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Power Size Biased Two-Parameter Akash Distribution 

Khaldoon Alhyasat1, Ibrahim Kamarulzaman2, Amer Ibrahim Al-Omari3,  
Mohd Aftar Abu Bakar4 

ABSTRACT  

In this paper, the two-parameter Akash distribution is generalized to size-biased two-
parameter Akash distribution (SBTPAD). A further modification to  SBTPAD is introduced, 
creating the power size-biased two-parameter Akash distribution (PSBTPAD). Several  
statistical properties of PSBTPAD distribution are proved. These properties include the 
following: moments, coefficient of variation, coefficient of skewness, coefficient of kurtosis, 
the maximum likelihood estimation of the distribution parameters, and finally order 
statistics. Moreover, plots of the density and distribution functions of PSBTPAD are 
presented and a reliability analysis is considered. The Rényi entropy of PSBTPAD is proved 
and the application of real data is discussed. 
Mathematics Subject Classification: 62E10, 62F15. 
Key words: Akash distribution, two-parameter Akash distribution, size-biased distribution, 
moments, coefficient of variation, coefficient of skewness, coefficient of kurtosis, maximum 
likelihood estimation, entropy. 

1.  Introduction 

Recently, it has been noted that there has been an increasing interest in suggesting 
new flexible distributions for explaining and fitting data in different fields of science 
such as medicine, pharmacy, environment and so on. Many authors have introduced 
several types of new flexible distributions such as weighted distributions. The weighted 
distributions are quite flexible for model specification and data interpretation.  
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Fisher (1934) was the first who introduced the concept of weighted distributions. 
He studied how the verification methods can affect the form of the distribution of 
recorded observations. Also, see Rao (1965), Patil and Rao (1978), Gupta and Keating 
(1986), Gupta and Kirmani (1990), and (Oluyede 1999).  

For a non-negative continuous random variable Y with probability density 
function (pdf) ( )f y , the pdf of the weighted random variable wY  is defined as 

 
( ) ( ) ( ) ( )

( )
[ ( )]w

w

w y f y w y f y
f y

E w y 
  ,                                                                    (1) 

where ( )w y  is a non-negative weight function. A special case of Equation (1) arises 
when the weight function is ( )w y y . In this case the distribution is known as a size-
biased distribution of order   with pdf given by 

( )
( )

( )

y f y
f y

y f y dy



 



, 

where for 1   or 2, the resulting are known as the length-biased and area-biased 
distributions, respectively. 
 

Saghir et al. (2017) proposed several weighted distributions. A size biased Ishita 
distribution is introduced by Al-Omari et al. (2019) as a generalization of the Ishita 
distribution. Haq et al. (2017) proposed Marshall-Olkin length-biased exponential 
distribution. Al-Omari and Alsmairan (2019) suggested a length-biased Suja 
distribution as a modification of the Suja distribution, which is suggested by Shanker 
(2017). 

Shanker (2015) suggested a one-parameter Akash distribution (AD). Then, 
Shanker and Shukla (2017) generalized the AD to suggest a two-parameter Akash 
distribution (TPAD) with pdf  given by 

                               
3

2
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( ; , ) ,
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yf y y e   
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and a cumulative distribution function (cdf) defined as 
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The mean of TPAD is given by 
2

2

6
( ) .

( 2)
E Y


 


 


 

Abebe and Shanker (2018) suggested a discrete Akash distribution. Shanker et al. 
(2018) proposed a two-parameter Poisson-Akash distribution. Shanker et al. (2016) 
considered Poisson-Akash distribution. Shanker et al. (2018) proposed a generalized 
Akash distribution. Tesfalem et al. (2019) suggested a weighted Quasi Akash 
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distribution. Shanker (2016) suggested Qausi Akash distribution. Shanker and Shukla 
(2017) introduced the power Akash distribution. 

The main objective of this study is to add a more flexibility distribution for fitting 
real data in the field. This paper is organized as follows: in Section 2, the pdf and the cdf 
of SBTPAD and PSBTPAD are presented as well as the shapes of the distribution are 
illustrated for various parameters. In Section 3 we present some statistical properties of 
the PSBTPAD, including the rth  moment, mean, variance, coefficients of variation, 
skewness and kurtosis. Also, some simulations results are presented to illustrate these 
properties. The maximum likelihood estimators of the distribution parameters are 
derived in Section 4. The distributions of order statistics and reliability analysis are 
introduced in Section 5. An application of real data set is presented in Section 6 for 
illustration. Finally, the main results and some conclusions are provided in Section 7. 

