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An Elementary Rigorous Introdu
tionto Exa
t SamplingF. Friedri
h G. Winkler O. Witti
hV. Liebs
herInstitute of Biomathemati
s and BiometryGSF - National Resear
h Center for Environment and Health,Postfa
h 1129, D-85758 Obers
hlei�heim, Germany,{friedri
h,gwinkler,witti
h,liebs
her}�gsf.de,http://www.gsf.de/institute/ibb/Abstra
tWe introdu
e 
oupling from the past, a re
ently developed methodfor exa
t sampling from a given distribution. Fo
us is on rigour andthorough proofs. We stay on an elementary level whi
h requires little or noprior knowledge from probability theory. This should �ll an obvious gapbetween innumerable intuitive and in
omplete reviews, and few pre
isederivations on an abstra
t level.1 Introdu
tionWe introdu
e a re
ently developed method for exa
t sampling from a givendistribution. It is 
alled 
oupling from the past. This is in 
ontrast to Markov
hain Monte Carlo samplers like the Gibbs sampler or the family of Metropolis-Hastings samplers whi
h return samples from a distribution approximating thetarget distribution. The drawba
k is that MCMC methods apply generally andexa
t sampling works in spe
ial 
ases only. On the other hand, it is the obje
t of
urrent resear
h and the list of possible appli
ations in
reases rapidly. Anotheradvantage is that problems like burn in and 
onvergen
e diagnosti
s do notarise where exa
t sampling works. Exa
t sampling was proposed in the seminalpaper J.G. Propp and D.B. Wilson (1996). Whereas these authors 
alledthe method exa
t sampling, some prefer the term perfe
t sampling sin
e randomsampling never is exa
t. For ba
kground in Markov 
hains and sampling, andfor examples, we refer to G. Winkler (1995, 2003).The aim of the present paper is a rigorous derivation and a thorough analysisat an elementary level. Nothing is really new; the paper 
onsists of a 
ombi-nation of ideas, examples, and te
hniques from various re
ent papers, basi
allyalong the lines in F. Friedri
h (2003). Hopefully, we 
an single out the basi
1




onditions under whi
h the method works theoreti
ally, and what has to beadded for a pra
ti
able implementation.Coupling from the past is 
losely related to Markov Chain Monte Carlosampling (MCMC), whi
h nowadays is a widespread and 
ommonly a

eptedstatisti
al tool, espe
ially in Bayesian statisti
al analysis. Hen
e we premisethe dis
ussion of 
oupling to the past with some remarks on Markov ChainMonte Carlo sampling. Let us �rst introdu
e the general framework whi
hsimultaneously gives us the basis for 
oupling from the past. For ba
kgroundand a detailed dis
ussion see G. Winkler (1995), [13℄.Let X be a �nite set of generi
 elements x; y; : : : . A probability distribution� on X is a fun
tion on X taking values in the unit interval [0; 1℄ su
h thatPx2X �(x) = 1. A Markov kernel or transition probability on X is a fun
tionP : X � X ! [0; 1℄ su
h that for ea
h x 2 X the fun
tion P (x; � ) : X ![0; 1℄; y 7! P (x; y) is a probability distribution on X. A probability distribution� on X 
an be interpreted as a row ve
tor (�(x))x2X and a Markov kernel P as asto
hasti
 matrix (P (x; y))x;y2X. A right Markov 
hain with initial distribution� and transition probability P is a sequen
e (�i)i�0 of random variables thelaw of whi
h is determined by � and P via the �nite-dimensional marginaldistributions given byP��0 = x0; �1 = x1; : : : ; �n = xn� = ��x0�P �x0; x1� � � � � � P �xn�1; xn�:P is 
alled primitive if there is a natural number � su
h that P � (x; y) > 0 forall x; y 2 X. This means that the � -step probability from state x to state y isstri
tly positive for arbitrary x and y. If P is primitive then there is a uniqueprobability distribution � whi
h is invariant w.r.t. P , i.e. �P = � where �Pis the matrix produ
t of the (left) row ve
tor � and the matrix P , and thisinvariant probability distribution � is stri
tly positive.The laws or distributions of the variables �n of su
h a pro
ess 
onverge tothe invariant distribution, i.e.�P � � � � � P (y) �! �(y); y 2 X; (1)
f. [13℄, Theorem 4.3.1. Perhaps the most important statisti
al features to beestimated are expe
tation values of fun
tions on the state spa
eX, and the most
ommon estimators are empiri
al means. Fortunately, su
h sto
hasti
 pro
essesful�ll the law of large numbers, whi
h in its most elementary version reads: Forea
h fun
tion f on X, the empiri
al means along time 
onverge in probability(and in L2) to the expe
tation of f with respe
t to the invariant distribution;in formulae this reads1n n�1Xi=0 f(�i) �! E (f ;�) as n!1; in probability; (2)(
f. [13℄, Theorem 4.3.2). The symbol E (f ;�) denotes the expe
tationE�f ;�� = Xx2X f(x)�(x)2



