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ABSTRACT 

 
In this paper, we discuss Bayesian inference of unobserved heterogeneity for 

unemployment duration data in the presence of right and interval-censoring, and non-

proportionality. We employ accelerated failure time models with three different 

distributional assumptions: log-logistic, log-normal, and Weibull models, and use 

members of an exponential family of distributions for considering unobserved 

heterogeneity. We adopt a Bayesian approach, using Markov Chain Monte Carlo via 

WinBUGS software, to analyze the data. The proposed approach is illustrated using the 

unemployment duration data set of Iran in 2009. A sensitivity analysis using different 

latent variable models of the exponential family is also considered. After checking 

convergence, using the Gelman-Rubin diagnostic test, we compared different 

distributional assumptions using the DIC3 criterion. Our findings reveal significant 

discrepancies in unemployment duration based on different covariates for the sample 

population of Iran in 2009. 

 

Key words: Accelerated Failure Time Model, Bayesian Analysis, Interval Censoring, 

Kaplan-Meier Method, MCMC 

JEL Classifications: C11, C41 

 

 

1. INTRODUCTION 

 

Ordinary regression models of unemployment duration data implicitly assume that, given the 

measured covariates, the sample population is homogenous: that is, all individuals have the 

same risk for the event of interest. This assumption is not realistic since demographic 

differences about which we have no information exist. Sometimes, the undue financial burden 

of collecting all relevant explanatory information leads to the neglect of some covariates, 

resulting in unobserved heterogeneity.  

 

Heterogeneity can also be a consequence of disregarding group-specific or individual-specific 

variation. For example, different people can have distinct genetic characteristics or different 

employment habits, which may be incorrectly ignored in the study. In multi-city studies there 

often exist sources of heterogeneity between cities, which may include geographical 

differences, e.g. different work habits of staff in different cities (Komarek et al., 2007).This is 

a special case of the omitted variables problem, with its resulting biases.  
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As discussed by Omori and Johnson (1993) and Greene (2003), if the model specification is 

incomplete due to unobserved but relevant and systematic individual differences in the 

distribution of the duration data, then inferences based on the improperly specified model are 

likely to be biased. Unobserved heterogeneity and frailty models try to reduce heterogeneity 

in the sample. Vaupel et al. (1979) were the first to recognize that unobserved heterogeneity 

could lead to bias in parameter estimates and to incorrect inferences about the lifetime 

distribution for univariate and independent survival times. By means of simulation, 

Tempelman and Gianola (1996) demonstrated the necessity of accounting for unobserved 

heterogeneity to make correct inferences about model parameters.  

 

In unobserved heterogeneity of time-to-event models, Duchateau et al. (2002) used the frailty 

proportional hazard model with a center-specific random effect to investigate heterogeneity 

between centers in multi-center trials. They proposed log-normal and gamma densities for the 

center-specific random effect and used the expectation-maximization (EM) algorithm in their 

analysis. Also, Legrand et al. (2005) proposed a Bayesian approach to look for heterogeneity 

between centers in a proportional hazard model. They modeled heterogeneity by including a 

center-specific random effect and a random treatment by center interaction. Yamaguchi and 

Ohashi (1999) also discussed the use of frailty modeling to investigate heterogeneity between 

centers in time-to-event data. Campolieti (2001) conducted a Bayesian analysis of unobserved 

heterogeneity of duration data. The model employed by Campolieti (2001) uses Dirichlet 

mixtures of normals, which includes Heckman and Singer’s (1982, 1984) approach as a 

special case. Some tests of heterogeneity have been proposed in recent years, where a 

homogeneity test is the testing of the degeneration of the random effect distribution at point 

zero. Vindenes et al. (2008) have mentioned that usual heterogeneity can be important, 

particularly in understanding the behavior of small populations, due to its impact on 

demographic variance. For example, Knape et al. (2011) handled heterogeneity in the island 

population of Silvereyes by using a random effects model. 

 

In this paper, we use a latent variable model to handle unobserved group-specific 

heterogeneity in the analysis of unemployment duration data. Introducing this unobserved 

random factor modifies the accelerated failure time (AFT) model. We discuss a Bayesian 

latent variable model which is a member of the exponential family of distributions for 

heterogeneity. To the best of our knowledge, this model has not yet been discussed in the 

unobserved heterogeneity literature. 

