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Abstract

Economists have become increasingly interested in using attention to explain behavioral

patterns both on the micro and macro level. This has resulted in several disparate

theoretical approaches. Some, like rational inattention, assume a “top-down” model of

executive optimization. Others, like salience theory, assume a “bottom-up” influence

where attention is driven by contextual factors. This distinction is fundamental for

the economic implications of attention, but so far there is little understanding of their

relative importance. We propose a multi-attribute random utility model that unifies

prior theoretical approaches by distinguishing between the impact of top-down and

bottom-up attention. We accomplish this by separating agent-specific and decision-

specific variation in attention and verify our framework in an eye-tracking experiment

on risky choice. We find that both top-down and bottom-up attention are connected

to important choice variables: both are associated with the weighting of the attributes

of choice options, while top-down attention is additionally associated with measures of

loss aversion. We discuss the insights regarding the nature of attention and its role in

economic theory.

Keywords: Attention, Random, Utility Models, Eye-tracking, Loss Aversion.

JEL Codes: D81, D83, D87, D91.

∗We thank Yangyang Xu and O’Jay Medina for help with data collection. This work was supported by

startup funds from the Amsterdam School of Economics, awarded to Jan Engelmann. Joel van der Weele

greatfully acknowledges funding by the NWO in the context of VIDI grant 452-17-004.

1



1 Introduction

Over the last decades, economists have become increasingly interested in attention. For

instance, on the microeconomic level, researchers have proposed that attention may explain

behavioral biases such as the endowment effect, the attraction effect or the phenomenon

of motivated cognition. On the macroeconomic level, limits to attention may explain how

economic agents react to news shocks, form expectations about future prices and how this

affects business cycles. Alongside these applications, several prominent new theories try

to incorporate the role of attention in economic behavior. “Salience theory” explains how

prominent features among potential payoffs attract attention and sway decisions, leading to

behavioral biases (Bordalo et al., 2012, 2013). Theories of “Rational Inattention” propose

that decision makers direct limited attentional resources to information that is deemed to

be most useful (Sims, 2010; Gabaix, 2019). Finally, sequential sampling models offer a

descriptive framework of how processes of information acquisition translate into decision

making (Ratcliff, 1978; Krajbich et al., 2012; Fudenberg et al., 2018).

These theoretical approaches differ fundamentally in their description of economic

agents. On the one hand, rational inattention maintains the traditional assumptions of an

optimizing agent with executive control over her choices. On the other hand, salience theory

views the agent’s attention and her choices as determined by her environment. This dis-

crepancy mirrors a prominent distinction in psychology and neuroscience, where researchers

distinguish between “top-down” (also referred to as ”endogenous”) and “bottom-up” (or

”exogenous”) attention processes. Here, “top-down” refers to the control of attention by

internal factors related to predetermined goals and expectations. As an example, consider

going to the supermarket with a shopping list that contains items that your partner under-

lined to signal their importance for their culinary projects. By contrast “bottom-up” refers

to attentional control by factors external to the observer, such as the physical salience of

different stimuli. In terms of our supermarket example, the shopper might be tempted to

make unplanned purchases of highly salient items, for instance those that are prominently
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advertised.

The distinction between bottom-up vs. top-down attention is key in understanding the

role and impact of attention not just on developing economic theory, but also on practical

applications. If attention is predominantly determined via top-down processes, it may

provide insights into the roles of cognitive ability and personality in decision-making. If it

is predominantly determined via bottom-up processes, it provides opportunities for policy

makers to shape choice environments and affect decisions. Moreover, a stronger effect

of goal-irrelevant information is likely to generate lower decision making quality or even

systematic behavioral biases. While some papers in psychology and neuroscience have tried

to quantify the different channels, as we discuss in more detail below, to this date a coherent

choice model that integrates these two attentional channels has yet to be developed.

In this paper, we propose a formal framework to conceptualize and disentangle bottom-

up and top-down attention via a unified model of attentional influences in economic choice.

We model how attention to different attributes affects the decision weights for those at-

tributes in a multi-attribute random utility model. Our key assumptions are that the

drivers of attention are separable in agent-based factors like preferences (the top-down

channel) and contextual factors or “salience” (the bottom-up channel). We show that un-

der some additional assumptions, between-subject variation in attention reflects differences

between agents, and hence captures the top-down channel. By contrast, within-person vari-

ation in attention across trials is driven by the salience of specific choice options on a given

trial that influences choice via bottom-up processes.

We demonstrate the applicability of our approach in two original experiments on risky

choice. Over multiple trials, subjects choose to accept or reject lotteries with equiprobable

losses and gains, which vary between trials. While subjects make choices, we record their

attention patterns using eye-tracking devices. In line with the existence of both top-down

and bottom-up attention, we find that both between-subject and within-subject variation

in attention explain the acceptance criteria for risky choices. Between-subject variation
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in attention not only shows a stronger link with decisions compared to within-subject

variation, but we also find that differences in average attention correlate with measures of

loss aversion. Our findings thus illustrate a connection between goal-driven behavior and

top-down attention.

As we explain in more detail in the next section, we contribute to the literature on

attention in economic choice in various ways. First, we translate a core distinction in

attentional research into the formal framework of economics, and show the assumptions

that are necessary to bring this theory to the data. This offers economists a new way of

looking at attention, which can be used to answer a number of follow-up questions, as we

elaborate in the conclusion. Finally, we contribute to the literature on risky choice, by

showing that both top-down and bottom-up attentional processes drive risk taking. This

shows that risk taking is related to both personal, agent-related characteristics involved

in deliberate choices, but also to situational factors such as the salience of specific choice

options.

2 Related Literature

The fields of psychology and cognitive (neuro-)science have long studied attention as a

mechanism that reduces demands on the visual and other cognitive systems by filtering

relevant information (e.g. Posner, 2011). Recent key empirical findings that show a strong

link between visual attention and decisions have attracted the interest of the field of decision

science. Specifically, choice options that enter the attentional focus more often and for

longer are more likely to be chosen (Krajbich et al., 2010, 2012; Lim et al., 2011; Polonio

et al., 2015; Pachur et al., 2018) and choice options with higher values attract attention

more than those with lower values (Anderson et al., 2011; Gluth et al., 2018, 2020).

When it comes to characterizing the determinants of attention, the literature makes a

fundamental distinction between top-down and bottom-up channels of attention, as defined

in the introduction. Bottom-up attention is thought to have a larger influence on explo-
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rative decision processes, when individuals do not yet have a specific rule of choice (Fehr

and Rangel, 2011; Gottlieb et al., 2013). Nonetheless, a number of studies have provided

evidence that both channels of attention play a role in decision-making (e.g. Orquin and

Mueller Loose, 2013; Orquin and Lagerkvist, 2015; Corbetta and Shulman, 2002). More-

over, empirical and theoretical considerations in neuroscience, such as by Corbetta and

Shulman (2002) and Ungerleider and Kastner (2000), suggest that the brain may process

these types of attention differently.

In economic theory, similar distinctions have emerged. The bottom-up approach is

represented in “salience theory” proposed in Bordalo et al. (2012, 2013) and related models

like Kőszegi and Szeidl (2013). These models propose functions that map different choice

attributes into “salience”, which reflects the ease by which they are noted by the decision

maker. More salient attributes translate into higher weights of these attributes in the

decision. In these models, salience operates in a mechanical way, i.e. without any explicit

optimization by the decision maker. It is therefore likely to lead to behavioral biases.

Indeed, some of the key insights of these models are to account for a variety of behavioral

biases such as the Allais’ paradox or the endowment effect.

By contrast, the top-down perspective is reflected in economic models of rational inat-

tention (Sims, 2003, 2010; Gabaix, 2019). In these theories, the decision maker optimally

allocates scarce attention to those information sources or attributes that are most likely

to affect the utility of choice. These models offer an answer to the question how a de-

cision maker can optimally allocate attention before actually knowing the value of the

choice (Gabaix, 2014). Applications have emerged in finance (Peng and Xiong, 2006),

business cycle theory (Maćkowiak and Wiederholt, 2015), monetary policy (Mackowiak

and Wiederholt, 2009), industrial organisation (Dessein et al., 2016; Fosgerau et al., 2020),

and consumer theory (Reis, 2006; Matějka and McKay, 2015; Caplin and Dean, 2015).

