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An Elementary Rigorous Introdutionto Exat SamplingF. Friedrih G. Winkler O. WittihV. LiebsherInstitute of Biomathematis and BiometryGSF - National Researh Center for Environment and Health,Postfah 1129, D-85758 Obershlei�heim, Germany,{friedrih,gwinkler,wittih,liebsher}�gsf.de,http://www.gsf.de/institute/ibb/AbstratWe introdue oupling from the past, a reently developed methodfor exat sampling from a given distribution. Fous is on rigour andthorough proofs. We stay on an elementary level whih requires little or noprior knowledge from probability theory. This should �ll an obvious gapbetween innumerable intuitive and inomplete reviews, and few preisederivations on an abstrat level.1 IntrodutionWe introdue a reently developed method for exat sampling from a givendistribution. It is alled oupling from the past. This is in ontrast to Markovhain Monte Carlo samplers like the Gibbs sampler or the family of Metropolis-Hastings samplers whih return samples from a distribution approximating thetarget distribution. The drawbak is that MCMC methods apply generally andexat sampling works in speial ases only. On the other hand, it is the objet ofurrent researh and the list of possible appliations inreases rapidly. Anotheradvantage is that problems like burn in and onvergene diagnostis do notarise where exat sampling works. Exat sampling was proposed in the seminalpaper J.G. Propp and D.B. Wilson (1996). Whereas these authors alledthe method exat sampling, some prefer the term perfet sampling sine randomsampling never is exat. For bakground in Markov hains and sampling, andfor examples, we refer to G. Winkler (1995, 2003).The aim of the present paper is a rigorous derivation and a thorough analysisat an elementary level. Nothing is really new; the paper onsists of a ombi-nation of ideas, examples, and tehniques from various reent papers, basiallyalong the lines in F. Friedrih (2003). Hopefully, we an single out the basi1



onditions under whih the method works theoretially, and what has to beadded for a pratiable implementation.Coupling from the past is losely related to Markov Chain Monte Carlosampling (MCMC), whih nowadays is a widespread and ommonly aeptedstatistial tool, espeially in Bayesian statistial analysis. Hene we premisethe disussion of oupling to the past with some remarks on Markov ChainMonte Carlo sampling. Let us �rst introdue the general framework whihsimultaneously gives us the basis for oupling from the past. For bakgroundand a detailed disussion see G. Winkler (1995), [13℄.Let X be a �nite set of generi elements x; y; : : : . A probability distribution� on X is a funtion on X taking values in the unit interval [0; 1℄ suh thatPx2X �(x) = 1. A Markov kernel or transition probability on X is a funtionP : X � X ! [0; 1℄ suh that for eah x 2 X the funtion P (x; � ) : X ![0; 1℄; y 7! P (x; y) is a probability distribution on X. A probability distribution� on X an be interpreted as a row vetor (�(x))x2X and a Markov kernel P as astohasti matrix (P (x; y))x;y2X. A right Markov hain with initial distribution� and transition probability P is a sequene (�i)i�0 of random variables thelaw of whih is determined by � and P via the �nite-dimensional marginaldistributions given byP��0 = x0; �1 = x1; : : : ; �n = xn� = ��x0�P �x0; x1� � � � � � P �xn�1; xn�:P is alled primitive if there is a natural number � suh that P � (x; y) > 0 forall x; y 2 X. This means that the � -step probability from state x to state y isstritly positive for arbitrary x and y. If P is primitive then there is a uniqueprobability distribution � whih is invariant w.r.t. P , i.e. �P = � where �Pis the matrix produt of the (left) row vetor � and the matrix P , and thisinvariant probability distribution � is stritly positive.The laws or distributions of the variables �n of suh a proess onverge tothe invariant distribution, i.e.�P � � � � � P (y) �! �(y); y 2 X; (1)f. [13℄, Theorem 4.3.1. Perhaps the most important statistial features to beestimated are expetation values of funtions on the state spaeX, and the mostommon estimators are empirial means. Fortunately, suh stohasti proessesful�ll the law of large numbers, whih in its most elementary version reads: Foreah funtion f on X, the empirial means along time onverge in probability(and in L2) to the expetation of f with respet to the invariant distribution;in formulae this reads1n n�1Xi=0 f(�i) �! E (f ;�) as n!1; in probability; (2)(f. [13℄, Theorem 4.3.2). The symbol E (f ;�) denotes the expetationE�f ;�� = Xx2X f(x)�(x)2



