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Abstract  

 

Within the discussion on bias in algorithmic selection, fairness interventions are increasingly becoming a 

popular means to generate more socially responsible outcomes. The paper uses a modified framework 

based on Rambachan et. al. (2020) to empirically investigate the extent to which bias mitigation 

techniques can provide a more socially responsible outcome and prevent bias in algorithms.  In using the 

algorithmic auditing tool AI Fairness 360 on a synthetically biased dataset, the paper applies different 

bias mitigation techniques at the preprocessing, inprocessing and postprocessing stage of algorithmic 

selection to account for fairness. The data analysis has been aimed at detecting  violations of group 

fairness definitions in trained classifiers. In contrast to previous research, the empirical analysis focusses 

on the outcomes produced by decisions and the incentives problems behind fairness.  

The paper showed that binary classifiers trained on synthetically generated biased data while treating 

algorithms with bias mitigation techniques leads to a decrease in both social welfare and predictive 

accuracy in 43% of the cases tested. The results of our empirical study demonstrated that fairness 

interventions, which are designed to correct for bias often lead to worse societal outcomes. Based on 

these results, we propose that algorithmic selection involves a trade-between accuracy of prediction and 

fairness of outcomes.  Furthermore, we suggest that bias mitigation techniques surely have to be 

included in algorithm selection but they have to be evaluated in the context of welfare economics. 
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Introduction 
 

As algorithms based on machine learning are increasingly becoming popular in facilitating decision-

making processes in a variety of industries (Boodhun & Jayabalan, 2018; Coussement et al., 2017), 

criticism is mounting with respect to emerging bias in a number of application areas and an urge to better 

understand algorithmic selection (Awad et al., 2018; O’Neil, 2017). With algorithms are driven by even 

greater complexity, they are developed with the objective to more precisely predict patterns in larger 

and large datasets (Tsai et al., 2015; Zhou et al., 2017). Algorithms are utilized to generate more accurate 

predictions taking a large variety of factors into account, e.g. suggesting whether a candidate is suitable 

for a job (Raghavan et al., 2020), a debtor will default on his loan (Coussement et al., 2017; Malhotra & 

Malhotra, 2003), a chest X-ray image show signs of COVID-19 (Maguolo & Nanni, 2020) or whether a 

Facebook post does not align with community guidelines (Ng, 2018).  It has been suggested that fairness 

interventions can mitigate the negative effects stemming from bias in algorithmic selection (Rambachan 

et al., 2020; Zafar et al., 2019). 

As bias is a common problem in algorithmic selection, remedies of algorithmic bias are seldom explored. 

As there is a strong belief that greater availability of data sets and better fairness definitions will solve 

the problem of algorithmic bias, the literature has just recently addressed the issues of fairness and 

accountability (Rambachan et al., 2020). In contrast to conventional wisdom, we argue that greater 

availability of data and better fairness definition are a necessary but not sufficient step to facilitate the 

structure and evolution of algorithms. In using a modified framework based on Rambachan et. al. (2020), 

we empirically investigate the extent to which it is socially desirable to implement bias mitigation 

techniques to combat bias in algorithms. To streamline the process of implementing these bias 

mitigation techniques, the audit tool 30 AI Fairness 360 (AIF360) by IBM is used. By using this algorithmic 

audit tool, we are able to detect violations of group fairness definitions in trained classifiers. In order to 

examine the effects of fairness interventions, we applied different bias mitigation techniques at the 

preprocessing, inprocessing and postprocessing stage to a synthetically biased dataset. The dataset was 

generated as proposed by Zafar et al. (2017) using a value for n of 500.000, allowing for greater accuracy 

while still being computational feasible.  

In the following, we discuss the literature on bias and responsible algorithm. In linking the discussion to 

the social welfare function as derived from (Rambachan et al., 2020), we show that it becomes possible 

to measure the societal preference of outcomes of an algorithm (section 2).  Furthermore, we develop a 

framework for examining the different fairness definitions at the different stages of data processing 

(section 3).  Afterwards, we present the results of the empirical study by applying different fairness 

interventions (section 4). The paper concludes with some policy and managerial implications (section 5).  
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2. Theoretical discussion: Fairness and algorithmic prediction  

2.1.  Fairness and social welfare  
 

Within the current literature, there has been a consensus that fairness has to be studied as the 

endpoint of implementing algorithms (Pleiss et al., 2017). As the implementation of algorithms is 

rooted in the transformation of observed data into predictions or decisions. These transformations 

or mappings are then formally investigated as whether or not these mappings are “fair.” (Pleiss et 

al., 2017). From a particular definition of fairness, research has then focused on constructing fair 

mappings from data and the extent to which the algorithm fits to the definition utilized 

(Chouldechova, 2017; Dwork et al., 2012; Zemel et al., 2013).  However, the literature has 

convincingly proposed that algorithms require regulation as well as developers/ creators should 

develop more fair algorithms (Doshi-Velez et al., 2017).  

In contrast to this research tradition, fairness has more recently been defined in terms of 

preferences over the resulting outcomes of the screening decision using a social welfare function 

(Rambachan et al., 2020). By using a welfare-economics approach on the regulation of algorithms 

Rambachan et al (2020) define a theoretically optimal algorithmic regulation, in which bias regarding 

decision-making systems can be reduced in contrast to a world in which all decisions are made solely 

by humans.  They propose that in order to provide for optimal regulation decision-makers have to 

disclose their predictive algorithm, the data utilized for the training of the algorithm, and the 

decision rule, which they call the social planner. Based on the decision rule, the prediction made by 

an algorithm is defined and it is assigned to a particular decision.  A predicted credit score, for 

example, is assigned a certain threshold above which the loan of a client is approved. A social 

planner would be the party that is concerned with optimizing social welfare and has control over 

public policy regulation regarding this algorithm. This can be a government institution responsible 

for regulating the algorithms used by the firm. The algorithm faces a regulation problem; it can be 

restricted with respect to the attributes the decision-makers will use in the predictions, but 

regulation has actually no impact on the design and implementation of the actual algorithms.  

In their model Rambachan et al (2020) propose, that social welfare is maximised in a situation, when 

discrimination is zero, as the decision-makers must disclose the decision rules. In this case, 

algorithms are regulated based on input regulations. However, as it still remains unclear how the 

relationship between input data and (biased) outcomes is defined, this approach might not be the 

best solution to the problem of regulation. In this context, Cowgill & Tucker (2019) provide a 

different solution to the problem by advocating to regulate the output, leaving the implementation 

up to the decision-makers themselves  (Cowgill & Tucker, 2019). As this approach is more concerned 

with reducing bias rather than complying with a fair process, the implementation is left to the 

private sector.  

However, both approaches are limited in certain respects: Firstly, assuming regulation is in place 

making algorithmic audits mandatory, fairness audits have to be performed by a certain agency. 

However, the responsibilities for an agency involved in auditing decisions are not clearly defined yet. 

Within Europe, further progress has been made with the General Data Protection regulation of 2018 

(European Commission, 2018)  and the ‘right to explanation’ embedded within the GDPR as 

mandating algorithmic audits (Edwards & Veale, 2017). In the recently proposed Artificial 
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Intelligence Act, the European Commission proposes that newly established national public 

institutions have to “promote public trust in the use of AI and strengthen enforcement mechanisms 

(by introducing a European coordination mechanism, providing for appropriate capacities, and 

facilitating audits of the AI systems with new requirements for documentation, traceability and 

transparency).” (European Commission, 2021).     

Secondly, if algorithmic audit is related to a full disclosure of the data, the trained predictive 

algorithm and the corresponding decision rules, an optimal social welfare level can be achieved and 

the bias can be reduced. However, the current auditing techniques for algorithms consist of different 

kind of specialized software tools which come to a variety of outcomes. These variety of outcomes 

will even be achieved if the predictive algorithm, training data and/or predictions made by the 

algorithm are tested against fairness definitions. There are a large number of fairness definitions 

which are not all compatible with each other. At this stage, different outcomes can be achieved 

which might not even guarantee that the bias has been eradicated. In this respect, certain predictive 

algorithm which are considered as fair by one definition may still contain a bias according to another 

fairness definition.  