Our exercise is motivated by the seemingly disparate views of the relative roles of agent

and context that is inherent in these theoretical approaches. Our goal here is to unify
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these prior theories of attention within one model. Most closely related in this endeavor

are papers that decompose attention using a number of different methods1. Fisher (2021)

investigates the role of attention in intertemporal discounting, and shows that both within-

and between-subject variation in attention allocation correlate with decisions. In addition,

random variations in exposure time to different attributes explain about 5% to 10% of

intertemporal choices. Ghaffari and Fiedler (2018) attempt to disentangle top-down and

bottom-up processes in moral choices. Adapting the well-established empirical result that

choices are predicted by the last fixation, they experimentally manipulate the last fixation.

Their results indicate that the attribute fixated last is predictive of choice, indicating an

effect of bottom-up attention, which they estimate to be responsible for about 11% of the

variance in decisions. Third, Towal et al. (2013) perform an eye-tracking experiment on

snacks, where they first elicited the value of snacks from participants. They calibrate the

parameters of a modified drift-diffusion model, where the drift rate can depend on either

product value or product salience, a measure constructed from the perceptual features of

the products appearance. Value appears as a more important predictor than salience, with

a relative weight that is about 3 times higher. Navalpakkam et al. (2010) present related

experiments and analyse their results using a Bayesian decision making framework.

Our paper adds to this literature in two ways. First, we integrate top-down and bottom-

up attention in a traditional, multi-attribute utility model. In our unified model, both

bottom-up and top-down attention affect the decision weights on the attributes. Second,

we show that under plausible assumptions, bottom-up and top-down processes are ap-

proximated by connecting it to an intuitive decomposition of within- vs. between-subject

variation in choices.

1Other recent papers have focused on establishing a causal effect of attention, by manipulating attention
via visual salience, exposure time or other contextual, bottom-up interventions. Evidence has been presented
for such attentional influences on choice in a multitude of domains (see e.g. Armel et al. (2008); Reutskaja
et al. (2011); Atalay et al. (2012); Pachur et al. (2018); Ghaffari and Fiedler (2018); Gluth et al. (2018,
2020)). In economics, Dertwinkel-Kalt et al. (2017) and Dertwinkel-Kalt and Köster (2020) have tested
recent models of salience discussed above. These studies have shown that there is a causal effect of attention,
although its size is often modest.
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Apart from our methodological insights, we contribute to a literature about the role of

attention in risky choice (Fiedler and Glöckner, 2012; Pachur et al., 2018). In particular,

we complement findings by Pachur et al. (2018), who show that loss aversion parameters

are correlated with attention, and that exogenous variations in attention cause shifts in loss

aversion. Our paper adds to this evidence, and shows that loss aversion is correlated with

between-subject variation in attention. This is in line with our theoretical approach, which

associates between-subject variation in attention with mechanisms that are internal to the

agent. Additionally, our finding that bottom-up attention plays a role in risky choice, may

help explain the instability of decisions in risky choice across contexts (Bordalo et al., 2012;

Johnson and Schkade, 1989). Interestingly, parallel to our results and despite their diverse

methodologies, the prior papers reviewed in this section agree on the larger explanatory

role of top-down compared to bottom-up attention in choice.

3 Disaggregating attention: A theoretical framework

In this section, we present an attention-based model that incorporates two channels of

attention that jointly influence choice: top-down and bottom-up control of attention. We

model the decision and attention processes simultaneously. For the decision process, we

present first a simple model without attention. We then incorporate top-down attention,

and show how this translates into individual differences in both attention and behavior.

Finally, we introduce salience, its effect on attention and choice, and show how one can

exploit the trial-wise variations in attention to identify the effects of salience, reflecting

botton-up attentional effects, on the decision.

The decision process

Consider the case of a population of agents or experimental subjects, indexed j = 1, 2, ..., J .

Over a series of (experimental) decisions or trials, indexed t = 1, 2, ..., T , each agent accepts

or rejects a choice option xt. In line with most experimental designs, we assume that all
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agents face the same set of alternatives X = {xt}Tt=1. Option xt has real-valued attributes

indexed s = 1, 2, ..., S, i.e. xt = (x1,t, x2,t, ..., xS,t). We model the decision of accepting the

choice option as a random process:

Dj,t =

 Accept if uj,t ≥ ūj

Reject if uj,t < ūj .
(1)

Here, ūj is the outside option associated with rejection, and

uj,t =
S∑
s=1

ωj,s,t xs,t (2)

is an additively separable multi-attribute utility function that reflects the value of the

alternative xt for the agent. Thus, decisions are determined by the attributes of x, as well

as the decision weight ω for attribute s in trial t. We assume that decision weights are

random variables

ωj,s,t =βj,s + εj,s,t, (3)

where βj,s represents the preference of agent j over the attribute s. We assume that

preferences are stable across the set of trials T . Crucially, agents may value different

attributes differently, as reflected in different decision weights. Note that while we refer

to β as a “preference”, this should be interpreted as any agent-specific mental processes

that determines the value of the attribute to the agent. Decision weights may deviate

from preferences due to a mean-zero error term εj,s,t. Below, we will operationalize εj,s,t to

reflect the salience of different contextual factors.
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Incorporating Attention

During the decision process, the agent allocates attention to the different attributes, which

we model parallel to the decision process. In doing so, we distinguish top-down and bottom-

up processes of attention. Top-down attention aTDs depends on payoff valence, as well as the

agents preferences, i.e. aTDs = aTDs (βj,s). Note that we assume that top-down attention

does not directly depend on the size of the attribute, an assumption we will discuss in

Section 7.

The second process, bottom-up attention (aBUs ), is a function of salience. Salience is a

property of an attribute, and determined by context of the experiment and the particular

trial, i.e. σt = (σ1,t, σ2,t, ...σS,t). Salience can result from color, font size, location on a

computer screen or any other factors that determine how it stands out from its surround-

ings. It can also be a function of the way different attributes are contrasted or presented,

so that σ = σ(x), as in Bordalo et al. (2012). We will be agnostic about the determinants

of salience, but we note that this is an important topic for research. However, we do not

allow salience to vary with j, as we assume it to be orthogonal to individual characteristics.

Below, we will expand on how salience determines bottom-up attention.

We model the two attentional processes as separable and additive, i.e.

aj,s,t = aTDs (βj,s) + aBUs (σt) + νj,s,t. (4)

Here, νj,s,t is a zero-mean error-term, uncorrelated with the attentional effects of salience

and preferences. While the separability assumption is of course mathematically and empir-

ically convenient, there is evidence to support it. Pinto et al. (2013) measures bottom-up

and top-down attention with independent tasks, and shows that performance is indepen-

dent across tasks. Orquin and Lagerkvist (2015) argues that the effects of the top-down

and bottom-up control of attention occur in separate moments of the decision, while Cor-

betta and Shulman (2002) present evidence that different brain networks are involved in
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these two attentional processes.

Top-down attention and individual differences

To operationalize the top-down channel of attention empirically, we define average attention

to the outcome s:

āj,s =aTDs (βj,s) + āBUs + ν̄j,s. (5)

If all agents observe the same alternatives, as will be the case in our experiments, salience-

driven attention āBUs = T−1
∑T

t=1 a
BU
s (σt) is constant across agents, as it only depends on

the choice alternatives. Hence, the only source of variation for average attention are the

individual differences in βj,s. Using a linear approximation (instead of assuming any linear

representation for aTD and aBU ), we show in Appendix A.1 that we can approximate the

decision weight ωj,s,t defined in Equation (3) as:

ωj,s,t ≈ π0,s + πā,sāj,s + ε̃j,s,t. (6)

The parameter πā,s will be identifiable as long as agents’ preferences have an effect on

attention ∂aTD/∂βj,s 6= 0. Conversely, if there is no top-down process, then individual

differences in average attention should not have any correlation with the decision weights.

Thus, average attention reflects top-down processes of attentional control.

