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Unraveling the Black Box of Power Market Models

Mathias Miera, Valeriya Azarovaa

aifo Institute for Economic Research at the University of Munich

Abstract

Detailed numerical models of power markets with millions of variables and equations
are often perceived as black boxes, because differences in results cannot be traced
back to single equations or assumptions, respectively. We unravel parts of those black
box by determining the impact of different investment cost specifications including
the role of varying discount and interest rates. We further expand our analysis
to the impact of simplifications strategies (foresight, spatial resolution, temporal
resolution) that are applied to contain numerical feasibility of such models. The
choice of investment cost modeling (and related discount and interest rates) has the
highest impact on results. Increasing or decreasing, respectively, complexity in turn,
has only minor impacts. Our findings questions the current focus of the literature
on complexity of power market models neglecting the most relevant factor, which is
the choice of handling investment costs.

Keywords: Energy system modeling, Power market modeling, Investment
behavior, Firm behavior, Spatial resolution, Temporal resolution, Decarbonization

JEL Classification: C61, C68, Q40, Q41

1. Introduction

Power market models are a widely decision and analysis support tools used to
provide policy recommendations and elaborate scenarios of future energy systems
and support to national and regional energy planning and policy-making (Cao et al.,
2016). To cite some examples, several TIMES-based optimization models are being
used by international organizations and governmental institutions to provide insights
on how to reach national and international climate goals (Merkel et al., 2014). DICE
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model is used to elaborate an efficient strategy for coping with the threat of global
warming. PRIMES, simulation-based model, has been used by European Commis-
sion to analyze of taxation policy and emissions trading and includes a detailed
representation of energy technologies in the EU (Connolly et al., 2010).

Improved computational capabilities on one hand, and increased demand in power
market modeling with a growing number of climate change abatement polices and
initiatives being recently discussed or adopted (the European Green Deal, in Europe,
Clean Energy and Pollution Reduction Act in USA, California, Climate Change
Response Amendment Act, New Zealand), triggered a boost in the number and
diversity of models. According to Amerighi et al. (2010), various European research
institutions had developed more than 68 models only for the European power market.

However, despite the research community’s overall tendency towards more trans-
parency and open access publishing, the majority of available models are still so-
called “black boxes”. In other words, closed for outside researchers for replication
or comparison, usually providing very little to no descriptions or source codes. This
closeness of models is often mentioned as one of the key reasons for conflicting re-
sults reported for similar policy analyses produced by different models (Müller et al.,
2018, Morrison, 2018). Furthermore, lack of transparency and formal guidance on
model design and missing evidence on the impact of key configurations on models’
results, leads to the absence of a well-established best practice approach for inclusion
of necessary parameters and constraints for a specific analysis and research question
(DeCarolis et al., 2017).

Hence, a high variety of model designs and assumptions and a lack of publicly
available codes or in some cases even detailed descriptions, impede clear comparison
of the models. This complicates the choice of a suitable model configuration for a
specific research question, as well as policy recommendation provision based on the
model, and impedes synergy between models.

In this paper, we use the example of EUREGEN, the European power market
model, to demonstrate how changing a model’s design namely (1) handling of invest-
ment cost, (2) foresight, (3) spatial resolution, and (4) temporal resolution, impacts
four key outcomes of the model: i. technology mix, ii. storage, iii. transmission,
iv. emissions and cost. We start with comparing three different investment cost
specifications, including the role of discounting, and varying interest rates. We then
analyze the impact of different levels of foresight under four different scenarios of
CO2 price evolution. Thirdly, we compare outcomes of six spatial resolutions under
four different scenarios of transmission boundaries. Finally, we analyze eight tempo-
ral resolutions and evaluate the role of storage under six different scenarios of storage
cost.
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Additionally, increasing complexity of energy systems triggers models and re-
search questions to gain in complexity (Bale et al., 2015). Consequently, the models
need to carefully balance between complexity and accuracy of the results (Ridha
et al., 2020, Priesmann et al., 2019). Thus, a trade-off between high resolution in
time, space, techno-economic detail and sector coupling becomes one of the press-
ing key challenges of future models (Prina et al., 2020). At the same time, existing
(and future) power market models require a high degree of detail in representing the
underlying system to serve their main aim of policy recommendation provision. Ow-
ing to the underlying complexity of the power market, this requires many variables,
parameters, restrictions, and assumptions (Babrowski et al., 2014).In this paper, we
complement available literature by demonstrating strategies of model simplification
and a reduction of computational times, as well as their impact on model’s out-
comes. In this regard, intra-model comparison conducted in this paper can be used
as a guideline making it possible to design the model specific to the analyzed research
question.

In this way, our analysis contributes to greater transparency in power market
modeling and serves as a milestone in establishing best practice in power market
models. Thus, elaborating guidelines for appropriate model features, which will help
to conduct and refine analysis and improve models’ comparability.

We find that configuration of the investment behavior has the highest impact on
the model outcomes in terms of both installed capacity and system cost and CO2
emissions. Hence, it is advised to carefully select an investment behavior represen-
tation strategy, allowing the most accurate reflection of the market context. The
other tested model specifications including model horizon, and spatial and temporal
resolution are also evaluated and discussed in the respective sections, followed by a
conclusion in section 6.

2. Investment Cost

The specification of investment cost is one of the key features in power mar-
ket models, despite only receiving scant coverage in the literature. For instance,
dynELMOD (Gerbaulet and Lorenz, 2017) is configured to include investment on an
annuity basis. When investments occur, the entire cost is not accounted for in the
year of investment, however, the to-be-paid annuities are tracked over the invest-
ment’s economic lifetime. This also takes account of the remaining model periods.
Another possibility would be to use weighted average cost of capital (WACC) as ap-
plied by (Bachner et al., 2019) in their analysis. In this section, we show how various
strategies of handling the investment costs including annuity (with impact of varying
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interest rates), WACC and applied in the base version of a EUREGEN model overall
investment in the respective period (total investment cost, see detailed formulation
below), impact the model’s outcomes. The essential objective of this analysis is
not to show which investment cost implementation approach within the power mar-
ket models is superior, but rather to demonstrate the applicability of each of those
for specific research questions. This enables a reflection on investment behavior for
better targeted policy implications and policy instruments in this context.

