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Abstract: In this paper, the pricing performances of two learning networks, namely an artificial
neural network and a bootstrap aggregating ensemble network, were compared when pricing
the Johannesburg Stock Exchange (JSE) Top 40 European call options in a modern option pricing
framework using a constructed implied volatility surface. In addition to this, the numerical accuracy
of the better performing network was compared to a Monte Carlo simulation in a separate numerical
experiment. It was found that the bootstrap aggregating ensemble network outperformed the
artificial neural network and produced price estimates within the error bounds of a Monte Carlo
simulation when pricing derivatives in a multi-curve framework setting.

Keywords: artificial neural networks; vanilla option pricing; multi-curve framework; collateral;
funding

1. Introduction

Black and Scholes (1973) established the foundation for modern option pricing the-
ory by showing that under certain ideal market conditions, it is possible to derive an
analytically tractable solution for the price of a financial derivative. Industry practition-
ers however quickly discovered that certain assumptions underlying the Black–Scholes
(BS) model such as constant volatility and the existence of a unique risk-free interest rate
were fundamentally flawed. Following the 2007 credit crisis, Piterbarg (2010) extended
the BS partial differential equation (PDE) to account for collateral and funding costs by
introducing three deterministic interest rates, more specifically the funding rate rF, the
collateral rate rC, and the repurchase agreement rate rS

R. Analytically tractable solutions to
the Piterbarg PDE were subsequently derived by Von Boetticher (2017) for European-style
derivatives.

The applications of machine learning in quantitative finance have been extensively
studied over the past few decades, with a large number of researchers contributing to
various areas in the financial machine learning literature. According to a detailed literature
review by Ruf and Wang (2020), there have been more than 100 papers published that
have studied the applications of machine learning in the pricing and hedging of financial
derivative securities.

Pioneering research by Hutchinson et al. (1994), Garcia and Gençay (2000), and
Bennell and Sutcliffe (2004) put forth the idea that machine learning techniques such as
artificial neural networks (ANNs) can be used as alternative non-parametric methods
to traditional derivative pricing models. Advances in technology and the increase in
machine learning resources available today have enabled researchers and practitioners to
develop and implement more complex ANNs. Recent papers by Culkin and Das (2017)
and Liu et al. (2019) showed that ANNs that are both complex and efficient can easily be
trained and applied to financial derivative pricing problems.
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Since it is well known from the existing literature that machine learning techniques
are able to approximate the BS model, the question thus arises: Is it possible for these
techniques to learn the closed-form solutions derived by Von Boetticher (2017) and be used
to price derivatives in a multi-curve framework setting? Furthermore, does the use of
ensemble methods such as bootstrap aggregation (bagging) as investigated in an alternative
study on default risk analysis by Hamori et al. (2018) outperform an ANN?

The aim of this paper was to provide the answer to these questions by developing
two learning networks, namely an ANN and a bagging ensemble, and comparing their
performance in pricing European call options in the Piterbarg framework using option
price data from the South African market.

This paper is structured as follows: Section 2 consists of the research methodology,
which includes exploring the mathematical theory underpinning the Piterbarg framework,
as well as the mechanics behind ANNs and ensemble methods. Section 3 entails the data
generation process and configuration of the respective learning networks. Section 4 is
comprised of the numerical results, and ultimately, the findings and concluding remarks
are presented in Section 5.

2. Methodology

In this section, the theory applied in this paper is outlined and divided into two parts.
The first part focuses on the Piterbarg framework, whereas the second part explores the
mechanics behind ANNs and ensemble methods.

2.1. The Piterbarg Framework

The Piterbarg framework is a simple extension of the BS model that incorporates
collateral to offset liabilities that arise in the event of default. To better understand the
impact of collateral on the price of a derivative, it is first useful to understand how collateral
is connected to the credit riskiness associated with a certain contract or agreement. If a party
posts cash when entering into an agreement, the collateral rate rC is used to calculate the
interest payments, and since cash is considered a less risky asset, the collateral rate tends to
be low. If a party enters into a repurchase agreement, which is simply a collateralized loan,
then the party that borrows cash will need to later repay the amount borrowed together
with interest at a prespecified date. In addition to this, the party will also put up an asset
as collateral. Since the asset posted as collateral can be either a bond where the issuer
can default or a share whose value can fluctuate, there is more credit risk associated with
this agreement. This implies that the repurchase agreement rate rS

