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Abstract: In this paper, we extend the parametric approach of VaR estimation that is based upon
the application of two transforms, one for handling skewness and other for kurtosis. These transfor-
mations restore normality to data when applied in succession. The transforms are well defined and
offer an alternative to VaR models based on the variance–covariance approach. We demonstrate the
application of the technique using three pairs of uncorrelated but negatively skewed and fat-tailed
stock return distributions, one pair each from recent periods in US and international market, and
one from the stressed period of US economic history. Furthermore, we extend the analysis to eco-
nomic domain by calculating expected shortfalls and risk capital under different estimation methods.
For the sake of completion, we compare the estimation results of normal and transformation methods
to non-parametric historical simulation.

Keywords: value-at-risk; normal distribution; manly transform; John and Draper transform; GARCH
(1, 1); back-testing; risk capital; expected shortfall

1. Introduction

Value at risk (VaR) is an accepted risk measure in financial risk management and in
particular, the banking industry. Basel II institutionalized its application in banking in
setting capital reserves based on VaR computations. Merton and Perold (1993) laid the basis
for it in the form of risk capital for financial firms. Thus, we find its usage in hedge funds
too, where it has been found to be a better measure of fund risk than the standard deviation
(Gupta and Liang 2005; Liang and Park 2010; El Kalak et al. 2016). The measure is easy to
compute and simple to understand, and has wide ranging applications not only in financial
institutions and portfolio management, but also in non-financial firms (Bodnar et al. 1998).

Implementations of VaR commonly assume normality of asset returns (see
Huisman et al. 1998), relying on the first two moments. Hence, the approach is referred to
as the variance–covariance approach. Models based on this approach are labeled Delta-
normal models after they were popularized by RiskMetrics. They are also referred to
as analytical VaR models (see Jorion 2001). The assumption of normality simplifies the
computation of VaR considerably. However, realized returns are negatively skewed and
fat-tailed. The assumption of normality in such circumstances is not a realistic one.

The most common approach to tackle non-normality is to assume that conditional
returns are normal, even if unconditional returns are not. GARCH and stochastic volatility
models, jump diffusion models, and Markov switching models all rely upon this feature.
For example, GARCH and stochastic volatility models assume that returns are normal con-
ditional upon knowing the current variance. Duffie and Pan (1997) review the application
of these models to the computation of VaR.

Other approaches to tackle non-normality take one of two forms. One approach is
to model the tails of the distribution separately using extreme value theory. Bali (2003),
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Daníelsson et al. (2013), and Rocco (2014) advocate this approach in order to account for
the extremal events observed in practice. The other approach is to transform the realized
distribution of returns so that the transformed data is normal. This approach has been
suggested in Hull and White (1998).

The Hull and White approach depends upon transforming the normal data through
a single function G to make it normal. Even though the authors suggest G could be any
function, they acknowledge that estimation of the parameters of G could be a challenging
task. For example, if G is a function given by a mixture of normals, maximum likelihood
estimation of its parameters suffers from instability, local solutions, and convergence
problems (see Hamilton 1991).

To overcome the problems associated with the Hull and White generic one function
approach, we propose a two-step specific transformation approach. These transformations
offer a distinct advantage over Hull and White’s single transformation, given the log-
likelihood functions are well defined and do not suffer from problems of convergence,
local solutions, or instability. Our approach is similar to theirs only to the extent that
we also transform the data to achieve normality. The purpose of the paper is to extend
the model-building approach of VaR so that the percentiles of risk of the actual data are
reflected more accurately in the model.

We draw upon the literature in statistics that identifies suitable transforms to make
data normal. The transforms we employ are Manly 1976 and John and Draper 1980. The
first works to reduce asymmetry, and the second mitigates excess kurtosis so that the final
data after these transformations are normally distributed. Both transforms are well defined,
continuous, and invertible. We apply both of them in succession, since each transformation
mitigates a different kind of departure from normality.1

To demonstrate the efficacy of the procedure, we conduct our analysis over three
pairs of stock data. Two pairs are chosen over the same period but from two different
markets (US and India), while a third is chosen over the 2007–2008 in the US market. The
cross-section analysis captures efficacy of the methodology in highly liquid and less liquid
markets, while the period analysis captures the efficacy in times of economic stress. Each
of these pairs of stocks are uncorrelated with each other so that the VaR estimate turns out
to be a coherent measure of risk.2

As stated in Huisman et al. (1998) the asset returns are often assumed to be normal
for convenience and simplicity. It is the simplest parametric approach to VaR estimation,
as opposed to historical simulation, which is non-parametric. In this paper, we carry out
analysis of VaR on the chosen stocks using all three methods, the parametric normal and
transformational method, and the historical simulation method. Backtesting is done using
unconditional Kupiec’s test and Christoffersen’s interval tests. While Christoffersen’s tests
fail to reject the consecutive day independence of violations of VaR for all three models,
Kupiec’s test reveals that the proportion of exceptions is significantly reduced after the
transformations in the liquid US market, but not in the less liquid Indian market.

The challenge in VaR estimation using normality lies in accounting for fat tails in
actual data. The most popular technique to capture the extra probability mass in the tails
employed today is to forecast volatility using the GARCH (1, 1) model. Therefore, we also
compare our VaR estimates using raw return volatility to those obtained using GARCH
(1, 1) long run volatility estimates.3 Again, Kupiec’s test reveals that GARCH estimates
yield fewer exceptions for the transformational method than normality based VaR for the
US market.

One criticism of choosing risk capital based on VaR estimates and number of excep-
tions observed in back testing is that high limits on VaR shall result in lower exceptions but
simultaneously lead to idle investible surplus. Therefore, we extend our economic analysis

1 We compare advantages of our sequence of transforms with other popular ones in the next section.
2 The analysis here can be applied to separate asset classes in a portfolio designed to achieve diversification.
3 In GARCH frameworks, a wrong distributional assumption will generate inefficient parameter estimates. See Asem (2007).
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to compute expected shortfalls (ES) for our chosen stocks, and the risk capital set aside to
absorb losses.4

We find that the transformational method leads to VaR and ES values that lie between
the non-parametric historical simulation and normality estimates across markets and
time, suggesting that the transformational method to VaR estimation may be a good
compromise to balance holding too much capital to insure exceptional losses and holding
too little. However, application of GARCH correction for fat tails simultaneously with
the transformation seems to impact risk capital and VaR estimates in unexpected ways,
especially when illiquid assets are involved as in our sample. Thus, from a risk capital
perspective, we conclude that mixing the transformational method with GARCH is to be
used with caution, even though from a purely statistical perspective, the mixed methods
may lead to fewer exceptions to VaR limits being breached.