 

We employ the proposed methodology to analyze unemployment duration data for Iran in 

2009. In this study, we group the data according to the province in which an individual lives. 

It is essential to consider a heterogeneity factor for modeling because of non-homogeneity 

among different provinces. As will be discussed in Section 4, the data set does not satisfy the 

proportionality assumption; hence an AFT model is used for modeling this data set.  

 

We use three distributions: log-logistic, log-normal, and Weibull for the duration of 

unemployment. The validity of these three distributional assumptions is supported by 

goodness-of-fit tests based on some probability plots. We compare the models with different 

distributional assumptions using a Bayesian criterion and obtain the results of the Bayesian 

implementation using the available software WinBUGS (Spiegelhalter et al., 2003). Next, we 

check the convergence of parameters using the Gelman-Rubin criterion in the BOA (Bayesian 

Output Analysis) package. We then present a sensitivity analysis with respect to different 

random effects distributional assumptions. 
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The remainder of the paper is organized as follows: Section 2 discusses a brief review of 

unobserved heterogeneity modeling. Section 3 presents the Bayesian model and the 

computational approach to handling unobserved heterogeneity in the modeling of our data set. 

Section 4, after describing the response and explanatory variables of interest, implements a 

goodness-of-fit test, checks the convergence of the MCMC model, and discusses the results 

and a comparison of the performance of different distributions. Section 5 contains some 

concluding remarks. 

 

2. UNOBSERVED HETEROGENEITY MODELING 

 

Population homogeneity, a common assumption in much data analysis, assumes that all 

differences in the population have been captured by the measured variables in the study. 

However in reality, unobserved heterogeneity, caused by omitting relevant variables, exists in 

many settings. There are several approaches that may be used to investigate the consequences 

of unobserved heterogeneity in data analysis. The basic idea behind these methods recognizes 

that there is an unobserved or latent variable, which may have a discrete or a continuous 

distribution. 

 

One such method is the use of a frailty model. The frailty approach to modeling unobserved 

covariates is based on the choice of a frailty distribution. Different distributions are 

commonly assumed for frailty, for example gamma, log-normal, inverse Gaussian, and log-t. 

(Wienke, 2011). In time-to-event data, the hazard function of an individual, '(t'|'X,'Z), depends 

on an unobservable time-independent random variable Z. In the multiplicative hazard 

framework, Z acts multiplicatively on the baseline hazard function 0(t) as follows:  

  '

0 )(),|( XetZZXt     

where X'='(X1,...,Xk) and '='(1,...,k) are vectors of explanatory variables and regression 

coefficients, respectively. Z is a nonnegative latent variable, where E[Z]'='1 and its variance is 

interpreted as a measure of heterogeneity. 

 

Another way of considering unobserved heterogeneity is to use a latent class approach. 

Heckman and Singer (1982, 1984) proposed a nonparametric random effects approach based 

on the latent class. Their formulation is similar to an ordinary frailty model with a discrete 

distributional assumption for the frailty term as the latent class. In their work, the likelihood 

function for the ith subject is given by: 

 ),|(),|(=
1=

wii
i

wiiw

K

w

i xtSxt 


    

where w is the proportion of the population belonging to the latent class w with latent 

variable w, such that the number of latent classes is K, and i is the right-censoring indicator. 

Hagenaars and McCutcheon (2002) proposed a latent class approach to handling 

heterogeneity in the hazard modelling of survival data. There are some parametric and non-

parametric methods for the estimation of latent class parameters (Hagenaars and McCutcheon, 

2002).  

 

The most widely used method in duration modelling with explanatory variables is the broadly 

applicable Cox proportional hazards model (Cox, 1972). The Cox model, which is semi-

parametric, has enjoyed tremendous success in applied work with the availability of software 

enabling model estimation and inference. Nonetheless one can not always use this method 

since the validity of the proportionality assumption has to be confirmed before using this 
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model. When the proportionality assumption of the Cox regression model is not valid, AFT 

models with different distributional assumptions may be used as an alternative approach. 

 

Komarek et al. (2005) considered the following shifted and scaled penalized Gaussian 

mixture model: 

   xTi ')log(    

where x is a vector of explanatory variables,  is an intercept parameter,  is a vector of 

regression coefficients, and  is a scale parameter. The distribution of the error term, , in 

their proposed model is:  

 )()(=)( 2
0
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where 
     

 ( ) is the Gaussian density with mean j and variance 2

0 , and wj(a), j''=''1,..., 'g are 

the mixture coefficients, which are specified as: 
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such that 0'<'wj(a)'<'1 and 
g

i=1'wj(a)'='1. 

