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Numeri
al solution of boundary value problemsfor sto
hasti
 di�erential equations on the basis ofthe Gibbs sampler 1
S.M. Prigarin 2 and G. Winkler 3

To solve boundary value problems for linear systems of sto
hasti
 di�er-ential equations we propose and justify a numeri
al method based on theGibbs sampler. In 
ontrast to the te
hnique whi
h yields for linear systemsan "exa
t" numeri
al solution, the proposed method is simpler to general-ize for sto
hasti
 partial di�erential equations and nonlinear systems. Su
hgeneralizations are dis
ussed as well.1 Statement of the problem for linear sto
hasti
di�erential equationsLet us 
onsider a boundary value problem for a linear ve
tor-valued sto
has-ti
 di�erential equation (SDE) of the Ito typedu(t) = A(t)u(t)dt +�(t)dw(t); t 2 (t1; tN ); (1)u(t1) = u�; u(tN ) = u�; (2)where u(t) = (u1(t); : : : ; uk(t))T is a ve
tor-valued random pro
ess, w(t) =(w1(t); : : : ; wk(t))T is a ve
tor of independent standard Wiener pro
esses,A(t) and �(t) are k � k matri
es whose elements are pie
ewise 
ontinuousfun
tions, u� and u� are non-random ve
tors.The problem is to 
onstru
t realizations of the pro
ess u(t) satisfyingSDE (1) and boundary 
onditions (2). In other words, it is ne
essary tosimulate a set U = fu(t1); u(t2); : : : ; u(tN )g of dependent random ve
torsu(ti) (for a �xed grid T = ft1; t2; : : : ; tNg) with a joint distribution P (U)generated by the SDE and the boundary 
onditions.1The work partially was supported by RFBR grant N 00-15-961732Institute of Computational Mathemati
s and Mathemati
al Geophysi
s, pr. Lavren-tieva 6, Novosibirsk, 630090, Russia; e-mail: smp�osmf.ss

.ru3Institute of Biomathemati
s and Biometry, GSF-National Resear
h Center for Envi-ronment and Health, 85764 Neuherberg M�un
hen, Germany; e-mail: gwinkler�gsf.de1



2 "Exa
t" numeri
al solution of boundary valueproblems for systems of linear sto
hasti
 di�er-ential equationsFor a solution u(t) of the linear SDE (1) the �nite-dimensional distributions
an be des
ribed in a 
omparatively simple way: if the values u(�) and u(�)are �xed, then the distribution of u(
), 
 2 (�; �), is Gaussian and doesnot depend on the values of u(s) for s < � and s > �. The moments of theGaussian distribution are written down in the following two statements (fordetails and proofs see [1,2℄).Here by �(t; s) we denote the prin
ipal matrix asso
iated with A(t) andby Rts we denote Gram's matrixRts = tZs �(t; �)�(�)�T (�)�T (t; �)d�:Lemma 2.1 (
onditional distributions for linear SDE) Assume thata ve
tor-valued random pro
ess u(t) satis�es SDE (1) on the segment [�; �℄,and the matrix R�� is nonsingular. Then the distribution of the ve
tor u(
),
 2 (�; �), provided that u(�) = u�, u(�) = u� (the ve
tors u�, u� arenon-random), is Gaussian with expe
tationm = h�(
; �)�R
��T (�; 
)(R��)�1�(�; �)i u� ++R
��T (�; 
)(R��)�1u� (3)and 
orrelation matrix E (u(
)�m) �uT (
)�mT� == R
� �R
��T (�; 
)(R��)�1�(�; 
)R
�: (4)If the matrix R�� is singular and u� 2 �(�; �)u(�) + R��(Rk), then for-mulas (3), (4) remain valid with pseudo-inverse matrix (R��)+ instead of(R��)�1.Lemma 2.2 (
onditional distributions for time-invariant linear SDE)Assume that the ve
tor-valued random pro
ess u(t) is a solution to SDE (1)with 
onstant matri
es, and the matrix A is stable (i.e., A(t) = A and�(t) = � do not depend on t and the real parts of the roots � of the 
hara
-teristi
 equation det(A��I) = 0 are stri
tly negative). Then the distributionof the ve
tor u(
), 
 2 (�; �), provided that u(�) = u�, u(�) = u�, is Gaus-sian with expe
tationm� = (B1 �K1BT2 K�1B)u� +K1BT2 K�1u�2