Our contribution to the literature on VaR is primarily two-fold. First and foremost,
we propose a simple methodology rooted in statistical transformations, which can over-
come problems in estimating VaR when faced with real data that are non-normal.5 Second,
since VaR is used to set aside risk capital to absorb losses, the transformational method
provides a good middle estimate between holding too much and too little risk capital.
Thus, our methodology does offer a simple alternative that has significant potential for eco-
nomic value analysis for estimating risk capital for near normal distributions. For tackling
extremes, however, other measures like distribution fitting, conditional analyses, or the
extreme value theory, or a combination of all, must be adopted.

The rest of the paper is organized as follows. In Section 2, the VaR paradigm as it exists
today is presented. Section 3 discusses those departures from normality that this paper
addresses. Then, in Section 4, the set of transformations proposed to be applied is reviewed.
In Section 5, an application is provided where normality breaks down in the raw data, but
is restored via the set of transformations. The VaR is then estimated for the three pairs in
three different ways. Section 6 discusses the backtesting procedure and provides results of
backtesting the models of Section 5. Section 7 repeats the exercise carried out in Section 6,
with the volatility being modeled using a GARCH (1, 1) process. Section 8 applies the
different methods to establish risk capital requirement using off the shelf guidance formula
under Basel II. Section 9 concludes.

2. Value at Risk

Embrechts (2001) defines VaR as follows:

“VaR is a percentile (or quantile) of the profit and loss (P&L) distribution with the
property that, with a small given probability, we stand to incur that loss or more over the
fixed time horizon.”

Key points that need to be noted about this definition are: (1) VaR is a point estimate,
not a maximum loss; (2) the probability is exogenously provided; and (3) the time horizon
is fixed and given. Thus, VaR has been designed to answer questions like “what is the
amount of loss that can be equaled or exceeded on the asset portfolio over the next trading
day with 1% chance?” Since it is an estimate, the VaR depends on the method of estimation
and is not a unique number. Different estimates may be obtained using different methods.

Again, over the fixed time horizon, the asset mix is assumed to be held constant and
the portfolio weights do not change. While this can certainly be true over short horizons,
it may not reflect reality over the long-term. Consequently, the VaR estimate is most
frequently computed on a daily basis and extrapolated to longer periods, so that n-day
VaR equals the 1-day VaR multiplied by the square root of the number of days n.

4 We just use the given BaselII minimum capital requirement guidance formulae to compute the risk capital for comparison of various models.
5 Since VaR represents a quantile of risk, one can try fitting a flexible form distribution like the generalized beta of the second kind (GB2) to

non-normal data. However, the distributional form is complex, and estimation of its parameters is not straightforward. For more discussion on GB2,
see McDonald (1984).
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Jorion (2001) provides three methods for the computation of VaR using asset returns
data. The first is the Delta-Normal method; the second is the historical simulation method,
which is independent of any distributional assumption, while the last is the Monte-Carlo
simulation method, which makes distributional assumptions for the returns.6 In this paper,
the emphasis is on the Delta-Normal method when the assumption of normality is violated.

The Delta-Normal method is an analytical parametric technique7 developed by Risk-
Metrics. It assumes that the individual asset returns in the portfolio are multivariate
normally distributed with zero means. Thus, the problem of non-coherence of VaR is
circumvented, and the mean, standard deviation, and asset return correlations are suffi-
cient statistics to compute the VaR. The change in the asset values (deltas) is dependent
only upon the variance–covariance matrix of asset returns. The advantage of this method,
in particular, is its speed and simplicity, and the fact that distribution of returns need not
be assumed to be stationary through time, since volatility updating is incorporated into the
parameter estimation.

To exemplify the Delta-Normal method, let us consider a single asset having a daily
returns distribution x ∼ N

(
µ, σ2). If the value of the current investment is S dollars, the

1-day VaR at the 100(1 − α) % level of confidence is given by

VaR1,α = −(Zασ + µ)S (1)

where Zα is the lower α percentile of the standard normal distribution. The n-day VaRn,α
is given by

√
n VaR1,α. The negative sign ensures that the VaR number is positive.

Assuming normality when the returns are non-normal can lead to errors in the estimate
of VaR. In general, if the distribution is heavy tailed, then it will lead to underestimation of
VaR at relatively high confidence levels and overestimation at relatively low confidence
levels. Jorion (1996) suggests scaling the volatility/VaR estimate. In fact, the Basel II
committee recommends scaling VaR estimate by a multiple, which in turn depends upon the
exceptions observed from the internal VaR estimates. For example, Gupta and Liang (2005)
and Ou and Zhao (2020) apply similar multiples while estimating required capital for
hedge funds and exchange traded funds, respectively. Thus, any improvement in VaR
estimation technique also leads to improvements in capital estimates.

In the following section, we review the specific departures from normality that can be
addressed using the transforms discussed in this paper.

3. Departures from Normality

This paper focuses on departures from normality arising out of skewness and kur-
tosis in the return data series. Returns on small stocks are known to be highly skewed
(Amaya et al. 2015) and so are returns on venture capital investments (Cochrane 2005).
Hedge fund returns exhibit excess kurtosis (Gupta and Liang 2005; Liang and Park 2010).
It must be noted that normality may also be violated in higher moments, if not in the third
and fourth. However, we restrict ourselves to non-normality arising out of asymmetry
(skewness) and thick/thinness (excess kurtosis) in the tails. We use the Jarque–Bera statistic
(JB stat henceforth) to check for normality, since it is explicitly based on the third and fourth
moments of the return distribution.

In case normality of returns is rejected, one cannot apply Equation (1) to estimate VaR.
One approach is to try other distributions that fit the given data and then compute the
quantile estimate as suggested in the definition in Section 2. Still others suggest updating
volatility estimates using time series models like GARCH models to account for kurtosis.
The third approach is to restore normality using a set of transformations and then provide
an estimate of VaR using the transformed data so that Equation (1) can be applied, and
that is the method that we employ to our pairs of stocks whose returns are uncorrelated.

