of ARCH effects as was
also seen in the ACF functions. In this respect, observe in particular that the ACF for the first
couple of lags of squared residuals are smaller in the ACR models than in the linear models.
Likewise, the graphs of the errors display much less volatility clustering than in the linear
case. This illustrates the models ability to accommodate some conditional heteroskedasticity
through the switching error covariance. We handle the remaining left over heteroskedasticity
by supplementing with wild bootstrap p-values when evaluating test statistics in the next (see
chapter two, remark 2.10, for a discussion on the wild bootstrap modification of the proposed
algorithm).

The results from the full sample show that the bootstrap test rejects the null hypothesis that
the spread is the cointegration relation, though the estimate of ϕb seems close to minus one.
That illustrates the super consistency of the cointegration relations discussed in chapter one,
which has as a consequence that tests on the cointegration parameters are very powerful. The
hypothesis that premium is zero is likewise very clearly rejected. Next it is seen that tests
for asymmetry in the regime switching and for weak exogeneity are not significant. The latter
indicates that the structure of the error correction mechanisms in this model is poorly identified.
Observe that when testing for linearity of the error covariance, the bootstrap test rejects on a
five-percent significance level, providing evidence in favor of non-linearities, at least in Ωj when
modeling the full sample. Linearity is rejected for the full sample. It thus seems that the
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Table 3.2: P-values for portmanteau statistics for
left over autocorrelation in the resid-
uals and in the squared residuals

Full sample before 2011

ACR Linear model ACR Linear model

εt 0.01 0.01 0.14 0.10
ε2t 0.00 0.00 0.00 0.00
The portmanteau statistic is calculated as described in
Lütkepohl (2005) and with the number of lags equal to
T/4.

Table 3.3: Testing hypothesis
Full sample Sample until December 2011

ACR Linear ACR Linear

Null Hypothesis iid-bs wild-bs χ2 iid-bs wild-bs χ2

ϕβ = −1 0.00 0.00 0.00 0.00 0.00 0.04
ϕβD

= 0 0.00 0.00 0.00 0.00 0.00 0.00
α1,1 = α2,1 = 0 0.75 0.73 0.33 0.35 0.44 0.00
α1,2 = α2,2 = 0 0.53 0.52 0.43 0.84 0.83 0.86
Γ1 = Γ2 0.37 0.55 - 0.66 0.72 -
Ω1 = Ω2 0.02 0.03 - 0.21 0.13 -
α1 = α2,Γ1 = Γ2 0.02 0.07 - 0.73 0.78 -
κ = 0 0.20 0.23 - 0.35 0.37 -
Linearity 0.00 0.02 - 0.27 0.27 -
p-values in the ACR model are based on the bootstrap procedure presented in
algorithm 2.9 in chapter two. The number of bootstrap replications is set to 399.
The p-value in the linear models are based on χ2 approximations.
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3.6 Conclusion

Table 3.4: Empirical rejection frequencies for the i.i.d bootstrap at the 5 % level for linearity
tests

Full sample Before 2011

Estimated size 0.047 0.042
Estimated power 0.821 0.973

enhanced flexibility of the non-linearities gives a significant improvement over the linear model.
When estimating the model on the data that ends in 2011, the non-linearities are no longer

rejected, indicating that it is indeed the period post 2011 that drives the regime switching. The
tests of the remaining parameters have similar conclusions as in the previous setup.
Finally, we look at the linear alternative for the small sample and conduct tests based on

χ2 inference. It is seen that the hypothesis that the cointegration relation corresponds to the
spread is rejected in the full sample and only marginally at a five percent significance level in
the small sample. Likewise the hypothesis that the premium is zero is clearly rejected. Finally,
when looking at the full sample, the error correction parameters are insignificant, while in the
cut-off sample the Brent crude price has been error correcting very clearly, while the WTI has
not. This illustrates the historical oddity of the recent period and indeed indicates that the
dynamics of these prices have dramatically changed since 2011.
Weak exogeneity of the WTI versus the Brent is also found in similar studies, such as Alizadeh

and Nomikos (2004), where a linear cointegrated VAR model is used to analyze a cost of carry
relationship and where including data on freight rates are included as a means of modeling
CBrent in (3.1).

Remark 3.1. Observe that in chapter two, the test for linearity displayed small sample size
distortions and to investigate whether similar distortions are present in this setup, we estimate
empirical rejection frequencies using the estimated parameter values. The results are given in
table 3.4, where fortunately, it seems that the test is well behaved, though with some lack of
power.

3.6 Conclusion

Having analyzed the dynamic behavior of two crude oil benchmarks, the WTI and Brent using
the ACR cointegrated model, we find that a remarkable departure from historical benchmarks
has taken place since 2011 and that whether or not this period is included in the model has
strong effects on the results. This departure is largely driving the non-linearities, which cannot
be reject in favor of a linear cointegrated VAR model for the full sample. Analyzing the period
up until December 2011, we do not find as strong support for ACR-type non-linearities and we
observe through analysis of a linear cointegrated VAR that the WTI has been weakly exogenous.
The estimated cointegration relations resemble the spread corrected for differences in quality and
transportation costs, though the tests for the spreads as cointegration relations are rejected. On
the theoretical side, we have shown that the asymptotic theory for the ACR cointegrated model
developed in chapter one is intact, apart for minor adjustments, when the switching probabilities
are taken to depend on the cointegration relations corrected for a non-zero mean rather than
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3 Non-linear cointegration analysis of crude oil benchmarks

the just the cointegration relations.
The estimated ACR cointegrated model pointed toward non-linearities spawning as a result

of the 2011 decoupling. However, the non-linear structure considered in this model is not
specifically designed to handle that kind of regime shift and using for example a model with an
estimated breakpoint around 2011 could present an alternative. In such a setup one could have
two different regimes, one before 2011 and one after. A third alternative could be to model the
change in a linear framework, introducing a shift dummy in the cointegration relations.
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3.A Appendix to section 3.3

The general likelihood derivatives are given in Lemmas (1.31), (1.32) and (1.33) from chapter
one and are functions of pjt and λjt (defined in (3.6) and section 1.7 of chapter one respectively)
and of derivatives thereof. A way to show what happens when βD is included in the switching
probability is the following. Recall that we can identify β? as in chapter one, section 1.6. We
introduce further the notation b?′ = (b′ : b′D) along with the corresponding manipulated data
vector X ?t = (κ?0 : τ?0 : in+1)′X?

