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Abstract: In this paper, we modify Duan’s (1995) local risk-neutral valuation relationship (mLRNVR)
for the GARCH option-pricing models. In our mLRNVR, the conditional variances under two
measures are designed to be different and the variance process is more persistent in the risk-neutral
measure than in the physical one, so that one is able to capture the variance risk premium. Empirical
estimation exercises show that the GARCH option-pricing models under our mLRNVR are able to
price the SPX one-month variance swap rate, i.e., the CBOE Volatility Index (VIX) accurately. Our
research suggests that one should use our mLRNVR when pricing options with GARCH models.

Keywords: GARCH option-pricing models; stochastic volatility; the CBOE VIX; variance risk premium

JEL Classification: G13; C52

1. Introduction

In this paper, we modify the local risk-neutral valuation relationship (mLRNVR) in the GARCH
option-pricing models. The GARCH option-pricing model was first introduced by Duan (1995) with a
locally risk-neutral valuation relationship (LRNVR), in which the conditional variances and model
parameters remained the same under the physical measure and the risk-neutral measure. Since then,
Duan’s LRNVR has been widely used by finance researchers and practitioners in pricing options
under the GARCH framework. However, as Barone-Adesi et al. (2008) pointed out, empirical evidence
showed that the restriction in Duan’s LRNVR led to rather poor pricing and hedging performances.
Hao and Zhang (2013) showed explicitly that the GARCH option-pricing models under Duan’s LRNVR
under-priced S&P 500 (SPX) one-month variance swap rate, i.e., the Chicago Board Options Exchange
(CBOE) Volatility Index (VIX) by about 10%. We propose a new mLRNVR in GARCH option models
in order to resolve the issue of under-pricing by the LRNVR.

Since the seminal work of Bollerslev (1986); Engle (1982), the family of GARCH volatility models
has been widely used in empirical asset pricing and financial risk management partly because of the
likelihood function of asset returns in the GARCH models could often be expressed in a closed-form in
terms of observed data. One can estimate the model parameters by using the maximum likelihood
estimation (MLE) method, which is often a challenging task for most of the stochastic volatility models.
Motivated by the success of GARCH models in fitting asset returns, Duan (1995) pioneered in applying
GARCH models for the SPX option pricing by proposing the LRNVR. Duan’s LRNVR has been
followed by many papers. Ritchken and Trevor (1999) developed an efficient lattice algorithm to
price European and American options under the GARCH processes. Chernov and Ghysels (2000)
estimated physical and risk-neutral probabilities by using Heston (1993) and GARCH option models.
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Heston and Nandi (2000) developed a closed-form option valuation formula for a spot asset whose
variance follows a GARCH(p, q) process that can be correlated with the returns of the spot asset.
Christoffersen and Jacobs (2004) compared a variety of GARCH option-pricing models using option
prices and asset returns. Christoffersen et al. (2008) extended the Heston-Nandi model to incorporate
long-run and short-run volatility components for the valuation of European options. An interesting
survey on the theoretical results and empirical evidence of GARCH option-pricing could be found
in Christoffersen et al. (2013b). The evaluation of European options in the GARCH models with
Levy jumps was discussed in Ornthanalai (2014). Kanniainen et al. (2014) evaluated SPX options
using three variant GARCH models with VIX data. Their empirical evidence showed that a joint
maximum likelihood estimation using SPX returns and VIX improved the performance of pricing SPX
options compared with traditional MLE using the returns data only. Wang et al. (2017) priced the VIX
futures with the Heston-Nandi GARCH model. All of these papers used Duan’s LRNVR in changing
probability measures from a physical one to a risk-neutral one. However, there exists a problem in
pricing options under the GARCH models with the LRNVR.

Empirical evidence by Chernov and Ghysels (2000); Christoffersen and Jacobs (2004) showed that
the GARCH option-pricing model under the LRNVR had poor pricing and hedging performances,
but they did not realize that the problem came from the LRNVR. Barone-Adesi et al. (2008) were
the first to explicitly point out that the poor performance came from the restriction required by the
LRNVR. They proposed a new method for pricing options based on GARCH models with filtered
historical innovations, in which they did not specify directly the change of measures, and proposed
approximating them by calibrating a new set of risk-neutral GARCH parameters directly on market
option prices. Christoffersen et al. (2013a) developed a GARCH option model with a new pricing
kernel allowing for a variance premium. They presented an explicit relationship between physical and
risk-neutral conditional variances and GARCH parameters, in which risk aversion and the market
price of variance risk entered into their analytical formulas. It is interesting to note that the persistence
parameter remained unchanged in their change of probability measures. Hao and Zhang (2013)
developed a model for the CBOE VIX by using a GARCH option-pricing model under the LRNVR.
They found that the model-implied VIX was about 10% lower than the market VIX due to the lack of a
variance risk premium. Given that the VIX is a proxy of the SPX one-month variance swap rate, one
may conclude that GARCH option-pricing models under LRNVR under-price variance swap and hence
at-the-money options by about 10%. Despite these developments of literature pointing out the problem
of LRNVR, later studies, e.g., Ornthanalai (2014); Kanniainen et al. (2014); Wang et al. (2017), still used
it in pricing SPX options and other derivatives. They might have realized the problem with the LRNVR,
but lacked a better one to resolve the issue. Developing a new risk-neutral valuation relationship in
GARCH option-pricing models becomes an urgent task. That is the focus in this paper. Parallel to
our work, Huang et al. (2017 2019) used a stochastic discount factor for risk-neutralization for option
pricing and VIX futures pricing, respectively. The stochastic discount factor risk-neutralization is a
generalization of the LRNVR. In contrast to our modification, the persistent parameter in the models
remained unchanged under the stochastic discount factor risk-neutralization.