and 
orrelation matrixR� = E (u(
) �m�) (u(
)�m�)T = K1 �K1BT2 K�1B2K1;where B1 = exp((
 � �)A), B2 = exp((� � 
)A), B = B1B2 = B2B1,K1AT +AK1 = B1��TBT1 � ��T ;K2AT +AK2 = B2��TBT2 � ��T ;KAT +AK = B��TBT � ��T ;K = B2K1BT2 +K2:(Here we assume that the matrix K is nonsingular. In parti
ular, K isnonsingular if the matrix � is nonsingular.)A

ording to the "exa
t" algorithm, the grid T is sequentially s
annedin a 
ertain order. For the 
urrent grid point 
 2 T , the 
losest points� < 
 and � > 
 must be found, where the values of u are already known,(note, that at the very beginning only the values u(t1), u(tN ) are known).Then the value u(
) is simulated a

ording to the 
onditional distributiondes
ribed in Lemma 1. (Cal
ulation of averages and 
orrelation matri
es forthe 
onditional distributions in Lemma 1 is one of the most labor-
onsumingsteps of the algorithm.) Finite-dimensional distributions of the pro
ess u(t)are reprodu
ed exa
tly by this algorithm.There are no restri
tions for the order of s
anning, but 
omputational
osts 
an appre
iably depend on it. From this point of view the bise
tions
heme seems to be eÆ
ient for time-invariant equations.Further results and examples 
on
erning the "exa
t" algorithm, in
lud-ing the study of existen
e and uniqueness of the solution for more generalboundary 
onditions, 
an be found in [2,3℄.3 The Gibbs sampler to solve boundary value prob-lems for linear systems of SDEFor the method on the basis of the Gibbs sampler, we propose below, it isne
essary to �nd 
onditional distributions of a spe
ial kind. For all innergrid points ti 2 ft2; : : : ; tN�1g = T0 it is ne
essary to know the distributionsof u(ti) provided that the values u(ti�1), u(ti+1) are �xed. These distribu-tions will be denoted by P (u(ti)ju(ti�1); u(ti+1)) and they 
an be found byLemma 1.3.1 Des
ription of the algorithmAn iterative numeri
al algorithm to solve boundary value problem (1), (2)
an be des
ribed as follows. 3



Initial step. A ve
tor (whi
h 
an be random or non-random)U (0) = (u(0)(t1); : : : ; u(0)(tN ))is taken as initial, whereu(0)(t1) = u(t1) = u�; u(0)(tN ) = u(tN ) = u�:For example, the points with the 
oordinates (ti; u(0)(ti)) 
an be disposedon the straight line whi
h 
onne
ts the boundary points (t1; u�), (tN ; u�).Iterative step. We will 
onsider two versions of the iterative step, toprodu
e a random ve
tor U (n+1) from the ve
tor U (n).(a) Random visiting s
heme. First, a

ording to a proposal distributionG on T0 we 
hoose a node t 2 T0. Then the value of u(n+1)(t) is simulateda

ording to the distribution P (u(n+1)(t)ju(n)(t�1); u(n)(t+1)). For all othervalues we set u(n+1)(s) = u(n)(s), t 6= s 2 T0. The proposal distribution Gis assumed to be stri
tly positive on T0.(b) Deterministi
 visiting s
heme. The inner grid T0 is s
anned sequen-tially a

ording to some �xed pro
edure (a sweep with deterministi
 visitings
heme) in su
h a way that all the nodes from T0 must be, at least, on
evisited. For every visited node t 2 T0 the value of u(n)(t) is 
hanged a

ord-ing to the 
onditional distribution P (u(n)(t)ju(n)(t�1); u(n)(t+1)) (possibleprevious 
hanges of u(n)(t� 1), u(n)(t+ 1) during the 
urrent sweep shouldbe taken into a

