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1 Introduction

The relationship between left tail risk and the cross-section of expected stock returns has received

considerable attention in the recent empirical asset pricing literature (Ang et al., 2006a; Kelly

and Jiang, 2014; van Oordt and Zhou, 2016; Chabi-Yo et al., 2018; Jang and Kang, 2019; Lu and

Murray, 2019; Atilgan et al., 2020). So far, these studies either focus on a stock’s univariate crash

risk (e.g., its crash probability, Value-at-Risk, or Expected Shortfall) or its bivariate crash risk

with the market (e.g., its downside beta, tail beta, lower tail dependence, or option-implied bear

beta). To the best of our knowledge, a stock’s sensitivity to market crashes and extreme downside

realizations of additional risk factors has not been examined yet. In this paper, we fill this gap and

investigate the relationship between multivariate crash risk and the cross-section of average stock

returns.

Since the seminal paper of Fama and French (1993), it is well accepted that the stochastic

discount factor (SDF) cannot be spanned by the market alone, but that it depends on additional

(non-market) risk factors. Nevertheless, bivariate crash risk measures proposed in the literature

exclusively use the market factor to quantify a stock’s non-linear exposure to adverse scenarios.

By construction, such market-based measures neglect tail risk exposure that is driven by extreme

realizations of other priced factors and they only partially capture exposure to extreme states

driven by joint tail events of several factors. If such left tail realizations of non-market factors are

important for the wealth of a representative investor, then an asset’s exposure to these crash events

should help explain the cross-section of expected stock returns.

To capture a stock’s sensitivity to crash events for a set of priced factors, we propose a new

systematic risk measure that we refer to as MCRASH. We define MCRASH of a stock as the

conditional probability that the stock realizes a left tail event given that at least one of the risk

factors realizes a left tail event at the same point in time. We propose to use quantile-based
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thresholds for the corresponding left tail events of the stock and the factors, which implies that

MCRASH is not influenced by univariate risk characteristics. With this definition, MCRASH can

be seen as a generalization of bivariate lower tail dependence coefficients (see e.g. Poon et al., 2004).

More specifically, for the case of the market as a single factor, MCRASH boils down to the bivariate

lower tail dependence between a stock and the market as used in Chabi-Yo et al. (2018).

To obtain a first intuition why MCRASH is distinct from a stock’s bivariate crash risk with

the market, we provide a stylized example in Figure 1. It shows the return time series of two

risk factors (e.g., A = market, B = non-market) and three individual assets (1, 2, and 3). The

individual (univariate) crash risk of the three assets is comparable as each of the assets realizes two

large negative returns of similar magnitude. However, the three assets differ with respect to their

sensitivity to the crashes of the two systematic factors. Asset 1 realizes a simultaneous crash with

factor A but it is not negatively affected by the crash of factor B. Conversely, asset 2 realizes a joint

left tail event with factor B but not with factor A. Finally, asset 3 realizes simultaneous crashes

with both systematic factors. A bivariate crash risk measure concentrating solely on risk factor

A (i.e., the market) would indicate that the crash risk exposure of asset 1 and 3 is identical and

that the systematic crash risk of asset 2 is zero. In contrast, MCRASH accounts for the crash risk

exposure of asset 2 and assigns the highest level of systematic crash risk to asset 3, which realizes

simultaneous crashes with both risk factors A and B. If an investor cares about tail events of both

factors, she should require a higher crash-related premium for holding asset 3 than for asset 1 or 2.

To formalize this idea, we analyze the relevance of multivariate crash risk for asset prices in a

setting, where the true unknown SDF is replaced by its projection on a given set of factors. By

definition, this projection can then be written as a (measurable) function of the factor returns and

from applying a first-order Taylor series expansion, the well-known decomposition of an asset’s risk

premium in terms of linear factor betas is derived. We propose a simple extension of this standard
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Figure 1: Stylized Example – Multivariate Crash Risk
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This figure provides a stylized example for the concept of multivariate crash risk. The first two graphs show the
return time series of two risk factors A and B. The following three panels show the time series of stocks whose returns
are assumed to be driven by these factors. There is one large crash event for each of the two factors. The crash of
factor A (B) and simultaneous crash events of the stocks are highlighted in dark (light) gray.
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argument by adding a term that improves the approximation quality for left tail events. This

extension allows us to link the risk premium to a stock’s multivariate crash sensitivity as measured

by MCRASH. In other words, we derive an extension of standard linear multifactor models, where

MCRASH captures the premium for (non-linear) exposure to systematic crash risk. Specifically,

our theoretical results imply that a stock’s expected excess return is increasing in MCRASH if the

projected SDF is a convex function of the factor returns.

To empirically verify this theoretical prediction, we employ daily return data for U.S. common

stocks trading on the NYSE/AMEX/NASDAQ from 1964 to 2018 and estimate monthly MCRASH

measures for each stock i and month t. In our main analysis, we measure MCRASH with respect to

a seven factor model that adds a momentum factor and a low risk factor to the factors proposed by

Fama and French (1993, 2015). In particular, we include the market factor (MKT), the SMB size

factor, the HML value factor, the RMW profitability factor, the CMA investment factor, the UMD

momentum factor as in Carhart (1997) and the BAB betting-against-beta factor as in Frazzini and

Pedersen (2014).

In our baseline specification, MCRASH is computed at the 5%-probability level using a rolling

window of 250 daily returns (i.e., one year of daily data). We apply a semiparametric methodology

that combines parametric GARCH models for the marginal return distributions of the stock and

the risk factors with a nonparametric estimation of the dependence structure. In this way, we

account for volatility clustering, but do not impose a restrictive form on the (potentially non-

linear) dependencies between stock and factor returns.1 For the average cross-section, the resulting

MCRASH estimates range between 0 and 0.17 with a mean of 0.08. The average cross-sectional

correlation of MCRASH with linear factor betas and firm characteristics included in our empirical

analysis is only moderate with a maximum value of 0.28 attained for the market beta.
1Christoffersen and Langlois (2013) provide evidence for extreme non-linear dependencies among the four Carhart

(1997) factors, despite small or even negative linear correlations.
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In our main asset pricing tests, we relate a stock’s MCRASH estimated at the end of month t to

future returns and alphas in the month t+1. Results from equal-weighted univariate portfolio sorts

reveal that excess returns in month t + 1 monotonically increase in the level of MCRASH at the

end of month t. The return spread between stocks with the highest MCRASH (portfolio 10) and

the lowest MCRASH (portfolio 1) amounts to annualized 4.68% and is statistically significant at

the 1% level with a Newey and West (1987) t-statistic of 3.69. When the MCRASH (10)-(1) return

spread is adjusted for the market as well as SMB, HML, RMW, CMA, UMD, and BAB, it amounts

to annualized 5.28% and is statistically significant at the 1% level with a t-statistic of 4.79. Hence,

accounting for linear exposure to the factors used in the estimation of MCRASH even increases the

statistical and economic significance of the MCRASH (10)-(1) return spread. We also observe that

the MCRASH (10)-(1) return spread remains statistically significant and economically large when

we risk-adjust it by alternative factor models proposed in the literature. Moreover, the impact of

MCRASH is not limited to one-month-ahead performance, but remains strong for risk-adjusted

cumulative returns up to month t+ 6.

The positive pricing effect of MCRASH on the cross-section of average stock returns is confirmed

in multivariate tests. Results from Fama and MacBeth (1973) regressions of excess returns in month

t + 1 on MCRASH in month t controlling for linear risk exposures (i.e., stock betas to different

asset pricing factors) and firm characteristics (size, book-to-market, momentum, reversal, stock

illiquidity, and maximum daily return in month t) indicate that MCRASH is a positive determinant

of expected future stock returns. In a specification with all factor betas, matching the extended

linear model from our theory, the coefficient estimate for MCRASH is 4.37 with a t-statistic of

5.89. Across specifications, the coefficient estimates range between 2.69 and 5.56 with t-statistics

between 3.58 and 6.70. Given a (90% - 10%)-interquantile spread of 0.08 between stocks with

the highest and lowest MCRASH, these coefficient estimates translate into annualized premiums
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between 2.58% and 5.34%.

The positive relationship between MCRASH and future returns holds when we control for

other downside and tail risk measures proposed in the literature. Our results based on multivariate

regressions and bivariate portfolio sorts reveal that the return effect of MCRASH remains robust

and statistically significant when controlling for a stock’s downside beta (Ang et al., 2006a), tail

beta (Kelly and Jiang, 2014), idiosyncratic volatility and idiosyncratic skewness (Ang et al., 2006b),

coskewness and cokurtosis (Harvey and Siddique, 2000), value-at-risk (Atilgan et al., 2020), and

bear beta (Lu and Murray, 2019). These findings provide strong evidence that investors care

about the multivariate crash risk of stocks and that the MCRASH return premium is not already

subsumed in market-based downside and tail risk premiums.

We conduct different robustness checks to confirm the significantly positive association between

MCRASH and future returns. Our results are stable when we specify different filters for our stock

sample, alter the threshold for left tail events, perform a sample split and examine the time periods

from 1965 to 1991 and 1992 to 2018 separately, apply different methodologies in the estimation

of MCRASH, and use the 49 value-weighted Fama and French industry portfolios as test assets.

We also find a significant relation between MCRASH and risk-adjusted future returns when we

perform value-weighted portfolio sorts and exclude the top 1% largest stocks in the cross-section.2

Finally, we document that the premium captured by MCRASH is not specific to our choice of

the seven factors used in the baseline analysis. When we estimate MCRASH for common subsets

of our seven factors and the factor models proposed by Stambaugh and Yuan (2017) and Hou

et al. (2021), we continue to find a positive and significant relationship between the model-specific

MCRASH measures and future returns suggesting that a non-linear crash risk premium can help

to improve many standard pricing models.
2In value-weighted portfolio sorts with all stocks in the cross-section, the risk-adjusted MCRASH (10)-(1) return

spread amounts to annualized 1.92% with a t-statistic of 1.39. Hence, MCRASH has a significant effect on future
returns for all stocks except for the largest 1% in the cross-section.
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We finally investigate the pricing of alternative notions of multivariate crash risk. First, we

calculate bivariate crash risk measures for the market and each of the six non-market factors used

for the computation of MCRASH.3 In line with the results of Chabi-Yo et al. (2018), we observe

that a stock’s sensitivity to market crashes carries a positive risk premium in the cross-section

of future stock returns; moreover, our results reveal a weakly significant premium for exposure

to crashes of the size factor and the profitability factor. However, multivariate regressions and

dependent double sorts indicate that the effect of MCRASH on future returns is not subsumed

by any of the bivariate crash risk measures. To the contrary, the return effects of bivariate crash

measures for the market, the size, and the profitability factor become insignificant when we control

for the impact of MCRASH (and firm characteristics) in multivariate regressions.

Second, we turn our focus to joint crashes of multiple factors. We therefore introduce a measure

called JCRASH, which is defined as a stock’s conditional probability to realize a left tail event given

that several factors simultaneously realize a left tail event at the same point in time (instead of

conditioning on the occurrence of at least one factor crash). Since simultaneous crash events occur

very rarely, we restrict our analysis to simultaneous crashes of factor pairs including the market

as well as simultaneous crashes of the three Fama and French (1993) factors, the four Carhart

(1997) factors and the five Fama and French (2015) factors.4 We find that there are several factor

combinations, for which JCRASH has a significantly positive effect on the cross-section of future

returns with MKT and SMB as well as MKT and RMW as the most pronounced ones. The

significant impact of these joint factor crashes remains robust even when we include MCRASH in

multivariate regressions.

Our work is related to the theoretical and empirical asset pricing literature on downside risk
3These bivariate measures capture the conditional probability that a stock realizes a left tail event given that a

specific factor realizes a left tail event at the same point in time.
4Due to the very low probabilities of joint factor crashes, we also use a fully parametric copula model instead of

a non-parametric model to characterize the dependence structure.
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aversion going back to the ideas of Roy (1952) and Markowitz (1959). More specifically, our

analysis relates to the literature that examines cross-sectional risk premia for systematic downside

and crash risk.5 Ang et al. (2006a) show that downside beta carries a positive premium in the

cross-section of average stock returns.6 Bollerslev et al. (2021) recently extend the idea behind

downside beta and decompose the standard beta into four semibetas, finding a positive premium

for high levels of linear dependence in states with negative market and negative stock returns.

Focusing on extreme events, Kelly and Jiang (2014) document that stocks with higher loadings

on a time-varying tail risk factor have higher future returns. Chabi-Yo et al. (2018) show that

a stock’s bivariate crash risk as measured by its lower tail dependence with the market carries a

positive premium, which is confirmed by Weigert (2016) in a worldwide sample of 40 international

countries.7 In contrast, van Oordt and Zhou (2016) document that a stock’s tail beta with the

market predicts future performance during market crashes, but does not carry a positive premium.

Exploiting forward-looking information from S&P 500 index options, Lu and Murray (2019) show

that exposure to changes in the ex-ante probability of market crashes explains average future stock

returns. Evidence of crash risk for other asset pricing factors is scarce and is mostly concerned with

momentum crashes. Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) document

that the momentum factor experiences infrequent and persistent strings of negative returns and

show that volatility-adjusted momentum strategies have higher Sharpe ratios. Finally, Ruenzi and

Weigert (2018) provide a risk-based explanation of the momentum anomaly on equity markets

and show that the momentum factor is correlated to market crash risk. We contribute to this

strand of literature by analyzing systematic crash risk in a multifactor setting. Our results indicate
5Recent studies by Jang and Kang (2019) and Atilgan et al. (2020) document a negative return impact of a stock’s

univariate (non-systematic) crash risk as measured by its probability of price crashes or its value-at-risk.
6Lettau et al. (2014) document that the downside risk CAPM also helps to explain risk premia across asset classes.

Levi and Welch (2020) raise doubts on the predictive power of downside betas.
7The existence of a premium for LTD is also confirmed for other asset classes. Agarwal et al. (2017) find that

hedge funds which load on tail risk earn high future returns. Meine et al. (2016) show that bivariate crash risk is
compensated in the cross-section of credit default swaps of banks.
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that extending the measurement of systematic downside risk to multiple factors improves our

understanding of the risk return trade-off in the cross-section of stock returns.

Moreover, we contribute to the literature on the application of non-linear dependence measures

in finance. Longin and Solnik (2001) and Poon et al. (2004) apply extreme value theory to study

extreme dependencies between selected international equity markets. Patton (2004), Christoffersen

et al. (2012) and Christoffersen and Langlois (2013), among others, develop dynamic copula models

to describe non-linearities in the conditional dependence structure of asset and factor returns. Our

paper is the first to study the asset pricing implications of non-linear dependencies in multifactor

models. Our results imply that incorporating such dependence features can explain risk premia in

the cross-section of stock returns without further extending the range of factors.

We proceed as follows. Section 2 presents a theoretical model for the pricing of multivariate

crash risk. Section 3 introduces our data sample and describes the estimation of MCRASH. In

Section 4, we document our empirical results on the relationship between multivariate crash risk

and average future stock returns. Section 5 investigates alternative notions of multivariate crash

risk. Section 6 concludes.

2 Theory

In this section, we introduce our main measure for exposure to multivariate crash risk. We also

study the theoretical relationship between multivariate crash risk and expected stock returns using

a new expansion of the stochastic discount factor.

2.1 Crash Sensitivity in Multifactor Models

To account for cross-sectional differences in the dispersion of stock and factor returns, we apply

a quantile-based definition of crash events. In particular, we fix a small probability level p and
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consider return realizations at or below the p-quantile as tail events. Formally, we define the p-tail

of the random return Y as

Tp[Y ] := {Y ≤ Qp[Y ]} (1)

with Qp[Y ] := sup{y ∈ R; P[Y ≤ y] ≤ p} denoting the upper p-quantile of Y . Note that this

understanding of crash events is consistent with quantile-based tail risk measures such as Value-

at-Risk or Expected Shortfall, which are heavily used in the risk management and regulation of

financial institutions.8

In the following, we investigate systematic crash risk in a model with N ≥ 1 priced factors and

denote the returns of these factors over the period [t, t+ 1] by X = (X1, . . . , XN )′. In this setting,

the standard univariate definition of tail events given in equation (1) can be generalized as follows:

We define a multivariate systematic tail event denoted by Tp[X] as a realization of X, where at

least one of the factors is at or below its p-quantile.9 Accordingly, Tp[X] can be written as the

union of individual factor crashes, i.e.,

Tp[X] :=
N⋃

j=1
Tp[Xj ] =

N⋃
j=1
{Xj ≤ Qp[Xj ]} . (2)

This definition of systematic crash events in multivariate models is rather general. It includes more

specific crash types such as the individual factor crashes themselves and simultaneous crashes of

several factors, which we will consider later in the paper.10

Building on the definition in equation (2), we introduce an asset’s crash sensitivity in multifac-

tor models as a straightforward generalization of the well-known bivariate lower tail dependence
8Using the upper p-quantile as cut-off point for returns is consistent with using a standard VaR-definition based

on the lower (1− p)-quantile for the corresponding loss L = −X.
9Note that this definition is related to the stable tail dependence function of −X, which is frequently used in

multivariate extreme value theory. See e.g. Beirlant et al. (2004, p. 283), Drees and Huang (1998) or Kiriliouk et al.
(2018).

10Simultaneous crashes of several factors can be formalized as the intersection of the corresponding individual crash
events. See Section 5.2.
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coefficients.11 Let Ri denote the discrete return of an asset over the period [t, t+ 1]. We define the

multivariate crash risk (MCRASH) of Ri for the factors X at the probability level p by

MCRASHX
i := P[Tp[Ri] |Tp[X]] = P

Ri ≤ Qp[Ri] |
N⋃

j=1
{Xj ≤ Qp[Xj ]}

 , (3)

where P[A |B] refers to the conditional probability of event A given B. MCRASH thus corresponds

to the conditional probability that Ri does not exceed its p-quantile given that at least one of the

factors is also at or below its p-quantile. Accordingly, MCRASH measures the probability of asset i

to be adversely affected if a crash event occurs for one (or more) of the systematic factors. By

construction, MCRASH ranges between 0 and 1. It is high if asset i tends to realize an extreme

negative return when the systematic factors realize adverse scenarios and it is low for assets which

rarely realize tail events when crashes in the systematic factors occur.

To simplify our theoretical analysis of MCRASH, we add the following technical assumption:

(A1) The univariate distributions of Ri and X1, . . . , Xn are continuous with positive densities.

Under this assumption, MCRASH is not influenced by characteristics of the marginal distributions.