of f with respet to �. A sequene of random variables �i onverges to therandom variable � in probability if for eah " > 0 the probability P(j�i � �j > ")tends to 0 as n tends to1. Plainly, (2) implies that for every natural numberm,averaging may be started fromm without destroying onvergene in probability;more preisely for eah m � 0 one has1n�m nXi=m+1 f(�i) �! E (f ;�) as n!1; in probability: (3)In view of the law of large numbers for identially distributed and independentvariables, the step number m should be large enough suh that the distributionsof the variables �m+1; : : : ; �n are lose to the invariant distribution � in orderto estimate the expetation of f with respet to � properly from the samplesf(�m+1); : : : ; f(�n).In fat, aording to (1), after some time m the laws of the �i should belose to the invariant distribution � although they may be far from � duringthe initial period. The values during this burn in period are usually disardedand an average (Pnm+1 f(�i))=(n �m) like in (3) is omputed. In general, theburn in time an hardly be determined. There are a lot of suggestions rangingfrom visual inspetion of the time series (f(�i))i�0 to more formal tools, alledonvergene diagnostis . In this text we are not onerned with burn in andrestrit ourselves to the illustration in Fig. 1. A Gibbs sampler (introdued inSetion 4) for the Ising model is started with a pepper and salt on�guration inthe left piture. A typial sample of the invariant distribution is the right onewhih appears after about 8000 steps. The pitures in-between show intermedi-ate on�gurations whih are pretty improbable given the invariant distributionbut whih are quite stable with respet to the Gibbs sampler. In physial terms,the right middle on�guration is lose to a `meta-stable' state. Sine we are in-terested in a typial on�guration of the invariant distribution �, we shouldonsider the burn in to be ompleted if the sample from the Markov hain lookslike the right hand side of Fig. 1, i.e. after about 8000 steps of the Gibbs sam-pler. The urve in the next �gure Fig. 2 displays the relative frequeny of
Figure 1: Con�gurations for Ising Gibbs Sampler with � = 0:8 starting ina pepper and salt-on�guration (left), after 150 steps (left middle), after 350steps (right middle) and after 8000 steps (right).equal neighbour pairs. Super�ial visual inspetion of this plot suggests thatthe sampler should be in equilibrium after about 300 steps. On the other hand,3



omparison with Fig. 1 reveals that the slight asent at about 7800 steps pre-sumably is muh more relevant for the deision whether burn is ompleted ornot. This indiates that primitive diagnosti tools may be misleading. The in-terested reader is referred to the referenes in [7; 6; 10℄, seeW.R. Gilks et al.(1996b). If initial samples from � itself are available, then there is no need for

Figure 2: Convergene Diagnostis for Ising Gibbs Samplera burn in, and one an average from the beginning. This is one of the mostvaluable advantages of exat sampling.First, we indiate how a Markov hain an be simulated.Example 1 (Simulating a Markov hain) We denote by P the transitionprobability of a homogeneous Markov hain. At eah time n � 1, given theprevious state xn�1, we want to piku
y1y2y3 y1 y2 y3y1 y2 y3y1 y2 y3 a state xn at random from P (xn�1; �).For eah x, we partition the unit interval(0; 1℄ into intervals Ixy of length P (x; y),and pik un uniformly at random from(0; 1℄. Given the present state xn�1, wesearh for the state y with un 2 Ixn�1yand set xn = y. The piture on the left illustrates this proedure for jX j = 3,where xn = y2 if xn�1 was y1 or y2 and xn = y3 if xn�1 = y3. In general, theproedure an be rephrased as follows: De�ne a transition rule for P byf : X� (0; 1℄ �! X; f(x; u) = y if and only if u 2 Ixy :More expliitly, enumerate X = fy1; : : : ; yNg and set f(x; u) = F�x (u) whereFx(u) = P (x; fyi : i � ug) is the umulative distribution funtion of P (x; �)and F�x (u) = minft : Fx(t) � ug its generalized inverse. Let U1; U2; : : : beindependent random variables uniformly distributed over (0; 1℄, and set �0 :=x0, and �n := f(�n�1; Un). Then (�n)n�0 is a homogeneous Markov hainstarting at x0 with transition probability P . For inhomogeneous hains, replae4



f by fn varying in time. Note that the exlusive soure of randomness are theindependent random variables Ui.2 Exat SamplingThe basi idea of oupling from the past is losely related to the law of largenumbers (2). Aording to (1), for primitive P with invariant distribution � theorresponding Markov hain onverges to �; more preisely�Pn �! �; as n!1; (4)uniformly in all initial distributions �, and with respet to any norm on RX .Generalizing the onept of right Markov hains, let us onsider now two-sided Markov hains with transition probabilities given by a Markov kernel P ,i.e. double sequenes (�i)i2Z of random variables taking values in X, and withlaw determined by the marginal distributionsP��m = xm; : : : ; �n = xn� = �m�xm�P �xm; xm+1� � � � � � P �xn�1; xn�; (5)for m;n 2 Z, n > m, where �k denotes the law of �k .If P is primitive, or more generally, if (4) holds uniformly, these two-sidedhains are automatially stationary. This important onept means that a timeshift does not hange the law of the hain; in terms of the marginal distributionsthis readsP��m = xm; : : : ; �n = xn� = P��m+� = xm; : : : ; �n+� = xn� (6)for all m 2 Z and � 2 Z, and in partiular, that all �m in (5) are equal to �.In fat, beause of (5) one has �0 = ��kP k for all k 2 N. By uniformity in (4),this implies �0 = � and hene in view of (5) the proess (�i)i2Z is stationary.At a �rst glane, this does not seem to be helpful sine we annot simulatethe two-sided hain starting at time �1. On the other hand, if we want tostart sampling at some (large negative) time n, there is no distinguished stateto start in, sine stationarity of the hain implies that the initial state neessarilyis already distributed aording to �. The main idea to overome this problemis to start hains simultaneously at all states in X and at eah time. Thismeans that a lot of Markov hains are oupled together. The oupling willbe onstruted in suh a fashion that if two of the hains happen to be inthe same state in X at some (random) time, they will afterwards follow thesame trajetory forever. This phenomenon is alled oalesene of trajetories.Our de�nite aim is to ouple the hains in a ooperative way suh that after alarge time it is very likely that any two of the hains have met eah other attime 0. Then, at time 0, all hains started simultaneously at suÆiently largenegative time have oalesed, and therefore their ommon state at time 0 doesnot dependent on the starting points in the far past anymore. We will showthat after omplete oalesene the unique random state at time 0 is distributedaording to the invariant distribution �.5