t−1. Using this notation, all the derivatives of λjt with respect
to db, are now altered to be with respect to db?. That leaves the same expressions except that
db and Xt−1 which are replaced by db? and X ?t . Moreover, the expressions derived for dbD are
redundant and removed.
To check that the asymptotic theory goes through when using this specification, we verify a few

central claims modified to this setup. The remaining claims involving db? will hold for the same
reasons as those presented here. We use the notation from chapter one, Lemmas 1.12, 1.20 and
1.26 such that ST (db?) is the score evaluated at the true value in direction db?, HT

(
db?,db?†

)
is

the hessian evaluated at the true value in direction
(
db?,db?†

)
and db?T = T−

1
2W

1
2
b?Tdb?, where

Wb?T := diag
(
TIn−r−1, T

2, 1
)
.

Claim 3.2. ST (db?T ) w→ vec
(∫ 1

0 F
? (s) dBv (s)′

)′
vec (db?′)

Claim 3.3. HT

(
db?T ,db?

†
T

)
w→ −tr

{(
db?†

)′ ∫ 1
0

(
F ? (s)F (s)?′ ds

)
db?Σvv

}
Claim 3.4. supθ∈NT (θ0)

∣∣∣T 1
2 d3LT

(
θ; db?T , db

?†
T ,db

?‡
T

)∣∣∣ = Op
(
‖db?‖

∥∥∥db?†∥∥∥ ∥∥∥db?‡∥∥∥) .
Verification of Claim 3.2 Observe initially that β? = β?0 + (κ?0 : τ?0 : in+1) b?. As in chapter
one, we observe that differentiation of λjt with respect to b? gives

dλjt
(
db?′

)
= ε′jtΩ−1

j αjdb?′X ?t−1 + ∂z log pjtψ′βdb?′X ?t−1

=
(
ε′jtΩ−1

j αj + ∂u log pjtψ′β
)

db?′X ?t−1

such that we can write hvt :=
∑
j∈M p

?
jthvjt and d`t (vec(db′)) =

(
vec

(
X ?t−1h

′
vt

))′ vec(db?′) and
hence by the same arguments as in chapter one, we get

ST (db?T ) w→ vec
(∫ 1

0
F ? (s) dBv (s)′

)′
vec

(
d
(
b?′
))

where F ? (s) =
(
Bκ (s)′ : s : 1

)′
.

Verification of Claim 3.3 As in chapter one, and with
(
dbT ,db†T

)
replaced by

(
db?T ,db

?†
T

)
, we

have

HT

(
db?T ,db

?†
T

)
=−

T∑
t=1
X ?′t−1db?Tϕbtϕ′btdb

†′?
T X

?
t−1 −

T∑
t=1
X ?′t−1db?T

×
∑
j∈M

p?jt

{
vjtv

′
jt − α0jΩ−1

0j α0j + ψβ
(
∂2
uu log pjt

)
ψ′β

}
db?†′T X

?
t−1 (3.7)
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where vjt := α′0,jΩ−1
0,jεjt +ψβ (∂u log pjt)′ and ϕbt :=

∑
j∈M p

?
jt

(
α′jΩ−1

j εjt + ψ1 (∂z log pjt)′
)
. The

inner part of the second term,

ft :=
{
vjtv

′
jt − α0jΩ−1

0j α0j + ψβ
(
∂2
zz log pjt

)
ψ′β

}
is a mean zero, martingale difference sequence by the same arguments as in chapter one. Next,
observe that

X ?′[Ts]db
? =


X ′[Ts]κ

?
0

X ′[Ts]τ
?
0

in+1


′

db?

with κ?0, τ?0 given in section 1.6.1 and with s ∈ [0; 1], and applying the arguments from chapter
one, we have

Wb?TX ?[Ts]X
?′
[Ts]Wb?T

w→


Bκ (s)
s

1


′
Bκ (s)
s

1
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and

HT

(
db?T , db

?†
T

)
w→ −tr

{(
db?†

)′ ∫ 1

0

(
F ? (s)F ? (s)′ ds

)
db?Σvv

}
as was desired.

Verification of Claim 3.4 For verification of this claim, observe that

∥∥Wb?TX ?t−1
∥∥ =

∥∥∥T− 1
2κ?′0 X

?
t−1 + T−1τ?′0 X

?
t−1 + i′n+1

∥∥∥
=

∥∥∥T− 1
2κ′0Xt−1 + T−1τ ′0Xt−1 + i′n+1

∥∥∥
and thus the same arguments used in 1.49, one has that for some a ≥ 2q and with q given in
Assumption 1.2 of chapter one, we have

T−1
T∑
t=1

∥∥Wb?TX ?t−1
∥∥a = Op (1) . (3.8)

Next, the terms of interest are given by

T
1
2 Ξ1

(
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)
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)
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1
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)
, and

T
1
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(
db?T ,db

?†
T , db

?‡
T

)
= T

1
2

T∑
t=1

d3λjt
(
db?T , db

?†
T , db

?‡
T

)
.

Using (3.8) and (1.49) from chapter one, these terms are bounded by the applying the exact
same arguments as in chapter one.
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3.B Graphical analysis of residuals

In this appendix, we provide a number graphs for the estimated residuals. We give the residuals
them selves, εit as well as the residuals squared, ε2it, for i = {1, 2}.
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Figure 3.3: Graphical analysis of the residuals, Brent-WTI, ACR - full sample
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Figure 3.4: Graphical analysis of the residuals, Brent-WTI, Linear - full Sample
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Figure 3.5: Graphical analysis of the residuals, Brent-WTI, ACR - before 2011
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Figure 3.6: Graphical analysis of the residuals, Brent-WTI, Linear - before 2011
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3.C Comparing WTI, Brent and Dubai-Fateh

To illustrate that the decoupling of the WTI and the Brent crude oil prices originate primarily
from a general decoupling of the WTI from the remaining international crude oil streams, we
display a graph where the Dubai-Fateh crude stream is also depicted. It is seen that the spread
between the Dubai-Fateh and Brent crude oils is of a similar order before and after 2011, and
that the WTI crude price has dropped relatively to the two others.