R should be higher than
the collateral rate. If a party enters into an agreement and posts no collateral, the loan is
unsecured, which exposes the lender to more credit risk. This implies a higher interest rate,
with the funding rate rF being the highest of the three interest rates. Taking the connection
between the different interest rates into account, the following relation must hold:

rC ≤ rS
R ≤ rF. (1)

According to Hunzinger and Labuschagne (2015), if a derivative is fully collateralized,
the expected payoff of the derivative is discounted using the collateral curve, and if
no collateral is posted, then the expected payoff is discounted using the funding curve.
Therefore, given the relation between the three deterministic interest rates in Equation (1),
it follows that:

VFC(St, t) ≥ VZC(St, t), (2)

where the fully collateralized derivative VFC(St, t) discounted at the collateral rate is more
expensive than the corresponding zero collateral derivative VZC(St, t) discounted at the
funding rate. The derivation of the Piterbarg partial differential equation (PDE) is presented
in the next section.
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2.2. The Piterbarg PDE

In this section, it is shown how the PDE for a general collateralized derivative can be
derived by constructing a self-financing replicating portfolio. Piterbarg (2010) assumed the
process of the underlying asset St at time t under the risk-neutral measure QrS

R
is given by:

dSt = rS
Rt

Stdt + σPStdWt, (3)

where the drift term is the repurchase rate rS
R with respect to the underlying asset, σP is

the volatility of the underlying asset, and Wt is a standard Brownian motion under the
measure QrS

R
. The change in the value of the derivative security Vt is obtained through the

application of Itô’s lemma and is given by:

dVt =

[
∂Vt

∂t
+ a

∂Vt

∂St
+

1
2

b2 ∂2Vt

∂S2
t

]
dt + b

∂Vt

∂St
dWt, (4)

where a = rS
Rt

St and b = σPSt. Let Vt = Πt denote the value of a replicating portfolio,
where ∆t units of the underlying asset and γt units of cash are held. More formally, this is
represented as:

Πt = ∆tSt + γt. (5)

The cash amount γt can be invested in or borrowed from various accounts, namely
the funding account γFt , the collateral account γCt , and the repurchase account γRt , which
yields the following replicating portfolio:

Πt = ∆tSt + γFt + γCt − γRt . (6)

It was assumed that the funding account accrues at the funding rate rFt , the collat-
eral account accrues at the collateral rate rCt , and the repurchase account accrues at the
repurchase agreement rate rS

Rt
. The replicating portfolio is considered to be self-financing

if changes in the value of the portfolio are only due to changes in the value of the assets
held in the portfolio. Thus, from the self-financing condition, the change in the value of the
portfolio at time t is given by:

dΠt = ∆tdSt +
(

γFt rFt + γCt rCt − γRt r
S
Rt

)
dt. (7)

Using the results from Equations (3) and (4) and letting ∆t =
∂Vt
∂St

to eliminate the risk
in the portfolio due to changes in the underlying asset result in:

∂Vt

∂t
dt +

1
2

σ2
PS2

t
∂2Vt

∂S2
t

dt =
(

γFt rFt + γCt rCt − γRt r
S
Rt

)
dt. (8)

To ensure the absence of any arbitrage opportunities, it is required that γFt = Vt − γCt ,
γCt = Ct, where Ct is the value of collateral posted and γRt = ∆tSt. Incorporating this into
Equation (8) results in the Piterbarg PDE:

∂Vt

∂t
+ rS

Rt
St

∂Vt

∂St
+

1
2

σ2
PS2

t
∂2Vt

∂S2
t
= VtrFt − Ct(rFt − rCt). (9)

The closed-form solutions for zero collateral and fully collateralized European call
options are given below.

