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Abstract: This paper aims to enrich the understanding and modelling strategies for cryptocurrency
markets by investigating major cryptocurrencies’ returns determinants and forecast their returns.
To handle model uncertainty when modelling cryptocurrencies, we conduct model selection for an
autoregressive distributed lag (ARDL) model using several popular penalized least squares estimators
to explain the cryptocurrencies’ returns. We further introduce a novel model averaging approach or
the shrinkage Mallows model averaging (SMMA) estimator for forecasting. First, we find that the
returns for most cryptocurrencies are sensitive to volatilities from major financial markets. The returns
are also prone to the changes in gold prices and the Forex market’s current and lagged information.
Then, when forecasting cryptocurrencies’ returns, we further find that an ARDL(p,q) model estimated
by the SMMA estimator outperforms the competing estimators and models out-of-sample.

Keywords: cryptocurrencies; Mallows criterion; model averaging; model selection; shrinkage;
tuning parameter choice

JEL Classification: G12; C13; C21

1. Introduction

Ever since the advent of the first digital currency, Bitcoin (BTC), which was created under the
anonymous identity Nakamoto (2008), cryptocurrencies are becoming increasingly popular among
investors as they provide an alternative investment strategy to conventional financial assets. Unlike fiat
money, which is usually issued by central authorities, the cryptocurrencies typically originate from
decentralized virtual networks that store and distribute assets digitally. The cryptocurrencies are
highly sought after as they stem from a peer-to-peer structure that allows efficiency, security and
profitability. As they are becoming more widely accepted by investors, it has cemented their legitimacy
as a medium of exchange and a means to liquidity for businesses, financial institutions and the general
public alike.

In this paper, we concentrate on investigating the returns of the top seven cryptocurrencies
by market capitalization in USD as of August 8, 2020, according to coinmarketcap.com. The top
seven cryptocurrencies are Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Tether (USDT), Bitcoin
Cash (BCH), Bitcoin SV (BSV), and Litecoin (LTC). Not only do we aim to uncover the relationship
between the cryptocurrency and the macroeconomic conditions, but we also explore the dynamic
interactions between the cryptocurrency market and the financial market, foreign exchange (Forex)
market, commodity market and precious metals market. This helps potential investors to gain more
insights into the leading cryptocurrencies.

The relationship between the macroeconomic conditions, the conventional assets market,
and the cryptocurrencies’ returns have been extensively investigated in the current literature.
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For example, Dyhrberg (2016a), Dyhrberg (2016b) and Wu et al. (2019) showed that the gold prices
help explain the variations in the cryptocurrencies. Moreover, Bouri et al. (2017), Demir et al. (2018),
Panagiotidis et al. (2019) and Wu et al. (2019) provided evidence that the economic policy uncertainty
plays a role in explaining the cryptocurrencies. However, there is not yet a unifying underlying theory
that guides the modelling of the cryptocurrencies. Moreover, the decentralized and volatile nature of
the cryptocurrency, which is supported by Aharon and Qadan (2019), further aggravates the problem
of model uncertainty that is already ripe in the field of asset pricing.

To handle model uncertainty, model selection and model averaging have long been the competing
approaches that originate from dichotomous modelling philosophies. Model selection searches for
the most relevant variables, while model averaging aims to smooth over a set of candidate models
rather than committing to a single model. For model selection, Hoerl and Kennard (1970) and
Tibshirani (1996) introduced the ridge and the least absolute shrinkage and selection operator (LASSO)
estimator for simultaneous selection and estimation. In contrast, the traditional best subsets approach
often leads to local solutions.

However, the ridge and LASSO estimators’ asymptotic bias prompted the development of a
class of penalized least squares estimators that also possess the oracle properties. In particular,
Fan and Li (2001) developed the smoothly clipped absolute deviation (SCAD) estimator, Zou (2006)
introduced the adaptive LASSO (AdaLASSO) estimator, and Zhang (2010) invented the minimax
concave penalty (MCP) estimator.

The penalized estimators’ performance also relies on the tuning parameter choice for the penalty
function to achieve the optimal estimation. The cross-validation (CV) and the information criterion
(IC) are the two conventional approaches for selecting the tuning parameter. Shi and Tsai (2002) have
shown that the Bayesian information criterion (BIC) consistently identifies the true model in finite
samples. For the algorithm generating the candidate tuning parameters, Tibshirani et al. (2010) and
Breheny and Huang (2011) developed the cyclical coordinate descent (CCD) algorithm to compute
the solution path for the penalized least squares estimators. They provided evidence that the tuning
parameter choice affects the model selection outcomes.

In the spirit of the OLS post-LASSO estimator introduced by Belloni and Chernozhukov
(2013), Xiao and Sun (2019) further studied the finite sample performances of the class of OLS
post-selection estimators with the tuning parameters determined by different tuning parameter
selection approaches. The OLS post-selection estimators avoid the complicated penalty functions in
building inference, and the results from Xiao and Sun (2019) further validate the importance of the
tuning parameter selection.