 

A random effect AFT model is discussed by Pan and Louis (2000), who consider a non-

parametric Kaplan-Meier estimate in their estimation procedure. Laird and Ware’s (1982) 

random effect AFT model (Komarek et al., 2007) is an AFT model with a random effect term 

to account for heterogeneity. Komarek et al. (2007) generalized the random effect AFT model 

by using a penalized Gaussian mixture as the error distribution. Their computation is based on 

Markov chain Monte Carlo (MCMC) techniques. 

 

In these models, usually a gamma distributional assumption is used for the random effects. In 

this paper, we use a random effect AFT model as log(T)'='x''+'b'+' assuming the random 

effect (b) follows a distribution which is a member of the exponential family distribution. We 

then perform some sensitivity analyses with respect to the change in the distributional 

assumption for the random effect. 

 

A goodness-of-fit probability plot (see Section 4), allows us to use three different 

distributional assumptions: log-logistic, log-normal and Weibull when analyzing our duration 

data (Green, 2003). In the following section, we adopt a Bayesian approach to handling 

group-specific heterogeneity in a random effects AFT model. 

 

3. BAYESIAN RANDOM EFFECTS AFT MODELS FOR GROUP-SPECIFIC 

HETEROGENEITY 

 

Latent variable models may be used for analyzing event time data, when there is no reason to 

reject an assumption of unobserved heterogeneity. In our proposed model, we use an AFT 

model for analyzing unemployment duration data of Iran. We consider the effect of some 

explanatory variables, but we predict that some variables may exist that are not recorded in 

this study such as, for example, geographical differences between provinces or different 

economic conditions. Therefore, we define a latent variable that varies among provinces to 

handle this unobserved heterogeneity in our proposed model. Let Tij denote unemployment 

duration for the ith subject in the jth province (i'='1,...,'nj; j'='1,...,'m). Under the exponential 
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family distributional assumption, we define a random effect bj the estimated value of which 

distinguishes between homogenous and non-homogenous provinces. 

 

The random effect AFT model for group-specific heterogeneity is given by:  

 mjnibxT jijjijij ,,1;,,1,)log( '      (3.1) 

where n'='
m

j=1nj is the total sample size, ij s are independent and identical error terms, which 

are distributed as normal, logistic, or extreme value, xij'='(xij1,..., xijp)' are p-dimensional vectors 

of explanatory variables for the ith individual in the jth province, and ij'='(1,..., p)' is the 

vector of coefficients. 

 

Suppose that n independent and identical vectors of (tij,l,tij,u,x
'
ij)

'
, where tij is the time-to-event for 

the ith individual in the jth group, are observed, such that tij(tij,l,tij,u]. For a right-censored 

observation tij,u'=', and for an exactly observed event time tij,l'='tij,u'='tij. The xij is a p×1 vector of 

explanatory variables. 

 

A random variable Z follows an s–dimensional exponential family distribution, if its density is 

of the form: 

 ).(=);( 0

)()(
1= zhezh

AzTii

s

i 
 

   (3.2) 

 

This form of exponential family is said to have canonical form, and vi, i'='1,...,s, are canonical 

parameters. 

 

The advantage of our proposed method, in contrast to former random effect AFT models, is 

that it can consider various significant distributional assumptions for duration time (survival 

time) where selection among these distributions can easily be justified using a graphical 

method. In our proposed method, we use different members of the exponential distribution 

family for the random effect and perform a sensitivity analysis to examine the effect of a 

change in distribution on the results. Also, we conduct all the computations for parameter 

estimation using available software WinBUGS, where we implement the Bayesian criterion 

DIC3 for model comparison. Also, we demonstrate the random effect’s influence distinguished 

between the homogenous and non-homogenous area of the population (illustrated in Figure 

4.5). 

 

In the following subsections we explain the Bayesian implementation of our approach. 

 

3.1. Log-normal and Log-logistic Random Effect AFT Models in Bayesian Perspective 

 

The structure of the log-normal model is given by:  

 );(  ),,(| 2  jjj

'

ijjij bhbbxLNbT ~~    (3.3) 

where h(.,) is given by (3.2). Let '='(,,). The likelihood function for this model is given 

by: 
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where ij is an indicator function, which takes value one for complete data and value zero for 

interval-censored observations. For right-censored observations tij,u'='. Also, (.;,'
2) denotes 

the density function of the normal distribution with mean  and variance '
2, and is a member 

of the exponential family distribution.  