2.3. Solutions for European Call Options in the Piterbarg Framework

Since it was shown that the value of a derivative that incorporates collateral satisfies
the PDE in Equation (9), the closed-form solutions for zero collateral (ZC) and fully collat-



J. Risk Financial Manag. 2021, 14, 254 4 of 18

eralized (FC) European call options based on the derivations by Von Boetticher (2017) are
given by:

VZC(St, t) = e−
∫ T

t rF(u)du
[
Ste

∫ T
t rS

R(u)duΦ(d1)− KΦ(d2)
]
, (10)

and:

VFC(St, t) = e−
∫ T

t rC(u)du
[
Ste

∫ T
t rS

R(u)duΦ(d1)− KΦ(d2)
]
, (11)

where:

d1 =
ln
(

St
K

)
+
∫ T

t rS
R(u)du + 1

2 σ2
Pτ

σP
√

τ
,

d2 = d1 − σP
√

τ, (12)

and where τ is the time-to-maturity (year fraction). The theory behind ANNs and ensemble
methods that form the backbone of this paper will be considered in the next section.

2.4. Neural Network Modeling Approaches

This section briefly provides some background on the mechanics behind ANNs, as
well as shows how ensemble methods are able to reduce the variance of the predictions of
individual ANNs.

2.4.1. Artificial Neural Networks

ANNs were initially inspired by neuroscience and intended to imitate the actions of
the biological brain. In modern times, ANNs can be more formally defined as function
approximation machines designed to achieve statistical generalization (Goodfellow et al.
2016). The general structure of a feed-forward ANN is illustrated in Figure 1.
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2.4.2. Ensemble Methods86

Ensemble methods are variance reduction techniques that can be used to improve
the accuracy of predictions since a single learner or ANN is often plagued by a multitude
of estimation problems. In essence, an ensemble network consists of a finite set N
of weak-learners that are combined to create a superior learner that will theoretically
outperform any of the individual learners. A common ensemble method is bootstrap
aggregating (bagging) predictors by Breiman (1996), where N subsets of training sets
are randomly sampled with replacement to train each member i where i = 1, ..., N.
After fitting each member on a respective training set, a bagging ensemble is formed
by combining the predictions of each member and taking the average of the individual
predictions to form an ensemble prediction. As highlighted by De Prado (2018), a
bagging ensemble will reduce the variance of predictions if and only if the individual
members are not perfectly correlated. More formally, the magnitude of the variance
reduction achieved by a bagging ensemble can be illustrated using an intuitive proof
by Bishop (2006). Suppose that the output of each individual member, or ANN, can be
written as a function of the actual value h(x) and some error term εi(x) and is given by:

yi(x) = h(x) + εi(x)

and the average sum-of-squared error is given by:

Ex

[
(yi(x)− h(x))2

]
= Ex

[
εi(x)2

]
,

Figure 1. Feed-forward artificial neural network structure.

Where in Figure 1, x represents the inputs, the interconnected lines represent the
synaptic weights, +1 represents the bias term, ϕ(·) represents the activation function, and
y is the output of the ANN. Once the flow of information as illustrated in Figure 1 has
passed through the network, the error between the actual and predicted outcome was
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calculated, and a correction to the synaptic weights throughout the network was applied
using a back-propagation algorithm with the aim of minimizing this error.

2.4.2. Ensemble Methods

Ensemble methods are variance reduction techniques that can be used to improve the
accuracy of predictions since a single learner or ANN is often plagued by a multitude of
estimation problems. In essence, an ensemble network consists of a finite set N of weak
learners that are combined to create a superior learner that will theoretically outperform
any of the individual learners. A common ensemble method is bootstrap aggregating
(bagging) predictors by Breiman (1996), where N subsets of training sets are randomly
sampled with replacement to train each member i where i = 1, ..., N. After fitting each
member on a respective training set, a bagging ensemble is formed by combining the
predictions of each member and taking the average of the individual predictions to form
an ensemble prediction. As highlighted by De Prado (2018), a bagging ensemble will
reduce the variance of predictions if and only if the individual members are not perfectly
correlated. More formally, the magnitude of the variance reduction achieved by a bagging
ensemble can be illustrated using an intuitive proof by Bishop (2006). Suppose that the
output of each individual member, or ANN, can be written as a function of the actual value
h(x) and some error term εi(x) and is given by:

yi(x) = h(x) + εi(x)

and the average sum-of-squared error is given by:

Ex

[
(yi(x)− h(x))2

]
= Ex

[
εi(x)2

]
,

where Ex[·] is the expectation with respect to the distribution of vector x. Thus, the average
error of each ANN in the bagging ensemble can be written as:

EANN =
1
N

N

∑
i=1

Ex

[
εi(x)2

]
.