6 A synopsis of the three methods is available online at: http://www.merage.uci.edu/~jorion/oc/case4.html.
7 Henceforth, sigma-based methods are referred to as analytical VaR technique.

http://www.merage.uci.edu/~jorion/oc/case4.html
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The advantages of doing so to our portfolio are two-fold: (i) the task of computing VaR
for the portfolio is simplified, and (ii) since normality is restored, the VaR estimate is not
vulnerable to the non-coherence critique.

In the following section, we elaborate on the transformations that may be applied to
non-normal raw return series to make the data normal.

4. Transformations Applied to Achieve Normality

We assume in this section that the formula for VaR in Equation (1) cannot be applied,
because there is skewness and excess kurtosis in the data (hence the JB stat rejects the
normality assumption). Therefore, we attempt to restore normality in stages via a set of
transformations.

Among different transformations used, the power transformation models are known
to outperform the untransformed models in forecasting VaR (Tsiotas 2020). Among these,
the Box–Cox transformation (1964) is widely used, even in different fields, for example in re-
cent studies by Berger and Schmid (2020) in medical research, Cai et al. (2020) in structural
engineering, Li (2018) in health studies, and Cunha et al. (2020) and Mögel and Auer (2018)
in volatility modeling in finance. Other popular power transforms include Manly (1976),
John and Draper (1980), Bickel and Doksum (1981), and Yeo and Johnson (2000) transfor-
mation.

The major limitation of using Box–Cox transformation is its poor performance in
handling long-tailed or skew data (Zhu and Melnykov 2018; Dhanoa et al. 2020). An-
other limitation of Box–Cox transformation is its incompatibility with a normal error
distribution (Eriksson et al. 2019). To circumvent the limitation of Box–Cox transforma-
tion for negative values, researchers also use signed power transformation suggested
by Bickel and Doksum (1981). Bickel and Doksum (1981) transformation performs well
in handling kurtosis; however, it performs poorly in handling a skewed distribution
(Yeo and Johnson 2000). Tsiotas (2020) shows that Box–Cox Manly transformation outper-
forms the Yeo and Johnson (2000) transformation.

Manly transform is suggested as an alternative to Box and Cox (1964) transform on the
grounds that negative x values are allowed (Zhu and Melnykov 2018). Moreover, in finite
samples, the Box–Cox transform fails to eliminate skewness (Gonçalves and Meddahi 2011;
Zhu and Melnykov 2018), while Spitzer (1978) shows that in finite samples, there is an
increase in the variance of the transformed variable. The latter study also points out the
Box–Cox transformation may fail normality tests because of excess kurtosis. In contrast,
Manly transform is quite effective at turning skewed distributions into symmetric normal-
like distribution (Zhu and Melnykov 2018). We therefore employ the Manly transform
to reduce skewness in the raw return series. Bhattacharyya and Madhav (2012) conduct
a statistical analysis combining a dynamic GARCH with various transformations over
market indices that are highly liquid assets. They report Manly and John and Draper
transformation performs equally well as others for these liquid indices.

Our study differs from Bhattacharyya and Madhav (2012), as our analyses incorporates
economic uses of VaR as opposed to purely statistical analyses conducted by the authors.
We deliberately choose relatively illiquid assets compared to indices, and our findings
suggest that the combination of GARCH and transformations may lead to unexpectedly
high-risk capital requirements, thus questioning the efficacy of risk capital held from
a risk–return perspective, because idle capital incurs an opportunity cost.

Given the discussion above, we propose an alternative two step transformation com-
bining the Manly and John and Draper transforms. The first step transformation reduces the
skewness, and the second step transformation reduces the excess kurtosis. The combination
of both the steps reduces skewness and excess kurtosis. We discuss these transforms below.
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4.1. Manly Transformation

In 1976, Manly proposed the following transformation to map skewed data (x) to
make it more symmetric (like normal):

y =
exp(γx)−1

γ , i f γ 6= 0
= x, i f γ = 0

(2)

where x is the original non-normal variable, y is the transformed variable, and γ is a
parameter to be estimated.

When x takes n values −x1, . . . , xn, the value of parameter γ is calculated by maximiz-
ing a log likelihood function of the following form:

L = γ
n

∑
1

xi −
1
2

n

∑
1

(yi − µi)
2

σ2 − n ln
(

σ
√

2π
)

(3)

where µi is the mean of the transformed variable yi, and yi’s have variance σ2. An estimate
of the variance is provided by:

σ̂2 =
1
n

n

∑
1
(yi − µ̂i)

2 (4)

Under the assumption that µ̂i are all equal, µ̂i is replaced by the mean of the trans-
formed variable yi. Equation (3) is then solved to yield the parameter γ.

The Manly transform works well to improve symmetry over (−∞, ∞), but it does not
work well with data that exhibits non-normal kurtosis. In order to address the problem of
kurtosis, John and Draper, 1980, propose the following set of transforms on near normal
(almost symmetric) data:

4.2. John and Draper Transform

The following set of transforms corrects for fairly symmetric but non-normal distribu-
tion due to excess kurtosis:

x(λ) = sign(x) (|x|+1)λ−1
λ , λ 6= 0

= sign(x)ln(|x|+ 1), λ = 0
(5)

This is a modulus transformation applied to each (non-normal) tail separately. The
likelihood function for estimating λ is given by

=
n
2

log (
S(λ)

n
) (6)

where S(λ) is the sum of square deviations from the analysis of z(λ) = x(λ)
.
xλ−1 .

.
x is the

geometric mean of the raw (|x|+ 1)′s.
The Manly transform works well to improve symmetry, while the JD transform works

better for decreasing the magnitude of excess kurtosis. Consequently, in this paper we
apply both transforms in succession, while checking for normality at each stage.

The following three steps succinctly describe the methodology that we follow to
compute the VaR when the original daily returns distribution r̃ is not normal.

1. Let the actual returns r̃ have (mean, standard deviation) ∼ (µ, σ). Apply Manly, 1976,
and John and Draper (JD), 1980, transforms successively to standardized raw data r̃s.