 

For a Bayesian structure, as mentioned by Ibrahim et al. (2002), the following distributions 

are appropriate proposals for priors:  

 ).;(    ),,(    ),,(| 2

0

2

0

2  ~~~ baIVN p   (3.4) 

 

The hyper-parameters of these priors may be selected such that one can have low-informative 

prior distributions. 

 

Via the hierarchical structure of (3.3) and prior distributions of (3.4), the joint posterior 

distribution for all parameters is given by:  
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(3.5) 

 

The posterior distribution for the above model specification does not have closed form 

solutions for the parameters. To perform the Bayesian analysis, MCMC techniques can be 

used to sample the joint posterior distribution of these models. One special MCMC type 

approach, which requires only the specification of the conditional posterior distribution for 

each parameter, is the Gibbs sampler (Casella and George, 1992). For implementation of the 

Gibbs sampler, we need the full conditional distributions. These are given as follows:  

 

  (3.6) 
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Gibbs sampling is needed for the implementation of equation (3.6),which can be done using 

the WinBUGS software (Spiegelhalter et al., 2003). 

 

The log-logistic AFT model and its Bayesian implementation have structures similar to those 

of the log-normal AFT model, wherein the log-normal distribution should be replaced by the 

log-logistic distribution.  

 

3.2. Weibull Random Effect AFT Model in Bayesian Perspective 

 

Similar to Section 3.1, the structure of the Weibull random effect AFT model is given by:  

 );(  },{=)(  ),,(|  jjj

'

ijijijjij bhbbxlogWeibbT ::   (3.7) 

 

For '='(,,), the likelihood function of this model is given by:  
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where fWei(.;ij,) denotes the Weibull density function with parameters ij and . The 

independent prior distributions for the Bayesian structure are given by:  

 ).;(    ),,(    ),,( 2

00  ~~~ baIVN p   (3.8) 

 

The hyper-parameters of these priors are again selected such that one can have the low-

informative priors. Combining the complete likelihood function and the prior distributions 

(3.8), the joint posterior distribution of the parameters is given by: 
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Also, hierarchical structures for the Gibbs sampler implementation are given by:  

  

 

  (3.10) 

 

 

where ij is an indicator function, which takes value one for complete data and value zero for 

interval censored observations. For right-censored observations tij,u'='. The equations in (3.10) 

provide the opportunity to program the Bayesian implementation in the WinBUGS software. 

 

3.3. Measuring unobserved heterogeneity 

 

The amount of unobserved heterogeneity is determined by the size of the standard deviation 

of the latent variable distribution, such that, the larger the standard deviation of the latent 

variable, the stronger the unobserved heterogeneity. In the exponential family (2), the 

unobserved heterogeneity factor, which is the covariance of the random variable Z, can be 

computed by:  
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where the form of A(bj) depends on the selected member of the exponential family of 

distributions (Lehmann and Casella, 1998, p. 23-32). 

 

4. APPLICATION 

 

4.1. The Data Set 

 

The data set used in this paper is extracted from a follow-up study conducted by the Statistical 

Center of Iran. In these data, the labor force status of people is recorded in two seasons 

(spring and summer) in 2009. We have selected the individuals who are observed on both 

seasons and are unemployed in spring (unemployed individuals answer a question about their 

duration of unemployment in spring). The data contains detailed individual information for a 
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random sample of the population aged 14 and older. The vector of explanatory variables 

includes personal characteristics such as gender, age, the place of residence, current marital 

status, education status, and the number of household members. Details of the categories of 

explanatory variables and their percentages are listed in Table 4.1. In this study, we are 

concerned with the existence of a set of covariates, which may have been omitted or may not 

have been considered in each province of the study. 

 
Explanatory variable Categories Percentage 

Current marital status married 2.94 %  

 widow(er) or divorced 7.01 %  

 single 6.99 %  

Gender female 2.25 %  

 Male 7.75 %  

Age < 20 1.26 %  

 21–25 3.78 %  

 26–30 2.49 %  

 30 > 2.47 %  

Education status under diploma 4.64 %  

 diploma 3.07 %  

 associate of arts (or science) 8.10 %  

 MA and upper 1.48 %  

Number of household members one or two 8.21 %  

 three 8.83 %  

 four and more 3.39 %  

Residence rural 2.77 %  

 urban 7.23 %  

Table 4.1 Different categories of chosen explanatory variables along with their percentages. 