of f with respe
t to �. A sequen
e of random variables �i 
onverges to therandom variable � in probability if for ea
h " > 0 the probability P(j�i � �j > ")tends to 0 as n tends to1. Plainly, (2) implies that for every natural numberm,averaging may be started fromm without destroying 
onvergen
e in probability;more pre
isely for ea
h m � 0 one has1n�m nXi=m+1 f(�i) �! E (f ;�) as n!1; in probability: (3)In view of the law of large numbers for identi
ally distributed and independentvariables, the step number m should be large enough su
h that the distributionsof the variables �m+1; : : : ; �n are 
lose to the invariant distribution � in orderto estimate the expe
tation of f with respe
t to � properly from the samplesf(�m+1); : : : ; f(�n).In fa
t, a

ording to (1), after some time m the laws of the �i should be
lose to the invariant distribution � although they may be far from � duringthe initial period. The values during this burn in period are usually dis
ardedand an average (Pnm+1 f(�i))=(n �m) like in (3) is 
omputed. In general, theburn in time 
an hardly be determined. There are a lot of suggestions rangingfrom visual inspe
tion of the time series (f(�i))i�0 to more formal tools, 
alled
onvergen
e diagnosti
s . In this text we are not 
on
erned with burn in andrestri
t ourselves to the illustration in Fig. 1. A Gibbs sampler (introdu
ed inSe
tion 4) for the Ising model is started with a pepper and salt 
on�guration inthe left pi
ture. A typi
al sample of the invariant distribution is the right onewhi
h appears after about 8000 steps. The pi
tures in-between show intermedi-ate 
on�gurations whi
h are pretty improbable given the invariant distributionbut whi
h are quite stable with respe
t to the Gibbs sampler. In physi
al terms,the right middle 
on�guration is 
lose to a `meta-stable' state. Sin
e we are in-terested in a typi
al 
on�guration of the invariant distribution �, we should
onsider the burn in to be 
ompleted if the sample from the Markov 
hain lookslike the right hand side of Fig. 1, i.e. after about 8000 steps of the Gibbs sam-pler. The 
urve in the next �gure Fig. 2 displays the relative frequen
y of
Figure 1: Con�gurations for Ising Gibbs Sampler with � = 0:8 starting ina pepper and salt-
on�guration (left), after 150 steps (left middle), after 350steps (right middle) and after 8000 steps (right).equal neighbour pairs. Super�
ial visual inspe
tion of this plot suggests thatthe sampler should be in equilibrium after about 300 steps. On the other hand,3




omparison with Fig. 1 reveals that the slight as
ent at about 7800 steps pre-sumably is mu
h more relevant for the de
ision whether burn is 
ompleted ornot. This indi
ates that primitive diagnosti
 tools may be misleading. The in-terested reader is referred to the referen
es in [7; 6; 10℄, seeW.R. Gilks et al.(1996b). If initial samples from � itself are available, then there is no need for

Figure 2: Convergen
e Diagnosti
s for Ising Gibbs Samplera burn in, and one 
an average from the beginning. This is one of the mostvaluable advantages of exa
t sampling.First, we indi
ate how a Markov 
hain 
an be simulated.Example 1 (Simulating a Markov 
hain) We denote by P the transitionprobability of a homogeneous Markov 
hain. At ea
h time n � 1, given theprevious state xn�1, we want to pi
ku
y1y2y3 y1 y2 y3y1 y2 y3y1 y2 y3 a state xn at random from P (xn�1; �).For ea
h x, we partition the unit interval(0; 1℄ into intervals Ixy of length P (x; y),and pi
k un uniformly at random from(0; 1℄. Given the present state xn�1, wesear
h for the state y with un 2 Ixn�1yand set xn = y. The pi
ture on the left illustrates this pro
edure for jX j = 3,where xn = y2 if xn�1 was y1 or y2 and xn = y3 if xn�1 = y3. In general, thepro
edure 
an be rephrased as follows: De�ne a transition rule for P byf : X� (0; 1℄ �! X; f(x; u) = y if and only if u 2 Ixy :More expli
itly, enumerate X = fy1; : : : ; yNg and set f(x; u) = F�x (u) whereFx(u) = P (x; fyi : i � ug) is the 
umulative distribution fun
tion of P (x; �)and F�x (u) = minft : Fx(t) � ug its generalized inverse. Let U1; U2; : : : beindependent random variables uniformly distributed over (0; 1℄, and set �0 :=x0, and �n := f(�n�1; Un). Then (�n)n�0 is a homogeneous Markov 
hainstarting at x0 with transition probability P . For inhomogeneous 
hains, repla
e4



f by fn varying in time. Note that the ex
lusive sour
e of randomness are theindependent random variables Ui.2 Exa
t SamplingThe basi
 idea of 
oupling from the past is 
losely related to the law of largenumbers (2). A