2.2.  Trade-off between fairness and prediction 
In order to account for the shortcomings of current outcomes with respect to fairness, researchers 

have proposed that there actually is a trade-off between achieving different fairness measures and 

accuracy in predictive modelling. This trade-off has been due to the fact that different methods for 

fair machine learning place additional constraints on algorithms or penalize certain ways of 

algorithms learn (Berk et al., 2017; Liu & Vicente, 2020).  This also means that this trade-off has to be 

placed in the context of multiple definitions of fairness and fairness interventions. The basic 

assumption in this literature is that making algorithms fairer comes at the cost of predictive 

accuracy.  

Withing the economics discipline, this trade-off has to be placed at the center of a social welfare 

function in order to compare social alternatives. Based on a social welfare function, the preferences 

of each individual in a society can be aggregated, which allows to provide guidance with respect to 

decisions that influence social welfare. Rambachan et al. (2020) apply this framework to propose an 

approach to regulate fairness in algorithms.  Based on their social welfare definition, fairness is 

related to  the preferences of society with respect to the outcomes of the decision-making process.  

The optimal outcome for society in this regulation process is a function in terms of the outcome of 

interest used in creating the particular algorithm. They define  the social welfare function as the 

weighted average outcome of interest among individuals that receive a ‘positive’ decision by the 

predictive algorithm. That means, it can be optimal when the total predicted productivity of a hired 

candidate is maximized. The social welfare function contains the weighted average of the different 

outcomes, with the weights giving the possibility to express a preference over certain outcomes for 

specific groups. For instance, if society views female candidates as being historically disadvantaged in 

job applications, then the weight of this group should be increased. As hiring a female candidate 

would increase social welfare compared to hiring a male candidate (assuming the rest of their 

characteristics are exactly identical). In this case, the socially optimal decision would be to hire the 

female candidate. This mechanism allows the social welfare function to give a preference to more 

equitable outcomes, which are assumed to be societally desirable. The question still remains 

however, whether or not this decision reduces bias at the cost of better prediction.  
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2.3.  Bias in algorithmic prediction 
The extensive literature on algorithmic bias has rarely included issues of fairness in algorithmic 

selection (Doshi-Velez & Kim, 2017). However, this literature has demonstrated that the application 

of algorithms in decision-making processes is often leading to bias (Mehrabi et al., 2019; Olteanu et 

al., 2019).  The bias in data analysis can arise at different phases in the process of applying 

algorithms: in the data generation phase, in the model building phase or in the implementation 

phase. Suresh and Guttag (2019) make a distinction between different types of biases and the way 

they can influence the decisions made by an algorithm (Suresh & Guttag, 2019).  According to their 

categorization, different types of bias can be described as: 

- Historical bias: The assumption is that even in cases where data is measured and sampled to 

perfectly represent the world as it is, including every relevant feature, a model built using this data 

can still lead to different kind of outcomes. As the real world still reflects historical issues such as 

prejudice and stereotyping, they will also be included in the data analysis.  

- Representation bias: This bias can is related to selection bias, in which a particular distribution of a 

sample (on which the model is trained) actually does not match the real distribution of the 

population in the real world. This can be due to insufficient sampling methods, which do not include 

all groups, or in cases, when the population of interest does not match the training data set.  

- Measurement bias: This bias can be found when certain features and labels utilized in a model are 

just proxies for actual features and labels in the real world. As these proxies might have different 

distributions for different groups, this can lead to different biases across groups  

- Aggregation bias: This form of bias occurs when a particular model is used to describe multiple 

groups, which actually have quite different conditional distributions. This can lead to a situation 

where the mapping from inputs to outputs is rather different for other groups.  

- Evaluation bias: This bias is rooted in the need to objectively compare different models to each 

other. In order to compare these models, standardized benchmarks are required. This allows to 

optimize models with respect to their training data and the external benchmarks used (Suresh & 

Guttag, 2019).  

 

2.4.  Fairness in algorithmic prediction: Group fairness vs. individual fairness 
Within the literature on algorithm prediction, the scientific discussion has not focused on bias, but 

more recently on the extent to which algorithms create fair outcomes for the individuals concerned. 

Despite a growing research in the area, there currently is not a generally accepted definition of a fair 

algorithm as the debate has concentrated on formalizing various notions of fairness. In more general 

terms, the notions of fairness can be classified in two distinct categories: group fairness and 

individual fairness (Gajane & Pechenizkiy, 2017; Naudts, 2018; Verma & Rubin, 2018).  

In order to achieve group fairness, different groups of individuals should be treated equally (Dwork 

et al., 2012; Kusner et al., 2017). There are different notions of group fairness with respect to the 

exact metric that the groups should be compared to, including group-independent predictions 
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(Pedreshi et al., 2008), statistical parity (Pager & Shepherd, 2008), equality of opportunity (Hardt et 

al., 2016) or predictive rate parity(Verma & Rubin, 2018). Individual fairness, in contrast, refers to an 

similar treatment of individuals who exhibit similar characteristics. In this case, the algorithm should 

predict the same outcome. Individual fairness requires that the distance between the outcomes of 

two individuals should not be greater than the distance between the features of the individuals 

(Dwork et al., 2012). Still it remains unclear, however, how to determine such a distance metrics, 

which measures the similarity between two inputs (individuals).  

Research has shown that is impossible to satisfy the three most prevalent notions of group fairness 

at the same time. These three notions are to equalize the odds, achieve statistical parity and 

generate predictive rate parity (Chouldechova, 2017; Miconi, Thomas, 2017; Pleiss et al., 2017).  

Based on this research, it becomes important to focus on the trade-off between statistical parity, 

equality of opportunity and predictive rate parity. In reality, this demonstrates that an algorithm will 

always involve some type of bias, as fulfilling the requirements of one of these three definitions 

means violating at least one of the other two (Dieterich et al., 2016; Lansing, 2012; Larson et al., 

2016).  

 

3. Conceptual framework and methodology:  Fairness solutions to the problem of bias in 

algorithms 

3.1 European Regulation on auditing and detecting bias in algorithms 
 

Within Europe, the General Data Protection Regulation (GDPR) of 2018 provides the legal basis for 

detecting bias in algorithms and auditin (European Commission, 2018). Under the GDPR, personal 

data can only be processed if at least one the following criteria applies:  

• The person involved consents to this use  

• Processing is necessary for executing an agreement  

• Processing is necessary for compliance with a legal obligation  

• Processing is necessary to protect vital interests  

• Processing is necessary for executing a task in the public interest or for a public authority  

• Processing is necessary for the protection of legitimate interests  

Furthermore, only data relevant to the task can be used. These criteria apply to all aspects of 

personal data. As it has been suggested that the GDPR also provides a right to explanation, i.e. 

enables citizens to get more information on workings of the algorithms, which influence their lives, 

the work and how they make their predictions. However, currently it is still unclear how this right 

should be implemented and enforced  (Casey et al., 2019; Wachter et al., 2017). In the Artificial 

Intelligence Act (European Commission, 2021), the European Commission went a step further and 

defined fundamental rights of EU citizens based on transparency, accountability, non-discrimination 

and auditability of algorithms.  
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3.2  Auditing and detecting bias in algorithms 
In case a bias in an algorithm has been detected by an audit, the next step is removing it. Measures 

that enhance fairness by removing bias are different fairness(-enhancing) interventions or bias 

mitigation techniques. Researchers generally make a distinction between the methods used in 

removing bias based on where in the modelling pipeline they are used. In pre-processing methods, 

the input data to the algorithm is modified; using inprocessing methods, the algorithm itself is either 

designed to be fair from scratch, or an existing algorithm is modified to be fair; in postprocessing 

techniques, the output of the algorithm is modified so that the outcomes are more fair. Most 

fairness interventions target a single one of these categories (Friedler et al., 2019). 

Pre-processing methods: Pre-processing methods, alternatively known as data-based methods 

assume that the data underlying a machine learning model can be biased, and as the algorithm 

learns from the data, the algorithm thus also becomes biased. Modifying this data to be less biased 

will thus cause the algorithm to be fair. The cause of the bias in the data can the historical context in 

which it was generated (historical bias), forms of measurement error (measurement bias) or 

underrepresentation of certain groups (representation bias)(Friedler et al., 2019; Suresh & Guttag, 

2019). A popular example of historical bias is present in recidivism models, i.e. algorithms designed 

to predict whether an inmate will commit another crime when they are released. These models are 

trained on data, however, that does not capture who commits crime but who is arrested for 

committed a crime. There is evidence that arrest rates are skewed towards minorities, as they face 

higher police rates (Rothwell, 2014). Thus, the algorithms learning from this biased data will predict 

higher recidivism rates for these minorities. One of the first methods for debiasing algorithms was 

also a pre-processing method (Feldman et al., 2014). A promising variant of pre-processing can be 

found in the work of Oneto, Donini, Maurer & Pontil (2019), who propose to use a fair 

representation of the data that can then be used in downstream modelling tasks. This 

representation does not include any sensitive attributes, decreasing the risk of leaking sensitive data 

(Shrestha & Yang, 2019).  

