
Kless, Philipp Christian

Doctoral Thesis

New bootstrap methods for financial and economic
time series

PhD Series, No. 197

Provided in Cooperation with:
University of Copenhagen, Department of Economics

Suggested Citation: Kless, Philipp Christian (2019) : New bootstrap methods for financial
and economic time series, PhD Series, No. 197, University of Copenhagen, Department of
Economics, Copenhagen

This Version is available at:
https://hdl.handle.net/10419/240546

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/240546
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F A C U L T Y  O F  S O C I A L  S C I E N C E S  

D e p a r t m e n t  o f  E c o n o m i c s  

U n i v e r s i t y  o f  C o p e n h a g e n  

PhD Thesis 

Philipp Christian Kless 

 

New Bootstrap Methods for Financial and Economic 

Time Series   

Academic advisor: Anders Rahbek 

Date of submission: 28/02/2019 



Acknowledgments

There are numerous people who have helped me during the last three years in writing my

thesis. Without them, I would have never made it.

First and foremost, I thank my supervisor, Anders Rahbek. His guidance and advice

has always been outstanding. I am also thankful for all the discussions we had about

econometrics over the years. Thank you for pushing me so far.

In addition, I want to say thank you to Rasmus Søndergaard Pedersen for many help-

ful conversations related to my research, and to Heino Bohn Nielsen for broadening my

understanding of OxMetrics.

I would also like to thank the Department of Economics at the University of Copenhagen

for funding my studies and providing a roof over my head. I am also grateful for my fellow

PhD students who made life a lot easier. A special thanks goes to Anne, Nick, Marcus,

and Simon.

My research visit at the Department of Economics at University of California, San

Diego, was a truly great experience. I want to thank Graham Elliott and his sta� at the

department for making all this possible.

Lastly, I would like to thank my family and friends for their unconditional support

through all these years. Especially, I say thank you to Helene and Ruth who never failed

to make me smile after a day at the o�ce.

Philipp Christian Kless

København

February 2019

i



Summary

The bootstrap is a promising simulation tool that can help to solve complicated statistical

problems with no tractable solution. Speci�cally, the fundamental idea of the bootstrap is

to use re-sampling methods to approximate otherwise unknown properties of an estimator.

This thesis investigates bootstrap methods for �nancial and economic time series to do

forecasting. The results are presented in three self-contained parts which include theory,

simulations, and empirics for the implemented bootstrap method.

In the �rst part, �Smoothed Bootstrap Forecasts for Autoregressive Conditionally Het-

eroscedastic Models�, we consider forecasting a general class of ARCH(q) models using

the smoothed bootstrap. Like the i.i.d. bootstrap, we �rst obtain the estimated residuals

based on quasi maximum likelihood estimation. However, instead of drawing directly from

the empirical distribution function of the residuals, as for the i.i.d. bootstrap, we draw

bootstrap innovations from a kernel smoothed density. We provide a full asymptotic anal-

ysis which demonstrates the asymptotic validity of our forecasts based on the smoothed

bootstrap. An important property of the smoothed bootstrap is that the bootstrap in-

novations have a well-behaved density. In particular, the proof of the bootstrap validity

considerably simpli�es when the bootstrap innovations possess such a density. We also

perform a Monte Carlo experiment to investigate the �nite sample performance of the

smoothed bootstrap. We �nd that prediction intervals constructed from the smoothed

bootstrap forecasts have the correct coverage in di�erent stylized settings. Moreover, our

simulations show that the smoothed bootstrap forecasts are robust to the choice of the

kernel function and its bandwidth. Finally, a small empirical illustration con�rms that

our smoothed bootstrap also performs well with real data.

In the second part, �Bootstrap Forecasts for the Poisson Autogressive Model �, we present

a parametric bootstrap scheme to forecast the Poisson autoregressive (PAR) model. More

precisely, our bootstrap simulates the analytically unknown multi-step ahead probability

mass function (pmf) via recursive one-step ahead predictions of future counts using the

Poisson distribution and the estimated model parameters. By repeating this step a large

number of times, we numerically approximate the pmf of future counts. We prove that

our bootstrap forecasts are asymptotically valid. We study the �nite sample properties

of our forecasts by means of a Monte Carlo experiment. This experiment supports our

theoretical results, that is, prediction intervals based on the forecasted pmf according to

our bootstrap have the correct coverage on average. Finally, in two empirical applications,

we demonstrate that our parametric bootstrap also improves the forecasting performance

of the PAR model for stock transaction data and monthly US default count data.