2.1. Investment Cost Specifications

Consider technologies j (e.g., wind onshore), regions r (e.g., Germany), time pe-
riods t = 2015, 2020, ..., 2050, and the period of installation v = 1960, 1965, ..., 2050.
We use subscript j, r to denote variables and parameters and parentheses for periods
v, t, e.g., Qjr (v) is the capacity installed in period v and Cjr (v) the constant unit
cost. The discount factor δ follows from the discount rate ν and reflects that each
period t accounts for tstep = 5 years, e.g.,1

δ (t) =
(1 + ν)tstep − 1

ν (1 + ν)t−tbase
, (1)

where tbase = 2015 serves as focal point.

Normal specification.. The normalspecification considers all investment cost in the
period of investment. The objective is thus given by:

min
Q,...

∑
t δ (t)

∑
r

[
1

tstep

∑
j

∑
v=t

Qjr (v)Cjr (v)× Γjr (v, t) + ...

]
, (2)

where Q is the vector of investment decisions. Qjr (v)Cjr (v) are direct cost of
investing into a technology and Γ is the end-effect, which reflects that the depreciation
time of an investment might expand beyond the model horizon, e.g.,

Γjr (v, t) =

∑
t δ (t)Λir (v, t)∑

tlong
δ (tlong)Λir (v, tlong)

, (3)

12020 reflects the time period 2016 to 2020, 2025 reflects 2021 to 2025, ...
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where tlong reflects an unconstrained time horizon. Λ is a binary parameter that
takes the value 1 when the investment is still under depreciation and 0 else, e.g.,

Λjr (v, t) =

{
1 if t ≤ v + tjr,depr (v)

0 if t > v + tjr,depr (v)
, (4)

where tjr,depr (v) is the depreciation time of an investment.2

Annuity specification.. The annuity specification assumes that an investment is fi-
nanced by loan capital only. The annuity reflects interests (i is the interest rate) and
repayment, e.g.,

Ajr (v) =
i (1 + i)tjr,depr(v)

(1 + i)
− 1. (5)

Investments cause a stream of cost over the entire deprecation time of the respec-
tive investment. The underlying objective becomes:

min
Q,...

∑
t δ (t)

∑
r

[∑
j

∑
v≤t

Qnew
jr (v)Cjr (v)× Λjr (v, t)Ajr (v) + ...

]
. (6)

Capital cost specification.. The capital cost specification assumes that a capital stock
is subject to capital cost, best reflected by the weighted average cost of capital
WACC. The difference to the annuity approach is that the depreciation time of an
investment does not matter for the height of the cost, so that the objective is:

min
Q,...

∑
t δ (t)

∑
r

[∑
j

∑
v≤t

Qir (v)Cjr (v)× Λjr (v, t)WACC + ...

]
. (7)

Illustrative example.. Consider a wind turbine investment (100% are the installation
cost) with a depreciation time of 25 years. Installing a wind turbine in 2040 translates
into using it in three periods (15 years) of the model horizon (until 2050). This

2The installation period v reflects potential technological progress with respect to lifetime and
also depreciation time. It might also reflect changing investor behavior.
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translates into an end-effect of 78.16% given a discount rate of 7% and 60% when
neglecting discounting. Note that a wind turbine investment in 2020 leads to end-
effects of 100% for both with and without discounting. The annuity of the 2040
turbine is 8.58%. This annuity needs to be paid every year and thus the investor
pays 5 × 8.58 = 42.9% in 2040, 2045, and 2050, accumulating in far more cost
((95.29% with and 128.7% without discounting) than in the normal specification
(78.16% or 60%, respectively). The WACC specification just takes 7% instead of
the above mentioned 8.58%, leading to an overall cost of the 2040 wind turbine of
77.75% (with discounting) or 105% (without discounting), respectively. Without
discounting, the 2020 wind turbine investment results in costs of 5× 42.9 = 214.5%
in the annuity specification and of 175% in the WACC specification. Moreover, the
WACC specification deviates less from the annuity when looking at investment with
a longer depreciation time, such as nuclear power (40 years). The annuity then
reduces to 7.5% and the annuity specification is then quite close to the WACC one
in terms of an investment’s profitability.

2.2. Impact of Investment Cost Specifications

We now present results on how the three investment cost specifications perform
with and without discounting cashflows. Figure 1 demonstrates the evolution of
installed capacity by technology types in the upmost part; stored energy by tech-
nology types in the second part; net trade capacities (NTC, light blue bars with
scale on left axis) and transfers (blue triangles with scale on right axis) in the third
part; as well as CO2 emissions (grey bars with scale on left axis) and system cost
(orange diamonds with scale on right axis) for the three different specifications of
investment costs with and without discounting from 2015 (base year) to 2050 (end of
the model horizon). 2015 serves as benchmark for comparing specifications because
there are no endogenous investments in this period. From 2020 onwards, values differ
fundamentally between specifications.

We start with installed capacities and the specifications that consider discounting
(normal, WACC, annuity). The annuity specification serves as benchmark for all
relative differences. The annuity specification results in the lowest aggregate capacity
levels, with the normal specification being the highest in the medium-term (+15.1%
in 2020, +9.1% in 2035, +7.2% in 2050), and the WACC specification the highest
in the long-term (+9.6% in 2020, +7.2% in 2035, +9.3% in 2050). With respect
to the specific technologies enhanced by each of the specifications, we find that the
exploitation of wind onshore in the normal (WACC) specification is 63.5% higher
(40.4%) in 2020, 35.2% (26.9%) higher in 2035, and still 7.2% (8.4%) higher in 2050.
There are no differences for solar power in 2020. Differences remain negligible in
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2035 (12.7% or 12.6%, respectively), but become fundamental in 2050 (+52.9% or
+67.6%, respectively). Differences for gas power technologies are insignificant until
2045 (below 2% absolutely), but the normal (WACC) specification leads to 5.1%
(2.1%) lower gas capacity in 2050.3