Inprocessing methods: The most common approach, algorithm modification, also called algorithm 

modification or model-based methods, place additional constraints on the learning algorithm, in 

order for it to not only optimize predictive accuracy but also a fairness criterium. Zehlike et al. (2017) 

created a fair algorithm for the top-K ranking problem.  

Postprocessing methods: Also known as post-hoc methods, these techniques modify the results of a 

trained predictive model so that the outcomes exhibit the desired fairness characteristics. These 

methods take as input the score output of a classifier and search for a threshold of each separate 

group so that some fairness metric is optimized. While this method does need access to the 

protected attribute, it has the advantage of being able to be applied to any trained classifier, as well 

as being computationally simple (Hardt et al., 2016; Shrestha & Yang, 2019).  

The methods described above are all applicable to group fairness. Research into fair algorithms for 

individual fairness is scant and thus far uses too many assumptions to be useful in practice (Dwork et 

al., 2012; Joseph, Kearns, Morgenstern, Neel, & Roth, 2016; Shrestha & Yang, 2019). So far, research 

on fairness in the context of reinforcement learning has solely been focused on algorithm 

modification (Jabbari, Joseph, Kearns, Morgenstern, & Roth, 2017; Weng, 2019). 
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However, Kusner et al. (2018) rightly note that while recent work has been largely aimed at finding 

and removing biases, not much research has been performed in understanding which measures are 

right for a given problem. The proliferation of fairness interventions has not worked in this respect, 

as it is not even clear whether different measures actually differ from each other. Friedler et al. 

(2019) found that different fairness definitions that various fairness interventions try to combat are 

correlated, meaning that an algorithm designed to optimize a specific fairness measure can also be 

useful for other fairness measures. Causality-based methods can also provide an alternative, as they 

try to provide an understanding of the causal connection between protected attributes and decision, 

giving insight into how bias arises (Glymour & Herington, 2019; Kilbertus et al., 2017; Kusner et al., 

2018; Loftus et al., 2018; Madras et al., 2019; Wu, Zhang, Wu, et al., 2019).  

 

3.3  Examining algorithm fairness: Hypotheses 
Increasingly, researchers are seeking to add an economic perspective to the discussion on 

algorithmic fairness (Cowgill & Tucker, 2019; Rambachan et al., 2020). They posit that the context 

within which an algorithm operates, and the way it is used, is as important for fairness as its 

technical specifications.  Rambachan et al. (2020) researched regulation regarding fairness in 

algorithms. They used a social welfare function to model societal preferences over the outcome of 

algorithmic decision-making processes in order to find optimal regulation of algorithms. Their work, 

however, is confined to finding bias in algorithms, and does not consider recent work on bias 

mitigation techniques, which aims to combat the biases found in algorithms.  

Research has shown that there is a trade-off between fairness and predictive accuracy in predictive 

modelling, as measures that enhance fairness usually limit the information available to the model. 

The social welfare function used in Rambachan et al. (2020) can be conceptualized as a fairness 

measure, albeit one that does try to combine payoffs from diversity, equity and efficiency (Cowgill & 

Tucker, 2019). Whether this trade-off also exists for social welfare functions has to my knowledge 

not yet been investigated. This research will therefore try to fill that gap.  

If an algorithm receives a fairness intervention, then the algorithm should become more fair, and 

thus, according to Rambachan et al. (2020), social welfare should increase. This makes intuitive 

sense, as it should be societally desirable to produce fairer algorithms and the social welfare function 

should reflect this societal desirability. The following hypothesis will be tested: 

H1: Treating an algorithm with a fairness intervention has a positive effect on social welfare  

Previous studies such as Liu & Vicente (2020) and Friedler et al. (2019) have supported H2. Taken 

together, if my research shows support for both H1 and H2, then that will confirm the existence of a 

trade-off between social welfare score and predictive accuracy. 

H2: Treating an algorithm with a fairness intervention has a negative effect on predictive accuracy  

The previous chapter offered insights to the state-of-the-art research on bias in algorithmic decision-

making and how to regulate this. It also described where the literature is lacking; specifically, in 

quantifying the social desirability of implementing bias mitigation techniques to combat bias in 

algorithms, and whether there is a trade-off between this social desirability and predictive accuracy.  
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3.4  Creating the biased synthetic dataset 
While it is true biased data is not needed in order to generate a biased model, in this approach, 

generating biased data synthetically allows for a measure of control of bias present in the models. 

First, an introduction on formalizing notions of fairness, in order to explain how audit tool test for 

fairness.  

The description of the various fairness definitions includes the terms positive and negative labels or 

predictions. These refer to the labels or predictions having the value 1 (positive) or 0 (negative). As 

the data used here are generated synthetically, positive and negative have no actual meaning, but 

can be seen as useful constructs in understanding the various fairness definitions.  

As algorithmic audit tools aggregate and present results on bias on the dataset as a whole, it is 

natural to consider group fairness measures to be most applicable. The tools simply lack the features 

to test for more complicated definitions such as individual or causal fairness.  

Group fairness definitions are based on a number of metrics that are commonly used throughout 

machine learning. They can be summarized using a confusion matrix; a table that is used to describe 

the accuracy of a classification model. 

The rows of the matrix refer to the predicted classes and the column to actual classes. See Table 1. In 

the case of this research, these classes can be positive or negative (1 or 0). The following concepts 

are based on this confusion matrix and can be used to determine fairness.  

• True positive (TP): the predicted and the actual outcome are both in the positive class.  

• False positive (FP): the predicted outcome is in the positive class, but the actual outcome is 

in the negative class.  

• True negative (TN): the predicted and actual outcome are both in the negative class.  

• False negative (FN): the predicted outcome is in the negative class, but the actual outcome is 

in the positive class.  

• True positive rate (TPR): the fraction of positive cases that is predicted to be positive out of 

all actual positive cases.  

• False positive rate (FPR): the fraction of negative cases that is predicted to be positive out of 

all actual negative cases.  

• True negative rate (TNR): the fraction of negative cases that is predicted to be positive out of 

all actual negative cases.  

• False negative rate (FNR): the fraction of positive cases that is predicted to be negative out 

of all actual positive cases.  

• Positive predictive value (PPV): the fraction of positive cases that is predicted to be positive 

out of all predicted positive cases.  

• False discovery rate (FDR): the fraction of negative cases that is predicted to be positive out 

of all predicted positive cases. 
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 Actual - Positive Actual - Negative 

Predicted - Positive True Positive (TP) 
𝑇𝑃 

PPV = 
𝑇𝑃+𝐹𝑃 

𝑇𝑃 
TPR = 

𝑇𝑃+𝐹𝑁 

False Positive (FP) 
𝐹𝑃 

FDR = 
𝑇𝑃+𝐹𝑃 
𝐹𝑃 

FPR 
𝐹𝑃+𝑇𝑁 

Predicted - Negative False Negative (FN) 
𝐹𝑁 

FNR = 
𝑇𝑃+𝐹𝑁 

True Negative (TN) 
𝑇𝑁 

TNR = 
𝑇𝑁+𝐹𝑃 

Table 1: Confusion matrix. Note: Adapted from Verma & Rubin (2018) 
 

The method for creating synthetically biased datasets is adapted from the one used by Zafar et al. 

(2017). These dataset consist of n instances (number of rows). Zafar et al. (2017) set the value of n at 

10 000. However, due to available processing power owing to Google Colab, the value of n has been 

chosen as 500 000, allowing for greater accuracy while still being computational feasible. This 

dataset can be conceptualized as consisting of 500 000 individuals. Each of these individuals has an 

outcome of interest, which is what the model will try to predict. This outcome of interest is called 𝑌, 

and is a binary variable that is drawn from a discrete uniform distribution 𝑌 ~ 𝑈(0,1). Every 

individual also has a sensitive attribute, 𝑆, which is also a binary variable drawn from a discrete 

uniform distribution 𝑆 ~ 𝑈(0,1). This sensitive attribute can represent a binary protected attribute 

such as gender. The individuals in the dataset are grouped using this sensitive attribute, so when this 

report mentions a group, it refers to a group of individuals sharing the same sensitive attribute 

value. In the context of fairness, there is usually one group who is referred to as the privileged group, 

with one or more groups then being the unprivileged group. This privileged group is the group that in 

one way or another receives better treatment, better outcomes or enjoys better fairness metrics.  