On the other hand, for model averaging, the Shrinkage Mallows Model Averaging (SMMA)
estimator introduced by Xiao and Sun (2019) compliments the penalized estimators by allowing
for more than one model selection outcome and hedges against the penalized estimators’ sensitivity
towards the tuning parameter choice. The SMMA estimator extends the current Mallows Model
Averaging (MMA) framework from Hansen (2007) by introducing a reasonable way for selecting
candidate models. The SMMA estimator also builds on the shrinkage averaging estimator (SAE) by
Schomaker (2012) by incorporating the tuning parameter optimization problem for each candidate
model. The SMMA estimator essentially combines model selection and model averaging to address
model uncertainty.

In this paper, we examine the determinants of the returns for major cryptocurrencies by applying
the autoregressive distributed lag (ARDL) model with model selection via penalized least squares
estimators. Then we average the candidate sub-models post model selection by the SMMA estimator
for forecasting cryptocurrencies’ returns. In particular, the issue of ARDL(p,q) models’ lag selection,
the discrete nature of traditional model selection algorithms, and the sensitivity of the tuning parameter
choice affecting variable selection outcomes culminate in a call for a novel modelling approach.
Therefore, we contribute to the existing literature on forecasting cryptocurrencies via a novel model
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averaging approach where both model selection and model averaging are combined by our SMMA
estimator to address the cryptocurrencies’ model uncertainty.

We find that most cryptocurrencies’ returns are sensitive to fluctuations from major financial
markets. They are also susceptible to the changes in gold prices and the Forex market’s current and
lagged information. We then forecast the returns of the cryptocurrencies via the SMMA estimator.
We find that an ARDL(p,q) model estimated by the SMMA estimator outperforms competing estimators
and competing models considered in this paper for forecasting cryptocurrencies’ returns.

The rest of the paper is organized as follows. Section 2 outlines the methodology. Section 3 presents
the model and Section 4 introduces the data respectively. Section 5 reports the empirical results and
Section 6 conducts forecast evaluations. Section 7 concludes.

2. Methodology

To handle the model uncertainty that is common in asset pricing, especially for
the cryptocurrencies, we consider both model selection and model averaging approaches.
For model selection, we mainly consider the penalized least squares estimators studied in detail
by Xiao and Sun (2019). According to their data examples, the six best-performing OLS post-selection
estimators are listed in Table 1. They provide not only an estimation strategy, but more importantly,
an appropriate data-driven approach for the ARDL(p,q) model’s lag selection as there is not yet a no
unified approach for its lag selection.

Table 1. Penalized least squares estimators. SCAD, smoothly clipped absolute deviation; MCP, minimax
concave penalty.

Estimator

OLS post-SCAD(BIC) OLS post-SCAD(GCV)
OLS post-MCP(BIC) OLS post-MCP(GCV)

OLS post-LASSO(BIC) OLS post-LASSO(GCV)
OLS post-adaptive-LASSO(BIC) OLS post-adaptive-LASSO(GCV)

For Table 1, the OLS post-SCAD(BIC) estimator is constructed with the tuning parameter in the
SCAD penalty function selected by the BIC. Similarly, the OLS post-SCAD(GCV) is constructed with
the tuning parameter in the SCAD penalty function selected by the generalized cross validation (GCV).

For example, an OLS post-SCAD(BIC) estimator where the tuning parameter in the SCAD penalty
function is selected by the BIC for the ARDL(p,q) model in Equation (23) can be constructed with the
tuning parameter in the penalty function selected by the BIC approach as follows.

Let Λ = {λ1, . . . , λQ} be the set of candidate tuning parameters and |Λ| = Q with Q ∈ Z+.
Given any λ ∈ Λ, the SCAD estimator evaluated at λ gives:

γ̂λ = argmin
γ
‖y− Zγ‖2 +

K
∑

m=1
F(|γm|; λ), (1)

where F is the SCAD penalty function.
The BIC evaluated at this λ is defined as BICλ, which is given by:

BICλ =

∥∥y− Zγ̂λ
∥∥2

n
+ |Sλ|

log(n)
n

Cn, (2)

where the values for λ originate from an exponentially decaying grid as in Tibshirani et al. (2010).
Let Sλ denote the set of nonzero parameters of the model when evaluated at λ so that Sλ = {m :

γ̂λ
m 6= 0}. Then, |Sλ| gives the number of nonzero parameters of the model when evaluated at λ and

Cn = 1 following Shi and Tsai (2002).
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The estimate of the optimal tuning parameter is denoted by λ̂BIC and solves the following problem:

λ̂BIC = argmin
λ∈{λ1,...,λQ}

BICλ. (3)

Consequently, γ̂λ̂BIC
minimizes the SCAD penalized objective function given by Equation (1),

γ̂λ̂BIC
= argmin

γ
‖y− Zγ‖2 +

K
∑

m=1
F(|γm|, λ̂BIC). (4)

Denoting S
λ̂BIC = {m : γ̂λ̂BIC

m 6= 0}, we define the OLS post-SCAD(BIC) estimator as:

γ̂post = argmin
γ

∥∥∥∥∥∥y− ∑
v∈S

λ̂BIC

Zvγv

∥∥∥∥∥∥
2

, (5)

where Zv is an (n−max{p, q})× 1 vector, which is the vth column of the predictor matrix Z, and γv is
the vth parameter in S

λ̂BIC .
Similarly, we construct other OLS post-selection estimators shown in Table 1 as the OLS

post-selection(BIC or GCV) estimator. The OLS post-selection(BIC or GCV) estimator minimizes
the BIC or the GCV criterion, respectively, to estimate the optimal tuning parameter.