 

 Frequency Percent 

Right-censored data
1
  743 55.6 

Completed observation
2
  121 9.0 

Interval–censored data
3
  473 35.4 

Table 4.2 Employment status in the summer of 2009 of unemployed individuals in the spring of 2009. 

Notes: 
1
: Still unemployed in summer, 

2
: Duration is recorded, 

3
: Duration is recorded in an interval. 

 

Table 4.2 gives the frequencies and percentages for different categories of unemployment 

status in the summer of 2009, for unemployed individuals in the spring of 2009. This table 

shows that of the 1337 individuals in the study, 743 individuals remained unemployed in the 

summer, and 473+121 individuals became employed. Unfortunately, the exact duration of 

unemployment has only been recorded for 121 individuals. For the other 473 individuals we 

only know that their shift to employment happened during a 3-month period. The employment 

duration of these individuals can be considered as interval-censoring. Figure 4.1 illustrates the 

survival curve for unemployment duration. Points on this curve estimate the proportion of 

individuals who remained unemployed over time. 

 

For a preliminary description of the explanatory variables in the data set, Figure 4.2 shows the 

Kaplan-Meier estimate of the survival curves of unemployment duration for different 

categories of explanatory variables. For example, according to Figure 4.2(a) females remained 

unemployed for a longer period than males.  
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Figure 4.1 Survival curve of unemployment duration along with its confidence bands. 

 
 
Figure 4.2 Kaplan-Meier estimates of the survival curves of unemployment duration by (a): Gender, (b): Place 

of residence, (c): Current marital status, (d): Age group, (e): Number of household members, (f): Educational 

level. 

 
 

4.2. Selection of Theoretical Distribution Based on the Probability Plot 

 

The probability plot is one of the most frequently applied methods for checking the 

distributional assumption. In this paper, we use the method of Lee and Wang (2003) with 

some adjustments. 

 

As mentioned by Lee and Wang (2003), if the theoretical distribution is adequate for the data, 

a graph of log(t) versus a function of the sample cumulative distribution function will be close 

to a straight line. In other words, a fitted linear regression for log(t) and that function of the 

cumulative distribution function is a good index for the selection of a theoretical distribution. 

 



International Econometric Review (IER) 

33 

 

The regression lines for the log-normal, log-logistic, and Weibull distributions are given by:  
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 (4.11) 

where eis are the error terms of the regression models. Thus, a quick goodness-of-fit test is a 

regression line of log(ti) versus a function of   (ti), where   (ti) is an estimate of F(ti). This 

method can be summarized in the following steps:  

 

 Select a theoretical distribution for the survival time T. 

 

 Estimate the cumulative distribution function. There are several approaches: the most 

famous is the Kaplan-Meier estimate, another method used by Lee and Wang (2003) is 

the use of (i'–'0.5)'/'n for the ith ordered time values, i'='1,...,n. In this method, right-

censored observations are considered only in sorting the index i. For interval-censored 

data, midpoint imputation may be used. 

 

 Fit a linear regression for log(T) and the function of the cumulative distribution 

function. 

 

The R-squared values of the fitted lines for the log-normal, log-logistic, and Weibull models 

are summarized in Table 4.3. This table shows that these three distributions are potential 

candidates when analyzing these data.  

 
 Multiple R-squared 

 (i'–'0.5)'/'n Kaplan-Meier 

log-normal model  0.977 0.914 

log-logistic model  0.958 0.965 

Weibull model  0.915 0.935 

Table 4.3 values of R-squared for fitted regression models in probability plot approach. 

 

4.3. Modeling unemployment duration in Iran 

 

In this section, we analyze the data set based on the proposed methods given in Section 3. The 

explanatory variables in this data set were listed in Table 4.1. In the following, we consider 

age as a continuous covariate. If a categorical variable has g categories then g'–'1 dummy 

variables need to be created, and consequently, g'–'1 regression coefficients have to be 

estimated. For example, for current marital status, the dummy variables are defined as 

follows:  

 ,
0

1
=,

0

1
=









o.w.

divorcedor  widow(er) if
mar2

o.w.

married if
mar1   

and mar1'='mar2'='0 defines single status. 