Each row also has a two-dimensional user feature vector, called 𝑥. This feature vector can be thought 

of as the characteristics describing this individual. These features are varied in three ways to create 

three distinctly biased datasets.  

Different False Positive Rates 

In order to ensure that the two groups have different False Positive Rates, the user feature vector 𝑥 

is sampled from the following distributions:  

 

𝑝(𝑥|𝑆 = 0, 𝑌 = 1) = 𝑁([2,2], [3,1; 1,3]) 

𝑝(𝑥|𝑆 = 1, 𝑌 = 1) = 𝑁([2,2], [3,1; 1,3]) 

𝑝(𝑥|𝑆 = 0, 𝑌 = 0) = 𝑁([1,1], [3,3; 1,3]) 

𝑝(𝑥|𝑆 = 1, 𝑌 = 0) = 𝑁([−2, −2], [3,1; 1,3]) 

As the sensitive attribute 𝑆 and outcome of interest 𝑌 are both uniformly distributed, and the 

number of samples drawn is quite large, it can be expected that each distribution is represented in ¼ 
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of the dataset. This ensures that the two groups have different distributions for the negative classes; 

Zafar et al. (2017) call this fairness metric disparate mistreatment on FPR.  

Different False Negative Rates 

In order to ensure that the two groups have different False Negative Rates, the user feature vector 𝑥 

is sampled from the following distributions.  

𝑝(𝑥|𝑆=0,𝑌=1)=𝑁([1,1],[3,3;1,3]) 

𝑝(𝑥|𝑆=1,𝑌=1)=𝑁([−2,−2],[3,1;1,3]) 

𝑝(𝑥|𝑆=0,𝑌=0)=𝑁([2,2],[3,1;1,3]) 

𝑝(𝑥|𝑆=1,𝑌=0)=𝑁([2,2],[3,1;1,3]) 

As the sensitive attribute 𝑆 and outcome of interest 𝑌 are both uniformly distributed, and the 

number of samples drawn is quite large, it can be expected that each distribution is represented in ¼ 

of the dataset. This ensures that the two groups have different distributions for the positive classes. 

Zafar et al. (2017) call this fairness metric disparate mistreatment on FNR.  

Different False Positive Rates and different False Negative Rates 

In the case where the groups have both different False Negative Rates as well as False Positive Rates, 

two scenarios are tested. The first scenario is where the differences in False Negative Rates and False 

Positive Rates between the two groups have the same sign, i.e. both False Negative Rates and False 

Positive Rates are higher for one group then for the other. This scenario can arise when one group is 

harder to classify. The user feature vector 𝑥 is sampled from the following distributions to simulate 

this.  

𝑝(𝑥|𝑆=0,𝑌=1)=𝑁([2,0],[5,1;1,5]) 

𝑝(𝑥|𝑆=1,𝑌=1)=𝑁([2,3],[5,1;1,5]) 

𝑝(𝑥|𝑆=0,𝑌=0)=𝑁([−1,−1],[5,1;1,5]) 

𝑝(𝑥|𝑆=1,𝑌=0)=𝑁([−1,0],[5,1;1,5]) 

In the other scenario, the differences in False Negative Rates and False Positive Rates between the 

two groups have the opposite sign, i.e. the False Negative Rate is lower for one group, while the 

False Positive Rates are higher than the other. This can be the case when the model 

disproportionally favours individuals from the privileged group when they are in the positive class 

(have 𝑌 = 1), while at the same time disproportionally disfavouring individuals from the unprivileged 

group when they are in the negative class (have 𝑌 = 0). The user feature vector 𝑥 is sampled from the 

following distributions to simulate this.  

𝑝(𝑥|𝑆=0,𝑌=1)=𝑁([1,2],[5,2;2,5]) 

𝑝(𝑥|𝑆=1,𝑌=1)=𝑁([2,3],[10,1;1,4]) 

𝑝(𝑥|𝑆=0,𝑌=0)=𝑁([0,−1],[7,1;1,7]) 
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𝑝(𝑥|𝑆=1,𝑌=0)=𝑁([−5,0],[5,1;1,5]) 

Zafar et al. (2017) call this fairness metric disparate mistreatment on both FPR and FNR, but it is 

more commonly known in the literature as equalized odds (Gajane & Pechenizkiy, 2017; Verma & 

Rubin, 2018).  

3.5  Training classifiers on datasets 
Each dataset is split into a training and a test set, with a split of 80-20. For each dataset, a logistic 

regression model is trained on 𝑥 (training) to predict 𝑌 (training). Logistic regression is a linear 

regression model that models the probabilities of two possible outcomes. It is also the type of model 

under inspection in Zafar et al. (2017). As it models a linear relationship, if the instances containing 0 

(negative) and 1 (positive) outcomes are not linearly separable, the model is bound to misclassify a 

portion of the instances. The predicted outputs of these models, denoted here as Ŷ, will then be 

used in testing the audit tools.  

3.6 Treating the biased classifiers/datasets with bias mitigation techniques 
In order to combat the bias found in the trained classifier, a number of bias mitigation techniques 

are used. To streamline the process of implementing these bias mitigation techniques, the audit tool 

AI Fairness 360 (AIF360) by IBM is used. AIF360 is a comprehensive algorithmic audit tools, which 

can detect violations of group fairness definitions in trained classifiers. It is then also able to mitigate 

these biases, by modifying either the training data, the algorithm or the predictions themselves. It 

supports eleven fairness intervention, but only a subset of these are used in this research. Most 

method include some parameter that can be tweaked. Unless stated otherwise, these parameters 

were left to their default values as much as possible in order to minimise the number dimensions 

tested.  

In the paper, the procedure to analyse the extent to which bias mitigation techniques have an 

impact on social welfare were as follows: 

1. Generate a biased synthetic datasets  

2. Training classifiers on datasets  

3. Treating the biased classifiers/datasets with bias mitigation techniques  

4. Evaluating the classifiers/datasets  

5. Calculating social welfare scores on the outcomes of the untreated- and treated classifiers  
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Figure 1: Procedure to apply bias mitigation techniques to analyze social welfare improvements 

To undertake the empirical analysis, the algorithmic audit tool AIF360 was used to implement bias 

mitigation techniques. Table 2 shows the bias mitigation techniques supported by AIF360 and 

whether (or not) they are used in this research. In contrast to the discussion on auditing predicted 

risk scores for defendants (Dieterich et al., 2016)(Green & Hu, 2018), the methodology allows to 

directly measure  the social impact through the use of a social welfare function. 

 

 

Type of 
intervention 

Bias mitigation technique Used in this 
research 

 
Pre-processing 

Disparate Impact Remover (Feldman et al., 2015) Yes 

Reweighing (Kamiran & Calders, 2012) Yes 

Learning Fair Representations (Zemel et al., 2013) No 

Optimized Preprocessing (Calmon et al., 2017) No 

 
 
Inprocessing 

Prejudice Remover (Kamiran & Calders, 2012) Yes 

Meta Algorithm for Fair Classification (Celis et al., 2019) Yes 

Adversarial Debiasing (Zhang et al., 2018) No 

Adversarial-Robustness-Toolbox (Nicolae et al., 2018)) No 

Rich Subgroup Fairness (Kearns et al., 2018) No 

 
Postprocessing 

Calibrated Equalized Odds (Hardt et al., 2016) (Pleiss et 
al., 2017) 

Yes 

Reject Option Classification (Kamiran & Calders, 2012) Yes 

Generating Biased Synthetic Data Set 

Training of classifiers on dataset  

Applying bias mitigation techniques 

Evaluating classifiers & 

datasets 

Calculating 

social welfare 

scores 
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Table 2: Type of intervention and bias mitigation technique 

To evaluate the different bias mitigation techniques with respect to their social outcomes, social 

welfare scores were calculated for a number of biased datasets before and after bias mitigation 

techniques were applied.  The dataset can be considered as a pool of candidates for a screening 

decision, with every dataset being biased in a different way. The dataset included in each row a 

single candidate with certain attributes (like outcome_of_interest, sensitive_att, x1 and x1). Within 

the dataset, there were 500 000 candidates, with half of candidates were part of sensitive attribute 

group 0, and the other half belong to a sensitive attribute group 1. Furthermore, the datasets were 

split into a training set and a test set with a ratio of 80/20. 