2. Check if the transformed data given by ỹ = JD◦MANLY (r̃s) is normally distributed
using the JB stat. Let ỹ ∼ N(µtr, σtr).

3. The one-day VaR estimate for actual returns r̃ at (100-α)% level is given by VaR1,α =

−(
{

MANLY−1◦ JD−1(Zασtr + µtr)}σ + µ)S , where S is the size of the investment.
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5. Computation of VaR

In this section, we demonstrate the application of the transformations discussed in
the prior section in calculating VaR for a portfolio comprising three pairs of uncorrelated
securities. These are chosen from different markets at different times. From the US market
the stock prices are for Pan American Silver Corp (Ticker symbol: PAAS) and Portland
General Electric Company (POR) for the period May 24, 2006–October 10, 2008 (period of
economic stress), and Kinross Gold Corporation (KGC) and Duke Energy (DUK) for the
period July 25, 2017–December 10, 2019 (business as usual period), from the commodity and
utility sector, respectively. The two uncorrelated stocks from India are Punjab Alkalies and
Chemicals Limited (PACL) and Bharat Petroleum Corporation Limited (BPCL) considered
over the business-as-usual period and belonging to the chemical and petroleum industry,
respectively. The number of business days provide us with 600 days of daily returns for
each period. Given the assets are uncorrelated and transformed data normal, the VaR of
the portfolio equals the sum of individual asset VaRs.

The summary statistics of the three pairs of stocks are presented in three panels in
Table 1. The daily returns of all stocks across the three panels exhibit negative skewness
and are leptokurtic. The JB statistic shows that the returns are not normally distributed for
any one of them, and correlations are low in magnitude and statistically insignificant.8

Table 1. Summary statistics for the three pairs of stocks chosen from different markets and different periods.

Panel A. Summary statistics for the KGC and DUK stocks from US market for the July 25, 2017–December 10, 2019.

Mean Std. Dev. Skewness Kurtosis JB Stat

KGC 0.0001 0.0248 −0.0619 6.0352 230.70
DUK 0.0003 0.0090 −0.4698 4.6104 86.90

N 600
Correlation 2.84%

p-value 0.4882

Panel B. Summary statistics for the PACL and BPCL stocks from the Indian market for the July 25, 2017–December 10, 2019.

Mean Std. Dev. Skewness Kurtosis JB Stat

PACL 0.0006 0.0331 −0.2496 6.2104 263.89
BPCL 0.0005 0.0246 −1.6376 18.9019 6589.91

N 600
Correlation −0.80%

p-value 0.8391

Panel C. Summary statistics for the PAAS and POR stocks from US market during high volatility period May 25, 2006–October 10, 2008.

Mean Std. Dev. Skewness Kurtosis JB Stat

POR −0.0003 0.0134 −0.6826 4.6691 116.24
PAAS 0.0001 0.0336 −0.4300 3.7097 31.08

N 600
Correlation 4.27%

p-value −0.2964

This table shows the summary statistics for the stocks: Kinross Gold Corporation (Ticker symbol: KGC) and Duke Energy (DUK), Punjab
Alkalies and Chemicals Limited (PACL), and Bharat Petroleum Corporation Limited (BPCL) and Pan American Silver Corp (PAAS) and
Portland General Electric Company (POR). The daily returns are calculated as (Pt − Pt−1)/Pt−1.

In Figure 1, Panels A–C plot the distributions of realized returns over the data period
for the stocks. For purpose of comparison, the normal density is also plotted as if the
data was drawn from a normal distribution having same mean and variance. The graphs
demonstrate negative skewness and positive excess kurtosis (fat tails) for all stocks.

8 We also compute the JB stat on a 100-day rolling window basis for each stock. We reject normality more than 30% of the time for each stock,
demonstrating the non-normality is not a one date phenomenon or a statistical estimation error.
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We use three methods to compute the VaR based on past 100 day returns, the non-
parametric historical simulation, parametric normal, and the transformational method in
which the Manly and JD transforms are applied in succession to normalized raw data.
While the focus is on parametric estimation, the historical simulation is included for the
sake of completeness.

The historical VaR measure has some serious disadvantages to both companies em-
ploying it and financial sector regulators. In order to obtain accurate estimates, a large data
sample of the empirical distribution is required. The VaR estimate is therefore subject to
the frequency and length of the data sample. A further drawback is the inability to allow
for conditionality of the parameters over time.

To overcome these flaws, a parametric approach, such as the normal approach, is often
adopted. Since the distribution is approximated by a parametric distribution, parameters
can be allowed to change over time. Estimation risk on the VaR estimate itself is also
reduced, particularly for higher quantiles. Furthermore, the parametric approach has
the advantage of not being dependent on the chosen quantile, facilitating the ease with
which comparisons between the VaR estimates across various institutions can be made.
Parametric conversion, however, will only hold in practice if the parametric approach
accurately reflects the distribution at all quantiles in the tail. Indeed, it has been the case
that institutions have notoriously chosen confidence levels and time horizons to suit them.
Huisman et al. (1998) provide an excellent discussion on these methods.

Consequently, any VaR model we undertake is back-tested to verify its efficacy. The
most popular test is an exceptions test based on Kupiec (1995) followed by test of inde-
pendence by Christoffersen. The exceptions test says if the daily 1% VaR is based on a
normal distribution assumption and it is indeed the true underlying distribution then
realized daily returns should not fall below the VaR1, 0.01 estimate more than 1% of the
time. Similarly, the null hypothesis for Christoffersen’s test is that the probability of a
change of state from loss not in excess of VaR to a state of exceeding VaR is the same as that
of continuing in the same state of loss not exceeding VaR. We backtest the VaR estimates
in our examples using both tests. The estimation and backtesting windows are shown in
Figure 2.
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Table 2 shows the results of the transformations. Each panel shows the parameters of
transformations and their effects on JB stat when Manly and JD are applied in succession.
It is seen that the JB stat values, after the transformations have been applied, fail to reject
normality for the transformed data in all three panels.



J. Risk Financial Manag. 2021, 14, 51 10 of 19

Table 2. Summary statistics for the three pairs of stocks chosen from different markets and different periods, using 100 day
estimation window, before and after transforms.

