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Abstract

We propose a dynamic clustering model for uncovering latent time-varying group structures

in multivariate panel data. The model is dynamic in three ways. First, the cluster location and

scale matrices are time-varying to track gradual changes in cluster characteristics over time.

Second, all units can transition between clusters based on a Hidden Markov model (HMM).

Finally, the HMM’s transition matrix can depend on lagged time-varying cluster distances as

well as economic covariates. Monte Carlo experiments suggest that the units can be classified

reliably in a variety of challenging settings. Incorporating dynamics in the cluster composi-

tion proves empirically important in an a study of 299 European banks between 2008Q1 and

2018Q2. We find that approximately 3% of banks transition per quarter on average. Transi-

tion probabilities are in part explained by differences in bank profitability, suggesting that low

interest rates can lead to long-lasting changes in financial industry structure.

Keywords: dynamic clustering; panel data; Hidden Markov Model; score-driven dynamics;

bank business models.

JEL classification: G21, C33.
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Non-technical summary

This paper proposes a novel statistical model for studying time-varying group (cluster) struc-

tures in high-dimensional multivariate panel data. The statistical model is dynamic in multiple

ways. First, the cluster means and cluster scale matrices can be time-varying to track gradual

changes in cluster characteristics over time. Second, the units of interest can transition between

clusters, and can do so with time-varying transition probabilities. We demonstrate that the new

modeling framework is useful for allocating a potentially large number of units into a much smaller

number of approximately homogeneous groups in fairly complicated dynamic settings, while keep-

ing track of overall trends, group membership probabilities, and group transitions.

The statistical model is applied to study accounting data for 299 large European banks be-

tween 2008Q1 and 2018Q2, tracking their key accounting ratios through the 2008–2009 global

financial crisis, the 2010–2012 euro area sovereign debt crisis, as well as the relatively calmer

period between 2013 and 2018. Our sample is also characterized by a significant increase in post-

crisis financial regulation, the introduction of centralized supervision in some countries, increasing

competition from FinTech and BigTech firms, as well as declining and ultimately negative mone-

tary policy interest rates. Arguably, all these developments have put pressure on banks’ business

models and their profitability.

We stress three main empirical results. First, we interpret each cluster as identifying a certain

bank business model. We distinguish six business model groups (clusters) in the data: A) market-

oriented universal banks, B) international diversified lenders, C) fee-focused retail lenders, D)

international corporate lenders, E) domestic diversified lenders, and F) domestic retail lenders.

The similarities and differences between these groups are discussed in detail in the main text.

Second, we study which business model groups have become more or less popular over time.

In this regard, our cluster location estimates and bank transitions point in the same direction: since

the start of our sample, European banks i) have relied increasingly on fee income to lean against

impaired profitability from e.g. low interest rates and increased competition, ii) have become more

reliant on non-market (i.e., central bank and deposit) funding, and iii) have lent increasingly to

retail clients rather than corporate clients.

Third, we study whether bank business model transitions can be explained by differences in

cluster-specific point-in-time profitability measures. We find this to be the case. Differences in
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cluster-specific return-on-equity are a significant predictor of business model transitions. Banks

are more likely to move away from low-profitability groups and into high-profitability groups.

Vice versa, banks from high-profitability groups are less likely to transition into low-profitability

groups. To the extent that low bank profitability is caused by low monetary policy rates for some

groups of banks, this finding suggests that monetary policy can have long-lasting effects on banking

sector structure via business model transitions.
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1 Introduction

Clustering is one of the most frequently-used unsupervised statistical learning techniques, with

applications in marketing, psychology, sociology, medical sciences, and other fields; see e.g.

McLachlan and Peel (2000) and Aggarwal and Reddy (2014) for textbook treatments. Not until

recently, however, have these techniques been considered in economic contexts, where the mod-

els often need to account for dynamics in the data and potential model instabilities. For example,

banking supervisors routinely need to define peer groups to benchmark supervised banks’ risk pro-

visions, profitability, and capital buffers. Bank characteristics, however, can vary significantly over

time, for example owing to changes in financial regulation, information technology, and equilib-

rium interest rates. Some business models can then become less attractive, leading banks to adapt

their strategies and thus change peer groups (cluster membership). Clustering each cross section

of banks at each time in isolation is possible, but fraught with practical problems and, at best, sta-

tistically inefficient. Despite their obvious need, dynamic clustering models for multivariate panel

data in economics and finance are rare.

This paper proposes a new dynamic clustering model for studying time-varying group struc-

tures in multivariate and potentially high-dimensional panel data. The model is dynamic in mul-

tiple ways. First, the cluster means are time-varying to track gradual changes in group (cluster)

characteristics over time. The static parameters governing the evolution of the time-varying param-

eters can be made variable- and cluster-specific if this is preferred by the data at hand. Second, all

units can transition between clusters based on a Hidden Markov model (HMM). Third, the HMM’s

transition probabilities are time-varying and can depend on lagged (time-varying) cluster distances

and, potentially, additional conditioning variables. Our modeling framework proves useful for al-

locating a potentially large number of cross-sectional units with vector-valued measurements into a

much smaller number of approximately homogeneous groups, even in fairly complicated dynamic

settings, while keeping track of overall trends, cluster memberships, and transitions probabilities.

Intuitive filtering recursions are available for all time-varying parameters and each unit’s cluster

membership probabilities. Finally, the baseline model can also be extended to accommodate inac-
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tive states and non-Markovian transition behavior.

Our paper relates to the recent literature on panel models with group-specific heterogeneity pat-

terns, but it also differs from it in terms of scope and model formulation. A widely-regarded con-

tribution in this area is Bonhomme and Manresa (2015) who propose a group fixed effects model

which relies on variants of k-means clustering of observations in a first stage. Their main interest,

however, lies in the estimation of a set of structural coefficients. Similarly, Lin and Ng (2012) use

both threshold regressions and conditional k-means to estimate panel models with grouped het-

erogeneous slope coefficients. Ando and Bai (2016) extend these models by allowing for a factor

error structure and suggest an estimation procedure employing a penalty function proposed by Fan

and Li (2001). Su et al. (2016), on the other hand, study generalized linear models with grouped

coefficients, using a penalized likelihood approach, and Lu and Su (2017) provide a method for

determining the number of groups in that framework.

In contrast to the above models, our model does not include regressors for a single dependent

variable, but rather considers a vector of dependent variables. Instead of estimating the structural

coefficients in a regression set-up and predicting the outcome variable (which is generally the

goal of supervised learning), our main objective is to track and interpret group-specific parameter

dynamics in a multivariate location-scale setting. Therefore, it may be seen as a dynamic approach

to unsupervised learning for multivariate, potentially high-dimensional panel data. In contrast to

the papers above, we allow for switches in group membership over time.

In addition, our paper contributes to the literature on clustering methods with dynamic group

compositions, and to the literature on parameter heterogeneity in score-driven models with time-

varying parameters.1 Creal et al. (2014) study the dynamics of market-based credit ratings of

U.S. public companies, using a clustering approach with fixed categories and a Bayesian estima-

tion method. Catania (2019) considers a mixture model with dynamic group membership and

1We also build on an earlier literature on HMM models (see, for instance, Hamilton, 1989; Frühwirth-Schnatter and
Kaufmann, 2008; Hamilton and Owyang, 2012), but also depart from it by allowing all cluster transition probabilities
to depend on lagged cluster distances as well as additional conditioning variables. This is relevant for our empirical
application, but also non-trivial, given that all cluster location and scale matrix parameters vary over time, and a
parsimonious specification is needed to link the possibly high-dimensional matrix of state transition probabilities to
the lagged cluster distances and additional conditioning variables.
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time-varying parameters, and applies it to a large set of financial asset returns. In contrast to the

application used by Catania (2019), our banking data are observed over only a moderate number

of time points T , while the number of units N and the number of firm characteristics D are high.

Finally, we explicitly consider heterogeneity in the parameters that govern the (score-driven) dy-

namics of the cluster means. By contrast, most multivariate models with such dynamics use a

highly restrictive specification for the speed with which the time-varying parameters adjust, typi-

cally requiring all adjustment speeds to be the same; see for instance Opschoor et al. (2018) and

Lucas et al. (2019). This is increasingly untenable in higher-dimensional settings such as ours. In

contrast to these earlier models, we find that is empirically relevant to allow for different speeds of

adjustment in both the variable (D) and cluster (J) dimension.

Extensive Monte Carlo experiments suggest that our model is able to accurately classify units

into their respective true clusters at each time. It also recovers all relevant time-varying and static

parameters, despite the presence of cluster transitions. In our simulations, the cluster classification

is almost perfect for sufficiently large distances between the time-varying cluster means. As the

unconditional cluster distances decrease and transitions become more frequent, the share of correct

classifications decreases, but generally remains high. Allowing for heterogeneity in the cluster

mean updating parameters improves the performance of our model. The gains are particularly

large if the variables in the model differ with respect to their signal-to-noise ratios. Finally, we

compare our method with the hierarchical clustering method of Ward (1963), which is frequently

used in the empirical literature on bank business model transitions (Roengpitya et al., 2017; Ayadi

et al., 2020). We find that the new model achieves higher classification and filtering accuracy

across all settings considered.