Pre-processing methods 

Disparate Impact Remover  

Disparate Impact Remover was introduced by Feldman et al. (2014) and is a pre-processing 

technique that edits the feature values (in this report, the values of 𝑥). It aims to modify the marginal 

distributions of these features so that subsets of that attribute are equal for the different sensitive 

attribute groups (Friedler et al., 2019). This method uses a parameter called repair_level to control 

the trade-off between fairness and accuracy, where repair_level = 0 indicates that no fairness 

considerations and repair_level = 1 maximises fairness (Pessach & Shmueli, 2020). Then, similar to 

the method for the untreated data above, this modified dataset is split into a train and test set with 

a split of 80-20 and a logistic classifier is trained on the training data.  

Reweighing  

Reweighing is a pre-processing technique introduced in Kamiran & Calders (2012) that gives a weight 

to combination of 𝑌 and 𝑆 in order to increase fairness. Exactly which fairness metric is considered is 

not made explicit. The weights are then added as an extra feature in 𝑥, after which this dataset is 

split into a train and test set with a split of 80-20 and a logistic classifier is trained on the training 

data.  

Learning Fair Representations  

Learning Fair Representations is a technique introduced by Zemel et al. (2013) that tries to achieve 

equal Positive Predictive Values and individual fairness simultaneously by learning a representation 

of the data that obfuscates information on the sensitive attribute. However, using this algorithm to 

transform the data used in this report leads to a perfect model. A perfect model predicts every data 

point without error. If a model does not have any errors, it also does not give different predictions 

for different sensitive attribute groups, so it does not make sense to compute the social welfare 

score, as this will always be 1. Therefore, this technique is not used in this research. 

Optimized Pre-processing  

Optimized Preprocessing was introduced by Calmon, Wei, Vinzamuri, Ramamurthy, & Varshney 

(2017) that edits both the features in 𝑥 as well as the outcome of interest 𝑌. However, this algorithm 

uses a distortion constraint to account for individual fairness; this research is only concerned with 

group fairness, as determining this distortion constraint involves setting a cost for unfair 

classification, which is outside of the scope of this research. Therefore, it is not used.  
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Inprocesssing methods  

Prejudice Remover  

Kamishima, Akaho, Asoh, & Sakuma (2012) introduced Prejudice Remover, an algorithm that adds a 

regularization term to the standard log-likelihood loss function of a classifier that penalizes 

discrimination over sensitive attribute groups. Like in L1 and L2 regularization, the Prejudice 

Remover Algorithm employs a hyperparameter that controls how severe this penalization is 

(D’Alessandro et al., 2017).  

Meta Algorithm for Fair Classification  

This technique was introduced by Celis, Huang, Keswani, & Vishnoi (2019) and is similar to Prejudice 

Remover in that it adds a fairness constraint to the learning function. It is able to optimize for either 

False Discovery Rates or Statistical Parity. For this research, only the standard parameter False 

Discovery Rate was used. Using this algorithm on the dataset that is biased on FNR leads to excessive 

use of computational power, resulting in out-of-memory issues. Therefore, this algorithm is not used 

for that specific dataset.  

Adversarial Debiasing  

Adversarial Debiasing is a sophisticated debiasing method introduced by Zhang, Lemoine, & Mitchell 

(2018) that leverages adversarial learning in order to achieve equality of odds. It can be extended to 

accommodate other fairness definitions as well as regression tasks, but sadly, in AIF360, it is 

implemented in Tensorflow 1. As Google Colab is used for this research, which only supports 

Tensorflow 2.0 and higher, that the syntax does not work anymore. As reimplementing this package 

in Tensorflow 2.0 is outside the scope of this project, this method is not used. 

 

Adversarial-Robustness-Toolbox  

The Adversarial-Robustness-Toolbox is a Python library for Machine Learning security, in order to 

defend models from a number of malicious attacks (Nicolae et al., 2018). As their goal is different 

from the goal of this research, it will not be implemented here.  

Rich Subgroup Fairness  

Rich Subgroup Fairness is an inprocessing method introduced in Kearns, Neel, Roth, & Wu (2018). 

This algorithm is concerned with calculating fairness metrics over subgroups; combinations of 

different sensitive attribute groups, such as young women or white men. As the research only 

contains one binary sensitive attribute, subgroup fairness is outside of the scope of this research, 

and this method will not be used.  

Postprocessing methods  

Calibrated Equalized Odds and Equalized Odds Postprocessing  

Calibrated Equalized Odds and Equalized Odds Postprocessing are listed as two separate methods in 

the AIF360 documentation, but they are both based on Pleiss, Raghavan, Wu, Kleinberg, & 
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Weinberger (2017) and they lead to the same outcomes when implemented. Therefore, they will be 

treated as one method in this report. This method solves a linear program in order to find 

probabilities that it then uses to change the model output in order to optimize equal True Positive 

Rates and False Positive Rates for both groups. It thus uses the output from the logistic regression 

algorithm and changes the outputted predictions to achieve equalized odds.  

Reject Option Classification  

Reject Option Classification is a postprocessing technique that takes a confidence bound around the 

decision boundary created by a model and switches negative predictions to positive predictions for 

the unprivileged group and vice versa for the privileged group around this confidence bound 

(Kamiran, Karim, & Zhang, 2012). It is able to find the best confidence bound by itself, but it is a very 

computationally expensive method, with a large number of parameters: the smallest and highest 

classification thresholds used in the optimization process; the number of classification thresholds 

used in the optimization search; the number of margins it should use in the search; the fairness 

metric used for optimization (it supports Statistical Parity, Equalized Odds and Equality of 

Opportunity); and the upper and lower bound of the constraint on the fairness metric value. 

 

Evaluating the classifiers/datasets  

For each dataset, a number of metrics are calculated before and after treatment with fairness 

interventions. For every dataset, the mean and standard deviations of the outcome of interest, the 

sensitive attribute and 𝑥 are reported, in order to see whether the data was generated successfully. 

These statistics are also reported for the train and test sets separately, to ensure that the split was 

performed randomly and the distributions over both sets remain the same. Then, after each model 

has been trained on the training sets, a number of performance metrics are reported. These metrics 

are calculated over the test sets, in order to ensure that the models are not overfitted to the training 

data. As the datasets generated will contain disparate impact on False Positive Rates and False 

Negative Rates, these metrics will be reported for both groups, both taken together and separately, 

as well as the difference between the groups. The accuracy (ACC) of the trained classifier will also be 

reported, and is calculated as follows:  

𝐴𝐶𝐶= 𝑇𝑃+ 𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 

It will also be reported separately for each group. All these metrics will also be reported for the 

classifier after the fairness intervention. According to H2: Treating an algorithm with a fairness 

intervention has a negative effect on predictive accuracy, ACC is expected to be lower after fairness 

interventions than before.  

4. Empirical Analysis: Fairness Definitions and Welfare Scores 

4.1 Calculating social welfare scores before intervention  
 

Following Rambachan et al. (2020), a social welfare function is defined in this research as the 

average outcome of interest over the proportion of individuals that receives a positive outcome. In 

this research, a social welfare score is calculated over each dataset, before and after it receives a 
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fairness intervention. It is thus calculated as the arithmetic mean of 𝑌 of the subsample where Ŷ = 1. 

A perfect classifier would have a social welfare score of 1, as the predictions would perfectly align 

with the outcomes of interest. This metric thus penalizes errors in both positive and negative classes.  

In a first step, an unconstrained logistic regression classifier was trained on a training data set, by just 

using x1 and x2 to predict the attribute OUT (outcome_of_interest). The output of the regression 

model in term of probabilities (called PROBA) and the resulting binary prediction is called decision. 

This classifier attained a test set accuracy of 0.77. But it actually increased the difference in False 

Positive Rate DFPR = 0.53 - 0.00 = 0.53, which constitutes a clear case of disparate mistreatment in 

terms of false positive rates. DFNR = 0.19 - 0.19 = 0. The social welfare score for this untreated dataset 

is 0.75. 

 

Variable  Mean  Standard deviation  

outcome_of_interest  0.50  0.50  

sensitive_att  0.50  0.50  

x1  0.75  2.36  

x2  0.75  2.42  

decision  0.54  0.50  

proba  0.50  0.31  

Table 3: Descriptive statistics for biased dataset 1 (training data). 