Panel A. Summary statistics for the KGC and DUK stocks based on 100 day window ending December 10, 2019

Panel A.1: Raw Data

Mean Std. Dev. Skewness Kurtosis JB Stat Transformation
Parameter

Log-
Likelihood

KGC −0.0001 0.0295 −0.2624 6.4647 51.1639
DUK 0.0003 0.0082 −0.6317 4.8316 20.6290

Panel A.2: After Manly transformation of standardized data

KGC 0.0276 0.9960 6.2177 3.2177 43.1719 0.0411 −141.4833
DUK 0.0680 0.9784 0.0628 4.5017 9.4618 0.1370 −139.7178

Panel A.3: After John and Draper transformation of standardized data

KGC 0.0183 0.6882 0.0249 3.3377 0.4856 0.3395 4.8226
DUK 0.0572 0.7338 −0.0851 3.1606 0.2282 0.4682 4.5186

Panel B. Summary statistics for the PACL and BPCL stocks based on 100 day window ending December 10, 2019

Panel B.1: Raw Data

Mean Std. Dev. Skewness Kurtosis JB Stat Transformation
Parameter

Log-
Likelihood

PACL −0.0075 0.0394 −1.3785 9.6619 216.5893
BPCL 0.0038 0.0274 0.7620 5.6422 38.7658

Panel B.2: After Manly transformation of standardized data

PACL 0.0783 0.9408 0.1225 4.6197 11.1811 0.1927 −136.0410
BPCL −0.0853 0.9794 −0.0780 4.6404 11.3131 −0.1512 −139.6703

Panel B.3: After John and Draper transformation of standardized data

PACL 0.0441 0.6055 0.1242 2.8868 0.3104 0.1524 11.4220
BPCL −0.0670 0.7204 0.0626 3.1420 0.1493 0.4334 4.7514

Panel C. Summary statistics for the POR and PAAS stocks during high volatility period, based on 100 day window ending October 10, 2008

Panel C.1: Raw Data

Mean Std. Dev. Skewness Kurtosis JB Stat Transformation
Parameter

Log-
Likelihood

POR −0.0013 0.0190 −0.9622 7.3713 95.0503
PAAS −0.0085 0.0498 −0.3709 5.7386 33.5421

Panel C.2: After Manly transformation of standardized data

POR 0.0070 1.0452 0.1008 6.8887 63.1784 0.0760 −146.0652
PAAS 0.0007 0.9024 −0.1320 4.6033 11.0012 −0.0982 −131.6420

Panel C.3: After John and Draper transformation of standardized data

POR 0.0491 0.5715 −0.0928 3.1709 0.2652 −0.0378 7.0014
PAAS −0.0040 0.6471 0.0621 2.9313 0.0840 0.3367 13.3624

This exhibit shows the summary statistics for the six stocks: Kinross Gold Corporation (Ticker symbol: KGC) and Duke Energy (DUK) in
Panel A, Punjab Alkalies and Chemicals Limited (PACL) and Bharat Petroleum Corporation Limited (BPCL) in Panel B, and Pan American
Silver Corp (PAAS) and Portland General Electric Company (POR) in Panel C. Panel A.1, B.1, and C.1 show the statistics before any
transform is applied; Panel A.2, B.2, and C.2 show the same after the Manly transformation is applied to raw data; and Panel A.3, B.3,
and C.3 show after the John and Draper transform is applied to data after the Manly transform. The correlation between the transformed
series of data for POR and PAAS in Panel C of Table 2 is −0.0122 with a t-stat of 0.7122. While the same for KGC and DUK are corr = 0.034,
t-stat = 0.7731, and for PACL and BPCL are corr = 0.0088, t-stat = 0.1971. Thus, return series remains uncorrelated after the transforms,
thus preserving additivity of VaR values for the portfolios of two stocks in each of the three cases.

We plot the transformed data densities for KGC and DUK in panel A, for PACL and
BPCL in panel B, and for PASS and POR in panel C of Figure 3, respectively. For comparison
purposes, we superimpose normal densities on plots of the stocks. The graphs show
interesting patterns when compared to the corresponding raw data plots of Figure 1.



J. Risk Financial Manag. 2021, 14, 51 11 of 19

We notice that the mode for the transformed data has decreased for the all the stocks
studied. The reduction is less noticeable in the case of PACL. The effect of the transforms is
to redistribute probability mass from the center towards the left tail of the raw distribution.
Simultaneously, mass in the tails is also reduced and redistributed over the rest of the
return values.
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6. Backtesting

We estimate the three models of VaR for all the firms in our portfolio. Model 1 employs
the historical simulation, Model 2 uses the normal distribution, while Model 3 uses the
transformed data. Each model is estimated using the past 100 days return data. The
backtesting of the model is based on the proportions of exceptions test popularized by
Kupiec (1995).9 The backtesting philosophy for the three models is predicated on the
following rationale: if Vart

1,α is established on day t using a given model, then in the
following days, the number of realized daily losses lower than Vart

1,α (called exceptions)
will be fewer for the model with a better fit.10 Both estimation and backtesting windows are
then rolled forward by one day, and the process is repeated until the entire sample period
is exhausted. The estimation and backtesting periods equal 100 and 125 days, respectively
(see Figure 2), at α = 1%, so that zα = −2.33.

We assume that $50,000 is invested in each of the stocks. Under Model 1 (M1), the
first percentile is taken from historical simulated data. Under Model 2 (M2) (assuming
normality of raw returns), the daily VaR on day t, VaRt

1,0.01 = −(−2.33σ + µ)× 50, 000,
where mean (µ) and standard deviation (σ) is given by the mean and returns of the raw
data from t, . . . , t − 99, (see Equation (1), Section 2).

