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Kernel Dependent Functions in Nonparametric
Regression with Fractional Time Series Errors

Yuanhua Feng, University of Konstanz

Abstract

This paper considers estimation of the regression function and its derivatives in non-

parametric regression with fractional time series errors. We focus on investigating

the properties of a kernel dependent function V (δ) in the asymptotic variance and

finding closed form formula of it, where δ is the long-memory parameter. It is shown

that V (δ) has a unified form for δ ∈ (−0.5, 0.5)\0 with V (0) := lim
δ→0

V (δ) = R(K),

the kernel constant for iid errors. General solution of V (δ) for polynomial kernels is

given together with a few examples. It is also found, e.g. that the Uniform kernel is

no longer the minimum variance one by strongly antipersistent errors and that, for

a fourth order kernel, V (δ) at some δ > 0 is clearly smaller than R(K). The results

are used to develop a general data-driven algorithm. Data examples illustrate the

practical relevance of the approach and the performance of the algorithm.

Keywords: Nonparametric regression, long memory, antipersistence, fractional dif-

ference, kernel dependent function, bandwidth selection.

1 Introduction

Nonparametric regression with fractional time series errors was introduced by Beran

(1999) under the SEMIFAR (semiparametric fractional autoregressive) model, which in-

cludes nonparametric regression with iid or short-memory errors (see e.g. Altman, 1990),

long-memory errors (Hall and Hart, 1990) and antipersistent errors. The motivation to

introduce antipersistent errors is to quantify the phenomenon of overdifferencing. Hence,

the difference series of another time series series may have a nonparametric trend (g)

together with antipersistent errors (see Section 4 for an example). Asymptotic results

which are unified for the three types of dependent errors, are obtained by Beran (1999)

for kernel estimator ĝ of the trend and most recently by Beran and Feng (2002a) for local

polynomial estimators ĝ(ν) (ν ≥ 0) of the derivatives of the trend.

Practical implementation of ĝ(ν) requires the selection of the bandwidth. Now, this

problem and the estimation of the dependence structure depend on each other. Ray and

1



Tsay (1997) proposed a data-driven algorithm in the case with long-memory errors. Beran

(1999) and Beran and Feng (2002b) proposed data-driven SEMIFAR algorithms, which

work well for the three types of dependent errors. In these algorithms, a closed form

formula of a kernel dependent function V (δ) (δ ∈ (−0.5, 0.5)) in the asymptotic variance

is used, which was only known for the Uniform kernel. General formulae of V (δ) are given

in the form of improper integral (Hall and Hart, 1990 and Beran and Feng, 2002a), which

are difficult to use due to numerical problem. To find the closed form formulae for a given

kernel is generally not easy. We are also faced with a question: What is the relationship

between V (δ) for antipersistent (δ < 0) and long-memory (δ > 0) errors? This motivated

us to study the properties of V (δ) and to search general solution of V (δ).

Although the formulae of V (δ) given in Beran and Feng (2002a) look quite different

for δ < 0 and δ > 0, it is shown that, for any polynomial kernel, the function form of V (δ)

is unified for δ ∈ (−0.5, 0.5)\0 with lim
δ→0

V (δ) = R(K), where R(K) =
∫

K2(x)dx is the

kernel constant in nonparametric regression with iid or short-memory errors (i.e. δ = 0).

This means V (δ) is a unified, continuous function in (−0.5, 0.5) by defining V (0) = R(K).

Based on this result a general closed form formula of V (δ) is obtained as a quadruple sum

of functions of δ. More explicit solutions are given for a few simple kernels. Furthermore,

we also found some interesting phenomena in nonparametric regression with fractional

time series errors, e.g. the well known fact in the case with iid or short-memory errors,

that is the Uniform kernel is the minimum variance kernel (see e.g. Müller, 1988), is

not true for strongly antipersistent errors, furthermore, for a fourth order kernel, V (δ) at

some δ > 0 is clearly smaller than R(K) due to some negative weights.