ording to (1), for primitive P with invariant distribution � the
orresponding Markov 
hain 
onverges to �; more pre
isely�Pn �! �; as n!1; (4)uniformly in all initial distributions �, and with respe
t to any norm on RX .Generalizing the 
on
ept of right Markov 
hains, let us 
onsider now two-sided Markov 
hains with transition probabilities given by a Markov kernel P ,i.e. double sequen
es (�i)i2Z of random variables taking values in X, and withlaw determined by the marginal distributionsP��m = xm; : : : ; �n = xn� = �m�xm�P �xm; xm+1� � � � � � P �xn�1; xn�; (5)for m;n 2 Z, n > m, where �k denotes the law of �k .If P is primitive, or more generally, if (4) holds uniformly, these two-sided
hains are automati
ally stationary. This important 
on
ept means that a timeshift does not 
hange the law of the 
hain; in terms of the marginal distributionsthis readsP��m = xm; : : : ; �n = xn� = P��m+� = xm; : : : ; �n+� = xn� (6)for all m 2 Z and � 2 Z, and in parti
ular, that all �m in (5) are equal to �.In fa
t, be
ause of (5) one has �0 = ��kP k for all k 2 N. By uniformity in (4),this implies �0 = � and hen
e in view of (5) the pro
ess (�i)i2Z is stationary.At a �rst glan
e, this does not seem to be helpful sin
e we 
annot simulatethe two-sided 
hain starting at time �1. On the other hand, if we want tostart sampling at some (large negative) time n, there is no distinguished stateto start in, sin
e stationarity of the 
hain implies that the initial state ne
essarilyis already distributed a

ording to �. The main idea to over
ome this problemis to start 
hains simultaneously at all states in X and at ea
h time. Thismeans that a lot of Markov 
hains are 
oupled together. The 
oupling willbe 
onstru
ted in su
h a fashion that if two of the 
hains happen to be inthe same state in X at some (random) time, they will afterwards follow thesame traje
tory forever. This phenomenon is 
alled 
oales
en
e of traje
tories.Our de�nite aim is to 
ouple the 
hains in a 
ooperative way su
h that after alarge time it is very likely that any two of the 
hains have met ea
h other attime 0. Then, at time 0, all 
hains started simultaneously at suÆ
iently largenegative time have 
oales
ed, and therefore their 
ommon state at time 0 doesnot dependent on the starting points in the far past anymore. We will showthat after 
omplete 
oales
en
e the unique random state at time 0 is distributeda

ording to the invariant distribution �.5



To make this pre
ise we 
onsider the following setup: Let X be a �nitespa
e and let � be a stri
tly positive probability distribution on X. The aim isto realize a random variable whi
h exa
tly has law �, or - in other words - tosample from �. Sin
e Markov 
hains have to be started at ea
h time k < 0 andat ea
h state x 2 X simultaneously, a formal framework is needed into whi
h allthese pro
esses 
an be embedded. The appropriate 
on
ept is that of iteratedrandom maps or sto
hasti
 
ows, systemati
ally exploited in P. Dia
onis andD. Freedman (1999).Let � be the stri
tly positive distribution on X from whi
h we want tosample and let P be a Markov kernel on X for whi
h � is the unique invariantdistribution. Let � be the set of all maps from X to itself:� = f' : X �! Xg = XX = Map(X;X):On this spa
e we 
onsider distributions p re
e
ting the a
tion of P on X inthe sense that the p-probability that some point x is mapped by the randomfun
tion ' to some y is given by P (x; y). This 
onne
tion between p and P isformalized by the 
ondition(P) p �f' : '(x) = yg� = P (x; y); x; y 2 X:Example 2 Su
h a distribution does always exist. A syn
hronous one is givenby q(') = Qx2X P (x; '(x)). It is a probability distribution sin
e it 
an bewritten as a produ
t of the distributions P (x; �). It also ful�lls Condition (P):Let �0 be the set of all maps from Xnfxg to X. Thenq�' : '(x) = y�= Xf':'(x)=ygYz2XP (z; '(z)) = P (x; y) X'2�0 Yz 6=xP (z; '(z)) = P (x; y);the sum over �0 equals 1 sin
e the summands again de�ne a produ
t measure.Sin
e we want to mimi
 Markov pro
esses, we need measures on sets of paths,and sin
e we will pro
eed from time �1 to �nite times we introdu
e measureson the set 
 = �Z with one-dimensional marginal measures p. The simplest
hoi
e are produ
t measures P = pZ. The spa
e 
 = �Z 
onsists of doublesequen
es ' = ('j)j2Z= (: : : ; '�1; '0; '1; : : :) 2 Map(X;X)Z:If J is a �nite subset of Z then for ea
h 
hoi
e  j , j 2 J , we haveP�f' 2 
 : 'j =  j ; j 2 Jg� = Yj2J p( j):Given a double sequen
e ' of maps 'j , j 2 Z, we 
onsider 
ompositions of the
omponents 'j over time intervals. For ea
h ' 2 
 and x 2 X, set'kj (x) = 'k Æ � � � Æ 'j(x) = 'k�'k�1� � � � ('j(x)��; j � k:Note that 'ii = 'i. 6