 

The Cox proportional hazard model is a common model to be applied, because it is not based 

on any assumptions concerning the nature or shape of the underlying survival distribution. 

However, one may use a graphical test for checking the validity of the proportionality 

assumption (Deshpande and Purohit, 2005; page 189). We have checked the proportionality 

assumption using log'–'log plots of unemployment duration for different levels of explanatory 
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variables. Figure 4.3 shows these plots. In some panels of this figure (for example panel c) the 

log'–'log survival functions are not parallel for different categories of explanatory variables, 

therefore the proportional hazards assumption is not valid. Consequently, the proposed AFT 

models of Section 3 should be applied. 

 
Figure 4.3 Graphical test for proportional hazards: Kaplan-Meier log-log plots of unemployment duration by (a): 

Gender, (b): Place of residence, (c): Current marital status, (d): Age group, (e): Number of household members, 

(f): Educational level. 

 
 

The AFT random effect model for group-specific heterogeneity is given by:  

 

  (4.12) 

   

In this model, mar1 and mar2 denote current marital status, and sex and age denote the gender 

and age of individuals, respectively. Dummy variables edu1, edu2, and edu3 are used for 

education levels, num1 and num2 denote categories of household sizes, and res is used to 

represent living area. Also, we have considered the above-mentioned three distributional 

assumptions for the duration data. 

 

For the random effect bj, we have considered different members of the exponential family of 

distributions. Vaupel et al. (1979) proposed the use of a gamma distribution for bj, with a 

mean of one and a variance of 1/, where  is the unknown parameter to be estimated. Several 

authors have proposed incorporating a gamma-distributed random term (Tuma and Hannan, 

1984; Lancaster, 1990). The analytically tractable and readily computational properties of the 

gamma distribution are important reasons, which are mentioned by Vaupel et al. (1979), for 

selecting the gamma as an appropriate mixing distribution. Moreover, as Hagenaars and 

McCutcheon (2002) mentioned, it is a flexible distribution that takes on a variety of shapes as 

the dispersion parameter  varies. As mentioned in Section 3.3, the amount of unobserved 

heterogeneity in this model is determined by the standard deviation of bj, which is 1/̄. Also, 

the normal mixing distribution is the most important base for Laird and Ware’s (1982) 

random effect model. 
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In our analysis, we ran two MCMC chains with 30000 iterations for each. Then, we discarded 

the first 10000 iterations as burn-in and retained 20000 for the posterior analysis. We checked 

the convergence of parameter estimates using the Gelman and Rubin diagnostic test (Gelman 

and Rubin, 1992) for all models. These approaches were implemented using the BOA 

package. 

 

As the DIC criterion (Spiegelhalter et al., 2002), which is automatically calculated by 

WinBUGS, is not adequate for model comparison (Celeux et al., 2006; DeIorio and Robert, 

2002), in this study we used the DIC3 criterion (Celeux et al., 2006).  

 

Let  and Z'='(z1,...,zN)' be the entire model parameters and data, respectively. DIC3 is given 

by:  

   ),(ˆlog2log4=3 zfEDIC  z|)|zf(    

where  z|)|zf( Ezfzf i

N

i =)(ˆ=)(ˆ 1= . The smaller the value of DIC3 is, the better the fit of 

the model. 

 
 Log-Logistic Log-Normal Weibull 

Parameters Est. (S.E.) Est. (S.E.) Est. (S.E.) 

Intercept 3.192 (0.275) 3.082 (0.252) 3.614 (0.300) 

Gender    

Female 0.826 (0.135) 0.794 (0.129) 0.881 (0.146) 

Baseline (male) - - - 

Current marital status    

Married -0.951 (0.117) -0.909 (0.117) -0.815 (0.103) 

Widow(er) or divorced -0.178 (0.571) -0.102 (0.544) -0.086 (0.644) 

Baseline (single) - - - 

Education level    

Under diploma -0.848 (0.174) -0.813 (0.165) -0.801 (0.189) 

Diploma -0.462 (0.177) -0.418 (0.167) -0.417 (0.193) 

BS -0.873 (0.218) -0.816 (0.208) -0.809 (0.232) 

Baseline(MA and higher) - - - 

Age 0.011 (0.004) 0.010 (0.006) 0.013 (0.002) 

Number of household members    

One or two -0.309 (0.197) -0.278 (0.191) -0.260 (0.183) 

Three 0.024 (0.122) 0.052 (0.123) -0.095 (0.118) 

Baseline (four and more) - - - 

Living area    

Rural -0.532 (0.099) -0.479 (0.098) -0.536 (0.093) 

Baseline (urban) - - - 

Scale 0.742 (0.025) 1.651 (0.103) 0.980 (0.032) 

HF 0.596 (0.149) 0.428 (0.093) 0.607 (0.136) 

DIC3  7814.435 7776.615 9011.668 

Table 4.4 Bayesian parameter estimates and standard errors for AFT models under gamma latent model. 