2. Suggested distributions 

This section presents the pdf and cdf of the suggested distributions. A random 
variable Y  is said to have a size biased two-parameter Akash distribution (SBTPAD) if 
its probability density function is given by 

                 
 4 2

2
( ; , ) , 0, , 0,

6B
y

S TPAD

y
f y y

y
e  

   



  


                         (4) 

and a cumulative distribution function is in the form 
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2
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             (5) 

It is easy to derive the pdf given in Equation (4) by utilizing Equations (1) and the 
pdf of the TPAD given in (2),  with the mean of the TPAD.  
 

In this paper we modified the SBTPAD to a power size biased two-parameter Akash 
distribution (PSBTPAD) Taking the power transformation 1/X Y   in (4) a pdf of a 
random variable X  can be defined as  

 
4

2 1 2
2

( ; , , ) , 0, , , 0.
6PSBTPAD

xf x x x e x
        


    


                        (6) 

We would call the density in (6) as the power size biased two-parameter Akash 

distribution (PSBTPAD). It is easy to prove that 
0

( ; , , ) 1f x dx  


 .  

Shukla and Shanker (2018) proposed a power Ishita distribution. Ghitany et al. 
(2013) introduced power Lindley distribution. Al-Omari et al. (2019) proposed a power 
length-biased Suja distribution. The corresponding pdf of the PSBTPAD is 
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     is the incomplete Gamma function. The lower 

incomplete gamma function is 1

0
( , )

x
tx t e dt     . 

Figures 1 and 2 illustrate the shape of the pdf and cdf of the PSBTPAD for various 
values of the distribution parameters.   
 

 

Figure 1.  The pdf of PSBTPAD random variable X for 1,2,3,4,5  , 1.7   and 0.5   

 

 

Figure 2.  The cdf of PSBTPAD random variable X for 1,2,3,4,5  , 1.7   and 0.5   

 
Based on Figure 1, it can be seen that the PSBTPAD is asymmetric and skewed to 

the right. 
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3. Statistical properties 

This section presents the rth moment, mean, variance, coefficients of variation, 
skewness and kurtosis of the PSBTPAD. Also, some simulations for these properties are 
provided. 

3.1. Moments of the PSBTPAD 

Theorem 2: Let ~ ( ; , , )PSBTPADX f x    , then the rth  moment of X about the origin is 
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for 2 0, 0, 0, 1,2,3,..r r        

Proof: By the expectation definition of the rth moment we have 
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Based on Equation (8), it is simple to deduce the first, second, third and fourth 
moments of the BTPAD, respectively, as 
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where  2 6    . Hence, the variance of PSBTPAD is given by 
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3.2.  The coefficient of skewness 

The coefficient of skewness determines the degree of skewness of SBTPAD. It is 
given by: 

 

     

  

3/ 2 2 3

3/2

2/ 2
3 3

2 2

3 2
2 15 9 3 2 10 4 2

,
2

2 10 4

PSBTPADSk





    
 

  
 







                              
  

   

 




                    

   

(10) 

where  2 6     and   1
5 12 



          
 

  

3.3. The coefficient of kurtosis 

The coefficient of kurtosis measures the flatness of the distribution. The coefficient 
of kurtosis for PSBTPAD is defined as 
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3.4.  The coefficient of variation 

The coefficient of variation of the PSBTPAD is given by 
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  (12)  

where 0, 0.    

Theorem 2: Let ~ ( ; , , )PSBTPADX f x    , then the harmonic mean of X is 

 1/

1
( , , ) , 0,

21
2 5 1

H


    

 



  

              
 

.                (13) 

To investigate the behaviour of these measures, we calculate some values of 
, ,PSBTPAD PSBTPAD   ,PSBTPADCv PSBTPADSk  and PSBTPADKu  of the PSBTPAD for ( 5  ,

3  ), ( 5  , 7  ), for various values of   and the results are presented in Tables 
1 and 2, respectively. 