Bottom-up attention and salience

We will now model the impact of salience: if an attribute is more salient, it will be attended

more and therefore can be “over-weighted” in the decision process. The effects of salience

on choice occur through bottom-up control of attention. For this, we allow the error term
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of the decision weight, εj,s,t (defined in equation 3), to depend on bottom-up attention:

εj,s,t =δj,sa
BU
s (σs,t) + ηj,s,t. (7)

Here aBUs is the bottom-up control of attention of attribute s, which we assume to be an

increasing function of salience, and ηj,s,t is the left-over noise. By substituting Equation

(7) into Equation (3), can write the decision weight ωj,s,t as:

ωj,s,t =βj,s + δj,sa
BU
s (σs,t) + ηj,s,t (8)

We operationalize salience empirically by relating it to trial-by-trial deviations in at-

tention. This residual trial-wise attention (ãj,s,t) is the difference between the allocated

attention to attribute s on trial t and the average attention to that attribute. Thus, we

can write

ãj,s,t : = aj,s,t − āj,s

= aBUs (σj,s,t)− āBUs + (νj,s,t − ν̄j,s) (9)

where the last step uses Equations (4) and (5). If āBUs is constant across participants,

which will be the case in experiments (like ours) where all participants observe the same

stimuli, the two sources of variation for ãj,s,t are bottom-up attention in trial t (aBUs (σt))

and the zero-mean error term νj,s,t. Similarly to our approach with average attention, we

can approximate the decision weights as:

ωj,s,t ≈ π0,s + πā,sāj,s + πã,sãj,s,t + η̃j,s,t, (10)

where the parameter πã,s is proportional to the marginal effect of the salience σ on attention

aBUs (See Appendix A.1 for a full derivation). Thus, if bottom-up control of attention is

present, it is reflected in residual trial-wise attention. Conversely, if the decision process
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does not depend on bottom-up accumulations, then residual trial-wise attention would be

uncorrelated to the decision weights.

Disaggregating variation in attention

To understand the relative importance of top-down and bottom-up attention, we can ask

how much they contribute to the variance in decision making. To quantify this, we can use

the expression for the decision weights, Equation (10). By construction, residual trial-wise

and average attention are orthogonal to each other. If we assume they are also independent

from the residual error η̃j,s,t, we can write the variance of the decision weights as:

V ar(ωj,s,t) =π2
ā,sV ar(āj,s) + π2

ã,sV ar(ãj,s,t) + V ar(η̃j,s,t) (11)

Ideally, we would like to compare how much the average and residual trial-wise attention

contribute to the variance in the decision weights. This measure would suggest how ‘im-

portant’ one process is relative to the other. Since we do not observe (η̃j,s,t), we construct

the ratio of the contributions to the variance Rs = π2
ā,sV ar(āj,s)/π

2
ã,sV ar(ãj,s,t).

Theoretical and empirical evidence suggests that the decision process is mostly bottom-

up when the decision is made under pressure, the stakes are low or the participants do not

have a clear idea of what do or how to compare their options (Fehr and Rangel, 2011;

Gottlieb et al., 2013). By comparing the relative contributions of the different sources of

variance, our framework provides a way to evaluate these claims by comparing Rs across

decision-making contexts.

4 Experimental Design

4.1 Participants

In total 99 participants took part in two experiments (n1 = 45, n2 = 53), which were

identical except for small details (more on that below). Data from 8 participants were
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excluded, because of technical problems that occurred during data collection (exp1 = 5

and exp2 = 1) due to wearing eye-tracker incompatible glasses or contact lenses (n = 5)

and problems with recording the behavioural data (n = 3). One participant made the

same decision in all trials, therefore their data was excluded. Partial data for one of two

sessions was included for 3 more subjects (exp1 = 2 and exp2 = 1), due to incomplete

measurement of the visual data in one of the sessions (data loss of more than 75% due to

calibration difficulties). The final data used for analysis therefore contains 91 participants

(59 females, average age is 23.5 years).

Participants in both experiments were students from the University of Amsterdam,

with no impaired or corrected vision. The recruitment was done via the website of

the Behavioral Science Lab that houses the eye-trackers used in the current experiment

(https://www.lab.uva.nl/lab). The participants signed an informed consent (available in

the Appendix) and the experiments were approved by the FMG Ethics Committee of the

University of Amsterdam.

4.2 Experimental Procedures

The day of the experiment, participants performed the main task in a darkened testing

room. This was done to reduce the effects of ambient light changes on pupil dilation.

Jointly, the instructions, practice session and calibration procedures provided ample time

to adjust to the background light in the experiment room. Eye movements made through-

out the experiment were recorded using an EyeLink 1000 desk-mounted eye-tracker with

a sampling rate of 500 Hz. To improve the accuracy of eye-tracking data collection, par-

ticipants were asked to rest their heads on a chinrest to stabilize the head position and

maintain a constant distance from the screen throughout the experiment. The stimuli

were presented on a 22-inch screen with the resolution set to 1920 × 1080 pixels and a

refresh rate of 60 Hz. At the start of the experiment and at the half-way point (after 80

trials) a 9-point calibration was performed to ensure proper calibration of the eye-tracker
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throughout the experiment.

4.3 Main Task

The main task in both experiments consisted of a series of 160 individual decisions involving

risk. In each trial, participants were asked to accept or reject a mixed gamble with two

equally likely outcomes. The outcomes were always a positive (“gains”) and a negative

one (“losses”). Figure 1 shows the sequence of an example trial. At the beginning of

the trial, participants were asked to focus on a fixation cross presented in the middle of

the screen for a jittered period of time (300-1100ms). This ensured that in each decision

period eye fixations started from the same central position and that attention was not

biased towards a single location. Then the two potential outcomes appeared at each side

of the screen, with the left stimulus located at (x = 480, y = 580), and the right one at

(x = 1430, y = 580). This wide separation between lottery options along the x-dimension

(of approximately 2.5◦ of visual angle) ensured that eye movement patterns can be well

separated during the analysis stage (see Figure S1). The location of gains and losses was

counterbalanced, such that they had an equal chance of appearing on the left or right in

each trial.

The participants were asked to press the Up-Key on the keyboard to accept the gamble

or the Down-Key to reject it. Subjects were given a period of 5 seconds to make the

decision. If the subject did not respond within those 5 seconds, a message appeared on the

screen reminding participants to ‘Respond Faster’. In total, 47 of the 14,372 analysed trials

exceeded the time limit; these ‘miss’ trials were excluded from the analysis. Participants

were aware that if they did not respond within the 5-second period, they would receive the

loss outcome of that trial in case it was selected at random at the end of the experiment. In

experiment 2, the trial continued with a question of how confident the subject was about

their decision, which was the only difference between the two experiments.

The attributes presented at the left and right were randomized; such that the subject
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Figure 1: Example of Experimental Trial

Initially, a white fixation cross is shown for a random duration that is jittered between 300ms

and 1100ms. The prospect is then presented. Participants then communicated their decision

by pressing the up or down keys of the keyboard to accept or reject respectively. Feedback

informed participants what option they had chosen before the next trial began in experiment 1.

Experiment 2 differed only in that participants were asked to rate their confidence before the

next trial.

would never observe a Loss or a Gain more than three consecutive times on one side. The

values of the Gains and Losses varied across trials. The Gains fell between 20 to 38 ECU

(experimental currency units) in steps of two units (10 cases). The Losses ranged from -13

to -27 ECU in steps of two (8 cases). To orthogonalize Gains from Losses, participants

observed all possible combinations between Gains and Losses (80 trials per session in 2

sessions). Therefore, the Gains and Losses were independent from each other.

4.4 Incentives and Payment

Participants filled out a 30-minute online questionnaire consisting of a number of estab-

lished Personality Questionnaires (e.g., ERQ, STAI, BIS-11) up to 1 day before the main

experiment. The participants received e10 as a payment for completing the questionnaires.

This amount served as an endowment for the main task to avoid the house money effect

(Thaler and Johnson, 1990). Participants were informed that one of the 160 trials would
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be chosen at random. If the gamble was accepted on that trial, then the lottery would be

resolved via a virtual coin flip. The outcome would be added to the initial endowment if it

was a gain, or subtracted from the initial endowment if it was a loss. In case the gamble

was rejected, participants would receive the initial payment only. On average participants

earned e10.80 and e10.94 in Experiment 1 and 2 respectively.

4.5 Eye-tracking Data Acquisition and Pre-processing

Fixation points were carefully calibrated using a 9-point calibration at two time points

in the experiment (before the start of the experiment and after 80/160 completed trials).

Furthermore, throughout the experiment, gain and loss attributes were clearly separated

by presenting one attribute on the left and another on the right of the center. This clear

separation of lottery attributes on the screen allowed us to define well-separated regions

of interest and thereby to improve the identification of fixations. Next, using k-means,

we clustered the fixations along the horizontal axis representing fixation areas for left and

right gamble attributes, and central fixation, which occurred only at the beginning of each

trial. We ignore the vertical position for clustering, since all the stimuli were positioned

at the same vertical location. This allowed us to discriminate between fixations for each

outcome (left and right ROI) and central fixations (see Supplementary Figure B1). Finally,

K-means clustering was performed for each session separately, as separate calibrations were

performed for each session.

