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Abstract: The Nelson–Siegel framework published by Diebold and Li created an important
benchmark and originated several works in the literature of forecasting the term structure of interest
rates. However, these frameworks were built on the top of a parametric curve model that may
lead to poor fitting for sensible term structure shapes affecting forecast results. We propose DCOBS
with no-arbitrage restrictions, a dynamic constrained smoothing B-splines yield curve model. Even
though DCOBS may provide more volatile forward curves than parametric models, they are still
more accurate than those from Nelson–Siegel frameworks. DCOBS has been evaluated for ten years
of US Daily Treasury Yield Curve Rates, and it is consistent with stylized facts of yield curves. DCOBS
has great predictability power, especially in short and middle-term forecast, and has shown greater
stability and lower root mean square errors than an Arbitrage-Free Nelson–Siegel model.

Keywords: interest rates; yeld curve; no-arbitrage; bonds; B-splines; time series

1. Introduction

Forecast methods applied to a term structure of interest rates are important tools not only for banks
and financial firms, or governments and policy makers, but for society itself, helping to understand
the movements of markets and flows of money. Several works have been done during the past few
decades in order to predict the dynamics of term structure of interest rates. This paper presents
a dynamic version of the constrained smoothing B-splines model to forecast the yield curve with
no-arbitrage restrictions.

A complete term structure of interest rates does not exist in the real world. Observable market
data are discrete points that relate interest rates to maturity dates. Since it is unlikely that there will be
an available contract in the market for every maturity needed by practitioners, a continuous curve
model is necessary. The importance of these models is crucial for pricing securities, for instance.
The first modeling technique that comes to mind is interpolation. With interpolation, one can indeed
obtain an adherent fit, but it can easily lead to unstable curves since market data are subject to many
sources of disturbance.

The literature describes two approaches for estimating the term structure of interest rates:
a statistical approach and an equilibrium approach. The equilibrium approach makes use of theories
that describe the overall economy in terms of state variables and its implications on short-term interest
rates Cox et al. (1985); Duffie and Kan (1996); Vasicek (1977). In the statistical approach, the construction
of the yield curve relies on data observed in the market Heath et al. (1992); Hull and White (1990).
This observed data can be smoothed with parametric or nonparametric methods. Parametric methods
have functional forms and their parameters can have economic interpretations such as a Nelson–Siegel
model Nelson and Siegel (1987) or the Svensson model Svensson (1994). One advantage is that
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restrictions on parameters can be added so it copes with convenient economic theories such as the
arbitrage-free set. However, its functional form makes parametric methods less flexible to fit observed
data. This lack of adherence to data can make its practical usage inappropriate, especially in asset
pricing and no-arbitrage applications due to misspecification Laurini and Moura (2010). The model
can produce yield curves with theoretical integrity but without reflecting the reality. On the other
hand, nonparametric methods do not assume any particular functional form and consequently they
are very flexible and can be very robust if combined with appropriate conditions.

After almost 50 years since the publication of the first yield curve models McCulloch (1971), just
recently the yield curve dynamics became an essential topic. With the publication of the Dynamic
Nelson–Siegel (DNS) model by Diebold and Li (2003), the subject became established. Even though
the dynamics of term structure play a vital role in macroeconomic studies, Diebold and Li argued
that until then little attention had been paid to forecasting term structures. They gave two reasons for
this lack of interest. Firstly, they stated that no-arbitrage models had little to say about term structure
dynamics. Secondly, based on the work of Duffee (2002), they assumed that affine equilibrium models1

forecast poorly. Therefore, there was a belief that the dynamics of yield curves could not be forecast
with parsimonious models.

In order to challenge this idea, Diebold and Li proposed the DNS model using a Nelson–Siegel yield
curve fitting to forecast its dynamics. This model became very popular among financial market users
and even central banks around the world. It is parsimonious and stable. In addition, the Nelson–Siegel
model imposes some desired economic properties such as discount function approaching zero as maturity
evolves and its factors representing short-, medium-, and long-term behaviors.