If the prediction of the bagging ensemble is given by:

yEnsemble(x) =
1
N

N

∑
i=1

yi(x),

then the expected error from the bagging ensemble can be written as:

EEnsemble = Ex



(

1
N

N

∑
i=1

εi(x)

)2



=
1

N2Ex

[
N

∑
i=1

N

∑
j=1

εi(x)εj(x)

]

=
1

N2

N

∑
i=1

N

∑
j=1

Ex
[
εi(x)εj(x)

]
. (13)

If we assume that the errors have a zero mean and are uncorrelated such that the
following holds:

Ex[εi(x)] = 0,

Ex
[
εi(x)εj(x)

]
= 0, for i 6= j
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then Equation (13) reduces to:

EEnsemble =
1

N2

N

∑
i=1

Ex

[
εi(x)2

]

=
1
N

EANN . (14)

From the result in Equation (14), the expected error of a bagging ensemble can be
reduced increasing the number of N copies of a network given that the errors of the
individual ANNs are uncorrelated. The next section explores the data generation process,
as well as the configuration of the base learners.

3. Data Generation and Base Learner Configuration

The following section outlines the steps followed to generate artificial option price
data for training the two learning networks. The process of transforming the constructed
implied volatility surface into an option price surface to be used as the testing set and the
optimal configuration of the base learners is also discussed.

3.1. Training Data

The availability of option price data is largely scarce in the South African market due
to illiquidity; therefore, it was required to generate artificial training data using a similar
approach to that of Culkin and Das (2017) and Liu et al. (2019). The artificial data were
generated by randomly sampling input data from a wide range of parameter values, which
were converted to zero collateral and fully collateralized European call option prices using
the respective closed-form solutions. Under the assumption of constant interest rates, the
closed-form solutions in Equations (10) and (11) according to Levendis and Venter (2019)
can be simplified and rewritten as:

VZC(St, t) = e−
∫ T

t rF(u)du
[
Ste

∫ T
t rS

R(u)duΦ(d1)− KΦ(d2)
]

= e−rFτ
[
SterS

RτΦ(d1)− KΦ(d2)
]
, (15)

and:

VFC(St, t) = e−
∫ T

t rC(u)du
[
Ste

∫ T
t rS

R(u)duΦ(d1)− KΦ(d2)
]

= e−rCτ
[
SterS

RτΦ(d1)− KΦ(d2)
]
, (16)

where:

d1 =
ln
(

St
K

)
+
(

rS
R + 1

2 σ2
P

)
τ

σP
√

τ
,

d2 = d1 − σP
√

τ.

The parameter ranges used to generate artificial price data are outlined in Table 1.
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Table 1. Training set input parameter ranges.

Parameter Range

Spot price of the underlying asset (St) 1 (R10,000, R150,000)
Strike price (K) (60.00% to 140.00% of St)
Time-to-maturity (τ) (7/365, 3.5)
Repurchase agreement rate (rS

R) (3.00%, 35.00%)
Collateral rate (rC) (60.00% to 80.00% of rS

R )
Funding rate (rF) (120.00% to 140.00% of rS

R)
Implied volatility (σP) (2.00%, 80.00%)

1 Prices are denoted in Rand (R), which is the domestic currency for South African markets.

The number of samples randomly generated from the input parameter ranges in
Table 1 for training and validating the two learning networks, as well as the general
specifications are outlined in Table 2.

Table 2. Training and validation set specifications.

Configuration ANN Bagging Ensemble

Training Sample Size 1,500,000 1,500,000
Number of Members 1 25
Sampling with Replacement N/A Yes
Training Split 85% 85%
Validation Split 15% 15%

As outlined in Table 2, the bagging ensemble was constructed by sampling data with
replacement from the original training sample to produce 25 new training sets of equal size
to the original training sample.

The features of the input and output training sets were scaled using the homogeneity
hint by Merton (1973) in a similar fashion to that of Hutchinson et al. (1994), Garcia and
Gençay (2000), Bennell and Sutcliffe (2004), Culkin and Das (2017), and Liu et al. (2019). In
essence, the homogeneity hint involves scaling the spot price of the underlying asset and
the option price with the strike price, which resulted in the following input training sets:

xZC:Train =
{

St/K, τ, rS
R, rF, σP

}
,

xFC:Train =
{

St/K, τ, rS
R, rC, σP

}
,

and outputs of the form:

yZC:Train = {VZC(St, t)/K},
yFC:Train = {VFC(St, t)/K}.