For model averaging, we adopt a novel model averaging approach or the SMMA estimator
introduced by Xiao and Sun (2019) as it combines model selection and model averaging to
handle model uncertainty. The SMMA estimator performs significantly better when averaging high
dimensional sparse models against model uncertainty.

The SMMA estimator starts with a large general model and applies different penalty methods
to select the candidate models for averaging. It is a two-stage estimator. For this paper, in the first
stage, we apply different penalty estimators introduced in Table 1 with optimal tuning parameters
selected via the GCV or BIC, thereby obtaining a sequence of candidate models. Then we apply the
MMA criterion in the second stage to estimate the model parameters.

Let ΛOpt represent the set of optimal tuning parameters selected either by the BIC or GCV for the
model selection procedures introduced in Table 1 such that:

ΛOpt =
{

λ̂
Opt
1 , . . . , λ̂

Opt
s , . . . , λ̂

Opt
S
}

, (6)

where λ̂BIC
s represents the optimal tuning parameter for the sth candidate model given by the sth

penalized least squares estimator, and |ΛOpt| = S .
The model averaging estimator for the conditional mean of y is ŷ(ŵ; ΛOpt), which is defined as:

ŷ(ŵ; ΛOpt) =
S2

∑
s=1

ŵsP(λ̂Opt
s )y = P(ŵ; ΛOpt)y, (7)

where the projection matrix for the sth candidate model is defined as:

P(λ̂Opt
s ) = Zλ̂

Opt
s
(

Zλ̂
Opt
s

T
Zλ̂

Opt
s
)−1

Zλ̂
Opt
s

T
, (8)

and the estimator for the parameters in the sth candidate model is given by:

γ̂(λ̂
Opt
s ) =

(
Zλ̂

Opt
s

T
Zλ̂

Opt
s
)−1(

Zλ̂
Opt
s
)T

y. (9)
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Therefore, the SMMA estimator for the ARDL(p,q) model is solved as:

γ̂SMMA(ŵ; ΛOpt) =
S
∑
s=1

ŵsFsγ̂(λ̂
Opt
s ), (10)

where |γ̂(λ̂Opt
s )| = K(λ̂Opt

s ) is the number of nonzero values in γ̂(λ̂
Opt
s ) and Fs is a K(λ̂BIC

s ) × K
matrix specified as:

Fs =
(

ZTZ
)−1

ZTZλ̂
Opt
s , (11)

whose rank is K(λ̂Opt
s ), and each element in Fs is either one or zero to map γ̂(λ̂

Opt
s ) to a K× 1 vector,

while Z is the (n−max{p, q})×K regressor matrix.
The weight vector w is estimated by the MMA criterion,

ŵ = argmin
w∈HS

(
y− ŷ(w; ΛOpt)

)T(
y− ŷ(w; ΛOpt)

)
+ 2σ2K(w; ΛOpt), (12)

where w =
[
w1, w2 . . . , wS

]T is a weight vector in the unit simplex in RS with S ∈ Z+ such that:

HS =
{

w ∈ [0, 1]S :
S
∑
s=1

ws = 1
}

, (13)

and the effective number of parameters K(w; ΛOpt) is defined as:

K(w; ΛOpt) =
S
∑
s=1

wsK(λ̂Opt
s ). (14)

Let the L index be the largest model in dimension from the set of the candidate models, i.e.,

L = argmax
s∈S

{
|γ̂(λ̂Opt

s )|
}

, (15)

and KL be the number of nonzero parameters in the largest candidate model.
According to Hansen (2007), the σ2 term will be estimated by σ̂2

L, which is given below:

σ̂2
L =

(y− ZLγ̂L)
T(y− ZLγ̂L)

n−KL
. (16)

Following Hansen (2008), an out-of-sample forecast combination by the SMMA estimator is
generated as:

ỹ(ŵ; ΛOpt) =
S2

∑
s=1

ŵsỹ(λ̂Opt
s ), (17)

where ỹ(λ̂Opt
s ) is the forecast from the sth candidate model given λ̂

Opt
s , and it is defined as:

ỹ(λ̂Opt
s ) = Z̃Fsγ̂(λ̂

Opt
s ), (18)

where Z̃ is the out-of-sample regressor matrix that is
(
n−max{p, q}+ 1

)
×K in dimension.

3. Model

We consider autoregressive distributed lag (ARDL)(p,q) model where p is the order of lags for
the dependent variable y and q is the order of lags for the independent variable X. The rationale for
applying the ARDL(p,q) model for modelling cryptocurrencies is that it nests more sub-models and,
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therefore, is more encompassing. As a result, we think that the ARDL(p,q) model is particularly helpful
for modelling cryptocurrencies which feature model uncertainty.