Figure 3.7: Brent, WTI and Dubai-Fateh, from 2008-2014
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4 Smooth vs. non-smooth regime switching

This chapter is based on joint work with Line Elvstrøm Ekner.1

As observed in chapter two, section 2.2.4 using logistic switching probabilities can
result in identification difficulties for the parameters in the switching probability.
This problem is not isolated to the ACR framework, but also accors frequently
in other non-linear models such as the logistic smooth transition autoregression
(LSTAR), where the problematic parameter is referred to as the speed of transi-
tion parameter. We propose a reparametrization of the logistic smooth transition
autoregressive model which facilitates identification and estimation of this parame-
ter. Moreover, we show that all derivatives of the likelihood function are approaching
zero as the parameter measuring the speed of transition increases, and, hence, the
threshold autoregressive (TAR) model always represents at least a local stable point
of the LSTAR likelihood function. We propose to use information criteria for the
choice between the two models and illustrate the validity of this procedure by means
of simulatons. Two empirical applications illustrate the usefulness of our findings.

4.1 Introduction

Regime switching models have become increasingly popular in the time series literature over the
last decades and applied to data from potential regime switching processes such as, e.g., the
business cycle, the unemployment rate, exchange rates, prices, interest rates, etc. The majority
of the models initiate from the threshold autoregressive (TAR) model first presented by Tong
and Lim (1980). Nevertheless, the idea of smooth regime switching was discussed by Bacon and
Watts (1971), but not formalized in terms of a time series model until Chan and Tong (1986)
proposed what they called a smoothed threshold autoregressive model as an extension to the
TAR model of Tong and Lim (1980). Heavily cited contributions by Luukkonen et al. (1988) and
Teräsvirta (1994) changed the label from “smoothed threshold” to “smooth transition” resulting
in the label smooth transition autoregression (STAR) used today. For an overview of the TAR
and STAR literature, see Tong (2011), Teräsvirta et al. (2010a), and van Dijk et al. (2002).
The logistic STAR (LSTAR) model differs from the TAR model by having smooth regime

switches over time parametrized by the speed of transition parameter. The switches in the TAR
model are in contrast discontinuous. The primary economic motivation for the LSTAR model
is that economic time series are often results of decisions made by a large number of economic
agents. Even if agents are assumed to make only dichotomous decisions or change their behavior

1We would like to thank Søren Johansen, Myung Hwan Seo and Timo Teräsvirta for very helpful comments and
discussions.

87



4 Smooth vs. non-smooth regime switching

discretely, it is unlikely that they do so simultaneously. Hence, any regime switching in economic
time series may be more accurately described as taking place smoothly over time. Moreover, the
speed of the regime switching can be of separate interest to an economist, e.g., to analyze how
fast the economy adapts to another regime or state of the economy. In empirical applications
it is, however, often very difficult to identify the speed of transition parameter, and, thus, it
is important to test whether this additional parameter of the LSTAR model is at all relevant
compared to a TAR model.

The first contribution of this paper is a reparametrization of the LSTAR model. In terms of
the proposed parametrization we can explicitly illustrate the problem of distinguishing LSTAR
and TAR alternatives.

The second contribution is to show that this distinction is complicated both theoretically and
in terms of numerical optimization by the fact that all derivatives of the LSTAR likelihood func-
tion are approaching zero with faster speed of transition, i.e., when the LSTAR model approaches
the TAR model. Using likelihood analysis, we study the consequences of this identification prob-
lem for estimation and inference in the LSTAR model. The new parametrization avoids some
of the numerical difficulties that arise when applying the original LSTAR parametrization, and,
moreover, clarifies that the LSTAR likelihood function can have a maximum corresponding to a
TAR model. In the literature of LSTAR models economic theory is used as the only motivation
for modeling an LSTAR model instead of a TAR model, see, e.g., Granger and Teräsvirta (1993)
and Teräsvirta (1998). However, our new parametrization facilitates a decision based upon the
data, possibly in conjunction with economic theory. We show how information criteria provide
a neat, but conservative, tool to select an LSTAR model over a TAR model that can be applied
if one wishes to comment on the speed of transition.

The related issue of selecting between an LSTAR model and an autoregressive (AR) model
is not treated in this paper. Although testing such hypothesis of linearity is non-standard,
procedures are available and well-described in the literature of both the (L)STAR and TAR
models, see Davies (1987), Luukkonen et al. (1988), Hansen (1996), and Kristensen and Rahbek
(2013).

Furthermore, we discuss numerical optimization of the LSTAR likelihood function. In partic-
ular, we consider the origin of multiple maxima on the likelihood function and the use of grid
search methods. Finally, we illustrate the benefits of the new parametrization and the model
selection procedure with data from two published applications. In the first application, the like-
lihood function for the reparametrized speed of transition parameter reveals that the published
result is only a local maximum on the likelihood function, and that the global maximum is a
TAR model. In the second example, data contains insufficient information about the speed of
transition parameter which then becomes irrelevant, and, as a result, information criteria prefer
a TAR model over the published LSTAR model.

The new parametrization can be applied to all kinds of regime switching models where the
regime switching is governed by one or more logistic type transition functions. Identification
of the speed of transition parameter in the related exponential STAR (ESTAR) model with an
exponential transition function has recently been studied by Heinen et al. (2012). However, the
problem is different in the ESTAR model since this model approaches an AR model when the
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4.2 The model and the identification problem

Figure 4.1: The logistic transition function Gt = {1 + exp(−γ(yt−1 − c))}−1 for different values
of γ.
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speed of transition approaches infinity and not a TAR model. Hence, their results do no carry
over to the LSTAR model. Nevertheless, the new parametrization can also be beneficial for
estimation of the ESTAR model by facilitating numerical optimization as well as identification
of the global maximum of the likelihood function.