 

The results of using gamma and normal models are shown in Tables 4.4 and 4.5, respectively. 

Also, Table 4.6 shows the results of using a squared normal latent model. In these tables HF 

denotes Heterogeneity Factor, which is the standard error of the random effect bj. The best 

model according to the DIC3 criterion is the log-normal AFT model, with the squared normal 

latent model. The estimated HF in this model is highly significant. 

 

Also, Table 4.6 shows that married persons have shorter unemployment duration than singles 

and widow(er)s or divorced people, fixing values of the other explanatory variables. The 

effects of other explanatory variables can be interpreted in a similar manner (see, Section 5).  
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 Log-Logistic Log-Normal Weibull 

Parameters Est. (S.E.) Est. (S.E.) Est. (S.E.) 

Intercept 3.097 (0.265) 3.081 (0.243) 1.835 (0.312) 

Gender    

Female 0.824 (0.134) 0.790 (0.128) 0.879 (0.147) 

Baseline (male) - - - 

Current marital status    

Married -0.950 (0.118) -0.904 ( 0.115) -0.805 (0.101) 

Widow(er) or divorced -0.088 (0.574) -0.103 (0.537) -0.075 (0.632) 

Baseline (single) - - - 

Education level    

Under diploma -0.854 (0.175) -0.807 (0.158) -0.804 (0.183) 

Diploma -0.472 (0.177) -0.419 (0.162) -0.424 (0.189) 

BS -0.881(0.222) -0.820 (0.202) -0.813 (0.229) 

Baseline (MA and higher) - - - 

Age 0.012 (0.007) 0.009 (0.006) 0.012 (0.006) 

Number of household members    

One or two -0.299 (0.195) -0.267 (0.194) -0.261 (0.182) 

Three 0.025 (0.120) 0.063 (0.123) -0.099 (0.117) 

Baseline (four and more) - - - 

Living area    

Rural -0.519 (0.099) -0.486 (0.097) -0.533 (0.095) 

Baseline (urban) - - - 

Scale 0.742 (0.025) 1.652 (0.101) 0.977 (0.030) 

HF 2.516 (0.467) 2.001 (0.302) 5.425 (0.878) 

DIC3  7809.755 7773.382 9015.654 

Table 4.5 Bayesian parameter estimates and standard errors for AFT models under normal latent model. 

 
 Log-Logistic Log-Normal Weibull 

Parameters Est. (S.E.) Est. (S.E.) Est. (S.E.) 

Intercept 3.049 (0.268) 3.096 (0.241) 3.440 (0.273) 

Gender    

Female 0.830 (0.138) 0.791 (0.129) 0.885 (0.145) 

Baseline (male) - - - 

Current marital status    

Married -0.955 (0.119) -0.899 ( 0.116) -0.818 (0.107) 

Widow(er) or divorced -0.163 (0.568) -0.086 (0.537) -0.048 (0.652) 

Baseline (single) - - - 

Education level    

Under diploma -0.832 (0.180) -0.811 (0.159) -0.798 (0.181) 

Diploma -0.446 (0.185) -0.424 (0.163) -0.411 (0.185) 

BS -0.856(0.229) -0.825 (0.204) -0.797 (0.229) 

Baseline (MA and higher) - - - 

Age 0.012 (0.006) 0.009 (0.004) 0.013 (0.006) 

Number of household members    

One or two -0.302 (0.200) -0.271 (0.193) -0.254 (0.182) 

Three 0.020 (0.122) 0.059 (0.124) -0.089 (0.120) 

Baseline (four and more) - - - 

Living area    

Rural -0.526 (0.095) -0.489 (0.098) -0.519 (0.092) 

Baseline (urban) - - - 

Scale 0.742 (0.003) 1.654 (0.103) 1.016 (0.033) 