The ARDL(p,q) model is defined as:

yt = α + ρh

p

∑
h=1

yt−h +
k

∑
i=1

q

∑
l=0

xi,t−l βi,l + εt, ∀t > max{p, q}, (19)

where yt is the daily returns for any of the cryptocurrencies at period t and yt−h represents the
dependant variable lagged to period t− h. Further, xi,t−l is the observation for the ith explanatory
variable at period t− l. Lastly, ρh is a scalar parameter for yt−h, while βi,l is the parameter for xi,t−l .

Let:

γ =
[
α, (ρ1, ρ2, . . . , ρp), (β1,0, . . . , β1,q

)
, . . . , (βk,0, . . . , βk,q

)]T
, (20)

and Z be an (n−max{p, q})× (1 + p + k× q) regressor matrix defined as:

Z =


Zt

Zt+1
...

Zn

 , t = max{p, q}+ 1, (21)

where:

Zt =
[
1, (yt−1, . . . , yt−p), (x1,t, . . . , x1,t−q), (x2,t, . . . , x2,t−q) . . . , (xk,t, . . . , xk,t−q)

]
. (22)

Then, the model in Equation (19) can be rewritten as:

y = Zγ + ε, (23)

where y is an (n−max{p, q})× 1 vector for the daily returns of any of the cryptocurrencies, Z is the
(n−max{p, q})× (1 + p + k× q) regressor matrix and γ is a (1 + p + k× q)× 1 vector of parameters.
To simplify the notations, let K = 1 + p + k× q.

4. Data

First, the dataset contains the daily close prices for the top seven cryptocurrencies by market
capitalization in USD as of 8 August 2020 according to coinmarketcap.com, which is website
that specializes in cryptocurrencies. The top seven cryptocurrencies are Bitcoin (BTC), Ethereum
(ETH), Ripple (XRP), Tether (USDT), Bitcoin Cash (BCH), Bitcoin SV (BSV) and Litecoin (LTC).
The cryptocurrencies studied in the paper are summarized in Table 2.

Table 2. Cryptocurrency summary.

Name Code Release Date Market Capitalization (USD) Ranking Sample Size

Bitcoin BTC 3 January 2009 $214,216,361,823 1 1759
Ethereum ETH 30 July 2015 $42,514,584,819 2 1545

Ripple XRP 15 May 2018 $13,250,155,412 3 1281
Tether USDT 25 February 2015 $10,029,337,359 4 1985

Bitcoin Cash BCH 1 August 2017 $5,650,564,6948 5 1109
Bitcoin SV BSV 19 November 2018 $4,255,662,214 6 628

Litecoin LTC 12 November 2018 $3,745,359,046 7 635

Note: The market capitalizations of the top 7 cryptocurrencies in U.S. dollars as of 8 August 2020 are provided
by coinmarketcap.com. The time series data for the daily close prices are from coinmarketcap.com and the
respective samples dates from the initial public trading of the corresponding cryptocurrencies.

coinmarketcap.com
coinmarketcap.com
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Table 2 presents the codes, release dates, market capitalizations (USD), rankings and sample sizes
for the cryptocurrencies considered in this paper. It is worth noting that Ripple commands a relatively
higher market capitalization than USDT and BCH despite a later release date. The USDT and BCH
were released earlier in 2015 and 2017, respectively.

Following the literature, the returns for the cryptocurrency are defined as,

rt+1 = ln(
Pt+1

Pt
), t = 1, 2, . . . , n, (24)

where Pt stands for the daily close prices for respective cryptocurrencies at period t. To explain the
cryptocurrency returns, we also incorporate several other independent variables into the dataset that
comprise macroeconomic and financial market conditions.

To account for the macroeconomic conditions, we include the following independent variables.
The independent variables are the daily Brent crude oil price following Aharon and Qadan (2019),
the daily London Bullion Market Association (LBMA) gold price following Dyhrberg (2016a),
Dyhrberg (2016b) and Wu et al. (2019). We also include U.S./Euro foreign exchange rate, the
daily US federal funds rate, the daily economic policy uncertainty index for the US, and the monthly
global economic policy uncertainty index following Bouri et al. (2017), Demir et al. (2018) and
Panagiotidis et al. (2019). The daily time series data for the oil price, gold price, U.S./Euro foreign
exchange rate and the daily US federal funds rate (FFR) are collected from quandl.com. The daily
time series data for the US economic policy uncertainty index and the monthly time series data for the
global economic policy uncertainty index are collected from policyuncertainty.com.

To control for the financial market conditions, we also introduce the Dow Jones NYSE index,
the S&P 500 index, the Volatility Index (VIX), which is the daily Chicago Board Options Exchange
(CBOE) volatility index in U.S. dollars, and Fama and French’s Momentum Factor (Mom) following
Aharon and Qadan (2019). The daily time series data for the Dow Jones NYSE index and S&P 500
index are from Yahoo finance. The daily time series data for VIX are collected from the CBOE’s official
website at cboe.com, and the daily time series data for Mom are collected from the Kenneth R. French
Data Library.