Table 1 shows the number fixations for each region of interest by their order of oc-

currence. A large majority of the first fixations are on the centre (90%), indicating that

subjects followed task-instructions to focus on the fixation cross between trials. Most sub-

sequent fixations go to the left first (68.9%), reflecting a commonly observed upper-left

location bias (Orquin and Mueller Loose, 2013).

We focus our analyses of the eye-tracking data on the and dwell times, defined as

the period participants fixate on a lottery attribute throughout one trial. We do this,
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Fixation Left Right Total

1 10,463 3,195 13,658
2 2,859 9,780 12,639
3 5,265 2,057 7,322
4 922 1,906 2,828
> 5 922 876 1,798

Total 20,431 17,814 38,245

Table 1: Number of fixations by order of Fixation and Region of Interest

because our experiment shows two relevant pieces of information at the time of choice.

The number of saccades per trial is therefore relatively less informative. As shown in Table

1, the majority of trials do not contain more than three fixations, hence this number has

little variation across trials and participants. We consider additional measures of attention

in Section 7 with show equivalent results.

5 Hypotheses

Our experimental setup provides a natural application for the framework outlined in Section

3 with J = 91 and T = 160. Since all outcomes are equiprobable the choice options in the

experiment (gambles) have only two attributes, gains and losses, i.e. s ∈ {G,L}. When

it comes to attention, we assume the agents’ attention to be fully captured by their gaze

patterns.2 Hence, if an agent pays more attention to an attribute, this outcome should

be observed for longer. From here onwards, we will sometimes refer to total dwell time

(i.e. total time spent fixating on a stimulus) as attention. In Section 7, we show that our

approach is robust to other measures of attention.

We can now apply our results to generate testable hypotheses. Equation 6 implies that

differences in preferences translate into differences in average attention, via the top-down

channel.

2Under the “eye-mind assumption” the current focus of attention is what is being processed (Just and
Carpenter, 1980)
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Hypothesis 1 (Top-down attention). A higher average attention of participant j to an

attribute (gains or losses) is associated with a higher decision weight for that attributes.

Similarly, Equation 10 implies that differences in attribute salience translate into dif-

ferences in residual trial-wise attention, via the bottom-up channel.

Hypothesis 2 (Bottom-up attention). A higher deviation from average attention to an

attribute (gains or losses) in trial t increases the decision weight for this attribute in trial

t.

Thus, our framework allows us to assess the relative importance of top-down and

bottom-up attention by testing these two hypotheses. To do so, our main empirical exercise

is to estimate the decision weights on the different attributes (gains and losses, πā,s and

πã,s in our model) and to test whether there is an interaction with the two different types

of attention.

6 Results

Our main results are presented in Table 23. The table presents logit regression models, in

which we regress the binary acceptance decision on the lottery attributes (gains xG and

losses xL), as well as interactions with average individual attention (āTDs ) and trial-wise

deviations in attention (ãBUs ). Each model includes individual fixed effects to account for

differences in the value of the outside option (ūj).
4

The first column of Table 2 presents the full model with all interactions. The coefficients

for the two attributes xG and xL, reflect the decision weights ω. Both are highly statistically

significant, and the weight for losses is larger than that for gains (π0,G − |π0,L| = −0.111,

3Note that we report the results from the combined dataset for simplicity, because results are highly
similar when estimating each model separately for experiments 1 and 2. These results are reported in
Supplementary Table A2

4We use the package for fixed effect logits from Cruz-Gonzalez et al. (2017) to analytically correct for
the incidental parameter problem in discrete choices (Katz, 2001; Coupé, 2005; Arellano and Hahn, 2006).
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p-value ≤ 0.001). This suggests that participants are loss averse, which we will analyze in

more detail below. Most importantly from our point of view, we find that the interactions

of these coefficients with the attentional measures are statistically significant for both

attributes and for both types of attention. While the interactions for losses and gains are

of roughly equal size, the interaction of average attention with the decision weights (πā,s)

is at least 10 times larger than that of trial-wise attention (πã,s). When we evaluate the

differences of the attentional impact across gain and loss attributes with a Wald test, we

find that differences (in absolute value) are not significant for average attention (πā,G −

|πā,L| = .039, p-value = 0.504), but we find significant differences for trial-wise attention

(πã,G− |πã,L| = −.024, p-value ≤ 0.001). This indicates that decisions weights are affected

significantly more by salience in the domain of losses compared to gains.

The remaining models in columns 2-4 of Table 2, present various benchmarks to further

evaluate the importance of including the two types of attention. In column 2, we leave out

the interaction with trial-wise attention. In line with the small interaction effect in column

1, trial-wise attention does not have a large impact on the other coefficients, although it

does worsen the model fit, as evaluated by the criteria at the bottom of the table (note that

all model fit criteria, the Akaike Information Criterion (AIC), the Bayesian Information

Criterion (BIC) and the Log Likelihood (LL), agree that model 1 is the relatively best

model). By contrast, when we drop the interaction with average attention from the model

in column 3, we see that the coefficients of the attributes almost double for gains, and rise

by about 40% for losses. This indicates that a large part of the variation in decision weights

can be attributed to individual differences in attention. Finally, column 4 shows the model

without attention, which is the worst performer of the four models in terms of model fit,

further underlining the value of incorporating attention when predicting decisions.

The value of explicitly modeling attention is further illustrated in Figure 2, which

shows the impact of average attention on decision weights, by graphing the changes in
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Table 2: Estimations for Decisions

(1) (2) (3) (4)
Full Model Avg. Attention Res. Attention Constant Weights

xG,t 0.190∗∗∗ 0.189∗∗∗ 0.352∗∗∗ 0.352∗∗∗

(0.022) (0.022) (0.008) (0.008)
xG,t × āj,G 0.353∗∗∗ 0.356∗∗∗

(0.048) (0.047)
xG,t × ãj,G,t 0.008∗∗∗ 0.008∗∗∗

(0.003) (0.003)
|xL,t| -0.301∗∗∗ -0.306∗∗∗ -0.433∗∗∗ -0.435∗∗∗

(0.028) (0.028) (0.010) (0.010)
|xL,t| × āj,L -0.315∗∗∗ -0.308∗∗∗

(0.065) (0.065)
|xL,t| × ãj,L,t -0.031∗∗∗ -0.030∗∗∗

(0.005) (0.005)

N 13057 13057 13057 13057
AIC 7293.469 7334.256 7373.802 7415.865
BIC 7338.332 7364.164 7403.710 7430.819
LL -3640.735 -3663.128 -3682.901 -3705.932

Table 2 shows the results of the logistic estimations with individual fixed effects (91 individuals).

Note that we excluded observations with only one fixation (8.8% of all trials) as this indicates

that participants did not fully consider all choice options on a given trial. The loss amounts were

entered as absolute values for easier interpretation of the weights. The error terms are estimated

with jackknife resampling (in parentheses).

* p < 0.1, ** p < 0.05, *** p < 0.01
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Figure 2: Acceptance probability by attention quantiles and gain/loss magnitude.
Figures show the estimated probability of accepting the lottery (vertical axis) conditional on the

outcome values (Left panel for gains, right panel for losses) and average attention to the same

outcomes. The lines reflect different levels of average attention, which are the sample quantiles

10% (dotted), 50% (dashed) and 90% (solid). The predictions are presented with their 95%

confidence intervals.

the probability of accepting the lottery for the 10%, 50% and 90% quantiles based on

the average attention distribution. In the domain of gains (left panel), the difference

between the 10% and 90% quantiles decreases with increasing gain amounts, starting from

a difference of 32.9% for small gain amounts (xG=20) and reaching a difference of 24.6% for

large gain amounts (xG=38). In the domain of losses (right panel), the difference between

the 10% and 90% quantiles increases from 7.4% for small loss amounts (|xL| = 13) to 32.7%

for large amounts (|xL| = 27). The analogous plot for differences in trial-wise attention is

given in Supplementary Figure (B2). Although statistically significant, the differences are

small and not clearly visible in the plot.