With FY denoting the cumulative distribution function of Y , it holds that Tp[Y ] = Tp[FY (Y )],

where FY (Y ) is known as the probability integral transform of Y .12 Therefore, we can rewrite the

definition in equation (3) as

MCRASHX
i = P

Tp[FRi(Ri)] |
N⋃

j=1
Tp[FXj (Xj)]

 . (4)

This shows that the MCRASH is determined by the copula function of the random vector
11See e.g. Poon et al. (2004), Christoffersen et al. (2012) and Chabi-Yo et al. (2018) for applications of bivariate

LTD measures in finance.
12Since Qp[FY (Y )] = FY (Qp[Y ]) for continuous and non-decreasing functions FY (Dhaene et al., 2002, Theorem

1), Y ≤ Qp[Y ] if and only if FY (Y ) ≤ Qp[FY (Y )].
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(Ri, X1, . . . , XN ), which formally captures the dependence structure of the relevant random vari-

ables.13 This property has two important implications for our analysis: First, by construction,

MCRASH is distinct from univariate risk measures such as volatility, skewness, Value-at-Risk or

Expected Shortfall. Second, we can resort to standard copula methods to obtain estimates of

MCRASH in our empirical analysis.

2.2 Multivariate Crash Risk and Expected Returns

Our theoretical analysis of the risk premium for asset i with the discrete return Ri over the period

[t, t+ 1] relies on a nonnegative stochastic discount factor (SDF) M , which satisfies

E[M (1 +Ri)] = 1. (5)

The existence of M is guaranteed by no arbitrage (Harrison and Kreps, 1979; Hansen and Richard,

1987). We furthermore assume that there is a risk-free asset, whose discrete return over the period

[t, t+ 1] is given by Rf .

If we can replace M by its projection MX = E[M |X], where X is a set of factors or state

variables, then we say that X explains the cross-sectional variation in expected stock returns.14

Due to its definition as a conditional expectation, the projected SDF can be written as MX = m(X)

with a measurable function m : RN → R. The function m is often assumed to be linear. Instead of

imposing this restriction, we build on the following more general assumption:

(A2) m is differentiable, decreasing in each argument and convex.

Requiring the function m to be decreasing ensures that the factors are defined such that Tp[X] in
13The copula function of a random vector (Y1, . . . , YN ) with a continuous distribution can be defined as the dis-

tribution function of (FY1 (Y1), . . . , FYN (YN )) (McNeil et al., 2015, Definition 7.5). For a recent review on copula
methods, see e.g. Fan and Patton (2014).

14This holds if Ri = fi(X) + εi, where fi is an arbitrary measurable function and εi is a zero-mean residual that
is not priced conditional on X, i.e. E[εi | X] = 0 and cov[M, εi |X] = 0.
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equation (2) captures crash (instead of boom) scenarios. An example for a direct specification of

a convex SDF in a single factor setting can be found in Harvey and Siddique (2000). In standard

representative agent models, the curvature of m depends on the third derivative of the agent’s

utility function u. If there is a function g : RN → R that maps the values of the factor realizations

into the optimal level of consumption and m is of the form (see, for example, p. 166 in Cochrane,

2005 for a similar structure of the SDF)

m(X) = δ

1 +Rf
u′(g(X)) with δ := 1

E[u′(g(X)] , (6)

then the linearity of g and u′′′ > 0 are sufficient conditions for the convexity of m.15 Note that

the monotonicity and the convexity restrictions from Assumption (A2) can be relaxed for regions

of the factor space that are not relevant to our additional tail-related approximation arguments.

Therefore, the convexity requirement is not necessarily inconsistent with the literature on the SDF

or risk aversion puzzle (Jackwerth, 2000).

Using the projected SDF m(X) and E[m(X)] = (1 +Rf )−1, it is easy to derive the well-known

pricing result

E[Ri −Rf ] = −(1 +Rf ) cov[m(X), Ri] . (7)

To obtain a beta representation from (7), we can use a first-order Taylor expansion of m around

xc = E[X] (Cochrane, 2005, p. 161). This linear approximation is given by

mL(X) = m(xc) +∇m(xc) · (X − xc), (8)

where ∇m(xc) :=
(

∂m
∂x1

(xc), . . . , ∂m
∂xN

(xc)
)
. A drawback of this standard argument is that the

approximation quality can be poor for factor realizations that are far away from E[X], which
15See Pratt (1964); Dittmar (2002); Chabi-Yo (2012) for standard assumptions on the derivatives of u.
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specifically applies to realizations from the p-tail Tp[X].

To address this issue, we propose a piecewise linear approximation of m(X)

mL,e(X) = mL(X) + 1(Tp[X]) dtail(X), (9)

where 1(Tp[X]) is the indicator function for the multivariate crash event defined in equation (2) and

dtail(X) is a linear adjustment term that improves the approximation quality in the tail region.16

A very simple choice for dtail(X) is a constant adjustment that corresponds to the approximation

error at a point xl ∈ Tp[X], i.e.,

dtail ≡ m(xl)−mL(xl). (10)

Analogous to xc = E[X], one could, e.g., choose xl := E[X | Tp[X]].17 We illustrate the piecewise

linear approximation resulting from these choices in Figure 2 for an example SDF with N = 1. A

comparison of this relatively simple approach with a more flexible tail approximation based on a

separate Taylor expansion around xl is presented in Section II of the Internet Appendix.

Building on the specific form of the tail adjustment given in equation (10) and a simple tail

approximation for Ri, we derive the extended linear model

E[Ri −Rf ] = αi +
N∑

j=1
β

(j)
i λ(j) + (MCRASHX

i − p)λX
tail (11)

for the expected excess return in Appendix A.1. Equation (11) decomposes the excess return into

three components: αi captures the pricing error arising from our approximation arguments. The

sum corresponds to the well-known risk premium in a standard linear model with the factor betas
16Diez De Los Rios and Garcia (2011) use a framework consistent with a piecewise linear SDF for assessing and

valuing nonlinearities in hedge fund returns.
17An optimal choice of xl is an interesting question, but beyond the scope of the current analysis.
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Figure 2: Piecewise Linear SDF Approximation

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.120

1

2

3

m
(x

)

Panel A: Stochastic Discount Factor

exact
lin.
ext. lin.
Q0.05
xl

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.120
2
4
6
8

x

f
(x

)

Panel B: Density Function

This figure illustrates our piecewise linear approximation of the SDF for the univariate case N = 1 and a standard
power utility SDF. Panel A shows the exact (unscaled) discount factor m(x) = x−RRA with a relative risk aversion
parameter of RRA = 5 (black solid line), its standard linear approximation around xc = E[X] (gray solid line)
and its piecewise linear approximation according to equation (9) around xc = E[X] and xl = E[X | X ≤ Qp[X]]
(gray squares). p = 0.05 is used as tail probability threshold in this example. Furthermore, we assume a skewed-
t distribution for X with E[X] = 1.05, σ[X] = 0.2, a skewness parameter of λ = −0.2 and a degree-of-freedom
parameter ν = 7 for this illustration. The density of this distribution is shown in Panel B. The dotted gray line
marks the p-quantile Qp of X and the dashed gray line corresponds to the tail expectation xl = E[X | X < Qp[X]].
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and the corresponding prices of risk given by

β
(j)
i := cov[Xj , Ri]

var[Xj ] and λ(j) := −(1 +Rf ) ∂m
∂xj

(xc) var[Xj ] (12)

for j = 1, . . . , N . The last term in equation (11) is an additional crash-related risk premium with

MCRASH defined in equation (3) and λX
tail as the associated price of crash risk. λX

tail is non-negative

if Assumption (A2) is satisfied as detailed in Appendix A.1.

Based on the extended linear model in equation (11), we arrive at our main hypothesis about

the cross-sectional pricing of multivariate crash risk.

Hypothesis: The expected excess return of asset i is increasing in its exposure to multivariate

crash risk as measured by MCRASHX
i .

We thus expect higher average returns for assets with high MCRASH coefficients. To be more

precise, assets with MCRASHX
i > p (MCRASHX

i < p) are expected to earn a positive (negative)

crash premium compared to the linear factor model.

For N = 1 and p → 0, this result provides an alternative explanation of the LTD premium

found by Chabi-Yo et al. (2018). Furthermore, the special case of a single factor is also related

to the bivariate crash risk measures proposed by Agarwal et al. (2017) and van Oordt and Zhou

(2016).

We finally present a numerical example that illustrates the benefits of including MCRASH

in linear multifactor models. Our example builds on the form of the SDF given in equation (6)

combined with standard CRRA-preferences and a linear mapping function g. To be able to vary

non-linear dependence features between Ri and the factor returns X, we use a flexible parametric

copula model. In particular, we rely on the skewed-t copula introduced by Demarta and McNeil
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(2007), which can capture extreme tail dependence as well as dependence asymmetries.18 Details

on the construction of our example are presented in Section III of the Internet Appendix.

Panels A and B in Figure 3 compare the pricing errors arising from a standard first-order

approximation according to equation (8) and from our piecewise linear approximation proposed

in equations (9) and (10). The graphs are obtained by changing the asymmetry and the tail

parameter of the dependence model. We observe that these changes, which do not affect the

marginal distributions, cause a non-negligible variation in the pricing errors of the linear model

and that the tail-related adjustment term can substantially reduce the magnitude of these errors.

Panels C and D in Figure 3 show that there is a positive relationship between the pricing errors of

the linear model and MCRASH in line with equation (11).

3 Data and Estimation

In this section, we first describe the stock sample and the factor data that we use in our empirical

analysis. Then, we discuss the estimation of MCRASH and summarize the estimation results

obtained for our sample.

3.1 Data

Our sample consists of all common stocks from CRSP (share codes 10 and 11) trading on the NYSE,

AMEX, and NASDAQ between January, 1964 through December, 2018. We adjust the raw CRSP

holding-period returns obtained from CRSP for delisting events following the procedure proposed

by Shumway (1997). To remain in the sample in month t, we require each stock to have at least

200 non-zero return observations over the past 250 trading days and a price of at least USD 2.

These filters remove many small and illiquid stocks from our sample. After applying these filters,
18Finance applications of this model include Christoffersen et al. (2012) and Christoffersen and Langlois (2013).
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Figure 3: Pricing Errors and MCRASH
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This figure presents an example that illustrates the relationship between MCRASH and the pricing errors resulting
from a linear approximation of the projected SDF. The example builds on the structure of the SDF given in equa-
tion (6) with two factors, standard CRRA preferences and a simple linear mapping function g. We use a flexible
copula model for the joint distribution of the asset return Ri and the factor returns X1 and X2. A detailed description
of our assumptions can be found in Section III of the Internet Appendix. Panel A and B compare the pricing errors
resulting from a standard linear approximation (crosses) according to equation (8) and the errors from the proposed
piecewise linear approximation (squares) according to equations (9) and (10) with p = 0.05. Panel A is obtained
by changing the asymmetry parameter of the dependence model and, in Panel B, we vary the degrees-of-freedom
parameter of the copula that controls the probability of joint tail events. Panel C and Panel D depict the relationship
between MCRASH and the pricing errors of the linear model under the same variations of the dependence structure.
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our sample consists of 1,477,700 stock-month observations with the number of stocks per month

varying between 730 and 4520. In order to account for firms’ fundamental information in asset

pricing tests in Section 4, we merge our sample with accounting data from Compustat.

In our baseline analysis, we investigate multivariate crash risk in a seven-factor model that

combines the five factors proposed by Fama and French (1993, 2015), i.e., the excess market return

(MKT), the size factor19 (SMB), the value factor (HML), the profitability factor (RMW), and

the investment factor (CMA), with the UMD momentum factor as in Carhart (1997), and the

BAB betting-against-beta factor as in Frazzini and Pedersen (2014).20 The choice of these factors

reflects a common practice in the current asset pricing literature to augment the traditional Fama

and French (1993) three-factor model with factors that account for profitability, investment and

momentum (see, e.g., Barillas and Shanken, 2018). The inclusion of BAB reflects the considerable

attention that low risk anomalies have received recently (see, e.g., Schneider et al., 2020). The

stability of our asset pricing results with respect to this choice of factors will be analyzed in our

robustness tests in Section 4.4.

3.2 Estimation of MCRASH

We estimate a stock’s multivariate crash risk (MCRASH), as defined in equation (3) for each stock i

and month t using a rolling window with one year of daily returns. Applying this horizon follows

Chabi-Yo et al. (2018) and trades off two concerns: First, a sufficiently large number of observations

is needed to obtain reliable estimates for MCRASH. Second, we want to account for the limited

stability of risk exposures over long time horizons (see, e.g., Ang and Chen, 2002).

For our baseline analysis, we perform the estimation of MCRASH semiparametrically combining
19We use the original size factor from Fama and French (1993) in our analysis. Our empirical results are almost

unchanged if we replace SMB with the modification proposed in Fama and French (2015).
20Factor data for MKT, SMB, HML, RMW, CMA, and UMD including the risk-free rate are downloaded from the

website of Kenneth French; data for BAB are obtained from the AQR homepage.
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parametric GARCH models for the marginal return distributions and a non-parametric approach

for the dependence modeling. The methodology allows us to account for volatility clustering21

without imposing a potentially restrictive structure on linear and non-linear dependencies between

stock and factor returns.22 We estimate MCRASH at the 5%-probability level; this means that

we estimate the conditional probability that a stock realizes a return observation at or below its

5%-quantile given that at least one of the risk factors is at or below its respective 5%-quantile.23

Following the representation of MCRASH in equation (4), we proceed in two steps: First,

we estimate GARCH(1,1) models with skewed-t innovations (Hansen, 1994) for the conditional

distributions of the daily asset and factor returns over the last 250 trading days. We then apply the

resulting marginal cumulative distribution functions to calculate probability integral transforms

of the daily returns. In the second step, we evaluate a simple non-parametric estimator of the

conditional probability given in equation (4) for the transformed returns calculated in the first

step. Accordingly, MCRASH is estimated as the number of days on which asset i and at least one

of the factors simultaneously realize a left tail event divided by the overall number of days on which

left tail events for the factors occur. A formal description of this estimation procedure is provided

in Appendix A.2.

3.3 MCRASH Estimates

We report summary statistics of MCRASH estimates for the end of each month between 1964-12

and 2018-11 in Panel A of Table 1. For the average cross-section, the mean and the median of

MCRASH are 0.08 and its standard deviation is 0.03. We also display summary statistics of risk

and firm characteristics that are applied as control variables in the asset pricing tests of Section 4.
21See, e.g., Poon et al. (2004) for the importance of heteroscedasticity as a source of “tail dependence”.
22In our robustness checks in Section 4.4, we vary this methodology and also show results obtained from purely

non- and fully parametric estimation techniques.
23We study the robustness of our results under variations of the tail probability level in Section 4.4.
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As risk and firm characteristics, we use betas to the MKT, SMB, HML, RMW, CMA, UMD, and

BAB risk factors, size, book-to-market (bm), the past t − 11 until t − 1 monthly return (stock-

level momentum, mom), the past one-month return (stock-level reversal, rev), illiquidity (illiq),

and highest daily return over the past month (max). Definitions of all variables are provided in

Table A.1.

Panel B of Table 1 provides correlations between a stock’s MCRASH and these different risk

and firm characteristics. We observe that correlations are relatively modest: MCRASH is positively

correlated to market beta (+0.28), size (+0.21), and the UMD momentum beta (+0.16), while it

shows negative correlations to the BAB beta (-0.17), illiquidity (-0.10), and the CMA beta (-0.08).

We take particular care of these correlations when investigating the impact of MCRASH on future

stock returns in our asset pricing tests in Section 4.

If investors would like to benefit from a risk premium associated with multivariate crash risk,

they must be able to forecast the future risk exposure of a stock. We therefore examine the persis-

tence of our MCRASH estimates using multivariate Fama and MacBeth (1973) regressions on the

stock level and report the results in Panel C of Table 1. In specifications (1) to (6), we regress future

MCRASH in the months t+ 1, t+ 3 and t+ 6 on MCRASH in month t using different sets of risk

and firm characteristics as control variables. The coefficient estimate of MCRASH varies from 0.81

to 0.35 and is highly statistically significant (numbers suppressed in the table). The corresponding

average adjusted R2 ranges between 26.86 and 66.89 percent. In specification (6), we test the pre-

dictability of MCRASH on the 12 months horizon, so that the corresponding MCRASH estimation

windows are non-overlapping. We include the full set of risk measures and firm characteristics. We

again find that the MCRASH coefficient is positive and statistically significant at the 1% level with

a Newey and West (1987) t-statistic of 9.60 adjusted for 6 lags and an average adjusted R2 of 13.19

percent.
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Table 1: Summary Statistics, Correlations and Persistence

Panel A: Summary Statistics

Mean SD Skew Kurt Min q5 q25 Med q75 q95 max

MCRASH 0.08 0.03 0.08 2.81 0.00 0.04 0.06 0.08 0.10 0.13 0.17
βMKT 1.04 0.56 0.45 3.86 -0.99 0.23 0.65 0.98 1.37 2.04 3.42
βSMB 0.42 0.78 0.18 4.31 -2.61 -0.76 -0.10 0.40 0.92 1.73 3.91
βHML -0.75 0.96 -0.53 5.44 -5.42 -2.50 -1.26 -0.63 -0.13 0.56 3.08
βRMW -0.38 1.11 -0.42 5.77 -6.29 -2.26 -0.98 -0.32 0.29 1.27 4.30
βCMA -0.89 1.16 -0.62 6.00 -6.63 -3.01 -1.47 -0.73 -0.16 0.68 3.99
βUMD 0.24 0.71 -0.02 5.44 -2.91 -0.87 -0.18 0.21 0.65 1.40 3.31
βBAB -1.04 0.98 -0.76 5.57 -5.93 -2.87 -1.54 -0.89 -0.37 0.25 2.85
size 5.86 1.67 0.27 2.9 1.37 3.27 4.65 5.79 6.99 8.73 11.72
bm 0.75 0.94 9.78 253.2 0.02 0.14 0.35 0.60 0.93 1.71 24.62
mom 20.44 56.01 4.00 54.8 -79.92 -38.65 -9.03 11.31 36.48 106.29 862.32
rev 1.35 12.16 2.03 38.73 -51.41 -15.29 -5.06 0.62 6.67 19.96 147.17
illiq 0.37 1.52 11.86 263.28 0.00 0.00 0.02 0.06 0.22 1.57 41.81
max 0.06 0.05 6.15 122.86 0.00 0.02 0.03 0.05 0.07 0.13 1.04