In this paper, we propose a modified local risk-neutral valuation relationship, referred to as the
mLRNVR. In our mLRNVR, conditional variances under two measures are designed to be different
and the GARCH process is more persistent in the risk-neutral measure than in the physical one,
so that we are able to capture the negative variance risk premium. We display the improvement of
the mLRNVR compared with the LRNVR using theoretical and empirical evidences. Specifically,
we find the theoretical VIX squared value as the conditional risk-neutral expectation of the arithmetic
mean variance over the next 21 trading days under the mLRNVR. The GARCH implied VIX formulas
are derived using the features of square-root stochastic autoregressive volatility (SR-SARV) models.
We apply several calibration methods to estimate the model parameters using various sets of time series
data, and compare the theoretical formula performances with the market data. Various combinations
of time series of the daily closing price of the S&P 500 index and the CBOE VIX are used to find the
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maximum likelihood estimation of the GARCH models. The corresponding implied VIX time series are
then calculated from the calibrated model. Similar to the empirical evidence in Hao and Zhang (2013)
and Wang et al. (2017), when only S&P 500 returns are used for estimation, the GARCH implied VIX is
consistently and significantly lower than the CBOE VIX. When the CBOE VIX is used for estimation,
the implied VIX fits the statistical properties of the CBOE VIX and matches the CBOE VIX data better.
The numerical results provide evidence that the GARCH option-pricing under the mLRNVR is more
suitable to price variance swap. In the case of GARCH(1,1), we compare the diffusion limit of the
GARCH process under the physical measure and the mLRNVR risk-neutral measure to show that the
variance premium is captured in the risk-neutral dynamics.

This paper makes at least two contributions. First, by using a newly proposed mLRNVR, we have
resolved the issue of under-pricing in GARCH option-pricing models under the LRNVR. Our research
suggests that one should use our mLRNVR when pricing options with GARCH models. Second,
we develop a model for the VIX in a GARCH framework by using the mLRNVR. Our model is able
to capture negative variance risk premiums, and hence should be used in pricing VIX derivatives,
including VIX futures and VIX options.

The article is structured as follows. Section 2 proposes a new risk-neutral valuation relationship
for the GARCH(1,1). In Section 3, we derive a theoretical VIX formula for the GARCH(1,1) model
under the mLRNVR, and extend the derivation idea to a broad class of GARCH models, which
include GARCH, TGARCH, AGARCH and EGARCH models. In Section 4, we calibrate these GARCH
models using various combinations of time series of the S&P 500 index and the CBOE VIX. Section 5
compares the CBOE VIX with the GARCH implied VIX obtained from the calibrated GARCH models.
In Section 6, we analyze the diffusion limit of the GARCH process under the risk-neutral measure in
mLRNVR to demonstrate that the risk-neutral dynamics captures the variance risk premium. We then
conclude the findings in Section 7.

2. GARCH Model Specification

In this paper, we consider the asset price as a discrete-time stochastic process and denote the asset
price at time t as Xt. It was proposed in Duan (1995) that the returns of the asset follows a conditional
lognormal distribution under the physical measure P as

ln
Xt

Xt−1
= r− 1

2
ht + λ1

√
ht + εt, (1)

where r is the one-period risk-free interest rate, λ1 is the asset risk premium, and εt follows a
GARCH(p, q) process introduced in Bollerslev (1986) with mean zero and conditional variance ht

εt|φt−1 ∼ N(0, ht) under measure P,

ht = α0 +
q

∑
i=1

αiε
2
t−i +

p

∑
j=1

β jht−j, (2)

where φt is the information set of up to and including time t; α0 ≥ 0, αi ≥ 0 for i = 1, 2, . . . , q and
β j ≥ 0 for j = 1, 2, . . . , p. We focus on the GARCH(1,1) case, so the Equation (2) simplifies to

ht = α0 + α1ε2
t−1 + β1ht−1. (3)

In order to accommodate the heteroskedasticity of the asset returns process in (1), Duan (1995)
introduced the LRNVR under which the expected return should be the risk-free rate and the
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one-step-ahead variance should be the same in both measures. Specifically, under the LRNVR,
the dynamics of asset returns in the risk-neutral pricing measure Q has the form

ln
Xt

Xt−1
= r− 1

2
ht + ξt, ξt|φt−1 ∼ N(0, ht) under measure Q,

ht = α0 + α1

(
ξt−1 − λ1

√
ht−1

)2
+ β1ht−1. (4)

It is well documented in Bollerslev et al. (2009); Carr and Wu (2009) that variance risk premiums
come from either its correlation with the return risk and return risk premium, or a separate premium of
the independent variance variation. It is also established in Carr and Wu (2009) that the majority of the
market variance risk premium is generated by an independent variance risk factor. Motivated by the
empirical findings that the market variance risk premiums is closely related to the variance variation,
we propose an alternative risk-neutral valuation relationship to the LRNVR which can capture the
variance risk premium as follows.

Definition 1. A pricing measure Q is said to satisfy the modified local risk-neutral valuation relationship
(mLRNVR) if the dynamics of asset returns in the risk-neutral pricing measure Q under the mLRNVR has the
following form

ln
Xt

Xt−1
= r− 1

2
ht + ξt, ξt|φt−1 ∼ N(0, ht) under measure Q,

ht = α0 + α1

(
ξt−1 − λ1

√
ht−1

)2
+ β∗1ht−1 (5)

= α0 + α1

(
ξt−1 − λ1

√
ht−1

)2
+ (β1 −

√
2α1λ2)ht−1.

Remark 1. In the classic continuous-time stochastic volatility models, e.g., the Heston model (Heston 1993),
the instantaneous variances are the same under the physical and risk-neutral measures. However, in the
discrete-time GARCH models, the conditional variances are defined in a finite-time interval which is usually one
day in practice. The conditional variances should be designed to be different under the physical and risk-neutral
measures, as in the mLRNVR, to incorporate the variance risk premium during the finite-time interval.

The proposed GARCH(1,1) process (5) is different to the one derived by Duan (1995) under the
LRNVR. Under the mLRNVR the persistence parameter is designed to be different in the P and Q
measures, whereas under the LRNVR the persistence parameter is the same in the P and Q measures.
Specifically, for the dynamics of risk-neutral measure Q under the mLRNVR, the persistence parameter
of conditional variance is β∗1 = β1 −

√
2α1λ2, where λ2 represents the variance risk premium of the

asset. Note that there is a negative sign in front of the variance risk premium λ2 which is estimated
to be negative from empirical studies Bollerslev et al. (2009); Carr and Wu (2009). Hence, we expect
the variance process is more persistent in the risk-neutral measure than that in the physical one.
The motivation for the inclusion of the variance risk premium is discussed in Hao and Zhang (2013),
where it was shown that there is no risk adjustment for the variance risk of the process in Duan (1995)
from the physical measure to the risk-neutral measure under the LRNVR. It was also discussed in
Barone-Adesi et al. (2008) and Christoffersen et al. (2013a) that the restriction of conditional volatility
of historical and risk-neutral pricing distributions with the same model parameters leads to poor
calibration results in the empirical studies (cf. Chernov and Ghysels 2000; Christoffersen et al. 2006;
Hao and Zhang 2013). Therefore, it was suggested that the parameters of volatility dynamics of
historical and risk-neutral pricing returns might be different in Barone-Adesi et al. (2008). We adapt
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the idea by modifying the persistence parameter in Q to incorporate the variance risk premium in the
model.1 The theoretical justification of the modification is further discussed in Section 6.