Table 1. The mean, variance, coefficients of variation, skewness and kurtosis for the SBTPAD 
distribution for some values of   with 5   and 3   

  PSBTPAD  PSBTPAD  PSBTPADCv  PSBTPADSk  PSBTPADKu  

1 0.736221 0.187730 0.254991 0.080619 2.79987 

1.1 0.733241 0.186927 0.254933 0.085470 2.80863 
1.2 0.730675 0.186195 0.254826 0.089115 2.81627 
1.3 0.728442 0.185527 0.254690 0.091850 2.82290 
1.4 0.726482 0.184916 0.254536 0.093889 2.82868 
1.5 0.724746 0.184356 0.254373 0.095393 2.83371 
1.6 0.723200 0.183842 0.254206 0.096480 2.83809 
1.7 0.721813 0.183368 0.254039 0.097241 2.84192 
1.8 0.720562 0.182931 0.253873 0.097745 2.84528 
1.9 0.719427 0.182527 0.253711 0.098047 2.84822 
2 0.718395 0.182151 0.253553 0.098188 2.85080 

2.1 0.717450 0.181802 0.253400 0.098202   2.85308 
2.2 0.716583 0.181477 0.253253 0.098113 2.85509 
2.3 0.715784 0.181173 0.253111 0.097944 2.85687 
2.4 0.715045 0.180888 0.252974 0.097711 2.85844 
2.5 0.714361 0.180621 0.252843 0.097426 2.85984 
2.6 0.713725 0.180370 0.252717 0.097102 2.86107 
2.7 0.713132 0.180134 0.252596 0.096747 2.86218 
2.8 0.712578 0.179912 0.252480 0.096368 2.86315 
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Table 2.  The mean, variance, coefficients of variation, skewness and kurtosis for the SBTPAD 
distribution for some values of   with 5   and 7   

  PSBTPAD  PSBTPAD  PSBTPADCv  PSBTPADSk  PSBTPADKu  

1 0.869614 0.098748 0.113554 -0.35893 3.12901 
1.1 0.868112 0.098522 0.113490 -0.35521 3.13229 
1.2 0.866818 0.098309 0.113413 -0.35250 3.13574 
1.3 0.865692 0.098109 0.113330 -0.35056 3.13918 
1.4 0.864704 0.097922 0.113244 -0.34918 3.14253 
1.5 0.863829 0.097748 0.113157 -0.34824 3.14572 
1.6 0.863049 0.097587 0.113072 -0.34761 3.14874 
1.7 0.862350 0.097436 0.112989 -0.34725 3.15158 
1.8 0.861719 0.097296 0.112909 -0.34707 3.15424 
1.9 0.861147 0.097165 0.112832 -0.34705 3.15673 
2 0.860626 0.097042 0.112758 -0.34714 3.15906 

2.1 0.860150 0.096928 0.112687 -0.34732 3.16123 
2.2 0.859713 0.096821 0.112620 -0.34757 3.16326 
2.3 0.859310 0.096720 0.112555 -0.34787 3.16515 
2.4 0.858938 0.096625 0.112494 -0.34821 3.16693 
2.5 0.858593 0.096536 0.112435 -0.34859 3.16859 
2.6 0.858272 0.096452 0.112380 -0.34899 3.17015 
2.7 0.857973 0.096373 0.112326 -0.34940 3.17162 
2.8 0.857693 0.096298 0.112275 -0.34982 3.17300 

 
From Tables 1- 3 we can conclude the following: 

1. For fixed values of  , the values of PSBTPAD  and PSBTPADKu  of the PSBTPAD 
decrease as the values of   increase. 

2. The PSBTPADCv  values are about 0.25 when 5   and 3  , and it is about 0.11 
when 5   and 7  . 

3. The PSBTPADSk  values are about 0.098 for all the parameter values in Table 1 and 
about -0.35 in for the parameters in Table 2. This indicates that the shape of the 
PSBTPAD depends on the parameter values. 

4. Maximum likelihood estimation 

Let 1 2, ,..., nX X X  be a random sample of size n  from PSBTPAD with parameters 
0  , 0   and 0.  The maximum likelihood estimators for the parameters of 

PSBTPAD can be derived based on the likelihood function as 
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Then, the log likelihood function is given by 
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Take the derivative of Equation (14) with respect to ,   and , respectively, as 
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Since there is no closed form solutions for the above system of equations, the MLEs 

of the PSBTPAD parameters  , ,  and   denoted as ̂ ,̂  and ˆ ,  respectively, can 

be obtained by solving the equations  , ,
0

lnL   






,  , ,

0
lnL   
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 , ,
0
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 numerically.  