To make this preise we onsider the following setup: Let X be a �nitespae and let � be a stritly positive probability distribution on X. The aim isto realize a random variable whih exatly has law �, or - in other words - tosample from �. Sine Markov hains have to be started at eah time k < 0 andat eah state x 2 X simultaneously, a formal framework is needed into whih allthese proesses an be embedded. The appropriate onept is that of iteratedrandom maps or stohasti ows, systematially exploited in P. Diaonis andD. Freedman (1999).Let � be the stritly positive distribution on X from whih we want tosample and let P be a Markov kernel on X for whih � is the unique invariantdistribution. Let � be the set of all maps from X to itself:� = f' : X �! Xg = XX = Map(X;X):On this spae we onsider distributions p reeting the ation of P on X inthe sense that the p-probability that some point x is mapped by the randomfuntion ' to some y is given by P (x; y). This onnetion between p and P isformalized by the ondition(P) p �f' : '(x) = yg� = P (x; y); x; y 2 X:Example 2 Suh a distribution does always exist. A synhronous one is givenby q(') = Qx2X P (x; '(x)). It is a probability distribution sine it an bewritten as a produt of the distributions P (x; �). It also ful�lls Condition (P):Let �0 be the set of all maps from Xnfxg to X. Thenq�' : '(x) = y�= Xf':'(x)=ygYz2XP (z; '(z)) = P (x; y) X'2�0 Yz 6=xP (z; '(z)) = P (x; y);the sum over �0 equals 1 sine the summands again de�ne a produt measure.Sine we want to mimi Markov proesses, we need measures on sets of paths,and sine we will proeed from time �1 to �nite times we introdue measureson the set 
 = �Z with one-dimensional marginal measures p. The simplesthoie are produt measures P = pZ. The spae 
 = �Z onsists of doublesequenes ' = ('j)j2Z= (: : : ; '�1; '0; '1; : : :) 2 Map(X;X)Z:If J is a �nite subset of Z then for eah hoie  j , j 2 J , we haveP�f' 2 
 : 'j =  j ; j 2 Jg� = Yj2J p( j):Given a double sequene ' of maps 'j , j 2 Z, we onsider ompositions of theomponents 'j over time intervals. For eah ' 2 
 and x 2 X, set'kj (x) = 'k Æ � � � Æ 'j(x) = 'k�'k�1� � � � ('j(x)��; j � k:Note that 'ii = 'i. 6



Remark Given Condition (P), for eah n 2 Z and x 2 X, the proess �n � x,�n+k = 'n+kn+1(x), k � 1, is a Markov hain starting at x and with transitionprobability P . Hene the stohasti ow is a ommon representation of Markovhains starting at all initial states and at all times; we shall say that they areoupled from the past.Coupling from the past at time n will work as follows: Pik a double sequene: : : ; 'm; : : : ; 'n; : : :of maps at random, and �x a number n 2 Z. Then derease m until 'nm(x) = whopefully does not depend on x anymore. If we are suessful and this happensthen we say that all trajetories'm(x); 'm+1 Æ 'm(x); : : : ; 'nm(x); x 2 X;have oalesed. We shall also say that for ' there is omplete oalesene attime n. This works if suÆiently many of the 'j map di�erent elements xto the same image. Going further bakwards does not hange anything sine'nm�k(x) = 'nm('m�1m�k(x)) = w holds as well for all x. This may be rephrased interms of sets as follows: Let ' : X ! X be a map and Im' = f'(x) : x 2 Xgthe image of X under '. For �xed n the sets Im'nm derease as m dereases.Complete oalesene means that Im'nm is a singleton fwg. Then there is aunique Wn(') 2 X with fWn(')g := \m�n Im'nm: (7)If there is no oalesene then Wn(') is not de�ned. Let us setFn = f' :Wn(') existsg; F = \n2ZFn:Then all Wn are well de�ned on F ; to omplete the de�nition let Wn(') = z0for some �xed z0 2 X if ' =2 F . Obviously, independent of the hoie of x 2 X,Wn+k(') = limm!�1'n+km (x) = 'n+kn+1 Æ limm!�1'nm(x) (8)= 'n+kn+1 ÆWn('); ' 2 F; n 2 Z; k > 0:This indiates that the random variables Wn(') have law �. To exploit thisobservation for a sampling algorithm we need almost sure omplete oalesenein �nite time. We enfore this by the formal ondition(F) P(F ) = 1.Provided that (F) holds, we all P suessful. Condition (F) will be veri�edbelow under natural onditions. 7