The construction of the testing set is discussed in the next section.

3.2. Testing Data

The testing set for pricing zero collateral and fully collateralized European call options
consisted of the JSE Top 40 European call option price data obtained from the JSE dated
9 April 2019. From the option strike prices and implied volatility parameters, an implied
volatility surface was constructed using linear interpolation in the strike and linear variance
in the maturity space, which was consistent with market best practices. This resulted in a
surface consisting of 10,000 implied volatility estimates. Since there are no published zero
collateral or fully collateralized European call option price data in the South African market
and the implied volatility surface was based on the BS model, the following simplifications
had to be made:
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1. If zero collateral trades were considered, it was assumed that the implied volatility
surface was constructed using zero collateral trades;

2. If fully collateralized trades were considered, it was assumed that the implied volatil-
ity surface was constructed using fully collateralized trades.

The price of the underlying index (JSE Top 40) on the valuation date was R51,564.09,
and it was assumed that rC = 5.50%, rS

R = 7.00%, rF = 8.50% and that the continuous
dividend yield was equal to zero. Since the rates were assumed to be constant, the closed-
form solutions in Equations (15) and (16) were used to convert the implied volatility
surface into zero collateral and fully collateralized European call option price surfaces. The
constructed implied volatility surfaces and price surfaces are shown in Figures 2 and 3.
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Figure 2. Implied volatility surface.
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Figure 3. Price surfaces.

As seen in Figure 3, especially for deep “out-of-the-money” and long-dated trades,
the fully collateralized trades discounted at the collateral rate were more expensive than
the corresponding zero collateral trades discounted at the funding rate. The input testing
sets are given by:

xZC:Test =
{

St/K, τ, rS
R, rF, σP

}
,

xFC:Test =
{

St/K, τ, rS
R, rC, σP

}
,

and the outputs to evaluate the two learning networks are given by:

yZC:Test = {VZC(St, t)/K},
yFC:Test = {VFC(St, t)/K}.
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The configuration of the base learner is presented in the next section.

3.3. Base Learner Configuration

In this section, the process involved in establishing the optimal ANN configuration
is presented. Several different combinations of hyperparameters such as the number of
layers, neurons per layers, and batch sizes were drafted and evaluated on a smaller data
set, which consisted of 150,000 samples generated from the input parameter ranges using
a grid-search cross-validation (CV) technique. The collective best ANN configuration for
both zero collateral and fully collateralized European call options is reported in Table 3.

Table 3. ANN configuration.

Parameter Configuration

Number of hidden layers 2
Neurons in first hidden layer 512
Neurons in second hidden layer 512
Neurons in output layer 1
Hidden layer activation function ReLU
Output layer activation function Softplus
Optimizer Adam
Batch size 64
Epochs 20

The configurations reported in Table 3 outlines the structure of the ANN, as well
as that of each member that forms part of the bagging ensemble. It is important to note
that this exercise was solely performed to get a better indication of what the optimal
ANN configuration might be instead of using a “trial-and-error” approach. According to
Cybenko (1989) and Hornik et al. (1989), a feed-forward ANN with a single hidden layer
and a continuous non-linear activation function is able to approximate any continuous
function; thus, the proposed ANN configuration will be satisfactory. The chosen activation
functions included the rectified linear unit (ReLU) function for all hidden layers and the
Softplus function for the output layer. A key factor for using the Softplus function in the
output layer is to ensure that the price predictions are non-negative, since the value of a call
option cannot be negative. The graphical illustrations of the ReLU and Softplus functions
can be seen in Figure 4.

(a) Rectified linear units (ReLUs)
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Figure 4. Activation functions.