4.2 The model and the identification problem

To fix ideas, consider a simple LSTAR model of order one for yt ∈ R, cf., Teräsvirta (1994),

yt = αyt−1Gt + εt, t = 1, 2, .., T (4.1)

with εt ∼ i.i.N(0, σ2) and where Gt is the logistic transition function given by

Gt := G (yt−1; γ, c) = (1 + exp {−γ(yt−1 − c)})−1. (4.2)

The AR parameter is α, γ is the speed of transition parameter and c is the threshold parameter.
While |α| < 1 and c ∈ R, we assume that γ ∈ R̄+ where R̄+ := R+ ∪∞. Thus, we extend the
original definition of the parameter space for γ to include infinity, hereby making it feasible to
discuss both the LSTAR model and the TAR model within the same framework. Figure 4.1
shows how the functional form of Gt changes with γ. In particular, note that as γ → 0, Gt → 1

2
and as γ →∞, Gt → I{yt−1−c>0} where I{A} is the indicator function equal to one when A is true
and zero otherwise. Hence, the TAR model is a limiting case of the LSTAR model prevailing
when γ =∞. This feature of the model is central to the identification problem discussed in this
paper.
The related ESTAR model is given by (4.1) and G (yt−1; γ, c) = 1 − exp

{
−γ(yt−1 − c)2} .

When γ→∞, Gt → 0 (with a single blip at yt−1 = c) and the ESTAR model approaches a white
noise process or, in a more general case, an AR model. Hence, poor identification of the speed of
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4 Smooth vs. non-smooth regime switching

transition parameter is, in contrast to the LSTAR model, often anticipated when testing against
a linear model, which is standard in the STAR literature.

4.3 Likelihood analysis of the speed of transition parameter

LSTAR models are traditionally estimated by maximum likelihood (ML) or non-linear least
squares (NLS). The two approaches are equivalent when the errors are assumed i.i.d. Gaussian,
and thus the essential insights from the following ML analysis carry over to NLS. Before intro-
ducing the new parametrization, we illustrate some of the less attractive consequences of the
original parametrization for estimation and inference in the LSTAR model. We are interested
in analyzing only the properties of the ML estimator of γ, and, hence, we fix σ2, α and c. The
(log-)likelihood function is, apart from a constant, given by

LT (γ) =
T∑
t=1

`t (γ) = −1
2

T∑
t=1

εt (γ)2 , εt (γ) = yt − αyt−1Gt (4.3)

where Gt is the logistic transition function given by (4.2). Lemma 4.1 below provides results on
the behavior of the derivatives of the likelihood function as the speed of transition parameter, γ,
tends to infinity. Observe, in particular, that both the score and Hessian tend to zero as γ →∞,
meaning that the likelihood function becomes flat as the LSTAR model approximates the TAR
model. Hence, the TAR model always represents at least a local maximum of the likelihood
function.

Lemma 4.1. With the likelihood function given in (4.3), it holds for n ≥ 1 that

lim
γ→∞

∂n`t (γ)
(∂γ)n = 0. (4.4)

The proof is given in the appendix.

To illustrate the consequences for estimation, we simulate a data set from an LSTAR model
with T = 150, γ0 = 2, σ2 = 1, c = 0 and α = 0.5. The data series and Gt is graphed in figure
4.6 in appendix 4.A while the corresponding likelihood function as a function of γ is depicted in
figure 4.2(a) below. Observe that the likelihood function gets flatter as the value of γ grows and
the maximum is found, roughly, somewhere in the interval γ ∈ [35;∞] which does not contain
γ0 = 2. In empirical applications, one often estimate a large value of γ with a large standard
error. As our parametrization below clarifies, this is in effect identical to estimating a TAR
model.

4.3.1 The δ-parametrization

To minimize the harmful flat areas of the likelihood function, we propose the following reparametriza-
tion. We define a new parameter δ ∈ (0; 1], such that

δ = γ

1 + γ
(4.5)
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4.3 Likelihood analysis of the speed of transition parameter

Figure 4.2: The profiled likelihood function as a function of γ(a) and δ(b), respectively. The
data set is simulated for T = 150, γ0 = 2 (δ0 = 2

3), σ2 = 1,c = 0, α = 0.5.

(a) (b)

with δ → 0 as γ → 0 and δ → 1 as γ → ∞. Hence, the transition function in (4.2) is replaced
by

G (yt−1; δ, c) =
(

1 + exp
{
− δ

1− δ (yt−1 − c)
})
−1 (4.6)

Although lemma 1 also applies to an LSTAR likelihood function with (4.6), the reparametrization
has advantages compared to the γ-parametrization. The main advantage is that it emphasizes
the part of the likelihood function that is of principal interest in an LSTAR model. Essentially,
the new parametrization maps γ ∈ R̄+ into δ ∈ (0; 1], where δ ∈ (0; 1) is an LSTAR model,
δ = 1 is a TAR model, and δ = 0 is an AR model. Of particular importance is the mapping of
γ ∈ [U ;∞] into δ ∈ [u; 1], where U is some large value potentially tending to infinity and u is the
corresponding value in the δ parametrization. For example, in figure 4.2 set U ≈ 9 and, hence,
γ ∈ [9;∞] is mapped into δ ∈ [0.9; 1]. This feature can facilitate numerical optimization of
the likelihood function because the large flat part of the likelihood function appearing in figure
4.2(a) is now mapped into a much smaller interval as evident from figure 4.2(b). An example
hereof is discussed in the next subsection.
The reparametrization highlights two important aspects that were less clear with the original

γ-parametrization. First, the likelihood function is bimodal with a well defined local maximum
around δ = 0.45, corresponding to an LSTAR model with γ ≈ 0.8 and, thus, not equal to the
true value of γ0 = 2 (δ0 = 2

3). Apparently, for this particular realization the local maximum
undershoots the true value of the speed of transition. Second, the δ-parametrization stresses
that the global maximum of the likelihood function is found close to or at the boundary of the
parameter space corresponding to a TAR model. The fact that the likelihood function actually
continues to increase until δ ≈ 1 is less likely to be seen from the γ-parametrization.

Consequences for numerical optimization

Granger and Teräsvirta (1993, p. 123) note that γ tend to be overestimated, and this is also
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4 Smooth vs. non-smooth regime switching

Table 4.1: Estimated bias in γ̂ and δ̂ as a function of the stopping criterion for the nu-
merical optimizer.