The main results are useful for developing or improving data-driven algorithms in the

current context. As an example, one of the SEMIFAR algorithms is generalized for data-

driven estimation of g and g′ based on local polynomial fitting. Data examples illustrate

the usefulness of the approach and the practical performance of the algorithm. Our results

do not depend on special model assumptions and can be used in more general cases, e.g.

in the algorithm of Ray and Tsay (1997) proposed for kernel regression.

The paper is organized as follows. Section 2 summarizes some related results. The

main results are described in Section 3. In Section 4 the results are used to improve a

data-driven algorithm, which is then applied to data examples. Section 5 contains some

conclusions. Proofs of results are put in the appendix.
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2 Related results

Our discussion based on the formulae of asymptotic variance in nonparametric regression

with fractional time series errors, which will be summarized briefly (for details see the

references below). Some necessary concepts on kernels are also described.

Consider the equidistant nonparametric regression model

Yi = g(ti) + Xi, (1)

where ti = (i/n) is the re-scaled time, g : [0, 1] → < is a smooth trend function and Xi is

a stationary fractionally integrated error process defined by

(1−B)δXi = Zi, (2)

where δ ∈ (−0.5, 0.5), B is the backshift operator and Zi is a stationary time series with

absolutely summable autocovariances γZ(k) so that cf = 1
2π

∞∑
k=−∞

γZ(k) > 0. Model (1)

defines a nonparametric regression with long-memory (δ > 0), short-memory (δ = 0)

and antipersistent (δ < 0) errors. Here, the fractional difference (1 − B)δ introduced by

Granger and Joyeux (1980) and Hosking (1981) (see also Beran, 1994) is defined by

(1−B)δ =
∞∑

k=0

Γ(k − δ)

Γ(k + 1)Γ(−δ)
Bk. (3)

Our goal is to estimate g(ν) (ν ≥ 0) under model (1). In this paper k-th order kernel

or p-th order local polynomial estimators of g(ν) will be considered. Estimation of g′ is

helpful to discover more structural details of the data. Estimation of g(k) is necessary for

developing a plug-in algorithm. Definition of these estimators may be found in Hall and

Hart (1990), Beran (1999) and Beran and Feng (2002a). For nonparametric regression

with iid or short-memory errors see Müller (1988), Härdle (1990), Altman (1990), Hart

(1991) and Fan and Gijbels (1996) among others. For a kernel estimator, it is assumed

that corresponding boundary kernels (see e.g. Müller, 1991 and Müller and Wang, 1994)

are used at the boundary. For a local polynomial fitting of order p assume p − ν > 0 is

odd, so that ĝ(ν) has automatic boundary correction and the same asymptotic properties

as a kernel estimator with an equivalent kernel of order k = p + 1 (see e.g. Müller, 1987,

Hastie and Loader, 1993 and Ruppert and Wand, 1994). Now the boundary effect in the

MISE (mean integrated squared error) is negligible. We can hence focus on asymptotic

results at interior points 0 < t < 1.
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Let K(ν,k)(x) denote a kernel of order k (or an equivalent kernel of a p-th order lo-

cal polynomial fitting) for estimating g(ν) in the interior, which is assumed to have the

polynomial form with compact support

K(ν,k)(x) =
q∑

l=0

αlx
l1I[−1,1](x). (4)

Commonly used second order kernels for estimating g (i.e. kernel of order (0, 2)) are in the

form of Kµ(x) = Cµ(1−x2)µ1I[−1,1] with µ = 0, 1 and 2, which correspond to the Uniform,

the Epanechnikov and the Bisquare kernels, where Cµ is determined by
∫ 1
−1 Kµ(x)dx = 1

and µ, called the smoothness order, is also an important criterion for a kernel (Müller,

1988). Higher order kernels can be derived from the kernels Kµ(x) or be obtained as

equivalent kernels of a local polynomial fitting use one of them as the weighting function.

A higher order kernel will take over the smoothness property of the weighting function.