Other configurations included the use of the adaptive moment estimation (Adam)
optimizer by Kingma and Ba (2014) and the use of early-stopping checkpoints during the
training of each ANN, which monitored validation losses to prevent overfitting the ANN.
The results of this paper are presented in the next section.
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4. Results

This section presents the numerical results of deploying the two learning networks,
namely an ANN and a bagging ensemble to price zero collateral and fully collateralized
European call options using a constructed implied volatility surface. This section also
compares the pricing performance of a bagging ensemble to a Monte Carlo simulation
in a separate numerical experiment. The two learning networks were developed and
implemented in Python using the Keras Application Programming Interface (API) based
on TensorFlow 2.0 developed by Chollet (2015). All calculations were performed on a Dell
Inspiron 3567 i5-7200U CPU @ 2.50GHz with 4GB of installed RAM.

4.1. Zero Collateral Numerical Results

After training the two learning networks on the zero collateral training set and storing
the optimal configurations for each network, the testing set input parameters were given
to the two trained learning networks, which resulted in predicted prices of the form:
VZC(St, t)/K. The performance of the two learning networks on the zero collateral testing
set is reported in Table 4.

Table 4. Performance metrics: zero collateral.

Network Type MSE RMSE R2

ANN 1.67 × 10−6 0.001291 0.999948
Bagging Ensemble 1.23 × 10−7 0.000350 0.999996

From Table 4, it is clear that both learning networks produced accurate predictions
when compared to the actual prices obtained using the closed-form solution. Based on the
mean-squared-error (MSE) and root-mean-squared-error (RMSE), the use of a 25-member
bagging ensemble resulted in a substantial improvement in accuracy over the ANN. The
coefficient of determination (R2) reported for the two learning networks was indifferent. A
graphical representation of the performance of the two learning networks is illustrated in
Figure 5.
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(c) Absolute Error: ANN
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The prices predicted by the two learning networks were converted back into a zero collateral
European call option price surface and compared to the actual price surface in Subplot 4a.
The results are shown in Figure 9.

Figure 5. Actual vs. predicted results: zero collateral.
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The prices predicted by the two learning networks were converted back into a zero
collateral European call option price surface and compared to the actual price surface in
Figure 3a. The results are shown in Figure 6.

(a) Price surface: ANN
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(b) Price surface: Bagging Ensemble
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(c) Absolute error: ANN
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(d) Absolute error: Bagging Ensemble
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(e) Relative error: ANN
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(f) Relative error: Bagging Ensemble

Strike Price

30000

40000

50000

60000

70000
Time to Maturity

0.20
0.40

0.60
0.80

1.00
1.25

1.50
1.75

2.00

Re
la

tiv
e 

Di
ffe

re
nc

e

0.05

0.10

0.15

0.20

Figure 6. JSE Top 40 zero collateral call options.

As illustrated in Figure 6a,b, it is clear that both learning networks generated price
surfaces graphically identical to the original price surfaces. The evaluation of the absolute
errors in Figure 6c,d shows that the absolute error was reduced substantially across the
surface when using a bagging ensemble. This is also evident when comparing the relative
errors in Figure 6e,f. The peak in the relative error for deep “out-of-the-money” options
was attributable to the Softplus activation function used in the output layer, which resulted
in a slight overestimation bias since the function was not zero-centered. A more detailed
view of the magnitude of errors is reported in Table 5.
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Table 5. Magnitude of errors: zero collateral.

Metric Analytical ANN Bagging Ensemble

Min price R1.32 R3.17 R1.61
Max price R22,219.81 R22,221.17 R22,216.90
Min absolute error N/A R0.00 R0.00
Max absolute error N/A R148.30 R47.62

From the values reported in Table 5, the use of a bagging ensemble resulted in a
decrease of roughly 68% in the maximum absolute error over the ANN. The minimum
price generated by the bagging ensemble was also more representative of the actual
minimum price obtained using the closed-form solution. The application of the two
learning networks in the pricing of fully collateralized European call options will be
discussed in the next section.

4.2. Fully Collateralized Numerical Results

The same procedure as mentioned earlier for the zero collateral case was followed to
train and store the optimal configurations of the two learning networks applied to fully
collateralized trades. The fully collateralized testing set was given to the two trained
learning networks, which resulted in predicted prices of the form: VFC(St, t)/K. The
performance of the two learning networks on the fully collateralized testing set is reported
in Table 6.

Table 6. Performance metrics: fully collateralized.