Lemma 1 Under the hypothesis (P) and (F) the proess (Wm)m2Z is a station-ary homogeneous Markov proess with Markov kernel P .Proof. Reall that P is a homogeneous produt measure, and hene for eah� 2 Z all random sequenes 'm; : : : ; 'm+� , m 2 Z, have the same law. Henethe stohasti ow is stationary, and the proess (Wm)m2Z is stationary as well.Moreover, 'n+kn+1 depends on 'n+1; : : : ; 'n+k only and eahWm depends only on: : : ; 'm�1; 'm. Again, sine P = pZ is a produt measure, the variables 'n+kn+1and Wm, m � n, are independent. By (8) and (P),P�Wn+1 = xn+1;Wn = xn; : : : ;Wn�k = xn�k�= P�'n+1n+1(xn) = xn+1;Wn = xn; : : : ;Wn�k = xn�k�= P�'n+1(xn) = xn+1�P�Wn = xn; : : : ;Wn�k = xn�k�= P �xn; xn+1�P�Wn = xn; : : : ;Wn�k = xn�k�;whih showsP�Wn+1 = xn+1��Wn = xn; : : : ;Wn�k = xn�k) = P (xn; xn+1�:Hene P is the transition probability of the proess (Wm)m2Z. �Let us put things together in the �rst main theorem.Theorem 1 (Exat Sampling) Suppose that � is a stritly positive proba-bility distribution and P a primitive Markov kernel on X suh that �P = �.Assume further that p �f' : '(x) = yg� = P (x; y) for all x; y 2 X, and that Pis suessful. Then eah random variable Wn has law �; more preisely:P ��' 2 
 :Wn(') = x	� = �(x); x 2 X: (9)Proof. By stationarity from Lemma 1, all one-dimensional marginal distribu-tions oinide, and P is the transition probability of (Wn)n2Z. If P is primitivethen by [13℄, Theorem 4.3.1, its unique invariant distribution is �. �To sample from �, only one of the Wm is needed.Corollary Under the assumptions of Theorem 1, the random variable W0 haslaw �.The next natural question onerns the waiting time for omplete oaleseneat time zero. The random times Tn of latest oalesene before n are given byTn(') = supfm � n : there is w 2 X suh that 'nm(x) = w for every x 2 Xg:The numbers Tn(') de�nitely are �nite if ' 2 F ; outside F they may be �niteor equal �1. Condition (F) is equivalent toP��' 2 
 : Tn(') > �1	� = 1 for every n 2 Z: (10)8



Suh a random time is also alled suessful. To realize W0 one subsequentlyand independently piks maps '0; '�1; : : : ; 'm until there is oalesene say inw 2 X. This element w is a sample from �. For omputational reasons, oneusually goes bak in time by powers of 2. Clearly, hoosing k0(') suh that�2k0(') � Tn(') assures oalesene at time 0. Reall that suh a k0(') existsfor eah ' 2 F . An example of a stohasti ow oalesing ompletely at timem = 0 is shown in Fig. 3. We are going now to disuss a ondition for (F) to

Figure 3: Latest omplete oalesene time before time 0hold. Pairwise oalesene with positive probability is perhaps the most naturalondition and easy to hek:(C) For eah pair x; y 2 X there is an integer n(x; y) suh thatp n(x;y)��('1; : : : ; 'n(x;y)) 2 �n(x;y) : 'n(x;y)1 (x) = 'n(x;y)1 (y)	� > 0:We shall show in Theorem 2 below that (C) and (F) are equivalent. We givenow a simple example where oupling fails.Example 3 Consider P with invariant � on X = f1; 2g given byP = � 1=2 1=21=2 1=2 � ; � = �1=2; 1=2�:Let p(�) = 1=2 = p( ) for the identity map �(1) = 1, �(2) = 2, and the ipmap  (1) = 2,  (2) = 1. Compositions of � and  never will ouple. On theother hand the ow is assoiated to P sine p(f' : '(x) = yg) = 1=2 = P (x; y),regardless of x and y, and Condition (P) holds.We shall show now that the oupling ondition (C) implies omplete oalesene(F) (and the onverse). The latter ondition may be rephrased as follows: All9