Observe x = y + (x − y). A useful decomposition of a kernel K(ν,k)(x) at a point

y ∈ [−1, 1] introduced by Beran and Feng (2002a) is

K(ν,k)(x) =
q∑

l=0

βl(y)(x− y)l = Ka(y) + Kb(x− y), (5)

where Ka(y) is independent of x and Kb(x− y) =
q∑

l=1
βl(y)(x− y)l contains only powers

in (x− y), which are at least of first order, provided Kb does not vanish. It can be shown

in particular that Ka(y) = K(ν,k)(y). Let h denote the bandwidth satisfying regular

conditions, let g(ν) be estimated with K(ν,k)(x), then following Beran and Feng (2002a),

var[ĝ(ν)(t)]
.
= 2πcfV (δ)(nh)−1+2δh−2ν , (6)

where

V (0) =
∫ 1

−1
K2

(ν,k)(x)dx =: R(K(ν,k)), (7)

V (δ) =
1

π
Γ(1− 2δ) sin(πδ)

∫ 1

−1
K(ν,k)(y)

∫ 1

−1
K(ν,k)(x)|x− y|2δ−1dxdy (8)

for δ > 0 (see also Hall and Hart, 1990 for results on ĝ in this case) and

V (δ) =
1

π
Γ(1− 2δ) sin(πδ)

∫ 1

−1
K(ν,k)(y)

×
{∫ 1

−1
Kb(x− y)|x− y|2δ−1dx−K(ν,k)(y)

∫

|x|>1
|x− y|2δ−1dx

}
dy (9)

for δ < 0. For developing a data-driven algorithm one has to computer V (δ). However,

numerical integral does not work well, especially for small δ. Furthermore, one would ask:

What is the relationship between the results in (7) to (9)? Is there a unified, closed form

formula for all the three cases? These questions will be answered in the next section.
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3 The main results

In this section properties of V (δ) will be investigated in detail. A closed form formula of

V (δ) is found and represented as a complex quadruple sum, which is however enough for

computational purpose and allows us to calculate V (δ) quickly without numerical error.

More explicit formulae are only given for a few simple kernels.

Corollary 1 in Beran (1999) (see also Beran and Feng, 2002c and Corollary 1 below)

shows that V (δ) for the Uniform kernel K0(x) is a unified function for δ < 0 and δ > 0

with lim
δ→0

V (δ) = R(K0) = 1
2
. It is expected that these results should hold in general cases.

The following theorem shows that it is at least true for kernels in the form of (4).

Theorem 1 Let K(ν,k)(x) be a polynomial kernel on [−1, 1] as given in (4). Then

i) The solutions of (8) and (9) are a unified function V (δ) for δ ∈ (−0.5, 0.5)\0.
ii) lim

δ→0
V (δ) = V (0) = R(K(ν,k)), where R(K(ν,k)) is as defined by (7).

The proof of Theorem 1 is given in the appendix. Following this theorem, the kernel

dependent function V (δ) is continuous in (−0.5, 0.5) by defining V (0) = R(K(ν,k)), the

kernel constant for δ = 0. Theorem 1 together with the results in Beran (1999) and Beran

and Feng (2002a) shows that asymptotic properties of a nonparametric regression estima-

tor change smoothly from case with antipersistent errors to case with long-memory errors.

This fact provides theoretical evidence for nonparametric regression with antipersistent

errors. The proof of i) in Theorem 1 is based on the following basic result.

Lemma 1 Both of the integrals
∫ 1
−1 |x− y|2δ−1dx for δ > 0 and − ∫

|x|>1 |x− y|2δ−1dx for

δ < 0 leads to the unified formula

1

2δ
[(1 + y)2δ + (1− y)2δ]. (10)

The proof of Lemma 1 is given in the appendix. Corollary 1 in Beran (1999) can be easily

proved again following (7) to (9) and Lemma 1.