Lastly, in the third chapter, �Estimation Uncertainty in GARCH Option Prices�, we

investigate the impact of estimation uncertainty on GARCH option prices via two novel

bootstrap algorithms. First, we design a bootstrap algorithm that allows us to assess
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the impact of parameter uncertainty on GARCH option prices. For this bootstrap, we

assume that the conditional distribution of the innovations is normal under the equiva-

lent martingale measure, Q. Next, we introduce estimation uncertainty by varying the

GARCH model parameters in each bootstrap repetition while we keep the innovations

�xed. In each bootstrap repetition, we vary the model parameters by drawing them from

the asymptotic distribution of the proposed estimator. This design allows us to make sure

that the only variation in the bootstrap stems from parameter uncertainty. By means of

simulations, we �nd that the impact of estimation uncertainty is higher for options at the

money. In addition, we introduce a second bootstrap which is more general. The second

bootstrap allows for conditional distributions under Q with more skewness and heavier

tails than the normal distribution. In an empirical application of the second bootstrap,

we show that the uncertainty contained in option prices leads to variation in the metric

used to evaluate the pricing performance of competing models. As a result, we �nd that

no single GARCH speci�cation dominates in terms of average relative pricing error when

taking parameter uncertainty into account.
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Danish Summary

Bootstrap metoden er et lovende simuleringsværktøj, der kan hjælpe med at løse kom-

plicerede statistiske problemer der ikke har nogen teoretisk løsning. Den fundamentale

ide med bootstrap er at genbruge data til at approksimere ellers ukendte egenskaber af

estimatoren.

Denne afhandling undersøger bootstrap metoder til at lave forudsigelser for �nansielle

og økonomiske tidsserier. Resultaterne er præsenteret i tre uafhængige kapitler, som alle

indeholder teori, simuleringer og empirisk test for den anvendte bootstrap metode.

I første kapitel, �Smoothed Bootstrap Forecasts for Autoregressive Conditionally Het-

eroscedastic Models�, undersøger vi forudsigelser af en generel klasse af ARCH(q) mod-

eller ved at bruge smoothed bootstrap. Ligesom ved i.i.d. bootstrap �nder vi først de es-

timerede residualer ved hjælp af quasi maximum likelihood estimation. Fremfor at trække

direkte fra den empiriske fordelingsfunktion af residualer som ved i.i.d bootstrap, trækker

vi bootstrap innovationer fra en kernel smoothed tæthed. Vi præsenterer fuld asympto-

tisk teori, som demonstrerer den asymptotiske validitet af vores forudsigelser baseret på

smoothed bootstrap. En vigtig egenskab ved vores smoothed bootstrap er at bootstrap

innovationerne har en tæthedsfunktion, der opfører sig pænt. Beviset for validiteten af

smoothed bootstrap simpli�ceres med denne tæthedsfunktion. Vi laver også en Monte

Carlo simulation for at undersøge adfærden af smoothed bootstrap i små datasæt. Vi

�nder, at prædiktions-intervallerne som vi konstruerer med smoothed bootstrap har den

korrekte præcision i en række stiliserede situationer. Derudover viser vores simulationer,

at forudsigelserne fra smoothed bootstrap er robuste i forhold til valg af kernel Function og

dets båndbredde. Endelig bekræfter en empirisk anvendelse, at vores smoothed bootstrap

fungerer godt empirisk.

I anden kapitel, �Bootstrap Forecasts for the Poisson Autogressive Model �, præsen-

terer vi en parametrisk bootstrap metode til at forudsige den velkendte Poisson Au-

toregressive (PAR) model. Mere præcist simulerer vi den analytisk ukendte fremtidige

sandsynlighedsmassefunktion via rekursive et-trins forudsigelser hvor vi bruger Poisson-

fordelingen og de estimerede model parametre. Ved at gentage dette mange gange ap-

proksimerer vi numerisk den fremtidige sandsynlighedsmassefunktion. Vi viser at vores

bootstrap forudsigelser er asymptotisk korrekte. Derudover studerer vi egenskaberne

af vores forudsigelser med en Monte Carlo simulation. Simulationen understøtter det

teoretiske resultat, idet intervallerne for forudsigelserne baseret på bootstrap gennem-

snitligt er korrekte. Afslutningsvist, viser vi at vores paramestriske boostrap forbedrer

forudsigelser af PAR modellen for data om aktiehandel og amerikanske konkurser.