3. VIX Formulas of the GARCH Models

The CBOE introduced the VIX index in 1993. The VIX was calculated from the implied
volatilities of the eight near-the-money, nearby, and second nearby S&P 100 index options based
on the methodology of Whaley (Whaley 1993). The VIX was a proxy of the implied volatility of
30 calendar days at-the-money (ATM) options. In 2003, the CBOE used another theory proposed
in Carr and Madan (1998) and Demeterfi et al. (1999) to design a new methodology to compute the
CBOE’s VIX. The new VIX is based on the prices of a portfolio of 30 calendar days out-of-the-money
(OTM) S&P 500 index call and put options. The square of the new VIX represents the S&P 500 30-day
variance swap rate. The old VIX has been renamed the VXO. We use VIXMkt to denote the CBOE VIX
which is computed using market option prices.

The CBOE VIX index reflects investors’ expectation of the volatility of the S&P 500 in the next
30 calendar days or 21 trading days. Following Hao and Zhang (2013), we have calculated the VIX
index implied by the GARCH models as the mean value of the expected variance in the n sub-periods
of the next 21 trading days, that is(

VIXImp
t

100

)2

=
1
n

n

∑
k=1

EQ
t

(
h

t+ τ0k
n

)
, (6)

where τ0 represents 21 trading days and VIXImp
t stands for the model implied VIX index. In particular,

we use the daily closing value data, so it implies τ0 = n, and

Vt =
1
n

n

∑
k=1

EQ
t (ht+k) , (7)

where the term Vt =
1

252

(
VIXImp

t
100

)2
is defined as a function of VIXImp

t to measure the expected daily

variance of the S&P 500. The conditional mean of the future variance can be calculated in a broad class
of GARCH models, as discussed in Hao and Zhang (2013) and Wang et al. (2017).

We derive the implied VIX from the model (5) under Q by first rewriting the error terms of the
process using the standard normal distribution as

ln
Xt

Xt−1
= r− 1

2
ht +

√
htεt,

ht = α0 + α1ht−1 (εt−1 − λ1)
2 + (β1 −

√
2α1λ2)ht−1, (8)

where εt is the standard normal random variable, conditional on the information set up to and
including time t− 1 under Q.

1 Our purpose is trying to propose a simple modification to the LRNVR in order to incorporate the variance risk premium
under the risk-neutral measure in the GARCH models. It is noted that in Huang et al. (2019), with an additional source
of uncertainty in the conditional variance under the physical measure, the Radon-Nikodym derivative was derived and
the variance risk premium was incorporated in the risk-neutral measure. However, these two approaches differ, since our
mLRNVR method only changes the persistence parameter without introducing an extra uncertainty.
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One can rewrite the GARCH(1, 1) process (8) as a special case of the square-root stochastic
autoregressive volatility (SR-SARV(1)) models introduced in Meddahi and Renault (2004) with the
following form

ht+1 = ω + γht + νt, with E [νt|φt−1] = 0, (9)

ω = α0, γ = α1(1 + λ2
1) + β1 −

√
2α1λ2,

νt = α1ht(ε
2
t − 1− 2λ1εt).

It was shown in Hao and Zhang (2013) that if the S&P 500 returns follow a SR-SARV(p)
process under the risk-neutral measure, then the implied daily variance Vt at time t is affine in
the conditional variance ht+1. Following similar ideas, we can obtain the long term variance as
h̄ = limm→∞ EQ

t [ht+m] =
ω

1−γ by noticing

h̄ = lim
m→∞

EQ
t [ht+m] = lim

m→∞
EQ

t [ω + γht+m−1 + νt+m−1] = ω + γh̄. (10)

Then the conditional expectation of the variance after two periods can be obtained via the
long-run variance:

EQ
t [ht+2]− h̄ = EQ

t [ω + γht+1 + νt+1]−
ω

1− γ
= ω + γht+1 −

ω

1− γ
= γ(ht+1 − h̄). (11)

So the conditional expectation of the variance after n periods is given by

EQ
t [ht+n] = h̄ + γn−1(ht+1 − h̄). (12)

Therefore, we can represent the expected daily variance as an affine function of ht+1

Vt =
1
n

n

∑
k=1

EQ
t (ht+k)

= h̄ +
1
n

n

∑
k=1

γk−1(ht+1 − h̄)

= h̄ +
1− γn

n(1− γ)
(ht+1 − h̄) (13)

=

(
1− 1− γn

n(1− γ)

)
ω

1− γ
+

1− γn

n(1− γ)
ht+1

= A + Bht+1,

where A = (1−B)ω
1−γ and B = 1−γn

n(1−γ)
.

Apart from the GARCH(1,1) model discussed above, we also consider the threshold GARCH(1,1)
(TGARCH) model introduced in Glosten et al. (1993), the non-linear asymmetric GARCH(1,1)
(AGARCH) model proposed in Engle and Ng (1993) and the exponential GARCH(1,1) (EGARCH)
model by Nelson (Nelson 1991). The forms of the models in the physical measure P and in the
risk-neutral measure Q under the mLRNVR are as follows:

TGARCH(1,1)

Physical measure: ht = α0 + α1ε2
t−1 + θε2

t−11(εt−1 < 0) + β1ht−1, (14)

mLRNVR: ht = α0 +
(

ξt−1 − λ1
√

ht−1

)2 (
α1 + θ1(ξt−1 − λ1

√
ht−1 < 0)

)
+ (β1 −

√
2α1λ2)ht−1.
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AGARCH(1,1)

Physical measure: ht = α0 + α1

(
εt−1 − θ

√
ht−1

)2
+ β1ht−1, (15)

mLRNVR: ht = α0 + α1

(
ξt−1 − λ1

√
ht−1 − θ

√
ht−1

)2
+ (β1 −

√
2α1λ2)ht−1.