random times Tn are �nite almost surely. By stationarity this boils down to:The random time T0 is �nite almost surely. The simplest, but fairly abstratway to verify (F) is to use shift invariane of F and ergodiity of P. We willargue along these lines but in a more expliit and elementary way. The �rststep is to ensure existene of a �nite � suh that the ow oaleses ompletelyin less than � steps with positive probability.Lemma 2 Under ondition (C) there is a natural number � suh thatP�f' : T0(') > ��g� > 0:Proof. Let n = maxfn(x; y) : x; y 2 Xg. If 'n1 (x) = 'n1 (y) for some n < nthen 'n1 (x) = 'nn+1 Æ 'n1 (x) = 'n1 (y) as well. Hene Condition (C) impliesq = minnpn�('1; : : : ; 'n) : 'n1 (x) = 'n1 (y)	 : x; y 2 Xo > 0:Therefore jX j > jIm'n1 j at least with probability q > 0 if jX j � 2. Similarly,jIm'n1 j > jIm'2n1 j with probability at least q2 if the left set is no single-ton. This holds beause '2n1 = '2nn+1 Æ 'n1 and the variables '1; : : : ; 'n and'n+1; : : : ; '2n are independent and identially distributed. By indution,��X �� > ��Im'n1 �� > ��Im'2n1 �� > � � � > ��Im'kn1 ��at least with probability qk until the last ardinality beomes 1; this happensafter at most jX j � 1 steps. Let � = (jX j � 1)n � 1. Nothing hanges if werenumber the maps as '�� ; : : : ; '0, m < 0: Hene P(fjIm'0�� j = 1g) � q� andthe lemma is proved. �The next step is a sub-multipliativity property of probabilities for oalesenetimes.Lemma 3 Let n;m < 0 be negative integers. ThenP�T0 � m+ n� � P�T0 � m�P�Tm � m+ n� = P�T0 � m�P�T0 � n�:Proof. Suppose that T0(') � m+ n. This holds if and only if Im'0m+n+1 hasmore than one element. Then both, Im'0m+1 and Im'mm+n+1, have more thanone element. HeneP�' : T0(') � m+ n� � P�' : T0(') � m and Tm(') � m+ n�:To hek whether T0(') � m holds true it is suÆient to know the maps'm+1; : : : ; '0, and similarly, to hek Tm(') � n + m only 'm+n+1; : : : ; 'mare needed. Hene the respetive sets are independent and the inequality holds.The remaining identity follows from stationarity. �In ombination with Theorem 1, the next result ompletes the derivation ofexat sampling. 10



Theorem 2 The Conditions (F) and (C) are equivalent. In partiular, theproess governed by P is suessful under (C), and almost sure oalesene inTheorem 1 is assured.Proof. Suppose that (C) holds. By Lemma 2, we have P�T0 > ��� > 0 andLemma 3 impliesP�T0 � �n�� � P�T0 � ���n = �1� P�T0 > ����n �! 0 as n!1:By stationarity, this implies (F). Conversely, suppose that (F) holds, i.e. thatP(F ) = 1. Sine F is the intersetion of the setsFn = �' : there is m � n suh that jIm'nmj = 1	eah of these sets has full measure 1 as well. Fix n now. Plainly, the setsFnm = �' : jIm'nmj = 1	inrease to Fn as m dereases to �1. Hene there is m < n suh that P(Fnm) >0. Choose now x 6= y in X. Sine 'm�n+11 and 'nm are equal in law, for� = n�m+ 1 one hasp���'1; : : : ; '�	 : '�1(x) = '�1(y)� = P�' : 'nm(x) = 'nm(y)� � P�Fnm� > 0;and (C) holds. �This shows that any derivation of oupling from the past whih does not expli-itly or impliitly use a hypothesis like (C) or a suitable substitute is neessarilyinomplete or inorret.Remark It is tempting to transfer the same idea to `oupling to the future'.Unfortunately, starting at zero and returning the �rst state of omplete oales-ene after zero, in general does not give a sample from �.The reader may want to hek the following simple example from [5℄.Example 4 Let X = f1; 2g. Positive transition probabilities P and their in-variant distributions � have the formP := � 1� � �� 1� � �; 0 < �; � < 1; � = � ��+ �; ��+ ��:Start two independent hains � and � with transition probability P at time 0from 1 and 2, respetively. The time of �rst oalesene in the future isT := minfm 2 N : �m = �mg:Denote the ommon law of �T and �T by %. We will shortly verify that % = � ifand only if � = �. Compute �rstP��n = �n = 1; �m 6= �m; m < n�= �(1� �) nXk=0 �nk��(1� �)(1� �)�k����n�k= �(1� �)�(1� �)(1� �) + ���n = �(1� �)�1� (�+ �� 2��)�n11