Panel B: Correlations
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MCRASH
βMKT 0.28
βSMB 0.06 0.12
βHML -0.06 -0.48 -0.01
βRMW 0.02 -0.13 -0.40 -0.14
βCMA -0.08 -0.52 -0.07 0.66 -0.13
βUMD 0.16 0.15 0.12 -0.16 0.06 -0.11
βBAB -0.17 -0.80 -0.08 0.42 0.11 0.42 0.01
size 0.21 0.11 -0.37 0.00 0.11 0.01 -0.01 -0.10
bm -0.05 -0.14 -0.02 0.23 -0.06 0.18 -0.06 0.12 -0.13
mom 0.07 0.05 0.05 -0.03 0.01 -0.02 0.26 0.00 0.03 0.03
rev 0.00 -0.02 0.00 0.02 0.01 0.02 0.01 0.02 0.04 0.02 0.01
illiq -0.10 -0.14 0.08 0.05 -0.01 0.05 -0.03 0.13 -0.39 0.11 -0.07 -0.02
max -0.04 0.23 0.18 -0.17 -0.10 -0.17 0.04 -0.20 -0.31 -0.02 -0.01 0.37 0.16
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Table 1: Continued

Panel C: Persistence

future MCRASH

t+ 1 t+ 1 t+ 1 t+ 1 t+ 3 t+ 6 t+ 12
(1) (2) (3) (4) (5) (6) (7)

MCRASH(t) 0.81 0.79 0.79 0.77 0.57 0.35 0.05
(9.60)

betas no yes no yes yes yes yes
characteristics no no yes yes yes yes yes

R2
adj [%] 65.86 66.78 66.23 66.89 44.63 26.86 13.19

T 647 647 647 647 645 642 636

Panel A of this table presents summary statistics for MCRASH and for the main control variables used in our
asset pricing tests. MCRASH is a firm’s multivariate crash sensitivity for a seven-factor model with MKT, SMB,
HML, CMA, RMW, UMD and BAB. MCRASH is estimated semiparametrically using a rolling estimation window
with 250 days. We combine GARCH skewed-t for the marginal distributions and a non-parametric modeling of
the dependence structure. We estimate MCRASH at the probability level p = 0.05. As control variables, we
include 250-day betas for the same factors and the following stock characteristics: size, the book-to-market ratio
(bm), stock-level momentum (mom) and reversal (rev), Amihud (2002) illiquidity (illiq) and max corresponding
to the maximum return in month t (max). See Table A.1 for the definitions of these variables. We calculate the
mean (Mean), standard deviation (SD), skewness (Skew), excess kurtosis (Kurt), minimum (Min), 5%-quantile
(q5), 25%-quantile (q25), median (Med), 75%-quantile (q75), 95%-quantile (q95) and maximum (max). We first
calculate these statistics for each cross-section and then take the average over the time domain. Panel B presents the
correlation matrix of the variables introduced in Panel A. We report time-series averages of the correlation estimates
at the end of each month. Panel C presents results on the persistence of MCRASH with Fama and MacBeth (1973)
regressions on the stock level. In specification (1), we regress future MCRASH in month t + 1 on MCRASH in
month t. Specifications (2) and (3) add betas and characteristics as explanatory variables, respectively. Specification
(4) simultaneously includes all variables. In columns (5) - (7), we repeat specification (4) with longer predictive
horizons. We report a Newey and West (1987) t-statistic with 6 lags for the coefficient estimate in specification (7),
which does not use overlapping data for the estimation of MCRASH. Our sample period starts in 1964-12 and ends
in 2018-11.
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We also analyze the persistence of MCRASH on the portfolio level. For this purpose, we sort

all stocks in our sample into ten portfolios according to their level of MCRASH in month t, i.e.,

stocks with low (high) MCRASH are sorted into portfolio 1 (10). We then track the equal-weighted

average of MCRASH for each portfolio over the following months t+ 1 to t+ 12. Figure 4 presents

the results.

Figure 4: Persistence of MCRASH
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This figure illustrates the persistence of MCRASH estimated for the seven-factor model with p = 0.05. We sort all
firms in our sample into deciles based on their levels of MCRASH in month t. Then, the equal-weighted average of
MCRASH is again computed in the following twelve months t + 1, . . ., t + 12. We report the time-series average of
the corresponding values for each portfolio over our sample period from 1964-12 until 2018-11.

We observe that stocks in decile portfolio 10 consistently show higher MCRASH in the following

months than stocks in decile portfolio 1. Consequently, based on the results from Panel C of Table 1

and Figure 4, we document that MCRASH is relatively persistent over short- and medium horizons

that will be relevant for our asset pricing tests.

Finally, we analyze the behavior of aggregate MCRASH over time. Aggregate MCRASH in

month t is computed as the equal-weighted cross-sectional average over the MCRASH coefficients

for all stocks i in this month. Figure 5 plots the time series of aggregate MCRASH over our sample

period.

Visual inspection shows that there is no particular trend and that aggregate MCRASH is sta-

tionary over time. Furthermore, Figure 5 reveals that the average level of MCRASH is always above
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Figure 5: MCRASH over Time
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This figure plots the evolution of the multivariate crash risk measure MCRASH estimated with p = 0.05 for the
seven-factor model over time. The bold black line corresponds to aggregate MCRASH, defined as the equal-weighted
average of the estimates at time t over all stocks in our sample. The light (dark) gray area corresponds to the range
between the 5%- and the 95%-quantile (the 25%- and the 75%-quantile) across firms. The dashed reference line at
0.05 corresponds to the case that the tail events for Ri and the factors X are independent. Our sample period starts
in 1964-12 and ends in 2018-11.

0.05, which is the benchmark value obtained if the crash events for a stock and the factors are inde-

pendent. The highest spikes in aggregate MCRASH occur between 1979-1980 and 2010-2012, i.e.,

time periods with high market volatility (possibly triggered by the early 1980s US recession and the

worldwide financial crisis from 2007-2009). However, it is important to note that these spikes do

not occur during the worst stock market downturns in the USA (i.e., the 1987 Black Monday crash

and the 2008 crash related to the Lehman Brothers bankruptcy) indicating that MCRASH is not

driven by market crashes alone, but depends to a large extent also on tail events from non-market

risk factors.

4 Asset Pricing Implications

The main part of our empirical analysis examines the relationship between multivariate crash

risk and average future stock returns for individual stocks in the CRSP sample introduced in the

25



previous section. In particular, we employ MCRASH estimates calculated at the end of each month

between December 1964 and November 2018 and returns from January 1965 to December 2018 in

our asset pricing tests. To account for the impact of autocorrelation and heteroscedasticity, we

determine statistical significance in portfolio sorts and multivariate regressions using Newey and

West (1987) standard errors with six lags.

4.1 Univariate Portfolio Sorts

To assess the predictive power of differences in stocks’ MCRASH on the cross-section of future stock

returns, we first look at simple equal-weighted univariate portfolio sorts. At the end of each month

t, we form decile portfolios by sorting stocks based on their multivariate crash risk coefficients,

where decile 1 contains stocks with the lowest MCRASH and decile 10 contains stocks with the

highest MCRASH. Panel A of Table 2 reports average excess returns (i.e., returns minus the

risk-free rate) and alphas of these portfolios in month t+1. We also display the differences in (risk-

adjusted) returns between portfolio 10 and portfolio 1, i.e., the MCRASH (10)-(1) (risk-adjusted)

return spread in the last column of the table.

We observe, moving from decile 1 to decile 10, that average excess returns in month t + 1

monotonically increase from 0.38% to 0.77%. This indicates that the MCRASH (10)-(1) return

spread amounts to 0.39% per month, which is statistically significant at the 1% level with a t-

statistic of 3.69. Hence, stocks in the highest MCRASH decile portfolio earn about 4.68% higher

annualized returns than stocks in the lowest MCRASH decile portfolio. In addition, we report

risk-adjusted portfolio returns in Panel A of Table 2. Following our theoretical results, our main

adjustment is based on the seven factors used in the calculation of MCRASH, i.e., the five factors

of Fama and French (2015) (MKT, SMB, HML, RMW, and CMA) as well as the momentum UMD

factor of Carhart (1997), and the betting-against-beta BAB factor of Frazzini and Pedersen (2014).
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Table 2: Univariate Portfolio Sorts on MCRASH

Panel A: 1-Month Holding Period

1 2 3 4 5 6 7 8 9 10 10-1

exret 0.38 0.48 0.53 0.59 0.65 0.68 0.68 0.69 0.73 0.77 0.39
(1.59) (1.98) (2.17) (2.42) (2.71) (2.80) (2.80) (2.81) (2.90) (3.01) (3.69)

α 7F -0.28 -0.17 -0.13 -0.07 -0.02 0.01 0.02 0.05 0.11 0.16 0.44
(-4.73) (-3.28) (-2.56) (-1.65) (-0.33) (0.12) (0.42) (0.99) (1.71) (2.06) (4.79)

α 5F -0.33 -0.25 -0.20 -0.14 -0.08 -0.06 -0.04 -0.01 0.04 0.10 0.43
(-4.55) (-3.88) (-3.43) (-2.73) (-1.51) (-1.09) (-0.75) (-0.15) (0.65) (1.31) (4.40)

α 7F+LIQ -0.27 -0.16 -0.12 -0.07 -0.02 0.00 0.02 0.06 0.11 0.15 0.41
(-4.39) (-2.88) (-2.23) (-1.50) (-0.44) (-0.07) (0.42) (1.10) (1.66) (1.86) (4.48)

α 7F+QMJ -0.20 -0.09 -0.06 -0.02 0.04 0.07 0.09 0.12 0.19 0.26 0.47
(-3.15) (-1.78) (-1.24) (-0.45) (0.86) (1.34) (1.62) (2.07) (2.68) (3.06) (4.34)

α 7F+STR -0.31 -0.20 -0.16 -0.10 -0.04 -0.02 0.00 0.03 0.08 0.12 0.43
(-5.44) (-3.91) (-3.17) (-2.14) (-0.83) (-0.42) (-0.03) (0.64) (1.39) (1.56) (4.53)

α 7F+LTR -0.28 -0.17 -0.13 -0.07 -0.01 0.01 0.02 0.06 0.11 0.16 0.44
(-4.73) (-3.29) (-2.57) (-1.64) (-0.31) (0.16) (0.49) (1.11) (1.82) (2.21) (5.05)

α M4 -0.15 -0.09 -0.07 -0.03 0.03 0.05 0.06 0.10 0.16 0.23 0.39
(-1.96) (-1.33) (-1.14) (-0.48) (0.67) (1.05) (1.16) (1.64) (2.41) (2.74) (3.03)

α q5 -0.11 -0.04 -0.01 0.03 0.07 0.08 0.09 0.13 0.18 0.24 0.35
(-1.38) (-0.65) (-0.24) (0.51) (1.17) (1.15) (1.24) (1.63) (2.00) (2.22) (2.70)

Panel B: Cumulative Risk-Adjusted Returns
1 2 3 4 5 6 7 8 9 10 10-1

1 month -0.28 -0.17 -0.13 -0.07 -0.02 0.01 0.02 0.05 0.11 0.16 0.44
(-4.73) (-3.28) (-2.56) (-1.65) (-0.33) (0.12) (0.42) (0.99) (1.71) (2.06) (4.79)

2 months -0.49 -0.31 -0.25 -0.16 -0.07 -0.04 0.01 0.11 0.19 0.21 0.70
(-4.28) (-3.12) (-2.71) (-1.98) (-0.92) (-0.46) (0.12) (1.19) (1.81) (1.59) (4.02)

3 months -0.66 -0.45 -0.40 -0.27 -0.14 -0.11 -0.04 0.10 0.14 0.15 0.81
(-3.89) (-3.04) (-3.08) (-2.31) (-1.20) (-0.88) (-0.35) (0.76) (0.96) (0.85) (3.30)

4 months -0.87 -0.60 -0.54 -0.45 -0.34 -0.26 -0.14 -0.01 0.01 0.04 0.92
(-3.97) (-3.07) (-3.10) (-2.80) (-2.11) (-1.52) (-0.82) (-0.06) (0.07) (0.18) (3.00)

5 months -1.01 -0.75 -0.74 -0.68 -0.55 -0.40 -0.23 -0.14 -0.19 -0.12 0.89
(-3.71) (-3.20) (-3.50) (-3.28) (-2.63) (-1.93) (-1.14) (-0.67) (-0.79) (-0.40) (2.39)

6 months -1.14 -0.96 -0.99 -0.94 -0.79 -0.60 -0.41 -0.33 -0.38 -0.30 0.84
(-3.46) (-3.35) (-3.79) (-3.64) (-3.15) (-2.42) (-1.68) (-1.34) (-1.35) (-0.85) (1.81)
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Table 2: Continued

Panel A of this table reports the results of univariate portfolio sorts based on our multivariate crash risk measure
MCRASH for a seven-factor model with MKT, SMB, HML, CMA, RMW, UMD and BAB. At the end of each
month t, we rank all stocks in our sample into deciles (1-10) based on their estimated MCRASH and form ten
equal-weighted portfolios that we hold over the following month t + 1. We report average monthly future excess
returns (exret) over the T-Bill and the return of the (10)-(1) spread portfolio that is long in high MCRASH stocks
and short in low MCRASH stocks. In addition, we report risk-adjusted returns (alphas) based on the following
factor models: the seven factors used for the MCRASH calculation (α 7F), the standard five-factor model (α 5F) and
four extended versions of the seven factor model, in which we add the Pástor and Stambaugh (2003) traded liquidity
factor (α 7F+LIQ), the Asness et al. (2019) quality minus junk factor (α 7F+QMJ), the short term reversal factor (α
7F+STR) and the long term reversal factor (α 7F+LTR). Moreover, we report alphas based on the Stambaugh and
Yuan (2017) four-factor model (α M4) and on the Hou et al. (2021) q-factor model (α q5). Panel B reports the same
results for risk-adjusted cumulative returns over 1-6 months. For the risk adjustment, we use the seven-factor model
(which is also applied for the MCRASH calculation). Our return sample covers the period from 1965-01 until 2018-
12. We report t-statistics computed using Newey and West (1987) standard errors with 6 monthly lags in parentheses.

In addition, we consider risk-adjustments with the Fama and French (2015) five-factor model, the

seven-factor model extended by the Pástor and Stambaugh (2003) traded liquidity LIQ factor, the

Asness et al. (2019) quality-minus-junk QMJ factor, the Fama and French short-term STR and

long-term LTR reversal factors, as well as the Stambaugh and Yuan (2017) four-factor model (M4)

and the Hou et al. (2021) q-factor model (q5).24

We find that, in all specifications, the risk-adjusted return of the MCRASH-spread portfolio

remains positively significant at the 1% level.25 For our baseline risk-adjustment using the seven-

factor model, the alpha of the spread portfolio amounts to annualized 5.28% and is statistically

significant at the 1% level with a t-statistic of 4.79. Hence, adjusting for linear risk exposure leads

to an even higher premium for MCRASH compared to evaluating excess returns.

Is the significant return difference due to the outperformance of high MCRASH stocks, or due

to the underperformance of low MCRASH stocks, or both? Panel A of Table 2 shows that the

seven-factor alphas of decile 1 and decile 10 are -0.28% and 0.16% with t-statistics of -4.73 and
24Definitions of all risk factors are presented in Table A.1. Summary statistics for the risk factor time series are

provided in Table IA.1 in the Internet Appendix.
25Detailed factor loadings of the MCRASH-spread portfolio on the respective risk factors are shown in Table IA.2

in the Internet Appendix.
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2.06. Hence, we conclude that both the short and the long leg contribute to the outperformance of

the MCRASH (10)-(1) spread portfolio. This result is consistent with our theory, which predicts

that stocks with MCRASH < p should have negative alphas and stocks with MCRASH > p should

have positive alphas.

We illustrate the raw cumulative performance of a long-short investment strategy that buys

stocks in decile portfolio 10 and sells stocks in decile portfolio 1 from 1965 to 2018 in Figure 6.

As a comparison, we also draw the cumulative performance of the MKT factor. Visual inspection

of Figure 6 indicates that the MCRASH long-short trading strategy earns a cumulative return

similar to the excess return of the market with a lower overall standard deviation. Interestingly,

Figure 6 shows that substantial market crashes are not always directly transmitted to crashes in

the MCRASH long-short trading strategy. For example, during the two worst stock market crashes

in our sample (i.e., October 1987 and October 2008 with monthly excess market returns of -23.24%

and -17.23%), the MCRASH long-short trading strategy earned positive returns of +1.82% and

+0.47%. Although surprising at first sight, this is feasible since the latter trading strategy focuses

on crashes of the market and non-market risk factors (with the market being one risk factor out of

seven).

To assess the predictive power of MCRASH on future stock returns in the medium-term, we

repeat univariate portfolio sorts on MCRASH with longer holding periods. In particular, we calcu-

late cumulative returns for holding periods between 1 and 6 months and present the corresponding

seven-factor alphas in Panel B of Table 2. We find that the risk-adjusted MCRASH (10)-(1) return

spread becomes slightly weaker when we evaluate longer return horizons; nevertheless, it remains

economically and statistically significant (at least at the 10% level) up to six months into the future.

In summary, results from asset pricing tests based on univariate portfolio sorts document a

strong positive relationship between MCRASH and future (risk-adjusted) average stock returns.
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Figure 6: Performance of the MCRASH Trading Strategy
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This figures displays the performance of a long-short investment strategy that buys stocks with high levels of MCRASH
and sells stocks with low levels of MCRASH. It shows the cumulative log-return of the equal weighted (10)-(1)
MCRASH spread portfolio whose construction is detailed in Section 4.1. We include the performance of the excess
market return for comparison. Our sample period is from 1965-1 until 2018-12.

We now turn to a multivariate approach to check the stability of this relationship when we control

for conventional linear risk exposures, firm characteristics, and alternative downside risk measures.

4.2 Multivariate Analysis

We run Fama and MacBeth (1973) regressions on the individual firm level. More specifically, we

regress a stock’s excess return Re
it+1 in month t+1 on its multivariate crash sensitivity MCRASHi|t

estimated at the end of month t, i.e., we implement

Re
it+1 = λ0

t+1 + λCRASH
t+1 ·MCRASHi|t +

K∑
j=1

λj
t+1 Y

j
i|t + εit+1 (13)

with Y j
i|t, j = 1, . . . ,K, denoting a selection of control variables for stock i measured at the end of

month t.26 To mitigate the impact of outliers, we winsorize all independent variables at the 0.005

probability level in all regressions.
26In our baseline results, we use OLS for the cross-sectional regressions. WLS results applying the gross return

weighting scheme proposed by Asparouhova et al. (2013) are shown in Table IA.3 of the Internet Appendix.
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Motivated by the theory developed in Section 2.2, we first analyze specifications with linear

factor betas as controls. Specification (1) in Table 3 summarizes univariate regressions of future

excess returns on MCRASH. In accordance with the univariate portfolio sorts documented in

Panel A of Table 2, we find a positive coefficient estimate of 4.33 which is statistically significant

at the 1% level with a t-statistic of 3.58. In specifications (2) to (8), we incrementally add βMKT,

βSMB, βHML, βRMW, βCMA, βUMD, and βBAB as control variables. We find that, in all models,

the impact of MCRASH on future returns is statistically significant at the 1% percent level with

t-statistics ranging from 5.42 up to 5.90. Hence, in line with the extended linear model presented

in equation (11), we confirm that the price impact of MCRASH is not subsumed by linear factor

betas.