Now consider the specifications that neglect discounting. Now, the respective
specification with discounting serves as a benchmark for relative values. Neglecting
discounting leads to 15.8% (8.3%) lower capacity levels in 2020 and 6.3% (6.7%) lower
ones in 2035 for the WACC (annuity) specification. From 2040 onwards, difference
are below 1% in absolute and thus negligible. We observe the opposite for the
normal specifications. No discounting results in 29.8% higher capacity levels in 2020.
This value persists until 2035 (35%) and decreases to 10.7% in 2050. Interestingly,
the normal specification differs regarding the direction of the capacity level. Under
WACC and annuity specifications, capacity levels are lower, whereas capacity levels
are higher under the normal specification when neglecting discounting. Considering
specific technologies, we find that gas power tends to be higher in the short-term
(11.9% for normal, 5.5% for WACC, 4.1% for annuity) and the mid-term for all
three specification when neglecting discounting. This changes in 2035 (normal) or
2040 (WACC, annuity), so that gas power is 15.4% (normal), 1.7% (WACC), or 1.1%
(annuity), respectively, lower in 2050. Wind onshore patterns are reversed for WACC
and annuity (-54.3% or -38.9% in 2020 and 0.9% or 0.4% in 2050, respectively). In
turn, for the normal specification, we already observe 87.3% higher wind onshore
capacity in 2020. This prevails until 2035 (77.5%) and reduces to 11.2% higher
capacity in 2050. Whereas differences in solar power are negligible for WACC and
annuity specifications, solar power is fundamentally higher in the normal specification
without discounting. Differences reach 158.8% higher capacity in 2045 but decrease
slightly in 2050 (67.4%).

The behavior of the normal specification without discounting is also reflected in
stored energy (second part of Figure 1), transmission (third part), and CO2 emissions
and system cost (fourth and lowest parts). The fundamentally higher wind and
solar capacity leads to a more effective use of existing pump-storage capacities, the
application of power-to-gas from 2040 onwards, along with relatively high battery
usage in 2050. The higher amount of stored energy is accompanied by lower transfers
(blue triangle with scale on the right) from 2020 to 2030, whereas net trade capacities
(NTC, blue bars with scale on the left) are comparable. Remaining differences for

3We refrain from presenting detailed outcomes for oil, lignite, coal, coal-CCS, nuclear, hydro,
wind offshore, geothermal, bioenergy, and bio-CCS technologies because their shares do not drive
the overall amount of capacity.
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Figure 1: Results for different investment cost specifications

Evolution of installed capacity, storage, NTC and CO2 emissions and system cost for model with 12 regions are shown for respective
period and configuration of investment cost

stored energy, transfers, and NTC are negligible.
The lowest part of Figure 1 depicts CO2 emissions as gray bars with scale on the

left axis and system cost as orange diamonds with scale on the right axis. Starting
with system cost, which are calculated based on the annuity specification neglecting
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discounting, which results in the lowest cost for this specification. Observe that sys-
tem costs for normal investment specification without discounting are fundamentally
higher than in all other specifications. The spire from 2020 continues over time and
even increases from 2040 until 2050. Yet, when looking at the corresponding CO2
emissions for this specification we observe also that this specification has the lowest
CO2 emissions. The latter has an additional value, especially in the context of the
European Green Deal goals to reach climate-neutrality by 2050. The aggressive ex-
pansion of wind onshore technology in 2020 and fundamentally higher solar power
leads to 66.4% lower emissions (97 Mt vs. 289 Mt) in contrast to the specification
with discounting. This results in a reduction of CO2 emissions by 91.3% (to 2015
values). The other specifications, irrespective of discounting, seem to have higher
CO2 emissions, both in the medium- and long-term. Conversely, system cost are
the lowest for the annuity specification that neglects discounting, which is consistent
with the metric of calculating system cost here: we use annuities and neglect dis-
counting. However, note that system costs and investment cost, in particular, often
have low explanatory power because the aim of power market models is to reflect
firms’ investment behavior (to make good predictions and evaluate the impact of
certain policies) rather than attempting to perfectly optimize the system.

2.3. Varying Interest and Discount Rates

Note from Subsection 2.1 that interest and discount rates are treated the same.
The normal specification calculates end-effects that reflect discounting but does not
discount a future stream of costs emanating from a specific investment. In turn, the
WACC and annuity specification calculate annual payments following the investment
decision. Those annual payments depend on the interest rate, and discounting de-
termines the valuation of those streams of cost over time. The specifications without
discounting are thus not fully comparable. The end-effects in the normal specifica-
tion seem to be highly sensitive when neglecting discounting, whereas the WACC
and annuity are independent of discounting because only the stream is subject to
discounting. We thus vary the underlying discount and interest rate from seven per
cent to three, five, and nine per cent, respectively. Figure 2 shows added capacity
from all three specifications with and without discounting.

Our analysis demonstrates that lower interest and discount rates lead to higher
investments over time for all three specifications. Looking at normal investment cost
specification (upper part of the Figure 2), we observe significant differences with and
without discounting. This is especially the case in 2020 and 2045, where we observe
significantly higher investments in wind onshore without discounting, or 2025 and
2035 where the same effects are observed for solar. However, we also see that varying
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Figure 2: Added capacities for different investment cost specifications

Aggregated values for model with 12 regions are shown for respective period.
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interest rate has almost no effect on total investment in this specification without dis-
counting, while with discounting the variation is higher especially in the first periods,
the difference dissipates in mid-term and is once again more pronounced during the
last two periods. A similar pattern holds for the annuity with slightly higher varia-
tion without discounting, but lower variation between similar interest rates with and
without discounting. WACC specification is more sensitive to interest rate size vari-
ation without discounting. Nevertheless, the differences between the specifications
of normal, annuity and WACC without discounting, are far less pronounced.