In practice, the forecast results of DNS are remarkable, but, despite its both theoretical and
empirical success, DNS does not impose restrictions for arbitrage opportunities. Consequently,
practitioners could be exposed to critical financial risks, as the pricing of assets that depends on
interest rates relies on arbitrage-free theory. In order to mitigate these risks, Christensen et al. (2011)
introduce a class of Arbitrage-Free Nelson–Siegel (AFNS) models. They are affine term structure
models that keep the DNS structure and incorporate no-arbitrage restrictions. Tourrucôo et al. (2016)
list several appealing features of AFNS. Namely, they keep the desired economic properties of the
three-factors model of the original structure of DNS. They also ensure lack of arbitrage opportunities
with a more simple structure compared to those affine arbitrage-free models published previously
by Duffie and Kan (1996) and Duffee (2002). This is achieved by adding a yield-adjustment term
to the Nelson–Siegel yield curve model described as an ordinary differential system of equations to
ensure no-arbitrage. Tourrucôo et al. (2016) argue that, in long forecast horizons, the AFNS model
with uncorrelated factors delivers the most accurate forecasts. Their conclusion is that no-arbitrage is
indeed helpful, but only for longer forecasting horizons. Barzanti and Corradi (2001) published earlier
works on the use of constrained smoothing B-splines to overcome some difficulties while estimating
term structures of interest rates with ordinary cubic splines. They computed the B-splines coefficients
as a least squares problem. However, Laurini and Moura (2010) proposed constrained smoothing
B-splines with a different methodology. This methodology was initially proposed by He and Shi (1998)
and He and Ng (1999) as a general tool to smooth data with certain qualitative properties such as
monotonicity and concavity or convexity constraints. Roughly, the methodology builds the yield
curve as a L1 projection of a smooth function into the space of B-splines. It is achieved by estimating a
conditional median function as described in quantile regression theory of Koenker and Bassett (1978).
A great advantage is that, being a conditional median function, it is robust to outliers. In addition,
its formulation as a linear programming problem allows us to impose several constraints without a
substantial increase in computational costs.

1 The expression “affine term structure model” describes any arbitrage-free model in which bond yields are affine
(constant-plus-linear) functions of some state vector x. For further reading, we recommend Piazzesi (2010).
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Our present work proposes DCOBS, a dynamic constrained smoothing B-splines model to forecast
the term structure of interest rates. DCOBS describes the coefficients of the yield curve model proposed
by Laurini and Moura (2010) as processes evolving over time. Even though constrained smoothing
B-splines specification provides full automation in knot mesh selection, we could not use it in a
dynamic framework setting. In order to build a common ground and observe curve shapes evolving
over time, knots were fixed to capture short-, medium- and long-term behavior according to observed
data. These knots were distributed equally in the dataset, so there was the same amount of coefficients
on each daily curve, and it was possible to run a statistical regression. DCOBS has shown great
predictability in the short-term, and remained stable in the long-term.

In Sections 2–4, we present a brief introduction to the fundamental concepts of dynamic
Nelson–Siegel models. In Section 5, we introduce the DCOBS model. Section 6 presents the dataset
used for fitting and forecasting the US Daily Treasury Yield Curve Rates. In Section 7, we study the
outputs from a time series of fitted yield curves. Finally, in Section 8, we finish the work pointing the
conclusions we made.

The main contributions of this paper are:

• A complete formulation of no-arbitrage constrained smoothing B-splines in terms of objective
functions and linear constraint equations;

• A dynamic framework of constrained smoothing B-splines (DCOBS) described as AR(1) processes
for each coefficient;

• Automatic selection of the best smoothing parameter λ for fitting yield curves;
• Yield curves estimated as conditional median functions robust to outliers;
• Evaluation of the DCOBS framework compared to the Arbitrage-Free Nelson–Siegel for ten years

of US Daily Treasury Yield Curve Rates;
• Yield curves with better adherence to data compared to Nelson–Siegel family curves.
• A software program that fits several curve fitting models, including no-arbitrage constrained

smoothing B-splines.

2. Term Structure of Interest Rates

In this paper, interest rates are treated as a multidimensional variable that represents the return
on investment expressed by three related quantities: spot rate, forward rate, and the discount value.

Each of these quantities depends on several economical, political, and social information, such
as supply and demand of money and the expectation of its future value, risk, and trust perception,
consequences of political acts, etc. The term structure of interest rates is a valuable tool not only
for banks and financial firms, or governments and policy makers, but, for society itself, helping to
understand the movements of markets and flows of money.