EGARCH(1,1)

Physical measure:

ln ht = α0 + β1 ln ht−1 + α1
εt−1√
ht−1

+ κ

(∣∣∣∣∣ εt−1√
ht−1

∣∣∣∣∣−
√

2
π

)
, (16)

mLRNVR:

ln ht = α0 + (β1 −
√

2α1λ2) ln ht−1 + α1

(
εt−1√
ht−1

− λ1

)
+ κ

(∣∣∣∣∣ εt−1√
ht−1

− λ1

∣∣∣∣∣−
√

2
π

)
.

As shown in Hao and Zhang (2013), these widely used GARCH models are special cases of
SR-SARV(p) models, and following similar derivation process as the GARCH(1,1) model, we can
obtain the implied VIX formula for different GARCH models analogous to the ones obtained in Hao
and Zhang (2013). For the convenience of readers, we list the implied VIX formula as follows:

TGARCH(1,1)

Vt = C + Dht+1, (17)

where

C =
α0(1− D)

1− η
,

D =
1− ηn

n(1− η)
,

η = α1(1 + λ2
1) + (β1 −

√
2α1λ2) + θS,

S =
λ1√
2π

e−
λ2

1
2 + (1 + λ2

1)N(λ1).

Note that N(·) denotes the cumulative function of the normal distribution.
AGARCH(1,1)

Vt = E + Fht+1, (18)

where

E =
α0(1− F)

1− η
,

F =
1− ηn

n(1− η)
,

η = α1(1 + (λ1 + θ)2) + (β1 −
√

2α1λ2).

EGARCH(1,1)

Vt =
1
n

(
ht+1 +

n−1

∑
k=1

(
k−1

∏
i=0

li

)
h(β1−

√
2α1λ2)

k

t+1

)
, (19)
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where

li = e
(β1−

√
2α1λ2)

i
(

α0−κ
√

2
π

)
(

e−(β1−
√

2α1λ2)
i(α1−κ)λ1+0.5(β1−

√
2α1λ2)

2i(α1−κ)2
N(λ1 − (β1 −

√
2α1λ2)

i(α1 − κ))

+e−(β1−
√

2α1λ2)
i(α1+κ)λ1+0.5(β1−

√
2α1λ2)

2i(α1+κ)2
N((β1 −

√
2α1λ2)

i(α1 + κ)− λ1)
)

4. Data and Estimation

It was shown in Hao and Zhang (2013) that under the LRNVR, the GARCH implied VIX does
not fit the market data of the CBOE VIX very well. The model was analyzed to show that the reason
may be that the variance risk premium and the volatility risk price were not present in the diffusion
limit of the GARCH models under the LRNVR. In the modified GARCH processes, we include the
variance risk premium in the models under the mLRNVR. It is also of interest to see whether the
implied VIX in the modified GARCH models fit the CBOE VIX market values better. In this section,
we will investigate this question by estimating the parameters in the modified GARCH models and
calculating the corresponding GARCH implied VIX time series for comparison with the CBOE VIX.

The time-series data we use for the GARCH models calibration are the closing values of the S&P 500
and the CBOE VIX ranging from 2nd January 1990 to 30th June 2017. For the daily risk-free interest rate,
we use the three-month Treasury bill secondary market rate from the U.S. Federal Reserve website.

There are different methods to calibrate the models using market data. We will use the common
maximum likelihood approach to estimate the parameters of the models. We can use only the S&P 500
returns data to obtain a maximum likelihood estimation of the GARCH processes under the physical
measure P and fix the variance risk premium parameter λ2 = 0, since λ2 is not included in the GARCH
models under the P measure. For the S&P 500 returns data only, the log-likelihood function ln LR for
the GARCH models is given by

ln LR = −T ln(2π)

2
− 1

2

T

∑
t=1

(
ln(ht) +

(
ln

Xt

Xt−1
− r− λ1

√
ht +

ht

2

)2
/ht

)
, (20)

where the conditional variance ht is updated by corresponding processes using different forms of
GARCH models and Xt is defined in equation (1) as the asset price. For the maximum likelihood
estimation, the conditional variance for the first period is set as the variance of S&P 500 returns over the
whole sample period. The stationary conditions for the GARCH processes under the physical and the
risk-neutral measures are different, with the latter having stricter constraints on the parameters. Thus,
we find the estimation of the parameters in the GARCH models by maximizing the corresponding
log-likelihood function subject to the stationary conditions under the risk-neutral measures.

We may also calibrate the GARCH models by matching the model implied VIX to the market
value of the CBOE VIX, since the CBOE VIX series may contain additional information about the
underlying S&P 500 returns process. To utilize both time series, we follow the assumption in Hao and
Zhang (2013) that the pricing differences between the CBOE VIX and the implied VIX on a daily basis
come from a normal distribution

VIXMkt = VIXImp + µ, µ ∼ N(0, s2), (21)

where s2 is estimated using the sample variance of pricing difference ŝ2 = var(VIXMkt − VIXImp).
Under the above assumption, the log-likelihood function corresponding to the CBOE VIX data is

ln LV = −T ln(2πŝ2)

2
−

T

∑
t=1

(
VIXMkt −VIXImp

)2

2ŝ2 . (22)
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Alternative to the method discussed in Hao and Zhang (2013), it was suggested in
Kanniainen et al. (2014) to use the following model to describe autoregressive disturbances:

µt = ρµt−1 + et, (23)

where µt = VIXMkt
t −VIXImp

t and et ∼ NID(0, σ2). Based on the autoregressive disturbance process,
we can estimate the variance of pricing difference ŝ2 in terms of the autoregressive disturbance
correlation ρ and the variance σ̂2 obtained from the sample. The formula can be specified as ŝ2 = σ̂2

1−ρ2

from the relation
Var(µt) = Var(ρµt−1 + et) =⇒ s2 = ρ2s2 + σ2. (24)

The log-likelihood function corresponding to the CBOE VIX data is

ln LV = −
T ln(2π σ̂2

1−ρ2 )

2
−

T

∑
t=1

(
VIXMkt −VIXImp

)2

2 σ̂2

1−ρ2

. (25)

We will compare the performance of this autoregressive disturbance process to the mLRNVR process
in the numerical simulation section.