Finally, Table 2 allows us to compare the relative importance of the two types of

attention in decision making. We calculate the ratios of the contribution to the variance

for both gains and losses (as described in Equation (11)). We use the sample variances for

the average and residual attention and the estimates from column 1 in Table 2 to construct
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the ratio of the contributions to the variance Rs = π2
ā,sV ar(āj,s)/π

2
ã,sV ar(ãj,s,t). Relative

to trial-wise attention, the contribution of average attention to the variance of the weights

is 22.67 (p-val = 0.000) times larger for the Losses and 472.98 (p-val = 0.000) times larger

for the Gains. This result confirms that in the context of our experiment, the main driver

of changes in decision weights is average attention, reflected by individual differences in

attentional patterns, and not trial-wise residual attention that reflects attribute salience.

Result 1. Both average attention and residual trial-wise attention correlate significantly

with the decision weights on the different attributes. The effect size is much larger for

average attention, indicating that in the context of our task, top-down attention contributes

more heavily to the decision process.

Attention and Loss Aversion

We now investigate the relationship between attention and loss aversion on an individual

level. Loss aversion refers to a preference for avoiding losses rather than obtaining gains

(Kahneman and Tversky, 1979). Since loss aversion is an agent-specific characteristic,

it should be correlated with average attention. We define and compare individual levels

of loss aversion in our sample and investigate whether this is driven by the participants’

average attention, and by the decision weights predicted by the attention of participants.

First, to obtain simple measure of loss aversion, we estimate our benchmark model

without attention (column 4 in Table 2) for each individual. This results in an estimate

of two decision weights (ω̂j,s) for each individual, based on the behavioral data only.5 We

then use these weights to calculate each individual’s level of loss aversion λ as

λj :=

∣∣∣∣ ω̂j,Lω̂j,G

∣∣∣∣ . (12)

5We exclude three cases for which λ could not be estimated at the agent level: two cases with decision
weights that had opposite signs, and an additional case with an insufficient number of observations.
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Second, we compute an agent-specific measure reflecting the relative allocation of at-

tention to losses compared to gains as ∆āj = āj,L/āj,G.

The left panel of Figure 3 shows the resulting relationship between loss aversion λj and

∆āj . The model reported at the top of panel A includes an intercept and shows that ∆āj

predicts λj with statistical significance (p < 0.05). This underlines that loss aversion (as

measured by attribute weights) is indeed correlated with relative attention to losses, as one

would expect if loss aversion is an individual preference.
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Figure 3: Correlation between loss aversion and attention measures.

The figures present the relationship between the differences in average attention to losses and

gains, the agent-specific and attention-based levels of Loss Aversion. Agent-specific loss aversion,

shown on the y-axis in (A) and (B), is the ratio between the individual weights (λj = −ωj,L/ωj,G).

The difference in average attention, shown in the x-axis in (A) is defined as ∆āj = āj,L − āj,G.

λA
j , shown on the x-axis in (B), is the median of the ratio of the attention-based decision weights

(λA
j,t = −ωj,L,t/ωj,G,t). The correlation in (A) is significant at 1%, the correlation in (B) is

significant at 5%.

To further probe the impact of attention within the context of our structural model, we

correlate λj with an alternative measure of loss aversion that is predicted by the attentional

patterns. To calculate the latter, we use the attentional data to predict the weights ωj,G,t

and ωj,L,t for every trial and every individual. We do so using Equation (10) from our
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model, where the π parameters are based on the interaction terms of our full model (Table

2 column (1)). This allows us to have trial and individual specific measures of attention-

based loss aversion λAj,t :=
∣∣∣ωj,L,t

ωj,G,t

∣∣∣. These individual loss aversion measures fluctuates due to

the variability of attention over trials, so we take the median over trials for each individual

to obtain individual weights:

λAj := median
{
λAj,t
}T
t=1

(13)

The right panel of Figure 3 shows the correlation between the individual levels of loss

aversion (λj) and λAj . The model reported at the top of panel B includes an intercept

and shows that λAj predicts λj with statistical significance (p < 0.05). This shows that

individual differences in loss aversion are partially captured by attention-based proxies.

Result 2. We find a modest but statistically significant correlation between a behavioral

measure of individual loss aversion and attention-based proxies of loss aversion.

These results complement those in Pachur et al. (2018), who also find a relationship

between attentional patterns and loss aversion parameters.

7 Discussion

In this section we discuss a number of issues related to our model and results: robustness

to alternative measures of attention, the causal effect of attention, the validity of our model

assumptions, and the applicability of our method to other experiments.

7.1 Robustness to other measures of attention

While dwell times are a typical object for attention research, our theoretical framework is

agnostic about which measure best captures attention. Therefore, Table A3 (see Appendix)

repeats our analysis using another set of measures, namely relative dwell times to the
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two attributes (column 2), the number of fixations to each attribute (column 3), and a

logarithmic transformation of dwell time (column 4). For convenience column 1 repeats

the results of the absolute dwell time model in Table 2.

As the estimates in Table A3 demonstrate, the results are qualitatively and quanti-

tatively robust to the use of different measures reflecting attention to specific attributes.

First, all the interactions between the attributes and the attentional measures remain sta-

tistically significant, although the relative dwell time and fixation measures show a slight

reduction in p values (p < 0.1) for the trial-wise attention measures in the gain domain.

Furthermore, in all specifications, trial-wise attention has a much smaller impact than aver-

age individual attention. These robustness checks further underline that attention matters,

and that bottom-up attention has a weaker impact in our experiment than top-down at-

tention.

7.2 The validity of the assumptions

Our interpretation of residual trial-wise variations as reflecting bottom-up attention and

average attention measuring top-down attention rests on a number of assumptions. Per-

haps the most fundamental assumption underlying our framework is that the influences of

top-down and bottom-up attention on the decision process are additively separable. Above,

we cited evidence in support of this assumptions, e.g. (Pinto et al., 2013). This assump-

tion would be violated by interactive effects between bottom-up and top-down attention,

which for instance occur if top-down attention to an attribute raises the impact of salience

variations in that attribute.

To test for this type of violation, we estimate the interaction effect of average and

residual trial-wise attention. Table A4 in the appendix shows the results of regressions

including these interactions in both the loss and gain domain (column 2), the gain domain

only (column 3) and the loss domain only (column 4). Column 1 reproduces the original

estimates from Table 2 for ease of comparison. We do not find evidence for robust inter-
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action effects between average and trial-wise attention, with the exception of one case in

the domain of losses in column 2. This interaction effect, however, becomes non-significant

in a further model specification reported in column 4. More importantly, the inclusion of

both interaction terms does not cause the estimates on either type of attention to change

substantially or become insignificant. We conclude that any interaction effects between

average and trial-wise attention, if they exist, are relatively small and do not change our

estimates of the individual effects of the two attention channels.

For residual trial-wise attention to reflect bottom-up attention, we assume that the

size of the attributes does not affect top-down attention. If this is violated, our empirical

model would then be attributing a percentage of the variability in the top-down process

due to attribute size to residual trial-wise attention. Since we observe greater coefficients

for average attention compared to residual trial-wise attention, top-down processes seem to

influence the decision weights more strongly and we therefore would be over-weighting the

bottom-up effect within our model (and underestimate the impact of top-down attention).

To test this assumption, we assess whether more attention is paid to larger gain and loss

attributes. Appendix Table A5 shows the estimations for the determinants of attention.

The results show that attention is significantly correlated with gain size. Nonetheless, while

significant these effects are relatively small: increasing the gains by one unit leads to an

estimated increase in dwell times by approximately 2(3)ms out of an average 448(417)ms for

gains (losses). Therefore, in case these effects at least partially reflect top-down attention

to gain and loss magnitude, the effects on our estimations would be negligible. Moreover,

these effects are only significant in the gain domain, but not in the loss domain.

Finally, we make the assumption that preferences are stable, and do not change over

trials. This is a natural assumption in our experiment, given that no feedback about

decision outcomes is provided until the end of the experiment, thereby preventing learning.

However, we can test this assumption by assessing the evolution of attention over trials.

Table A5 shows that dwell times for both gains and losses decrease slightly, but significantly,
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throughout the experiment. This effect likely reflects increased familiarity with the general

task setup as the experiment progresses. This is supported by the results reported in

Column 3 in Supplementary Table 3, which show that participants also become slightly

faster at the task, and this reduction in average response times per trial will consequently

reduce the dwell times for both attributes throughout the experiment. In Table A6 we

control for potential changes in the decision weights over the course of the experiment.

The results show that none of our original predictions of attention change. Nonetheless,

we observe a small, but significant effect of trials on the decision weight for gains, but not

for losses, indicating that the weighting of gains increased throughout the experiment.