We continue our investigation by examining whether our results are affected by the inclusion

of firm characteristics. In addition to the standard market beta, we include a firm’s size (Banz,

1981), book-to-market (Basu, 1983), the cumulative return from month t−11 until t−1 to account

for momentum (Jegadeesh and Titman, 1993), the past one-month return to account for short-

term reversal (Jegadeesh, 1990), illiquidity (Amihud, 2002), and max, the highest past daily return

over the past month (Bali et al., 2011). A more detailed description of these variables is given in

Table A.1.

Our empirical results reported in specifications (1) to (8) of Table 4 confirm several findings

from the literature: book-to-market, momentum, and illiquidity are positive predictors of future

returns, while the price impact of reversal and size is negative. More importantly in our context, we

find that the inclusion of different firm characteristics does not subsume the impact of MCRASH

on future returns. Our results reveal that the coefficient estimate for MCRASH is between 2.69

and 5.56 with t-statistics ranging from 3.58 and 6.70. In specification (9), we finally add the linear

factor betas to our model: Again, our results remain robust and indicate a highly significant impact
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Table 3: Fama and MacBeth (1973) Regressions with Betas

future excess returns

(1) (2) (3) (4) (5) (6) (7) (8)

MCRASH 4.33 5.56 5.00 5.41 5.04 4.80 4.45 4.37
(3.58) (5.77) (5.42) (5.76) (5.90) (5.82) (5.90) (5.89)

βMKT -0.25 -0.22 0.04 0.16 0.20 -0.01 0.05
(-1.54) (-1.19) (0.18) (0.71) (0.87) (-0.06) (0.21)

βSMB -0.03 -0.04 0.11 0.12 0.15 0.09
(-0.30) (-0.32) (0.87) (0.97) (1.21) (0.73)

βHML 0.20 0.24 0.09 0.00 0.02
(1.84) (1.77) (0.75) (0.02) (0.15)

βRMW 0.18 0.21 0.24 0.26
(2.34) (2.71) (3.52) (3.55)

βCMA 0.14 0.11 0.09
(1.47) (1.36) (1.13)

βUMD -0.09 0.01
(-0.36) (0.05)

βBAB -0.01
(-0.09)

Intercept 0.22 0.38 0.42 0.33 0.34 0.34 0.36 0.36
(0.88) (1.81) (2.04) (1.69) (1.73) (1.79) (1.91) (2.00)

R2
adj [%] 0.41 3.00 4.12 4.77 5.17 5.45 5.91 6.13

n̄ 2280 2280 2280 2280 2280 2280 2280 2280

This table presents the results of multivariate Fama and MacBeth (1973) regressions of future excess returns over
the risk-free rate on MCRASH controlling for linear risk exposures. MCRASH is calculated for a seven-factor model
with MKT, SMB, HML, CMA, RMW, UMD and BAB. We control for the linear risk exposures to the seven factors
as measured by their betas. The betas are estimated with a rolling window of 250 daily returns. All independent
variables are winsorized at the 0.005 probability level. Our return sample covers the period 1965-01 until 2018-
12. We report t-statistics calculated using Newey and West (1987) standard errors with 6 monthly lags in parentheses.
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Table 4: Fama and MacBeth (1973) Regressions with Firm Characteristics

future excess returns

(1) (2) (3) (4) (5) (6) (7) (8) (9)

MCRASH 4.33 5.56 4.80 4.26 3.46 3.37 3.36 2.69 2.78
(3.58) (5.77) (6.70) (5.80) (4.85) (4.76) (4.68) (3.96) (4.82)

βMKT -0.25 -0.27 -0.19 -0.28 -0.30 -0.32 -0.11 0.21
(-1.54) (-1.56) (-1.13) (-1.83) (-1.90) (-2.10) (-0.78) (0.93)

size -0.01 -0.01 -0.01 0.01 -0.02 -0.09 -0.10
(-0.15) (-0.14) (-0.22) (0.24) (-0.55) (-2.27) (-2.69)

bm 0.27 0.25 0.28 0.27 0.23 0.20
(3.40) (3.30) (3.49) (3.24) (2.80) (2.76)

mom 0.01 0.01 0.01 0.01 0.01
(5.72) (5.23) (4.87) (4.80) (6.02)

rev -0.03 -0.03 -0.02 -0.03
(-8.00) (-7.90) (-4.96) (-5.89)

illiq 0.01 0.05 0.03
(0.13) (0.93) (0.60)

max -9.39 -8.70
(-10.46) (-10.68)

betas no no no no no no no no yes
Intercept 0.22 0.38 0.44 0.23 0.22 0.12 0.40 1.16 1.11

(0.88) (1.81) (1.21) (0.62) (0.63) (0.33) (1.06) (3.34) (3.52)
R2

adj [%] 0.41 3.00 4.45 5.15 6.15 6.79 6.99 7.29 9.03
n̄ 2280 2280 2280 1911 1910 1910 1868 1868 1868

This table presents the results of multivariate Fama and MacBeth (1973) regressions of future excess returns over the
risk-free rate on MCRASH controlling for standard firm characteristics. MCRASH is calculated for a seven-factor
model with MKT, SMB, HML, CMA, RMW, UMD and BAB. We control for a stock’s market beta βMKT as well
as size, book-to-market (bm), stock-level momentum (mom), stock-level reversal (rev), the Amihud (2002) illiquidity
measure (illiq) and the maximum return in a given month (max). In specification (9), we simultaneously control
for stock characteristics and factor betas (applied in Table 3). These characteristics are defined in Table A.1. All
independent variables are winsorized at the 0.005 probability level. Our return sample covers the period from 1965-01
until 2018-12. We report t-statistics calculated using Newey and West (1987) standard errors with 6 monthly lags in
parentheses.
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of MCRASH on future returns when controlling for all risk and firm characteristics used in Tables 3

and 4.

To assess the economic significance of these results, we include information from both univariate

portfolio sorts and Fama and MacBeth (1973) regressions. We first compute the difference between

average MCRASH for decile portfolios 10 and 1 given by 0.12 - 0.04 = 0.08. Multiplying this

spread by the average slope coefficients in the regressions of Table 3 and Table 4 yields estimated

annualized premiums between 2.58% and 5.34%.

We also investigate the impact of MCRASH on future risk-adjusted returns when controlling

for βMKT and firm characteristics in bivariate portfolio sorts. To do so, we first form quintile

portfolios on the respective control variable in month t. Then, within each quintile and month, we

sort stocks into five portfolios based on MCRASH. Our results are summarized in Table 5. To

save space, we only report risk-adjusted returns for the spread portfolios that are long in MCRASH

quintile portfolio 5 (stocks with high MCRASH) and short in MCRASH quintile portfolio 1 (stocks

with low MCRASH) for each of the quintiles sorted on beta and firm characteristics together with

the risk-adjusted return of the average spread portfolio. For all control variables, the risk-adjusted

returns of the average MCRASH spread portfolios are statistically and economically significant with

seven-factor alphas ranging from 0.22% per month (when controlling for book-to-market) to 0.33%

per month (when controlling for market beta).27 Similar results are obtained for the corresponding

returns and in bivariate sorts that control for non-market betas as shown in Tables IA.4 and IA.5

of the Internet Appendix.

We conclude that the impact of MCRASH on the cross-section of average stock returns is not

explained by traditional factor betas and firm characteristics.
27An interesting finding based on the bivariate portfolio sorts is that the premium for multivariate crash risk is

stronger for stocks with low book-to-market values than for stocks with high book-to-market values. This finding
is in line with previous research documenting that value stocks are risky (Zhang, 2005; Petkova and Zhang, 2005;
Galsband, 2012) and implies that the premiums for value and multivariate crash risk could potentially overlap.
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Table 5: Bivariate Portfolio Sorts – MCRASH and Characteristics

Control Portfolio

Control 1 2 3 4 5 avg

βMKT 0.19 0.28 0.41 0.48 0.31 0.33
(2.62) (3.87) (5.15) (5.78) (2.65) (6.61)

size 0.44 0.34 0.29 0.11 0.19 0.27
(3.83) (3.04) (3.27) (1.35) (2.37) (4.00)

bm 0.51 0.30 0.17 0.14 0.01 0.22
(4.47) (3.03) (1.81) (1.80) (0.11) (3.53)

mom 0.49 0.21 0.19 -0.03 0.28 0.23
(4.49) (2.23) (2.29) (-0.36) (2.94) (3.65)

rev 0.43 0.31 0.25 0.23 0.36 0.31
(3.77) (3.02) (3.02) (2.35) (3.80) (4.81)

illiq 0.18 0.14 0.38 0.40 0.36 0.29
(1.96) (1.55) (3.66) (4.35) (3.63) (4.25)

max 0.18 0.08 0.25 0.34 0.65 0.30
(2.74) (1.19) (2.82) (3.14) (4.87) (4.98)

This table summarizes the results of bivariate portfolio sorts on MCRASH, in which we control for market beta and
stock characteristics. MCRASH is calculated for a seven-factor model with MKT, SMB, HML, RMW, CMA, UMD
and BAB. We consider the same control variables as in Table 4. At the end of each month t, we first sort the stocks
in our sample into quintile portfolios according to one of these control variables. Then, we sort the stocks within each
of the quintile portfolios obtained from the first step according to their MCRASH coefficients into five sub-portfolios.
We report the seven-factor alphas of the (5) - (1) MCRASH spread portfolios for each the five portfolios formed on
the control variables. Furthermore, we show the seven-factor alpha for the average (5) - (1) spread portfolio in the
last column. The return sample covers the period from 1965-01 until 2018-12. We report t-statistics computed using
Newey and West (1987) standard errors with 6 monthly lags in parentheses.
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4.3 Alternative Downside Risk Measures

A potential concern is that MCRASH may be correlated with alternative downside and tail risk

measures from the literature that have already been shown to explain expected stock returns. To

address this concern, we again run multivariate regressions of future excess returns on MCRASH

and control for the following downside and tail risk measures: a stock’s downside beta βdown (Ang

et al., 2006a), the tail beta βtail proposed by Kelly and Jiang (2014), idiosyncratic volatility and

idiosyncratic skewness (Ang et al., 2006b), coskewness and cokurtosis (Harvey and Siddique, 2000),

Value-at-Risk (Atilgan et al., 2020), and the Lu and Murray (2019) bear beta βbear. In order to be

consistent with the computation of MCRASH, we estimate the additional measures except βtail and

βbear with a rolling estimation window of 250 daily returns. More details on the calculation of the

additional risk measures are shown in Table A.1 and summary statistics are provided in Table IA.6

of the Internet Appendix.28 We report our regression results in Table 6.

Specification (1) repeats specification (8) of Table 4 including all firm characteristics as the

baseline. In each of the specifications (2) to (9), we add one of the alternative downside risk

measures to the baseline model. In line with the previous literature, we find that a stock’s tail beta

and cokurtosis have a positive impact, whereas idiosyncratic volatility, value-at-risk, and bear beta

show a negative effect. Turning to the impact of MCRASH, we find coefficient estimates ranging

from 1.49 to 3.57 with t-statistics between 2.48 and 4.60 indicating a statistically significant effect

at least at the 5% percent level.29

We also investigate the impact of MCRASH on future (risk-adjusted) returns when controlling

for the same set of alternative downside and tail risk measures in bivariate portfolio sorts. We again

apply the bivariate sorting methodology described in Section 4.2. Our results are summarized in
28Table IA.7 of the Internet Appendix shows that our results are robust if we alter the estimation methodology of

the downside and tail risk measures.
29Note that the sample period for regression (9) is restricted to 1997-01 until 2015-09 due to the availability of data

as in Lu and Murray (2019). We thank Scott Murray for providing the AD Bear excess returns.
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Table 6: Fama and MacBeth (1973) Regressions with Downside Risk Measures

future excess returns

(1) (2) (3) (4) (5) (6) (7) (8) (9)

MCRASH 2.69 3.20 2.46 1.49 2.73 2.94 1.95 1.57 3.57
(3.96) (4.60) (3.60) (2.48) (4.01) (4.47) (3.21) (2.56) (2.76)

βdown -0.19
(-2.55)

βtail 0.16
(1.92)

idiovol -0.02
(-5.74)

idioskew -0.02
(-0.64)

coskew 0.14
(0.71)

cokurt 0.28
(3.75)

VaR -26.97
(-5.37)

βbear -0.29
(-2.65)

Characteristics yes yes yes yes yes yes yes yes yes

R2
adj[%] 7.29 7.45 7.51 7.82 7.40 7.40 7.52 7.80 5.97

n̄ 1868 1868 1670 1868 1868 1868 1868 1868 3124
T 648 648 648 648 648 648 648 648 225

This table presents the results of multivariate Fama and MacBeth (1973) regressions of future excess returns over the
risk-free rate on MCRASH, controlling for firm characteristics and downside risk measures. MCRASH is calculated
for a seven-factor model with MKT, SMB, HML, RMW, CMA, UMD and BAB. The standard controls correspond
to specification (8) in Table 4. As additional downside risk measures, we include the Ang et al. (2006a) downside
beta (βdown), the Kelly and Jiang (2014) tail beta (βtail), idiosyncratic volatility (idiovol), idiosyncratic skewness
(idioskew), coskewness (coskew), cokurtosis (cokurt), the 5%-Value-at-Risk (VaR), and the Lu and Murray (2019)
bear beta (βbear). See Table A.1 for details on the definition and estimation of these risk measures. The independent
variables are winsorized at the 0.005 probability level. Our return sample covers the period 1965-01 until 2018-12.
The sample period for specification (9) is restricted to 1997-01 until 2015-09 due to the availability of data as in Lu
and Murray (2019). We report t-statistics computed using Newey and West (1987) standard errors with 6 monthly
lags in parentheses.
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Table 7. We report the seven-factor alphas of the spreads between MCRASH quintile portfolio

5 (stocks with high MCRASH) and MCRASH quintile portfolio 1 (stocks with low MCRASH)

for each alternative downside and tail risk quintile together with the risk-adjusted return of the

respective average spread portfolio. Our results reveal that, when explicitly controlling for alterna-

tive downside and tail risk measures, the average MCRASH (5)-(1) spread portfolio yields alphas

ranging from 0.19% per month (when controlling for idiosyncratic volatility or value-at-risk) to

0.32% per month (when controlling for idiosyncratic skewness). These alphas are statistically sig-

nificant at the 1%-level except for the alpha obtained when controlling for bear beta, which is only

significant at the 10%-level.30

To summarize, our empirical findings provide strong evidence that investors care about multi-

variate crash risk of stocks. The MCRASH return premium is not explained by linear risk factor

exposure or firm characteristics; it is also different from the impact of alternative downside and

tail risk measures. We document that accounting for multivariate crash risk to established state

variables helps to determine the cross-section of expected stock returns without further expanding

the factor zoo.

4.4 Stability Checks

In this section, we summarize the results from a battery of additional stability checks.

Our asset pricing tests based on univariate portfolio sorts in Section 4.1 are performed on an

equal-weighted basis. Thus, our results could be influenced by overweighting the importance of

relatively small stocks and we now examine univariate value-weighted portfolio sorts.31 Panel A

of Table 8 reports seven-factor alphas of the decile portfolios and the spread portfolio; results for
30Again, note that the sample period for portfolio sorts based on βbear and MCRASH is restricted to 1997-01 until

2015-09. Similar results are obtained for excess returns as shown in Table IA.8 of the Internet Appendix.
31Remember that many very small and illiquid stocks are already excluded from our sample through the initial

requirement to have at least 200 non-zero return observations over the past 250 trading days.
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Table 7: Bivariate Portfolio Sorts – MCRASH and Downside Risk Measures

Control Portfolio

Control 1 2 3 4 5 avg

βdown 0.18 0.19 0.33 0.22 0.51 0.29
(2.81) (2.69) (4.76) (2.47) (4.30) (5.54)

βtail 0.42 0.25 0.20 0.14 0.36 0.27
(3.33) (2.91) (2.38) (1.47) (3.70) (3.91)

idiovol 0.05 0.03 0.15 0.14 0.55 0.19
(0.95) (0.53) (2.12) (1.27) (3.88) (3.08)

idioskew 0.29 0.22 0.16 0.40 0.52 0.32
(3.58) (2.57) (1.85) (4.05) (5.07) (4.55)

coskew 0.18 0.39 0.19 0.32 0.28 0.27
(1.80) (4.25) (1.95) (3.44) (2.54) (3.88)

cokurt 0.28 0.24 0.12 0.27 0.23 0.23
(3.60) (3.12) (1.70) (2.77) (2.65) (4.34)

VaR 0.02 0.02 0.11 0.26 0.56 0.19
(0.31) (0.40) (1.57) (2.70) (3.88) (3.60)

βbear 0.29 0.20 0.10 0.28 0.17 0.21
(1.79) (1.32) (0.83) (1.72) (0.98) (1.90)

This table summarizes the results of bivariate portfolio sorts on MCRASH, in which we control for alternative
downside risk measures. MCRASH is calculated for a seven-factor model with MKT, SMB, HML, RMW, CMA,
UMD and BAB. At the end of each month t, we first sort the stocks in our sample into quintile portfolios according
to each of the alternative downside risk measures considered in Table 6. Then, we sort the stocks within each of
the quintile portfolios obtained from the first step according to their MCRASH coefficients into five sub-portfolios.
We report the average seven-factor alphas of the (5) - (1) MCRASH spread portfolios for each the five portfolios
formed on the alternative downside risk measures. Furthermore, we show the seven-factor alpha of the average (5) -
(1) spread portfolio in the last column. Our return sample covers the period from 1965-01 until 2018-12 for all sorts
except βbear, for which we again use 1997-01 until 2015-09. We report t-statistics computed using Newey and West
(1987) standard errors with 6 monthly lags in parentheses.
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excess returns are very similar and are reported in Table IA.9 of the Internet Appendix. We observe

that, when we perform univariate sorts based on all stocks in the cross-section, the value-weighted

MCRASH (10)-(1) risk-adjusted return spread is smaller than for equal-weighted sorts and amounts

to monthly 0.16%, which is not statistically significant at the 10% level.