2.4. Assessment of Investment Cost Specifications

The normal specification is most sensitive to discounting and tends to foster the
highest capacity investments. The annuity specification leads to lowest capacity
investment because investments are most expensive under such configuration. For
example, the annuity of wind onshore investments (interest rate of seven per cent,
depreciation time of 25 years) is 8.58 per cent and that of coal power (depreciation
time of 40 years), is 7.5 per cent. The corresponding WACC invariably used (no mat-
ter of depreciation time) seven per cent, which explains the higher investments here.
In turn, the normal approach does not reflect weighted cost or cost for borrowed
capital, but rather the absolute sum. Not accounting for risk premia in that sum,
that is, using the same investment cost as with the other two approaches, leads to
the highest investments. Discounting impedes these effects to some extent, pushing
the outcome of the normal approach closer to that of the WACC specification. Re-
ductions in interest and discount rates reduce differences between the specifications,
particularly when neglecting discounting. However, the importance of discounting
becomes clear. In the long-run, differences become negligible, but when neglecting
discounting investors might postpone investments into later stages, which does not
reflect reality. Hence, we consider the annuity approach (1) as the most widespread
and (2) as the least sensitive one and decide to adhere to that specification (and use
discounting) in the following analyses.

3. Foresight

Reducing the foresight (or planning horizon) is one way to increase the precision
of the power market’s decision by holding computation time reasonable and retaining
numerical feasibility. In other words, switching from a perfect foresight version to
a myopic one (Priesmann et al., 2019, Babrowski et al., 2014). In this section, we
analyze how different planning horizons affect results.
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3.1. Foresight Specifications

Intertemporal models optimize the entire planning horizon, that is, they optimize
over all t (6). Myopic models optimize only the current time period and use the results
from that one as inputs for optimizing the succeeding period. Typically, compared
to perfect foresight, myopic models lead to delayed or canceled investments and
overall higher system costs (Nerini et al., 2017). Yet, such an approach presents
advantages when increasing numerical complexity of the optimization problem with
regards to temporal, spatial, or technological resolution, and when investors indeed
act myopic (Li, 2017, Heuberger et al., 2018). For instance, as far as the authors
are aware there are no intertemporal models enabling the modeling of all the 8760
hours of the year but rather two myopic models that are able to use 8760 hours
for calculating of the European power system (Siala et al., 2020). However, Siala
et al. (2020) only focus on the comparison of myopic and intertemporal models, and
neglect the possibilities inbetween. We now account for a rolling foresight, where a
subset of periods is optimized at all times. T is the sample of all periods. Denote by
T ′ := {t′, ..., t′ + x} a subsample of all periods with x describing the foresight of the
respective specification (as number of periods). For example, x = 3 is a specification
that invariably optimizes the current period including three periods ahead. The
optimization problem, applying the annuity specification, becomes

min
Q,...

∑
t∈T ′ δ (t)

∑
r

[∑
j

∑
v≤t

Qjr (v)Cjr (v)× Λjr (v, t)Ajr (v) + ...

]
. (8)

3.2. Impact of Rolling Foresight

Figure 3 presents the evolution (from 2015 to 2050) of installed capacity by tech-
nology type (first diagram), stored energy by technology type (second diagram),
NTC (light blue bars with the scale on the left axis), transfers (blue triangles with
scale on the right axis), and CO2 emissions (gray bars with scale on the left axis) as
well as system cost (orange diamonds with scale on the right axis) for eight different
model specifications. The myopic specification only optimizes the respective period,
whereas the other myopic specifications look one to six periods ahead. For example,
the myopic specification only optimizes 2015, then 2020, then 2025, ... The three
periods specification optimizes 2015 to 2030, 2020 to 2035, ..., and finally 2035 to
2050. The intertemporal specification finally optimizes all periods from 2015 to 2050
simultaneously.

Looking five or six periods ahead, matches (almost perfectly) the intertemporal
results. Looking one to four periods ahead leads to considerable differences compared
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with the intertemporal optimum in the mid-term (2020 to 2035). In the long-term
(2040 to 2050), differences are negligible. The only specification that structurally lags
behind the intertemporal optimum is the myopic specification. Looking at installed
capacities, gas, nuclear, and hydro capacities show almost no difference, whereas
wind onshore (and solar) capacity is +49 per cent (+zero per cent) in 2015, +86.1
per cent (+8.7 per cent) in 2035, and +2.4 (10.6 per cent) in 2050. Differences
for wind onshore become smaller in size, but are persistent, leading to six per cent
higher system cost and 3.6 per cent more CO2 emissions in the myopic version. Those
differences impact stored energy, too. Pump storage usage also tends to be higher
in the myopic version, while battery storage usage is smaller (in 2050) compared to
more forward-looking models. Similarly, NTC and transfers are considerably smaller
as well.

Interestingly, although the capacity mixes (and CO2 emissions) already differ
considerably from 2020 onwards, system costs remain similar until 2035. From 2040
onwards, capacity mixes and CO2 emissions become similar, but there is an increase
in system cost that reinforces over time. Here, it is clear that intertemporal specifi-
cations are superior to myopic ones.

What happens in 2040? From that period onwards, the model can install higher
wind turbines (120 meters high) that have better resource profiles for the same cost.
Here, it becomes apparent that the far forward-looking models save the best resource
spots for this new technology, whereas less forward- looking models do not due to
a failure to foresee that technology boost. This also explains why myopic models
can install more capacity at similar system cost until 2035—this is accomplished by
using better resource sites. However, the lack of foresight becomes crucial over the
long run.

3.3. Varying Carbon Prices

Myopic models can perform quite well when there is no fundamental change in
market conditions (cost, technological improvements, policy change) (Siala et al.,
2020, Heuberger et al., 2018). Having said that technology boosts, as described in
the prior subsection, seem to considerably change results. We now analyze another
change in market conditions, namely different CO2 price trajectories (see Table 1)
that could fundamentally impact results from less forward-looking models. As ex-
tremes, we now analyze the myopic and intertemporal specifications in a changing
market environment.