HF 4.425 (0.745) 2.001 (0.302) 4.805 (0.935) 

DIC3  7813.242 7772.309 9008.878 

Table 4.6 Bayesian parameter estimates and standard errors for AFT models under squared normal latent model. 
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Figure 4.4 S(t'|','x) by significant explanatory variables in model (4.13) under the log-normal AFT model with 

squared normal random effect distribution 

 
One of the most important graphical representations in survival analysis is the marginal 

survival distribution plot. The marginal survival distribution function is given by:  

 .);(),,;(=),;( dbbhxbtSxtS     

 

Figure 4.4 illustrates predicted plots of the marginal survival function for different categories 

of the explanatory variables in model (4.13) under the best fitting distributional assumption. 

Panel (a) demonstrates the effect of gender on the marginal survival distribution while 

holding fixed values of the other explanatory variables: namely, married, living in urban, 

twenty-nine year old educated to under diploma level. This panel shows that the duration of 

unemployment with these properties is longer for a female than that for a male. Panel (b) 

shows the effect of living area on the marginal survival distribution while holding fixed other 

explanatory variables: a married man, twenty-nine year old educated to under diploma level. 

Panel (c) shows the effect of education levels on the marginal survival distribution while 

holding fixed the explanatory variables: a married man, twenty-nine year old educated to 

under diploma level and a household size greater than three. Panel (d) shows the effect of 

current marital status on the marginal survival distribution while holding fixed the 

explanatory variables: a married man, living in urban, and twenty-nine year old. 

 

A comparison of the results for the log-normal AFT model, the best fitting model, in 

Tables'4.4 to 4.6 can be regarded as a sensitivity analysis of the effect on parameter estimates 

and model comparison criteria of changing the latent variable distribution. This shows that, 

for these data points, the results are not sensitive to the choice of latent variable distribution.  
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As a final component of our discussion on unobserved heterogeneity, Figure 4.5 shows the 

unobserved heterogeneity of different provinces. On this map, we categorize the posterior 

mean of the latent variable of the best fitting model for different provinces. Through a close 

look at this figure, one can imply that the provinces with the same color have similar levels of 

unobserved heterogeneity. Also, the larger is the unobserved heterogeneity factor, the darker 

is the color in this figure and the larger is the duration of unemployment. The larger values of 

b are for the rural areas; for example, Sistan and Baluchestan province (which includes 

Afghan immigrants) has the largest value of b. This figure shows that most of the provinces 

have similar values of b [unobserved heterogeneity factor in the interval (0.5,1)]. 

 
Figure 4.5 Posterior means of latent random effects obtained by the best fitting model. 

 
 

 

5. CONCLUSION  

 

In this paper, we analyzed unemployment duration data of Iran in 2009, containing right and 

interval-censored observations. Using the WinBUGS software, we adopted a Bayesian 

approach to handle unobserved heterogeneity. 

 

For unemployment duration, we considered accelerated failure time models with various 

distributional assumptions selected using proposed R2 regression indices. A latent exponential 

family distribution was considered for unobserved heterogeneity. We checked the 

convergence of the MCMC approach via a Gelman-Rubin diagnostic test. Finally, we 

compared different distributional assumptions using the DIC3 criterion. A log-normal AFT 

model with squared normal latent variable was selected as the best fitting model. Our study 

demonstrated that it is essential to consider the heterogeneity factor in the modeling of 

unemployment duration of Iran in 2009.  

 

The results of our proposed method revealed significant difference in unemployment duration 

based on different explanatory variables: for example, married persons have shorter 

unemployment durations than singles persons and widow(er)s or divorced people (fixing 

values of the other explanatory variables). Females have longer unemployment durations than 

males. Also, in Iran, people with the under diploma have the shortest unemployment 

durations. Unemployment duration for families with one or two members is shorter than that 

for families with larger numbers of family members, and people living in urban areas have 

longer unemployment duration than people living in rural areas.  
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Using the proposed method provinces with similar levels of unobserved heterogeneity can be 

identified by inspecting the estimated values of the latent variable.  

 

The proposed method presents the possibility of considering different members of the family 

of random effects distributions and the use of the available software WinBUGS for model 

implementation. The proposed approach can be extended for analyzing unemployment data 

with competing risks, where the individuals may remain unemployed, become employed, or 

become economically inactive. 
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