To investigate this empirical finding more closely, we perform value-weighted portfolio sorts,

but we exclude the largest stocks in the cross-section. Our results reveal that, when excluding the

top 1% largest stocks in our sample at the end of each month, the MCRASH (10)-(1) risk-adjusted

return spread increases to 0.26% per month (3.12% per annum) and is statistically significant at

the 5% level. Continuing in this manner and excluding the largest 5% (10%, 20%) of stocks in

the cross-section, leads to a risk-adjusted future return spread between stocks with high and low

MCRASH of 0.26% (0.30%, 0.37%) with a t-statistic of 2.79 (3.22, 3.79). We conclude that it

is the subset of very large (top 1%) stocks for which the impact of MCRASH is negligible; the

significantly positive relationship between MCRASH and average future returns is robust for all

other size-categories in the cross-section of stocks.32

We next examine the stability of the relationship between MCRASH and future returns when

we vary our estimation methodology and the sample data used in our analysis. For this purpose,

we again run Fama and MacBeth (1973) regressions using specification (8) of Table 4 that controls

for βMKT and all stock characteristics. Panels B and C of Table 8 summarize the results of these

additional regressions. We only display the coefficient estimate on MCRASH.

Specifications (2) and (3) of Panel B show that our main results do not hinge upon the exact

probability level p used to determine the cut-off value for a left tail event. We also obtain posi-

tive and significant results for the relation between MCRASH and future returns when we apply

p = 2.5% or p = 10% (instead of p = 5%). In specifications (4) and (5), we document that our
32This result is related to Hou et al. (2020), who show that the price impact of risk factors is particularly pronounced

for the subset of small and medium-sized stocks and weaker for stocks with a very large market capitalization.
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Table 8: Robustness

Panel A: Value-Weighted Sorts Risk-Adjusted Returns

1 2 3 4 5 6 7 8 9 10 10-1

all -0.11 -0.03 -0.05 -0.09 0.00 0.05 0.03 -0.01 -0.04 0.05 0.16
(-1.25) (-0.46) (-1.12) (-2.00) (-0.01) (1.29) (0.86) (-0.13) (-0.90) (0.97) (1.39)

ex 1% -0.15 -0.11 -0.10 -0.10 -0.04 0.02 0.01 0.01 0.06 0.11 0.26
(-1.89) (-1.95) (-2.17) (-2.39) (-0.84) (0.45) (0.28) (0.22) (1.17) (1.80) (2.47)

ex 5% -0.16 -0.12 -0.09 -0.07 -0.02 0.01 -0.01 0.02 0.07 0.10 0.26
(-2.14) (-1.94) (-1.66) (-1.55) (-0.53) (0.13) (-0.25) (0.40) (1.23) (1.58) (2.79)

ex 10% -0.19 -0.12 -0.05 -0.03 -0.01 0.02 0.01 0.02 0.05 0.11 0.30
(-2.75) (-2.06) (-0.86) (-0.59) (-0.11) (0.32) (0.15) (0.30) (0.92) (1.52) (3.22)

ex 20% -0.24 -0.15 -0.06 -0.03 -0.01 0.01 0.01 0.02 0.06 0.12 0.37
(-3.48) (-2.30) (-1.12) (-0.55) (-0.11) (0.20) (0.11) (0.34) (1.10) (1.55) (3.79)

Panel B: Estimation Methods

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
base 10% 2.5% non fully 500d 1000d GJR normal DCC

tail tail par. par. marg marg marg GARCH

MCRASH 2.69 2.02 1.60 1.86 13.08 2.19 2.21 2.47 2.66 7.51
(3.96) (2.17) (2.92) (2.58) (3.07) (2.97) (3.08) (3.76) (3.85) (1.89)

Characteristics yes yes yes yes yes yes yes yes yes yes

R2
adj [%] 7.29 7.31 7.28 7.30 7.54 7.30 7.30 7.30 7.30 7.55

Panel C: Data & Filtering

(1) (2) (3) (4) (5) (6) (7)
base 1965-1991 1992-2018 no mcap mcap 49

filter 20% NYSE 50% NYSE Industries

MCRASH 2.69 2.25 3.14 2.14 2.07 2.07 2.43
(3.96) (2.65) (2.97) (3.40) (3.12) (3.09) (2.12)

Characteristics yes yes yes yes yes yes yes

R2
adj [%] 7.29 9.06 5.52 6.41 8.70 10.77 29.29

n̄ 1868 932 2804 2829 1396 733 49
T 648 324 324 648 648 648 648
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Table 8: Continued

Panel D: Alternative Factor Models
(1) (2) (3) (4) (5) (6) (7) (8)
7F 3F 4F 5F 5F+UMD 5F+BAB M4 Q5

MCRASH 2.69 1.37 1.64 2.22 2.45 2.48 1.72 1.77
(3.96) (3.24) (3.18) (3.78) (3.72) (3.97) (3.05) (2.76)

Characteristics yes yes yes yes yes yes yes yes
R2

adj [%] 7.29 7.30 7.31 7.29 7.30 7.29 7.19 6.52

Panel A of this table reproduces the univariate portfolio sort results from Table 2 with a value-weighting scheme. We
report seven-factor alphas for each of the ten value-weighted portfolios sorted on MCRASH and for the (10)-(1) spread
portfolio. We run this exercise for our full sample (all) and for sub-samples that exclude the 1%, 5%, and 10% largest
stocks (as measured by their market capitalization at the end of month t). In Panels B to D, we summarize Fama
and MacBeth (1973) regressions of future returns on MCRASH. We only report the slope coefficient of MCRASH
but we include the same controls as in specification (8) of Table 4, which is the baseline specification (1) in all three
panels. In Panel B, we vary the estimation methodology for MCRASH: Columns (2) and (3) are based on the tail
probability levels p = 0.10 and p = 0.025. In columns (4) and (5), we use non-parametric and fully parametric
MCRASH-estimates. To obtain the results in columns (6) and (7), we estimate the marginal models with a larger
number of observations (up to 500 days and 1000 days). The columns (8) and (9) report results based on alternative
GARCH specifications and column (10) relies on estimates from a fully parametric copula specification with DCC
dynamics. Details for these estimators are provided in Section IV of the Internet Appendix. Panel C summarizes
results for different test samples using the identical regression setup as in Panel B. In columns (2) and (3), we split
our sample in two halves (1965 to 1991, 1992 to 2018). In column (4), we include penny stocks in our sample and
only require that a stock has 200 valid returns over the last 250 trading days (including zeros). The regressions
in columns (5) and (6) are based on stocks with a market capitalization above the 20% and the 50% percentile of
the NYSE sample at the end of each month. In column (7), we reproduce our results for the 49 value-weighted
industry portfolios as test assets. In Panel D, we calculate MCRASH based on different factor models. Column (1)
again displays results for the baseline seven-factor model with MKT, SMB, HML, RMW, CMA, UMD and BAB. In
specifications (2) - (8), we calculate MCRASH for the following sets of factors: the standard Fama and French (1993)
three-factor model (3F), the Carhart (1997) four-factor model (4F), the Fama and French (2015) five-factor model
(5F) without additional factors, six-factor models that add UMD and BAB to the five-factor model (5F + UMD
and 5F + BAB), the four-factor model of Stambaugh and Yuan (2017), and the q5 model of Hou et al. (2021). In
all regressions, independent variables are winsorized at the 0.005 probability level. We report t-statistics computed
using Newey and West (1987) standard errors with 6 monthly lags in parentheses.
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results are stable when we estimate MCRASH nonparametrically or use a fully parametric esti-

mation methodology that combines GARCH-skewed-t margins with a Student-t copula (instead of

a semiparametric estimation methodology).33 In specifications (6) and (7), we demonstrate that

our results are stable when we extend the rolling estimation horizon of the GARCH processes up

to 500 and 1000 days. Finally, in specifications (8), (9), and (10), we document the robustness of

our findings when we model the marginal distributions of stocks and risk factors with alternative

GARCH processes, i.e., a GJR specification (Glosten et al., 1993) as well as a standard GARCH

specification with normally distributed innovations, and when we estimate MCRASH based on a

fully parametric DCC-type copula model that explicitly captures time variation in the conditional

correlations. The implementation of these alternative estimators is outlined in Section IV of the

Internet Appendix.

In accordance with the findings of Figure 6, specifications (2) and (3) of Panel C show that the

impact of MCRASH on future returns is stable over the sub-periods from 1965 to 1991 and 1992

to 2018. We also find that the return effect of MCRASH is stable when we relax our liquidity and

price filters and run our tests on all stocks that have at least 200 valid returns (including zeros)

during the last 250 trading days (see specification 4). In specifications (5) and (6), we observe a

positive and statistically significant relationship between MCRASH and future average returns for

stocks with a market capitalization above the 20% and the 50% percentile of the NYSE sample at

the end of each month. Finally, in specification (7), we employ the 49 value-weighted Fama and

French industry portfolios as test assets (instead of using single stocks).34 For this sample, we also

document a positive and statistically significant impact (at the 10% level) of MCRASH on future

returns.
33The large coefficient estimate for the parametric MCRASH measures in specification (5) is related to a substan-

tially lower cross-sectional dispersion of the parametric measures compared to our more flexible baseline measures
and to increased correlations with beta and size included as control variables.

34In this case, we control for an industry’s market beta, size, book-to-market ratio, momentum, reversal and its
max return in month t.
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In our baseline setting, we measure MCRASH with respect to a seven-factor model consisting of

MKT, SMB, HML, RMW, CMA, UMD and BAB. To analyze whether the MCRASH premium is

specific to the selection of these seven risk factors, we examine the relationship between multivariate

crash risk and future returns when MCRASH is calculated based on different factor combinations

and models. We report the results in Panel D of Table 8.

Specification (1) repeats the baseline specification of model (8) in Table 4, where we regress

excess returns in month t+1 on MCRASH in month t, controlling for different firm characteristics.

In the remaining specifications (2) - (8), we include identical controls but compute MCRASH for

different factors sets. Specifically, we compute MCRASH for subsets of our seven factors including

the Fama and French (1993) three-factor model, the Carhart (1997) four-factor model, and the

standard Fama and French (2015) five-factor model. In addition, we calculate MCRASH for the

four-factor model of Stambaugh and Yuan (2017) and the five-factor model of Hou et al. (2021). In

all specifications, we observe positive coefficient estimates which are statistically significant at the

1% level. We conclude that the price effect of MCRASH is not specific to the choice of the factors

in our baseline analysis. To the contrary, our results suggest that the non-linear risk premium

captured by MCRASH is a common feature of many standard factor models.

In summary, this section confirms our main results of a stable positive relationship between

MCRASH and the cross-section of average stock returns for all stocks except the largest 1%. Our

results do not depend on specific filters for our stock sample, the estimation procedure of MCRASH

or a specific multifactor model.

5 Alternative Notions of Multivariate Crash Risk

The previous section documents the existence of a premium for extreme dependence to multiple

priced factors as measured by MCRASH. The definition of multivariate crash risk provided in
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equation (2) that MCRASH relies on is generally broad in nature. In this section, we seek to

analyze alternative and more specific notions of multivariate crash risk. We first look at bivariate

crash risk in Section 5.1 and examine the price impact of simultaneous factor crashes in Section 5.2.

5.1 Bivariate Crash Risk Measures

We investigate the price impact of a stock’s sensitivities to crash events of individual risk factors

(i.e., a stock’s bivariate crash risk). Consistent with the definition of MCRASH in equation (3), we

introduce the crash sensitivity of stock i with respect to factor Xj as

CRASHXj

i = P[Tp[Ri] |Tp[Xj ]] = P[Ri ≤ Qp[Ri] |Xj ≤ Qp[Xj ]] . (14)

We examine the effect of bivariate crash risk on the cross-section of average future stock returns

for the seven risk factors in our baseline analysis, i.e., we analyze the return effect of CRASHMKT,

CRASHSMB, CRASHHML, CRASHRMW, CRASHCMA, CRASHUMD, and CRASHBAB. All these

measures are computed with the same semiparametric technique applied for the estimation

MCRASH. Summary statistics of these measures are provided in Table IA.10 in the Internet

Appendix.

Panel A of Table 9 reports the results of Fama and MacBeth (1973) regressions of future

excess returns on each of the bivariate crash coefficients. We apply standard firm characteristics

as specified in model (8) of Table 4 as control variables, but do not show their coefficients to save

space.

Regression (1) documents a strongly positive coefficient estimate of CRASHMKT which is statis-

tically significant at the 1% level. This effect is in line with the findings of Chabi-Yo et al. (2018),

who identify a stock’s systematic exposure to market crashes as an important determinant of future

returns. Specifications (2) to (7) display the results for bivariate non-market crash coefficients. We
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Table 9: Bivariate CRASH Risk Measures
Panel A: Regressions with Firm Characteristics

(1) (2) (3) (4) (5) (6) (7)
MKT SMB HML RMW CMA UMD BAB

CRASH 0.48 0.41 0.02 0.48 -0.22 0.20 0.31
(2.72) (1.68) (0.07) (1.71) (-0.78) (0.60) (0.97)

Characteristics yes yes yes yes yes yes yes
R2

adj[%] 7.31 7.30 7.29 7.29 7.27 7.34 7.28

Panel B: Regressions with MCRASH and Firm Characteristics

(1) (2) (3) (4) (5) (6) (7)
MKT SMB HML RMW CMA UMD BAB

MCRASH 2.35 2.48 2.99 2.53 2.98 2.76 2.62
(3.31) (3.38) (4.32) (3.59) (4.18) (4.24) (3.72)

CRASH 0.14 0.06 -0.35 0.17 -0.59 -0.17 -0.01
(0.73) (0.25) (-1.04) (0.58) (-1.95) (-0.50) (-0.04)

Characteristics yes yes yes yes yes yes yes
R2

adj [%] 7.36 7.36 7.35 7.35 7.34 7.38 7.34

This table presents the results of Fama and MacBeth (1973) regressions of future excess returns over the risk-free
rate on bivariate crash risk measures (CRASH). The bivariate CRASH coefficients are estimated for the seven factors
that we use for the definition of our baseline MCRASH measure (i.e., MKT, SMB, HML, RMW, CMA, UMD, and
BAB). We apply the same estimation procedure for the CRASH coefficients as for MCRASH. See Appendix A.2 for
a detailed description. In Panel A, we investigate the impact of each bivariate CRASH measure controlling for firm
characteristics as in specification (8) of Table 4 in all regressions. In Panel B, we add MCRASH as explanatory
variable to the specifications shown in Panel A. All independent variables are winsorized at the 0.005 probability
level. Our return sample covers the period from 1965-01 until 2018-12. We report t-statistics calculated using Newey
and West (1987) standard errors with 6 monthly lags in parentheses.
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observe that the coefficient estimates on CRASHSMB and CRASHRMW are also positive and bor-

derline statistically significant at the 10% level. Hence, we find weak evidence of positive premia

for a stock’s sensitivity to crashes of the size and the momentum factor.

In a next step, we ask whether the premium for MCRASH is absorbed by any of the bivariate

crash risk coefficients. To tackle this research question, we include MCRASH in the regressions

summarized in Panel A of Table 9. Panel B reports the results. We find that, in each regression,

MCRASH shows a positive coefficient estimate and is statistically significant at the 1% level.35

Interestingly, the inclusion of MCRASH subsumes the impact of CRASHMKT as well as the impact

of CRASHSMB and CRASHRMW. Focusing on the relationship between bivariate crash risk with

the market and multivariate crash risk, we observe that the inclusion of CRASHMKT decreases the

coefficient estimate of MCRASH only slightly by approximately 13% from 2.69 (see model 8 of

Table 4) to 2.35. To the contrary, including MCRASH in the multivariate regression setup drives

down the coefficient estimate of CRASHMKT by more than 70% of its original magnitude.

Extending our results from Section 4.3, we conclude that a stock’s sensitivity to crashes of the

market factor cannot explain the premium for MCRASH. Furthermore, we find that the MCRASH

premium is not subsumed by any of the non-market crash risk measures. These findings justify the

application of MCRASH as a broad and general measure of crash sensitivity that combines “crash

exposure to all factors”.

5.2 Simultaneous Factor Crashes

A part of a premium for multivariate crash risk could be driven by investor’s fear for simultaneous

tail events of several risk factors at the same point in time. In this section, we investigate the

price impact of such “perfect storm scenarios”, which can be formalized as the intersection of the
35We also perform bivariate sorts on MCRASH and the CRASH measures for all seven factors. Our results, shown

in Table IA.11 of the Internet Appendix, document that the premium for MCRASH (based on excess returns and
alphas) is economically and statistically significant when explicitly controlling for each bivariate crash risk measure.
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corresponding individual crash events. Again building on our quantile-based definition of univariate

crash risk from equation (1), we define a joint crash of the factors Xj1 , . . . , XjM as

T joint
p [Xj1 , . . . , XjM ] =

M⋂
k=1

Tp[Xjk
], (15)

where {jk1 , . . . , jkM
} is a subset of the indices {1, . . . , N}.36

In contrast to the general definition of Tp[X] given in (2), which only requires that (at least)

one factor realizes a left tail return, T joint
p [Xj1 , . . . , XjM ] requires that several factors jointly realize

a left tail event. Such joint factor crashes are likely to be especially severe for investors, but, by

definition, they only occur very rarely.

To measure a stock’s exposure to joint factor crashes, we propose a modification of MCRASH

that we refer to as JCRASH. JCRASH of asset i to the factors Xj1 , . . . , XjM at the probability

level p is defined as

JCRASHXj1 ,...,XjM
i = P

[
Tp[Ri] |T joint

p [Xj1 , . . . , XjM ]
]
. (16)

Consequently, this measure corresponds to the conditional probability that stock i realizes a left

tail event given that a simultaneous crash of the factors Xj1 , . . . , XjM occurs.

Due to the rare occurrences of joint crashes for a high number of risk factors, we do not consider

the impact of joint crash events for all seven factors from our baseline analysis.37 Instead, we

investigate the price impact of JCRASH for selected subsets of the seven factors with M ≤ 5. Given

the importance of the market factor highlighted in the literature and in the previous subsection, we
36The probability of such simultaneous tail events is related to the tail copula of (Xj1 , . . . , Xjk ). For a definition

and additional information on the tail copula, see for example Schmid and Schmidt (2007, p. 1129).
37To illustrate this problem, suppose that the elements of (X1, . . . , XM )′ are independent. Then, it holds that

P
[
T joint

p [X1, . . . , XM ]
]

= pM . In our baseline setting with p = 0.05 and seven risk factors, the probability for a joint
crash of all factors is 0.057 = 0.00000000078125.
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focus on the six factor pairs including MKT. Furthermore, we calculate JCRASH coefficients for the

three factors of the Fama and French (1993) model, the four factors of the Carhart (1997) model

and the five factors of the Fama and French (2015) model; that is, we investigate the price impact of

JCRASHMKT,SMB, JCRASHMKT,HML, JCRASHMKT,RMW, JCRASHMKT,CMA, JCRASHMKT,UMD,

JCRASHMKT,BAB, JCRASH3F, JCRASH4F, and JCRASH5F.