The normal CO2 price calibration assumed CO2 prices increase from 7.75 EUR/t
in 2015, to 15 EUR/t in 2020, and to 132 EUR/t in 2050. The scenario flat CO2 price
assumes no further price increase from 2025 onwards. Double and triple CO2 price
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Figure 3: Results for different foresight specifications

Aggregated installed capacity for model with 12 regions are shown for respective periods.

assume doubled or tripled CO2 prices, respectively, from 2025 onwards. The flat
scenario reflects a demolition of the EU ETS, the double CO2 price scenario is closer
to developments reflecting latest changes of the EU ETS (market stability reserve
with canceling mechanisms), and the triple scenario seems to be a good reflection of
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future changes regarding the goals underpinning the European Green Deal (Azarova
and Mier, 2020).

Table 1: Carbon price variations

Normal CO2 price Double CO2 price Flat CO2 price Triple CO2 price

2015 7.75 7.75 7.75 7.75
2020 15 15 15 15
2025 22 44 15 66
2030 27 54 15 81
2035 56 112 15 168
2040 68 136 15 204
2045 102 204 15 306
2050 132 264 15 396

Figure 4 shows the evolution of installed capacity (upper diagram), and CO2
emissions (gray bars with scale on the left axis) as well as system cost (orange dia-
monds with scale on the right axis) for the myopic and the intertemporal specification
for the four different market environments. Start considering installed capacities. Al-
ready in 2020, the myopic version fundamentally differs from the intertemporal one.
These differences reduce over time in the flat scenario (+11.4% in 2020, +12.1% in
2035, and +1.1% in 2050). Differences are considerably higher for double and triple
CO2 prices (+5.3% or +5.9%, respectively, in 2050).

We now focus on CO2 emissions and cost, observe that system costs are similar
between myopic and intertemporal specifications until 2035. From 2040 onwards,
this fundamentally changes due to the aforementioned technology boost (higher wind
turbines are available from 2040 onwards). The use of better sites from 2020 to 2035
in the myopic versions keeps the cost low. The intertemporal models save the spots
to use them from 2040 onwards, leading to structural cost differences from 2040
onwards. Moreover, differences in costs are smallest in the flat price scenario and
highest in the one with tripled CO2 prices. Interestingly, the use of better wind spots
in the myopic specifications in 2020 already does not change system costs, but leads
to fundamentally lower CO2 emissions (-14.3%). This pattern vanishes in from 2040
onwards. The intertemporal models then tend to deliver lower emissions, whereas
the differences are small.

Moreover, it is not only the aggregate capacity that changes, but also the de-
composition. Intertemporal models rely less on classic gas power technologies (gas-
CCGT, gas-OCGT, gas-ST) but more on gas-CCS, resulting in lower wind onshore
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Figure 4: Installed capacities, CO2 emissions, and system costs for different CO2 price trajectories

and solar capacity. In the long-term this translates into lower CO2 emissions and
lower system costs which is especially apparent for double and triple CO2 price sce-
narios.

3.4. Assessment of Foresight Specifications

Our analysis illustrates the pitfalls of relying entirely on myopic models that ne-
glect any foresight (of firms). Such models rely on future costs and prices being
subject to uncertainties that increase with the length of the considered time-frame
(Keppo and Strubegger, 2010). Our findings contradict the literature suggesting
that myopic models perform better when reflecting the decision-making framework
relevant for a more realistic representation of energy system and actual investment
behavior as argued by Martinsen et al. (2006, 2007), Poncelet et al. (2016), Hedenus
et al. (2006). The claims that myopic models are superior when such aspects as re-
actions to sudden changes (such as a sudden increase of oil and gas prices), flexibility
of technical scenarios (such as the use of long lived and high investment technologies
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by varying energy policy) need to be examined. However, fully myopic specifications,
not having any foresight seem to create costly path dependencies and lead to fun-
damentally different results when market conditions change dynamically. Therefore,
we suggest considering a foresight specification looking at least a few periods ahead
when the target is to reflect investment behaviour. At the same time, opting for a
myopic horizon instead of a perfect foresight allows expanding analyses with higher
spatial, temporal, or technological resolutions with manageable computational times
(Poncelet et al., 2016, Babrowski et al., 2014). However, it can also result in an
oversized and underutilised power system when a disruptive technological change is
introduced in the model Heuberger et al. (2018). We, therefore, suggest running
sensitivities with different foresight horizons (eventually at reduced temporal and
spatial resolutions), to gain an understanding of the bias in results related to time
horizon configuration of the model.

4. Spatial Resolution

The selected spatial resolution is a crucial determinant for power market models
(Frew and Jacobson, 2016, Siala et al., 2019, 2020). Rising complexity due to an
increasing share of renewable resources and the decentralization of the electricity
provision, require a high spatial resolution to correctly depict resource potentials and
resulting electricity flows correctly. At the same time, the degree of spatial resolution
can have a significant effect on computation time and the numerical feasibility of the
models. We thus analyze various degrees of spatial resolutions. Figure 5 shows
the country composition of six different spatial resolutions that are analyzed in this
section.

4.1. Aggregation Routine

We consider 28 countries presenting the European power market. Those coun-
tries can be aggregated differently to regions to reflect the reality of markets (e.g.,
Scandinavian countries are organized in the Nordic markets) or to reduce numerical
complexity. Reducing spatial resolution is always a matter of calibration (Siala et al.,
2020), because (sub-)country-level values need to be aggregated. This is not prob-
lematic when analyzing stock values such as installed capacities but becomes critical
as soon it is about different cost, efficiencies, or other region-specific technological
parameters such as resource potential and full-load hours of intermittent renewables,
pump hydro availability, and the depiction of transmission between countries. Trans-
mission is particularly important because grouped countries assume infinite trans-
mission capabilities (at no cost or losses, respectively) within grouped countries.
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Figure 5: Spatial resolutions considered

Such an aggregation enables focus on transmission bottlenecks between regions, and
neglect those between countries grouped to one region. Another important point is
the different resource potential for intermittent renewables.

The used calibration has unified technology cost (capacity, fixed and variable
operation and maintenance) across European countries. Commodity prices for oil,
natural gas, coal, and uranium differ only marginally due to upfront cost chains.
Transmission (line) cost and losses are subject to specific country-pairs, depending
on the overall length of a line and the transmission technology used (AC lines or
DC cables, respectively). We calibrate the model with country-level values and use
different aggregation routines to obtain regional counterparts. We now describe the
most important aggregation routines.