It is assumed that fixed income government bonds can be considered risk-free so we can define
a special type of yield that is the spot interest rate, s(τ). This function is the return of a fixed income
zero-coupon risk-free bond that expires in τ periods. Today’s price of such financial instrument whose
future value is $1.00, assuming that its interest rate is continuously compounded, is given by the
discount function, d(τ), represented by

d(τ) = e−s(τ)×τ . (1)

The relationship between the discount value and the spot rate can be recovered by

s(τ) = − log(d(τ))
τ

.

Based on the available bonds in the market with different maturities, it is possible to plan at an
instant a financial transaction that will take place in another future instant, starting at the maturity
of the shorter bond and expiring at the maturity of the longer bond. The interest rate of this future
transaction is called the forward rate.
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Consider a forward contract traded at the present day at τP = 0. This contract arranges an
investment in the future that starts at the settlement date at time τ. This investment will be kept until
the maturity date, at time τM > τ. Then, the implied continuously compounded forward rate is related
to the spot rate according to

f (τ, τM) =
s(τM)× τM − s(τ)× τ

τM − τ
.

The instantaneous forward rate or short rate f (τ) is defined by

f (τ) = lim
τM→τ

f (τ, τM).

That is, the short rate f (τ) is the forward rate for a forward contract with an infinitesimal
investment period after the settlement date. The forward rate can be seen as the marginal increase in
the total return from a marginal increase in the length of the investment Svensson (1994). The spot rate
s(τ) is defined by

s(τ) =
1
τ

∫ τ

0
f (x)dx. (2)

Note that the spot rate is the average of the instantaneous forward rates with settlement between
the trade date 0 and the maturity date τ. From (1) and (2), the discount function and forward rate may
be written as

d(τ) = e−
∫ τ

0 f (x)dx

and

f (τ) = −d′(τ)
d(τ)

.

Yield curve is a function of the interest rates of bonds that share the same properties except by their
maturities. A yield curve of spot rates is called term structure of interest rates Cox et al. (1985).

Yield curves of coupon-bearing bonds are not equivalent to yield curves of zero-coupon bonds
with same maturity dates Svensson (1994). Therefore, yield curves for coupon-bearing bonds should
not be used as direct representations of the term structure of interest rates.

In the real world, the term structure of interest rates has a discrete representation. Using
interpolation techniques, we can represent the term structure of interest rates in a continuous way. Such
a continuous representation provides a valuable tool for calculating the spot rate at any given interval.

As pointed out by Diebold and Li (2003), the classical approaches to model the term structure of
interest rates are equilibrium models and no-arbitrage models.

Equilibrium models Cox et al. (1985); Duffie and Kan (1996); Vasicek (1977) construct the term
structure of interest rates from economic variables to model a stochastic process for the short rate
dynamic. Then, spot rates can be obtained under risk premium assumptions, that is, considering what
investors expect as an extra return relative to risk-free bonds.

On the other hand, no-arbitrage models focus on perfectly fitting the term structure of interest
rate on observed market spot rates so that there is no arbitrage opportunity. A major contribution to
no-arbitrage models was given by Hull and White (1990) and Heath et al. (1992).

In the work of Diebold and Li (2003), neither the equilibrium model nor the no-arbitrage model
are used to model the term structure of interest rates. Instead, they use the Nelson and Siegel
exponential components framework Nelson and Siegel (1987). They do so because they claim their
model produces encouraging results for out-of-sample forecasting. In addition, at that time, little
attention had been paid in the research of both no-arbitrage and equilibrium models regarding the
dynamics and forecasting of interest rates.
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3. Dynamic Nelson–Siegel

Diebold and Li (2003) proposed the following dynamic version of Nelson–Siegel yield curve model