Similarly, the daily returns for the independent variables in this dataset are defined following
Equation (24). The descriptive statistics for the dataset are shown in Table 3.

Table 3. Descriptive statistics for cryptocurrencies, stocks, commodities, gold and Forex market.

Variable Description Mean Std.Dev. Min Max Skewness Kurtosis

BTC Bitcoin daily returns 0.001 0.02 −0.22 0.11 −1.22 17.94
ETH Ethereum daily returns 0.001 0.03 −0.25 0.12 −0.81 10.75
XRP Ripple daily returns 0.002 0.03 −0.17 0.26 1.84 12.24
USDT Tether daily returns 0.000 0.01 −0.30 0.22 −10.61 621.76
BCH Bitcoin Cash daily returns 0.001 0.04 −0.24 0.19 0.26 9.51
BSV Bitcoin SV daily returns −0.001 0.04 −0.27 0.39 2.61 33.25
LTC Litecoin daily returns 0.001 0.03 −0.21 0.11 −0.93 14.02

Oil daily % change in oil price 0.00 0.02 −0.28 0.18 −3.02 86.68
Gold daily % change in gold price 0.0001 0.00 −0.02 0.02 0.17 4.30
Euro daily % change in U.S./Euro exchange rate 0.00 0.00 −0.01 0.01 0.13 2.60
FFR U.S. daily federal funds rate 1.09 0.81 0.04 2.45 0.26 −1.38
USEPU daily % change in US policy uncertainty index −0.0035 0.22 −1.51 1.13 −0.15 2.79
GlobalEPU monthly % change in global policy uncertainty index 0.01 0.09 −0.21 0.27 0.51 1.12

NYSE Dow Jones NYSE daily returns 0.0001 0.01 −0.06 0.05 −1.20 25.63
S&P 500 S&P 500 daily returns 0.0001 0.01 −0.06 0.04 −1.14 22.48
VIX daily % change in CBOE’s Volatility Index 0.00 0.04 −0.13 0.33 1.44 8.06
Mom daily % change in Fama&French’s Momentum Factor 0.02 0.99 −6.15 5.99 −0.59 6.55

Note: All of the variables, except for the federal funds rate (FFR) and GlobalEPU, are in daily returns.
GlobalEPU is linearly interpolated from the original monthly global policy uncertainty index into the
daily frequency.

quandl.com
policyuncertainty.com
cboe.com
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We further conduct the normality test and the unit root test for the daily return series in the
dataset, and the results are given in Table 4.

For the normality test, we presented p-values for the dataset variables in Table 4. We conducted
the normality test to test if there is non-normality as it is common in financial datasets. To handle such
non-normality in data, we have increased the sample size as large as possible to take advantage of
the central limit theorem. As shown above, our cryptocurrencies sample starts from the day the said
cryptocurrencies are openly traded till 8 August 2020, when this paper is written.

For the unit root test, we presented p-values for the variables in the dataset in Table 4. The unit
root test is important as it tests whether a time series is stationary. We usually conduct unit root tests
for the time series data first to avoid spurious regressions. The unit root test for FFR is omitted since
the variable of interest is the FFR in the levels, rather than the first-order differenced FFR. We use the
FFR in the levels in our subsequent regression models.

Table 4. Normality test and unit root test.

Jarque-Bera Test p-Value ADF Test p-Value
Variable H0: Normality H0: Unit Root

BTC 0.00 0.01
ETH 0.00 0.01
XRP 0.00 0.01

USDT 0.00 0.01
BCH 0.00 0.01
BSV 0.00 0.01
LTC 0.00 0.01

USEPU 0.00 0.01
GlobalEPU 0.00 0.01

Oil 0.00 0.01
Gold 0.00 0.01
Euro 0.00 0.01
FFR 0.00

NYSE 0.00 0.01
S&P 500 0.00 0.01

VIX 0.00 0.01
Mom 0.00 0.01

Note: ADF test refers to the augmented Dickey–Fuller test test. All variables except the FFR are in percentage
changes and stationary while non-normally distributed.

5. Empirical Results

To determine the optimal order of lags for the ARDL(p,q) model for each cryptocurrency listed
in Table 2, we shall apply the penalized least squares (PLS) estimators due to the lack of a unifying
approach for the ARDL(p,q) model’s lag selection and the discrete nature of the traditional model
selection algorithms. In contrast, the PLS estimators provide a more holistic approach for simultaneous
lag selection and parameter estimation.

Since the true data generating process (DGP) is not observed, we will also consider competing
estimators and competing models. The competing estimators for estimating the ARDL(p,q) model are
the Naive OLS, all of the penalized least squares estimators in Table 1, and the SMMA estimator.

To determine which model better fits the data, the competing models are the traditional asset
pricing model (APM) y = α + Xβ + ε, the constant model y = α + ε, the artificial neural network
(ANN) model with tanh activation function and the back-propagation neural network (BPNN) model.