Apart from using the S&P 500 returns data and CBOE VIX data for calibration of the GARCH
models separately, we also combine both time series to find a joint maximum likelihood estimation of
the models by maximizing the joint log-likelihood function

ln LT = ln LR + ln LV . (26)

5. Numerical Results

In this section, we compare the estimated parameters from different data used for calibration.2

In particular, the output tables display the maximum likelihood estimates and the standard errors of
the GARCH models. The values of the log-likelihood functions (20), (22), (25), (26) are also displayed in
the tables. Although the contributions from the S&P 500 returns and the CBOE VIX as well as the joint
likelihood values are reported, we maximize the function ln LR when only S&P 500 returns are used,
the function ln LV when only CBOE VIX data are used and the function ln LT when both time series are
used. All the output tables show the comparison results among the LRNVR process, the mLRNVR process
and the LRNVR process with an autoregressive coefficient (referred to as the generalized LRNVR process
in the following). We can observe that the mLRNVR process has the largest maximum likelihood values
compared with the LRNVR and the generalized LRNVR processes in all GARCH models. The maximum
likelihood values of the generalized LRNVR processes are generally better than those of the LRNVR
processes. It is as expected since the generalized LRNVR process has an extra autoregressive coefficient ρ

compared with the LRNVR process. However, the extra autoregressive coefficient ρ is not statistically
significant in all GARCH models. So the generalized LRNVR process is not significantly better than the
LRNVR process, and we will not discuss the numerical results of the generalized LRNVR process in
details and focus on the comparison between the mLRNVR and LRNVR processes.

From the output in Table 1, we can see that the equity risk premium λ1 increases significantly from
0.0886 (returns data used) to 0.2134 (both data used) and 0.2253 (VIX data used) in the GARCH(1,1)
models when the CBOE VIX data are used for calibration. The variance risk premium λ2 is negative
and significantly different from zero as −0.3670 (both sets of data used) and −0.3514 (VIX data used).
The persistence of the conditional variance β1 increases slightly from 0.8543 (returns data used) to

2 We have also tried the out-of-sample prediction. Note that the relation between VIX2
t and the latent process ht is linear

according to Equation (13). Predicting VIX2
t is essentially forecasting the latent process ht. This task seems to be not

straightforward in the GARCH models, hence is left for further research.
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0.9251 (both sets of data used) and 0.9286 (VIX data used). There is a sizable decrease of the parameter
value α1 from 0.1256 (returns data used) to 0.0474 (both sets of data used) and 0.0456 (VIX data used).
Comparing the maximum likelihood result of the model under the mLRNVR and the results under the
LRNVR, we can see that the maximum likelihood value increases significantly from 54,697 to 55,921
(both sets of data used) and from 33,424 to 33,662 (VIX data used).

Similar numerical results are also observed in the other types of GARCH models as displayed
in Tables 2–4. Specifically, Table 2 shows that the equity risk premium λ1 increases significantly
from 0.0131 (returns data used) to 0.1160 (both sets of data used) and 0.0889 (VIX data used) in the
TGARCH(1,1) model when the CBOE VIX data are used for calibration. The variance risk premium λ2

is negative and significantly different from zero as −0.4112 (both sets of data used) and −0.3978 (VIX
data used). The persistence of conditional variance, β1 increases significantly from 0.8338 (returns data
used) to 0.9561 (both sets of data used) and 0.9553 (VIX data used). There is a decrease of the parameter
value α1 from 0.0256 (returns data used) to 0.0091 (both sets of data used) and 0.0060 (VIX data used).
Comparing the maximum likelihood result of the TGARCH(1,1) model under the mLRNVR and the
results under the LRNVR, we can see that the maximum likelihood value increases significantly from
55,455 to 56,282 (both sets of data used) and from 33,468 to 33,795 (VIX data used).

Table 3 shows the calibration results of the AGARCH(1,1) model using both returns and VIX data.
If using VIX data only, it is not easy to distinguish the parameters θ and λ1. Therefore, the numerical
results using VIX data are not displayed in the table. From Table 3 we observe that the equity risk
premium λ1 increases significantly from 0.0255 (returns data used) to 0.1158 (both sets of data used) in
the AGARCH(1,1) model when the CBOE VIX data and returns are used for calibration. The variance
risk premium λ2 is negative and significantly different from zero as −0.3125 (both sets of data used).
The persistence of conditional variance β1 increases from 0.8810 (returns data used) to 0.9316 (both
sets of data used). There is a big decrease in the parameter value α1 from 0.0841 (returns data used) to
0.0380 (both sets of data used). Comparing the maximum likelihood result of the AGARCH(1,1) model
under the mLRNVR and the results under the LRNVR, we can see that the maximum likelihood value
increases significantly from 55,483 to 56,333 (both sets of data used).

Table 4 shows that in the EGARCH(1,1) model the variance risk premium λ2 is negative as
−0.0567 (both sets of data used) and −0.0483 (VIX data used), both significantly different than zero.
The persistence of conditional variance, β1 increases slightly from 0.9792 (returns data used) to 0.9906
(both sets of data used) and 0.9895 (VIX data used). Comparing the maximum likelihood result of
the EGARCH(1,1) model under the mLRNVR and the results under the LRNVR, we can see that the
maximum likelihood value increases significantly from 56,399 to 57,105 (both sets of data used) and
from 33,774 to 34,303 (VIX data used).

From the comparisons in the GARCH, TGARCH, AGARCH and EGARCH models, we see that
the maximum likelihood results under the mLRNVR are generally better than those under the LRNVR.
Table 5 measures how the implied VIX fits the CBOE VIX by computing a list of statistics and the
results demonstrate that the implied VIX under mLRNVR fits the CBOE quite well.
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Table 1. Maximum likelihood estimates of the GARCH(1,1) model using returns data only, VIX data only or both returns and Volatility Index (VIX) data. The bold
values indicate the log-likelihood value which is being maximized. The standard errors are provided in parentheses. We use a sample of 6928 daily data for the model
estimation.