Corollary 1 (Corollary 1 in Beran, 1999) The kernel dependent function V (δ) for the

Uniform kernel is

V (δ) =
22δ−1

π

Γ(1− 2δ) sin(πδ)

δ(2δ + 1)
(11)

with V (0) := lim
δ→0

V (δ) = 1
2
.
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The proof of Corollary 1 is straightforward and is omitted. The following theorem gives a

general closed form formula of V (δ) represented as a double sum of some terms related to

the integral of a double binomial form, whose coefficients are determined by the kernel.

Define V c = 1
π
Γ(1− 2δ) sin(πδ) we have

Theorem 2 Let K(ν,k)(x) be a polynomial kernel on [−1, 1] as given in (4). Let m′ = 2

for k even and m′ = 3 for k odd. Then we have, for δ ∈ (−0.5, 0.5)\0,

V (δ) = V c




∑

(l−k) even

α2
l Tl,l + 2

∑

l≥m′
(l−k) even

∑
m<l

(m−k) even

αlαmTl,m


 (12)

where for l, m = 0, 1, ..., q, such that (l − k) and (m− k) are both even

Tl,m =
∫ 1

−1
yl

∫ 1

−1
xm|x− y|2δ−1dxdy

= 2
m∑

i=0

(
m

i

)
1

2δ + i

l+m−i∑

j=0

(−1)j

(
l + m− i

j

)
22δ+j+i+1

2δ + j + i + 1
. (13)

Proof of Theorem 2 is given in the appendix. Note that V (δ) depends on the kernel

function only through the obvious relationship (12). This representation based on the

facts that αl = 0 in (4) for coefficients αl such that (l − k) is odd and that Tl,m = Tm,l.

Hence V (δ) only contains Tl,m with l and m both even (for even k) or both odd (for odd

k). Consequently, we have l + m is always even. The term Tl,m is a function of l, m and

δ, independent of the kernel. Although Tl,m = Tm,l, (13) shows that, for l > m, Tl,m is

easier to calculate than Tm,l. The following lemma simplifies the calculation of Tl,m.

Lemma 2 Assume that l, m = 0, 1, . . . , q, are both even or both odd such that l + m is

even, then we have
∫ 1

−1
yl

∫ y

−1
xm(y − x)2δ−1dxdy =

∫ 1

−1
yl

∫ 1

y
xm(x− y)2δ−1dxdy (14)

and hence

Tl,m = 2
∫ 1

−1
yl

∫ 1

y
xm(x− y)2δ−1dxdy. (15)

The proof of Lemma 2 is given in the appendix.

From (13) we can obtain T0,0 = 1
δ(2δ+1)

22δ+1, which can also be used to prove Corollary

1. To illustrate Theorem 2 clearly, we will give a more explicit solution of V (δ) for another

simple kernel K(1,3)(x) = −3
2
x1I[−1,1], i.e. the kernel of order (1, 3) for estimating g′ with

µ = 0 (see Table 5.7 in Müller, 1988).
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Corollary 2 The kernel dependent function for the kernel K(1,3)(x) = −3
2
x1I[−1,1] is

V (δ) =
9

π
Γ(1− 2δ) sin(πδ)

(1− 2δ)22δ−1

δ(2δ + 1)(2δ + 3)
(16)

with V (0) := lim
δ→0

V (δ) = 3
2
.

The proof of Corollary 2 is given in the appendix. From the proof of Corollary 2 we can

see, given Theorem 2, it is still not easy to obtain a more explicit formula of V (δ) for a

kernel function with higher order powers. However, it is not difficult to computer Tl,m

and V (δ). For this purpose, an S-Plus function, called kdf.t(l, m, d) is developed, where

the variable d stands for δ. Following (12), V (δ) can be easily calculated by means of

the S-Plus function kdf.t(l, m, d). For instance, the S-Plus commend to calculate V (δ)

corresponds to the Epanechnikov kernel K(0,2)(x) = 3
4
(1 − x2)1I[−1,1] with µ = 1 at d,

denoted by V021d, is

V021d (3/4)**2*Vc*(kdf.t(0,0,d)-2*kdf.t(2,0,d)+kdf.t(2,2,d))