The assumptions discussed in this section indicate the knowledge frontier in attention

research, and are subject to wider discussion in the psychology and neuroscience litera-

ture. For instance, Awh et al. (2012) argue that some contextual elements, like rewards,

may trigger top-down attention, because people have built up mental associations with

them. Future research that clarifies the impact of such interactions between attentional

and reward processes will inform the foundation of our model.

7.3 Applicability of the method

Like any method, ours has a number of strengths and limitations. One strength is that it is

quite general and can be applied to a large number of datasets. Our model does not depend

on a specific number of attributes, specific measures of salience or particular measure of

attention. It is thus potentially applicable to a large number of datasets.

One limitation is that the model requires a sufficient number of trials in order to produce

a reliable estimate for the impact of trial-wise variance. To get a sense of how many trials

are needed for a stable estimate, Supplemental Figure B3 in the appendix, shows how

estimates and the model log-likelihood change when progressively more trials are included

in the estimation. As is apparent from these figures, it appears that about 40 trials are

sufficient to obtain relatively stable estimates, a number that is below the typical number
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of trials in the attention literature in psychology and neuroscience. The model proposed

here, may therefore yield relatively robust estimates with a relatively low number of trials

(given that a sufficiently wide range of attributes is included within these 40 trials).

When it comes to experimental manipulations, our method can be easily applied to ex-

periments that incorporate within-subject manipulations of salience: these manipulations

lead to variation in trial-wise attention, which the model correctly attributes to bottom-up

processes. The framework thus provides a useful method to verify if the salience manipu-

lations did indeed have an impact on the importance of bottom-up attention.

7.4 Causality

As we discussed in Section 2, many papers have tried to measure the causal impact of

attention. Our framework shows that the causal effect of attention is not as straightforward

as it seems at first sight, as there may be different causal pathways. On the one hand,

bottom-up attention can exert a causal influence on decision making by directing attention

to salient features of the choice context. On the other hand, top-down attention exerts its

impact on attention by focusing on features that reflect the agent’s preferences, thereby

allowing the agent to translate his or her preferences and beliefs into relevant decisions.

In the context of decision-making it appears that top-down attention is harder to ma-

nipulate than bottom-up attention, because it is driven by personal characteristics, goals

and preferences, rather than contextual variables that are under direct control of the ex-

perimenter. Thus, the majority of papers we discuss in the literature section have explored

the causal effects of bottom-up attention through the manipulation of salience. Causal

manipulations of top-down attention are rare in the literature (e.g., Ghaffari and Fiedler,

2018). Other common experimental manipulations, such as the use of time quotas for

observing different attributes, are likely to affect both bottom-up and top-down processes

simultaneously. Future research can build on the correlational approach developed here,

by independently manipulating top-down and bottom up attention, and measuring the
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relative impact of both.

8 Conclusions

For good reason, there is an increasing focus on attention in economic theory. One of the

most fundamental open questions in this regard is to what extent attention is driven by

agents’ characteristics and to what extent it is determined by the context. In this paper, we

have provided a basic framework to evaluate this question. Our experiments show that both

bottom-up and top-down attention contribute to choices under risk. Aggregate differences

in attention also correlate with an individual loss aversion parameter, underlining their

relation with the agent’s specific goals.

Among economists, there is some expectation that attention can be a “unifying” vari-

able that ties together hitherto separate phenomena (Gabaix, 2019). Similarly, the poten-

tial of attention and eye-tracking are attracting scholars from new research fields, such as

management and organization (Meißner and Oll, 2019). The framework we propose here

can be flexibly applied to different experimental contexts and can help answer a number

of questions that are crucial to fulfill this promise of attention research. For instance, how

does the influence of bottom-up vs. top-down attention vary across environments? How

do various aspects of salience affect bottom-up attention and the occurrence of behavioral

biases? How do individual differences in attention correlate with personal characteristics

and decision parameters? Answering these questions will be valuable to both theorists and

policy makers alike. More generally, our approach demonstrates the fruitful interaction

between cognitive (neuro-)science and economic analysis.
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A Appendix

A.1 Reformulation of Attention-based utility

In the most general form (including the effect of salience), the equations for attention (aj,s,t,

defined in equation 4) and the decision weights (ωj,s,t, defined in equation 8) were given

by:

aj,s,t =aTDs (βj,s) + aBUs (~σt) + νj,s,t

ωj,s,t =βj,s + g(aBU (~σt)) + ηj,s,t

We decomposed attention into two measures, average attention (āj,s, defined in equation

5) and residual trial-wise attention (ãj,s,t, defined in equation 9). Average attention, by

aggregating over all trials, is not affected asymptotically by the trial-wise effects of salience.

On the other hand, the residual trial-wise attention captures only the differences in bottom-

up control of attention.

āj,s =aTDs (βj,s) + āBUs + ν̄j,s

ãj,s,t =aBUs (σj,s,t)− āBUs + (νj,s,t − ν̄j,s)

Now, we proceed to partially differentiate ωj,s,t, āj,s and a
′
j,s,t:

dωj,s,t = dβj,s +
∂g

∂aBU
Oσa

BU d~σt + dηj,s,t (14)

dāj,s =
∂aTD

∂β
dβj,s + oP (1) (15)

da′j,s,t =
∂g

∂aBU
Oσa

BU d~σt + dνj,s,t + oP (1) (16)

Where oP (1) is a residual term that converges in probability to 0 at a rate of order
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1/T . If ∂aTD

∂β 6= 0, we can replace dβj,s from equation (15) to (14). Similarly, we can take

the overall effect of salience ∂g
∂aBU OσaBU d~σt from equation (16) to (14). Then we rewrite

the partial differential and do a linear approximation of ωj,s,t:

dωj,s,t =

(
∂aTD

∂β

)−1

dāj,s +
∂g

∂aBU
dãj,s,t + oP (T )− dνj,s,t + dηj,s,t

ωj,s,t ≈π0 + πā,s dāj,s + πã,s dãj,s,t + η̃j,s,t

Where πā,s =
(
∂aTD

∂β

)−1
and πã,s = ∂g

∂aBU . The error term η̃j,s,t = ηj,s,t − νj,s,t + oP (1)

expected value converges to 0 when T increases.

A.2 Robustness Check - Estimations by Experiment

The estimations in Table A2 assess whether decision weights change or remain consistent

across the two separate experiments. Column 1 reflects our original estimation reported in

Table 2 that contains the data from both experiments (91 participants). Columns 2 and

3 reflect estimations based on the data recorded for experiments 1 (39 participants) and

2 (52 participants) respectively. The estimations include individual fixed effects and the

error terms were estimated with jackknife resampling (in parentheses).
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Table A2: Estimations for Decisions (by Experiment)

(1) (2) (3)
Both Exp. 1 Exp. 2

xG,t 0.190∗∗∗ 0.035 0.163∗∗∗

(0.022) (0.041) (0.031)
xG,t × āj,G 0.353∗∗∗ 0.664∗∗∗ 0.360∗∗∗

(0.048) (0.107) (0.059)
xG,t × ãj,G,t 0.008∗∗∗ 0.010∗ 0.004

(0.003) (0.005) (0.003)
|xL,t| -0.301∗∗∗ -0.174∗∗∗ -0.260∗∗∗

(0.028) (0.043) (0.041)
|xL,t| × āj,L -0.315∗∗∗ -0.620∗∗∗ -0.338∗∗∗

(0.065) (0.111) (0.088)
|xL,t| × ãj,L,t -0.031∗∗∗ -0.016∗ -0.034∗∗∗

(0.005) (0.009) (0.006)

N 13057.000 5426.000 7631.000
AIC 7293.469 3014.678 4152.059
BIC 7338.332 3054.272 4193.699
LL -3640.735 -1501.339 -2070.029

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.3 Robustness Check - Alternative attention variables

Table A3 shows our model estimations with different measures for attention. The depen-

dent variable is the participants’ decisions. Column 1 shows our chosen variable, total dwell

time (Estimation is identical to column 1 in Table 2). The model represented in Column

2 replaces absolute dwell time by relative dwell time that depends on the response time

on a given trial (DT/RT). Finally, the model in column 3 uses the number of fixations

as attentional proxy, while the model in column 4 uses the logarithmic transform of total

dwell time. These estimations use fixed effects and the error terms were estimated with

jackknife resampling (in parentheses).