In Model 3 (M3), the raw data over the estimation window is standardized and trans-
formed so that the transformed data has mean (µtr) and standard deviation (σtr). The first
percentile (pct 1%) for this transformed data is given by (−2.33σtr + µtr), which is mapped
back to the standardized raw distribution by inverting the transforms in reverse order, i.e.,
(
{

MANLY−1◦ JD−1( pct 1%)}) . Since this point lies on the standardized distribution, the
value-at-risk at 1% under Model 3 on day t is given by−(

{
MANLY−1◦ JD−1( pct 1%)}σ + µ)

×50, 000 (see Step 3 of the methodology described towards the close of Section 4).
With the 1% VaR value set on day t for all the three models (M1, M2, and M3),

VaRt
M1, VaRt

M2, and VaRt
M3, we proceed as follows. For every day beginning t + 1 and

ending t + 125, we check if the realized daily loss/gain equals or exceeds the VaR value
for M1 and M2. If the loss equals or exceeds the VaR value, then it is counted as an
exception. The sum of all exceptions divided by the total number of days (125) gives us the
proportion of exceptions observed from the model over the backtesting window. Following
Kupiec (1995), we assume these exceptions follow a binomial distribution.

Since the three models are using same population of returns, for comparison, we follow
the two sample proportions tests, which employ the Z-statistic and have the following form:

zstat =
p̂i − p̂j

s.e.p̂
, (7)

where p̂i and p̂j are the proportion of exceptions observed for models Mi and

Mj (i 6= j = 1, 2, 3), and p̂ =
Xi+Xj
Ni+Nj

is the pooled probability of an exception. Xi (i 6= j = 1, 2, 3)

and Ni (i 6= j = 1, 2, 3) are the number of exceptions observed and their corresponding sample
size in the different models. The standard error of the pooled probability is:

s.e.p̂ =

√√√√ p̂.(1− p̂).

(
1
Ni

+
1
Nj

)
(8)

The results of the back test are presented in Table 3. Since each backtest window has
length 125 days, and there are 376 such windows on a rolling basis, the total number of
data points for each model = 125 × 376 = 47,000.

9 Backtesting procedure statistics designed to verify capability of the VaR model are philosophically similar to process capability indicators (PCIs)
employed in other fields of study. See Tang and Than (1999) for applicability of PCIs for non-normal data in quality control.

10 Basel II refers to this backtesting procedure which is actually an out of sample test—a “forward test”.
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Table 3. Results of backtesting value-at-risk and expected shortfall estimates from the three models.

Panel A. Results for the KGC and DUK stocks from the US market, based on 100 day rolling estimation window, and 125 day
rolling backtesting window ending December 10, 2019

N = 47,000
KGC DUK

Historical Normal JDManly Historical Normal JDManly

Number of exceptions 392 965 751 799 1065 1028
Probability of exception 0.83% 1.98% 1.50% 1.70% 2.27% 2.19%

Kupiec’s Z stat for diff in proportions (H-N) −19.4022
a −6.7114 a

Kupiec’s Z stat for diff in proportions (N-J) 5.2611 a 0.8109
Kupiec’s Z stat for diff in proportions (J-H) 11.3329 a 5.7779 a

Christoffersen’s LR Test (Chi-sq; 1 df; cut-off 6.63
at 1% level) 4.9128 2.5732 9.7557 2.5732 3.1782 7.1462

Average Daily Value-at-risk on $50,000
investment $4084.69 $2780.51 $3133.87 $1105.17 $1166.40 $1566.08

Average Daily Expected Shortfall on $50,000
investment when VaR@1% $989.71 $865.93 $1078.37 $458.39 $517.74 $448.58

Panel B. Results for the PACL and BPCL stocks from the Indian market, based on 100 day rolling estimation window, and 125 day
rolling backtesting window ending December 10, 2019

N = 47,000
PACL BPCL

Historical Normal JDManly Historical Normal JDManly

Number of exceptions 2392 1291 2061 810 1295 1496
Probability of exception 5.09% 2.75% 4.39% 1.72% 2.76% 3.18%

Kupiec’s Z stat for diff in proportions (H-N) 16.3393 a −12.1550
a

Kupiec’s Z stat for diff in proportions (N-J) −15.3659
a −4.0051 a

Kupiec’s Z stat for diff in proportions (J-H) −4.9122 a 17.1924 a

Christoffersen’s LR Test (Chi-sq; 1 df; cut-off 6.63
at 1% level) 0.0009 0.2468 0.9749 3.1782 1.2917 2.3031

Average Daily Value-at-risk on $50,000
investment $2496.27 $3189.78 $2632.21 $5692.16 $2796.16 $2738.84

Average Daily Expected Shortfall on $50,000
investment when VaR@1% $1316.53 $1515.59 $1574.68 $2640.31 $1897.32 $1542.98

Panel C. Results for the POR and PAAS stocks during high volatility period in US market, based on 100 day rolling estimation
window, and 125 day rolling backtesting window ending October 10, 2008

POR PAAS

N = 47,000 Historical Normal JDManly Historical Normal JDManly

Number of exceptions 98 1499 1224 203 1002 614
Probability of exception 0.21% 3.19% 2.60% 0.43% 2.13% 1.30%

Kupiec’s Z stat for diff in proportions (H-N) −35.3595
a

−23.1662
a

Kupiec’s Z stat for diff in proportions (N-J) 5.3480 a 9.7359 a

Kupiec’s Z stat for diff in proportions (J-H) 31.1887 a 14.4419 a

Christoffersen’s LR Test (Chi-sq; 1 df; cut-off 6.63
at 1% level) 2.5635 0.375 3.2594 2.3098 1.8539 4.8801

Average Daily Value-at-risk on $50,000
investment $1816.53 $1306.66 $1400.69 $4106.32 $3146.14 $3535.89

Average Daily Expected Shortfall on $50,000
investment when VaR@1% $688.92 $668.07 $652.59 $1929.49 $2013.16 $1788.74

This exhibit shows the difference in proportions of exceptions observed when VaR values are set after (i) historical simulation (Model 1),
(ii) assuming normality (Model 2), and (iii) transforming data using Manly (1976) and John and Draper (1980) transforms (Model 3). Three
pairs of stocks are taken, one pair of highly liquid stocks from the recent normal period (KGC and DUK, in Panel A), one pair of less liquid
stocks from recent normal period (PACL and BPCL, in Panel B), and one pair of highly liquid stocks from a destressed period (POR and
PAAS, in Panel C). Exceptions are assumed to follow a binomial distribution following Kupiec (1995). The estimation window has a length
of 100 days and backtesting window length equals 125 days. a denotes 1% levels of significance.
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Table 3 shows that exceptions from M2 are far more numerous than corresponding
exceptions obtained from M3, and in turn, the exceptions from M3 are higher than the
exceptions from M1 for the highly liquid stocks of the US market. For the less liquid stocks,
the exceptions from M3 are higher than M2, but lower than M1 for PACL. For BPCL, the
exceptions from M2 are higher than M1, but lower than M3. The expected shortfall for the
stressed period (Panel 3.C) is the lowest for M3.