Network Type MSE RMSE R2

ANN 1.63 × 10−6 0.001276 0.999952
Bagging Ensemble 1.99 × 10−7 0.000446 0.999994

It is clear from Table 6 that the bagging ensemble once again produced more favorable
results based on the MSE, RMSE, and R2 metrics compared to the ANN. A graphical
representation of the performance of the two learning networks on the fully collateralized
testing set is shown in Figure 7.
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(c) Absolute Error: ANN
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(d) Absolute Error: Bagging Ensemble
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The predictions of the two learning networks were converted back into a fully collateralised
European call option price surface and compared against the actual price surface in Subplot
4b. The results are illustrated in Figure 13.

Figure 7. Actual vs. predicted results: fully collateralized.
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The predictions of the two learning networks were converted back into a fully collat-
eralized European call option price surface and compared against the actual price surface
in Figure 3b. The results are illustrated in Figure 8.

(a) Price surface: ANN
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(b) Price surface: Bagging Ensemble
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(c) Absolute error: ANN
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(e) Relative error: ANN
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(f) Relative error: Bagging Ensemble
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Figure 8. JSE Top 40 fully collateralized call options.

From Figure 8, the same observations can be made as in Figure 6, and it is clear that
the bagging ensemble outperformed the ANN. A more detailed view of the improvement
in performance can be seen in Table 7.
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Table 7. Magnitude of errors: fully collateralized.

Metric Analytical ANN Bagging Ensemble

Min price R1.32 R6.65 R3.40
Max price R23,553.12 R23,479.49 R23,543.68
Min absolute error N/A R0.02 R0.00
Max absolute error N/A R194.81 R63.68

The values reported in Table 7 show that the use of a bagging ensemble resulted in
a roughly 67% decrease in the maximum absolute error, as well as a more representative
minimum price compared to the ANN. It is, thus, evident that the use of a bagging
ensemble consistently produced more accurate and realistic predictions when pricing zero
collateral and fully collateralized European call options. To get a better grasp on the pricing
capabilities of the bagging ensemble, the next section will compare the performance of the
bagging ensemble to one of the most widely used numerical techniques, namely a Monte
Carlo simulation.

4.3. Numerical Results: Bagging Ensemble vs. Monte Carlo Simulation

The aim of this section is to illustrate the potential that can be unlocked by exploring
alternative numerical methods such as a bagging ensemble in the case of this paper. For
the outcome of this numerical experiment to be of any significance, it is first necessary to
state the following:

1. The stochastic process of the underlying asset follows a geometric Brownian motion;
2. Constant interest rates were assumed;
3. The underlying asset does not pay any dividends;
4. Trades are European in nature;
5. Trades are devoid of any friction costs;
6. An Actual/365 day-count convention is used;
7. The implied volatility parameters obtained from the volatility skew dated 9 April 2019

were assumed to be constructed using either zero collateral or a fully collateralized
trades, depending on which type of trade was considered;

8. We assumed vanilla options only.

Furthermore, the following two critical conditions must also hold:

1. Given the relation in Equation (2), the price of a zero collateral European call option
must be less than that of a fully collateralized European call option for any trade;

2. For the bagging ensemble to be a viable alternative to a Monte Carlo simulation, it
must be shown that the numerical accuracy of the bagging ensemble is within the
three standard deviation error bounds of Monte Carlo simulation estimates for a
reasonable number of simulations.

The zero collateral and fully collateralized trade information that served as the basis
for this numerical experiment are outlined in Tables 8 and 9.

Table 8. Zero collateral trade specifications.

Parameter Trade 1 Trade 2 Trade 3

Trade type Call Call Call
Spot price of the underlying asset (St) R51,564.09 R51,564.09 R51,564.09
Strike (K) R42,716.80 R53,396.00 R64,075.20
Time to maturity 345 days 345 days 345 days
Implied volatility (σP) 22.32% 18.50% 15.17%
Repurchase agreement rate (rS

R) 7.00% 7.00% 7.00%
Funding rate (rF) 8.50% 8.50% 8.50%
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Table 9. Fully collateralized trade specifications.