Figure 1 shows the functions V (δ) on [−0.45, 0.45] for commonly used kernels, i.e.

for the Uniform, the Epanechnikov and the Bisquare kernels, the three corresponding

kernels of order (0, 4) for estimating g, the three corresponding kernels of order (1, 3) for

estimating g′ and the three corresponding kernels of order (2, 4) for estimating g′′. See

Table 5.7 in Müller (1988) for the formulae of these kernels. They are at the same time

the equivalent kernels for local linear and local cubic fitting of g, local quadratic fitting of

g′ as well as local cubic fitting of g′′ with Kµ(x), µ = 0, 1 and 2, as weighting functions,

respectively. In particular, the functions given in (11) and (16) are those shown in Figures

1a and 1g. The dashed line in a figure shows the corresponding value R(K(ν,k)).

Some empirical findings in nonparametric regression with fractional time series errors

can be drawn from Figure 1. We see, all of the functions V (δ) are convex and tends to

infinite as δ → −1
2
. By kernels for estimating g, V (δ) also tends to infinite as δ → 1

2
.

By kernels of order (0, 2) (i.e. symmetric densities), the minimum of V (δ) occurs at

some negative δ near the origin. The difference between the minimum and V (0) is not

clear. By kernels of order (0, 4) the weights are sometimes negative. This causes the

phenomenon as shown in Figures 1d to 1f, i.e. the constant in the asymptotic variance

for some δ > 0 is clearly smaller than that for iid errors. Note however that, the value

of V (δ) does not change the order of the asymptotic variance. Furthermore, note that
∫

K(x)dx = 0 for a kernel for estimating g′ or g′′. As a consequence, V (δ) decreases

7



monotonously now. In nonparametric regression with iid or short-memory errors it is well

known that the Uniform kernel is the minimum variance kernel (see e.g. Müller,1988).

This is not true, if the errors are strongly antipersistent. For instance, if δ < −0.33,

V (δ) of the Epanichnikov kernel is smaller than that of the Uniform kernel. Furthermore,

note that estimates obtained using the Uniform or corresponding higher order kernels are

discontinuous. But those obtained using the Epanechnikov or corresponding kernels are

continuous. Hence we propose to use the Epanechnikov kernel as the weighting function.

Figures 1c and 1f show that, the Bisquare kernel is also a good candidate for a weighting

function, because now we will obtain more smoother estimates with just slight increase

in the asymptotic variance.

4 Applications

Results obtained in the last section can be used to generalize a data-driven algorithm

in nonparametric regression with fractional time series errors. As an example one of

the data-driven SEMIFAR algorithms (AlgB in Beran and Feng, 2002b) is generalized.

In this generalization local linear and local cubic estimation of g, and local quadratic

estimation of g′ are included. For carrying out ĝ′, ĝ with p = 1 or p = 3 is used as a

pilot smoothing for estimating the dependence structure. The three second order kernels

Kµ(x) = Cµ(1− x2)µ1I[−1,1], µ = 0, 1 or 2, are built-in as alternative weighting functions.

Detailed description about the algorithm will be omitted to save space, because it is quite

similar to the original one (see Beran and Feng, 2002b). The consistency of such a general

algorithm was shown by Beran and Feng (2002a).

In the following two examples will be given to show the practical performance of the

generalized SEMIFAR algorithm and to show the practical relevance of the approach dis-

cussed in Section 2. The data sets are 1. The monthly Northern Hemisphere temperature

(called Temp NH), from January 1880 to December 2002, anomalies (in Co) w.r.t. the

monthly averages during 1961 to 1990, downloaded from the data release of the Climatic

Research Unit at the University of East Anglia, and 2. The annual layer ice thickness

at Arctic (called GISP 2B following the name of the data set) between 1270 and 1988,

downloaded from the web-page of the Arctic System Science, Colorado.

Figure 2 shows the data together with ĝ using local linear (upper) and local cubic
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(middle) fitting for the Temp NH (left) and GISP 2B (right) series, where the observations

of the GISP 2B series are shown from 1988 back to 1270 due to the nature of this data set.