Remark Given Condition (P), for ea
h n 2 Z and x 2 X, the pro
ess �n � x,�n+k = 'n+kn+1(x), k � 1, is a Markov 
hain starting at x and with transitionprobability P . Hen
e the sto
hasti
 
ow is a 
ommon representation of Markov
hains starting at all initial states and at all times; we shall say that they are
oupled from the past.Coupling from the past at time n will work as follows: Pi
k a double sequen
e: : : ; 'm; : : : ; 'n; : : :of maps at random, and �x a number n 2 Z. Then de
rease m until 'nm(x) = whopefully does not depend on x anymore. If we are su

essful and this happensthen we say that all traje
tories'm(x); 'm+1 Æ 'm(x); : : : ; 'nm(x); x 2 X;have 
oales
ed. We shall also say that for ' there is 
omplete 
oales
en
e attime n. This works if suÆ
iently many of the 'j map di�erent elements xto the same image. Going further ba
kwards does not 
hange anything sin
e'nm�k(x) = 'nm('m�1m�k(x)) = w holds as well for all x. This may be rephrased interms of sets as follows: Let ' : X ! X be a map and Im' = f'(x) : x 2 Xgthe image of X under '. For �xed n the sets Im'nm de
rease as m de
reases.Complete 
oales
en
e means that Im'nm is a singleton fwg. Then there is aunique Wn(') 2 X with fWn(')g := \m�n Im'nm: (7)If there is no 
oales
en
e then Wn(') is not de�ned. Let us setFn = f' :Wn(') existsg; F = \n2ZFn:Then all Wn are well de�ned on F ; to 
omplete the de�nition let Wn(') = z0for some �xed z0 2 X if ' =2 F . Obviously, independent of the 
hoi
e of x 2 X,Wn+k(') = limm!�1'n+km (x) = 'n+kn+1 Æ limm!�1'nm(x) (8)= 'n+kn+1 ÆWn('); ' 2 F; n 2 Z; k > 0:This indi
ates that the random variables Wn(') have law �. To exploit thisobservation for a sampling algorithm we need almost sure 
omplete 
oales
en
ein �nite time. We enfor
e this by the formal 
ondition(F) P(F ) = 1.Provided that (F) holds, we 
all P su

essful. Condition (F) will be veri�edbelow under natural 
onditions. 7



Lemma 1 Under the hypothesis (P) and (F) the pro
ess (Wm)m2Z is a station-ary homogeneous Markov pro
ess with Markov kernel P .Proof. Re
all that P is a homogeneous produ
t measure, and hen
e for ea
h� 2 Z all random sequen
es 'm; : : : ; 'm+� , m 2 Z, have the same law. Hen
ethe sto
hasti
 
ow is stationary, and the pro
ess (Wm)m2Z is stationary as well.Moreover, 'n+kn+1 depends on 'n+1; : : : ; 'n+k only and ea
hWm depends only on: : : ; 'm�1; 'm. Again, sin
e P = pZ is a produ
t measure, the variables 'n+kn+1and Wm, m � n, are independent. By (8) and (P),P�Wn+1 = xn+1;Wn = xn; : : : ;Wn�k = xn�k�= P�'n+1n+1(xn) = xn+1;Wn = xn; : : : ;Wn�k = xn�k�= P�'n+1(xn) = xn+1�P�Wn = xn; : : : ;Wn�k = xn�k�= P �xn; xn+1�P�Wn = xn; : : : ;Wn�k = xn�k�;whi
h showsP�Wn+1 = xn+1��Wn = xn; : : : ;Wn�k = xn�k) = P (xn; xn+1�:Hen
e P is the transition probability of the pro
ess (Wm)m2Z. �Let us put things together in the �rst main theorem.Theorem 1 (Exa
t Sampling) Suppose that � is a stri
tly positive proba-bility distribution and P a primitive Markov kernel on X su
h that �P = �.Assume further that p �f' : '(x) = yg� = P (x; y) for all x; y 2 X, and that Pis su

essful. Then ea
h random variable Wn has law �; more pre
isely:P ��' 2 
 :Wn(') = x	� = �(x); x 2 X: (9)Proof. By stationarity from Lemma 1, all one-dimensional marginal distribu-tions 
oin
ide, and P is the transition probability of (Wn)n2Z. If P is primitivethen by [13℄, Theorem 4.3.1, its unique invariant distribution is �. �To sample from �, only one of the Wm is needed.Corollary Under the assumptions of Theorem 1, the random variable W0 haslaw �.The next natural question 
on
erns the waiting time for 
omplete 
oales
en
eat time zero. The random times Tn of latest 
oales
en
e before n are given byTn(') = supfm � n : there is w 2 X su
h that 'nm(x) = w for every x 2 Xg:The numbers Tn(') de�nitely are �nite if ' 2 F ; outside F they may be �niteor equal �1. Condition (F) is equivalent toP��' 2 
 : Tn(') > �1	� = 1 for every n 2 Z: (10)8



Su
h a random time is also 
alled su

essful. To realize W0 one subsequentlyand independently pi
ks maps '0; '�1; : : : ; 'm until there is 
oales
en
e say inw 2 X. This element w is a sample from �. For 
omputational reasons, oneusually goes ba
k in time by powers of 2. Clearly, 
hoosing k0(') su
h that�2k0(') � Tn(') assures 
oales
en
e at time 0. Re
all that su
h a k0(') existsfor ea
h ' 2 F . An example of a sto
hasti
 
ow 
oales
ing 
ompletely at timem = 0 is shown in Fig. 3. We are going now to dis
uss a 
ondition for (F) to