ount). The 
on�guration obtained at the end of the sweepwill be taken as U (n+1).After many iterative steps a 
on�guration U (n) for large n is 
onsideredto be an approximation of U .3.2 Convergen
eThe sequen
e U (n), n = 1; 2; : : : ; generated by the algorithm is a Markov
hain with a 
ontinuous state spa
e of N � k dimension. Obviously, thedistribution P (U) is invariant for the Markov 
hain, and then (under someadditional assumptions) the distributions of U (n) 
onverge to P (U).The exa
t results 
an be obtained from the general ergodi
 theory forMarkov 
hains presented, for example, in [5,6℄. In parti
ular, the followingstatements 
an be obtained like 
onsequen
es of Orey's theorem.Proposition 3.1 Assume the matri
es Rti+1ti , i = 1; : : : ; N � 1, to be non-singular. Then for any initial 
on�guration U (0), kP (U (n))�P (U)k ! 0 asn!1 (hen
eforth by k:k we denote the total variation norm).Proposition 3.2 Consider a boundary value problem (1), (2) for a time-invariant SDE with a stable matrix A, and assume the matrix R�� to benonsingular. Then for an arbitrary initial 
on�guration U (0), the algorithmon the basis of the Gibbs sampler 
onverges to a solution of the boundaryvalue problem, i.e., kP (U (n))� P (U)k ! 0 as n!1.4



Remark 3.3 For a time-invariant SDE with a stable matrix A, the setRts(Rk) does not depend on the values s and t for s < t. If the matrixR�� is singular, then existen
e of the solution is equivalent to the 
onditionx� 2 exp((� � �)A)x� + R��(Rk), and the initial 
on�guration 
annot bearbitrarily 
hosen.4 A general s
heme for partial di�erential equa-tions and nonlinear systemsThe approa
h of Markov ChainMonte Carlo (MCMC) seems to be promisingfor the numeri
al solution of boundary value problems for sto
hasti
 di�er-ential equations of di�erent types. There are several well-known s
hemesof MCMC like the Gibbs, the Metropolis and the Hastings methods. Forsto
hasti
 di�erential equations (when there is a des
ription of "lo
al" de-penden
y for the values of a simulated pro
ess or a �eld) the Gibbs samplerseems to be one of the most appropriate and natural.Let us des
ribe a general s
heme. Consider a boundary value problemfor a (partial nonlinear) SDE Au(x) = w(x), where x 2 X � Rd and w(x)is white noise. After dis
retization, the boundary value problem 
an be re-du
ed to another boundary value problem for a �nite di�eren
e equation~A~u(xi) = ~w(xi), where ~A is a dis
rete approximation of the operator A onthe grid ~X � X, xi 2 ~X , and ~w(xi) is a dis
rete white noise. The latter equa-tion enables to �nd the 
onditional distributions P (~u(xi)j~u(x); x 2 �(xi)) for~u(xi) when the values of ~u in the neighborhood �(xi) � ~X of the node xiare given. Then the Gibbs sampler (like in Item 3.1) 
an be used for theapproximate simulation of ~u(xi) on ~X: �rst, some initial 
on�guration is�xed and then the nodes of the grid are s
anned (a

ording to a randomor a deterministi
 visiting s
heme) and the values in the nodes are updateda

ording to the 
onditional distributions.Remark 4.11. The following problems are signi�
ant for the 
onsidered algorithm:(a) the study of a

ura
y for dis
rete approximation, (b) an appropriate
hoi
e of the initial 
on�guration and the stopping rule for the Gibbs sam-pler, (
) balan
ing the errors for dis
retization and the Gibbs sampler todiminish the total error of the result.2. To optimize the algorithm, one 
an use su
h well-known te
hniqueslike the simultaneous updating for ensembles of nodes, syn
hronous andpartially parallel algorithms, et
.3. Conventional iteration methods for deterministi
 systems 
an be 
on-sidered as an extreme 
ase for the Gibbs samplers when white noise has zerointensity. 5



4. If the intensity of the white noise in the SDE tends to zero, then theresult of simulation possibly 
onverges to a solution for a 
ertain problem ofoptimal 
ontrol (
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