 

Variable  Mean  Standard deviation  

outcome_of_interest  0.50  0.50  

sensitive_att  0.50  0.50  

x1  0.76  2.36  

x2  0.76  2.42  

decision  0.54  0.50  

proba  0.50  0.31  

Table 4: Descriptive statistics for biased dataset 1 (test data). 

 

As can be seen in Table 3 and Table 4, the characteristics for the training and the test set are equal, 

as can be expected of randomly sampled data. Then, a number of fairness interventions were used in 

order to combat the bias present in this dataset. Where possible, the intervention was calibrated to 
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combat the specific bias present in this dataset (disparate false positive rates). All other parameters 

were left to their original states, unless stated otherwise.  

As seen before, the original classifier (before intervention) achieves DFPR = 0.52. In Table 5 we can see 

that not every fairness intervention is equally adept at removing this bias. 

 

Intervention Accuracy ACC 
group 0 

ACC 
group 1 

DACC Change 
in DACC 

Before intervention 0.77 0.64 0.90 0.26  

Pre-processing 
Disparate Impact Remover 0.80 0.66 0.95 0.29 0.03 

Reweighing 0.77 0.64 0.90 0.26 0.00 

Inprocessing 
Meta Algorithm for Fair Classification 0.63 0.50 0.77 0.27 0.01 

Prejudice Remover 0.80 0.66 0.95 0.29 0.03 

Postprocessing 
Calibrated Equalized Odds 0.64 0.64 0.64 0.00 -0.26 

Reject Option Classification 0.77 0.62 0.93 0.30 0.04 
Table 5: Accuracy before and after fairness interventions on dataset that exhibits disparate impact on FPR (test data) 

Intervention FPR FPR 
group 0 

FPR 
group 1 

DFPR Change 
in DFPR 

Before intervention 0.27 0.53 0.01 0.52  

Pre-processing 
Disparate Impact Remover 0.20 0.35 0.05 0.29 -0.23 

Reweighing 0.27 0.53 0.01 0.52 0.00 

Inprocessing 
Meta Algorithm for Fair Classification 0.73 1.00 0.46 0.54 0.02 

Prejudice Remover 0.20 0.35 0.05 0.29 -0.23 

Postprocessing 
Calibrated Equalized Odds 0.53 0.53 0.53 0.00 -0.52 

Reject Option Classification 0.32 0.63 0.02 0.61 0.08 
Table 6: False Positive Rates before and after fairness interventions on dataset that exhibits disparate impact on FPR (test 
data). 

 

Pre-processing methods  

Disparate Impact Remover is able to remove almost half the difference in FPR by lowering the FPR of 

sensitive attribute group to 0.35. As this technique was created to remove any correlation between 

the sensitive attribute and the features (x1 and x1) and there is randomness involved in creating these 

features, it is not surprising that the difference in FPR is not entirely erased. It improves predictive 

accuracy for both groups, but more so for the privileged group, resulting in a larger DACC.  

The Reweighing method gives different weights to different individuals in the dataset in order to 

combat demographic parity, i.e. to ensure that the proportion of positive labels is equal among 

groups. However, since this proportion is already equal in our training data, the Reweighing method 

does not perform major transformations on the data; the observed differences in metrics are very 

small.  
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Inprocessing methods  

Using Meta Algorithm for Fair Classification to classify the data leads to a classifier that performs 

worse in terms of accuracy as well as in terms of False Positive Rates. However, the implementation 

of this technique only supports training a classifier that optimizes either False Discovery Rates or 

statistical parity, and as such was not expected to perform well on a dataset biased on false positive 

rates. The method achieves an FPR of 1 for group 0, which means that all of the negative classes are 

predicted wrongly. As accuracy for this group is 0.50, it seems that this method outputs a positive 

prediction for every individual in this group.  

Similar to Disparate Impact Remover, the Prejudice Remover forces a classifier to be independent 

from the sensitive attribute used, causing the two methods to yield almost equal results.  

Postprocessing methods  
 
Calibrated Equalized Odds seeks to optimize both TPRs and FPRs by changing the thresholds at which 

groups are classified as either positive or negative (default threshold = 0.50). Since this considers 

both true and false positive rates, the drop in predictive accuracy is surprising, given that the false 

positive rate stays at the same level. It is, however, the only method that achieves a difference in 

accuracy between the groups of 0, meaning that the model is equally accurate for both groups.  

Reject Option Classification tries to improve fairness by favourable labels to unprivileged groups and 

unfavourable labels to privileged groups around a confidence band on the decision boundary, i.e. 

around the edge, the unprivileged group is given preference, in order to optimize for equality of 

opportunity (equal true positive rates). As this technique also optimizes a metric different than FPR, 

it is not surprising that the false positive rates barely change. In terms of accuracy, the algorithm 

slightly lowers the accuracy of the unprivileged group, and increases the accuracy for the privileged 

one, resulting in a larger difference between the two.  

 

4.2  Calculating social welfare scores after intervention 
 

The social welfare scores calculated over the outputs of the fairness interventions follow the same 

pattern as the change in DFPR. Those techniques that barely or not at all make changes to either the 

inputs, the output or the model itself naturally also do not show any big changes in social welfare 

score. The interventions that did significantly change the difference in FPR (Disparate Impact 

Remover, Prejudice Remover) also show improvements in social welfare score.  

Intervention Social welfare score Change in social 
welfare score 

Before intervention 0.75  

Pre-processing 
Disparate Impact Remover 0.80 6.8% 

Reweighing 0.75 0.2% 

Inprocessing 
Meta Algorithm for Fair Classification 0.58 -23.0% 

Prejudice Remover 0.80 6.8% 

Calibrated Equalized Odds 0.60 -19.6% 
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Postprocessing 
Reject Option Classification 0.73 -2.6% 

Table 7: Social welfare scores before and after fairness interventions on dataset that includes disparate impact on FPR (test 
data). 

 

4.3  Disparate mistreatment  
 

As discussed earlier, the original classifier (before intervention) achieves DFPR = 0.52. In Table 6 we 

can see that not every fairness intervention is equally adept at removing this bias. 

Intervention Accuracy ACC 

group 0 

ACC 

group 1 

DACC Change 

in DACC 

Before intervention 0.81 0.64 0.90 0.26  

Pre-
processing 

Disparate Impact Remover 0.83 0.83 0.83 0.00 -0.26 

Reweighing 0.77 0.65 0.90 0.25 0.00 

Inprocessing 
Meta Algorithm for Fair Classification    0.00 -0.26 

Prejudice Remover 0.81 0.66 0.95 0.29 0.03 

Postprocessing 
Calibrated Equalized Odds 0.64 0.64 0.64 0.00 -0.26 

Reject Option Classification 0.78 0.64 0.92 0.28 0.02 
Table 8: Accuracy before and after fairness interventions on dataset that exhibits disparate impact on FNR (test data) 

 

Intervention FNR FNR 
group 
0 

FNR 
group 1 

DFNR Change 
in DFNR 

Before intervention 0.27 0.53 0.01 -0.52  

Preprocessing 
Disparate Impact Remover 0.17 0.17 0.17 0.00 0.52 

Reweighing 0.27 0.52 0.01 -0.51 0.00 

Inprocessing 
Meta Algorithm for Fair Classification #DIV/0!   0.00 0.52 

Prejudice Remover 0.20 0.34 0.05 -0.29 0.23 

Postprocessing 
Calibrated Equalized Odds 0.53 0.53 0.53 0.00 0.51 

Reject Option Classification 0.16 0.18 0.15 -0.03 0.48 
Table 9: False Negative Rates before and after fairness interventions on dataset that exhibits disparate impact on FNR (test 
data). 

 

Pre-processing methods  

Disparate Impact Remover is able to achieve equal FNRs while simultaneously achieving equal 

Accuracy for both groups. This does come at the slight cost of lower accuracy for group 1.  
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The Reweighing techniques manages to decrease predictive accuracy while keeping the FNRs for 

both groups equal.  

Inprocessing methods  

Due to excessive computational demands, it was not possible to use Using Meta Algorithm for Fair 

Classification on this dataset.  

The Prejudice Remover method is able to achieve a higher accuracy for group 1 while keeping that of 

group 0 equal, in order to reduce the difference in False Negative Rate.  

Postprocessing methods  

Calibrated Equalized Odds lowers the accuracy of group 1 to the level of group 0, while doing the 

same for False Negative Rates, to achieve parity in both those metrics.  