To evaluate the performances, we compare the respective mean squared prediction error (MSPE),
adjusted R2, and model size (MS) that gives the number of non-zero estimated parameters. MSPE
measures the fit and adjusted R2 gauges the performance in identifying the most relevant regressors,
and MS measures parsimony and efficiency. The evaluation is presented in Table 5.
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Table 5. Cryptocurrency model and estimator performance evaluation. MSPE, mean squared prediction
error; MS, model size; SMMA, shrinkage Mallows model averaging; APM, asset pricing model.

Model Estimator MSPE Adjusted R2 MS

Cryptocurrency BTC

ARDL(3,3) Naive OLS 0.02 0.05 48
OLS post-adaptive-LASSO(GCV) 0.02 0.05 3

SMMA 0.02 0.05 7

APM Naive OLS 0.02 0.04 13
Constant 0.02

ANN 0.12
BPNN 0.02

ETH

ARDL(3,3) Naive OLS 0.03 0.07 48
OLS post-LASSO(GCV) 0.03 0.08 3

SMMA 0.03 0.07 5

APM Naive OLS 0.03 0.03 13
Constant 0.03

ANN 0.06
BPNN 0.03

XRP

ARDL(3,3) Naive OLS 0.03 0.06 48
OLS post-LASSO(GCV) 0.03 0.06 5

SMMA 0.03 0.06 7

APM Naive OLS 0.03 0.02 13
Constant 0.03

ANN 0.21
BPNN 0.03

USDT

ARDL(3,3) Naive OLS 0.01 0.55 48
OLS post-SCAD(BIC) 0.01 0.55 6

SMMA 0.01 0.54 8

APM Naive OLS 0.01 0.02 13
Constant 0.01

ANN 0.05
BPNN 0.01

BCH

ARDL(3,3) Naive OLS 0.03 0.05 48
OLS post-MCP(GCV) 0.04 0.06 2

SMMA 0.04 0.05 4

APM Naive OLS 0.04 0.02 13
Constant 0.04

ANN 0.14
BPNN 0.04

BSV

ARDL(3,3) Naive OLS 0.04 0.08 48
OLS post-LASSO(GCV) 0.04 0.09 4

SMMA 0.04 0.08 5

APM Naive OLS 0.04 0.02 13
Constant 0.04

ANN 0.13
BPNN 0.04



J. Risk Financial Manag. 2020, 13, 278 10 of 15

Table 5. Cont.

Model Estimator MSPE Adjusted R2 MS

LTC

ARDL(3,3) Naive OLS 0.02 0.1 48
OLS post-adaptive-LASSO(GCV) 0.02 0.11 7

SMMA 0.02 0.08 8

APM Naive OLS 0.02 0.07 13
Constant 0.03

ANN 0.08
BPNN 0.03

As shown in Table 5, the best performing penalized least squares estimators for each
cryptocurrency are selected based on MSPE and adjusted R2. The respective penalized least squares
estimators and the SMMA estimator outperforms the naive OLS terms of parsimony while yielding
similar MSPE and adjusted R2.

For the residual diagnostics shown in Table 6, we conducted the Breusch–Godfrey test up to the
order of three for detecting any remaining serial autocorrelation in the model residuals. We found
no serial autocorrelation in the model residuals for all the models considered in Table 6. This further
supports the application of the ARDL(p,q) model, and we conclude that based on the empirical
evidence, there is no need for us to further consider the class of ARMA models.

Table 6. Residual diagnostics.

Dependent Variable Model Penalized Estimator Breusch–Godfrey Test p-Value

BTC ARDL(3,3) OLS post-adaptive-LASSO(GCV) 0.99
ETH ARDL(3,3) OLS post-LASSO(GCV) 0.99
XRP ARDL(3,3) OLS post-LASSO(GCV) 0.98

USDT ARDL(3,3) OLS post-SCAD(BIC) 0.99
BCH ARDL(3,3) OLS post-MCP(GCV) 0.95
BSV ARDL(3,3) OLS post-LASSO(GCV) 0.99
LTC ARDL(3,3) OLS post-adaptive-LASSO(GCV) 0.99

The ARDL(p,q) model estimated by penalized least squares estimators and the SMMA estimator
outperforms the competing models in MSPE. This supports applying the ARDL(p,q) model and our
estimation strategies to better explain the cryptocurrencies’ returns. But the ARDL(p,q) model estimated
by penalized least squares estimators outperforms the SMMA estimator in MS. Therefore, to explain
the returns, we shall focus on the estimation results of the ARDL(p,q) model by the corresponding
penalized least squares estimators for parsimony. Table 7 presents the determinants of the returns for
each cryptocurrency.

In summary, given the sparsity of the parsimonious ARDL(p,q) model after model selection, we
do not consider including more lags in the ARDL(p,q) model, and the true ARDL(p,q) model is likely
sparse as well. We then examine the returns determinants for each cryptocurrency, respectively.

For the BTC’s daily returns, daily returns from the S&P 500 and the gold market have positive
effects. This finding is consistent with Aharon and Qadan (2019), who suggested that the BTC’s
daily returns are positively correlated with the S&P 500 and Gold. This indicates that the BTC market
responds promptly to the performances of the S&P 500 index and the gold market.