Figure 3: Latest 
omplete 
oales
en
e time before time 0hold. Pairwise 
oales
en
e with positive probability is perhaps the most natural
ondition and easy to 
he
k:(C) For ea
h pair x; y 2 X there is an integer n(x; y) su
h thatp n(x;y)��('1; : : : ; 'n(x;y)) 2 �n(x;y) : 'n(x;y)1 (x) = 'n(x;y)1 (y)	� > 0:We shall show in Theorem 2 below that (C) and (F) are equivalent. We givenow a simple example where 
oupling fails.Example 3 Consider P with invariant � on X = f1; 2g given byP = � 1=2 1=21=2 1=2 � ; � = �1=2; 1=2�:Let p(�) = 1=2 = p( ) for the identity map �(1) = 1, �(2) = 2, and the 
ipmap  (1) = 2,  (2) = 1. Compositions of � and  never will 
ouple. On theother hand the 
ow is asso
iated to P sin
e p(f' : '(x) = yg) = 1=2 = P (x; y),regardless of x and y, and Condition (P) holds.We shall show now that the 
oupling 
ondition (C) implies 
omplete 
oales
en
e(F) (and the 
onverse). The latter 
ondition may be rephrased as follows: All9



random times Tn are �nite almost surely. By stationarity this boils down to:The random time T0 is �nite almost surely. The simplest, but fairly abstra
tway to verify (F) is to use shift invarian
e of F and ergodi
ity of P. We willargue along these lines but in a more expli
it and elementary way. The �rststep is to ensure existen
e of a �nite � su
h that the 
ow 
oales
es 
ompletelyin less than � steps with positive probability.Lemma 2 Under 
ondition (C) there is a natural number � su
h thatP�f' : T0(') > ��g� > 0:Proof. Let n
 = maxfn(x; y) : x; y 2 Xg. If 'n1 (x) = 'n1 (y) for some n < n
then 'n
1 (x) = 'n
n+1 Æ 'n1 (x) = 'n
1 (y) as well. Hen
e Condition (C) impliesq = minnpn
�('1; : : : ; 'n
) : 'n
1 (x) = 'n
1 (y)	 : x; y 2 Xo > 0:Therefore jX j > jIm'n
1 j at least with probability q > 0 if jX j � 2. Similarly,jIm'n
1 j > jIm'2n
1 j with probability at least q2 if the left set is no single-ton. This holds be
ause '2n
1 = '2n
n
+1 Æ 'n
1 and the variables '1; : : : ; 'n
 and'n
+1; : : : ; '2n
 are independent and identi
ally distributed. By indu
tion,��X �� > ��Im'n
1 �� > ��Im'2n
1 �� > � � � > ��Im'kn
1 ��at least with probability qk until the last 
ardinality be
omes 1; this happensafter at most jX j � 1 steps. Let � = (jX j � 1)n
 � 1. Nothing 
hanges if werenumber the maps as '�� ; : : : ; '0, m < 0: Hen
e P(fjIm'0�� j = 1g) � q� andthe lemma is proved. �The next step is a sub-multipli
ativity property of probabilities for 
oales
en
etimes.Lemma 3 Let n;m < 0 be negative integers. ThenP�T0 � m+ n� � P�T0 � m�P�Tm � m+ n� = P�T0 � m�P�T0 � n�:Proof. Suppose that T0(') � m+ n. This holds if and only if Im'0m+n+1 hasmore than one element. Then both, Im'0m+1 and Im'mm+n+1, have more thanone element. Hen
eP�' : T0(') � m+ n� � P�' : T0(') � m and Tm(') � m+ n�:To 
he
k whether T0(') � m holds true it is suÆ
ient to know the maps'm+1; : : : ; '0, and similarly, to 
he
k Tm(') � n + m only 'm+n+1; : : : ; 'mare needed. Hen
e the respe
tive sets are independent and the inequality holds.The remaining identity follows from stationarity. �In 
ombination with Theorem 1, the next result 
ompletes the derivation ofexa
t sampling. 10



Theorem 2 The Conditions (F) and (C) are equivalent. In parti
ular, thepro
ess governed by P is su

essful under (C), and almost sure 
oales
en
e inTheorem 1 is assured.Proof. Suppose that (C) holds. By Lemma 2, we have P�T0 > ��� > 0 andLemma 3 impliesP�T0 � �n�� � P�T0 � ���n = �1� P�T0 > ����n �! 0 as n!1:By stationarity, this implies (F). Conversely, suppose that (F) holds, i.e. thatP(F ) = 1. Sin
e F is the interse
tion of the setsFn = �' : there is m � n su
h that jIm'nmj = 1	ea
h of these sets has full measure 1 as well. Fix n now. Plainly, the setsFnm = �' : jIm'nmj = 1	in
rease to Fn as m de
reases to �1. Hen
e there is m < n su
h that P(Fnm) >0. Choose now x 6= y in X. Sin
e 'm�n+11 and 'nm are equal in law, for� = n�m+ 1 one hasp���'1; : : : ; '�	 : '�1(x) = '�1(y)� = P�' : 'nm(x) = 'nm(y)� � P�Fnm� > 0;and (C) holds. �This shows that any derivation of 
oupling from the past whi
h does not expli
-itly or impli
itly use a hypothesis like (C) or a suitable substitute is ne
essarilyin
omplete or in
orre
t.Remark It is tempting to transfer the same idea to `
oupling to the future'.Unfortunately, starting at zero and returning the �rst state of 
omplete 
oales-
en
e after zero, in general does not give a sample from �.The reader may want to 
he
k the following simple example from [5℄.Example 4 Let X = f1; 2g. Positive transition probabilities P and their in-variant distributions � have the formP := � 1� � �� 1� � �; 0 < �; � < 1; � = � ��+ �; ��+ ��:Start two independent 
hains � and � with transition probability P at time 0from 1 and 2, respe
tively. The time of �rst 
oales
en
e in the future isT := minfm 2 N : �m = �mg:Denote the 
ommon law of �T and �T by %. We will shortly verify that % = � ifand only if � = �. Compute �rstP��n = �n = 1; �m 6= �m; m < n�= �(1� �) nXk=0 �nk��(1� �)(1� �)�k����n�k= �(1� �)�(1� �)(1� �) + ���n = �(1� �)�1� (�+ �� 2��)�n11