Reject Option Classification is able to keep the accuracy for both groups roughly equal, but 

simultaneously decreasing the difference in FNR to almost zero, while also lowering the overall False 

Negative Rate. 

 

Intervention Social welfare 
score 

% change 

Before intervention 0.80  

Preprocessing 
Disparate Impact Remover 0.81 1.2% 

Reweighing 0.80 0.0% 

Inprocessing 
Meta Algorithm for Fair Classification  -100.0% 

Prejudice Remover 0.81 1.2% 

Postprocessing 
Calibrated Equalized Odds 0.72 -9.8% 

Reject Option Classification 0.75 -5.6% 
Table 10: Social welfare scores before and after fairness interventions on dataset that includes disparate impact on FNR 
(test data). 

 

The social welfare scores for this dataset seem to follow the pattern set by the Accuracy metrics; 

some methods are able to keep social welfare level while lowering the difference in False Negative 

Rates, while others sacrifice social welfare score in order to lower DFNR. Not a single method was able 

to make significant increases in social welfare score.  

Disparate mistreatment on both FPR and FNR (different sign)  

For descriptive statistics on the generated dataset that exhibits a bias with respect to both False 

Negative Rates and False Positive rates (different sign). A number of fairness interventions were 

used in order to combat the bias present in this dataset. Where possible, the intervention was 

calibrated to combat the specific bias present in this dataset (disparate False Positive and False 

Negative Rates). All other parameters were left to their original states, unless stated otherwise.  
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As seen before, the original classifier (before intervention) achieves DFPR = 0.20 and DFNR = -0.19. 

Notice that the two have different signs. 

 

Intervention  

Accuracy 

ACC 

group 0 

ACC 

group 1 

DACC Change 
in DACC 

Before intervention 0.81 0.81 0.81 0.00  

Pre-processing  
Disparate Impact Remover 0.81 0.81 0.81 0.00 0.00 

Reweighing 0.81 0.81 0.81 0.00 0.00 

Inprocessing 
Meta Algorithm for Fair Classification 0.72 0.76 0.69 -0.06 -0.06 

Prejudice Remover 0.83 0.83 0.83 0.00 0.00 

Postprocessing 
Calibrated Equalized Odds 0.76 0.76 0.76 0.00 0.00 

Reject Option Classification 0.82 0.82 0.82 0.00 0.00 
Table 11: Accuracy before and after fairness interventions on dataset that exhibits disparate impact on FPR and FNR 
(different sign) (test data) 

 

Intervention FPR FPR 
group 0 

FPR 
group 1 

DFPR Change 
in DFPR 

Before intervention 0.19 0.10 0.29 0.20  

Preprocessing 
Disparate Impact Remover 0.18 0.17 0.18 0.00 -0.20 

Reweighing 0.19 0.10 0.29 0.20 0.00 

Inprocessing 
Meta Algorithm for Fair Classification 0.52 0.45 0.60 0.15 -0.05 

Prejudice Remover 0.17 0.18 0.17 0.00 -0.20 

Postprocessing 
Calibrated Equalized Odds 0.25 0.24 0.25 0.00 -0.20 

Reject Option Classification 0.18 0.18 0.19 0.01 -0.19 
Table 12: False Positive Rates before and after fairness interventions on dataset that exhibits disparate impact on FPR and 
FNR (different sign) (test data). 

 

Intervention FNR FNR 
group 0 

FNR 
group 1 

DFNR Change 
in DFNR 

Before intervention 0.19 0.29 0.09 -0.19  

Pre-processing 
Disparate Impact Remover 0.17 0.17 0.17 0.00 0.20 

Reweighing 0.19 0.29 0.09 -0.19 0.00 

Inprocessing 
Meta Algorithm for Fair Classification 0.03 0.04 0.02 -0.02 0.17 

Prejudice Remover 0.17 0.17 0.17 0.00 0.20 

Postprocessing 
Calibrated Equalized Odds 0.24 0.24 0.24 0.00 0.19 

Reject Option Classification 0.17 0.17 0.16 -0.01 0.19 
Table 13: False Negative Rates before and after fairness interventions on dataset that exhibits disparate impact on FPR and 
FNR (different sign) (test data). 
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Pre-processing methods  
Disparate Impact Remover is able to equalize both the FPRs and the FNRs for both groups, while at 

the same time increasing accuracy. It does, however, increase the FNR for group 1, and the FPR for 

group 0 to achieve this parity. Reweighing does not yield any improvements for this dataset.  

Inprocessing methods  
Meta Algorithm for Fair Classification decreases accuracy for both groups but even more so for group 

1. In doing so, it does achieve False Negative Rates close to 0 for both groups, but at the cost of 

greatly increasing False Positive Rates for both. This can be explained as the algorithm is designed to 

optimize False Discovery Rates, which related to the False Negative Rate. It does reduce the 

difference in DFPR.  Prejudice Remover has almost equal results as Disparate Impact Remover.  

Postprocessing methods  

Both Calibrated Equalized Odds and Reject Option Classification are able achieve equal fairness 

metrics in both groups. Reject Option Classification has superior results in this case, achieving higher 

accuracy while at the same time lowering the overall FNR and FPR. 

 

Intervention Social welfare 
score 

% change 

Before intervention 0.81  

Preprocessing 
Disparate Impact Remover 0.83 2.6% 

Reweighing 0.81 0.0% 

Inprocessing 
Meta Algorithm for Fair Classification 0.65 -19.3% 

Prejudice Remover 0.83 2.4% 

Postprocessing 
Calibrated Equalized Odds 0.76 -6.3% 

Reject Option Classification 0.82 1.5% 
Table 14: Social welfare scores before and after fairness interventions on dataset that exhibits disparate impact on FPR and 
FNR (different sign) (test data) 

Two methods, Disparate Impact Remover and Prejudice Remover, were able to slightly improve the 

social welfare score, which aligns closely with the increase in accuracy that they were achieve. The 

other methods kept social welfare score at the same level or decreased a bit.  

Disparate mistreatment on both FPR and FNR (same sign)  
 

For descriptive statistics on the generated dataset that exhibits a bias with respect to both False 

Negative Rates and False Positive rates (different sign).  A number of fairness interventions were 

used in order to combat the bias present in this dataset. Where possible, the intervention was 

calibrated to combat the specific bias present in this dataset (disparate False Positive and False 

Negative Rates). All other parameters were left to their original states, unless stated otherwise.  

The original classifier (before intervention) achieves DFPR = -0.25 and DFNR = -0.12. Notice that the two 

have different signs. 
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Intervention Accuracy ACC 
group 0 

ACC 
group 1 

DACC Change 
in DACC 

Before intervention 0.82 0.73 0.92 0.18  

Preprocessing 
Disparate Impact Remover 0.81 0.72 0.90 0.17 -0.01 

Reweighing 0.83 0.74 0.91 0.18 -0.01 

Inprocessing 
Meta Algorithm for Fair Classification 0.68 0.57 0.78 0.21 0.03 

Prejudice Remover 0.84 0.74 0.93 0.19 0.00 

Postprocessing 
Calibrated Equalized Odds 0.73 0.73 0.73 0.00 -0.19 

Reject Option Classification 0.82 0.73 0.91 0.19 0.00 
Table 15: Accuracy before and after fairness interventions on dataset that exhibits disparate impact on FPR and FNR (same 
sign) (test data) 

 

Intervention FPR FPR 
group 0 

FPR 
group 1 

DFPR Change 
in DFPR 

Before intervention 0.18 0.31 0.06 -0.25  

Preprocessing 
Disparate Impact Remover 0.20 0.29 0.11 -0.18 0.07 

Reweighing 0.18 0.30 0.06 -0.24 0.00 

Inprocessing 
Meta Algorithm for Fair Classification 0.64 0.85 0.43 -0.42 -0.18 

Prejudice Remover 0.17 0.27 0.07 -0.20 0.04 

Postprocessing 
Calibrated Equalized Odds 0.31 0.31 0.31 0.00 0.25 

Reject Option Classification 0.23 0.39 0.06 -0.33 -0.09 
Table 16: False Positive Rates before and after fairness interventions on dataset that exhibits disparate impact on FPR and 
FNR (same sign) (test data) 