We apply our modeling framework to a multivariate panel of accounting data for N = 299

European banks between 2008Q1 and 2018Q2, i.e. over T = 42 quarters, considering D = 12

bank-level variables. We thus track bank data through the 2008–2009 global financial crisis, the

2010–2012 euro area sovereign debt crisis, as well as the relatively calmer post-crises period be-
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tween 2013 and 2018.2 Our sample is characterized by a significant increase in post-crisis financial

regulation, the introduction of centralized European Central Bank supervision, increasing com-

petition from FinTech and BigTech firms, as well as declining and ultimately negative monetary

policy interest rates. All these developments have put significant pressure on banks’ business mod-

els, forcing them to adapt to changes in the external environment. While banks can reasonably be

assumed to adhere to a single business model over a more limited time span (Lucas et al., 2019),

this assumption becomes increasingly difficult to defend as the sample size T grows to comprise

more than a decade of data.

We identify six business model groups (clusters) from banks’ accounting data, and highlight

two main empirical results. First, business model popularity changed over time. Two busi-

ness model clusters (international diversified lenders and domestic retail lenders) grew in pop-

ularity, one remained approximately stable (fee-focused retail lenders), and the remaining three

sank (market-oriented universal banks, international corporate lenders, and domestic diversified

lenders). Overall, our transition estimates and cluster location estimates point in the same direc-

tion: since the start of our sample, European banks have relied increasingly on fee income to lean

against impaired profitability from e.g. low interest rates and increased competition, have become

more reliant on non-market (i.e., central bank and deposit) funding, and have lent increasingly to

retail clients rather than corporate clients. These industry trends are broadly in line with policy

discussions in e.g. ECB (2016) and Ayadi et al. (2020).

Second, we find that bank business model transitions are in part explained by differences

in cluster-specific point-in-time profitability measures. Differences in cluster-specific return-on-

CET1-equity are a significant predictor of business model transitions. Banks are more likely to

move away from low-profitability groups and into high-profitability groups, and banks from high-

profitability groups are less likely to transition into low-profitability groups. To the extent that

low bank profitability is caused by low monetary policy rates for some groups of banks (Brunner-

meier and Koby, 2019; Heider et al., 2019), this finding suggests that monetary policy can have

2Computer code illustrating our dynamic clustering model, as well as the cluster membership probabilities for our
sample of European banks, is available at www.gasmodel.com/code.htm.
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long-lasting effects on financial industry structure via bank business model transitions.3

We proceed as follows. Section 2 presents our observation-driven dynamic clustering model.

Section 3 discusses the outcomes of a variety of Monte Carlo simulation experiments. Section

4 applies the model to European financial institutions. Section 5 concludes. A Web Appendix

provides further technical and empirical results.

2 Dynamic clustering model

2.1 Markov chain cluster transitions

We study the dynamic clustering of multivariate panel data yit ∈ RD×1, where yit is a vector

containing characteristics d = 1, . . . , D for unit i = 1, . . . , N at time t = 1, . . . , T . Each unit

belongs to one cluster j at each time point t, for j = 1, . . . , J clusters. Unit i’s cluster membership

at time t is described by the latent process cit, where cit = j if unit i belongs to cluster j at time t.

We model the multivariate data yit by the location-scale mixture model

yit = µcit,t + εit, εit|cit
i.i.d.∼ t (0,Σcit,t, νcit) , (1)

where µcit,t is a D × 1 vector of cluster-specific means, and εit is a D × 1 vector of Student’s t-

distributed error terms characterized by a zero mean, a (possibly time-varying) and cluster-specific

D × D scale matrix Σcit,t, and degrees-of-freedom parameter νcit for unit i at time t, and where

the latent state variable cit is driven by an underlying Markov chain. The multivariate Student’s

t distribution encompasses the special case of the multivariate normal distribution, for which we

can set ν−1cit = 0. Further extensions of (1) can include skewed distributions such as in Lucas et al.

(2014, 2017).

We model the transitions from one cluster to the next by a Hidden Markov Model (HMM); see

3Financial structure, in turn, has been linked to a variety of issues including economic growth and risk (Popov and
Manganelli, 2015), innovation and economic dynamism (Cavalleri et al., 2019), and the ability to fund green initiatives
combating climate change (De Haas and Popov, 2021).
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e.g. Goldfeld and Quandt (1973), Hamilton (1989), Bhar and Hamori (2004), Fruehwirth-Schnatter

(2006), and Bazzi et al. (2017). The latent (hidden) states cit evolve over time as characterized by

the HMM’s transition dynamics. There are as many Markov Chains as there are units i = 1, . . . , N ,

all of which are (conditionally on past data) independent. The transition probabilities are restricted

to be the same across units. The Markov property implies that the next state depends only on the

current state, i.e.

P {ci,t+1 = j|cit, ci,t−1, . . . , ci1} = P {ci,t+1 = j|cit} .

We introduce the short-hand notation πjkt := P {ci,t+1 = k|cit = j}, where πjkt does not depend

on i and denotes the possibly time-varying probability of transiting from state j to state k at time t.

The J × J HMM transition matrix Πt contains the transition probabilities 0 ≤ πjkt ≤ 1 for

j, k = 1, . . . , J at time t. The transition probabilities are common to all units i = 1, . . . , N . We

require the rows of Πt to sum to one, i.e.,
∑J

k=1 πjkt = 1 for all j = 1, . . . , J . We assume the

transition probabilities πjkt vary over time as a function of the time-varying distances between the

clusters at time t− 1. In particular, the transition matrix can be specified as

Πt = Πt (Dt−1) , (2)

where Dt is a J × J matrix with elements djkt, where djkt denotes the distance between cluster

j and cluster k at time t. For example, it is often natural to assume that a unit’s transition from

one cluster to another is less likely when the clusters are further apart. Conversely, transitions

between nearby (neighboring) clusters may be more likely. The off-diagonal elements of Πt are

then decreasing in djkt. If two or more clusters are close to each other or even overlapping at time

t− 1, then specification (2) may not work well. In such cases (2) can be adapted to, for example,

Πt = Πt

(
D̃t−1

)
, D̃t−1 = λDt−1 + (1− λ)D̃t−2, (2′)

where 0 < λ ≤ 1 is a smoothing parameter to be estimated or chosen ex-ante.

ECB Working Paper Series No 2577 / July 2021 9



To avoid an undue increase in the number of parameters, we parsimoniously model the transi-

tion probabilities as

πjkt =
exp

(
−γd̃jk,t−1

)
ΣJ
q=1exp

(
−γd̃jq,t−1

) for j, k = 1, . . . , J, (3)

where the scalar parameter γ indicates the rate of decay of the transition probabilities in terms of

the cluster distances, and d̃jk,t−1 is an element of D̃t−1. The numerator in (3) is equal to one if

j = k, regardless of γ. A higher value for γ leads to lower values of exp
(
−γd̃jk,t−1

)
for j 6= k,

and therefore to lower transition probabilities and to fewer implied transitions. Vice versa, a lower

value for γ leads to higher transition probabilities. Finally, the multinomial specification in (3)

ensures that the elements of Πt are positive and its rows sum to one by construction. As a result,

the matrix Πt need not be symmetric despite the symmetry of the distance measure djk,t−1.

To measure cluster proximity we adopt the distance metric

djkt =

√
(µjt − µkt)′Σ

−1
t (µjt − µkt), (4)

where Σt = J−1
∑J

j=1 Σjt.4 The Euclidian distance between µjt and µkt is a special case of

(4), and is obtained by setting Σt = ID. As a result of scaling by Σt, however, cluster distances

become invariant to alternative ways of scaling the input variables yit. In addition, variables that

are less correlated with the others then receive more “weight” in the distance metric. This is often

desirable in economic contexts.

2.2 Conditional cluster membership probabilities

In this section we derive a filtering equation for the filtered conditional probability τij,t|t := P[cit =

j|Ft;θ], where τij,t|t denotes the probability that unit i belongs to cluster j at time t given the

4Alternatively, the distance function d∗jkt = [(Σ
−1/2
jt µjt−Σ−1/2kt µkt)

′(Σ
−1/2
jt µjt−Σ−1/2kt µkt)]

1/2 could be used,
particularly in settings where the scale matrices differed substantially across clusters. We use (4) in our empirical work
since it is numerically more stable and slightly faster to compute.
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information set Ft = {yt, yt−1, . . . , y1} containing the observations up to time t. The vector θ

contains the static parameters of the model that need to be estimated; see Section 2.5.

We start by considering the log-likelihood contribution of observation yit,

`it = log f (yit|Ft−1;θ) = log

(
J∑
j=1

τij,t|t−1f (yit|cit = j,Ft−1;θ)

)
(5)

where f (yit|cit = j,Ft−1;θ) is the density of yit in cluster j, and τij,t|t−1 := P[cit = j|Ft−1;θ] is

the predicted conditional probability that unit i belongs to cluster j at time t given Ft−1. By the

Markov property the predicted conditional state probability τij,t|t−1 only depends on the previous

state and on elements of the transition matrix Πt. We use this property to update the cluster

probabilities as

τij,t+1|t = P[ci,t+1 = j|Ft;θ] =
J∑
k=1

πkjt P[cit = k|Ft;θ] =
J∑
k=1

πkjt τik,t|t. (6)

Using a standard Bayes argument, the filtered cluster probabilities are determined by

τij,t|t = P[cit = j|Ft;θ] =
τij,t|t−1f(yit|cit = j,Ft−1;θ)

f(yit|Ft−1;θ)

=
τij,t|t−1f(yit|cit = j,Ft−1;θ)

τi1,t|t−1f(yit|cit = 1,Ft−1;θ) + . . .+ τiJ,t|t−1f(yit|cit = J,Ft−1;θ)
.