Number of observations T = 150 T = 300

ST (x̂) = ∂`T (x̂)
∂x̂ ≤ 10−2 ≤ 10−6 ≤ 10−16 ≤ 10−2 ≤ 10−6 ≤ 10−16

B̂IAS(γ̂) = ∑M

m=1(γ̂m − γ) 0.9063 8.2439 49.509 0.6594 5.4652 21.781
B̂IAS(δ̂) = ∑M

m=1(δ̂m − δ) 0.0533 0.0545 0.0545 0.0146 0.0148 0.0148
Note: The DGP is γ = 1 (δ = 1

2 ), σ
2 = 1,c = 0 and α = 0.5. M = 10, 000 and c and α are fixed in

estimation.

observed in the literature on LSTAR models where γ̂ has been reported to have a positive
sample bias, see e.g. Areosa et al. (2011). This bias may be caused by the estimation of γ
without recognizing the behavior of the numerical optimizer when the threshold alternative is
the global maximum of a model with a logistic transition function. Table 4.1 shows results from
a Monto Carlo study in which the estimated bias in γ̂ is computed for different values of the
stopping criterion of the numerical optimizer used to estimate γ. We focus on the stopping
criterion related to the score of the likelihood function. The positive bias in γ̂ depends heavily
on the value of this criterion. This illustrates that the often arbitrary choice of stopping criterion
for the numerical optimizer affects the bias in γ̂. However, for the δ-parametrization, the bias
appears (almost) unaffected by the size of the stopping criterion.2

4.4 Estimating LSTAR models

The properties of the likelihood function for LSTAR models discussed so far introduce difficulties
for numerical optimization. We observe two separate problems that have to be taken into
account. First, the likelihood function might have a multiple maxima in the direction of δ, as
described in the previous sections. To handle this, it is useful to estimate δ with a derivative
based optimizer and using different initial values from the parameter space δ ∈ (0; 1]. To ensure
that the reached maximum is global, it is important to always calculate the additional likelihood
value at the limit, δ = 1.
The second difficulty is that the likelihood function approaches the step-wise likelihood func-

tion of a TAR model in the direction of c as δ → 1. Consequently, many local maxima exist
in the direction of c and derivative based optimizers will not work well. For an illustration see
figure 4.3, which shows the likelihood as a function of c for different values of δ. To circumvent
the problem of a step-wise likelihood function, a grid search algorithm over c can be performed
with an interval that covers observed values of yt−1 spanning from, e.g., the 10th to the 90th
percentile of the distribution of yt−1. This grid search technique for c is standard in the TAR lit-
erature and ensures that all relevant points for threshold locations are examined. The rest of the
parameters are estimated using least squares conditional on the transition function parameters.
When estimating simple models, as the one analyzed in this paper, performing a two di-

2Note that the size of the bias is not comparable across parametrizations due to the different scaling of the
parameters and that since the ML estimator is consistent, the bias diminishes as T grows.
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4.5 Selecting between LSTAR and TAR with information criteria

mensional grid search over δ and c and drawing the profiled likelihood function is generally
informative. This approach allows one to take into account both problems. Note that this pro-
posal is by no means new and is in fact standard practice in the literature for finding candidates
for initial values, see inter alia Bec et al. (2008) and Teräsvirta et al. (2010a, ch. 12). Our
contribution is that the δ-parametrization clarifies the reason for doing the grid search, and we
emphasize that the main problem of multiple equilibria of the LSTAR model is related to the
fact that the likelihood function approaches a step-wise likelihood function as δ → 1.

Figure 4.3: Profiled likelihood functions in the direction of c for different values of δ. Data is
one realization from an LSTAR model with T = 300, σ2 = 1, c = 0 and α = 0.5.
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4.5 Selecting between LSTAR and TAR with information criteria

The bimodality of the likelihood function seen in figure 4.2(b) is a common small sample property
of LSTAR models. Typically, there exists one inner maximum corresponding to an LSTAR
model and a maximum on the boundary of the parameter space (δ = 1) corresponding to a
TAR model. The simulation considered above in figure 4.2 is an extreme example of this, where
the global maximum of the likelihood function is at δ ≈ 1. A more typical case is one with the
inner maximum being the global maximum and a local, smaller maximum is found at the TAR
solution, see for example figure 4.5(b). A relevant question is therefore whether the likelihood
value of the inner maximum is large enough compared to the likelihood value of the boundary
TAR maximum to justify estimation of a speed of transition parameter. One way to investigate
this question would be to derive a test for the null-hypothesis of δ = 1. However, such a test
is highly non-standard since, as Lemma 4.1 shows, all derivatives are zero and, hence, it is not
obvious how to obtain critical values. We propose instead to conduct model selection based on
information criteria, where no critical values are needed. Information criteria combine a measure
of goodness-of-fit with a penalty for model complexity. Comparing information criteria would
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4 Smooth vs. non-smooth regime switching

therefore indicate whether the additional speed of transition parameter of an estimated LSTAR
model leads to a notable improvement of fit compared to a corresponding TAR model. Note
that the theoretical foundation for validity of the information criteria when the true model is the
TAR model suffers from the same difficulties as a formal test. As a result, we are unable to prove
the asymptotic validity of this selection procedure analytically. Rather, we rely on simulation
studies which give clear indications that the model selection proceduce is indeed consistent.
We conjecture that these simulation results are not specific to the selected models, such that
information criteria can be used more generally to select between TAR and STAR models.
Psaradakis et al. (2009) pursue a comparable idea and consider selecting between several non-

linear autoregressive models by means of information criteria. In the following, we conduct a
similar simulation study for the choice between a TAR model and an LSTAR model using the
proposed reparametrization. With LT (δ) being the likelihood function given in (4.3) evaluated
with respect to δ, the information criteria are of the form

ICT (δ, k) = −2LT (δ) + kcT , (4.7)

where k is the number of estimated parameters which equals 1 for the LSTAR and 0 for the
TAR. The term cT is a function of T that satisfies limT→∞ cT = ∞ and limT→∞(T−1cT ) = 0.
We focus on the Bayesian Information Criterion (BIC), Schwarz (1978), with cT = log (T ),
and the Hannan-Quinn Information Criterion (HQIC), Hannan and Quinn (1979), with cT =
2 log (log (T )). Both criteria fulfill the requirements for cT . We use the information criteria to
estimate the number of parameters, k, and denote this estimate k̂. The selection procedure is
consistent if k̂ → k0 as T →∞. We illustrate this selection method using four different models,
three LSTAR models with δ = {0.2, 0.5, 0.9}, respectively, and a TAR model. We simulate
M = 10, 000 data sets and estimate only the speed of transition parameter δ. The remaining
parameters are fixed at the true values: σ2 = 1, α = 0.5 and c = 0. For each replication, we
calculate the percentage selected LSTAR models of the two information criteria. The experiment
is done for different sample lengths and the selection percentages are given in table 4.2.