Transmission.. Denote by ρ a stock parameter (e.g., installed capacity) and by % a
specific or relative parameter (e.g., capacity cost, line losses). r−r′ is a neighbouring
region pair. cty−cty′ is the corresponding country pair, where cty ⊆ r and cty′ ⊆ r′.
We can then describe the mapping between neighbouring regions and containing
countries so that stock, specific, and relative parameters can be aggregated to regional
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values, e.g.,

ρr−r′ =
∑
cty⊆r

( ∑
cty′⊆r′

ρcty−cty′

)
, (9)

%r−r′ = max
cty⊆r

(
max
cty′⊆r′

%cty−cty′

)
. (10)

We chose the maximum for specific or relative parameters because of neglecting
bottlenecks between countries. Averaging, for example, would simplify transfers to
an unreasonable amount.

Load timeseries.. Denote by Dr (t) , Dcty (t) regional or country-level demand, re-
spectively, and by dr (h) , dcty (h) ∈ (0, 1] the 2015 load profiles (1 reflects the peak
hour) that are used to represent future periods as well. Regional demand follows
from simple aggregation, i.e., Dr (t) =

∑
cty⊆rDcty (t), and the corresponding load

profile follows from

dr (h) =

∑
cty⊆r dcty (h)Dcty (2015)∑

cty⊆rDcty (2015)
. (11)

Intermittent renewables timeseries.. We consider high, medium, and low resource
classes for solar and wind power (onshore and offshore). By assumption, the medium
class is always three times the size of high and low classes (Siala et al., 2019). Qmax

j,class

is the resource potential of an intermittent technology by class, i.e., Qmax
j,class,r =∑

cty⊆rQ
max
j,class,cty describes the aggregation of country-level to regional potentials.

Denote by Ψj,class full-load hours of an intermittent technology (wind, solar, hydro)
and by ψj,class (h) ∈ (0, 1] the corresponding profile (one reflects maximum and zero
minimum in-feed). We obtain regional profiles by weighting with the corresponding
resource potential, i.e.,

ψj,class,r (h) =

∑
cty⊆r ψj,class,cty (h)Qmax

j,class,cty∑
cty⊆rQ

max
j,class,cty

. (12)

4.2. Impact of Spatial Resolution

Figure 6 shows the evolution (2015 to 2050) of electricity generation by technology
in the first panel, stored energy by technology in the second panel, NTC (blue bars
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with scale on left axis). While also presenting transfers (blue triangles with scale on
the right axis) in the third panel, and CO2 emissions (gray bars with scale on left
axis) as well as system cost (orange diamonds with scale on right axis) in the fourth
panel for six different spatial resolutions.

The first panel demonstrates how lower spatial resolutions foster the exploitation
of wind power and solar power, albeit to a lesser extent. More wind power then
substitutes gas and nuclear power. In particular, gas-CCS is fundamentally lower in
configuration with four regions when compared to all the others (-47.5 per cent or
-412 TWh, wind onshore generation is 616 TWh or 17.6 per cent higher). This also
enhances the use of pump and battery storage (see second panel), especially in the
long-term. A similar trend is observed for a seven regions configuration. However,
already an aggregation to twelve and 17 regions shows results that are relatively
comparable with the full country resolution (28 countries).

The expansion of wind power in more aggregated configurations might be fostered
either by (1) no transmission boundaries within a region, or (2) better possibilities
to transmit to other regions as well. The first point can only by addressed by
changing resource potential and profiles in response to the aggregation routine. In
turn, the second is a matter of calibration. We can test our transmission calibration
by controlling NTC and transfers in the third panel of Figure 6. Observe that NTC
values are (almost) constant, since we only aggregate NTC and transfers values
between the regions of the lowest spatial resolution. NTC and transfers within North,
South, Central, and East are thus neglected in all specifications. Furthermore, the
transfer volume is quite stable across the different specifications. It seems that
transfers are a bit higher in the mid-term for lower resolutions, with this effect
leveling out over the long-term.

Observe that total electricity generation is almost the same between resolutions.
Differences can be traced back to lower (absolute) line losses for lower resolutions
and, eventually, different storage patterns. In other words, higher storage use comes
at higher storage losses. However, storage patterns do not have much impact on our
results. In turn, results are driven by the transmission boundaries that are partly
neglected when aggregating 28 countries to, for example, four regions—North, South,
Central, and East.

Finally, observe that that CO2 emissions and system cost for twelve, 17, and 22
regions differ only slightly from the configuration with 28 countries. Until 2045, CO2
emissions are fundamentally lower for the lowest resolutions (four and seven regions)
due to high wind expansion. This effect is still observable in 2050, but substitution
for gas-CCS and nuclear almost entirely compensates that wind boost in the higher
resolutions. Interestingly, there is almost no difference in system cost until 2040.
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Figure 6: Results for different spatial resolutions

From 2045 onwards, lower resolutions experience higher cost because the effect from
averaging resource potential now has a strong impact on our results.
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4.3. Varying Upper Bounds for Transmission Capacity Expansion

We now choose the two extreme configurations, four regions and 28 countries,
and control for the impact of spatial resolution by varying the upper bounds for
NTC expansion. No transmission sets NTC values to zero and thus prevents all
transmission. All remaining differences can then be attributed to aggregation flaws
when aggregating timeseries and potential of intermittent renewables. Besides the
simple NTC scenario, we also model double and triple NTC upper bounds from 2035
onwards.4 Figures 7 shows results.

Start with the upper panel that presents the evolution of electricity generation.
Observe that higher NTC bounds foster wind onshore expansion and reduce gas and
gas-CCS production. This effect is stronger for the configuration with 28 countries,
underlying that the averaging of full-load hours and resource potential of intermittent
technologies underestimates renewables diffusion.

Now turn to the lower panel that presents NTC (blue bars with scale on the left)
and transfers (blue triangles with scale on the right). Until 2030, NTC and trans-
fers are the same for all variations and both configurations, except those neglecting
transmission. Allowing higher NTC expansion leads to fundamental differences in
the double and triple NTC variation. Interestingly, for the simple NTC variation
resulting NTC and transfers are very similar.