Table IA.12 in the Internet Appendix presents summary statistics on the occurrence probabil-

ities of the relevant crash events. These estimates are based on the semiparametric methodology

used for the estimation of MCRASH with p = 5% as the tail probability level. As expected, we find

that average probabilities of simultaneous factor crashes, even when focusing on factor pairs includ-

ing the market, are very low; the only combination for which the average joint crash probability

exceeds 1% is the combination of the market and the momentum factor. The average probability

estimate for the three-factor (four-factor) model is given by 0.03% (0.01%) and the semiparametric

estimates of simultaneous crash probabilities for the five-factor model are always zero during our

sample period.

We therefore compute JCRASH based on a fully parametric approach and emphasize that

the corresponding estimates have to be seen as model-based extrapolations beyond the range the

available data. Specifically, we use a combination of skewed-t GARCH models for the marginal

return distributions and a parametric t-copula for the dependence structure. To obtain JCRASH

estimates from these models, we rely on the following copula representation

JCRASHXj1 ,...,XjM
i =

CRi,Xj1 ,...,XjM
(p, . . . , p)

CXj1 ,...,XjM
(p, . . . , p) (17)

with CY denoting the copula function of the random vector Y .38

38Under Assumption (A1) from Section 2, this result can easily be derived from the definition in equation (16) as
shown in Section IV of the Internet Appendix, where we also provide additional details on our implementation.
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Results on the relationship between JCRASH and future returns are documented in Table 10.

We again include the same firm characteristics as in specification (8) of Table 4. The results

in Panel A suggest that joint factor crashes have a positive effect on future average stock re-

turns.39 The coefficient estimates of JCRASHMKT,SMB, JCRASHMKT,HML, JCRASHMKT,RMW,

JCRASHMKT,CMA, and JCRASHMKT,UMD as well as JCRASH3F and JCRASH5F are all positive

and statistically significant at least at the 10% level. Consequently, these results are supporting the

notion that investors show strong aversion against “perfect storm scenarios” and assign a premium

to stocks which tend to be adversely affected by such simultaneous factor crashes.

Finally, Panel B of Table 10 investigates the stability of the JCRASH premiums when

we add MCRASH to our regressions. We find that JCRASHMKT,SMB, JCRASHMKT,RMW,

JCRASHMKT,CMA, JCRASHMKT,UMD, as well as JCRASH3F and JCRASH5F show a positive and

statistically significant impact (at least at the 10% level) on future returns – even when controlling

for MCRASH.

We conclude that a stock’s sensitivity to simultaneous factor crashes including the market factor

provides incremental information on crash risk premia – in addition to the very robust pricing

impact of MCRASH documented in this study.

6 Conclusion

This paper examines the relationship between multivariate crash risk and the cross-section of ex-

pected stock returns. In a model with multiple priced factors, investors can be averse to crashes

of both the market and non-market risk factors and require a premium for stocks that have high

multivariate crash risk. We therefore propose a general multivariate crash risk measure, MCRASH,

which captures a stock’s sensitivity to extreme realizations of all risk factors in an asset pricing
39The slightly lower average numbers of observations for the specifications with more than two factors reflect that

we do not always obtain valid JCRASH estimates for numerical reasons due to very low event probabilities.
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Table 10: Joint Factor Crashes

Panel A: Regressions with Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9)
MKT MKT MKT MKT MKT MKT 3F 4F 5F
SMB HML RMW CMA UMD BAB

JCRASH 1.25 0.59 1.77 0.78 1.33 0.62 0.66 0.49 0.56
(3.63) (1.66) (3.95) (2.13) (2.50) (1.61) (2.50) (1.56) (2.72)

Characteristics yes yes yes yes yes yes yes yes yes

R2
adj [%] 7.54 7.58 7.50 7.60 7.61 7.55 7.57 7.56 7.49

n̄ 1868 1868 1868 1868 1868 1868 1866 1868 1834

Panel B: Regressions with MCRASH and Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9)
MKT MKT MKT MKT MKT MKT 3F 4F 5F
SMB HML RMW CMA UMD BAB

MCRASH 7F 1.75 2.54 1.91 2.37 1.92 2.50 2.31 2.40 1.88
(2.82) (3.99) (3.02) (3.65) (3.06) (3.61) (3.60) (4.11) (2.84)

JCRASH 1.11 0.44 1.61 0.61 1.10 0.40 0.54 0.35 0.49
(3.18) (1.22) (3.58) (1.69) (2.05) (1.00) (2.02) (1.13) (2.37)

Characteristics yes yes yes yes yes yes yes yes yes
R2

adj [%] 7.59 7.63 7.55 7.65 7.64 7.60 7.62 7.59 7.55
n̄ 1868 1868 1868 1868 1868 1868 1866 1868 1834

This table reports results on the pricing of simultaneous factor crashes for factor pairs including the market factor
as well as for joint crashes of the three Fama and French (1993) factors, the four Carhart (1997) factors and the
five Fama and French (2015) factors. We report the results of Fama and MacBeth (1973) regressions of future
excess returns over the risk-free rate on exposure to joint factor crashes as measured by JCRASH. To estimate the
JCRASH-coefficients, we use fully parametric copula models that combine GARCH skewed-t margins with a t-copula.
These models are again estimated with a rolling estimation window of 250 days. In Panel A, we regress future excess
returns on JCRASH controlling for the same firm characteristics as in specification (8) of Table 4. In Panel B, we
add MCRASH as an explanatory variable. All independent variables are winsorized at the 0.005 probability level.
Our return sample covers the period from 1965-01 until 2018-12. n̄ corresponds to the average number of stocks per
month used in each for the specifications. We report t-statistics calculated using Newey and West (1987) standard
errors with 6 monthly lags in parentheses.
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model. Using a new expansion of a generic SDF that depends on multiple risk factors, we are able

to isolate a tail-related component of an asset’s expected return that is increasing in its exposure

to multivariate crash risk as measured by MCRASH.

To investigate the validity of this theoretical prediction, we perform an empirical analysis on the

cross-section of individual stock returns in the sample period from 1965 to 2018. In line with our

theoretical results, we find that MCRASH shows a significantly positive impact on average future

stock returns. Specifically, we find that an investment strategy going long the decile portfolio with

the highest MCRASH and going short the decile portfolio with the lowest MCRASH in month t

yields an average return spread of 4.68% in month t + 1 with a t-statistic of 3.69. This spread is

stable when we control for linear risk factor exposure in time-series regressions. Moreover, Fama and

MacBeth (1973) regressions show that the impact of MCRASH on future returns is not explained

by factor betas, stock characteristics or market-based downside risk measures.

We contribute to the theoretical and empirical literature on downside and crash risk in asset

pricing. Our results suggests that investors care about the multidimensionality of crash risk and

that capturing non-linear extreme dependence with well-known factors helps to improve our un-

derstanding of the cross-section of expected stock returns. Whether multivariate crash risk also

carries a premium in international equity markets and other asset classes, could be an interesting

direction for future research on the topic.
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A Appendix

A.1 Derivation Extended Linear Model

Plugging the piecewise linear approximation of the projected SDF from (9) and (10) into the pricing

equation (7), we obtain

E[Ri −Rf ] ≈− (1 +Rf ) (cov[∇m(xc) ·X, Ri] + cov[dtail · 1(Tp[X]), Ri]) (18)

≈
N∑

j=1
β

(j)
i λ(j) + TailXi (19)

with β
(j)
i and λ(j) given in equation (12) and

TailXi =− (1 +Rf ) cov[dtail · 1(Tp[X]), Ri] . (20)

To relate TailXi to our multivariate crash sensitivity measure MCRASHX
i , we approximate the

distribution of Ri in its left tail below the p-quantile by a large negative return rtail < 0. We set

Ri ≈ rtail 1(Tp[Ri]) +Ri 1(Tp[Ri]) (21)

using the notation for the p-tail introduced in equation (1) and denoting the complementary event

of A by A. Based on this approximation, we can expand TailXi as TailXi ≈ TailX,0
i + TailX,1

i , where

TailX,0
i =− (1 +Rf ) dtail cov[1(Tp[X]),1(Tp[Ri])] rtail, (22)

TailX,1
i =− (1 +Rf ) cov

[
dtail 1(Tp[X]), Ri 1(Tp[Ri])

]
. (23)

Since we are mainly interested in the price impact of left tail events, we focus on TailX,0
i and

include TailX,1
i in the pricing error αi. To rewrite TailX,0

i in terms of MCRASHX
i , we exploit that
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the continuity Assumption (A1) implies P[Tp[Ri]] = p and

cov[1(Tp[X]),1(Tp[Ri])] =P[Tp[Ri] ∩ Tp[X]]− P[Tp[Ri]] P[Tp[X]] (24)

=P[Tp[X]]
(
MCRASHX

i − p
)

(25)

with

MCRASHX
i = P[Tp[Ri] ∩ Tp[X]]

P[Tp[X]] . (26)

From (22) and (25), we obtain

TailX,0
i = λX

tail (MCRASHX
i − p) with λX

tail := −(1 +Rf )P[Tp[X]] · dtail · rtail. (27)

Since rtail < 0 and P[Tp[X]] > 0, the sign of λX
tail corresponds to the sign of dtail. Given its definition

in equation (10), dtail is non-negative under the convexity of m according to Assumption (A2).

A.2 Estimation of MCRASH

The following estimation procedure is applied for each stock i and each month t in our sample: We

collect the returns of asset i denoted by (rd
i,s)s=1,...,250 over the most recent 250 trading days and the

corresponding factor returns denoted by (xd
1,s, . . . , x

d
N,s)s=1,...,250 in a series of (N + 1) × 1-vectors

(ys)s=1,...,250 with y1,s = rd
i,s and yj+1,s = xd

j,s for j = 1, . . . , N , s = 1, . . . , 250. Based on the sample

(y)s=1,...,250, we estimate MCRASH with the following two-step methodology.

1. To account for volatility clustering, we first fit GARCH(1,1) models for the N + 1 marginal
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distributions (Bollerslev, 1986).40 We use the specification

Yi,s+1 = µi + σi,s+1 Zi,s+1 and σ2
i,s+1 = ωi,0 + ωi,1 (σi,s Zi,s)2 + ωi,2 σ

2
i,s, (28)

where µi, ωi,0, ωi,1, ωi,2 ∈ R, ωi,0, ωi,1, ωi,2 > 0 and ωi,1 + ωi,2 < 1. In line with the continuity

assumption in our theory part, we assume independent and identically distributed time series

residuals Zi,s+1, which follow the skewed-t distribution proposed by Hansen (1994). For each

margin, we obtain a series of conditional cdfs Fi,s(y) := P[Yi,s ≤ y|Fs−1], where Fs−1 denotes

the information available at time s− 1. We use these cdfs to obtain a sample (ûs)s=1,...,250 of

probability integral transforms given by

ûi,s = Fi,s(yi,s). (29)

2. Relying on the transformed sample (û)s=1,...,250, we estimate MCRASH non-parametrically

based on equation (4) using

MCRASHX
i|t =

∑
s∈V 1({û1,s ≤ q1}) · 1(

⋃N+1
j=2 {ûj,s ≤ qj})∑

s∈V 1(
⋃N+1

j=2 {ûj,s ≤ qj})
(30)

with V denoting the set of days with valid returns for all N + 1 series and qi denoting the

upper p-quantile of the empirical distribution of (ûi,s)s∈V , i = 1, . . . , N + 1. The enumerator

counts the number of days in the estimation window on which stock i and one of the factors

crash together. The denominator corresponds to the total number of days on which at least

one of the factors realizes a left tail event.

40We exclude missing values for individual series (but include zero returns). We apply the MFE toolbox provided
by Kevin Sheppard for the maximum likelihood estimation of the GARCH models.
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Table A.1: Variable and Factor Definitions

Variable Description

MCRASHX a stock’s multivariate crash sensitivity to the risk factors X as defined in equation (3);
estimated as described in Appendix A.2

CRASHX a stock’s bivariate crash sensitivity to the risk factor X as defined in equation (14); esti-
mated as detailed in Appendix A.2

JCRASHXj1 ,Xj2 a stock’s sensitivity to joint crash events of the factors Xj1 and Xj2 ; see equation (16);
estimated parametrically as detailed in Appendix A.2 and Section IV of the Internet
Appendix

βX a stock’s beta with the risk factor X, see equation (12); estimated with bivariate regressions
using a rolling window of 250 days

size the natural logarithm of a firm’s market capitalization in million USD computed as
|SHROUT ·ALTPRC|/1000

bm a firm’s book-to-market ratio computed as detailed in Bali et al. (2016, p. 177ff)
mom a stock’s momentum defined as the 11-month cumulative return of the stock over the

period [t− 11, t− 1] multiplied by 100
rev short term reversal defined as the stock’s return in month t multiplied by 100
illiq a stock’s Amihud (2002) illiquidity measure computed as the absolute value of a stock’s

daily return over the trading volume in dollars averaged over month t

max a stock’s maximum 1-day return in the current month t

βdown downside beta with the market factor as defined in equation (5) of Ang et al. (2006a);
estimated non-parametrically with a 250-day rolling window

βtail tail beta introduced by Kelly and Jiang (2014); we first replicate the construction of the
aggregate “tail” risk measure and estimate βtail as a stock’s sensitivity on the aggregate
tail risk measure in predictive regressions with a rolling window of 120 months; we require
at least 36 valid observations

idiovol idiosyncratic volatility estimated with the standard three-factor model; idiovol is the an-
nualized residual standard error (scaled by 100) from time-series regressions with a rolling
window of 250 daily returns

idioskew idiosyncratic skewness estimated with the three-factor model; idioskew is the sample skew-
ness of the regression residuals from time-series regressions with a rolling window of 250
daily returns

coskew coskewness with the market factor as defined in equation (6) of Ang et al. (2006a), esti-
mated non-parametrically with a 250-day rolling window
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Table A.1: Continued

Variable Description

cokurt cokurtosis with the market factor as e.g. defined by Chabi-Yo et al. (2018, p. 1096), esti-
mated non-parametrically with a 250-day rolling window

VaR 5%-Value-at-Risk estimated as the (upper) 5%-quantile of the empirical distribution mul-
tiplied by minus one; we use a 250-day rolling estimation window

βbear bear beta introduced by Lu and Murray (2019); we obtain the AD bear portfolio returns
from the authors and estimate βbear using the shrinkage methodology proposed in Lu and
Murray (2019)

MKT Value-weighted CRSP market-return in excess of the risk-free rate, source: KF
SMB Small-Minus-Big size factor, source: KF
HML High-Minus-Low value factor, source: KF
RMW Fama and French (2015) Robust-Minus-Weak profitability factor, source: KF
CMA Fama and French (2015) Conservative-Minus-Aggressive investment factor, source: KF
UMD Up-Minus-Down momentum factor, source: KF
BAB Frazzini and Pedersen (2014) Betting Against Beta factor, source: AQR
LIQ Pástor and Stambaugh (2003) traded liquidity factor, source: AUTH
QMJ Asness et al. (2019) Quality-Minus-Junk factor, source: AQR
STR Short-Term Reversal factor, source: KF
LTR Long-Term Reversal factor, source: KF
M4SMB Stambaugh and Yuan (2017) size factor, source: AUTH
M4MGMT Stambaugh and Yuan (2017) first mispricing factor, source: AUTH
M4PERF Stambaugh and Yuan (2017) second mispricing factor, source: AUTH
Q5ME Hou et al. (2015) size factor, source: AUTH
Q5IA Hou et al. (2015) investment factor, source: AUTH
Q5ROE Hou et al. (2015) profitability factor, source: AUTH
Q5EG Hou et al. (2021) expected growth factor, source: AUTH

This table defines the variables and factors used in our empirical analysis. We abbreviate our data sources as
follows: KF for Kenneth French’s Data Library, AQR for the AQR website and AUTH for the corresponding author’s
website.
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Internet Appendix
Multivariate Crash Risk

Abstract: This Internet Appendix consists of three sections. Section I presents additional

empirical results. Section II compares the SDF approximation proposed in Section 2 of

the paper to alternative extensions of the standard linear model. In Section III, we

describe the distributional assumptions and the preferences for the stylized theoretical

example presented in Section 2 of the main text. Section IV presents additional details

on the estimation of MCRASH and JCRASH.