In comparison, daily returns from the NYSE and the gold market have positive effects on the
ETH’s daily returns. This finding is supported by Deniz and Stengos (2020), who also discovered a
positive correlation between the ETH market and the NYSE and the gold market.

Lagged XRP returns, NYSE and the Mom introduced by Fama and French (1993), have positive
effects on the current daily returns of the XRP. This finding coincides with Deniz and Stengos (2020),
where a positive correlation between the XRP market and the NYSE index is also discovered.
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However, the FFR has a negative effect on the XRP’s daily returns, which suggests that the XRP is
sensitive to the price of liquidity. Therefore, as the liquidity becomes cheaper, investors divest from the
XRP for other assets. Deniz and Stengos (2020) also uncovered the negative relationship between the
U.S. federal funds market and the XRP market.

Table 7. Cryptocurrency returns determinants.

yt = Cryptocurrency’s Returns BTC ETH XRP USDT BCH BSV LTC

Variable Estimated Coefficient

yt−1 −0.12
yt−2 0.12 −0.44 0.15

NYSE 0.36 0.60 −0.11
S&P500 0.53

S&P500t−2 −0.01
Gold 0.54 0.47 0.71 0.77
Mom 0.45 −0.07 0.93 0.52

Momt−1 −0.75
FFR −0.01
Euro −0.12 0.92

Eurot−1 −0.93
Eurot−2 −0.11
Intercept 0.001 0.001 0.006 0.001 0.001 0.001 0.002

Note: After model selection, all of the coefficients in the table above are statistically significant at the 1%
significance level.

For the USDT, its lagged returns, NYSE and the Mom negatively affect the current daily returns.
The Euro, which represents the daily percentage change from the foreign exchange rate, and the lagged
Euro negatively affect the USDT daily returns. It suggests that the USDT is more exposed to the
volatility in the Forex market. Based on the estimation results, the USDT could provide an investment
strategy that hedges the risk exposures from the XRP market as they react contrarily to the fluctuations
in financial markets.

The BCH’s daily returns rely heavily on the Mom factor, and the Mom has a positive effect on
the current daily returns. As a derivative cryptocurrency from the original cryptocurrency Bitcoin,
the BCH market is much more speculative based on this evidence. BCH investors tend to focus on the
financial markets ’ momentum as the central reference point for developing investment strategies.

However, for the BSV, which is also a derivative cryptocurrency from the original cryptocurrency
Bitcoin, its current daily returns are strongly correlated with its lagged returns. Besides, BSV heavily
relies on the daily returns from the gold as the primary returns determinant. It suggests that the BSV
market is more closely connected to the gold market, and it provides similar risk-hedging investment
strategies to the gold.

For the LTC market, contemporaneous returns from Gold, Mom and Euro have positive effects on
the LTC’s contemporaneous daily returns. In contrast, the lagged returns from S&P 500, Mom and Euro
have negative effects. This finding is also consistent with Deniz and Stengos (2020). It suggests that
the LTC market is contemporaneously positively correlated with the gold market, the Forex market,
and the financial market’s momentum while being negatively affected by the lagged information from
the markets above. The LTC market closely reacts to the fluctuations in the gold market and the Forex
market, and the momentum of the financial market.

Overall, most of the cryptocurrencies (BTC, ETH, BSV and LTC) in Table 7 are sensitive to changes
in the gold market as they provide a similar investment strategy to hedge against the risks from the
real economy. In this aspect, the cryptocurrencies above provide similar functionalities to the precious
metals market.

Besides Gold, NYSE, Mom, and Euro are also major deciding factors for the cryptocurrencies’
daily returns. In particular, ETH, XRP, USDT, BCH and LTC are sensitive to the changes and the
momentum in financial markets. It suggests these cryptocurrencies show more extensive exposures to
the fluctuations in conventional financial assets. Furthermore, the dependence on the lagged returns for
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cryptocurrencies such as the XRP, USDT and BSV suggests that their returns follow an autoregressive
process so that market memories from the lagged market information are a crucial factor to consider
when modelling for their daily returns.

6. Forecast Evaluation

We generate one-step-ahead forecasts for the daily returns of each cryptocurrency by the
recursive forecasting approach. Following Hansen (2008) and Xiao and Sun (2019), forecasts for
the cryptocurrencies’ daily returns from the ARDL(p,q) model are averaged by the SMMA estimator.
Specifically, we forecast the next day’s daily returns based on the market information accumulated up
to the previous day.

To facilitate the forecast evaluation, we compare the ARDL(p, q) model’s forecasting performance
when estimated by the SMMA estimator against the aforementioned competing estimators and
competing models. The competing models are the traditional asset pricing model (APM) y = α + Xβ + ε,
the constant model y = α + ε, the artificial neural network (ANN) model with tanh activation function
and the back-propagation neural network (BPNN) model.

For performance evaluation, we compare the forecast accuracy of respective forecasting
approaches by the root mean squared forecast error (RMSFE), defined as:

RMSFE =

√√√√ 1
f

f

∑
t=1

(yt − ỹt)2, (25)

where ỹt is the out-of-sample forecast for yt generated by respective approaches and f represents the
forecast sample size.