5.  Order statistics and reliability analysis 

Let 1 2, , ... mX X X  be a random sample of size m  from the power size biased two-
parameter Akash distribution. Also, let (1: ) (2: ) ( : ), ,...,m m m mX X X  denote the 
corresponding order statistics of the sample. The probability density function of the ith 
order statistic ( : )i mX  for 1 i m   is 

                   1

( : )
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( ) ( ) 1 ( ) ( ).
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i m i
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By substituting the pdf and cdf of the PSBTPAD in Equation (18), the pdf of ( : )i mX  
is given by 
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Based on Equation (19) the pdfs of smallest order statistic, (1: )mX  and largest order 

statistic, ( : )m mX , are respectively, given by 
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The reliability and hazard rate functions of the PSBTPAD random variable are 

given by 
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Figure (3) shows the reliability and hazard rate functions of the PSBTPAD with 
1,2,3,4,5  , 1.7   and 0.5  .  
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Figure 3.  The reliability and hazard rate functions PSBTPAD for 1,2,3,4,5  , 1.7   and 

0.5  . 

 
Figure (3) shows that the plots of the reliability and hazard rate functions of the 

PSBTAD are decreasing functions. 
 

The reversed hazard rate and odds functions of the PSBTAD, respectively, are 
defined as 
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Figure (4) represents the reversed hazard and odds functions of the PSBTPAD 

distribution with 1,2,3,4,5  , 1.7   and 0.5  .  
 

  
Figure 4. The reversed hazard and odds functions of the PSBTPAD for 1,2,3,4,5  , 1.7   

and 0.5  .  
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The mean residual life function is defined as 
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The Mills ratio of the PSBTAD is defined as 
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Plots of the Mills ratio of the PSBTAD are given in Figure (4) for various 
parameters. 
 

 

Figure 4. The Mills ratio of the PSBTPAD for 1,2,3,4,5  , 1.7   and 0.5   

6. Rényi Entropy 

The Rényi entropy (RE) of a random variable X  is a measure of variation of  

the uncertainty. The RE is defined as 
0

1
( ) log ( ) ,

1
RE f x dx



 
    

 0   and 

1  . The entropy can be used for performing a goodness fit test. For more about 



STATISTICS IN TRANSITION new series, September 2020 

 

85

entropy see, for example, Al-Omari and Zamanzade (2017, 2018) for goodness of fit for 
Laplace and logistic distributions, respectively; Zamanzade and Mahdizadeh (2017) for 
entropy estimation using ranked set sampling; Zamanzade (2014) for testing 
uniformity using new entropy estimators, and Zamanzade and Arghami (2011) for 
goodness-of-fit test with correcting moments of modified entropy estimator; Al-Omari 
and Haq (2019) for novel entropy estimators of a continuous random variables. 
 
Theorem 3: If ( ; , , )PSBTPADf xX    , the Rényi entropy of X is defined as   
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Proof: The Rényi entropy of the PSBTPAD can be obtained as  
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To investigate the behaviour of the PSBTPAD Rényi entropy, Tables 3 and 4 involve 

some Rényi entropy values of the PSBTPAD for some values of the distribution 
parameters.  
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Table 3. Rényi entropy values for the PSBTPAD with 2   , 9  and 2,3,...,46   

  ( )PSBTPADRE     ( )PSBTPADRE     ( )PSBTPADRE   
1 0.191233 17 0.037523 32 0.014837 
2 0.167737 18 0.034947 33 0.014018 
3 0.143430 19 0.032617 34 0.013246 
4 0.123293 20 0.030499 35 0.012515 
5 0.107162 21 0.028566 36 0.011823 
6 0.094186 22 0.026795 37 0.011167 
7 0.083608 23 0.025166 38 0.010544 
8 0.074857 24 0.023663 39 0.009951 
9 0.067515 25 0.022272 40 0.009387 

10 0.061276 26 0.020981 41 0.008849 
11 0.055914 27 0.019779 42 0.008336 
12 0.051260 28 0.018658 43 0.007845 
13 0.047184 29 0.017610 44 0.007376 
14 0.043585 30 0.016627 45 0.006928 
15 0.040386 31 0.015705 46 0.006497 

Table 4. Rényi entropy values for the PSBTPAD with 3  , 4  , 1.1  and 1,2,...,45   

  ( )PSBTPADRE     ( )PSBTPADRE     ( )PSBTPADRE   
1 0.56641 16 4.26337 31 5.36132 
2 1.11634 17 4.36373 32 5.41414 
3 1.62485 18 4.45843 33 5.46534 
4 2.03848 19 4.54806 34 5.51501 
5 2.37837 20 4.63313 35 5.56325 
6 2.66442 21 4.71409 36 5.61013 
7 2.91043 22 4.79132 37 5.65573 
8 3.12584 23 4.86514 38 5.70012 
9 3.31722 24 4.93583 39 5.74336 