and %(1) = �(1� �) 1Xn=0 �1� (�+ �� 2��)�n = �(1� �)�(1� �) + �(1� �) :Hen
e % = � �(1� �)�(1� �) + �(1� �) ; �(1� �)�(1� �) + �(1� �)� :This is the invariant distribution � if and only if � = �.The representation of Markov 
hains by sto
hasti
 
ows is 
losely 
onne
tedto the a
tual implementation of 
oupling from the past. Extending previousnotation, a transition rule will be a map f : X � � ! X, with some set � tobe spe
i�ed. Let now Vi, i 2 Z, be independent identi
ally distributed randomvariables taking values in �. Then 'i = f(�; Vi), i 2 Z, is a sto
hasti
 
ow. If,moreover, P(f(x; Vi) = y) = P (x; y) then the 
ow ful�lls Condition (P). Theremaining problem is to 
onstru
t a transition rule su
h that the asso
iated 
owful�lls Condition (C) too.Example 5 Re
all from Example 1 how a Markov 
hain was realized there. Letagain f(x; u) be a deterministi
 transition rule taking values in X, su
h thatfor a random variable U with uniform distribution on � = [0; 1℄ the variablef(x; U) has law P (x; �). This way we - theoreti
ally - may for an m � 0 realizeall values '0m(x), x 2 X, and 
he
k 
oales
en
e. If we go ba
k k more stepsin time we need all '0m Æ 'm�1m�k(x). Sin
e the maps '0; : : : ; 'm are kept, wemust work with the same random numbers u0; : : : ; um, i.e. realizations of theU0; : : : ; Um, as in the pre
eding run, and only independently generate additionalrandom numbers um�1; : : : ; um�k. For this spe
ial 
oupling there is 
omplete
oales
en
e at time 0 in �nite time. The strength of 
oupling depends on thespe
ial form of f whi
h in turn depends on the 
on
rete implementation.In Example 1, for ea
h x 2 X , we partitioned [0; 1℄ into intervals Ixy of lengthP (x; y) and in step n took that y with Un 2 Ixy . The intervals Ixy� with left end at0 have an interse
tion Iy� of length at least minx;y P (x; y). This simultaneouslyis the probability that U falls into Iy�U
x1x2x3 x1 x2 x3x1 x2 x3x1 x2 x3 and all states 
oales
e in y� in one singlestep, irrespe
tive of x. We may improve
oupling by a 
lever arrangement of theintervals. If we put the intervals Ixy� forwhi
h minfjIxy� j : x 2 Xjg is maximal,to the left end of [0; 1℄ then we get thelower bound maxyminx P (x; y) for the 
oales
en
e probability. We 
an improve
oupling even further, splitting the intervals into pie
es of length minfjIxy j : x 2Xg and their rest, and arrange the equal pie
es on the left of [0; 1℄. This givesa bound Pyminx P (x; y).Note that although all these pro
edures realize the same Markov kernel P they
orrespond to di�erent transition rules, to di�erent sto
hasti
 
ows, and todi�erent 
ouplings. Apart from all these modi�
ations, we 
an summarize:12



Proposition 1 Suppose that P > 0. Then all sto
hasti
 
ows 'i = f(�; Ui)from the present Example 5 ful�ll Condition (C).Note that the distribution of all these random maps de�nitely is not the syn-
hronous one from Example 2. For this distribution, set � = [0; 1℄jXj, useindependent 
opies Uzk , z 2 X, of Uk, and let 'k(x) = f(x; (Uzk )z2X) = g(x; Uxk )for g on X � [0; 1℄ 
onstru
ted like above. Condition (C) is obviously ful�lledand 
oupling from the past works also for this method.Remark In Example 5 we found several lower bounds for the probability thatstates 
oales
e in one step. An upper bound is given byP�'(x) = '(y)� =Xz P�'(x) = z; '(y) = z�� Xz P�'(x) = z� ^ P('(y) = z) =Xz P (x; z) ^ P (y; z):This is 
losely related to Dobrushin's 
ontra
tion te
hnique, whi
h in the �nite
ase is based on Dobrushin's 
ontra
tion 
oeÆ
ient 
(P ) = 1 �Pz P (x; z) ^P (y; z), 
f. [13℄, Chapter 4. The relation isP�'(x) = '(y)� � 1� 
(P ):This upper bound is not sharp.3 Monotoni
ityChe
king dire
tly whether there is 
omplete 
oales
en
e at time 0 starting atmore and more remote past times and at all possible states is time 
onsuming,and even impossible if the state spa
e is large (as it is in the appli
ations wehave in mind). If 
oales
en
e of very few states enfor
es 
oales
en
e of all otherstates then the pro
edure be
omes feasible. One of the 
on
epts to make thispre
ise is monotoni
ity . We are now going to introdu
e this 
on
ept on anelementary level.De�nition 1 A partial order on a set X is a relation x � y between elementsx; y 2 X with the two properties(i) x � x for ea
h x 2 X (re
exivity)(ii) x � y and y � z implies x � z (transitivity).Re
all that a total order requires the additional 
ondition that any two elementsx; y 2 X are 
omparable, i.e x � y or y � x.Example 6 (a) The usual relation x � y on R is a total order . In the 
omponent-wise order on Rd , (x1; : : : ; xd) � (y1; : : : ; yd) if and only if xi � yi for ea
h i. Itis a partial but no total order sin
e elements like (0; 1) and (1,0) are not related.13