Intervention FNR FNR 
group 0 

FNR 
group 1 

DFNR Change 
in DFNR 

Before intervention 0.17 0.23 0.11 -0.12  

Preprocessing 
Disparate Impact Remover 0.19 0.27 0.10 -0.17 -0.06 

Reweighing 0.17 0.22 0.11 -0.12 0.00 

Inprocessing 
Meta Algorithm for Fair Classification 0.01 0.01 0.01 0.00 0.12 

Prejudice Remover 0.16 0.24 0.07 -0.17 -0.05 

Postprocessing 
Calibrated Equalized Odds 0.23 0.23 0.23 0.01 0.12 

Reject Option Classification 0.13 0.15 0.11 -0.04 0.08 
Table 17:  False Negative Rates before and after fairness interventions on dataset that exhibits disparate impact on FPR and 
FNR (same sign) (test data) 

 

Pre-processing methods  
In contrast to the previous dataset, Disparate Impact Remover is not able to equalize the FPRs and 

the FNRs for both groups. It does sacrifice a little accuracy in order to reduce the difference in False 

Positive Rates, but it simultaneously increases the difference in False Negative Rates. Reweighing 

does not yield any improvements for this dataset.  
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Inprocessing methods  
 

The Meta Algorithm for Fair Classification decreases accuracy for both groups but even more so for 

group 1. In doing so, it does achieve False Negative Rates close to 0 for both groups, but at the cost 

of greatly increasing False Positive Rates for both. This can be explained as the algorithm is designed 

to optimize False Discovery Rates, which related to the False Negative Rate. This time it also 

increases the difference in DFPR.  

For this dataset, Prejudice Remover is able to increase accuracy slightly, while slightly lowering DFPR 

and slightly increasing DFNR and also slightly lowering the overall levels of FPR and FNR.  

Postprocessing methods  

For this dataset, Calibrated Equalized Odds is again able achieve equal fairness metrics in both 

groups, by decreasing accuracy, FPR and FNR of the privileged group to the level of the lowest group. 

Reject Option Classification is able to decrease DFNR while keeping Accuracy steady, albeit at the cost 

of an increase in DFPR. 

Social Welfare Scores 

Intervention Social welfare score % change 

Before intervention 0.82  

Preprocessing 
Disparate Impact Remover 0.80 -1.9% 

Reweighing 0.82 0.0% 

Inprocessing 
Meta Algorithm for Fair Classification 0.61 -25.8% 

Prejudice Remover 0.83 1.6% 

Postprocessing 
Calibrated Equalized Odds 0.72 -12.8% 

Reject Option Classification 0.79 -3.2% 
Table 18: Social welfare scores before and after fairness interventions on dataset that exhibits disparate impact on FPR and 
FNR (same sign) (test data). For this dataset, again, social welfare scores followed the same pattern as accuracy.  
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4.4 Trade-off between accuracy and change in social welfare   
 

Table 19 shows for what portion of the total number of bias mitigation techniques tested, accuracy 

and social welfare increased, decreased, or remained neutral. 

  Accuracy 

  Increases Neutral Decreases 

Social Welfare Score Increases 30% 9% 0% 

Neutral 4% 4% 0% 

Decreases 0% 9% 43% 

Table 19: Proportions of bias mitigation techniques tested where Accuracy and Social Welfare Scores increase, remain 
neutral, or decrease. 

Increases are defined in this case as any positive change larger than 0.01, and similarly for decreases. 

If the absolute change in metric is smaller than 0.01, than it is counted as a neutral.  

In order to show there is a trade-off between social welfare score and Accuracy, a large portion of 

cases should show opposing signs. However, as can be seen in Table 19, 30% of all interventions 

show increases in both metrics, 4% show no changes, and 43% show decreases in both metrics. This 

can be interpreted as a sign that there is no trade-off between social welfare score and predictive 

accuracy. 

 

5 Summary and conclusions 

 

The objective of the paper was to examine whether or not the application of bias mitigation 

techniques will lead to more societally desirable outcomes.  Using predictive algorithms to aid in 

screening decision-making opens this process up to algorithmic bias, which leads to a sub-optimal 

outcomes. This is both socially and economically undesirable; decision-makers gain higher benefits 

from optimal screening decisions. This bias can arise in multiple stages in the modelling process; in 

the data, in the predictive model itself and in the way the model is used. Modern algorithmic audit 

tools are capable of exposing these biases by testing the model outputs against different fairness 

definitions. Moreover, some tools are capable of reducing or removing bias by means of bias 

mitigation techniques. 

In line with Rambachan et al. (2020) the paper used a welfare-economics approach to examine 

algorithmic bias. By using insights on different types of bias, the paper described how bias can be 

detected and corrected in algorithms. A social welfare function was used to quantify society’s 

preferences over the outcomes of an algorithmic decision-making process. By using a biased 

synthetic datasets, different method for analysing bias mitigation techniques through the lens of 

social welfare functions were utilized. The results of the analysis demonstrated that there is a trade-

off between social welfare and predictive accuracy in the context of algorithmic decision-making. 
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As the analysis was based on a synthetically created biased datasets, bias mitigation techniques were 

used to analyse this bias applying a social welfare function. By examining the social welfare scores 

before and after treating each biased model/dataset with the chosen fairness intervention, it was 

shown whether or not this treatment resulted in more desirable outcomes. This, in turn, creates 

insights for the regulation of algorithms. 

The results from the analysis found there was not enough evidence to support the theory that there 

is indeed a trade-off between social welfare score, which measure social desirability, and predictive 

accuracy. The results of the empirical analysis show that there is no empirical evidence to suggest 

there is a trade-off present between social welfare score and predictive accuracy. Taken at face 

value, this result would suggest that continuing the push for ever greater predictive accuracy would 

in the long-term result in the most societally desirable outcome. However, this is not in line with 

recent research that suggests there is a trade-off between predictive accuracy and fairness; some 

predictive accuracy has to be sacrificed in order to enable algorithms to lead to more equitable 

outcomes for all groups affected by the algorithm (Berk et al., 2017; Liu & Vicente, 2020). 

This research contributed to existing research in different ways. Firstly, this research added an 

empirical analysis to the welfare economics framework on bias correcting in algorithms. Secondly, as 

the different fairness interventions were embedded in the context of social welfare, their effects 

could be measured. Thirdly, by using the method for creating biased synthetic biased datasets from 

Zafar et al. (2017), an empirical test of a number of different bias mitigation techniques was possible. 

Fourthly, the social welfare function as used in Rambachan et al. (2020) was implemented 

empirically and used to determine social desirability of a number of different bias mitigation 

techniques. 

The results showed that almost half of the bias mitigations tested led to both decreased social 

welfare scores, as well as decreased accuracy scores. While this would imply that bias mitigation 

techniques do more harm than good, these results are not in line with current research. While the 

social welfare score as used in this research might not be the most accurate approximation of what 

is actually societally desirable, the results did show that many fairness interventions were able to 

lower the difference in different metrics for both groups, often at a small cost of predictive accuracy. 

This means that fairness interventions are effective at removing bias to different degree. While they 

might not completely make algorithms free of bias, they are often able at least to make sure some 

metrics are equal for all groups, so that the algorithms make the same mistakes for all groups. 

In addition, the paper showed that the AIF360 tool is very accessible for practitioners. These factors 

make this tool a viable option for decision-makers using algorithms to augment their decision-

making process for auditing their algorithms and using the various bias mitigation techniques to limit 

the disparate impact algorithms can have. This research has demonstrated that state-of-the-art 

algorithmic audit tools are already able to remove bias. While this often comes at a small cost of 

accuracy, some audit tools are able to even augment predictive accuracy, while at the same time 

making the algorithm fairer. Thus, it can be concluded that policy makers should regard algorithmic 

audit tools and bias mitigation techniques as viable tools in regulating algorithmic decision-making. It 

should be noted that the field of fairness contains many different metrics on which to test outcomes, 
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and while AIF360 tries to implement as many of them as possible, it does not give guidance on what 

metric or algorithm is useful in which context. 

As the tools do need access to the ground truth labels and the predictions outputted by the 

predictive algorithms, these audit tools could best be used by the parties developing the predictive 

algorithms themselves. However, in order to provide independent third-party auditing, a number of 

different options arise. Some researchers interpret the ‘right to explanation’ embedded within the 

GDPR as mandating algorithmic audits (Edwards & Veale, 2017). This would place the responsibility 

of performing audits on the national Data Protection Agencies (in Europe) (Casey et al., 2019), which 

is in line with the requirements of the Artificial Intelligence Act of 2021 by the European Commission 

providing some guidelines of the enforcement powers of a regulatory agency on the national level.  
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