4.4. Assessment of Spatial Resolution

On the whole, our aggregation routine regarding transmission modeling demon-
strates fine performance and comparable results. However, wind onshore expansion
is still fostered by grouping countries given that bottlenecks are neglected. A possible
option for resolving this issue would be to scale resource potential or profiles. Addi-
tionally, the usage of more resource classes (by country) could be useful for avoiding
the loss of too much information when aggregating. Note that fostering wind power
also affects emissions and corresponding system costs.

Moreover, changing market environments such as higher NTC boundaries that
allow for more transmission capacity expansions, increase differences between spa-
tial resolutions because the effect of neglecting bottlenecks and averaging resource
potential becomes more severe

4NTC expansion until 2030 is fixed by the ten-year-development plan of transmission system
operators.
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Figure 7: Generation, NTC, and transfers for different transmission expansion scenarios

5. Temporal Resolution

Ideally, a power market model should run serially for all hours of a year to capture
the time-linked behavior of storage and to avoid omission of any solution-constraining
hours Frew and Jacobson (2016). However, such a solution is computationally un-
reasonable in most cases Ridha et al. (2020). Selecting the temporal resolution of a
power market model hence becomes a philosophic question (a matter of taste and
preferences), as underlined by the variance in approaches. In general, there are two
types of philosophies here: (1) One tries to model the resolution of year (which
consists of 8760 hours) in as much detail as possible. When this is not possible,
the number of hours presented is reduced until the model is (numerically feasible)
solvable again. The weighting of the reduced time series is often simple, so that
each hour represents the same number of hours. (2) One tries to reduce temporal
complexity by choosing a subset of hours and weight them, both done either via al-
gorithms or based on some experience. We apply both approaches and evaluate how
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much simplification is possible. For the algorithm results, as well as the simple se-
lection outcome, we apply scaling of load, wind, and solar timeseries to meet annual
demand by region, and technology- and class-specific full-load hours of intermittent
technologies (hydro, solar, wind); otherwise, it would not be possible to compare
results of timescales.

5.1. Selection and Weighting of Hours

Selection and weighting algorithm.. EUREGEN inhibits an algorithm to determine
representative hours and its weighting to reflect the extremes of wind and solar
power, as well as load by region (Blanford and Weissbart, 2019). We thus calculate a
representative hourly timeseries for wind, solar, and load for each region; where one
represents the maximum availability of wind and solar in-feed or maximum demand,
respectively. We then create one- and three-dimensional vertices of these extremes
and search for the hours best reflecting corners of those vertices. A bubble tolerance
around those closest hours creates a set of eligible hours, which can be chosen to
reflect the extremes of wind and solar. The chosen bubble tolerance also determines
the allowed error in the final selection. Thus, the number of eligible hours is high
for big bubbles but becomes small for high tolerances because just a few hours are
appropriate for depicting the entire set. Bubble tolerances of ten per cent lead to
34 segments, tolerances of five per cent to 60, two per cent to 92, and a tolerance
of 0.33 per cent to 117 segments (and the smallest final deviations for all checked
bubble tolerances). The weighting then reduces the error to the hourly timeseries.

Simple selection and weighting.. The simple selection and weighting decide to take
the first four days of each season. We do so to retain the computation time of one
run within days (and not weeks). The four days results in 384 hours in total. Each
hour is weighted accordingly by 22.8125. We then reduce the selected days to the
first two of each season (192 hours), the first day of each season (92 hours), and
finally just select the first summer and first winter day (48 hours).

Mapping between hours and representative hours.. Denote by x (h, h′) the mapping
of hours h to representative hours h′ and by w (h′) the weight of the representa-
tive hour. Using superscript red to indicate reduced timeseries, we have dredr (h′) =∑

x(h,h′) dr (h) and ψred
j,class,r (h′) =

∑
x(h,h′) ψj,class,r (h). Annual demand (Dpeak

r de-

notes peak demand by region) or full-load hours, respectively, calculate according
to
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Dr (t) =
∑
h

dr (h)Dpeak
r , (13)

Dred
r (t) =

∑
h

dredr (h′)w (h′)Dpeak
r , (14)

Ψj,class,r =
∑
h

ψj,class,r (h) , (15)

Ψred
j,class,r =

∑
h

ψred
j,class,r (h′)w (h′) . (16)

Scaling of timeseries.. We scale load and intermittent renewables timeseries so that
annual demand or full-load hours match the values from a 8760-hours-timeseries.
This scaling is necessary to guarantee comparability of different temporal resolu-
tions. The scaling factor calculates according to Dr (t) /Dred

r (t)—which is constant
for all t—or Ψj,class,r/Ψ

red
j,class,r, respectively. Those scaling factors are applied on

the reduced timeseries to obtain the scaled ones (superscript scale indicates scaled
timeseries),e.g.,

dscaler (h′) = dredr (h′)
Dr (t)

Dred
r (t)

, (17)

ψscale
j,class (h′) = ψred

j,class (h′)
Ψj,class,r

Ψred
j,class,r

. (18)

5.2. Impact of Temporal Resolution and Choice of Representative Hours

We expect temporal resolution to have the highest impact on storage behavior.
We therefore not only evaluate electricity generation, but also stored energy. Figure
8 demonstrates the outcomes of our analysis. We begin by looking at the upmost
panel, representing the outcomes of various temporal resolution configuration on the
generation mix. The first four bars from the left correspond to selection algorithm,
the last four to simple selection strategy. Both strategies going from left to right
increases the number of representative hours. In the short-term, both simple selec-
tion and algorithm configurations seem to provide relatively similar results, with an
enhanced onshore wind (for instance 17.2 per cent more wind is already observed
in 2020 for 48 hours vs 34 segments models) and solar (starting from 2035 where
13.7 per cent more solar is observed for the same model pair) in the case of simple
selection. Additionally, looking at the results of simple selection we observe that
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lower temporal resolution leads to overestimation of wind generation, as already ob-
served in 2020. Hence, we find similar results as suggested by (Haydt et al., 2011)
or (Pina et al., 2011) indicating that lower temporal resolutions lead to overestima-
tion of RES generation. The indicated differences in generation mix become more
pronounced in the mid-term and are especially evident in the long-term where signif-
icantly more wind and solar is observed for sample selection configurations in 2045
and 2050. However, if we compare the best algorithm selection (117 segments) and
384 hours, differences between the two approaches’ generation mix are negligible,
while computational cost savings are not.