NS(τ) = β1L1(τ) + β2L2(τ) + β3L3(τ), (3)

where

L1(τ) = 1,

L2(τ) =
1− e−λτ

λτ
,

L3(τ) =
1− e−λτ

λτ
− e−λτ

and the parameter λ is a constant interpreted as the conductor of the curve exponential decay rate.
A yield curve is fitted according to the Nelson–Siegel model to relate yields and maturities

of available contracts for a specific day. We will refer to such yield curve as the Nelson–Siegel
static yield curve. Let θ be {β1, β2, β3}. The curves are fitted by constructing a simplex solver which
computes appropriate values for θ to minimize the distance between NS(τ) and market data points.
The coefficients β1, β2, and β3 are interpreted as three latent dynamic factors. The loading on β1 is
constant and do not change in the limit; then, β1 can be viewed as a long-term factor. The loading
on β2 starts at 1 and decays quickly to zero; then, β2 can be viewed as a short-term factor. Finally,
the loading on β3 starts at zero, increases, and decays back to zero; then, β3 can be viewed as a medium
term factor.

The Dynamic Nelson–Siegel (DNS) model is defined by

st(τ) = β1,tL1(τ) + β2,tL2(τ) + β3,tL3(τ)+εt (4)

t = 1, ..., T,

where the coefficients βi,t are AR(1) processes defined by

βi,t = ci + φiβi,t−1 + ηi,t i = 1, 2, 3.

The parameters ci and φi are estimated with the maximum likelihood for the ARIMA model.
The coefficients βi,t are predicted as AR(1) over a dataset of T daily market observations. Furthermore,
εt ∼ N (0, σ2

ε ) and ηi,t ∼ N (0, σ2
i ) are independent errors. Since the yield curve model depends only

on β1,t, β2,t, β3,t, then forecasting the yield curve is equivalent to forecasting β1,t, β2,t, and β3,t.
Conversely, the factors for long-term, short-term, and medium-term can also be interpreted,

respectively, in terms of level, slope, and curvature of the model. Diebold and Li (2003) use these
interpretations to claim that the historical stylized facts of the term structure of interest rates can
be replicated by fitting the three factors, which means that the model can replicate yield curve
geometric shapes.

For the US market, Diebold and Li (2003) show that the DNS model outperforms traditional
benchmarks such as the random walk model, even though Vicente and Tabak (2008) state that the
model does not outperform a random walk for short-term forecasts (one-month ahead).

4. Arbitrage-Free Nelson–Siegel

The Arbitrage-Free Nelson–Siegel (AFNS) static model for daily yield curve fitting was
derived by Christensen et al. (2011) from the standard continuous-time affine Arbitrage-Free
formulation of Duffie and Kan (1996). The AFNS model almost matches the NS model except by



J. Risk Financial Manag. 2020, 13, 65 6 of 14

the yield-adjustment term −C(τ,τM)
τM−τ . In fact, the definition of the AFNS static model in Christensen

et al. (2011) is given by

AFNS(τ) = β1L1(τ) + β2L2(τ) + β3L3(τ)−
C(τ, τM)

τM − τ
. (5)

The AFNS model built by Christensen et al. (2011) considers the mean levels of the state variable
under the Q-measure at zero, i.e., ΘQ = 0. Thus, −C(τ,τM)

τM−τ have the form

−C(τ, τM)

τM − τ
=− 1

2
1

τM − τ
3

∑
j=1

∫ τM

τ

(
Σ′B(s, τM)B(s, τM)′Σ

)
j,j ds.

Considering a general volatility matrix (not related to the dynamic model for forecasting the
yield curve)

Σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ,

Christensen et al. (2011) show that an analytical form of the yield-adjustment term can be
derived as

C(τ, τM)

τM − τ
=

1
2

1
τM − τ

∫ τM

τ

3

∑
j=1

(
Σ′B(s, τM)B(s, τM)′Σ

)
j,j ds.

They also estimated the general volatility matrix for maturities measured in years as

Σ̂ =

0.0051 0 0
0 0.0110 0
0 0 0.0264


and λ̂ = 0.5975 for independent factors AFNS model, solving the yield-adjustment equation for
arbitrage-free conditions.

Note that the adjustment-term C(τ, τM) is only time-independent. In other words, it is a
deterministic function that depends only on the maturity of the bond. Thus, let the auxiliary function
Γ(τ) be

Γ(τ) = −C(0, τ)

τ
.