(7)

The updating equations (6) – (7) are effectively Hamilton (1989)’s filter applied to our model. The

filtered cluster probabilities τij,t|t update the predicted cluster probabilities τij,t|t−1 by using the

time t observation yit and its likelihood of coming from cluster j’s density f(yit|cit = j,Ft−1;θ),

normalized by the unconditional data density f(yit|Ft−1;θ). This is intuitive: if τij,t|t−1 f(yit|cit =

j,Ft−1;θ) is high compared to τik,t|t−1 f(yit|cit = k,Ft−1;θ) for k 6= j, then yit is more likely

to come from cluster j than from cluster k, and the filtered cluster probability τij,t|t increases

accordingly. Otherwise the filtered cluster probability is adjusted downward. We can use the

filtered cluster probabilities τij,t|t or their predicted counterparts τij,t|t−1 to assign each observation

i at time t to a specific cluster j. For example, we may assign unit i to the cluster j∗ for which the
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filtered cluster probability is maximal, i.e., j∗ = arg maxj τij,t|t.

2.3 Time-varying cluster mean and scale matrix parameters

Time-variation in location and scale parameters is modeled following the score-driven approach as

introduced by Creal et al. (2013) and Harvey (2013). We impose further parsimony by using the

exponentially weighted score-driven dynamics of Lucas and Zhang (2016). The mean and scale

matrix transition equations presented here are identical to those in Lucas et al. (2019), to which we

refer for details.

For the time-varying means, we specify

µj,t+1 = µjt +A1Sµjt,t ·∇µjt,t, (8)

where the diagonal matrix A1 = A1(θ) depends on the vector of unknown static parameters θ,

Sµjt,t is a scaling matrix, and the score ∇µjt,t is the first derivative of the log-density of yit with

respect to µjt. In our case, the score is given by

∇µjt,t =
∂`t
∂µjt

=
N∑
i=1

∂

∂µjt
log

(
J∑
j=1

τij,t|t−1f (yit|cit = j,Ft−1;θ)

)

=
N∑
i=1

τij,t|t ·
∂

∂µjt
log f (yit|cit = j,Ft−1;θ) =

N∑
i=1

τij,t|t ·∇(i)
µjt,t, (9)

where ∇(i)
µjt,t = ∂ log f (yit|cit = j,Ft−1;θ) /∂µjt is unit i’s contribution to the score of mixture

component j. For our case of a mixture of Student’s t distributions,

∇(i)
µjt,t = wijt ·Σ−1jt (yit − µjt) , (10)

where the robustness weight wijt = (1 + ν−1j D)
/(

1 + ν−1j (yit − µjt)′Σ−1jt (yit − µjt)
)
→ 1 as

ν−1j → 0. As a closed-form expression for the conditional Fisher information matrix of µjt is not

ECB Working Paper Series No 2577 / July 2021 12



available, we follow Lucas et al. (2019) and use

Sµjt,t =

(
N∑
i=1

τij,t|t · E
[
∇(i)

µjt,t

(
∇(i)

µjt,t

)′ ∣∣∣∣ cit = j

])−1
(11)

to correct for the score’s curvature. The scaling matrix Sµjt,t is the inverse of the weighted average

of each unit’s contribution to the conditional Fisher information matrix of regime j, weighted by

the filtered probabilities τij,t|t. Combining (10) and (11), we have

µj,t+1 = µjt +A1

∑N
i=1 τij,t|t · wijt · (yit − µjt)∑N

i=1 τij,t|t
, (12)

where we refer to Lucas et al. (2019) and Web Appendix A.1 for further details. The transition

equation (12) is highly intuitive: the cluster means are updated by the prediction errors of their

respective clusters, accounting for the posterior probabilities that an observation was drawn from

that same cluster. For example, if the posterior probability τij,t|t indicates that observation yit

comes from cluster j with negligible probability, then the update ofµjt is unresponsive to yit−µjt.

The weight wijt provides the parameter paths with a robustness feature: observations yit that are

outlying given the fat-tailed nature of the Student’s t density receive a reduced impact on the

location and volatility dynamics by means of a lower value for wijt.

Similarly, the transition equation for the time-varying cluster scale matrices Σjt is given by

Σj,t+1 = Σjt +A2

∑N
i=1 τij,t|t

[
wijt (yit − µjt) (yit − µjt)′ −Σjt

]∑N
i=1 τij,t|t

, (13)

where we refer to Web Appendix A.2 for the derivation. Again, the transition equation is highly

intuitive: the components of the scale matrix are updated by the difference between the outer

product of the prediction errors and the current scale matrix for that cluster, weighted by the filtered

probabilities that the observation was drawn from that same cluster. The weights wijt ensure

that outlying observations yit have a reduced impact on the estimated dispersion of data points

associated to the respective cluster.
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To start the filtering recursions (12)–(13), we require intial values for µj1 and Σj1. In our

empirical application, we use the static clustering approach of Lucas et al. (2019) to first obtain

time-invariant cluster membership probabilities τij,1:T , and then obtain initial cluster means µj1

and cluster scale matrices Σj1 conditional on these τij,1|1 = τij,1:T ; see Web Appendix A.3 for

further details. Alternatively, an initialization can be obtained via the k-means algorithm using

only data from the first cross-section.

2.4 Extensions

This section considers three extensions to the baseline dynamic clustering model as presented thus

far. Our empirical study in Section 4 combines all these extensions. We first discuss parameter

heterogeneity across variables d = 1, . . . , D and/or clusters j = 1, . . . , J . We then allow for non-

Markovian transition dynamics. Finally, we incorporate additional explanatory variables to better

explain the Markov chain transition dynamics.

2.4.1 Parameter heterogeneity across variables and clusters

The transition equations (12) and (13) specify how the cluster means and cluster scale matrices

evolve over time. In the most parsimonious case, two scalar parameters determine by how much

the respective scaled scores are adjusted: A1 = a1 · ID and A2 = a2 · ID for scalars a1 and a2.

Such a parameterization may, however, be too restrictive for the data at hand. For example, the

means µdjt of some of the variables d = 1, . . . , D may vary more strongly over time than others.

Similarly, the mean vector may move more quickly for some clusters j than others, for instance if

some banks were subjected to stricter supervision than others. These plausible alternatives require

the introduction of additional heterogeneity in the score updates.

Focusing on the vectors of means µjt, we therefore use the updating equation

µj,t+1 = µjt +A1,j

∑N
i=1 τij,t|t · wijt · (yit − µjt)∑N

i=1 τij,t|t
, (14)
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where

A1,j = a1 · ID + diag
(
āD1 , . . . , ā

D
D

)
+ āJj · ID, j = 1, . . . , J. (15)

The additive structure in (15) is both flexible and parsimonious. The diagonal matrix containing

āDd for d = 1, . . . , D allows for different adjustment speeds across variables ydit. Similarly, āJj for

j = 1, . . . , J allows for different adjustment speeds across clusters. For identification, we need to

restrict two parameters in (15). Without loss of generality, we choose to set āD1 = āJ1 = 0. In our

application to European banks in Section 4, we find that allowing for heterogeneous adjustment

speeds as in (15) is empirically relevant.

2.4.2 Non-Markovian transitions

In some settings, economic reasoning suggests that cluster membership is persistent over time. For

example, we may expect banks’ business model choices to be highly persistent. Once a bank opts

for a different business model, it is very unlikely to revert back to the old business model the next

period. This economic reasoning, however, is not explicitly enforced in the current model set-up.

Particularly if two clusters are close at any particular moment in time, the probability of switching

from business model (cluster) 1 to 2 can be large. A period later, the probability of switching back

from 2 to 1 may then be large as well.

In order to better accommodate the persistence of business model choices, we can introduce

asymmetry in the model: once a bank has changed business model, it becomes ‘inactive’ for a

number of periods, meaning that it is not at risk of leaving its current state. Such behavior results

in non-Markovian transitions, as the probability of transiting from one business model to the next

no longer only depends on the current business model, but also on the fact whether or not there

was a business model change over the most recent periods. The advantage of this set-up is that it

can be accommodated without increasing the number of parameters. Let P denote the number of

periods that a firm is not at risk of changing business model after a business model change. We

introduce new states citp for p = 1, . . . , P , where cit,0 is our old state cit in which the bank is at

risk of transiting from state j to state k. We now model such a transition as a change from state
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j = (j, 0) to state (k, P ).5 For p > 0, only transitions occur from state (k, p) to state (k, p − 1).

For instance, if P = 2, and J = 2, we would get the extended transition probability matrix (from

row j to column k)

To state (k, p):

From state (j, p): (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)



π11,t 0 0 0 0 π12,t

1 0 0 0 0 0

0 1 0 0 0 0

0 0 π21,t π22,t 0 0

0 0 0 1 0 0

0 0 0 0 1 0


.