Similarly, the root mean absolute forecast error (RMAFE) is defined as:

RMAFE =

√√√√ 1
f

f

∑
t=1
|yt − ỹt|. (26)

We used the “Rstudio” software to conduct the forecast evaluation, and the computation took 168 h
on a computer with an Intel(R) Core(TM) i7-7700HQ CPU. The forecasting performance evaluation of
the competing estimators and competing models is presented in Table 8 below.
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Table 8. Cryptocurrency returns one-step ahead forecast evaluation. RMSFE, root mean squared
forecast error; RMAFE, root mean absolute forecast error.

Cryptocurrency BTC ETH XRP USDT BCH BSV LTC

Model RMSFE

ARDL(3,3) (PLS) 0.11 0.13 0.15 0.05 0.15 0.15 0.14
ARDL(3,3) (Naive OLS) 0.34 0.35 0.35 0.34 0.34 0.34 0.35

ARDL(3,3) (SMMA) 0.08 0.1 0.11 0.01 0.12 0.11 0.1

APM 0.11 0.14 0.15 0.06 0.16 0.16 0.14
Constant 0.11 0.13 0.14 0.05 0.15 0.14 0.13

ANN 0.33 0.34 0.35 0.29 0.36 0.33 0.32
BPNN 0.11 0.14 0.15 0.06 0.16 0.15 0.14

RMAFE

ARDL(3,3) (PLS) 0.02 0.03 0.03 0.02 0.04 0.04 0.03
ARDL(3,3) (Naive OLS) 0.24 0.15 0.15 0.14 0.14 0.15 0.15

ARDL(3,3) (SMMA) 0.01 0.02 0.02 0.01 0.03 0.03 0.02

APM 0.02 0.03 0.03 0.02 0.04 0.04 0.03
Constant 0.02 0.03 0.03 0.02 0.04 0.04 0.03

ANN 0.15 0.15 0.17 0.14 0.17 0.15 0.14
BPNN 0.02 0.03 0.03 0.01 0.04 0.04 0.03

Forecast Horizon 813 563 461 1172 929 453 715

Note: PLS stands for the corresponding best performing penalized least squares estimators for each
cryptocurrency shown in Table 5. For forecast horizons, we do not attempt to forecast the weekend daily
returns for all of the cryptocurrencies studied in this paper as major financial markets such as the NYSE and
S&P 500 do not trade on weekends.

Since the actual returns for the cryptocurrencies y and the forecasts for the cryptocurrency
returns ỹ are already in log terms, the RMSFE and the RMAFE give the approximate average squared
percentage deviations1 and average absolute percentage deviations from the actual returns by the
respective forecasting method.

It is clear from the forecasting performances that the ARDL(p,q) model estimated by the SMMA
estimator consistently outperforms the competing estimators and competing models in both RMSFE
and RMAFE. This result supports the application of the ARDL(p,q) model and the SMMA estimator in
forecasting the cryptocurrency markets. It further highlights the importance of attending to model
uncertainty in forecasting cryptocurrencies.

7. Conclusions

This paper has investigated the major cryptocurrencies’ returns determinants and introduced a novel
model averaging approach, namely the SMMA estimator, for forecasting cryptocurrencies’ returns.

Model uncertainty features most asset pricing studies, and such model uncertainty proves
especially challenging for cryptocurrencies in the absence of a unifying theory that should guide
modelling. In particular, the issue of model’s lag selection, the discrete nature of the traditional model
selection algorithms, and the sensitivity of the tuning parameter choice affecting variable selection
outcomes for penalized estimators all call for a novel modelling approach.

Therefore, to handle model uncertainty, we introduced the SMMA estimator to forecast the major
cryptocurrencies’ returns. The SMMA estimator combines model selection and model averaging
to handle model uncertainty and outperforms when averaging high dimensional sparse models
against model uncertainty. Our model averaging approach outperformed the conventional benchmark
forecasting models for the cryptocurrencies in the literature.

We first investigated the cryptocurrencies’ returns determinants, we find that most
cryptocurrencies are sensitive to changes in the financial markets such as the NYSE and the S&P
500, and dynamics in the financial market momentum. They are also sensitive to the changes in gold
prices and current and lagged information from the Forex market.

1 log(y)− log(ỹ) ≈ y−ỹ
ỹ .
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From the forecast evaluation, it is clear that the ARDL(p,q) model estimated by the SMMA
estimator consistently outperforms the competing estimators and models in RMSFE and RMAFE.
The forecast evaluation result supports the application of the ARDL(p,q) model and the SMMA
estimator in forecasting the cryptocurrency markets. It further highlights the importance of attending
to model uncertainty in forecasting cryptocurrencies.

This paper remains limited in the following aspects. Due to the model uncertainty in
cryptocurrencies, this paper could be further improved by considering more explanatory variables,
especially the text-based variables that could help gauge the market sentiment for cryptocurrencies.
Furthermore, more variants of machine learning approaches could be further introduced to compete
against the SMMA estimator in forecasting the cryptocurrencies’ returns.
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