ĝ′ is also shown in Figures 2c and 2f for these examples respectively against the re-scaled

time t ∈ [0, 1], where the dependence structure was estimated using the pilot smoothing

with p = 3. For all results the Epanechnikov kernel was used as the weighting function.

The selected bandwidth ĥ, the estimated long-memory parameter δ̂, the estimated AR

model and the answer to the question, if there is a significant trend in the data, are listed

in Table 1, where the AR model was selected from AR(r) models of orders r = 0, 1, ..., 5.

Also given in Table 1 are the selected bandwidths ĥd for estimating g′ in all cases. An

additional parameter m ∈ {0, 1} to determine if the series is integrated (m = 1) or non-

integrated (m = 0) was also estimated by the SEMIFAR algorithm. Here we have m̂ = 0

in all cases, i.e. the two series are non-integrated. From Figure 2 and Table 1 we see

that the generalized SEMIFAR algorithm works well in practice. The selected optimal

bandwidths differ from case to case and are quite reasonable. The estimated dependence

structure with p = 1 and p = 3 was about the same. This resulting in the fact that ĝ′ is

almost independent of the pilot smoothing.

The estimates of g for Temp NH series with p = 1 and p = 3 look quite similar,

although the selected bandwidths in these two cases are clearly different. The results

show that there are simultaneously significant trend, short memory and long memory in

this time series. However, the dependence structure will be wrongly estimated without

pre-eliminating of the trend. The significance of the fitted trend means that there is a

clear global warming during this time. ĝ′ together with the horizon line y = 0 in Figure

2c divides the temperature change into four periods according to the sign of ĝ′, which

correspond about to I. 1880 - 1906; II. 1907 - 1949; III. 1950 - 1966 and IV. 1967 - 2002.

In the first and in particular in the third periods the averaged temperature decreased

slightly. But the decrease in the averaged temperature was relatively very small. The

averaged temperature increased clearly in the other two periods. By integrating ĝ′ we can

find: 1. The total amount of temperature increase during this time was 0.95 Co; 2. The

amount of temperature increase since 1967 was 0.70 Co. Furthermore, from Figure 2c we

can see that the averaged temperature increases stronger and stronger since 1967, i.e. the

increasing rate increases.

The GISP 2B is indeed a difference series of the total ice thickness, for which we found
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significant trend together with an antipersistent error process. However, the antipersis-

tence cannot be correctly discovered, if the trend is not eliminated. To show this, we

could fit a FARIMA(0, δ, 0) model to the original data. Now, we would obtain δ̂ = 0.277!

This wrong conclusion was due to the trend in this time series. It is clear, if only error

processes with short or long memory were allowed, the dependence structure in this time

series would also be wrongly estimated. Hence, nonparametric regression with antiper-

sistent errors is not only theoretically important but also relevant in practice. For this

example, ĝ with p = 3 looks better than that with p = 1, because it is more stable at

the right boundary. ĝ′ for this time series is almost always negative, i.e. the trend in this

series decreases monotonously. The decrease is very clear at the beginning. We think

such a decreasing trend is mainly due to the strength and duration of the press.

5 Conclusions

In this paper kernel dependent functions in nonparametric regression with fractional time

series errors are obtained. Some interesting phenomena are found by means of these

results. The main results are then used to generalize an existing data-driven algorithm

for estimating g and g′. Data examples illustrate the practical usefulness of the proposal.