It is clear that the number of parameters is the same as in the benchmark model. The intuition for

the above transition matrix is as follows. If a bank starts with business model 1, it can migrate to

state (1, p = 0) with probability π11,t, and to state (2, p = 2) with probability π12,t. If it migrates

to state (2, p = 2), the next period it migrates to state (2, p = 1) with probability 1, and the period

after that to state (2, p = 0). Only in state (2, p = 0), the bank is at risk of a business model

migration again, namely with probability π21,t. If such a change hits, the bank would migrate to

state (1, p = 2) takes place. Then it again takes 2 periods to land via state (1, p = 1) into state

(1, p = 0), where the whole process can start anew. As P is chosen by the modeler, this set-up can

flexibly accommodate transition-free periods after an initial business model change and prevent

erratic, short-lived business model changes.

5A similar approach of extending the discrete state-space is found in the credit rating momentum literature (Lando
and Skødeberg, 2002; Christensen et al., 2004; Koopman et al., 2009), where ‘active’ states are introduced to model
a cascade of state switches. Here, by contrast, we introduce the opposite of ‘inactive’ states to prevent economically
unmeaningful switching behavior.
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2.4.3 Explanatory covariates

The cluster transition matrix Πt in (2′) could be related to explanatory covariates above and beyond

what is implied by lagged cluster distances. Fortunately, the transition probabilities (3) can be

extended to include contemporaneous or lagged variables as additional conditioning variables. For

example, banks in a low profitability cluster could have an incentive to leave that cluster. Vice

versa, banks from high profitability clusters could try to remain there, and not migrate to a lower-

profitability cluster; see e.g. Ayadi and De Groen (2015) and Roengpitya et al. (2017). Using

additional conditioning variables allows us to incorporate and test for such effects. Let xjkt denote

a vector of observed covariates that may have an impact on transition probability πjkt, and β a

vector of unknown coefficients that need to be estimated. The transition probabilities can then be

modeled as

πjkt =
exp

(
−γd̃jk,t−1 + β′xjk,t

)
ΣJ
q=1exp

(
−γd̃jq,t−1 + β′xjq,t

) for j, k = 1, . . . , J, (3′)

where γ and d̃jk,t−1 are defined below equation (3). The inclusion of covariates results in increased

asymmetry in the transition probability matrix. For instance, if the profitability difference between

clusters j and k is large and positive, the transition from j into k becomes less likely, whereas that

from k into j becomes more likely.

2.5 Parameter estimation

As the model is observation-driven, the log-likelihood is known in closed form as

L (θ|FT ) =
T∑
t=1

N∑
i=1

`it, (16)

with θ = {a1, āD2 , . . . , āDD, āJ2 , . . . , āJJ , a2, ν1, . . . , νJ , γ,β′}′, and where the log-likelihood contri-

bution `it is defined in (5). The evaluation of `it is easily incorporated in the filtering process for

the latent states.

The maximization of (16) can be carried out by any convenient numerical optimization method.
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In the context of our empirical study in Section 4, we observe that, when not allowing for param-

eter heterogeneity as introduced in Section 2.4.1, the log-likelihood surface can be quite irregular.

This is due to one parameter being then used to summarize a range of quite different adjustment

speeds. The log-likelihood surface becomes considerably more regular after allowing for parame-

ter heterogeneity.

3 Simulation study

3.1 Simulation design

This section investigates the ability of our dynamic clustering model to simultaneously (i) correctly

classify the units of interest into distinct clusters at each point in time, and (ii) recover the true

time-varying cluster mean trajectories. In all cases, we pay particular attention to the sensitivity

of the estimation approach and the filtering algorithm to the (dis)similarity of the clusters, the

intensity at which transitions take place, and the impact of allowing for heterogeneous dynamics.

Finally, we compare the performance of our method to the hierarchical clustering approach of

Ward (1963), which is frequently applied to panel data in the empirical finance literature on bank

business models.

We simulate from a mixture of dynamic bivariate normal densities. Specifically, we generate

two clusters located around two distinct, time-varying cluster means. These time-varying means

move along two (possibly overlapping) ellipses, starting from different positions, and in different

directions (clockwise and counter-clockwise), such that they move towards each other initially.

Consequently, the Euclidean distance between the means is not constant, which implies time-

variation in the transition probabilities. At each time t and for each of the two clusters, the units are

generated using their respective cluster’s mean and a common time-invariant diagonal covariance

matrix. From one time point to the next, units can switch cluster according to the HMM structure

of the model. Key inputs into our simulations are the transition intensity parameter γ in (3), the

distance between the two ellipses’ centers, the entries of the scale matrix, and the sample sizes T
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Figure 1: Illustration of DGP: two clusters with time-varying means, at two distance settings

We simulate bivariate data D = 2 from two clusters J = 2. The two true time-varying means move in ellipses that
are generated by sinusoid functions. The time-varying cluster means evolve clockwise for one cluster, and counter-
clockwise for the other, implying time-variation in cluster distance and transition probabilities. Each cluster starts on
different parts of their ellipse, such that their means do not overlap, even when the trajectories cross, as in panel (b).

(a) dist= 8

t = 0

t = 0

(b) dist= 4

t = 0

t = 0

and N . An illustration of the DGP can be found in Figure 1, for two distance settings.

Heterogeneity across variables and clusters is introduced in two ways. First, using ellipses

stretched in different directions, as opposed to circles, implies that the cluster means evolve in

different step sizes for each dimension and therefore have different adjustment speeds. Second, by

stretching the ellipses along different directions, such that one is “lying down” while the other is

“standing up”, the two clusters differ from each other. Third, we introduce different signal-to-noise

ratios by defining the scale matrices as Σ = diag (1, σ2
2) when generating the data. We examine the

tracking and classification performance of our method under a homogeneous version of the mean

transition equation (8), in whichA1 = a1 · I2, and a heterogeneous one, whereA1 = diag (a11, a
2
1);

see Section 2.4.1.

We consider two choices for the transition parameter γ ∈ {0.25, 0.5}, and two choices for

the distance between the centers of the two ellipses, dist ∈ {4, 8}. The variance of the second

variable is chosen as σ2
2 ∈ {1, 8}, so that we either have an identity covariance matrix, or a low

signal-to-noise ratio for the second variable. The ellipses have radii 2 and 4, so that the trajectories

of the two time-varying means intersect twice in the case of the smaller distance. This makes
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cluster identification more challenging. The sample sizes are chosen approximately in line with

the empirical application with T = 40 and N = 200, with 100 units in each cluster at time t = 1.

The number of clusters is fixed at J = 2. Finally, to prevent too many switches, especially when

the cluster means are close to each other, we set the distance smoothing parameter λ in (2′) to 0.1

for all simulations. The transition probabilities πjkt are time-varying as they depend on the past

distances between the two clusters; see equation (3).

We are particularly interested in two issues. First, we examine the impact of allowing for

parameter heterogeneity on the performance of the method. If the signal-to-noise ratio is low

for one variable (which is the case when its variance is high), the mean update is likely to be

slower, which may imply a smaller estimate of a21 in the version with heterogeneous parameters

A1 = diag (a11, a
2
1). Imposing A1 = a1 · I2 may then lead to a decrease in accuracy. Second, the

lower γ, and the smaller the distance between the two clusters, the more cluster transitions occur

and the more informative the data are about such transitions. We expect that more frequent tran-

sitions should increase the precision with which γ can be estimated. On the other hand, however,

many transitions may make it harder for the model to correctly classify each unit. Initial cluster pa-

rameters and allocations are obtained from k-means clustering; see e.g. Hartigan and Wong (1979)

for details.

3.2 Simulation results

Table 1 presents the results. The left panel (“Homogeneous A1”) refers to the model specifica-

tion with A1 = a1 · I2, while the center panel (“Heterogeneous A1”) refers to the more flexible

specification withA1 = diag (a11, a
2
1).

When the distance is large (dist = 8), both model specifications perform very well. We ob-

serve a slightly better tracking error for the mean when using the heterogeneous specification and

σ2
2 = 8, as indicated by the lower average mean squared error (MSE), but approximately the same

classification performance. When the distance is reduced to 4, the classification problem becomes

harder and the heterogeneous A1 achieves a considerably better mean tracking performance. A
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Table 1: Simulation outcomes
We report average parameter estimates (γ̂), average percentage of correct classification (%C), average mean squared
errors (MSE) for time-varying cluster means, and log-likelihood (LL). Results are presented for the homogeneous
(A1 = a1 · I2) and heterogeneous (A1 = diag

(
a11, a

2
1

)
) cases of equation (8). The rightmost panel displays the results

of the hierarchical clustering method of Ward (1963) as a benchmark. The sample size is N = 200 and T = 40.
The transition intensity parameter γ determines the frequency of transitions; lower values of γ imply a higher number
of transitions in expectation. Higher σ2

2 translates to stronger parameter heterogeneity and thus a better comparative
performance of the heterogeneous A1. The distance between ellipse centers measures the distinctiveness of clusters.
Each setting is simulated 250 times.