Return Only VIX Only Return & VIX

LRNVR mLRNVR LRNVR mLRNVR

Duan (1995) KLY (2014) Duan (1995) KLY (2014)
α0 2.47 × 10−6 (0.09 × 10−6) 1.68 × 10−6 (0.04 × 10−6) 1.70 × 10−6 (0.03 × 10−6) 1.64 × 10−6 (0.03 × 10−6) 1.70 × 10−6 (0.03 × 10−6) 1.68 × 10−6 (0.03 × 10−6) 1.68 × 10−6 (0.03 × 10−6)
α1 0.1256 (0.0045) 0.0382 (0.0006) 0.0386 (0.0014) 0.0456 (0.0015) 0.0498 (0.0007) 0.0503 (0.0007) 0.0474 (0.0007)
β1 0.8543 (0.0028) 0.9351 (0.0010) 0.9353 (0.0016) 0.9286 (0.0036) 0.9450 (0.0007) 0.9467 (0.0007) 0.9251 (0.0012)
λ1 0.0886 (0.0116) 0.8144 (0.0171) 0.7980 (0.0531) 0.2253 (0.0122) 0.2976 (0.0085) 0.2135 (0.0101) 0.2134 (0.0085)
λ2 0 0 0 −0.3514 (0.0705) 0 0 −0.3670 (0.0195)
ρ 0 0 −0.0039 (0.0064) 0 0 −0.0026 (0.0030) 0

ln LR 22,720 20,355 20,416 20,593 21,796 22,021 22,597
ln LV 29,221 33,424 33,563 33,662 32,901 33,048 33,324
ln LT 51,941 53,779 53,979 54,255 54,697 55,069 55,921

Table 2. Maximum likelihood estimates of TGARCH(1,1) model using returns data only, VIX data only or both returns and VIX data. The bold values indicate the
log-likelihood value which is being maximized. The standard errors are provided in parentheses. We use a sample of 6928 daily data for the model estimation.

Return Only VIX Only Return & VIX

LRNVR mLRNVR LRNVR mLRNVR

Duan (1995) KLY (2014) Duan (1995) KLY (2014)
α0 3.45 × 10−6 (0.09 × 10−6) 1.48 × 10−6 (0.08 × 10−6) 1.48 × 10−6 (0.05 × 10−6) 1.52 × 10−6 (0.02 × 10−6) 1.48 × 10−6 (0.02 × 10−6) 1.48 × 10−6 (0.02 × 10−6) 1.48 × 10−6 (0.02 × 10−6)
α1 0.0256 (0.0063) 0.0020 (0.0015) 0.0021 (0.0015) 0.0060 (0.0010) 0.0021 (0.0012) 0.0021 (0.0014) 0.0091 (0.0014)
β1 0.8338 (0.0031) 0.9597 (0.0007) 0.9598 (0.0009) 0.9553 (0.0006) 0.9582 (0.0006) 0.9582 (0.0006) 0.9561 (0.0008)
θ 0.1336 (0.0154) 0.0595 (0.0026) 0.0595 (0.0033) 0.0531 (0.0008) 0.0636 (0.0020) 0.0636 (0.0021) 0.0553 (0.0022)

λ1 0.0131 (0.0118) 0.3094 (0.0155) 0.1729 (0.0317) 0.0889 (0.0087) 0.1729 (0.0135) 0.1156 (0.0108) 0.1160 (0.0075)
λ2 0 0 0 −0.3978 (0.0980) 0 0 −0.4112 (0.1376)
ρ 0 0 −0.0046 (0.0060) 0 0 −0.0030 (0.0040) 0

ln LR 22,817 21,941 22,014 22,242 22,324 22,346 22,578
ln LV 30,310 33,468 33,523 33,795 33,131 33,347 33,704
ln LT 53,127 55,409 55,537 56,037 55,455 55,693 56,282
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Table 3. Maximum likelihood estimates of AGARCH(1,1) model using returns data only or both returns and VIX data. The bold values indicate the log-likelihood
value which is being maximized. The standard errors are provided in parentheses. We use a sample of 6928 daily data for the model estimation.

Return Only Return & VIX

LRNVR mLRNVR

Duan (1995) KLY (2014)
α0 1.86 × 10−6 (0.08 × 10−6) 1.71 × 10−6 (0.09 × 10−6) 1.70 × 10−6 (0.05 × 10−6) 1.57 × 10−6 (0.08 × 10−6)
α1 0.0841 (0.0032) 0.0415 (0.0011) 0.0416 (0.0013) 0.0380 (0.0005)
β1 0.8810 (0.0108) 0.9302 (0.0010) 0.9302 (0.0014) 0.9316 (0.0012)
θ 0.7861 (0.0534) 0.7795 (0.0204) 0.7995 (0.0456) 0.8012 (0.0174)

λ1 0.0255 (0.0119) 0.0120 (0.0095) 0.0095 (0.0120) 0.1158 (0.0538)
λ2 0 0 0 −0.3125 (0.0297)
ρ 0 0 −0.0010 (0.0058) 0

ln LR 22,875 22,298 22,387 22,690
ln LV 29,940 33,185 33,372 33,643
ln LT 52,815 55,483 55,759 56,333

Table 4. Maximum likelihood estimates of EGARCH(1,1) model using returns data only, VIX data only or both returns and VIX data. The bold values indicate the
log-likelihood value which is being maximized. The standard errors are provided in parentheses. We use a sample of 6928 daily data for the model estimation.