Table A3: Estimations for Decisions

(1) (2) (3) (4)
Dwell-Time Relative Time Fixations ln(D. Time)

xG,t 0.190∗∗∗ 0.005 0.042 0.547∗∗∗

(0.022) (0.040) (0.040) (0.024)
xG,t × āj,G 0.353∗∗∗ 1.118∗∗∗ 0.228∗∗∗ 0.183∗∗∗

(0.048) (0.127) (0.030) (0.020)
xG,t × ãj,G,t 0.008∗∗∗ 0.015∗ 0.003∗ 0.006∗∗∗

(0.003) (0.009) (0.002) (0.002)
|xL,t| -0.301∗∗∗ -0.175∗∗∗ -0.176∗∗∗ -0.618∗∗∗

(0.028) (0.048) (0.051) (0.032)
|xL,t| × āj,L -0.315∗∗∗ -0.897∗∗∗ -0.191∗∗∗ -0.166∗∗∗

(0.065) (0.162) (0.038) (0.026)
|xL,t| × ãj,L,t -0.031∗∗∗ -0.056∗∗∗ -0.010∗∗∗ -0.014∗∗∗

(0.005) (0.014) (0.003) (0.003)

N 13057 13057 13057 13057
AIC 7293.469 7267.744 7329.232 7247.709
BIC 7338.332 7312.607 7374.095 7292.572
LL -3640.735 -3627.872 -3658.616 -3617.855
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.4 Robustness Check - Interaction effects between average attention

and residual trial-wise attention

The estimations in Table A4 test for possible non-linear interactions between average and

residual trial-wise attention. Column 1 shows our specification reported in the main text,

column 2 includes the non-linear moderation of average and residual attention for both the

gains and losses. Columns 3 and 4 include the non-linear moderation only for the gains

and for the losses respectively. The estimations include individual fixed effects and the

error terms were estimated with jackknife resampling (in parentheses).

Table A4: Estimations with interacting effects

(1) (2) (3) (4)

xG,t 0.190∗∗∗ 0.188∗∗∗ 0.188∗∗∗ 0.190∗∗∗

(0.022) (0.022) (0.022) (0.022)
āj,G × xG,t 0.353∗∗∗ 0.358∗∗∗ 0.357∗∗∗ 0.354∗∗∗

(0.048) (0.048) (0.048) (0.048)
ãj,G,t × xG,t 0.008∗∗∗ 0.020∗∗ 0.019∗ 0.007∗∗∗

(0.003) (0.010) (0.010) (0.003)
āj,G × ãj,G,t × xG,t -0.018 -0.015

(0.018) (0.018)
|xL,t| -0.301∗∗∗ -0.299∗∗∗ -0.300∗∗∗ -0.300∗∗∗

(0.028) (0.028) (0.028) (0.028)
āj,L × |xL,t| -0.315∗∗∗ -0.316∗∗∗ -0.316∗∗∗ -0.314∗∗∗

(0.065) (0.065) (0.065) (0.065)
ãj,L,t × |xL,t| -0.031∗∗∗ -0.065∗∗∗ -0.031∗∗∗ -0.061∗∗∗

(0.005) (0.019) (0.005) (0.019)
āj,L × ãj,L,t × |xL,t| 0.064∗ 0.056

(0.035) (0.034)

N 13057 13057 13057 13057
AIC 7293.469 7287.432 7290.206 7291.850
BIC 7338.332 7347.248 7342.545 7344.189
LL -3640.735 -3635.716 -3638.103 -3638.925
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.5 Determinants of Attention

Table A5 shows the estimations for the determinants of attention. We estimated separate

linear regressions with fixed effects for the dwell times for gains (column 1), losses (column

2) and total reaction time (column 3). The error terms are clustered at the level of partic-

ipant. The variable L. Left corresponds to a dummy variable that takes the value of 1 if

in that trial the losses were presented on the left. Similarly, L. First and L. Last take the

value of 1 if the first and last fixation was on the losses respectively.

Table A5: Estimations for Attention

(1) (2) (3)
DT Gains DT Losses RT

xG,t 0.003∗∗∗ 0.002∗∗ 0.006∗∗∗

(0.001) (0.001) (0.002)
|xL,t| -0.002 0.001 -0.002

(0.001) (0.001) (0.002)
L. Left 0.063∗∗∗ -0.062∗∗∗ 0.015

(0.018) (0.017) (0.026)
L. First 0.018 -0.022 -0.006

(0.016) (0.015) (0.024)
L. Left × LossFirst=1 0.021 0.039∗ 0.000

(0.020) (0.021) (0.041)
L. Last -0.167∗∗∗ 0.180∗∗∗ -0.054∗∗∗

(0.011) (0.010) (0.013)
t -0.001∗∗∗ -0.000∗∗∗ -0.002∗∗∗

(0.000) (0.000) (0.000)
Constant 0.018 -0.084∗∗∗ 1.430∗∗∗

(0.023) (0.024) (0.052)

N 14372 14372 14372
AIC 7007.764 3747.179 26082.792
BIC 7060.775 3800.190 26135.803
LL -3496.882 -1866.589 -13034.396

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.6 Robustness Check - Changes in decision weights over time (trials)

The estimations in Table A6 assess whether decision weights change or remain consistent as

the experiment progresses. Column 1 replicates our main design, while column 2 adds trials

normalized to τ̃ = (τ −80)/160 as an additional factor that can affect the decision weights.

The estimations include individual fixed effects and the error terms were estimated with

jackknife resampling (in parentheses).

Table A6: Estimations with trial variation

(1) (2)
Decision Decision

xG,t 0.190∗∗∗ 0.160∗∗∗

(0.022) (0.022)
āj,G × xG,t 0.353∗∗∗ 0.359∗∗∗

(0.048) (0.048)
ãj,G,t × xG,t 0.008∗∗∗ 0.006∗∗

(0.003) (0.003)
τ̃ × xG,t 0.042∗∗

(0.021)
|xL,t| -0.301∗∗∗ -0.286∗∗∗

(0.028) (0.028)
āj,L × |xL,t| -0.315∗∗∗ -0.314∗∗∗

(0.065) (0.065)
ãj,L,t × |xL,t| -0.031∗∗∗ -0.030∗∗∗

(0.005) (0.005)
τ̃ × |xL,t| -0.026

(0.026)

N 13057 13057
AIC 7293.469 7296.216
BIC 7338.332 7356.032
LL -3640.735 -3640.108

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure B1: Horizontal and Vertical Clusters of visual fixations

The figures above describe the center of the individual clusters on the x- and y-axis of the screen.

Left Panel: three main clusters for the horizontal axis, consistent with the regions of interest

(left, middle and right). Right panel: on the vertical axis, there is only one concentration point

since all regions of interest are aligned at the same height.
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A. Gains B. Losses
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Figure B2: Acceptance probability conditional on residual attention

The figures above show the estimated probability of accepting the lottery (vertical axis) con-

ditional on the outcome values (Left panel for gains, right panel for losses) and the residual

attention to the same outcomes. Lines reflect different levels of residual attention, which are the

sample quantiles 10% (dotted), 50% (dashed) and 90% (solid). Results reflect the significant in-

teraction (although not visually different) between the gamble’s outcomes and average attention

present in model 2 (Table 2). The predictions are presented with their 95% confidence intervals.
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Figure B3: Stability of estimations

The figures above show the results of our estimations by the number of trials included (horizontal

axis). The upper-left figure shows the average log-likelihood of the included observations. The

upper-right panel shows the median degree of loss-aversion estimated as the ratio of the decision

weights of losses over gains. The lower panels show the median decision weights for the gains

and the losses respectively.
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Information Brochure for Decision-Making Study 
 
Dear participant , 
 
Thank you for participating in this experiment. Before you start the experiment, it is important that 
you are aware of the procedures followed in this study. Please read the following text carefully and 
do not hesitate to ask your experimenter if you have any questions.  
 
Aim of the study 
The goal of our experiment is to investigate how people make financial decisions under risk. The 
experiment will take about 1 hour to complete and we will track your eye movements throughout 
the experiment.  
 
Experiment procedure 
You will receive an initial payment of 10 Euros for filling out a number of questionnaires. Based on 
your decisions throughout the experiment, you have the chance to earn additional money, as well as 
to lose money from your endowment. This is because one trial will be randomly selected at the end 
of the experiment - the payout relevant trial. The decision you made on this trial will be realized as 
explained in detail below. All values shown in the experiment are in monetary units (MU), which have 
an exchange rate of 1 MU = 0.1851852 Euros. 
 