Table 4.2: Percentage selected LSTAR models using information cri-
teria.

DGP LSTAR, δ = 0.2 LSTAR, δ = 0.5 LSTAR, δ = 0.9 TAR, δ = 1

T HQIC BIC HQIC BIC HQIC BIC HQIC BIC

100 63 47 25 13 3 1 3 1
250 92 82 45 25 3 1 3 1
500 99 98 68 46 3 1 3 1
103 100 100 90 76 3 1 3 1
104 100 100 100 100 6 1 2 0
105 100 100 100 100 42 6 0 0
106 100 100 100 100 100 100 0 0

Note: Only δ is estimated. Remaining parameters are fixed at true values of
σ2 = 1, α = 0.5 and c = 0.

The results show that the slower the speed of transition, the better the performance of the
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information criteria. Nevertheless, even with a relatively slow transition speed of δ = 0.5 and
T = 1, 000, BIC and HQIC still select a rather large number of incorrect TAR models, 24% and
10%, respectively. For the LSTAR model with δ = 0.9 the information criteria are apparently
punishing too severely for the additional parameter and do not choose the LSTAR model in 100%
of the cases until T = 1, 000, 000. Again, this shows that while the identification problem for δ
is a small sample problem, sometimes T needs to be extremely large to get a clear distinction
between an LSTAR and a TAR model. This finding is also supported by the results of Castle
and Hendry (2013, table 3) which shows that data generated from the two models are highly
correlated. Observe that when the TAR model is the DGP, the information criteria only choose
the LSTAR rarely for small samples and not at all for (very) large samples.
Overall, if model selection based on information criteria prefer an LSTAR, it is a clear indica-

tion that the speed of transition is slow enough to make a difference compared to the TAR model.
On the other hand, if the TAR is chosen, there is a risk that one has incorrectly fixed δ = 1.
However, this only means that the value of δ is irrelevant for the model. Hence, information
criteria provide a conservative tool to select LSTAR models over TAR models.

4.6 Empirical applications

We illustrate by two empirical applications from the LSTAR literature the advantages of the
δ-parametrization over the γ-parametrization and model selection based on information criteria.
The first application illustrates a situation where the δ-parametrization reveals that the reported
maximum of the likelihood function is not the global maximum. In the second application, the δ-
parametrization confirms that the global maximum is the reported one, but information criteria
prefer the TAR model over the LSTAR model because the regime switching is so fast that
estimating the additional speed of transition parameter is superfluous.

4.6.1 Wolf’s annual sunspot numbers

Teräsvirta et al. (2010a, p. 390), illustrate a suggested STAR modeling procedure by analyzing
Wolf’s annual sunspot numbers dating from 1700 to 1979. The data is published at the Belgian
web page of Solar Influences Data Analysis Center.3 Following Teräsvirta et al. (2010a) the
series is transformed as: yt = 2

{
(1 + zt)1/2 − 1

}
where zt is the original series. The motivation

for transformation is that the transformed series is easier to model than the untransformed one.
The original estimated LSTAR model is reproduced with both parametrizations and given by
(standard errors in parenthesis)

yt = 1.46
(0.08)

yt−1 − 0.76
(0.13)

yt−2 + 0.17
(0.05)

yt−7 + 0.11
(0.04)

yt−9

+(2.65
(0.85)
− 0.54

(0.13)
yt−1 + 0.75

(0.18)
yt−2 − 0.47

(0.11)
yt−3

+0.32
(0.11)

yt−4 − 0.26
(0.07)

yt−5 − 0.24
(0.05)

yt−8 + 0.17
(0.06)

yt−10)× Ĝxt (4.8)

3http://www.sidc.oma.be/sunspot-data/
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Figure 4.4: Profiled likelihood functions of the LSTAR model for Wolf’s sunspot numbers, 1710-
1979. (a) is for the γ-parametrization and (b) is the for the δ-parametrization.

(a) (b)

x = γ : Ĝγ = 1 + exp{−5.46
(1.11)

(yt−2 − 7.88
(0.36)

)/σ̂yt−2}−1

x = δ : Ĝδ = 1 + exp

−
0.85
(0.03)

1− 0.85
(0.03)

(yt−2 − 7.88
(0.36)

)/σ̂yt−2


−1

T = 270, RSS = 921.84, LogL = −2, 091.2

BIC = 4, 260.8, HQIC = 4, 230.7

The normalization by σ̂yt−2 in the transition function is standard in the literature of applied
STAR models because it facilitates the choice of grid or initial values for γ, see van Dijk et al.
(2002). The profiled likelihood function in direction of c and γ for each parametrization is showed
in figure 4.4. The characteristically flatness in the direction of γ is pronounced in figure 4.4(a),
and the reported maximum for (ĉ, γ̂) = (5.46, 7.88) appears relatively well-defined. However,
figure 4.4(b) reveals that the global maximum is actually the TAR model at the boundary δ = 1,
whereas the LSTAR model is only a local maximum. The γ-parametrization has effectively
blurred the shape of the likelihood function. At the boundary, the TAR likelihood function is
characterized by discrete jumps over the range of c. This implies that performing a careful grid
search over potential values of c is crucial for the estimation of c, as discussed in section 4.4
and, more importantly, that inference on c is non-standard, cf., Chan (1993) and Hansen (1997).
Estimating the TAR model yields4