HomogeneousA1 HeterogeneousA1 Hierarchical
dist. σ2

2 γ γ̂ %C MSE LL γ̂ %C MSE LL %C MSE
4 1 0.25 0.246 0.947 0.141 -900.9 0.234 0.949 0.096 -898.8 0.729 2.161
4 1 0.50 0.470 0.963 0.091 -853.7 0.470 0.963 0.090 -853.4 0.727 2.211
4 8 0.25 0.326 0.776 0.757 -1072.5 0.314 0.781 0.616 -1069.7 0.665 4.474
4 8 0.50 0.582 0.826 0.447 -1036.2 0.561 0.830 0.307 -1034.0 0.674 4.251
8 1 0.25 0.246 0.998 0.083 -875.7 0.246 0.998 0.083 -875.5 0.883 0.796
8 1 0.50 0.493 0.999 0.083 -827.9 0.493 0.999 0.083 -827.7 0.882 0.802
8 8 0.25 0.263 0.990 0.169 -1071.6 0.263 0.991 0.144 -1069.8 0.894 0.871
8 8 0.50 0.537 0.995 0.165 -1024.9 0.536 0.995 0.141 -1023.1 0.898 0.834

lower unconditional distance between clusters implies that there is some overlap of the ellipses;

see Figure 1b. In the high-variance case, the heterogeneous model specification achieves a 30%

reduction in MSE. This is in line with expectations: The higher σ2
2 , the stronger is the difference in

signal-to-noise ratios for the two dimensions, and the more the model benefits from accommodat-

ing the different adjustment speeds across variables. The estimates of A1 differ visibly between

the heterogeneous and the homogeneous case if σ2
2 = 8; we refer to Figure B.1 in Web Appendix

B for more details.

Figure 2 shows plots of the filtered mean trajectories from all simulations for the case dist = 8,

σ2
2 = 8, and γ = 0.5 (corresponding to the last row of Table 1). The associated median and

quantiles (5% and 95%), calculated from the distances to the center of the ellipses, are reported

as well. The true paths (ellipses) are tracked accurately in either case. Even though Figure 2

does not correspond to one of the cases where the largest MSE reduction are achieved by using a

heterogeneous A1, the improvement is still visible: the point cloud in the left-hand panel forms a

tighter ring than the one in the right-hand panel. The quantiles are also closer together, showing

that the improvement is not driven only by outliers. Appendix B also illustrates other settings,

showing that the HMM method consistently achieves more precise mean estimates when A1 is
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Figure 2: Simulation results for dist. = 8, σ2
2 = 8, and γ = 0.5

The estimated time-varying means from all 250 simulations of this setting are plotted in different colors for each
cluster. The 5% and 95% quantiles, calculated from the distances to the center of the ellipses, are plotted as well.
Both versions of A1 achieve good tracking of the means, but the improvement afforded by the heterogeneous version
is clearly visible. The quantiles also sit more tightly together, showing that the effect is not driven by outliers.

heterogeneous.

Both classification and cluster mean tracking work better when γ is higher. This is intuitive, as

a higher value of γ = 0.5 leads to fewer cluster transitions, simplifying the classification problem.

The increased number of transitions associated with a low γ = 0.25 is only helpful for estimating

this particular parameter. We then obtain parameter estimates γ̂ that are closer to its true value.

The rightmost panel of Table 1 presents the outcomes for the hierarchical clustering method

of Ward (1963). This method is popular in the empirical literature on bank business models,

see, for instance, Ayadi and De Groen (2015), Roengpitya et al. (2017), and Ayadi et al. (2020),

where it is also applied to multivariate panel data. The hierarchical approach treats each bank-year

observation as cross-sectional, ignoring the ordering in time, and groups the entire sample, thereby

allowing for (implied) cluster transitions. We find that in all settings considered, the HMM method

clearly outperforms the hierarchical clustering method in terms of classification accuracy. It also

dramatically lowers the MSE, meaning that the time-varying means are recovered more precisely.
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4 Empirical application to bank business models

4.1 Data

Our sample consists of N = 299 European banks. We observe quarterly bank-level accounting

data from SNL Financial between 2008Q1 and 2018Q2, implying T = 42. We assume that differ-

ences in banks’ business models can be characterized along six categories: size, complexity, risk

profile, activities, geographical reach, and funding. These categories are approximately in line with

supervisory practices; see e.g. SSM (2016) and Farne and Vouldis (2017). We select a parsimo-

nious set of D = 12 indicators to cover these six categories. Specifically, we consider banks’ total

assets, leverage with respect to CET1 capital [size], net loans to assets ratio, assets held for trading,

derivatives held for trading [complexity], the ratio of market risk to credit risk [risk profile], share

of net interest income, share of net fees & commissions income, share of trading income, ratio of

retail loans to total loans [activities], ratio of domestic loans to total loans [geography], and the

deposits to assets ratio [funding].

Web Appendix C provides a detailed discussion of our data, including banks’ geographical

locations, data transformations, and SNL Financial field keys. We also discuss our handling of

missing observations.

4.2 Model selection

We chose the number of clusters J based on the analysis of cluster validation criteria and in

line with common choices in the literature. Distance-based cluster validation indices, such as

the Davies-Bouldin index (DBI), average silhouette coefficient (ASC), and the Hartigan rule (see

e.g. Peel and McLachlan, 2000) point to J = 5 or J = 6. In practice, experts consider between

four and up to more than ten different bank business models; see, for example, Ayadi et al. (2014),

SSM (2016), and Bankscope (2014, p. 299). The larger the number of groups, however, the harder

the results are to interpret. With these considerations in mind, in line with related literature, and to

be conservative, we choose J = 6 clusters for our subsequent empirical analysis.
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Table 2: Parameter estimates
Parameter estimates and cluster validation indices for different model specifications. Model M1 allows for time-
varying means and scale matrices but rules out transitions across groups (γ = 500). The initial clustering is obtained
as in Lucas et al. (2019). Model M2 allows for Markovian transitions across groups; see Section 2.1. Model M3
restricts M2 by ruling out transitory transitions that last less than five quarters by imposing P = 4 inactive states; see
Section 2.4.2. Model M4 allows differences in banks’ profitability (return-on-equity) between clusters to influence
the Markov chain transition probabilities Πt, in addition to lagged cluster distances; see Section 2.4.3. Finally, Model
M5 allows the A1 matrix parameters to differ across variables d = 1, . . . , 12 and clusters j = 1, . . . , 6; see Section
2.4.1. Standard errors in parentheses are constructed from the numerical second derivatives of the log-likelihood
function. Heterogeneity parameters āDd and āJj are reported in italics if significant at a 5% significance level. We set
āDsize = āJA ≡ 0 for identification. We also report two cluster validation indices: the Davis-Bouldin index (DBI; the
smaller the better), and the average Silhouette Coefficient (ASC; the larger the better).

M1 M2 M3 M4 M5
No Markovian non-Markovian non-Markovian non-Markovian

transitions transitions transitions transitions transitions
& covariate & covariate

& heterogeneity

a1 0.894 0.850 0.813 0.967 1.439
(0.02) (0.02) (0.03) (0.02) (0.11)

a2 0.998 0.998 0.993 0.998 0.999
(0.01) (0.01) (0.01) (0.01) (0.00)

ν 6.595 19.518 8.088 14.723 13.401
(0.07) (0.06) (0.06) (0.05) (0.08)

γ - 1.369 1.503 1.313 1.283
(0.01) (0.02) (0.02) (0.01)

β - - - -17.757 -13.908
(0.17) (0.26)

āDlev - - - - -0.250
āDcomp - - - - -0.392
āDrisk - - - - -0.192
āDact - - - - -0.595
āDgeo - - - - -1.018
āDfund - - - - -0.424
āJB - - - - 0.315
āJC - - - - 0.169
āJD - - - - 0.120
āJE - - - - 0.104
āJF - - - - -0.213
P - 0 4 4 4
DBI 3.14 2.94 2.93 2.92 2.74
ASC ×100 1.65 3.39 3.34 3.35 5.43
loglik 144,253.2 150,197.1 150,003.1 150,506.9 150,680.7
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Table 2 reports parameter estimates and several goodness-of-fit measures including the log-

likelihood value as well as DBI and ASC, for five different versions of our dynamic clustering

model. All specifications M1–M5 use the same initial cluster allocations, and thus also the same

initial values for all time-varying parameters. Initial cluster allocations τij,1|1 are obtained using

the static clustering approach with time-varying parameters of Lucas et al. (2019).6 We choose a

distance smoothing parameter as λ = 0.25; see (2′).7 In addition, all specifications are based on

mixtures of Student’s t distributions. This allows us to be robust to one-off windfall effects and

joint outliers in bank accounting ratios. We pool parameters A2 and ν across clusters and variables

following a preliminary data analysis.

Model M1 allows for time-varying means and scale matrices, but rules out transitions across

clusters (γ = 500). If the data generating process featured cluster transitions then model M1

would be misspecified. Any business model transitions would then result in observations that do

not match the static cluster assignments, and thus can be interpreted as outlying in this sense.

We note the low estimate for the degrees-of-freedom parameter ν ≈ 6.5, which may be partly

attributable to this effect, resulting in more probability mass in the joint tail of the Student’s t

densities (1).

Model M2 allows for Markovian transitions across clusters in line with (3). The log-likelihood

fit improves considerably as a result. The degrees-of-freedom parameter becomes less extreme as

well.

The nonlinear model M2 may have a tendency, however, to treat one-off accounting wind-

falls and joint outliers as short-lived cluster transitions. Such short-lived transitions are hard to

interpret economically as meaningful changes in business models. Model M3 restricts M2 by

ruling out transitory transitions that last a year or less by requiring P = 4 inactive states; see Sec-

tion 2.4.2. The decay parameter γ increases somewhat, indicating fewer (short-lived) transitions.