Although the data-driven algorithm was developed based on the SEMIFAR model, the

main results of this paper do not rely on the special model assumptions and are hence

applicable in general cases. It is worthwhile to discuss the use of these results in other

proposals, e.g. in the algorithm proposed by Ray and Tsay (1997) or in the case, when δ

and cf are estimated by other approaches.
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Appendix Proofs of the results

Proof of Lemma 1.

i) For δ > 0, set z = y − x and u = x− y,

∫ 1

−1
|x− y|2δ−1dx =

∫ y

−1
(y − x)2δ−1dx +

∫ 1

y
(x− y)2δ−1dx

= −
∫ 0

1+y
z2δ−1dz +

∫ 1−y

0
u2δ−1du

=
1

2δ

[
(1 + y)2δ + (1− y)2δ

]
. (A.1)

ii) For δ < 0, set z = y − x and u = x− y again,

−
∫

|x|>1
|x− y|2δ−1dx = −

∫ −1

−∞
(y − x)2δ−1dx +

∫ ∞

1
(x− y)2δ−1dx

=
∫ 1+y

∞
z2δ−1dz −

∫ ∞

1−y
u2δ−1du

=
1

2δ

[
(1 + y)2δ + (1− y)2δ

]
. (A.2)

Lemma 1 is proved. 3

Proof of Theorem 1.

i) By means of the kernel decomposition given in (5), V (δ) in (8) for δ > 0 can also

be rewritten in a similar way as that given in (9) for δ < 0,

V (δ) =
1

π
Γ(1− 2δ) sin(πδ)

∫ 1

−1
K(ν,k)(y)

×
{∫ 1

−1
Kb(x− y)|x− y|2δ−1dx + K(ν,k)(y)

∫ 1

−1
|x− y|2δ−1dx

}
dy. (A.3)

Comparing (A.3) and (9), we see that V (δ) has a unified function form for δ > 0 and

δ < 0, if and only if
∫ 1
−1 |x − y|2δ−1dx for δ > 0 and − ∫

|x|>1 |x − y|2δ−1dx for δ < 0 have

the same function form. This follows from Lemma 1.

ii) Now we will show lim
δ→0

V (δ) =
∫ 1
−1 K2(x)dx. Observing lim

δ→0
Γ(1−2δ) = lim

δ→0

sin(πδ)
πδ

= 1,

we have, following (A.1) and (A.3),

lim
δ→0+

V (δ) = lim
δ→0+

δ
∫ 1

−1
K(ν,k)(y)

×
{∫ 1

−1
Kb(y − x)|x− y|2δ−1dx + K(ν,k)(y)

∫ 1

−1
|x− y|2δ−1dx

}
dy

=
1

2
lim

δ→0+

∫ 1

−1
K2

(ν,k)(y)[(1 + y)2δ + (1− y)2δ]dy. (A.4)

11



The last equation in (A.4) is due to that
∫ 1
−1 K(ν,k)(y)

∫ 1
−1 Kb(y − x)|x − y|2δ−1dxdy is

bounded for all δ. Furthermore, it is easy to show that

lim
δ→0+

∫ 1

−1
K2

(ν,k)(y)(1 + y)2δdy =
∫ 1

−1
K2

(ν,k)(y)dy.

and

lim
δ→0+

∫ 1

−1
K2

(ν,k)(y)(1− y)2δdy =
∫ 1

−1
K2

(ν,k)(y)dy.

Following (A.4) we have lim
δ→0+

V (δ) =
∫ 1
−1 K2

(ν,k)(y)dy.

Following Lemma 1 and analogous analysis we can obtain lim
δ→0−

V (δ) =
∫ 1
−1 K2

(ν,k)(y)dy,

too. This finishes the proof of Theorem 1. 3

Proof of Lemma 2.

i) Set z = y − x, we have

∫ 1

−1
yl

∫ y

−1
xm(x− y)2δ−1dxdy = −

∫ 1

−1
yl

∫ 0

y+1
(y − z)mz2δ−1dzdy

=
∫ 1

−1
yl

{
m∑

i=0

(−1)i

(
m

i

)
ym−i

∫ 1+y

0
z2δ+i−1dz

}
dy

=
m∑

i=0

(−1)i

(
m

i

)
1

2δ + i

{∫ 1

−1
yl+m−i(1 + y)2δ+idy

}
.(A.5)

ii) Set z = x− y, we have

∫ 1

−1
yl

∫ 1

y
xm(x− y)2δ−1dxdy =

∫ 1

−1
yl

∫ 1−y

0
(y + z)mz2δ−1dzdy

=
∫ 1

−1
yl

{
m∑

i=0

(
m

i

)
ym−i

∫ 1−y

0
z2δ+i−1dz

}
dy

=
m∑

i=0

(
m

i

)
1

2δ + i

{∫ 1

−1
yl+m−i(1− y)2δ+idy

}
. (A.6)