and %(1) = �(1� �) 1Xn=0 �1� (�+ �� 2��)�n = �(1� �)�(1� �) + �(1� �) :Hene % = � �(1� �)�(1� �) + �(1� �) ; �(1� �)�(1� �) + �(1� �)� :This is the invariant distribution � if and only if � = �.The representation of Markov hains by stohasti ows is losely onnetedto the atual implementation of oupling from the past. Extending previousnotation, a transition rule will be a map f : X � � ! X, with some set � tobe spei�ed. Let now Vi, i 2 Z, be independent identially distributed randomvariables taking values in �. Then 'i = f(�; Vi), i 2 Z, is a stohasti ow. If,moreover, P(f(x; Vi) = y) = P (x; y) then the ow ful�lls Condition (P). Theremaining problem is to onstrut a transition rule suh that the assoiated owful�lls Condition (C) too.Example 5 Reall from Example 1 how a Markov hain was realized there. Letagain f(x; u) be a deterministi transition rule taking values in X, suh thatfor a random variable U with uniform distribution on � = [0; 1℄ the variablef(x; U) has law P (x; �). This way we - theoretially - may for an m � 0 realizeall values '0m(x), x 2 X, and hek oalesene. If we go bak k more stepsin time we need all '0m Æ 'm�1m�k(x). Sine the maps '0; : : : ; 'm are kept, wemust work with the same random numbers u0; : : : ; um, i.e. realizations of theU0; : : : ; Um, as in the preeding run, and only independently generate additionalrandom numbers um�1; : : : ; um�k. For this speial oupling there is ompleteoalesene at time 0 in �nite time. The strength of oupling depends on thespeial form of f whih in turn depends on the onrete implementation.In Example 1, for eah x 2 X , we partitioned [0; 1℄ into intervals Ixy of lengthP (x; y) and in step n took that y with Un 2 Ixy . The intervals Ixy� with left end at0 have an intersetion Iy� of length at least minx;y P (x; y). This simultaneouslyis the probability that U falls into Iy�U
x1x2x3 x1 x2 x3x1 x2 x3x1 x2 x3 and all states oalese in y� in one singlestep, irrespetive of x. We may improveoupling by a lever arrangement of theintervals. If we put the intervals Ixy� forwhih minfjIxy� j : x 2 Xjg is maximal,to the left end of [0; 1℄ then we get thelower bound maxyminx P (x; y) for the oalesene probability. We an improveoupling even further, splitting the intervals into piees of length minfjIxy j : x 2Xg and their rest, and arrange the equal piees on the left of [0; 1℄. This givesa bound Pyminx P (x; y).Note that although all these proedures realize the same Markov kernel P theyorrespond to di�erent transition rules, to di�erent stohasti ows, and todi�erent ouplings. Apart from all these modi�ations, we an summarize:12



Proposition 1 Suppose that P > 0. Then all stohasti ows 'i = f(�; Ui)from the present Example 5 ful�ll Condition (C).Note that the distribution of all these random maps de�nitely is not the syn-hronous one from Example 2. For this distribution, set � = [0; 1℄jXj, useindependent opies Uzk , z 2 X, of Uk, and let 'k(x) = f(x; (Uzk )z2X) = g(x; Uxk )for g on X � [0; 1℄ onstruted like above. Condition (C) is obviously ful�lledand oupling from the past works also for this method.Remark In Example 5 we found several lower bounds for the probability thatstates oalese in one step. An upper bound is given byP�'(x) = '(y)� =Xz P�'(x) = z; '(y) = z�� Xz P�'(x) = z� ^ P('(y) = z) =Xz P (x; z) ^ P (y; z):This is losely related to Dobrushin's ontration tehnique, whih in the �nitease is based on Dobrushin's ontration oeÆient (P ) = 1 �Pz P (x; z) ^P (y; z), f. [13℄, Chapter 4. The relation isP�'(x) = '(y)� � 1� (P ):This upper bound is not sharp.3 MonotoniityCheking diretly whether there is omplete oalesene at time 0 starting atmore and more remote past times and at all possible states is time onsuming,and even impossible if the state spae is large (as it is in the appliations wehave in mind). If oalesene of very few states enfores oalesene of all otherstates then the proedure beomes feasible. One of the onepts to make thispreise is monotoniity . We are now going to introdue this onept on anelementary level.De�nition 1 A partial order on a set X is a relation x � y between elementsx; y 2 X with the two properties(i) x � x for eah x 2 X (reexivity)(ii) x � y and y � z implies x � z (transitivity).Reall that a total order requires the additional ondition that any two elementsx; y 2 X are omparable, i.e x � y or y � x.Example 6 (a) The usual relation x � y on R is a total order . In the omponent-wise order on Rd , (x1; : : : ; xd) � (y1; : : : ; yd) if and only if xi � yi for eah i. Itis a partial but no total order sine elements like (0; 1) and (1,0) are not related.13