The degrees-of-freedom parameter ν decreases slightly to accommodate more frequent outlying

6Replacing τij,1|1 with filtered estimates from a first run, and subsequently re-estimating θ, leads to negligible
improvements in log-likelihood fit.

7The log-likelihood surface is fairly flat in λ, see Figure D.3 in Web Appendix D; we treat it as a tuning parameter
for this reason.
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observations. The insistence on inactive states is reflected in a drop in log-likelihood fit. The

improvement compared to the model without transitions (M1), however, is still strong.

Model M4 extends M3 by allowing for an additional explanatory variable to impact the transi-

tion probabilities Πt; see Section 2.4.3. We choose xjkt as the difference in probability-weighted

return-on-equity (ROE) of banks allocated to clusters j and k at time t. Specifically, we let

xjt ≡
∑N

i τ̂ij,t|t · ROEit/
∑N

i τ̂ij,t|t denote the filtered ROE for banks in cluster j at time t, where

τ̂ij,t|t corresponds to the estimated filtered cluster membership probability for bank i. Then xjkt :=

xjt − xkt denotes the differences in ROE between clusters j and k. These differences can now be

collected in a matrix Xt with typical element xjkt. The transition matrix Πt

(
D̃t−1,Xt

)
may now

become more asymmetric compared to Model M3. The coefficient β is highly significant and has

an intuitive interpretation: if a bank’s current cluster j has higher profitability than cluster k, that

bank is less likely to shift out of j into k and conversely, more likely to switch from k to j. The

log-likelihood increases by about 500 points from M3 to M4, and 300 points from M2 to M4.

Finally, Model M5 extends M4 by allowing for additional parameter heterogeneity in the score

updates for the cluster means, both in the variable (D) and cluster (J) dimension; see Section

2.4.1. This results in a further log-likelihood increase of about 175 points, suggesting that our

data are subject to significant parameter heterogeneity. The time-varying parameter paths implied

by Model M5 are visibly different from those implied by M1–M4 (not shown). The values of

the adjustment parameters āDd and āJj also are often intuitive. The largest negative coefficients

are for geographical concentration of the loan portfolio (geo), followed by share of retail loans

(act). More negative āDd coefficients imply lower rates of adjustment, which makes sense for these

bank variables, as banks’ physical location and distribution channels cannot easily be changed.

The cluster-specific adjustment coefficients āJj are also subject to significant heterogeneity, with

the lowest value taken for banks in group F. This group contains the smallest banks in our sample

(domestic retail lenders; see the discussion below), which continued to rely on traditional business

strategies and were subject to the least changes in financial supervision; see e.g. Nouy (2016).

Model specification M5 is not only strongly preferred in terms of log-likelihood fit, but also
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does well in terms of non-parametric cluster validation indices (DBI, ASC). We therefore select M5

for the remainder of our empirical analysis. Using this specification, we combine model parsimony

with the ability to explore a rich set of questions given the data at hand.

4.3 Group transitions and popularity

Using the empirical estimates, we distinguish six bank business model groups: (A) market-oriented

universal banks, including globally systemically important banks (G-SIBs) such as Barclays, Deutsche

Bank, and HSBC; (B) international diversified lenders, including large banking groups such as

Banco Santander, BBVA, and ING Group; (C) fee-focused retail lenders, which achieve most of

their income from fees and commissions despite lending almost exclusively to domestic retail cus-

tomers; (D) international corporate lenders; and the larger groups of smaller sized banks under the

labels (E) domestic diversified lenders and (F) domestic retail lenders. These labels are chosen in

line with the evolution of all time-varying means of the different variables and the identities of the

firms in each cluster. Our labeling is approximately in line with the examples given in SSM (2016,

p.10).

The HMM part of our dynamic clustering model allows us to study cluster transitions across

business model groups in detail. The top panel of Figure 3 reports the fraction of firms that are es-

timated to have transitioned to another cluster at each t between 2008Q2 and 2018Q2. A transition

here refers to a change in the most likely cluster. We do not observe an obvious time trend in tran-

sition intensity. Instead, the transition intensity is above-average during the global financial crisis

(2008), the euro area sovereign debt crisis (2011 – 2012), and, interestingly, is highest at the start

of centralized banking supervision within the European Central Bank’s Single Supervisory Mech-

anism (SSM) in the euro area (2014Q4). On average, approximately 3% of the N = 299 banks are

estimated to transition each quarter (horizontal red line in the top panel of Figure 3). In 2014Q4,

by contrast, more than 6% of banks are estimated to have transitioned across groups, suggesting a

strong response of European banks to stricter bank supervision (Ampudia et al., 2020).

The bottom left panel of Figure 3 reports the total number of transitions per firm i = 1, . . . , 299.
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Figure 3: Timing and histogram of cluster transitions
Top panel: black bars indicate the fraction of firms that are estimated to transition at each time t between 2008Q2 and
2018Q2. The red horizontal line indicates the average transition frequency. Bottom left panel: Number of transitions
per firm i = 1, . . . , 299. Bottom right panel: histogram of cluster transitions. A transition refers to a change in the
most-likely cluster (Bayes classifier).
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The bottom right panel of Figure 3 provides a histogram of firms’ transition counts. The total

number of transitions per firm range between 0 and 6. More than half of the banks never experience

any transition (54%). If a certain bank transitions more than a few times, then that bank may be

located between two or more clusters and may be hard to classify as a result.

Figure 4 plots the number of estimated transitions from cluster j (rows) to k (columns) at any

time. Most transitions take place between ‘nearby’ clusters, e.g. between A and B, B and D, D and

E, and E and F. Cluster C is relatively isolated, in that it receives relatively few in- and outflows.

Figure 5 shows the total number of banks allocated to each cluster over time. Clusters B

and F grow in popularity over time, while clusters A, D, and E shrink and cluster C remains

approximately stable. The observed trends are in line with large banks becoming less reliant on
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Figure 4: Cluster transitions and popularity
Number of transitions from cluster j (rows) to cluster k (columns) over time.
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market funding and scaling back trading activities (A → B), domestically-active banks lending

relatively more to retail clients rather than to corporate clients (D→ B; D→ F; E→ F), and banks

relying progressively more on more on fee income, possibly to lean against a lower profitability

from increasingly low interest rates (D→ C; D→ F). These industry trends are approximately in

line with the variable- and cluster-specific filtered means shown in Figure D.1 in Web Appendix

D, and with the discussions in e.g. ECB (2016) and Ayadi et al. (2020).

The cluster transitions underlying Figures 3 – 5 are in part explained by differences in bank

profitability across clusters; see Section 4.2. Web Appendix D.2 discusses the evolution of return-

on-equity (ROE) per bank cluster over time, where bank-specific ROEits are weighted by the

filtered probability that bank i belongs to cluster j at time t. ROE for European banks is usually

positive and varies between approximately -2% and 12% over time. Banks in cluster D (interna-

tional corporate lenders) are an exception in that their ROE turns negative at onset of the euro area
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Figure 5: Cluster transitions and popularity
The number of banks i allocated to cluster j = 1, . . . , 6 at each time t between 2008Q1 and 2018Q2.
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sovereign debt crisis in mid-2010, and remains negative until the end of the sample, adding to the

move out of D and into other business models, as indicated above.

5 Conclusion

We proposed a novel model for the dynamic clustering of multivariate panel data. The cluster

mean and scale matrices are time-varying to track gradual changes in cluster characteristics over

time. The dynamics are governed by parameters allowing for heterogeneity in the across vari-

ables and clusters. The model incorporates further flexibility by allowing the units of interest to

transition between clusters. This is accomplished by a Hidden Markov model (HMM) with time-

varying transition probabilities that are, in turn, related to lagged cluster distances and/or economic

variables.
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Our empirical study shows that the model, though complex, is computationally tractable as

well as sufficiently flexible to give new answers to a range of empirical questions in multivariate

panel data settings. Our results for a sample of 299 European banks between 2008Q1 and 2018Q2

suggest that banks’ transition intensity between clusters is related to differences in bank profitabil-

ity, particularly for international diversified lenders. This is in line with the notion that currently

low profitability entices banks to move out of their current business model and into more profitable,

‘nearby’ business models.
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A Derivation of the parameter updating equations

A.1 Time-varying mean dynamics

For the time-varying means, we specify

µj,t+1 = µjt +A1Sµjt,t ·∇µjt,t, (A.1)

where the diagonal matrix A1 = A1(θ) depends on the vector of unknown static parameters θ,

Sµjt,t is a scaling matrix, and the score ∇µjt,t is the first derivative of the log-density of yit with

respect to µjt. Starting with the score, and using the fact that τij,t|t−1 does not depend on µjt due to

the transition probability matrix Πt depending on the lagged cluster distances only as formulated

in equations (2) and (6), we have

∇µjt,t =
∂`t
∂µjt

=
∂
∑N

i=1 log f (yit|Ft−1;θ)

∂µjt
=

N∑
i=1

∂

∂µjt
log f (yit|Ft−1;θ)

=
N∑
i=1

1

f (yit|Ft−1;θ)
· ∂

∂µjt
f (yit|Ft−1;θ)