(b) If X = f�1gS, then in the 
omponent-wise order from (a), the 
onstant
on�gurations b � 1 and w � �1 are maximal and minimal, respe
tively, i.e.x � b and w � x for every x 2 X. This will be exploited in exa
t sampling forthe Ising �eld in Se
tion 4.Next we want to lift partial orderings to the level of probability distributions.Call a subset I of X an order ideal if x 2 I and y � x imply y 2 I .Example 7 (a) The order ideals in R with the usual order are the rays (�1; u℄and (�1; u), u 2 R.(b) In the binary setting of Example 6(b), x � y if ea
h bla
k pixel of x is alsobla
k in y (if we agree that xs = +1 means that the 
olour of pixel s is bla
k).The order ideals are of the form fx 2 X : x � yg.De�nition 2 Let (X;�) be a �nite partially ordered set, and let � and � beprobability distributions on X. Then � � � in sto
hasti
 order, if and only if�(I) � �(I) for ea
h order ideal I.Example 8 Let � and � be distributions on R with 
umulative distributionfun
tions F� and F�, respe
tively. Then � � � if and only if �((�1; u℄) ��((�1; u℄) if and only if F�(u) � F�(u) for every u 2 R. This means that`the mass of � is more on the left than the mass of �'. For Dira
 distributions"u � "v if and only if u � v.The natural extension to Markov kernels readsDe�nition 3 We 
all a Markov kernel P on a partially ordered spa
e (X;�)sto
hasti
ally monotone, if and only if P (x; �) � P (y; �) whenever x � y.In Example 5 we 
onstru
ted transition rules f for homogeneous Markov
hains, or rather Markov kernels P . A transition rule is 
alled monotone iff(x; u) � f(y; u) for ea
h u whenever x � y. Plainly, a monotone transitionrule indu
es a monotone Markov kernel. Conversely, a monotone kernel is notne
essarily indu
ed by a monotone transition rule, even in very simple situations.D.A. Ross (1993), see [3℄, p. 2., gives a simple 
ounterexample:Example 9 Consider the spa
e X = fu; v; a; bg and let u � a; b, and a; b � v.De�ne a Markov kernel P by��� ��������� ss s svua b P (u; u)= 1=2 =P (u; a); P (a; u)= 1=2 =P (a; v)P (b; a)= 1=2 =P (b; b) ; P (v; a)= 1=2 =P (v; v)The order ideals are ;, fug, fa; ug, fb; ug and X, andit is readily 
he
ked that P is monotone. Suppose nowthat there are random variables with �u � �a, �b � �valmost surely and with laws P (u; �), P (a; �), P (b; �), and P (v; �), respe
tively.We shall argue thatP��u = a�=P��u = a; �a = v; �b = a; �v = v�=1=2P��b = b�= P��u = u; �b = b; �v = v� =1=2 :14



The two events are disjoint and hen
e P(�v = v) = 1 in 
ontradi
tion to P(�v =v) = 1=2. We �nally indi
ate how for example the �rst identity 
an be veri�ed:Sin
e �u � �a one has P(�u = a) = P(�u = a; �a 2 fa; vg). Sin
e P(�a = a) = 0,we 
on
lude P(�u = a) = P(�u = a; �a = v). Now repeat this argument twotimes.Suppose now that the partially ordered spa
e (X;�) 
ontains aminimal elementu and a maximal element v, i.e. u � x � v for every x 2 X . Suppose furtherthat the sto
hasti
 