As in the Dynamic Nelson–Siegel model, the Dynamic AFNS model describes the AFNS static
model evolving over time. The Dynamic AFNS model is defined by

st(τ) = β1,tL1(τ) (6)

+ β2,tL2(τ)

+ β3,tL3(τ) + Γ(τ) + εt

t = 1, ..., T

where the loadings L1(τ), L2(τ) and L3(τ) are the usual functions of (3) and the coefficients βi,t are
autoregressive processes described by

βi,t = ci + φiβi,t + ηi,t i = 1, 2, 3 (7)
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where the parameters ci and φi and the coefficients βi,t are estimated and predicted as described in
Section 3.

If βi,t is a linear function of β j,t where i 6= j, or there is a cointegration, the component βi,t can be
predicted as a linear function of β j,t, and the model can be simplified.

5. Dynamic Constrained Smoothing B-Splines

Constrained Smoothing B-Splines is a methodology first proposed by He and Shi (1998) and then
formalized by He and Ng (1999) as a proper algorithm. Constrained Smoothing B-Splines extends
smoothing splines to a conditional quantile function estimation and then formulates the model as
a linear programming problem that can incorporate constraints such as monotonicity, convexity,
and boundary conditions. Laurini and Moura (2010) applied this methodology as a static model to
fit daily yield curves along with no-arbitrage constraints. The estimation of the daily term structure
of interest rates is set to be a conditional median estimation that is robust to outliers. This model
produces yield curves as L1 projection into the space of B-splines. The flexible nature of B-splines and
the arbitrage-free constraints makes the model a powerful tool that creates balance between financial
meaning and adherence to data avoiding overfitting.

Our main contribution is the proposal of the Dynamic Constrained Smoothing B-splines (DCOBS)
model that describes the static model evolving over time.

DCOBS is estimated by the Penalized Least Absolute Deviation

min
θ∈RC

n

∑
i=1

∣∣∣∣∣yi −
C

∑
j=1

ajBj(τi)

∣∣∣∣∣+ Λ max
τ

C

∑
j=1

aj(Bj(τ))
′′, (8)

where n is the number of contracts available in the reference day, yi are market yields of the contracts,
C = N + m is the number of coefficients, N is the number of internal knots, θ = (a1, . . . , aC) is the
coefficient vector to be estimated, Bj are the B-splines basis, and τi are distinct maturities of the
contracts. As in Laurini and Moura (2010), the model is configured with m = 3 as the order for
quadratic B-Splines basis. The selection of the smoothing parameter Λ is automated with generalized
cross validation (Leave-One-Out GCV) method of Fisher et al. (1995).

The formulation in (8) can be rewritten as

min
θ∈RC

n

∑
i=1

∣∣∣∣∣yi −
C

∑
j=1

ajBj(τi)

∣∣∣∣∣+ Λω,

such that

−ω ≤
C

∑
j=1

aj(Bj(tk))
′′ ≤ ω,

where k = 1, ..., N and tk is an internal knot position.
The static model defined by (8) can be implemented as an equivalent linear programming problem

that minimizes the objective function z such that

min z =
n

∑
i=1
|ei|+ |ω| .

Each yield observed in the market will produce five linear constraint equations: two constraints
for fitting the curve, one constraint for smoothing, and two constraints for no-arbitrage conditions.



J. Risk Financial Manag. 2020, 13, 65 8 of 14

The fitting constraints are

C

∑
j=1

ajBj(τi) + |ei| ≥ yi,

C

∑
j=1

ajBj(τi)− |ei| ≤ yi,

where all Bj(τi) are quadratic B-splines basis.
The smoothing constraint is

Λ
C

∑
j=1

aj(Bj(τi))
′′ − |ω| ≤ 0.

Finally, the no-arbitrage constraints are

C

∑
j=1

ajBj(τi) > 0,

C

∑
j=1

aj(Bj(τi))
′
< 0.

The resulting fitted yield curve

ŝ(τ) =
C

∑
j=1

âjBj(τ)

is a conditional median function represented by quadratic smoothing B-splines.
Now, we propose the Dynamic Constrained Smoothing B-Splines model by

st(τ) =
C

∑
j=1

aj,tBj(τ) + εt, (9)

t = 1, ..., T,

where the coefficients aj,t are autoregressive processes described by

aj,t = cj + φjaj,t−1 + ηj,t j = 1 . . . C,

where the parameters ci and φi and the coefficients βi,t are estimated and predicted as described in
Sections 3 and 4.