(b) If X = f�1gS, then in the omponent-wise order from (a), the onstanton�gurations b � 1 and w � �1 are maximal and minimal, respetively, i.e.x � b and w � x for every x 2 X. This will be exploited in exat sampling forthe Ising �eld in Setion 4.Next we want to lift partial orderings to the level of probability distributions.Call a subset I of X an order ideal if x 2 I and y � x imply y 2 I .Example 7 (a) The order ideals in R with the usual order are the rays (�1; u℄and (�1; u), u 2 R.(b) In the binary setting of Example 6(b), x � y if eah blak pixel of x is alsoblak in y (if we agree that xs = +1 means that the olour of pixel s is blak).The order ideals are of the form fx 2 X : x � yg.De�nition 2 Let (X;�) be a �nite partially ordered set, and let � and � beprobability distributions on X. Then � � � in stohasti order, if and only if�(I) � �(I) for eah order ideal I.Example 8 Let � and � be distributions on R with umulative distributionfuntions F� and F�, respetively. Then � � � if and only if �((�1; u℄) ��((�1; u℄) if and only if F�(u) � F�(u) for every u 2 R. This means that`the mass of � is more on the left than the mass of �'. For Dira distributions"u � "v if and only if u � v.The natural extension to Markov kernels readsDe�nition 3 We all a Markov kernel P on a partially ordered spae (X;�)stohastially monotone, if and only if P (x; �) � P (y; �) whenever x � y.In Example 5 we onstruted transition rules f for homogeneous Markovhains, or rather Markov kernels P . A transition rule is alled monotone iff(x; u) � f(y; u) for eah u whenever x � y. Plainly, a monotone transitionrule indues a monotone Markov kernel. Conversely, a monotone kernel is notneessarily indued by a monotone transition rule, even in very simple situations.D.A. Ross (1993), see [3℄, p. 2., gives a simple ounterexample:Example 9 Consider the spae X = fu; v; a; bg and let u � a; b, and a; b � v.De�ne a Markov kernel P by��� ��������� ss s svua b P (u; u)= 1=2 =P (u; a); P (a; u)= 1=2 =P (a; v)P (b; a)= 1=2 =P (b; b) ; P (v; a)= 1=2 =P (v; v)The order ideals are ;, fug, fa; ug, fb; ug and X, andit is readily heked that P is monotone. Suppose nowthat there are random variables with �u � �a, �b � �valmost surely and with laws P (u; �), P (a; �), P (b; �), and P (v; �), respetively.We shall argue thatP��u = a�=P��u = a; �a = v; �b = a; �v = v�=1=2P��b = b�= P��u = u; �b = b; �v = v� =1=2 :14



The two events are disjoint and hene P(�v = v) = 1 in ontradition to P(�v =v) = 1=2. We �nally indiate how for example the �rst identity an be veri�ed:Sine �u � �a one has P(�u = a) = P(�u = a; �a 2 fa; vg). Sine P(�a = a) = 0,we onlude P(�u = a) = P(�u = a; �a = v). Now repeat this argument twotimes.Suppose now that the partially ordered spae (X;�) ontains aminimal elementu and a maximal element v, i.e. u � x � v for every x 2 X . Suppose furtherthat the stohasti ow is indued by a monotone transition rule, i.e. 'i(x) =f(x; Ui) and f(x; u) � f(y; u) if x � y. Then'nm(u) � 'nm(x) � 'nm(v) for every x 2 X; m � n;and '0m(x) = w, m � 0, for eah x 2 X, as soon as '0m(u) = w = '0m(v). Theprevious �ndings an be turned into pratiable algorithms.Proposition 2 Suppose that P is monotone and (X;�) has a minimum u andmaximum v. Then oalesene for u and v enfores omplete oalesene.4 Random Fields and the Ising ModelRandom �elds serve as exible models in image analysis and spatial statistis.In partiular, any full probabilisti model of textures with random utuationsneessarily is a random �eld. Reursive (auto-assoiative) neural networks anbe reinterpreted in this framework as well, f. e.g. G. Winkler (1995). Tounderstand the phenomenology of these models, sampling from their Gibbs dis-tribution provides an important tool. In the sequel we want to show how theonepts developed above serve to establish exat sampling from the Gibbs dis-tribution of a well known random �eld { the Ising model.Let a pattern or on�guration be represented by an array x = (xs)s2S of`intensities' xs 2 Gs in `pixels' or `sites' s 2 S with �nite sets Gs and S. Smight be a �nite square grid or - in ase of neural networks - an undireted�nite graph. A (�nite) random �eld is a stritly positive probability measure� on the spae X =Qs2S Gs of all on�gurations x. Taking logarithms showsthat � is of the Gibbsian form�(x) = Z�1 exp(�K(x)); Z =Xz exp(�K(z)); (11)with a funtion K on X. It is alled a Gibbs �elds with energy funtion K andpartition funtion Z. These names remind of their roots in statistial physis.For onveniene we restrit ourselves to the Gibbs sampler with randomvisiting sheme. Otherwise we had slightly to modify the setup of Setion 2.Let prt be the projetion X! Gt; x 7! xt. For a Gibbs �eld � let��ys ��xt; t 6= s� = ��prs = ys �� prt = xt; t 6= s� (12)15