4The grid search of c is performed over values of yt−2, disregarding values in the lower 10% percentile and upper
90% percentile of the distribution of yt−2. No standard error of ĉ is reported due to the non-standard inference
on the threshold parameter in a TAR model.
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yt = 1.43
(0.08)

yt−1 − 0.77
(0.14)

yt−2 + 0.17
(0.05)

yt−7 + 0.12
(0.05)

yt−9

+(2.69
(0.70)
− 0.45

(0.11)
yt−1 + 0.69

(0.18)
yt−2 − 0.48

(0.11)
yt−3

+0.36
(0.11)

yt−4 − 0.27
(0.07)

yt−5 − 0.21
(0.05)

yt−8 + 0.14
(0.05)

yt−10)× I (yt−2 > 6.39) . (4.9)

T = 270, RSS = 920.66, LogL = −2, 090.9

BIC = 4, 254.6, HQIC = 4, 226.6

While the AR parameters are almost identical to those of the LSTAR model in (4.8), the
threshold parameter differs between the models. This TAR maximum is preferred by the in-
formation criteria to the reported LSTAR model in (4.8) because the TAR model achieves a
higher (lower) value of LogL (RSS) in addition to be one parameter short of the LSTAR model.5

The TAR maximum (4.9) can easily be reproduced with the δ-parametrization by performing a
two-dimensional grid search over c and δ ∈ (0; 1]. A similar exercise for the γ-parametrization
produces, depending on the choice of grid for γ as well as the choice of stopping criterion, either
the local LSTAR maximum of (4.8) or an invalid maximum with all observations in one regime.
Hence, the model that truly maximizes the likelihood function is impossible to estimate with
the γ-parametrization because γ is infinity.
Nevertheless, given that an LSTAR process has a TAR maximum as a small sample property,

as found in section 4.5, and the relatively small sample size of 270, the LSTAR model cannot
be discarded as being the DGP of this sunspot data. In addition, the likelihood function in the
region of the local LSTAR maximum in (4.8) and appearing in figure 4.4, seems closely approxi-
mated by a quadratic form, and is thus a well defined maximum. Based on these considerations,
one could also argue that the LSTAR model may be the DGP of the process.

4.6.2 U.S. unemployment rate

The paper by van Dijk et al. (2002) illustrates a suggested STAR modeling cycle which in-
cludes, among others, impulse response and forecasting analysis. The data series is the monthly
seasonally unadjusted unemployment rate for U.S. males aged 20 and over for the period 1968:6-
1989:12.6

The LSTAR model is reproduced with both parametrizations and given by (standard errors
in parenthesis)

∆yt = 0.479
(0.07)

+ 0.645
(0.07)

D1,t − 0.342
(0.10)

D2,t − 0.680
(0.09)

D3,t − 0.725
(0.11)

D4,t − 0.649
(0.10)

D5,t

5Teräsvirta et al. (2010a) reach similar conclusion when estimating a TAR model for the same data later in
the book, though, without specifying a measurement. Their TAR model is, however, specified differently and
non-nested with (4.9) and (4.8) which makes direct comparisons infeasible.

6The series is constructed from data on the unemployment level and labor force for the particular sub pop-
ulation. These two series are published together with Gauss programs used to estimate their model at
http://swopec.hhs.se/hastef/abs/hastef0380.htm.
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−0.317
(0.09)

D6,t − 0.410
(0.09)

D6,t − 0.501
(0.09)

D8,t − 0.554
(0.09)

D9,t − 0.306
(0.07)

D10,t

+[−0.040
(0.01)

yt−1 − 0.1460
(0.08)

∆yt−1 − 0.101∆
(0.06)

yt−6 + 0.097
(0.06)

∆yt−8 − 0.123
(0.06)

∆yt−10

+0.129
(0.07)

∆yt−13 − 0.103∆
(0.06)

yt−15]× [1− Ĝxt ]

+[−0.011
(0.01)

yt−1 + 0.225
(0.08)

∆yt−1 + 0.307∆
(0.08)

yt−2 − 0.119
(0.07)

∆yt−7 − 0.155
(0.09)

∆yt−13

−0.215
(0.09)

∆yt−14 − 0.235
(0.09)

∆yt−15]× Ĝxt (4.10)

x = γ : Ĝγ = 1 + exp{−23.15
(21.75)

(∆12yt−1 − 0.274
(0.04)

)/σ̂∆12yt−1}
−1

x = δ : Ĝδ = 1 + exp

−
0.96
(0.04)

1− 0.96
(0.04)

(∆12yt−1 − 0.274
(0.04)

)/σ̂∆12yt−1


−1

T = 240, RSS = 8.178, LogL = −725.0

BIC = 1, 597.9, HQIC = 1, 541.8

Ds,t is monthly dummy variables where Ds,t = 1 if observation t corresponds to month s and
Ds,t = 0 otherwise. van Dijk et al. (2002) have sequentially removed all variables with a t-statistic
lower than 1 in absolute value. Observe that γ is rather large and imprecisely estimated indicat-
ing that data contains little information about the size of this parameter. The profiled likelihood
functions for the two parametrizations are displayed in figure 4.5. Because γ̂ is so large, the

Figure 4.5: Profiled likelihood functions of the LSTAR model for U.S. male unemployment
rate, 1968:6-1989:12. (a) is for the γ-parametrization and (b) is the for the δ-
parametrization.

(a) (b)

maximum is visually absorbed by the flatness of the γ-likelihood function in figure 4.5(a). In
contrast, the δ-likelihood function in figure 4.5(b) confirms that the reported maximum is in fact
the global maximum of the likelihood function. Interestingly, the δ-likelihood function shows
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that the local TAR maximum at the boundary leads to only a minor drop in likelihood value
compared to the LSTAR model. To check whether this TAR model is preferred by information
criteria, the TAR model is estimated and given by7

∆yt = 0.473
(0.07)

+ 0.644
(0.07)

D1,t − 0.343
(0.10)

D2,t − 0.675
(0.09)

D3,t − 0.721
(0.11)

D4,t − 0.641
(0.10)

D5,t

−0.308
(0.09)

D6,t − 0.410
(0.09)

D6,t − 0.505
(0.08)

D8,t − 0.546
(0.09)

D9,t −0.295
(0.07)

D10,t

+[−0.040
(0.01)

yt−1 − 0.140
(0.08)

∆yt−1 − 0.094∆
(0.06)

yt−6 + 0.092
(0.06)