Return Only VIX Only Return & VIX

LRNVR mLRNVR LRNVR mLRNVR

Duan (1995) KLY (2014) Duan (1995) KLY (2014)
α0 −0.1919 (0.0133) −0.0742 (0.0010) −0.0795 (0.0015) −0.0795 (0.0011) −0.0845 (0.0012) −0.0853 (0.0015) −0.0840 (0.0012)
α1 −0.1159 (0.0068) −0.0622 (0.0012) −0.0643 (0.0020) −0.0638 (0.0012) −0.0598 (0.0016) −0.0650 (0.0015) −0.0575 (0.0017)
β1 0.9792 (0.0014) 0.9897 (0.0002) 0.9894 (0.0002) 0.9895 (0.0002) 0.9891 (0.0010) 0.9890 (0.0003) 0.9906 (0.0002)
κ 0.1239 (0.0081) 0.0869 (0.0013) 0.0886 (0.0013) 0.0879 (0.0012) 0.0795 (0.0021) 0.0946 (0.0014) 0.0817 (0.0013)

λ1 0.0189 (0.0106) 0.0378 (0.0201) 0.0048 (0.0068) 0.0294 (0.0114) 0.0289 (0.0128) 0.0052 (0.0043) 0.0108 (0.0041)
λ2 0 0 0 −0.0483 (0.0083) 0 0 −0.0567 (0.0044)
ρ 0 0 −0.0003 (0.0157) 0 0 −0.0022 (0.0131) 0

ln LR 22,862 22,472 22,506 22,642 22,645 22,654 22,813
ln LV 29,304 33,774 33,997 34,303 33,754 33,928 34,292
ln LT 52,166 56,246 56,503 56,945 56,399 56,582 57,105
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Table 5. The table displays the related statistics between the model implied VIX and the CBOE VIX for the GARCH models during the period from 2 January 1990
to 30 June 2017. We use the sample of 6928 daily data for the model estimation and comparison. The error is computed as the difference between CBOE VIX and
the implied VIX. The mean error (ME) represents the mean daily difference between the implied VIX and the CBOE VIX. The standard error (Std.Err.) represents
the standard deviation of the error. The mean absolute error (MAE) calculates the mean daily absolute difference between the implied VIX and the CBOE VIX. The
mean squared error (MSE) computes the mean daily squared difference between the implied VIX and the CBOE VIX. The root mean squared error (RMSE) computes
the square root of the mean squared error. The P-value is for the null hypothesis that the implied VIX and the CBOE VIX have the same mean values. Violation
of one-sigma band stands for the probability that the implied VIX lies out of the one-standard-deviation band of the CBOE VIX. The correlation coefficient (Corr.
Coef.) computes the linear correlation between the implied VIX and the CBOE VIX. Autocorrelation coefficients with 1, 10, and 30 days lag and higher moments of
implied VIX are also reported. Note that the calibration results using returns data only are produced by using GARCH models under the local risk-neutral valuation
relationship (LRNVR). The results using VIX and both sets of data are produced by using GARCH models with the modified local risk-neutral valuation relationship
(mLRNVR).

Model&Data ME Std.Err. MAE MSE RMSE P-Value
Violation of
One-Sigma

Band
Corr.Coef. AR1 AR10 AR30 Variance Skewness Kurtosis

GARCH
Returns 2.76 4.03 2.69 16.86 4.11 0.0000 7.56% 0.90 0.9892 0.8879 0.6856 77.39 3.36 20.37

VIX 0.08 2.99 2.29 8.96 2.99 0.5223 1.68% 0.93 0.9956 0.9452 0.7945 56.04 2.61 15.01
Both 0.16 3.14 2.25 9.03 3.01 0.1012 2.27% 0.92 0.9950 0.9434 0.7853 56.65 2.69 15.70

TGARCH
Returns 2.44 4.02 3.40 22.13 4.70 0.0000 9.47% 0.86 0.9596 0.7433 0.5327 53.21 3.33 21.08

VIX 0.08 2.96 2.27 8.80 2.96 0.5574 1.59% 0.93 0.9955 0.9473 0.8072 55.88 2.81 16.83
Both 0.22 3.00 2.26 9.03 3.01 0.1012 1.80% 0.93 0.9954 0.9431 0.7940 57.53 2.83 17.21

AGARCH
Returns 3.08 3.32 3.47 20.49 4.53 0.0000 8.14% 0.91 0.9815 0.8495 0.6220 57.60 3.44 22.50

Both 0.19 2.98 2.27 8.93 2.99 0.1440 1.13% 0.93 0.9948 0.9383 0.7774 57.60 2.92 17.52

EGARCH
Returns 3.39 3.38 3.62 22.96 4.79 0.0000 10.02% 0.92 0.9817 0.8498 0.6408 35.52 2.08 10.54

VIX 0.01 2.71 2.10 7.38 2.72 0.8865 0.79% 0.94 0.9946 0.9395 0.7955 54.37 2.20 11.12
Both 0.01 2.72 2.10 7.41 2.72 0.7396 0.82% 0.94 0.9944 0.9373 0.7903 54.62 2.15 10.81

CBOE VIX 0.9812 0.8988 0.7580 61.68 2.10 10.70
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After obtaining the estimates of the parameters in the models, we can then calculate the conditional
variance ht and compute the corresponding GARCH implied VIX. Figure 1 shows the time series of
the CBOE VIX and the implied VIX of the four GARCH models estimated using returns only. Figure 2
shows the time series of the CBOE VIX and the implied VIX of the GARCH(1,1) model estimated using
VIX data only. Figure 3 shows the time series of the CBOE VIX and the implied VIX of the GARCH(1,1)
model estimated using both returns and VIX. Similar comparison plots are obtained for other GARCH
models. Specifically, the time series of the CBOE VIX and the implied VIX of the TGARCH(1,1) model
estimated with VIX data only are displayed in Figure 4. The time series of the CBOE VIX and the
implied VIX of the TGARCH(1,1) and AGARCH (1,1) model estimated with both returns and VIX
data are shown in Figures 5 and 6, respectively. For the EGARCH(1,1) model, Figure 7 shows the
comparison between the CBOE VIX and model implied VIX with VIX data only, and Figure 8 displays
the comparison between the CBOE VIX and model implied VIX with both returns and VIX data. From
the list of graphs, we observe that the model implied VIX fits the CBOE VIX better under the mLRNVR
compared with the LRNVR in general. In particular, the ratios of the implied VIX values to the CBOE
VIX values are closer to 1 under the mLRNVR compared to those under the LRNVR, as shown in
Figures 3, 5, 6 and 8. The direct comparisons of performance under LRNVR and mLRNVR for the
GARCH, TGARCH, AGARCH and EGARCH models are listed in Tables 1–4, respectively.
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Figure 1. Comparison between CBOE VIX and implied VIX using returns data only for four GARCH
models under the LRNVR.
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Figure 2. Comparison between CBOE VIX and implied VIX of the GARCH(1,1) model using VIX data
only. The left panel shows the index values of CBOE VIX and implied VIX and the right panel shows
the ratio of the implied VIX to CBOE VIX and a horizontal line at 1 for reference.
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Figure 3. Comparison between CBOE VIX and implied VIX of the GARCH(1,1) model using both
returns and VIX data with the upper panels showing the result under the mLRNVR and the lower
panels showing the result under the LRNVR. The left panels show the index values of CBOE VIX and
implied VIX and the right panels show the ratio of the implied VIX to CBOE VIX and a horizontal line
at 1 for reference.