10 3.48928 25 5.00366 40 5.78551 
11 3.64551 26 5.06884 41 5.82662 
12 3.78853 27 5.13158 42 5.86674 
13 3.92037 28 5.19205 43 5.90591 
14 4.04264 29 5.25040 44 5.94419 
15 4.15663 30 5.30678 45 5.98161 

Based on Table 3, we can say that the RE values approach zero for 2    and 
9  as   starts increasing from 2 up to 46. But from Table 4, the RE values are 

increasing as the values of   are increasing for fixed values of 3  , 4   and 
1.1 . 
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7. Application and goodness of fit  

In this section, the proposed PSBTPAD is applied to model data. We compare the fits 
of the PSBTPAD model with 
1)  Sushila distribution (SD) suggested Shanker et al. (2013): 
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xx
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2)  Akash distribution (AD) Shanker (2015): 
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3)  Size biased Akash distribution (SBAD): 
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4)  Two-parameters Akash distribution (TPAD) Shanker and Shukla (2017): 
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5)  Two-parameter quasi Akash distribution (TPQAD): 
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6)  Marshall-Olkin Esscher Transformed Laplace distribution (MOETL), Georgea and 
 Georgea (2013): 
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We considered  the negative maximized log-likelihood values (-MLL), Hannan-

Quinn Information Criterion (HQIC), Bayesian Information Criterion (BIC), Akaike 
Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC) and 
Kolmogorov-Smirnov (K-S) test statistic. These measures are defined as 

2
2 2 , 2 ,

1

in
AIC MLL i CAIC MLL

n i
     

 
 

2 ( )BIC MLL iLog n    and  2 ( )( 2 ) ,HQIC ln ln n i MLL   
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where i  is the number of parameters and n  is the sample size. Also, the Kolmogorov-

Smirnov (KS) test is defined as ( ) ( ) ,n nKS Sup F x F x   where
1

1
( )

i

n

n x x
i

F x I
n 



   is 

the empirical distribution function and ( )F x  is the cumulative distribution function. 
In general, lesser values of the above measures indicate a better fit of the model to the 
data set. The data set  represent the strength data of glass of the aircraft window 
reported by Fuller et al. (1994). The data are as follows: 
 
18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.80, 26.69, 26.77, 26.78, 
27.05, 27.67, 29.90, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 
37.09, 39.58, 44.045, 45.29, 45.381. 
 

Table 5. The -2LL, KS, P-value, AIC, CAIC, BIC, HQIC and the MLE based on the real data    

Model AIC CAIC BIC HQIC KS P-Value -2LL MLE 
AD 242.68 242.82 244.12 243.15 0.2987 0.0060 120.34 ̂  0.0971 
SD 256.48 256.91 259.35 257.42 0.3616 0.0004 126.24 ̂  0.1327 

SBAD 545.82 546.00 547.25 546.29 0.6472 3.4 e-13 271.91 ̂  0.1298 
        ̂  0.0086 

MOETL 278.57 279.00 281.44 279.51 0.4585 1.8 e-06 137.29 k̂  -0.0262 
        ̂  -1.2363 

TPAD 244.56 244.99 247.43 245.50 0.2902 0.0083 120.28 ̂   0.0959 
        ̂   0.3316 

TPQAD 238.77 239.20 241.64 239.70 0.4520 2.7 e-06 117.38 ̂  0.0904 
        ̂  11.7621 

PSBTPAD 215.84 216.72 220.14 217.24 0.1074 0.8295 104.92 ̂  0.0052 
        ̂  0.5914 
        ̂  1.9242 

Accordingly, the PSBTPAD is the appropriate model for fitting the data since it has 
the smallest values of AIC, CAIC, BIC, HQIC and KS with larger P-value as compared 
to the competitive models considered in this study. 

7. Conclusions 

In this paper, we proposed a new continuous distribution which generalizes the size 
biased two-parameter Akash distribution. The distribution is named  power size biased 
two-parameter Akash distribution. Various statistical properties of the PSBTPAD are 
derived and discussed such as the moments, coefficient of variation, coefficient of 
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skewness, coefficient of kurtosis and the distribution of order statistics. The model 
parameters are estimated using the maximum likelihood estimation procedure. Finally, 
the distribution is fitted to real data.  The new distribution is found to provide a better 
fit than its competitors used in this study. 
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