Looking at the storage outcomes, as expected we observe more variation across
the temporal configurations. Specifically, we find that simple selection configurations
require far less storage in the short term, for instance, -42 per cent for the highest
resolution pair of 117 segments versus 384 hours model is required in 2020. Inter-
estingly, these differences dissipate in the long-term, with the difference between the
same pair of models being only three per cent towards 2050. Overall, we can conclude
that in terms of storage, similar dynamics are observed within the two approaches:
increased temporal resolution for both simple selection and algorithm increases stor-
age demand. Looking at the outcomes of temporal resolution on the system cost and
CO2 emissions, our analysis suggests that simple selection results in lower system
cost and CO2 emission levels. These effects can potentially be attributed to specific
weather conditions (high wind and sunshine hours) of the selected days. These could
be evaluated by selecting random days within a season as opposed to the first two
days of the season.

5.3. Varying Storage Cost

In this section we demonstrate sensitivity of selection algorithm with respect to
storage. We do so by varying the level of capital cost of storage charge and discharge:
simple cost - is the usual cost used in all the previous analyses. We also include one
third, half, double, and even triple the cost as well as specification without storage
possibility for comparison. We use the selection algorithm with the 117 segments.

The results presented in Figure 9 show that the price of storage (both reducing
and increasing) has no significant impact on generation up until 2040. From 2040
(after introducing a new type of wind turbine and an increase in CO2 prices) we
observe that lower storage cost enhances wind and solar production. For instance,
the difference in 2050 between 1/3 cost and triple the cost translates into 13 per
cent higher wind and 24 per cent higher solar generation. Additionally, higher stor-
age costs promote a higher share of Gas-CCS technology with 54 per cent difference
between the two extreme configurations. Observe that the configuration without
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Figure 8: Results for different temporal resolutions

storage at all seems to be quite similar to usual configuration in terms of the genera-
tion mix outcomes. Hence, while in the short term the impact of storage price on the
generation capacity is negligible, long-term changes are more pronounced. Yet, in
general considering overall comparability of base configuration and the one without
storage, neglecting storage offers an additional possibility to improve computational
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Figure 9: Generation and storage mix for varying storage cost

times without significant impact on generation mix.

5.4. Assessment of Temporal Resolution

Looking at the results of simple selection of hours and algorithm application,
we conclude that both approaches provide quite comparable results. Particularly
the versions with the highest resolution (384 hours vs 177 segments), demonstrate
only negligible differences in the outcomes, while the simple selection configuration
facilitates considerable savings in computational times. However, one should con-
sider that simple selection and lower temporal resolution for both approaches might
enhance wind and solar generation. This could potentially overestimate their share
in the generation mix, thereby reducing demand for storage and underestimating
system costs and CO2 emissions.

6. Conclusion

Following the approach of Ridha et al. (2020), we demonstrate the impact of key
dimensions of the power market model on its outcomes. Among the analyzed features
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of the power market models including investment configuration, foresight, spatial
aggregation, and temporal resolution, we find that investment configuration has the
highest impact on the model’s outcomes in terms of installed capacity, storage, NTC
and system costs and CO2 emissions.

Each set of investment behavior has a set of advantages and pitfalls. The nor-
mal specification as applied in EUREGEN might be the closest to the economic
perspective of a central planner that optimizes the power system. The annuity spec-
ification in turn has high-risk premiums, depending on the investment’s depreciation
(or amortization) time. The WACC specification neglects the depreciation time
of an investment by applying a constant WACC for each unit of bounded capital.
One cannot evaluate which approach better fits the respective market environment
without knowing it. The European power market provides arguments for all three
approaches. For example, a state-owned monopolist in France owns most of the
system. Such a constellation favors the normal specification. However, other coun-
tries in Europe experience new firms that challenge incumbent ones. For new firms,
the annuity approach (higher share of loan capital) might fit best, whereas incum-
bent ones could stay with the WACC specification because their owned capital is
higher. The ”fit” might also change over time when looking at the energy transition
and large-scale exploitation of wind power. Hence, investment configuration, while
significantly affecting the outcomes, should be adjusted to specific contexts and re-
search perspectives. At the same time, one should be bear in mind that the normal
specification is the most sensitive to discounting and tends to foster highest capac-
ity investments. While the annuity specification leads to lowest capacity investment
since investments are most expensive under such configuration.

Considering the foresight, the two conflicting approaches, myopic and perfect
foresight as well as an in-between approach of rolling myopic horizon (allowing a cer-
tain limited foresight) are shown, and although both approaches have strong adepts,
supporting one or the other, we suggest that fully myopic models must be used with
caution in case a significant change in environment (technological boost, change in
legislation) is expected in future. Additionally, we find that intertemporal models
perform better regarding cost (-6.04 per cent in contrast to full myopic) but decar-
bonizes only slightly better. The cost impact increases under scenarios assuming
more fundamental market changes (e.g., double, or triple CO2 prices)

For the spatial resolution, we conclude that twelve or 17 regions model produces
quite similar results to the 28 countries model. Yet, a higher level of aggregation
leads to enhanced onshore wind technology expansion, which should be considered
if a specific research question or policy analysis requires higher aggregation levels.
Finally, testing the impact of temporal resolution, we find that even simple selection
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of hours is relatively comparable with selection algorithm results. Hence if compu-
tational times are to be improved for a specific analysis, we recommend considering
the simplification of hours selection. Having said that, both higher aggregation and
lower temporal resolution overestimate the share of wind and solar power in the
generation mix, which should be accounted for in resulting policy recommendations.
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