=
N∑
i=1

f(yit|cit = j,Ft−1)τij,t|t−1

f (yit|Ft−1;θ)
·

∂
∂µjt

f (yit|Ft−1;θ)

f(yit|cit = j,Ft−1)τij,t|t−1

=
N∑
i=1

τij,t|t ·
∂

∂µjt
f (yit|Ft−1;θ)

f(yit|cit = j,Ft−1)τij,t|t−1

=
N∑
i=1

τij,t|t ·
∂

∂µjt

∑J
j=1 τij,t|t−1f (yit|cit = j,Ft−1;θ)

f(yit|cit = j,Ft−1)τij,t|t−1

=
N∑
i=1

τij,t|t ·
∂

∂µjt

(
τij,t|t−1 · f (yit|cit = j,Ft−1;θ)

)
f(yit|cit = j,Ft−1)τij,t|t−1

=
N∑
i=1

τij,t|t ·
∂

∂µjt
log
(
τij,t|t−1 · f (yit|cit = j,Ft−1;θ)

)
=

N∑
i=1

τij,t|t ·
∂

∂µjt
log f (yit|cit = j,Ft−1;θ)

=
N∑
i=1

τij,t|t ·∇(i)
µjt,t.
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where ∇(i)
µjt,t = ∂ log f (yit|cit = j,Ft−1;θ) /∂µjt is the score of mixture component j associated

with observation yit. In case of a mixture of D-dimensional Student’s t distributions, we have

f (yit|cit = j,Ft−1;θ) =
Γ
(
νj+D

2

)
Γ
(νj

2

)
(πνj)D/2 |Σj|1/2

(
1 +

(yit − µjt)′Σ−1
jt (yit − µjt)
νj

)−(
νj+D

2
)

.

(A.2)

Taking derivatives of the log of (A.2) with respect to µjt, we obtain

∇(i)
µjt,t = wij,t ·Σ−1

jt (yit − µjt) , (A.3)

where

wij,t = (1 + ν−1
j D)

/(
1 + ν−1

j (yit − µjt)′Σ−1
jt (yit − µjt)

)
. (A.4)

Turning to the scaling matrix, as a closed form expression for the conditional Fisher informa-

tion matrix of µjt is not available, we use an approximation to account for the curvature of the

score, namely

Sµjt,t =

(
N∑
i=1

τij,t|t · E
[
∇(i)

µjt,t

(
∇(i)

µjt,t

)′ ∣∣∣∣ cit = j

])−1

(A.5)

Our scaling matrix thus takes the weighted average of the conditional Fisher information matrices

of each of the regimes j, weighted by their filtered posterior probability τij,t|t of observation yit
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coming from regime j. Using the fact that for the Gaussian case ν−1
j = 0 =⇒ wij,t = 1 we obtain

S−1
µjt,t

=
N∑
i=1

τij,t|t ·

(
−E

[
∂∇(i)

µjt,t

∂µ′jt

∣∣∣∣∣ cit = j,Ft−1;θ

])

=
N∑
i=1

τij,t|t · E
[
∇(i)

µjt,t

(
∇(i)

µjt,t

)′ ∣∣∣∣ cit = j,Ft−1;θ

]

=
N∑
i=1

τij,t|t · E
[
Σ−1
jt (yit − µjt)(yit − µjt)′Σ−1

jt

∣∣ cit = j,Ft−1;θ
]

=
N∑
i=1

τij,t|t ·Σ−1
jt E [(yit − µjt)(yit − µjt)′ | cit = j,Ft−1;θ] Σ−1

jt

=
N∑
i=1

τij,t|t ·Σ−1
jt Σjt Σ

−1
jt

=
N∑
i=1

τij,t|t ·Σ−1
jt , (A.6)

Inserting (A.6) and (A.3) into (A.1) yields the transition equation

µj,t+1 = µjt +A1Sµjt,t ·∇µjt,t

= µjt +A1

(
N∑
i=1

τij,t|t ·Σ−1
jt

)−1 N∑
i=1

τij,t|t · wij,t ·Σ−1
jt (yit − µjt)

= µjt +A1ΣjtΣ
−1
jt

(
N∑
i=1

τij,t|t

)−1 N∑
i=1

τij,t|t · wij,t · (yit − µjt)

= µjt +A1

∑N
i=1 τij,t|t · wij,t · (yit − µjt)∑N

i=1 τij,t|t
, (A.7)

where the weight wij,t = (1 + ν−1
j D)

/(
1 + ν−1

j (yit − µjt)′Σ−1
jt (yit − µjt)

)
.
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A.2 Time-varying scale matrix dynamics

The transition equation for the time-varying scale matrices Σjt is given by

vec(Σj,t+1) = vec(Σjt) +A2 SΣjt,t ·∇Σjt,t, (A.8)

where matrix A2 = A2(θ) depends on parameters to be estimated, SΣjt,t is a scaling matrix, and

∇Σjt,t is the score. The score dynamics are determined in the same way as for the time-varying

cluster means.

∇Σjt,t =
∂`t

∂vec(Σjt)
=
∂
[∑N

i=1 ln (f (yit|Ft−1;θ))
]

∂vec(Σjt)
,

where we can take the derivatives with respect to a general matrix Σjt rather than a symmetric

matrix. Using the arguments in Proposition 3 of Opschoor et al. (2018), this gives the same steps

for the free elements in Σjt.

The initial derivations follow the same steps as for the time-varying mean; see Web Appendix

A.1. Leaving these steps out, taking the log of (A.2) and omitting the terms that do not depend on

Σjt, we arrive at

∇Σjt,t =
N∑
i=1

τij,t|t ·

(
− ∂

∂vec(Σjt)
1
2
ln|Σjt|

− ∂

∂vec(Σjt)

[(
νj +D

2

)
ln

(
1 +

(yit − µjt)′Σ−1
jt (yit − µjt)
νj

)])
.

Following Abadir and Magnus (2005) for the derivative of the log of the determinant of the scale

matrix, and for the derivative of a matrix inside a quadratic form, and using vec(ABC) = (C ′ ⊗
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A)vec(B), we obtain

∇Σjt,t =
N∑
i=1

τij,t|t · vec
(
−1

2

(
Σ−1
jt

)′
+ 1

2

(
Σ−1
jt

)′
wij,t (yit − µjt) (yit − µjt)′

(
Σ−1
jt

)′)
=

N∑
i=1

τij,t|t · vec
(
−1

2

(
Σ′jt
)−1

+ 1
2

(
Σ′jt
)−1

wij,t (yit − µjt) (yit − µjt)′
(
Σ′jt
)−1
)

=
N∑
i=1

τij,t|t · vec
(
−1

2
Σ−1
jt + 1

2
Σ−1
jt wij,t (yit − µjt) (yit − µjt)′Σ−1

jt

)
= 1

2

N∑
i=1

τij,t|t · vec
(
Σ−1
jt

(
wij,t (yit − µjt) (yit − µjt)′ −Σjt

)
Σ−1
jt

)
= 1

2
(Σjt ⊗Σjt) ·

N∑
i=1

τij,t|t · vec
(
wij,t (yit − µjt) (yit − µjt)′ −Σjt

)
, (A.9)

where the robustness weight wij,t is defined in (A.4).

Next, we derive the scaling matrix, which we take as the weighted average of Fisher informa-

tion matrices given ν−1
j = 0 for all j. We have

S−1
Σjt,t

=
N∑
i=1

τij,t|t · E
[
∇Σjt,t∇′Σjt,t
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2
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,
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Inserting the score and the scaling matrix into (A.8) we obtain

vec(Σj,t+1) = vec(Σjt) +A2

(
1
2

N∑
i=1

τij,t|t ·
(
Σ−1
jt ⊗Σ−1

jt

))−1

×(
1
2

(Σjt ⊗Σjt) ·
N∑
i=1

τij,t|t · vec
(
wij,t (yit − µjt) (yit − µjt)′ −Σjt

))

= vec(Σjt) +A2

∑N
i=1 τij,t|t · vec

(
wij,t (yit − µjt) (yit − µjt)′ −Σjt

)∑N
i=1 τij,t|t

. (A.10)

Unvectorizing (A.10), we obtain the scale matrix transition equation

Σj,t+1 = Σjt +A2

∑N
i=1 τij,t|t

[
wij,t (yit − µjt) (yit − µjt)′ −Σjt

]∑N
i=1 τij,t|t

. (A.11)
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A.3 Initialization of the time-varying parameters

The cluster probabilities τij,1|1, the cluster means µj1, and the cluster scale matrices Σj1 need to be

initialized to start the filtering recursions. We can initialize by any cross-sectional clustering algo-

rithm, such as k-means (Hartigan and Wong, 1979), intelligent k-means (de Amorim and Hennig,

2015), or hierarchical agglomerative clustering (Ward, 1963). For this purpose we use data of t = 1

only, yi1 for i = 1, . . . , N . Any such algorithm allocates our N observations in D dimensions to

J clusters such that e.g. the within-cluster sum of squares is minimized. Alternatively, static clus-

tering approaches with time-varying parameters could be applied to all data t = 1, . . . , T , such as

e.g. approach proposed by Lucas et al., 2019).

The initial clustering algorithm provides the cluster probabilities τij,1|1. In the case of k-means,

or variants thereof, these probabilities are one for the assigned cluster, and zero for the remaining

clusters. Based on these initial cluster assignments, the initial cluster means µj1 equal the sample

average of yi1 for units i = 1, . . . , N for which τ kij,1|1 equals 1. The initialized scale matrices Σj1

are similarly determined as the empirical covariance of observations yi1 for units i assigned to

cluster j. If τij,1|1 ∈ (0, 1) for all i and j then probability-weighted averages over i can be used.