ow is indu
ed by a monotone transition rule, i.e. 'i(x) =f(x; Ui) and f(x; u) � f(y; u) if x � y. Then'nm(u) � 'nm(x) � 'nm(v) for every x 2 X; m � n;and '0m(x) = w, m � 0, for ea
h x 2 X, as soon as '0m(u) = w = '0m(v). Theprevious �ndings 
an be turned into pra
ti
able algorithms.Proposition 2 Suppose that P is monotone and (X;�) has a minimum u andmaximum v. Then 
oales
en
e for u and v enfor
es 
omplete 
oales
en
e.4 Random Fields and the Ising ModelRandom �elds serve as 
exible models in image analysis and spatial statisti
s.In parti
ular, any full probabilisti
 model of textures with random 
u
tuationsne
essarily is a random �eld. Re
ursive (auto-asso
iative) neural networks 
anbe reinterpreted in this framework as well, 
f. e.g. G. Winkler (1995). Tounderstand the phenomenology of these models, sampling from their Gibbs dis-tribution provides an important tool. In the sequel we want to show how the
on
epts developed above serve to establish exa
t sampling from the Gibbs dis-tribution of a well known random �eld { the Ising model.Let a pattern or 
on�guration be represented by an array x = (xs)s2S of`intensities' xs 2 Gs in `pixels' or `sites' s 2 S with �nite sets Gs and S. Smight be a �nite square grid or - in 
ase of neural networks - an undire
ted�nite graph. A (�nite) random �eld is a stri
tly positive probability measure� on the spa
e X =Qs2S Gs of all 
on�gurations x. Taking logarithms showsthat � is of the Gibbsian form�(x) = Z�1 exp(�K(x)); Z =Xz exp(�K(z)); (11)with a fun
tion K on X. It is 
alled a Gibbs �elds with energy fun
tion K andpartition fun
tion Z. These names remind of their roots in statisti
al physi
s.For 
onvenien
e we restri
t ourselves to the Gibbs sampler with randomvisiting s
heme. Otherwise we had slightly to modify the setup of Se
tion 2.Let prt be the proje
tion X! Gt; x 7! xt. For a Gibbs �eld � let��ys ��xt; t 6= s� = ��prs = ys �� prt = xt; t 6= s� (12)15



denote the single-site 
onditional probabilities. The Gibbs sampler with randomvisiting s
heme �rst pi
ks a site s 2 S at random from a probability distributionD on S, and then pi
ks an intensity at random from the 
onditional distribution(12) on Gs. Given a 
on�guration x = (xt) this results in a new 
on�gurationy = (yt) whi
h equals x everywhere ex
ept possibly at site s. The pro
edureis repeated with the new 
on�guration y, and so on and so on. This de�nes ahomogeneous Markov 
hain on X with Markov kernelP (x; y) =Xs2SD(s)�fsg(x; y); x; y 2 X; (13)where �fsg(x; y) = ��ys ��xt; t 6= s� if x and y are equal o� s and �fsg(x; y) = 0otherwise. These transition probabilities �fsg are 
alled the lo
al 
hara
teris-ti
s. D is 
alled the proposal or exploration distribution.We assume that D is stri
tly positive; frequently it is the uniform distri-bution on S. Then P is primitive sin
e P jSj is stri
tly positive. In fa
t, inea
h step ea
h site and ea
h intensity in the site has positive probability to be
hosen, and thus ea
h y 
an be rea
hed from ea
h x in jSj steps with positiveprobability. It is easily 
he
ked - verifying the detailed balan
e equations - that� is the invariant distribution of P , and thus the invariant distribution of thehomogeneous Markov 
hain generated by P .Example 10 (The Ising model) Let us give an example for exa
t samplingby way of the Ising model. The ferromagneti
 Ising model with magneti
 �eldh := (hs)s2S is a binary random �eld with Gs = f�1; 1g and energy fun
tionK(x) = �Xs�t xsxt �Xs hsxs;where � > 0, hs 2 R and s � t indi
ates that s and t are neighbours. Forthe random visiting s
heme in (13) the Markov 
hain is homogeneous and �tsperfe
tly into the setting of Se
tion 2. The formula from [13℄, Proposition 3.2.1(see also [13℄, Example 3.1.1) for the lo
al 
hara
teristi
s boils down top+(x) = ��Xs = 1 ��Xt = xt; t 6= s� = �1 + exp �� 2�Xt�s xt � hs���1:This probability in
reases with the set ft 2 S : xt = 1g. Hen
e p+(y) � p+(x)if x � y in the 
omponent-wise partial order introdu
ed in Example 6. Theupdates x0 and y0 preserve all the bla
k sites o� s, and possibly 
reate anadditional bla
k one at s. We 
on
lude that P from (13) is monotone and ful�llsthe hypotheses of Proposition 2. Hen
e for 
omplete 
oales
en
e one only has to
he
k whether the 
ompletely bla
k and the 
ompletely white patterns 
oales
e.For transition rules like in Example 5 the Condition (C) on page 9 is also ful�lledand 
oupling from the past works. 16



5 Con
lusionThe authors are not aware of other mathemati
al �elds, where so many insuÆ-
ient arguments, ranging from in
omplete or misleading, to 
ompletely wrong,have been published (mainly in the Internet). In parti
ular, Condition (C) ora substitute for it, are missing in a lot of presently available texts. A rigoroustreatment is S.G. Foss and R.L. Tweedie (1998). These authors do notuse iterated random maps. These are exploited systemati
ally in P. Dia
onisand D. Freedman (1999). J.A. Fill (1998) introdu
es `interruptible' perfe
tsampling based on a

eptan
e/reje
tion sampling. Meanwhile there is a body ofpapers on exa
t sampling. On the other hand, the �eld still is in the state of 
uxand hen
e it does not make sense to give further referen
es; a ri
h and up to datesour
e is the home-page of D.B. Wilson, http://www.dbwilson.
om/exa
t/.The 
onne
tion between transition probabilities and random maps was 
lari�edin H.v. Weizs�a
ker (1974).A
knowledgement: We thank H.v. Weizs�a
ker, Kaiserslautern, for help-ful dis
ussions during the initial phase of the work.Referen
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