You are not allowed to write anything down or make notes during the experiment. Moreover, it is 
very important that you look at the screen throughout the experiment, unless there is a break and 
we ask you to relax your eyes. 
 
a. Detailed description of the choice scenarios 
 
The experiment consists of a total of 160 decisions. Your task is to make a decision about which of 
two options you prefer: (A) receiving a certain payout, which leads to no change to your endowment 
of 10 Euros, or (B) playing a lottery, which can lead to additional earnings with a 50% probability, but 
also losses with a 50% probability. Choosing the lottery means that you could win, or lose, one of the 
amounts displayed on the screen with equal (50%) probability. Note that the values offered by the 
lottery will change on every trial, so please make sure that you pay attention to the amounts on 
every trial before you make a decision. The certain payout, on the other hand, will remain the same 
throughout the experiment, such that when you choose this option there will be no additional 
earnings added to or losses subtracted from your initial endowment.  
 
To make this even clearer, consider the 
following example: On every trial, the 
values of the lottery will be displayed on 
the screen as shown in the figure on the 
right. In this example trial, gains are 
shown on the left side (gains are signified 
by “+”) and losses are on the right (losses 
are signified by “-“). This means that if 
you decide to accept the lottery on this 
trial, you will have a 50% chance of 
winning 22 MU and a 50% chance of losing 18 MU, which will be added to or subtracted from your 



endowment (your payment of 10€ for the questionnaires). Whether you receive the gain or loss will 
be decided upon via a virtual coin flip, if you selected the lottery on the payout relevant trial selected 
at the end of the experiment. Note that the locations of gains and losses are not set and can also be 
reversed on some trials, with losses on the left and gains on the right. Choosing the safe option 
always leads to no change from your initial endowment, that means you do not receive any 
additional gains, nor will you incur any additional losses. 
 
Once you have decided which option you prefer, you can communicate your choice by pressing one 
of two buttons:  
 

• Press the up arrow key to choose the lottery. 
• Press the down arrow key to choose the safe option. 

 
You will receive a brief feedback after you made the decision (for ca. 1 second), which indicates what 
option you have chosen, such that the letter L appears in the center of the screen, when you chose 
the lottery, and the letter C appears in the center of the screen when you chose the certain payout. 
After a short break, the next lottery will be displayed. 
 
 
b. Details on payout determination 
 
After you have made your choice for all 160 lotteries, you will select the payout relevant trial by 
rolling three 10-sided dice. The die rolls will reflect a number between 1 and 160 (the number of all 
decisions that you have made) as follows: the first die that you roll indicates whether your payout 
relevant trial is smaller than 100 (die shows a number <5), or greater than 100 (die shows a number 
>= 5). The second and third die rolls then determine the exact trial number. If the trial number is 
greater than 160, you will roll dice 2 and 3 until a number =< 160 is generated. You will then enter 
the chosen trial number into the computer, which will recall the exact decision that you have made 
on that trial. 
 
If you chose to play the lottery, a computer algorithm equivalent to an even coin flip will determine 
whether the gain amount on this trial will be added to your endowment, or whether the loss amount 
will be deducted from your endowment. Please remember that the monetary units will first be 
converted to euros using the exchange rate of 1 MU = 0.1851852 Euros. If you chose the certain 
option, you will receive your endowment of 10 Euros. The amounts on the randomly selected payout 
relevant trial, your decision and your additional wins or losses will be displayed to you on the screen. 
Your final payment will be calculated as follows:  
 
If the outcome was a gain: 10 Euro (endowment) + gain amount * 0.1851852 
If the outcome was a loss: 10 Euro (endowment) - loss amount * 0.1851852 
If you chose the certain outcome: 10 Euro (endowment). 
 
 
c. Subparts of the experiment 
 



1. At the beginning of the experiment you will fill out questionnaires for about 30 minutes. For 
your work, you will receive a payment of 10 Euros for use in the following part of the 
experiment. 

2. After the questionnaires, you will be given the chance to familiarize yourself with the 
experiment in 10 practice trials. These 10 decisions will not affect your final payout and will 
be made solely for the purpose of giving you experience with the choice scenarios and the 
speed of the experiment. 

3. The main experiment begins after all your questions have been answered and we are certain 
that you have understood all aspects of the experiment. We will now set up the eye tracker, 
which monitors where you are looking throughout the remainder of the experiment. To this 
end, we will ask you to place your head on a chin rest. From this point on, it is very important 
that you move your head as little as possible and fixate on the screen. 

4. At the end of the experiment, we ask you to fill out a final questionnaire, which will take an 
additional 10 minutes. 

5. Finally, you will receive your payment, which will be determined as outlined in detail above. 
 
Confidentiality 
All research data will remain completely confidential. In case of either using these results in scientific 
publications or making these results public in any other way, this will happen anonymously. Personal 
data will not be seen by others without explicit approval.  
 
VOLUNTARY 
Your participation in this study is voluntary. You are free to choose whether to participate in this 
study. You may also choose to withdraw from the study or to decline to answer any questions at any 
time. You will not be penalized or lose any benefits to which you are otherwise entitled if you choose 
not to participate or choose to withdraw. 
 
INSURANCE 
Participation in this study involves making simple choices which is routinely used and will do no harm 
to your health or safety. Because this study poses no risks to your health or safety, the conditions of 
the regular liability insurance of the University of Amsterdam are applied. 
 
FURTHER INFORMATION 
If you have questions about this research beforehand or afterwards, please contact the responsible 
researcher dr. Jan Engelmann (e-mail j.b.engelmann@gmail.com). In case of complaints about this 
study, you can contact Dr. Wery van den Wildenberg, member of the ethical committee of the 
Psychology Department of the University of Amsterdam (Fmg-UvA, REC-G1.10, Nieuwe Achtergracht 
129 B, 1018 WS Amsterdam, 020-5256686, w.p.m.vandenwildenberg@uva.nl). 
 



AGREEMENT 
 
When you sign this document containing a written explanation of the experiment that you are 
participating in, you declare that you have read and understood the instructions and that all your 
questions have been answered by the experimenter. Moreover, with your signature you agree to 
participate in the procedures outlined in the instruction above. 
 
If you have further questions about this experiment, please contact the responsible researcher dr. 
Jan Engelmann (e-mail j.b.engelmann@gmail.com). In case of complaints about this study, you can 
contact Dr. Wery van den Wildenberg, member of the ethical committee of the Psychology 
Department of the University of Amsterdam (Fmg-UvA, REC-G1.10, Nieuwe Achtergracht 129 B, 1018 
WS Amsterdam, 020-5256686, w.p.m.vandenwildenberg@uva.nl). 
 
 
[Participant] 

“I have read and understood the information above and agree to participate in the 
current experiment and grant the experimenters permission to use my data. I reserve the 
right to withdraw from this agreement without giving any explanation, as well as to 
withdraw from participation in this experiment at any time.” 

 
 
 

Date: 
 
……………………………............   …………………………… 
Participant name      Signature 

 
 
 
[Experimenter] 

“I have explained the experiment to the participant. I will answer any further questions to 
my best knowledge.” 
 
 
 
Date: 
 
……………………………............   …………………………… 
Researcher name      Signature 
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Exit Questionnaire. 
 
 
Thank you again for participating in our experiment. Because we are always concerned 
with improving the experiment and the instructions, we have just a few questions for 
you. Please rate how you much you agree with the following statements using the scale 
below. 
 
 
0 1 2 3 4 
Strongly 
disagree 

Disagree  Undecided Agree Strongly agree 

 
 
Statement Your 

Evaluation  
During the experiment, I never considered that I would not receive the 
amount that I selected via dice rolls at the end the end of the experiment. 
 

 

During the experiment, I considered that the experiment was programed in 
such a way that would make me lose money. 
 

 

During the experiment, I never thought that I was being deceived by the 
experimenters about the additional money I could win or lose? 
 

 

During the experiment, I fully understood that the values shown would be 
converted to Euros via an exchange rate. 
 

 

 
 
 

• Have you ever participated in an experiment in which you were deceived? Please 
circle your answer. 

 
Yes   No   Cannot tell /  

do not remember 
 

• To what extent do you think that previous experiences with deception 
influenced your behavior in the current experiment? Please circle one answer. 
Previous experiences with deception influenced me in this experiment … 

 
0 1 2 3 4 
Not at all  Slightly  Somewhat  Moderately Extremely  
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• Please use the space below if you have any other comments or questions about 

the experiment. 
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