denote the single-site onditional probabilities. The Gibbs sampler with randomvisiting sheme �rst piks a site s 2 S at random from a probability distributionD on S, and then piks an intensity at random from the onditional distribution(12) on Gs. Given a on�guration x = (xt) this results in a new on�gurationy = (yt) whih equals x everywhere exept possibly at site s. The proedureis repeated with the new on�guration y, and so on and so on. This de�nes ahomogeneous Markov hain on X with Markov kernelP (x; y) =Xs2SD(s)�fsg(x; y); x; y 2 X; (13)where �fsg(x; y) = ��ys ��xt; t 6= s� if x and y are equal o� s and �fsg(x; y) = 0otherwise. These transition probabilities �fsg are alled the loal harateris-tis. D is alled the proposal or exploration distribution.We assume that D is stritly positive; frequently it is the uniform distri-bution on S. Then P is primitive sine P jSj is stritly positive. In fat, ineah step eah site and eah intensity in the site has positive probability to behosen, and thus eah y an be reahed from eah x in jSj steps with positiveprobability. It is easily heked - verifying the detailed balane equations - that� is the invariant distribution of P , and thus the invariant distribution of thehomogeneous Markov hain generated by P .Example 10 (The Ising model) Let us give an example for exat samplingby way of the Ising model. The ferromagneti Ising model with magneti �eldh := (hs)s2S is a binary random �eld with Gs = f�1; 1g and energy funtionK(x) = �Xs�t xsxt �Xs hsxs;where � > 0, hs 2 R and s � t indiates that s and t are neighbours. Forthe random visiting sheme in (13) the Markov hain is homogeneous and �tsperfetly into the setting of Setion 2. The formula from [13℄, Proposition 3.2.1(see also [13℄, Example 3.1.1) for the loal harateristis boils down top+(x) = ��Xs = 1 ��Xt = xt; t 6= s� = �1 + exp �� 2�Xt�s xt � hs���1:This probability inreases with the set ft 2 S : xt = 1g. Hene p+(y) � p+(x)if x � y in the omponent-wise partial order introdued in Example 6. Theupdates x0 and y0 preserve all the blak sites o� s, and possibly reate anadditional blak one at s. We onlude that P from (13) is monotone and ful�llsthe hypotheses of Proposition 2. Hene for omplete oalesene one only has tohek whether the ompletely blak and the ompletely white patterns oalese.For transition rules like in Example 5 the Condition (C) on page 9 is also ful�lledand oupling from the past works. 16



5 ConlusionThe authors are not aware of other mathematial �elds, where so many insuÆ-ient arguments, ranging from inomplete or misleading, to ompletely wrong,have been published (mainly in the Internet). In partiular, Condition (C) ora substitute for it, are missing in a lot of presently available texts. A rigoroustreatment is S.G. Foss and R.L. Tweedie (1998). These authors do notuse iterated random maps. These are exploited systematially in P. Diaonisand D. Freedman (1999). J.A. Fill (1998) introdues `interruptible' perfetsampling based on aeptane/rejetion sampling. Meanwhile there is a body ofpapers on exat sampling. On the other hand, the �eld still is in the state of uxand hene it does not make sense to give further referenes; a rih and up to datesoure is the home-page of D.B. Wilson, http://www.dbwilson.om/exat/.The onnetion between transition probabilities and random maps was lari�edin H.v. Weizs�aker (1974).Aknowledgement: We thank H.v. Weizs�aker, Kaiserslautern, for help-ful disussions during the initial phase of the work.Referenes[1℄ P. Diaonis and D. Freedman. Iterated random funtions. SIAM Rev., 41(1):45{76, 1999.[2℄ J.A. Fill. An interuptible algorithm for perfet sampling via Markov hains.The Ann. of Appl. Probab., 8(1):131{162, 1998.[3℄ J.A. Fill and M. Mahida. Stohasti monotoniity and realizable mono-toniity. Ann. Probab., 29:938{978, 2001.[4℄ S.G. Foss and R.L. Tweedie. Perfet simulation and bakward oupling.Stoh. Models, 14(1-2):187{204, 1998.[5℄ F. Friedrih. Sampling and statistial inferene for Gibbs �elds. PhD thesis,University of Heidelberg, Munih, Germany, 2003. draft.[6℄ A. Gelman. Inferene and monitoring onvergene. InW.R. Gilks et al.(1996b), hapter 8, pages 131{143.[7℄ W.R. Gilks, S. Rihardson, and D.J. Spiegelhalter. Introduing Markovhain Monte Carlo. InW.R. Gilks et al. (1996b), hapter 1, pages 1{19.[8℄ W.R. Gilks, S. Rihardson, and D.J. Spiegelhalter, editors. Markov ChainMonte Carlo in Pratie. Interdisiplinary Statistis. Chapman & Hall,London, Weinheim, New York, Tokyo, Melbourne, Madras, 1996b.[9℄ J.G. Propp and D.B. Wilson. Exat sampling with oupled Markov hainsand appliations to statistial mehanis. Random Strutures and Algo-rithms, 9:223{252, 1996. 17



[10℄ A.E. Raftery and S.M. Lewis. Implementing MCMC. In W.R. Gilkset al. (1996b), hapter 7, pages 115{130.[11℄ D.A. Ross. A oherene theorem for ordered families of probability mea-sures on a partially ordered spae. Unpublished manusript, 1993.[12℄ H.v. Weizs�aker. Zur Gleihwertigkeit zweier Arten der Randomisierung.Manusripta Mathematika, 11:91{94, 1974.[13℄ G. Winkler. Image Analysis, Random Fields and Dynami Monte CarloMethods, volume 27 of Appliations of Mathematis. Springer Verlag,Berlin, Heidelberg, New York, 1995.[14℄ G. Winkler. Image Analysis, Random Fields and Dynami Monte CarloMethods, volume 27 of Appliations of Mathematis. Springer Verlag,Berlin, Heidelberg, New York, seond edition, 2003.

18