∆yt−8 − 0.116
(0.06)

∆yt−10

+0.136
(0.07)

∆yt−13 − 0.106∆
(0.06)

yt−15]× I (∆12yt−1 ≤ 0.268)

[−0.012
(0.01)

yt−1 + 0.227
(0.08)

∆yt−1 + 0.307∆
(0.08)

yt−2 − 0.094
(0.07)

∆yt−7 − 0.146
(0.09)

∆yt−13

−0.211
(0.09)

∆yt−14 − 0.216
(0.09)

∆yt−15]× I (∆12yt−1 > 0.268) (4.11)

T = 240, RSS = 8.191, LogL = −725.3

BIC = 1, 593.2, HQIC = 1, 539.1

The information criteria prefer this TAR model implying that the speed of transition is too
poorly estimated to make a difference.
This application highlights one of the key points of the present paper, namely that a large and

imprecisely estimated γ implies that the LSTAR model is effectively a TAR model. Moreover,
we observe the consequences of the flat likelihood function for inference on γ̂. The estimated
standard error of γ̂ (s.e.(γ̂)) is large due to the flatness of the likelihood function in direction of
γ towards infinity, see figure 4.5(a). However, the large s.e.(γ̂) seems less justified towards zero
where one observes a large drop in the likelihood. This illustrates how the flatness contaminates
the estimation of the variance of γ̂ for which zero is well within a two s.e.(γ̂). Consequently, one
might conclude that γ could be zero, which from a look at the function in figure 4.5(a) seems
unlikely. For this reason (and because a test of γ = 0 results in vanishing parameters and, thus,
is a non-standard test), it is common practice in the LSTAR literature not to comment on the
s.e.(γ̂). It is seen from the s.e.(δ̂) that the δ-parametrization does not suffer from this problem
in the present application.

4.7 Conclusion

Regime switching models characterized by smooth transitions only differ from discrete regime
switching models by the speed of transition parameter. Thus, estimation and identification of
this parameter is essential not only for economic interpretation but also for model selection.
Nevertheless, the identification problem and its consequences for estimation have received little
attention in the literature. We show that the original parametrization of the speed of transition

7Similar to the previous TAR estimation, the grid search of c is performed over values of ∆12yt−1, disregarding
values in the lower 10% percentile and upper 90% percentile of the distribution of ∆12yt−1. No standard error
of ĉ is reported due to the non-standard inference on the threshold parameter in a TAR model.
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parameter is problematic as the likelihood function is characterized by large flat areas caused
by all derivatives approaching zero with faster speed of transition. This implies that the mag-
nitude of the estimator may depend on the arbitrarily chosen stopping criteria of the numerical
optimizer. To circumvent this problem, we propose a reparametrization of the LSTAR model.
The reparametrization maps the parameter space of the original speed of transition parameter
into a much smaller interval which facilitates identifying the global maximum of the likelihood
function as well as numerical optimization. We then show that the TAR model can be the
global maximum of a LSTAR likelihood function, while it, by construction, is always at least a
local stable point and possibly a maximum. Instead of relying solely on economic theory when
justifying the additional parameter of the LSTAR model, we show that information criteria
provide a model selection tool. Acknowledging that the LSTAR model considered in this paper
is simple and the presented simulation results only apply to this particular framework, the new
parametrization provides general insights on the shape of the likelihood function in directions
of the two parameters of the transition function that can be generalized to a broad range of
other models within the smooth switching literature. For example, the double-logistic smooth
transition (D-LSTAR), the Multi-Regime Smooth Transition Autoregression (MR-STAR) and
the logistic autoregressive conditional root (LACR) model, see, e.g. , Bec et al. (2010) and Bec
et al. (2008).

4.A Simulated LSTAR process and logistic transition function

Figure 4.6: Simulated data series (a) and transition function (b) for the LSTAR model (4.1)
with γ = 2, c = 0, α = 0.5 and T = 150.

(a) (b)
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4.B Proof of Lemma 4.1

4.B Proof of Lemma 4.1

Observe initially that with Gt defined in (4.2), it holds that

∂Gt
∂γ

= Gt (1−Gt) (yt−1 − c) =: ψt (yt−1 − c)

and
∂2Gt

(∂γ)2 = ∂ψt
∂γ

(yt−1 − c) = ψt (1− 2Gt) (yt−1 − c)2 .

Moreover, as γ → ∞, one has ψt → 0 and hence ∂Gt/∂γ → 0 and ∂2Gt/(∂γ)2 → 0. In fact, note
that all higher order derivatives will have the form

∂nGt
(∂γ)n = ψtg (Gt) (yt−1 − c)n

where g (Gt) is a function consisting of an integer and of sums and products of Gt. In particuler,
observe that since 0 < Gt < 1, it holds for any n < ∞ that g (Gt) = K for a constant K < ∞.
Thus, we have that

∂nGt
(∂γ)n → 0 as γ →∞. (4.12)

Next, consider the likelhood contribution given by `t (γ) in (4.3). Standard calculus gives

∂`t (γ)
∂γ

= εt (γ)αyt−1
∂Gt
∂γ

= αyt−1yt
∂Gt
∂γ
− α2y2

t−1Gt
∂Gt
∂γ

=: at (γ) + bt (γ) .

Observe that the higher order derivatives of the terms at (γ) and bt (γ) with respect to γ will be
of the respective forms

∂nat (γ)
(∂γ)n = αyt−1yt

∂nGt
(∂γ)n and ∂nbt (γ)

(∂γ)n = −α2y2
t−1

n∑
k=0

(
n

k

)
∂kGt

(∂γ)k
∂n−kGt

(∂γ)n−k
.

Consequently, it holds by (4.12) that ∂n`t(γ)/(∂γ)n → 0 as γ →∞. Observe that the same result
holds for the parametrization with δ since

∂nGt
(∂δ)n = ∂nGt

(∂γ)n
∂nγ

(∂δ)n and ∂nγ

(∂δ)n = n!
(δ − 1)(n+1) ,

where ∂nγ/(∂δ)n is function that grows as δ → 1. However, the grows rate is slower than the
exponential decay of ∂nGt/(∂γ)n and, hence, we still have,

lim
δ→1

∂nGt
(∂δ)n = 0.
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