J. Risk Financial Manag. 2020, 13, 51 16 of 21

1990 1993 1996 1999 2002 2005 2008 2011 2014 2017
0

10

20

30

40

50

60

70

80

90

TGARCH

 

 

TGARCH Implied VIX

CBOE VIX

1990 1993 1996 1999 2002 2005 2008 2011 2014 2017

TGARCH

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 4. Comparison between CBOE VIX and implied VIX of the TGARCH(1,1) model using VIX data
only. The left panel shows the index values of CBOE VIX and implied VIX and the right panel shows
the ratio of the implied VIX to CBOE VIX and a horizontal line at 1 for reference.
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Figure 5. Comparison between CBOE VIX and implied VIX of the TGARCH(1,1) model using both returns
and VIX data with the upper panel showing the result under the mLRNVR and the lower panel showing
the result under the LRNVR. The left panels show the index values of CBOE VIX and implied VIX and the
right panels show the ratio of the implied VIX to CBOE VIX and a horizontal line at 1 for reference.
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Figure 6. Comparison between CBOE VIX and implied VIX of the AGARCH(1,1) model using both returns
and VIX data with the upper panel showing the result under the mLRNVR and the lower panel showing
the result under the LRNVR. The left panels show the index values of CBOE VIX and implied VIX and the
right panels show the ratio of the implied VIX to CBOE VIX and a horizontal line at 1 for reference.
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Figure 7. Comparison between CBOE VIX and implied VIX of the EGARCH(1,1) model using VIX data
only. The left panel shows the index values of CBOE VIX and implied VIX and the right panel shows
the ratio of the implied VIX to CBOE VIX and a horizontal line at 1 for reference.
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Figure 8. Comparison between CBOE VIX and implied VIX of the EGARCH(1,1) model using both returns
and VIX data with the upper panel showing the result under the mLRNVR and the lower panel showing
the result under the LRNVR. The left panels show the index values of CBOE VIX and implied VIX and the
right panels show the ratio of the implied VIX to CBOE VIX and a horizontal line at 1 for reference.

6. Theoretical Justification

Duan studied the bivariate diffusion limit of the GARCH(1,1) model as the length of the time
period tends towards zero in Duan (1996, 1997). Applying Duan’s arguments, one can show that the
limiting bivariate diffusion process of the approximating GARCH(1, 1) process under the physical
measure P is given by

d ln Xt =

(
r− 1

2
ht + λ1

√
ht

)
dt +

√
htdW1t,

dht = (α0 + (α1 + β1 − 1)ht)dt +
√

2α1htdW2t, (27)

= (α0 + (α1 + β∗1 − 1)ht)dt +
√

2α1λ2htdt +
√

2α1htdW2t,

where the persistence parameter of conditional variance is defined as β∗1 = β1 −
√

2α1λ2 under the
mLRNVR. The terms dW1t and dW2t are independent standard Brownian motions under the physical
measure P. The limiting bivariate diffusion under the risk-neutral measure Q is a re-parameterization
of Hull and White (1987) bivariate diffusion model as follows:

d ln Xt =

(
r− 1

2
ht

)
dt +

√
htdZ1t

dht = (α0 + (α1 + β∗1 − 1)ht)dt +
√

2α1htdZ2t, (28)

where dZ1t = dW1t + λ1dt and dZ2t = dW2t + λ2dt are independent standard Brownian motions
under the mLRNVR Q. Both equity risk premium λ1 and variance risk premium λ2 are present in the
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model under the risk-neutral measure Q. The discrete-time GARCH(1, 1) process (5) corresponds to
the limiting diffusion process under the risk-neutral measure Q.

7. Conclusions

In this paper, we follow the GARCH option-pricing framework of Duan (1995) and propose a
modified local risk-neutral valuation relationship. The new risk-neutral valuation is referred to as
the mLRNVR. The advantage of the mLRNVR compared with the LRNVR commonly used in the
literature (Duan (1995); Hao and Zhang (2013); Wang et al. (2017)) is that the variance risk premium is
included in the risk-neutral dynamics under the mLRNVR. The absence of a variance risk premium in
the risk-neutral dynamics under the LRNVR is noted in Hao and Zhang (2013), where it is shown that
both empirical studies and theoretical results indicated that the GARCH models under the LRNVR
did not capture the variance premium.

We then find the theoretical VIX squared value as the conditional risk-neutral expectation of
the arithmetic mean variance over the next 21 trading days under the mLRNVR. Specifically, the
GARCH implied VIX formulas are derived using the features of square-root stochastic autoregressive
volatility (SR-SARV) models. We apply several calibration methods to estimate the model parameters
using various sets of time series data, and compare the theoretical formula performances with the
market data. Various combinations of the time series data of the daily closing price of the S&P 500
index and the CBOE VIX are used to find the maximum likelihood estimation of the GARCH models.
The corresponding implied VIX time series are then calculated from the calibrated model. Similar to
the empirical evidence in Hao and Zhang (2013) and Wang et al. (2017), when only the S&P 500 returns
are used for estimation, the GARCH implied VIX is consistently and significantly lower than the
CBOE VIX. When the CBOE VIX is used for estimation, the implied VIX fits the statistical properties
of the CBOE VIX and matches the CBOE VIX data better. The numerical results provide evidence
that the GARCH option pricing under the mLRNVR is more suitable to price volatility. In particular,
the numerical results show that the EGARCH model using both returns and VIX data under the
mLRNVR provides the best fit to the sample data. Therefore, we recommend that the option pricing
in the GARCH framework should use the EGARCH model with returns and VIX data under the
mLRNVR for the best results in the future. In the case of GARCH(1,1), we also compare the diffusion
limit of the GARCH process under the physical measure and the mLRNVR risk-neutral measure to
show that the variance premium is captured in the risk-neutral dynamics.
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