Now set z = −y and observe that l + m is even, we have

∫ 1

−1
yl+m−i(1− y)2δ+idy = −

∫ −1

1
(−z)l+m−i(1 + z)2δ+idz

= (−1)i
∫ 1

−1
zl+m−i(1 + z)2δ+idz. (A.7)

The proof of Lemma 2 is finished by inserting (A.7) into (A.6). 3

Proof of Theorem 2.

i) The proof of (12) is straightforward and is omitted.

12



ii) Following Theorem 1 we only have to calculate Tl,m for δ > 0. In the following we

will continue the calculation of (A.6). Set z = 1− y, we have

∫ 1

−1
yl+m−i(1− y)2δ+idy = −

∫ 0

2
(1− z)l+m−iz2δ+idz

=





l+m−i∑

j=0

(−1)j

(
l + m− i

j

) ∫ 2

0
z2δ+i+jdz





=
l+m−i∑

j=0

(−1)j

(
l + m− i

j

)
22δ+i+j+1

2δ + i + j + 1
. (A.8)

Combining (A.6) and (A.8) we obtain

∫ 1

−1
yl

∫ 1

y
xm(x− y)2δ−1dxdy =

m∑

i=0

(
m

i

)
1

2δ + i

l+m−i∑

j=0

(−1)j

(
l + m− i

j

)
22δ+i+j+1

2δ + i + j + 1
.

Following Lemma 2 we have

Tl,m = 2
∫ 1

−1
yl

∫ 1

y
xm(x− y)2δ−1dxdy

= 2
m∑

i=0

(
m

i

)
1

2δ + i

l+m−i∑

j=0

(−1)j

(
l + m− i

j

)
22δ+i+j+1

2δ + i + j + 1
. (A.9)

Theorem 2 is proved. 3

Proof of Corollary 2. Following (12) we have

V (δ) =
9

4π
Γ(1− 2δ) sin(πδ)T1,1. (A.10)

Furthermore, following (13)

T1,1 = 2
1∑

i=0

1

2δ + i

2−i∑

j=0

(−1)j

(
2− i

j

)
22δ+j+i+1

2δ + j + i + 1

=
1

δ

[
22δ+1

2δ + 1
− 2

22δ+2

2δ + 2
+

22δ+3

2δ + 3

]

+
2

2δ + 1

[
22δ+2

2δ + 2
− 22δ+3

2δ + 3

]
. (A.11)

Straightforward calculation leads to

T1,1 =
(1− 2δ)22δ+1

δ(2δ + 1)(2δ + 3)
(A.12)

and (16) holds. It is clear that lim
δ→0

V (δ) = 3
2

= R(K(1,3)). 3
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Figure 1: Kernel dependent functions V (δ) on [−0.45, 0.45] (solid curves), where the

dashed lines show the corresponding values V (0) = R(K(ν,k)).
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Figure 2: Data-driven local linear (upper) and local cubic (middle) estimates of g, and

local quadratic estimate of g′ (below) for the Temp NH (left) and GISP 2B (right) series.

Table 1: Estimation results for all examples.

Series p ĥ δ̂ 95%-CI for δ r̂ φ̂1 95%-CI for φ1 g-sig. ĥd

Temp 1 0.126 0.208 [0.128, 0.289] 1 0.239 [0.139, 0.339] Y 0.182

NH 3 0.237 0.205 [0.124, 0.286] 1 0.243 [0.143, 0.342] Y 0.182

GISP 1 0.060 -0.128 [-0.185, -0.071] 0 — — Y 0.134

2B 3 0.153 -0.125 [-0.183, -0.068] 0 — — Y 0.134
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