Parameter Trade 1 Trade 2 Trade 3

Trade type Call Call Call
Spot price of the underlying asset (St) R51,564.09 R51,564.09 R51,564.09
Strike (K) R42,716.80 R53,396.00 R64,075.20
Time to maturity 345 days 345 days 345 days
Implied volatility (σP) 22.32% 18.50% 15.17%
Repurchase agreement rate (rS

R) 7.00% 7.00% 7.00%
Collateral rate (rC) 5.50% 5.50% 5.50%

From the trade information in Tables 8 and 9, the prices for the respective trades
generated by the bagging ensemble can be seen in Figure 9.
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Figure 9. Zero collateral vs. fully collateralized trades.

It is evident from Figure 9 that the prices generated by the bagging ensemble for a
fully collateralized trade were more expensive than the corresponding zero collateral trade;
thus, the first critical condition holds. The comparison of the numerical accuracy of the
bagging ensemble with the Monte Carlo simulation in relation to the closed-form solution
acting as the baseline price can be seen in Figure 10.

From Figure 10, it can be seen that the prices for zero collateral and fully collateralized
European call options predicted by the bagging ensemble across varying levels of money-
ness were within the three standard deviation error bounds of the Monte Carlo simulation
up to 500,000 simulations; thus, the requirement of the second critical condition holds.
As a supplementary analysis, the computation times of a single zero collateral and fully
collateralized trade for the Monte Carlo simulation consisting of 500,000 simulations and
the bagging ensemble are reported in Table 10.

Table 10. Single trade computation time in seconds.

Option Monte Carlo Bagging Ensemble

Zero Collateral: Trade 2 0.035036 2.421635
Fully Collateralized: Trade 2 0.060940 1.670318
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(a) Trade 1: zero collateral
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(b) Trade 1: fully collateralized
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(c) Trade 2: zero collateral
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(d) Trade 2: fully collateralized
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(e) Trade 3: zero collateral
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(f) Trade 3: fully collateralized
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Figure 10. Comparison of trades.

From the computation times reported in Table 10, the bagging ensemble was compu-
tationally less efficient than the Monte Carlo simulation when pricing a single trade. This,
however, does not necessarily translate into the bagging ensemble being computationally
less efficient than Monte Carlo simulation when more than one trade is considered. To
illustrate this point, the constructed implied volatility surface consisting of 10,000 implied
volatility estimates in Figure 2 was converted into zero collateral and fully collateralized
European call option price surfaces using the two methods. The computation times are
reported in Table 11.
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Table 11. Price surface computation time in seconds.

Option Monte Carlo Bagging Ensemble

Zero Collateral 353.856228 18.082844
Fully Collateralized 356.446953 17.612219

It is clear from the computation times in Table 11, that the bagging ensemble was
substantially faster than the Monte Carlo simulation since the Monte Carlo simulation had
to generate future paths for every point on the price surfaces as each trade was treated as a
separate process. The findings of this paper are concluded in the next section.

5. Conclusions

The purpose of this paper was to investigate the possibility of using machine learning
techniques such as an ANN and a bagging ensemble for pricing European call options
in a modern option pricing framework. By making use of an approach similar to that of
Hutchinson et al. (1994), Garcia and Gençay (2000), Bennell and Sutcliffe (2004), Culkin and
Das (2017), and Liu et al. (2019), it was shown that it was in fact possible to develop and
train two learning networks that were able to price zero collateral and fully collateralized
European call options accurately.

The bagging ensemble proved to be more accurate than the ANN in pricing zero
collateral and fully collateralized European call options and was able to produce price
estimates within the error bounds of the Monte Carlo simulation for trades with varying
levels of moneyness in the numerical experiment. It was also shown that the bagging
ensemble was computationally more efficient than Monte Carlo simulation when a large
number of different trades were priced. As illustrated in Figures 6 and 8, the pricing error
of the bagging ensemble can be sporadic across different levels of moneyness. Thus, for
any two trades with similar characteristics, the pricing error of a given trade will differ.
Nonetheless, the mere fact that it is possible to train a learning network such as a bagging
ensemble with relatively few computing resources and be able to price options within
the error bounds of a more well-known method such as a Monte Carlo simulation is
astounding.

The results presented in this paper therefore highlighted the potential of machine
learning techniques in modern financial derivative pricing problems and that the financial
applications of these techniques should be further explored.

Areas for further research include investigating the performance of machine learning
techniques in hedging strategies, as well as extending their applications to the pricing of
exotic options.
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