As expected for liquid stocks in Panels 3.A and 3.C for the US market, we find that
high magnitudes for VaR result in lower ES, but the same relation fails to hold for illiquid
stocks in Panel 3.B owing to the nature of lumpiness in the VaR estimates. The results
show that liquidity risk for estimation of VaR for individual assets is a concern that needs
to be explicitly accounted for in the model (see Soprano 2015 for liquidity adjustments to
VaR estimation).

7. Comparison to GARCH (1, 1) Volatility Estimation Model

As stated earlier, the most common approach to tackling non-normality is using a more
sophisticated model for volatility. GARCH (1, 1) is most commonly employed to form
unconditional variance of returns (or the long-run volatility estimation). For purposes
of comparison to other analytical models of VaR estimation, we model the volatility of
the returns process for all the stocks as GARCH (1, 1).11 For GARCH (1,1), we use an
estimation window of 100 days and backtesting window of 125 days, with information
being updated daily. This implies that while the first estimate is based on 100 days of data,
the next one is based on 101 days, and so on, until the last estimate established is based on
376 days of data.

A visual analysis reveals GARCH (1, 1) estimates of long-run volatility are more stable
than the rolling window estimates, as expected.12 As more information is incorporated into
the GARCH model, the estimates become more precise. Comparison of rolling window and
GARCH estimates shows that the numbers follow a similar trend. When rolling window
estimates fall (rise), so do the GARCH ones, but at a slower rate, indicating greater stability.

Results of backtesting using conditional volatility estimates are presented in Table 4
(similar to those reported in Table 3). It shows that the violations for highly liquid stocks for
the US market are lower when volatility is modeled using GARCH applied on transformed
data (JDManly–GARCH) compared to GARCH applied on un-transformed data (Normal–
GARCH). The expected shortfalls are higher for the JDManly–GARCH model compared
to Normal–GARCH. For the less liquid stocks, the Normal–GARCH model yields lower
number of VaR violations as compared to JDManly–GARCH model. The expected shortfall
is approximately the same for both models for PACL, but is higher for Normal–GARCH
model for BPCL.

11 We employ SAS (proc autoreg) to estimate the GARCH (1, 1) model. The diagnostic test for the applicability of the model over the period is available
from the authors.

12 Figures available from authors.
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Table 4. Results of backtesting value-at-risk and expected Shortfall estimates with GARCH (1, 1) volatility updation.

Panel A. Results for the KGC and DUK stocks from the US market, based on 100 day rolling estimation window, and 125 day
rolling backtesting window ending December 10, 2019

N = 47,000
KGC DUK

Normal–GARCH JDManly–GARCH Normal–GARCH JDManly–GARCH

Number of exceptions 1052 789 1351 1223
Probability of exception 2.17% 1.59% 2.87% 2.60%

Kupiec’s Z stat for diff in proportions
(N-J) 6.1109 a 2.4986

Christoffersen’s LR Test (Chi-sq; 1 df;
cut-off 6.63 at 1% level) 1.3 6.1427 2.0662 7.1462

Average Daily Value-at-risk on $50,000
investment $2721.84 $3081.33 $1108.07 1566.08

Average Daily Expected Shortfall on
$50,000 investment when VaR@1% $720.38 $740.02 $438.64 542.85

Panel B. Results for the PACL and BPCL stocks from the Indian market, based on 100 day rolling estimation window, and 125 day
rolling backtesting window ending December 10, 2019

N = 47,000
PACL BPCL

Normal–GARCH JDManly–GARCH Normal–GARCH JDManly–GARCH

Number of exceptions 333 442 1340 1560
Probability of exception 0.71% 0.94% 2.85% 3.32%

Kupiec’s Z stat for diff in proportions
(N-J) −3.9317 a −4.3115 a

Christoffersen’s LR Test (Chi-sq; 1 df;
cut-off 6.63 at 1% level) 4.9217 8.3293 1.6429 3.2682

Average daily value-at-risk on $50,000
investment $4263.97 $3529.99 $2979.81 $2913.86

Average daily expected shortfall on
$50,000 investment when VaR@1% $2397.27 $2398.44 $1948.91 $1637.11

Panel C. Results for the POR and PAASstocks during high volatility period in US market, based on 100 day rolling estimation
window and 125 day rolling backtesting window, ending October 10, 2008

POR PAAS

N = 47,000 Normal–GARCH JDManly–GARCH Normal–GARCH JDManly–GARCH

Number of exceptions 1438 1214 1089 606
Probability of exception 3.07% 2.59% 2.31% 1.29%

Kupiec’s Z stat for diff in proportions
(H-N)

Kupiec’s Z stat for diff in proportions
(N-J) 4.4420 a 11.839 a

Christoffersen’s LR Test (Chi-sq; 1 df;
cut-off 6.63 at 1% level) 0.5419 5.2493 0.4585 2.9918

Average daily value-at-risk on $50,000
investment $1260.17 $1354.97 $2983.09 $3392.02

Average daily expected shortfall on
$50,000 investment when VaR@1% $731.52 $872.76 $1416.98 $1520.13

This exhibit shows the difference in proportions of exceptions observed, average daily value-at-risk, and average daily expected shortfall
when VaR values are set after (i) volatility is modeled using GARCH (1,1) on the normal return series; and (ii) volatility is modeled using
GARCH (1,1) on the transformed data using Manly (1976) and John and Draper (1980) transforms. Three pairs of stocks are taken, one pair
of highly liquid stocks from the recent normal period (KGC and DUK, in Panel A), one pair of less liquid stocks from recent normal period
(PACL and BPCL, in Panel B), and one pair of highly liquid stocks from a destressed period (POR and PAAS, in Panel C). Exceptions are
assumed to follow a binomial distribution following Kupiec (1995). The estimation window has a length of 100 days and backtesting
window length equals 125 days. a denotes 1% levels of significance.
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8. Economic Impact

There is a trade-off between exceptions and estimates of VaR when it is used as risk
capital (reserves) to absorb losses. As is well known, the easiest way to avoid debilitating
loss exceedances is to hold large amounts of capital. Yet idle capital incurs lost opportunity
cost. Consequently, firms that employ VaR to set risk capital reserves try to balance the
exceedances with the capital limits.