The initial τij,1|1 can be replaced by the filtered τij,1|1 from (7) once a first estimate of parameters

θ is available. Parameters θ can subsequently be re-estimated conditional on τij,1|1, µj1
(
τij,1|1

)
,

and Σj1

(
τi,1|1

)
to minimize the impact from the initialization procedure.
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B Additional simulation figures

The performance of our dynamic clustering method is consistently better when using a heteroge-

neous mean adjustment parameterA1, instead of a homogeneous one. However, the improvement

is particularly large if σ2
2 = 8. This is intuitive, as these settings imply stronger parameter hetero-

geneity. Figure B.1 demonstrates that indeed, it is for this setting that the estimated main diagonal

elements ofA1 differ the most from the common parameter a1 in the homogeneous case.

Figure B.2 presents the outcomes from ten simulation runs for each simulation setting. In

the high-variance cases, the estimated means are noticeably more scattered, and more so when

using an homogeneous A1. This difference is more subtle in the low-variance settings. Out of

the ten simulations, only once is an estimated mean grossly misplaced. This occurs for the most

challenging setting with a homogeneousA1 parameter, σ2
2 = 8, γ = 0.25, and dist. = 4 (the upper

Figure B.1: A1 parameter estimates in different simulation settings.
Settings where the parameter heterogeneity is strongest (σ2

2 = 8) see a departure in the estimates of A1 between the
homogeneous and heterogeneous cases. In these settings, the performance improvement afforded by an heterogeneous
A1 parameter is also the greatest.
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right corner plot in Figure B.2). When using a heterogeneous A1 the estimated means evolves

around the correct ellipse, even though the generated data are the same.

Figure B.2: Mean estimates from a sample of 10 simulations in each settings.
The time-varying means are well estimated in almost all cases, especially so when using an hetergogeneous A1.
Higher variance in the second variable makes the problem visibly more challenging. Nevertheless, only once we see
an estimated mean tracking the wrong ellipse.
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C Data details

We consider all banks at their highest level of consolidation (the bank holding group level). In

addition, however, we also include the largest subsidiaries of these bank holding groups if sufficient

data are available. Most banks are located in the euro area (55%) and the European Union (73%).

European non-E.U. banks (27%) in our sample are located in Norway and Switzerland, among

other countries. Banks that were acquired between 2008Q1 and 2018Q2, or ceased to operate for

other reasons during that time, are excluded from the analysis. Acquiring banks remain in the

sample, and can undergo a business model transition as a result.

Table C.1 lists our indicators d = 1, . . . , D used in our empirical clustering exercise. Our mul-

tivariate panel data is unbalanced. While many banks in our sample report at a quarterly frequency,

other banks report only semi-annually or annually. We remove such missing observations by sub-

stituting the most recently available observation for that variable and bank. Other ways of handling

missing values, for example through interpolation, have negligible effects on our clustering out-

comes and transition estimates, particularly when the econometric model allows for variable- and

cluster-specific adjustment speeds when updating the cluster means.

Approximately one in two banks in our sample (48%) reports quarterly, with the remainder

reporting semi-annually or annually (52%). It is mostly the large, listed banks that report at a

quarterly frequency, while small, unlisted banks report semi-annually or annually. The former

tend to be allocated to clusters A to D, while the latter tend to be allocated to clusters E and F

(domestic diversified lenders and domestic retail lenders). Substituting the most recently available

observation for a missing observation could artificially increase the persistence of that variable. As

a result, our handling of missing observations, owing to differences in reporting frequency, may be

a contributing factor why different adjustment speeds across clusters lead to a significantly better

model fit; see model specification M5 in Table 2.

The share of missing observations is also not constant across the variables as listed in Table

C.1. Missing observations are relatively more prevalent for more disaggregated breakdowns of

accounting items (for example, the division of total loans into domestic and foreign loans, or of
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total loans into retail and corporate loans), while simpler, non-disaggregated ratios are less subject

to missing observations (for example, the ratio of total loans to total assets, or of CET1-capital to

total assets). It is particular the former, more disaggregated ratios that are required to allocate banks

into economically meaningful business model groups. When allowing for different adjustment

speeds across variables, differences in persistence from this source are accommodated as well.
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Table C.1: Indicator variables
Bank-level panel data variables for the empirical analysis. We consider D = 12 indicator variables covering six
different categories. The third column explains which transformation is applied to each indicator before the statistical
analysis.

Category Variable Transformation

Size 1. Total assets ln (Total assets)

2. CET1 capital (leverage) ln
(

Total assets
CET1 capital

)
Complexity 3. Net loans to assets Total loans - loan loss reserves

Total assets

4. Assets held for trading Assets held for trading
Total assets

5. Derivatives held for trading Derivatives held for trading
Total assets

Risk profile 6. Market vs. credit risks Market risk
Credit risk

Activities 7. Share of net interest income Net interest income
Operating revenue

8. Share of net fees & commission income Net fees and commissions
Operating income

9. Share of trading income Trading income
Operating income

10. Retail orientation Retail loans
Retail and corporate loans

Geography 11. Domestic loans ratio Domestic loans
Total loans

Funding 12. Deposits to assets ratio Total deposits
Total assets

Note: Total Assets are all assets owned by the company (SNL key field 131929). Net loans to assets are loans and
finance leases, net of loan-loss reserves, as a percentage of all assets owned by the bank (226933). Assets held for
trading are acquired principally for the purpose of selling in the near term (224997). Derivatives held for trading
are derivatives with positive replacement values not identified as hedging or embedded derivatives (224997). Market
risk and credit risk (248881, 248880) are reported by the company. P&L variables are expressed as percentages
of operating revenue (248959) or operating income (249289). Retail loans are expressed as a percent of retail and
corporate loans (226957). Domestic loans are in percent of total loans by geography (226960). The deposits-to-assets
ratio is computed from the loans-to-deposits ratio (248919) and loans-to-asset ratio (226933). Total deposits comprise
both retail and commercial deposits.
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D Additional results

D.1 Cluster medians, scale matrices, and distances

Figure D.1 reports the filtered cluster medians for the twelve indicator variables as listed in Table

C.1. The cluster medians coincide with the cluster means as modeled (14) provided no nonlinear

transformation has been used for variable d = 1, . . . , D, see the last column in Table C.1.

Figure D.2 plots the filtered component-specific time-varying standard deviations σ̂j,t|t(d) =(
Σ̂j,t|t(d, d)

) 1
2 for variables d = 1, . . . , 12. The off-diagonal elements of Σjt are not reported. The

first two variables, log total assets and log leverage, are the most dispersed across banks within

each group A to F. Other variables, such as the share of assets held for trading, and the share of

derivatives held for trading, are the least dispersed, particularly for banks in groups C to F.

Figure D.3 plots the time-varying cluster distance functions djkt and d̃jkt as given in (4) and

(2′) – (4), respectively. The cluster distances display a modest degree of time-variation. While the

filtered cluster distances are symmetric, the HMM transition matrix Πt need not be; see (3) and

(3′).
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Figure D.1: Time-varying cluster medians
Filtered cluster medians for twelve indicator variables; see Table C.1. The cluster medians coincide with the cluster
means unless the variable is transformed; see the last column of Table C.1. The cluster mean estimates are based on
a t-mixture model with J = 6 clusters and time-varying cluster means yjt and scale matrices Σjt. We distinguish A:
market-oriented universal banks (black line), B: international diversified banks (red line), C: fee-focused retail lenders
(blue line), D: international corporate lenders (green line), E: domestic diversified lenders (purple dashed line), and F:
domestic retail lenders (green dashed line).
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Figure D.2: Time-varying standard deviations
Filtered time-varying standard deviations σ̂j,t|t(d) =

(
Σ̂j,t|t(d, d)

) 1
2 for variables d = 1, . . . , 12. Each panel contains

12 standard deviation estimates over time, corresponding to the variables listed in Table C.1. The standard deviation
estimates refer to model specification M5 in Table 2.
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Figure D.3: Filtered cluster distances
Time-varying cluster distances djkt (black lines) and d̃jkt (red lines) as given in (4) and (2′) – (4), respectively. The
time-varying parameter estimates refer to model specification M5 in Table 2.
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D.2 Bank group profitability

The cluster transitions underlying Figures 3 – 5 are in part explained by differences in bank prof-

itability. Figure D.4 below plots the return on equity (ROE) per cluster over time. Bank-specific

observations ROEit are weighted by the conditional probability τij,t|t that bank i belongs to cluster

j; see Section 4.2. ROE is not used as an input variable for the clustering; see Table C.1. European

banks’ ROE tend to vary between approximately -2% and 12% over time. Banks assigned to clus-

ter D are an exception. Their ROE turns negative at onset of the euro area sovereign debt crisis in

mid-2010, and remains negative until the end of the sample, contributing to observed migrations

out of group D into other bank business model groups.

Figure D.4: Bank profitability
Average return on CET1 equity (ROE) for banks in each business model group A to F. At any quarter t bank-specific
observations ROEits are weighted by the conditional probability τij,t|t that bank i belongs to cluster j.
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