If ai,t is a linear function of aj,t where i 6= j, or there is a cointegration, the component ai,t can be
predicted as linear function of aj,t and the model can be simplified.

The DCOBS model extends the static model and extrapolates the temporal axis creating a surface
of fitted curves.

Figure 1 displays a visual idea of the differences between each yield curve model and the
superiority of fitting of DCOBS over AFNS.
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Figure 1. Dynamic Constrained B-Splines compared to Arbitrage-Free Nelson–Siegel.

6. Descriptive Analysis

This work used 10 years (2007–2017) of public historical data of US Daily Treasury Yield Curve
Rates2. The data were partitioned so 2007–2016 was the sample data set and 2017 was the test data set.
A US federal holidays dataset was built for auxiliary calculations of business days.

The sample data set had 27,544 data points in 2504 reference dates spanning between 2 January
2007 and 30 December 2016. The term structure horizon spans between 22 and 7920 business days.
The sample data set originated 5008 yield curves, with 2504 AFNS and 2504 DCOBS.

By the nature of parametric models, there is no challenge in relating the coefficients in a
time-dependent process. Thus, Arbitrage-Free Nelson–Siegel yield curves are fitted using the raw
sample data.

On the other hand, nonparametric B-Splines models depend on its knots and data points position.
Therefore, a two-step normalization procedure was applied and so the coefficients could be related in
a time-dependent process. The first step normalizes the horizon length. The second step normalizes
the data point positions.

In the first step, the Nelson–Siegel model is applied to extrapolate the horizon and calculate the
yields on the boundaries of the term structure. The largest curve was picked from the dataset with a
horizon of 7920 days.

For the second step, an auxiliary DCOBS curve was built with knots being equally distributed
across the horizon. With the resulting fitted curve, we calculated the normalized term structure by
evaluating the auxiliary curve at the points (0, s(132), s(594), s(1320), s(7920)). Theses knots were
selected based on observed data and the overall fitting quality it produced3.

In this analysis, 2504 yield curves were generated by our computational program using both
methods AFNS and the DCOBS. For each curve, the AFNS method produced three coefficients while

2 For more information: https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?
data=yield.

3 For more information: https://www.gnu.org/software/gsl/manual/html_node/Evaluation-of-B_002dspline-basis-
functions.html.

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
https://www.gnu.org/software/gsl/manual/html_node/Evaluation-of-B_002dspline-basis-functions.html
https://www.gnu.org/software/gsl/manual/html_node/Evaluation-of-B_002dspline-basis-functions.html
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DCOBS produced five coefficients. The resulting DCOBS yield curves had a better performance
compared to AFNS considering Root Mean Square Error in every year of a sample data set as shown
in Table 1. The difference of fitting both methods can be seen in Figure 1 for the yield curve on
2 January 2008.

Table 1. Root of Mean Squared Errors for the AFNS and DCOBS.

Year AFNS RMSE DCOBS RMSE

2007 0.02 0.02
2008 0.06 0.02
2009 0.08 0.02
2010 0.09 0.03
2011 0.09 0.03
2012 0.07 0.04
2013 0.08 0.03
2014 0.07 0.02
2015 0.05 0.01
2016 0.04 0.01

Total 0.65 0.23

7. Results

The time series for AFNS coefficients can be seen in Figure 2. Coefficients β1,t and β3,t may
be cointegrated, so we run a two-step Engle–Granger cointegration test Engle and Granger (1987).
The linear regression of β3,t explained by β1,t returned an intercept of −0.10 and a coefficient of 0.84.
Applying the Augmented-Dickey–Fuller Unit Root Test on regression residuals yielded a statistic of
−2.68. Such statistics, confronting the critical values for the co-integration test of Engle and Yoo (1987)
leads us to reject the unitary root hypothesis because the residuals are stationary. The conclusion is
that there is cointegration between β1,t and β3,t.

In economic terms, the cointegration describes a strong relationship between long- and
medium-term contracts, which can be a result of a political measure or some market characteristics
that stimulated the emission of long-term contracts based on the price of medium-term contracts and
vice versa.