I Additional Empirical Results

Table IA.1: The MCRASH-Spread Portfolio and Factor Returns

avg std skew kurt min q5 med q95 max sharpe

PF MCRASH 4.72 8.67 0.19 10.21 -14.79 -3.30 0.29 4.08 17.03 0.54
MKT 5.98 15.39 -0.53 4.88 -23.24 -7.21 0.84 7.03 16.10 0.39
SMB 2.65 10.73 0.48 8.20 -16.86 -4.24 0.14 4.91 21.70 0.25
HML 3.80 9.80 0.09 5.03 -11.18 -3.92 0.24 5.28 12.87 0.39
RMW 3.18 7.60 -0.32 15.03 -18.33 -2.71 0.24 3.42 13.33 0.42
CMA 3.40 6.98 0.30 4.60 -6.86 -2.70 0.13 3.47 9.56 0.49
UMD 7.99 14.64 -1.32 13.39 -34.39 -6.50 0.75 6.41 18.36 0.55
BAB 10.09 11.45 -0.49 7.30 -15.68 -4.70 0.99 5.84 15.39 0.88
LIQ 4.70 11.63 0.01 4.00 -12.78 -5.14 0.35 5.93 11.68 0.40
QMJ 4.79 7.86 0.22 5.78 -9.10 -3.01 0.32 4.05 12.41 0.61
STR 5.77 10.77 0.36 8.61 -14.60 -3.46 0.32 5.01 16.21 0.54
LTR 2.82 8.71 0.64 5.53 -7.80 -3.51 0.14 4.72 14.50 0.32
M4SMB 5.66 10.00 0.33 4.96 -11.10 -3.86 0.41 5.02 16.04 0.57
M4PERF 8.18 13.24 -0.09 6.59 -21.45 -5.17 0.67 6.74 18.52 0.62
M4MGMT 7.10 9.90 0.14 4.74 -8.93 -3.82 0.57 5.50 14.58 0.72
Q5ME 3.45 10.61 0.61 8.14 -14.39 -4.57 0.19 5.16 22.14 0.33
Q5IA 4.48 6.51 0.14 4.34 -7.16 -2.48 0.32 3.33 9.24 0.69
Q5ROE 6.57 8.69 -0.71 7.80 -13.83 -3.39 0.65 3.97 10.38 0.76
Q5EG 10.01 6.52 0.21 4.95 -6.29 -1.94 0.74 3.73 10.82 1.53

This table presents risk and performance statistics for our (10)-(1) spread portfolio formed on MCRASH and for the
monthly returns of the underlying risk factors, as well as additional factors used for risk adjustments. We report
the annualized mean (avg), standard deviation (std), skewness (skew), kurtosis (kurt), minimum return (min) and
maximum return (max) as well as the annualized sharpe ratio (sharpe).
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Table IA.2: MCRASH-Spread Portfolio – Factor Loadings

PF MCRASH

(1) (2) (3) (4) (5) (6) (7) (8)

alpha [%] 0.44 0.43 0.41 0.47 0.43 0.44 0.39 0.36
(4.79) (4.40) (4.48) (4.34) (4.53) (5.05) (3.03) (2.71)

MKT 0.23 0.18 0.24 0.22 0.23 0.24 0.19 0.21
(7.89) (4.75) (7.71) (6.45) (8.08) (8.26) (4.49) (5.78)

SMB -0.03 -0.06 -0.06 -0.04 -0.03 0.03
(-0.59) (-1.16) (-1.54) (-0.79) (-0.61) (0.62)

HML 0.12 -0.05 0.09 0.10 0.12 0.18
(2.00) (-0.89) (1.55) (1.54) (2.01) (3.39)

RMW 0.06 -0.09 0.03 0.11 0.06 0.03
(0.61) (-0.82) (0.28) (1.09) (0.61) (0.29)

CMA -0.18 -0.27 -0.14 -0.17 -0.18 -0.08
(-1.78) (-2.50) (-1.37) (-1.74) (-1.79) (-0.76)

UMD 0.20 0.18 0.20 0.20 0.20
(5.53) (5.10) (5.89) (5.25) (6.47)

BAB -0.34 -0.32 -0.34 -0.34 -0.36
(-8.32) (-8.04) (-8.49) (-8.36) (-8.95)

LIQ 0.01
(0.42)

QMJ -0.09
(-0.82)

STR 0.01
(0.25)

LTR -0.21
(-3.73)

M4SMB -0.04
(-0.87)

M4PERF 0.07
(1.09)

M4MGMT -0.2
(-1.80)

Q5ME -0.07
(-1.31)

Q5IA -0.21
(-2.08)

Q5ROE 0.11
(1.61)

Q5EG -0.07
(-0.74)

This table summarizes time-series regressions of the MCRASH spread portfolio returns on the factor returns for
selected factor models complementing the results in Table 2.
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Table IA.3: Robustness FMB Regressions

Panel A: WLS Regressions with Betas

future excess return

(1) (2) (3) (4) (5) (6) (7) (8)

MCRASH 4.53 5.71 5.09 5.50 5.12 4.88 4.45 4.39
(3.69) (5.84) (5.48) (5.84) (5.99) (5.91) (5.91) (5.92)

βMKT -0.25 -0.22 0.02 0.14 0.17 -0.04 0.03
(-1.56) (-1.19) (0.10) (0.64) (0.74) (-0.15) (0.14)

βSMB -0.07 -0.08 0.07 0.08 0.10 0.05
(-0.64) (-0.69) (0.54) (0.66) (0.87) (0.44)

βHML 0.20 0.24 0.11 0.03 0.05
(1.74) (1.75) (0.93) (0.23) (0.38)

βRMW 0.19 0.23 0.25 0.27
(2.49) (2.94) (3.75) (3.73)

βCMA 0.12 0.10 0.07
(1.29) (1.14) (0.92)

βUMD -0.07 0.03
(-0.25) (0.12)

βBAB 0.00
(0.03)

Intercept 0.17 0.33 0.38 0.30 0.31 0.31 0.33 0.34
(0.69) (1.59) (1.88) (1.53) (1.59) (1.66) (1.79) (1.89)

R2
adj [%] 0.34 2.91 4.04 4.70 5.12 5.42 5.88 6.13

n̄ 2280 2280 2280 2280 2280 2280 2280.00 2280
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Table IA.3: Continued
Panel B: WLS Regressions with Characteristics

future excess return

(1) (2) (3) (4) (5) (6) (7) (8) (9)

MCRASH 4.53 5.71 4.81 4.28 3.43 3.28 3.27 2.64 2.74
(3.69) (5.84) (6.41) (5.54) (4.63) (4.45) (4.38) (3.68) (4.53)

βMKT -0.25 -0.28 -0.19 -0.28 -0.27 -0.31 -0.11 0.16
(-1.56) (-1.58) (-1.12) (-1.80) (-1.76) (-2.02) (-0.81) (0.68)

size 0.01 0.01 0.00 0.01 -0.03 -0.09 -0.10
(0.16) (0.22) (0.08) (0.32) (-0.60) (-2.16) (-2.64)

bm 0.28 0.26 0.28 0.28 0.24 0.21
(3.57) (3.44) (3.62) (3.46) (3.06) (2.98)

mom 0.01 0.01 0.01 0.01 0.01
(6.35) (5.78) (5.34) (5.26) (6.58)

rev -0.04 -0.04 -0.02 -0.03
(-8.56) (-8.49) (-5.10) (-6.06)

illiq -0.03 0.01 -0.01
(-0.52) (0.27) (-0.11)

max -8.65 -7.92
(-9.78) (-9.84)

betas no no no no no no no no yes
Intercept 0.17 0.33 0.32 0.09 0.10 0.08 0.41 1.11 1.09

(0.69) (1.59) (0.89) (0.23) (0.27) (0.22) (1.08) (3.15) (3.43)
R2

adj [%] 0.34 2.91 4.35 5.06 6.10 6.78 6.98 7.30 9.09
n̄ 2280 2280 2280 1911 1910 1910 1868 1868 1868
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Table IA.3: Continued
Panel C: OLS Regressions with 7F-Betas

future excess return

(1) (2) (3) (4) (5) (6) (7) (8)

MCRASH 4.33 4.76 4.47 4.59 4.50 4.41 3.75 4.31
(3.58) (3.96) (3.76) (4.05) (4.30) (4.46) (4.62) (5.84)

βMKT,7F -0.10 -0.11 -0.13 -0.13 -0.13 -0.08 -0.11
(-0.91) (-1.07) (-1.24) (-1.18) (-1.20) (-0.67) (-0.90)

βSMB,7F 0.04 0.02 -0.01 -0.01 -0.03 -0.01
(0.58) (0.32) (-0.11) (-0.14) (-0.39) (-0.09)

βHML,7F 0.07 0.01 0.05 0.12 0.15
(1.33) (0.21) (0.87) (1.82) (2.13)

βRMW,7F 0.19 0.17 0.16 0.16
(3.68) (3.18) (2.93) (2.57)

βCMA,7F 0.07 0.08 0.10
(1.30) (1.38) (1.54)

βUMD,7F 0.06 0.04
(0.50) (0.32)

βBAB,7F 0.07
(0.87)

Intercept 0.22 0.27 0.28 0.30 0.35 0.36 0.38 0.37
(0.88) (1.36) (1.41) (1.55) (1.85) (1.92) (2.10) (2.06)
37.83 17.41 15.97 12.21 6.52 5.52 3.65 3.99

R2adj [%] 0.41 1.49 2.25 2.98 3.52 4.14 5.24 6.12
avg n 2280 2280 2280 2280 2280 2280 2280 2280

This table presents additional robustness results on the Fama and MacBeth (1973) shown in Tables 3 and 4. Panel A
and B report results for cross-sectional regressions implemented with weighted least squares instead of ordinary least
squares. We use the month t gross returns as weights following the methodology proposed by Asparouhova et al.
(2013). Panel C shows results for the regression specifications from Table 3 with betas that are estimated from
multivariate instead of bivariate regressions. More specifically, we use betas estimated from multivariate regressions
with our seven baseline factors. We again use a rolling estimation window with 250 days for the beta estimation.
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Table IA.4: Bivariate Portfolio Sorts – MCRASH and Characteristics – Returns

Control Portfolio

Control 1 2 3 4 5 avg

βMKT 0.25 0.30 0.40 0.50 0.33 0.36
(3.67) (4.24) (4.88) (6.11) (2.77) (6.15)

size 0.36 0.23 0.24 0.11 0.19 0.23
(3.71) (2.09) (2.36) (1.24) (1.85) (2.93)

bm 0.45 0.34 0.24 0.25 0.10 0.28
(3.91) (3.19) (2.35) (3.24) (1.20) (3.83)

mom 0.34 0.14 0.16 0.02 0.24 0.18
(3.00) (1.54) (1.95) (0.18) (2.71) (2.54)

rev 0.37 0.29 0.25 0.25 0.35 0.30
(3.27) (3.28) (2.82) (2.20) (3.56) (3.95)

illiq 0.21 0.16 0.36 0.29 0.32 0.27
(1.97) (1.67) (3.40) (2.81) (3.41) (3.42)

max 0.23 0.16 0.24 0.26 0.52 0.28
(3.53) (2.13) (2.49) (2.50) (3.73) (3.81)

This table reports excess returns resulting from the bivariate portfolio sorts shown in Table 5.
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Table IA.5: Bivariate Portfolio Sorts – MCRASH and Betas

Panel A: Returns

Control Portfolio

Control 1 2 3 4 5 avg

βMKT 0.25 0.30 0.40 0.50 0.33 0.36
(3.67) (4.24) (4.88) (6.11) (2.77) (6.15)

βSMB 0.28 0.32 0.29 0.42 0.43 0.35
(2.98) (3.71) (3.66) (4.55) (4.24) (5.39)

βHML 0.35 0.42 0.32 0.31 0.32 0.34
(3.19) (4.92) (4.39) (4.15) (3.33) (5.68)

βRMW 0.44 0.37 0.33 0.30 0.30 0.35
(4.08) (4.45) (4.03) (3.58) (3.19) (5.63)

βCMA 0.39 0.32 0.38 0.31 0.26 0.33
(3.63) (3.25) (4.64) (4.04) (3.16) (5.32)

βUMD 0.26 0.21 0.25 0.38 0.42 0.30
(2.83) (3.23) (3.07) (4.13) (3.86) (5.10)

βBAB 0.36 0.45 0.30 0.28 0.31 0.34
(3.19) (5.60) (3.64) (4.14) (3.98) (6.04)

Panel B: Risk-Adjusted Returns

Control Portfolio

Control 1 2 3 4 5 avg

βMKT 0.19 0.28 0.41 0.48 0.31 0.33
(2.62) (3.87) (5.15) (5.78) (2.65) (6.61)

βSMB 0.15 0.26 0.25 0.39 0.48 0.31
(1.71) (2.86) (3.21) (4.29) (4.52) (5.15)

βHML 0.31 0.34 0.24 0.25 0.25 0.28
(2.79) (3.60) (3.44) (3.36) (2.66) (5.03)

βRMW 0.35 0.29 0.26 0.19 0.18 0.25
(2.85) (3.37) (3.56) (2.44) (2.15) (4.71)

βCMA 0.41 0.27 0.29 0.24 0.15 0.27
(3.68) (2.90) (3.69) (3.22) (1.91) (4.98)

βUMD 0.21 0.18 0.21 0.34 0.42 0.27
(2.07) (2.68) (2.58) (4.34) (3.73) (5.05)

βBAB 0.36 0.41 0.22 0.18 0.19 0.27
(3.28) (4.53) (2.74) (2.62) (2.29) (5.30)

This table summarizes the results of bivariate portfolios sorts on MCRASH, in which we control for linear betas to
the seven factors MKT, SMB, HML, RMW, CMA, UMD and BAB used for the calculation of MCRASH. Panel A
reports (excess) returns of the MCRASH spread portfolios and Panel B shows the corresponding seven-factor alphas.
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Table IA.6: Summary Statistics – Downside Risk Measures

Mean SD Skew Kurt Min q5 q25 Med q75 q95 max

MCRASH 0.08 0.03 0.08 2.81 0.00 0.04 0.06 0.08 0.10 0.13 0.17
βdown 1.13 0.70 0.43 5.99 -2.22 0.15 0.66 1.05 1.53 2.37 4.72
βtail 0.18 0.42 0.64 12.95 -2.82 -0.39 -0.02 0.14 0.35 0.89 3.15
idiovol 39.48 20.08 2.37 23.89 9.49 17.70 25.59 35.17 48.66 74.46 261.37
idioskew 0.43 1.20 1.68 22.76 -6.73 -1.12 -0.03 0.36 0.81 2.09 11.08
coskew -0.12 0.16 0.05 3.33 -0.68 -0.37 -0.22 -0.12 -0.01 0.14 0.51
cokurt 2.11 1.01 -0.09 2.96 -1.69 0.48 1.40 2.12 2.82 3.74 5.10
VaR 0.04 0.02 1.12 5.43 0.01 0.02 0.03 0.04 0.05 0.07 0.13
βbear 0.06 0.41 0.24 4.34 -1.63 -0.57 -0.19 0.05 0.30 0.75 1.97

This table reports summary statistics for the downside risk measures that we control for in our asset pricing tests.
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Table IA.7: Regressions with Downside Risk Measures – Alternative Estimation

future excess return

(1) (2) (3) (4) (5) (6)

MCRASH 2.04 2.42 2.42 1.84 1.89 1.88
(2.97) (3.39) (3.40) (2.65) (2.72) (2.70)

βMKT -0.07 -0.09 -0.09 0.15 0.11 0.10
(-0.52) (-0.64) (-0.61) (1.14) (0.84) (0.79)

size -0.13 -0.11 -0.10 -0.16 -0.17 -0.17
(-3.40) (-2.62) (-2.38) (-4.09) (-4.28) (-4.37)

bm 0.21 0.22 0.21 0.19 0.19 0.20
(2.70) (2.74) (2.61) (2.48) (2.42) (2.51)

mom 0.01 0.01 0.01 0.01 0.01 0.01
(5.37) (5.13) (5.03) (4.87) (4.85) (5.57)

rev -0.03 -0.02 -0.02 -0.03 -0.03 -0.03
(-6.96) (-5.46) (-5.31) (-6.49) (-6.56) (-6.28)

illiq 0.05 0.04 0.03 0.08 0.06 0.07
(0.94) (0.74) (0.60) (1.43) (1.16) (1.24)

max 1.96 -8.09 -8.22 -3.58 -3.21 -2.54
(1.74) (-9.49) (-9.47) (-4.65) (-4.27) (-3.34)

idiovol 1m -0.02
(-8.74)

idioskew 5y -0.16
(-4.46)

coskew 5y 0.00
(0.86)

VaR (par) -0.25
(-9.77)

ES (par) -0.18
(-10.56)

vol (par) -0.36
(-10.81)

Intercept 1.65 1.31 1.23 1.99 2.04 2.04
(4.98) (3.71) (3.49) (6.07) (6.24) (6.07)
0.00 0.02 0.05 0.00 0.00 0.00

R2
adj [%] 7.51 7.43 7.48 7.61 7.58 7.60

n̄ 1868 1770 1770 1868 1868 1868

This table extends the regression results from Table 6 to different estimation methodologies for the included downside
risk measures. idiovol 1m refers to idiosyncratic volatility estimates obtained with one month of daily data instead
of using 250 days. idioskew 5y corresponds to idiosyncratic skewness estimated with the three-factor model using
five years of monthly data. coskew 5y is a coskewness measure obtained by regressing a firm’s excess return on the
market factor and the market factor squared with five years of monthly data. VaR (par) and ES (par) are parametric
5%-Value-at-Risk and Expected Shortfall estimates derived from the GARCH skewed-t models used for the estimation
of MCRASH. vol (par) refers to the corresponding conditional volatility estimates.
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Table IA.8: Bivariate Portfolio Sorts – MCRASH and Downside Risk Measures – Returns

Control Portfolio

Control 1 2 3 4 5 avg

βdown 0.23 0.21 0.41 0.31 0.51 0.33
(3.69) (2.83) (5.08) (3.27) (4.24) (5.36)

βtail 0.36 0.25 0.18 0.17 0.34 0.26
(2.92) (2.89) (2.28) (1.89) (3.40) (3.63)

idiovol 0.14 0.11 0.13 0.16 0.46 0.20
(2.17) (1.63) (1.53) (1.40) (3.36) (2.86)

idioskew 0.30 0.22 0.17 0.26 0.47 0.29
(3.76) (2.36) (1.76) (2.49) (4.16) (3.55)

coskew 0.24 0.31 0.16 0.26 0.21 0.24
(2.47) (3.63) (1.60) (2.78) (2.13) (3.30)

cokurt 0.33 0.29 0.15 0.28 0.20 0.25
(4.23) (3.70) (1.97) (2.99) (2.10) (4.16)

VaR 0.12 0.10 0.13 0.25 0.46 0.21
(1.96) (1.53) (1.70) (2.40) (3.25) (3.35)

βbear 0.48 0.30 0.18 0.32 0.20 0.30
(3.09) (1.77) (1.21) (1.57) (1.03) (2.13)

This table reports excess returns resulting from the bivariate portfolio sorts presented in Table 7.