We demonstrate the economic impact of our methodology using the regulatory mini-
mum capital requirement (MCR) guidance provided under Basel II for the portfolio of our
stocks. Basel II requires minimum risk capital reserves to meet the market risk of a bank’s
asset holdings. Each bank must meet, on a daily basis, a capital requirement expressed as
the higher of (1) its previous day’s value-at-risk (VaRt−1); and (2) an average of the daily
value-at-risk measures on each of the preceding sixty business days (VaRavg), multiplied
by a multiplication factor (mb). That is, at the beginning of day t,

MCRt = Max (VaRt−1; mb
1
60

60

∑
i=1

VaRt−i) (9)

where the multiplication factor varies between 3 and 4.
It is clear from Equation (9) that the MCR is dependent upon the VaR estimates.

Holding mb constant (=4), we compute the average MCR under the three models over the
sample period. The average MCR over the sample period (T days) is defined as

Average MCR =
1
T

T

∑
t=1

MCRt (10)

Since the first VaR estimate is available after 100 days of return data and another
60 days of VaR estimate is needed for calculation of MCR, a total of T = 440 days of trading
days data over the sample period is used for all models (excluding the last day of the
sample period, since it is assumed that the MCR is set at the beginning of day t).

Table 5 reports the result of the computations. The average MCR is highest under
M1, followed by M3 and M2 for both pairs of highly liquid stocks in the US market
(i.e., in normal period as well as in stressed period, Panels 5.A and 5.C, respectively). The
panels show that the transformation method yields significantly different MCR estimates
that lie between the historical simulation (high) estimates and normal distribution estimates
(low). The same is not true for less liquid stocks. The MCR is lowest for M3 for both PACL
and BPCL. For PACL, the MCR is highest for M2, and for BPCL, the MCR is highest for M1.
The differences in MCRs between the models for all the stocks are significant, except for
the difference between M1 and M3 for PACL, and M2 and M3 for BPCL in Panel B.

Table 5. Minimum capital requirements (MCR) based on value-at-risk estimates from the three models.

Panel A. Results for the KGC and DUK stocks from the US market, based on 60 day rolling averages. For exemplification purposes,
we mimic the regulatory guidance formula of BaselII

KGC DUK

N = 442 Historical Normal JDManly Historical Normal JDManly

Average MCR $15,734.05 $11,270.12 $12,267.19 $6118.47 $4344.17 $4561.77
Z stat for diff in average MCR (H-N) 23.1053 a 22.5573 a

Z stat for diff in average MCR (N-J) −10.9975 a −6.4735 a

Z stat for diff in average MCR (J-H) −32.2388 a −46.3126 a
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Table 5. Cont.

Panel B. Results for the PACL and BPCL stocks from the US market, based on 60 day rolling averages. For exemplification
purposes, we mimic the regulatory guidance formula of BaselII

PACL BPCL

N = 442 Historical Normal JDManly Historical Normal JDManly

Average MCR $12,776.90 $13,792.50 $12,598.72 $21,491.47 $11,285.96 $11,258.47
Z stat for diff in average MCR (H-N) −3.2535 a 16.7462 a

Z stat for diff in average MCR (N-J) 4.5094 a 0.1656
Z stat for diff in average MCR (J-H) −0.6730 −61.6857 a

Panel C. Results for the POR and PAAS stocks from the US market, based on 60 day rolling averages. For exemplification purposes,
we mimic the regulatory guidance formula of BaselII

POR PAAS

N = 442 Historical Normal JDManly Historical Normal JDManly

Average MCR $7143.39 $5470.97 $5872.24 $16,220.48 $13,254.34 $14,012.80
Z stat for diff in average MCR (H-N) 21.7389 a 12.8957 a

Z stat for diff in average MCR (N-J) −7.1649 a −5.8380 a

Z stat for diff in average MCR (J-H) −22.6974 a −16.9930 a

This exhibit shows the average MCRs observed when VaR values are set after (i) historical simulation (Model 1); (ii) assuming normality
(Model 2); and (iii) transforming data using Manly (1976), and John and Draper (1980) transforms (Model 3). Three pairs of stocks are
taken, one pair of highly liquid stocks from the recent normal period (KGC and DUK, in Panel A), one pair of less liquid stocks from recent
normal period (PACL and BPCL, in Panel B), and one pair of highly liquid stocks from a stressed period (POR and PAAS, in Panel C).
The average MCR is calculated as the average of daily MCR over 440 days in the sample. a denotes 1% levels of significance.

9. Conclusions

This paper extends the model-building approach of VaR and suggests application of
two transforms, one for handling skewness and other for kurtosis, which tend to restore
normality to data when applied in succession. Inversion of these transforms enables one
to compute analytical VaR, which is true to the normality assumption. The transforms
are well defined and can be used in GARCH and other conditional volatility VaR models.
We apply the technique to portfolios of uncorrelated stocks from two different markets
that differ in liquidity, and two different periods, one of which is the stressed period of
the 2008 crisis. We verify that VaR estimates based on the transformation approach are
less likely to be exceeded by realized loss data for liquid stocks during stressed as well as
normal periods, thus decreasing the under capitalization of the portfolio in our example.
The results continue to hold when volatility is modeled using GARCH.

The empirically demonstrated advantage of the transformation technique for liquid
markets is that it leads to lower exceedances than the normal distribution assumption,
and yields reserve minimum capital requirement that lies between those estimated using
historical simulations and the normality method. However, even with the application of
the transformation technique, liquidity risk still needs to be accounted for separately, as is
done in other methods of determination of VaR.

Further research may explore combining liquidity correction methods to the trans-
formational method and applying more sophisticated conditional volatility models in
conjunction, like E-GARCH and M-GARCH. From a practical perspective, however, the
method yields capital requirements that are neither too low nor too high, and the estimates
may be utilized to shore up risk capital to absorb losses and lower exceedances, without a
concomitant increase in idle capital that shall impose an opportunity cost of idle capital on
the investors.
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