The time series for β1,t and β2,t in (7) are modeled as AR(1) processes with one differentiation.
The estimated φ for β1,t is −0.04 and for β2,t is 0.13.

As seen in AFNS coefficients time series, DCOBS estimated coefficients a2,t and a3,t seem to
cointegrate in Figure 3, as well as coefficients a4,t and a5,t, so we run a two-step Engle-Granger
cointegration test. The linear regression of a3,t explained by a2,t returned an estimated intercept of
−7.61 and a coefficient of 8.60. The linear regression of a5,t explained by a4,t returned an estimated
intercept of 0.11 and an estimated coefficient of 0.43. Applying the Augmented-Dickey–Fuller Unit
Root Test on regression residuals yielded the statistics −5.48 for estimated coefficients a2,t and a3,t.
The same test yielded the statistics −2.41 for estimated coefficients a4,t and a5,t. Confronting these
statistics with the critical values in Engle and Yoo (1987) implied the unitary root hypothesis because
the residuals are stationary. The conclusion is that there is a cointegration between a2,t and a3,t as well
as between a4,t and a5,t.
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Figure 2. AFNS coefficient series.
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Figure 3. DCOBS estimated coefficient series.
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Since B-Splines coefficients have a more local specific behavior, these cointegrations give a more
detailed analysis than the AFNS model. It reveals the binding between short- and medium-term
contracts on one side and medium- and long-term contracts on the other side. Like the economic
interpretation of the AFNS model, this is an important feature of the model because it shows to
investors and policy makers the magnitude of how the supply and demand on a type of contract can
influence the price of another type of contract.

The time series for a2,t and a4,t are modeled as AR(1) processes with one differentiation.
The estimated φ of a2,t is 0.02 and for a4,t is −0.03. Then, a3,t and a5,t are linear functions of a2,t
and a4,t, respectively.

The time series modeled as AR(1) processes above were used to make the out-of-sample forecast
with a horizon of 250 business days, the amount of business days in a test dataset of 2017. Three
reference dates were considered for evaluation: 1 month (short-term), 6 months (medium-term),
and 12 months (long-term). Figure 4 shows short-, medium- and long-term forecasts for AFNS and
DCOBS curves.
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Figure 4. Short-, medium- and long-term forecasts for AFNS and DCOBS curves.

In a 1-month forecast, DCOBS performs a good fit to the term structure both in the short-term as
in a long-term horizon, as the curve follows the data points. AFNS shows a heavy instability in the
beginning of the curve in all forecasting, although, in the long-term, it performs well.

We compared both forecast techniques using the Diebold–Mariano accuracy test Diebold and
Mariano (1995) with an alternative hypothesis being DCOBS outperforming AFNS prediction.
As stated before, DCOBS outperforms AFNS in the short-term prediction. The absolute value of
Diebold–Mariano statistics for a one-month forecast is greater than 1.96, so the null hypothesis that
both techniques have the same accuracy is rejected. On the other hand, for 6-month and 12-month
forecasts, the absolute value of Diebold–Mariano statistics stays lower than 1.96, which means that
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both techniques may have the same predictive accuracy. Table 2 shows forecasts’ root mean square
errors, and Table 3 shows Diebold–Mariano statistics results.

Table 2. Forecast root mean square errors.

Method 1-Month 6-Months 12-Months

AFNS 0.02 0.02 0.023
DCOBS 0.01 0.01 0.029

Table 3. Diebold–Mariano Test Statistics.

Method 1-Month 6-Months 12-Months

DM 2.60 1.64 −0.38
p-value 0.01 0.06 0.64

8. Conclusions

In this work, we have proposed DCOBS, a methodology for forecasting the dynamics of the term
structure of interest rates extending the Constrained Smoothing B-Splines curve model.

The results have shown a great predictability power of the DCOBS model on the short- and
middle-term, which are extremely important for traders and other financial market specialists.
In comparison, the AFNS model has shown poor fitting as seen in Figure 1 and lack of stability
in the beginning of the curves. Even though the accuracy of DCOBS in the middle and long-term is
statistically equivalent to AFNS, the stability of the DCOBS can certainly be explored in future works
to improve its predictability quality.

Finally, DCOBS can be a powerful tool to be applied in other areas like biology, physics, earth
sciences, etc.
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