Table IA.9: Value-Weighted Sorts – Excess Returns

1 2 3 4 5 6 7 8 9 10 10-1

all 0.39 0.45 0.47 0.48 0.53 0.55 0.52 0.49 0.48 0.55 0.16
(2.10) (2.56) (2.60) (2.63) (2.95) (2.97) (2.77) (2.55) (2.40) (2.66) (1.23)

ex 1% 0.39 0.43 0.45 0.48 0.55 0.60 0.59 0.59 0.62 0.66 0.27
(2.01) (2.27) (2.38) (2.47) (2.81) (3.06) (3.01) (2.92) (3.01) (3.02) (2.06)

ex 5% 0.41 0.46 0.50 0.54 0.60 0.63 0.62 0.63 0.67 0.70 0.29
(2.02) (2.27) (2.48) (2.62) (2.89) (3.00) (2.90) (2.95) (3.03) (3.00) (2.26)

ex 10% 0.45 0.49 0.57 0.60 0.64 0.67 0.66 0.65 0.67 0.73 0.28
(2.09) (2.31) (2.67) (2.76) (2.94) (3.08) (2.98) (2.86) (2.89) (3.04) (2.40)

ex 20% 0.43 0.52 0.60 0.64 0.68 0.70 0.69 0.69 0.72 0.75 0.32
(1.90) (2.27) (2.63) (2.75) (2.90) (3.00) (2.95) (2.88) (2.94) (2.98) (2.95)

This table reports excess returns for the univariate value-weighted portfolio sorts presented in Panel A of Table 8.
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Table IA.10: Alternative Measures of Multivariate Crash Risk – Summary Statistics

Mean SD Skew Kurt Min q5 q25 Med q75 q95 max

CRASHMKT 0.22 0.12 0.40 2.90 0.00 0.03 0.13 0.21 0.30 0.43 0.67
CRASHSMB 0.11 0.08 0.78 3.57 0.00 0.00 0.04 0.09 0.15 0.25 0.43
CRASHHML 0.05 0.06 1.41 5.25 0.00 0.00 0.01 0.03 0.08 0.16 0.33
CRASHRMW 0.05 0.06 1.23 4.67 0.00 0.00 0.01 0.03 0.09 0.16 0.34
CRASHCMA 0.04 0.05 1.43 5.17 0.00 0.00 0.00 0.02 0.08 0.14 0.32
CRASHUMD 0.11 0.08 0.95 4.35 0.00 0.01 0.05 0.09 0.15 0.25 0.45
CRASHBAB 0.04 0.05 1.50 5.60 0.00 0.00 0.00 0.02 0.07 0.14 0.31
JCRASHMKT,SMB 0.31 0.11 0.16 2.71 0.04 0.13 0.22 0.31 0.39 0.50 0.66
JCRASHMKT,HML 0.24 0.12 0.97 4.71 0.03 0.09 0.15 0.22 0.30 0.46 0.76
JCRASHMKT,RMW 0.20 0.10 1.10 4.97 0.02 0.07 0.12 0.18 0.25 0.39 0.67
JCRASHMKT,CMA 0.22 0.11 0.92 4.54 0.02 0.08 0.14 0.20 0.28 0.42 0.72
JCRASHMKT,UMD 0.24 0.10 0.70 3.69 0.04 0.10 0.17 0.23 0.30 0.43 0.64
JCRASHMKT,BAB 0.24 0.10 0.56 3.29 0.03 0.10 0.17 0.23 0.30 0.42 0.62
JCRASH3F 0.34 0.15 0.35 3.02 0.03 0.12 0.23 0.33 0.44 0.60 0.83
JCRASH4F 0.34 0.14 0.15 2.79 0.03 0.13 0.23 0.33 0.43 0.57 0.74
JCRASH5F 0.28 0.18 0.65 3.32 0.01 0.05 0.14 0.26 0.40 0.60 0.85

This table reports summary statistics for the alternative multivariate crash risk measures that we investigate in
Section 5.
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Table IA.11: Bivariate Portfolio Sorts – MCRASH and CRASH

Panel A: Returns

Control Portfolio

Control 1 2 3 4 5 avg

CRASHMKT 0.23 0.25 0.16 0.14 0.12 0.18
(3.56) (3.97) (2.78) (2.28) (1.67) (3.66)

CRASHSMB 0.36 0.28 0.24 0.25 0.21 0.27
(4.40) (3.68) (3.24) (3.31) (2.25) (3.81)

CRASHHML 0.31 0.26 0.24 0.28 0.30 0.28
(2.94) (2.57) (2.41) (3.19) (3.80) (3.12)

CRASHRMW 0.29 0.27 0.22 0.26 0.25 0.26
(2.88) (2.68) (2.40) (3.04) (3.25) (3.04)

CRASHCMA 0.33 0.33 0.32 0.33 0.26 0.31
(3.11) (3.15) (3.48) (3.96) (3.31) (3.56)

CRASHUMD 0.26 0.24 0.18 0.20 0.18 0.21
(3.55) (3.53) (2.88) (3.23) (2.35) (3.68)

CRASHBAB 0.25 0.27 0.26 0.31 0.39 0.30
(2.48) (2.63) (2.73) (3.50) (4.85) (3.39)

Panel B: Risk-Adjusted Returns

Control Portfolio

Control 1 2 3 4 5 avg

CRASHMKT 0.17 0.17 0.13 0.13 0.17 0.15
(2.91) (2.33) (1.74) (1.88) (2.27) (2.78)

CRASHSMB 0.26 0.21 0.25 0.29 0.27 0.26
(3.44) (3.09) (3.63) (4.02) (3.47) (4.25)

CRASHHML 0.42 0.36 0.34 0.35 0.30 0.35
(4.78) (4.33) (4.07) (4.64) (4.07) (4.82)

CRASHRMW 0.38 0.36 0.30 0.31 0.22 0.31
(4.08) (3.97) (3.40) (3.91) (2.92) (4.08)

CRASHCMA 0.47 0.47 0.42 0.35 0.24 0.39
(5.41) (5.40) (5.22) (4.76) (3.31) (5.20)

CRASHUMD 0.22 0.23 0.19 0.22 0.21 0.22
(3.06) (3.23) (2.90) (3.42) (2.82) (3.87)

CRASHBAB 0.34 0.36 0.37 0.37 0.34 0.36
(4.11) (4.42) (4.47) (4.71) (4.49) (4.85)

This table presents the results of bivariate portfolio sorts on MCRASH controlling for bivariate crash risk measures.
Panel A presents returns and Panel B shows seven-factor alphas.
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Table IA.12: Probabilities of Simultaneous Factor Crashes

Mean SD Min q5 q25 Med q75 q95 max

MKT & SMB 0.64 0.74 0 0 0 0.40 0.80 2.40 3.20
MKT & HML 0.28 0.60 0 0 0 0 0.40 1.60 3.60
MKT & RMW 0.38 0.49 0 0 0 2e-3 0.80 1.60 2.00
MKT & CMA 0.16 0.41 0 0 0 0 0 1.20 3.20
MKT & UMD 1.12 0.94 0 0 0.40 1.20 2.00 2.80 3.60
MKT & BAB 0.13 0.27 0 0 0 0 2e-3 0.80 1.60
3F 0.03 0.11 0 0 0 0 0 0.40 0.80
4F 0.01 0.07 0 0 0 0 0 0 0.40
5F 0 0 0 0 0 0 0 0 0

This table presents summary statistics on the probabilities of simultaneous crash events for factor pairs including
the market factor as well as the joint crash probabilities of all factors in the Fama and French (1993) three-factor
model (3F), the Carhart (1997) four-factor model (4F) and the Fama and French (2015) five-factor model (5F). At the
end of each month, the simultaneous crash probabilities are estimated with the semiparametric approach described in
Appendix A.2, which is also applied for the computation of MCRASH. We report summary statistics on the resulting
estimates over time. Numbers are in percentages.
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II Alternative SDF Approximations

Our theoretical analysis on the price impact of MCRASH builds on an extended linear approxima-

tion of the SDF shown as equation (9) in Section 2. It is given by

mL,e(X) = mL(X) + 1(Tp[X]) dtail(X), (IA.1)

where 1(Tp[X]) is the indicator function for the multivariate crash event defined in equation (2)

and dtail(X) is a linear adjustment term that improves the approximation quality over the tail

region.1

In our baseline analysis, we choose a constant adjustment dtail that corresponds to dbasetail ≡

m(xl)−mL(xl) with xl := E[X | Tp[X]]. This leads to the following piecewise linear approximation

mbase
L,e (X) =


m(xc) +∇m(xc) · (X − xc) if Tp[X]

m(xl) +∇m(xc) · (X − xl) if Tp[X].

(IA.2)

A straightforward extension of this approach would be to use a tail-specific first-order approxi-

mation to determine dtail. In particular, we could use the Taylor expansion around xl given by

malt(X) = m(xl) +∇m(xl) · (X − xl) (IA.3)

to approximate the SDF over the tail region. This form corresponds to the adjustment term

dalttail(X) := malt(X)−mL(X) in equation (IA.1) and the resulting piecewise linear approximation
1Here, the “tail region” is understood as the subset of the range of X that is implicitly defined by our definition of a

multivariate crash event in equation (2). Formally, Tp :=
⋃N

j=1{xj ≤ Qp[Xj ]} ⊂ RN such that Tp[X] = {X(ω) ∈ Tp}.
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is

malt
L,e(X) =


m(xc) +∇m(xc) · (X − xc) if Tp[X]

m(xl) +∇m(xl) · (X − xl) if Tp[X].

(IA.4)

By comparing (IA.2) and (IA.4), we obtain

malt
L,e(X) = mbase

L,e (X) + 1(Tp[X]) (∇m(xl)−∇m(xc)) · (X − xl). (IA.5)

This representation shows that malt
L,e can be seen as an extension of our approach, which includes

an additional term based on the gradient of the original SDF over the tail region.

We illustrate both piecewise linear approximations for N = 1 in Figure IA.1 building on the

same assumptions as the illustration in Figure 2 but focusing on the left tail of X. Panel A shows

again the simpler approach with a constant tail adjustment and the resulting reduction in the

approximation error compared to the standard linear model. Panel B illustrates the additional

improvement that can be attained by modifying the slope of the tail-focussed approximation as

formalized by malt
L,e.

To understand the pricing implications of malt
L,e, we note that using m(X) ≈ malt

L,e(X) in equa-

tion (7) implies

E[Ri −Rf ] ≈ −(1 +Rf ) cov
[
mbase
L,e (X), Ri

]
− (1 +Rf ) cov[1(Tp[X]) (∇m(xl)−∇m(xc)) · (X − xl), Ri] , (IA.6)

which follows from equation (IA.5). With the alternative tail approximation, we thus obtain the
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Figure IA.1: Comparison Piecewise Linear Approximations

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.951

1.5

2

2.5

3

x

m
(x

)

Panel A: Extended Linear – Baseline

exact
lin.
ext. lin. base
xq

xl

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.951

1.5

2

2.5

3

x

m
(x

)

Panel B: Extended Linear – Alternative

exact
lin.
ext. lin. alt
xq

xl

This figure illustrates the two piecewise linear approximations of the SDF discussed in Section II of the Internet
Appendix. It builds on the same assumptions as the illustration in Figure 2 but focuses on the left tail of the
risk factor distribution. Panel A shows our baseline approximation mbase

L,e defined in equation (IA.2) and Panel B
illustrates the alternative approach malt

L,e defined in equation (IA.4).
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additional component

∆πalti := −(1 +Rf )
N∑
j=1

(
∂m(xl)
∂xj

− ∂m(xc)
∂xj

)
cov[1(Tp[X]) (Xj − xj,l), Ri] (IA.7)

in a stock’s risk premium. According to equation (IA.7), the complexity of ∆πalti increases in the

number of factors N . It shows that N additional tail-specific covariances have to be estimated for

the implementation of the alternative model and that these covariances do not only depend on the

occurrence of the tail event, i.e., the indicator 1(Tp[X]), but also on 1(Tp[X])Xj , j = 1, . . . , N ,

so that their estimation requires more information on the (joint) distribution of the risk factors

over the tail region. Given that it might be difficult to estimate the required covariances and the

associated prices of risk precisely, it seems to be an interesting empirical question whether a more

flexible functional form in the tail could improve the overall performance of the pricing model.

Besides the piecewise linear approximations discussed before, a further alternative for reducing

the errors of a standard linear approximation could be a higher-order Taylor expansion over the

entire domain of the projected SDF. While this approach seems promising for N = 1, it might

be less attractive for models with several factors as the additional complexity from higher-order

expansions would grow quickly in the number of factors N . A second-order Taylor expansion

would involve the N ×N Hessian matrix and the number of additional covariance terms required

to determine the risk premium would grow quadratically with the number of factors.
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III Details of the Theoretical Example

For the example presented at the end of Section 2, we use the specific form of the SDF given in

equation (6) and assume N = 2 with the simple linear mapping function g(x1, x2) = 0.5x1 +0.5x2.

As a standard choice for the preferences of the representative investor, we rely on power utility

u(w) = w1−η − 1
1− η (IA.8)

with a relative risk aversion (RRA) of η = 5. Furthermore, we assume Rf = 0.02 for the annualized

risk-free rate.

We use a flexible copula model for the distribution of (Ri, X1, X2), which includes a multivariate

normal distribution for the corresponding logarithmic returns as a special case. Instead of directly

modeling and simulating discrete returns, we model the joint distribution of logarithmic returns to

avoid return realizations below minus one. Simulated log-returns are then transformed into discrete

returns in line with our theory. For the marginal distributions, we rely on the skewed-t distribution

proposed by Hansen (1994), which is also used in our empirical analysis. We assume that the

volatility of the (log-)factor returns is equal to 20% per annum and that the annualized volatility

of the stock’s log-return is equal to 30%. Furthermore, we use identical parameters to calibrate

the higher moments of the three marginal distributions. In particular, we choose λ = −0.2 for

the skewness parameters and ν = 7 for the degrees-of-freedom parameters. This implies moderate

levels of excess kurtosis (2.41) and skewness (-0.59) for the corresponding log-returns. To determine

the location parameters of X1 and X2, we numerically solve equation (7) for Ri = X1 and Ri = X2

(simultaneously).2

We use the skewed-t-copula introduced by Demarta and McNeil (2007) as dependence model.
2Since the covariance underlying our approximations is invariant under deterministic shifts, the location parameter

of Ri itself is not required for our simulations.
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The skewed t copula is given by

Cst,N (u; P , νc, γ) = Fst,N (qst(u1; νc, γ1), . . . , qst(uN ; νc, γN ); P , νc, γ), (IA.9)

where Fst,N ( · ;P , νc, γ) denotes the cdf of the N -dimensional (generalized hyperbolic) skewed-

t distribution with the parameters P , νc, γ. qst( ·, ; νc, γi) denotes the quantile function of the

corresponding univariate skewed-t distribution with the parameters νc and γi, i = 1, . . . , N .3 The

skewed t copula nests the standard t copula (γ = 0) and the Gaussian copula (γ = 0 and νc →∞).

For our simulations, we set the correlation parameters in P to 0.33 and, we choose νc = 7 for the

copula’s degrees-of-freedom parameter. Furthermore, we assume γ = (−0.2,−0.2,−0.2)′ for the

dependence asymmetry parameter. To obtain the results shown in Panel A and C of Figure 3, we

vary the copula asymmetry parameter of the asset in [−0.85, 0]. The results in Panel B and D are

obtained for values of the copula’s degrees-of-freedom parameter between 5 and 15.

In line with our empirical analysis, we simulate monthly returns, i.e., we use 1/12 and
√

1/12

to rescale the annualized location and scale parameters for the simulation.

3Note that the univariate generalized hyperbolic skewed-t distribution is different from the asymmetric skewed-t
distribution developed by Hansen (1994).
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IV Estimation of MCRASH and JCRASH

We consider the following modifications of the baseline methodology described in Appendix A.2 for

the estimation of MCRASH:

• non-parametric estimation: We replace the GARCH-based conditional cdfs used in equa-

tion (29) with the empirical distribution functions of the sample (yi,s)s=1,...,250 for i =

1, . . . , N + 1.

• GARCH-normal models: We assume a standard normal distribution for the GARCH innova-

tions (Zi,s+1) in equation (28).

• GJR-GARCH models: We replace the GARCH(1,1) dynamics in equation (28) with the GJR

specification proposed by Glosten et al. (1993) that allows for a leverage effect.

• fully parametric estimation: We apply a parametric approach based on a Student t copula in

the second step of our baseline procedure. For each month t and each stock i, we estimate

a Student-t-copula model4 to the corresponding sample of probability integral transforms

(ûs)s=1,...,250. We apply a combination of moment matching and maximum likelihood esti-

mation to determine the copula correlation matrix and the degrees-of-freedom parameter.5

We then simulate 1, 000, 000 realizations from the model and apply the estimator described

in equation (30).

• estimation with time-varying copula: To account for potential time-variation in the conditional

correlation of the asset and factor returns, we estimate t copula models with a time-varying

correlation matrix. We implement a simplified version6 of the DCC-copula models proposed
4The t-copula is frequently applied in financial econometrics and risk management, see e.g. Jondeau and Rockinger

(2006) or Rosenberg and Schuermann (2006).
5This approach is, e.g., proposed by Christoffersen et al. (2012). Similar results are obtained when applying full

maximum likelihood estimation.
6To keep the rolling window estimations for our large panel tractable, we implement the approach based on the
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by Christoffersen et al. (2012) and Christoffersen and Langlois (2013). In particular, we

assume the following DCC-style (Engle, 2002; Aielli, 2013) dynamics for the copula correlation

matrix:

Ps+1 =
√

diag(Qs+1)
−1
·Qs+1 ·

√
diag(Qs+1)

−1
, (IA.10)

Qs+1 = Sc (1− αc − βc) + αc (Z̄s · Z̄
′
s) + βcQs (IA.11)

with Z̄s =
√

diag(Qs) · Zt. Sc is a positive definite (N + 1) × (N + 1)-matrix, αc, βc ∈ R

with αc ≥ 0, βc ≥ 0 and αc + βc < 1. Zs are the so-called (standardized) “copula shocks”

defined as zi,s =
√

νc−2
νc

qt(ui,s, νc), i = 1, . . . , N + 1, with νc denoting the degrees-of-freedom

parameter of the t copula and qt as the quantile function of a t distribution (Christoffersen

et al., 2012, p. 3718f).

We again use a combination of maximum likelihood estimation and moment matching to

determine the parameters of the specification given in the equations (IA.10) and (IA.11)

following Christoffersen et al. (2012). To obtain MCRASH forecasts, we simulate from the

copula model using the one-step ahead correlation forecast on the last day of our estimation

window and apply equation (30).

The copula representation of JCRASH shown in equation (17) can be derived as follows: Under

the continuity Assumption (A1) from Section 2, it holds that

P[Ri ≤ Qp[Ri], Xj1 ≤ Qp[Xj1 ], . . . , XjM ≤ Qp[XjM ]] = CRi,Xj1 ,...,XjM
(p, . . . , p), (IA.12)

symmetric t-copula instead of relying on an asymmetric t-copula model. Furthermore, we do not include a time-trend
in the correlation matrix given that we update our model parameters frequently with a rolling estimation window.
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and

P[Xj1 ≤ Qp[Xj1 ], . . . , XjM ≤ Qp[XjM ]] = CXj1 ,...,XjM
(p, . . . , p) (IA.13)

with CY denoting the copula function of the random vector Y . From the definition of JCRASH in

equation (16), we obtain

JCRASHXj1 ,...,XjM
i = P[Ri ≤ Qp[Ri] |Xj1 ≤ Qp[Xj1 ], . . . , XjM ≤ Qp[XjM ]] (IA.14)

= P[Ri ≤ Qp[Ri], Xj1 ≤ Qp[Xj1 ], . . . , XjM ≤ Qp[XjM ]]
P[Xj1 ≤ Qp[Xj1 ], . . . , XjM ≤ Qp[XjM ]] (IA.15)

=
CRi,Xj1 ,...,XjM

(p, . . . , p)
CXj1 ,...,XjM

(p, . . . , p) . (IA.16)

As for the parametric estimation of MCRASH, we apply rolling window estimations to determine

the copula parameters. More specifically, we again use a combination of moment matching and

maximum likelihood estimation based on the sample of probability integral transforms (ûs)s=1,...,250

for the relevant returns (Ri, Xj1 , . . . , XjM ). To evaluate (IA.16), we then rely on the well-known

representation of the t-copula in terms of the multivariate cdf and the univariate quantile functions

of the t-distribution, which we implement using the Matlab functions mvtcdf and tinv.7 Given

the low probability levels that we are interested in, we adjust the absolute error tolerance of the

multivariate cdf to 10−6 for the analyses with M ≤ 4 factors and to 10−8 for the specification with

M = 5 factors.

7The implementation of the multivariate cdf is based on Genz and Bretz (1999, 2002).
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