I tredje kapitel, �Estimation Uncertainty in GARCH Option Prices�, ved hjælp af to

forskellige bootstrap metoder, undersøger vi betydningen af estimationsusikkerhed på op-

tionspriser udregnet ved brug af GARCH modeller. Optionspriser er beregnet ved hjælp
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af Monte Carlo simulationer i kombination med model parametre estimeret på historisk

tidsrække data. At estimere optionspriser medfører estimationsusikkerhed i optionspriser.

Vi præsenterer en bootstrap metode, som gør det muligt at evaluere parameterusikkerhe-

den i GARCH optionspriser med normalfordelte innovationer under Q. Vi tager højde for

estimationsusikkerhed ved at bruge estimatorernes asymptotiske fordeling. I et numerisk

eksperiment �nder vi, at estimationsusikkerhed er højere for optioner at the money. Vi

foreslår en anden bootstrap metode, der tillader en betinget fordeling med mere skævhed

og tungere haler end normalfordelingen under Q. I en empirisk anvendelse viser vi betyd-

ningen af parameterusikkerhed på optionspriser beregnet ved forskellige GARCH mod-

eller. Derudover, viser vi at usikkerheden indeholdt i optionspriserne medfører variation

i hvilket mål, der bruges til at evaluere performance af forskellige modeller. Derfor �nder

vi, at ingen GARCH model dominerer på alle parametre når man tager højde for estima-

tionsusikkerhed.
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Smoothed Bootstrap Forecasts for Autoregressive Conditionally

Heteroscedastic Models*

Philipp Christian Kless,

Department of Economics,

University of Copenhagen, Denmark.

Abstract

We consider forecasting a general class of ARCH(q) models using the smoothed

bootstrap. Like the i.i.d. bootstrap, we �rst obtain the estimated residuals based on

quasi maximum likelihood estimation. However, instead of drawing directly from the

empirical distribution function of the residuals, as for the i.i.d. bootstrap, we draw

bootstrap innovations from a kernel smoothed density. We provide a full asymptotic

analysis which demonstrates the asymptotic validity of our forecasts based on the

smoothed bootstrap. An important property of the smoothed bootstrap is that the

bootstrap innovations have a well-behaved density. In particular, the proof of the

bootstrap validity considerably simpli�es when the bootstrap innovations possess

such a density. We also perform a Monte Carlo experiment to investigate the �nite

sample performance of the smoothed bootstrap. We �nd that prediction intervals

constructed from the smoothed bootstrap forecasts have the correct coverage in dif-

ferent stylized settings. Moreover, our simulations show that the smoothed bootstrap

forecasts are robust to the choice of the kernel function and its bandwidth. Finally,

a small empirical illustration con�rms that our smoothed bootstrap also performs

well with real data.

Keywords: ARCH; Smoothed Bootstrap; Forecasting

*I thank Anders Rahbek, Rasmus Søndergaard Pedersen, Heino Bohn Nielsen, and Brendan Beare
for valuable comments. Part of this research was done while I was visiting University of California,
San Diego, during Spring 2017. I thank Graham Elliott for his hospitality. This chapter pursues some
ideas �rst discussed in my master's thesis. However, this chapter is completely re-written and contains
substantial new research results.
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1 Introduction

The h-day ahead conditional distribution of the return and volatility process of (G)ARCH

type models is in general unknown. One possible way to obtain the conditional distri-

butions is through bootstrap simulations. For instance, the standard i.i.d. bootstrap

has been widely studied in empirical applications when it is used to forecast (G)ARCH

models; cf. Robio (1999), Reeves (2005), Pascual, Romo, and Ruiz (2006), and Shimizu

(2010), among others.

In this article, we study if the smoothed bootstrap can be an alternative to the stan-

dard i.i.d. bootstrap for forecasting (G)ARCH type models. For the i.i.d. bootstrap, we

draw bootstrap innovations with replacement from the empirical distribution of the stan-

dardized residuals, while we draw from a kernel smoothed distribution for the smoothed

bootstrap. The idea for the smoothed bootstrap dates back to Silverman and Young

(1987) and has not been applied much in the forecasting literature.

More precisely, we explore the smoothed bootstrap and its application to dynamic

volatility models when forecasting a general class of ARCH(q) models. This class includes,

among others, asymmetric and threshold ARCH models. In regards of the smoothed

bootstrap, we use a non-parametric density estimator to approximate the distribution of

the model innovations. For this non-parametric estimator, we implement a kernel density

estimator based on the residuals. Like the i.i.d. bootstrap, a smoothed bootstrap has

the advantage that it avoids any particular parametric assumption on the innovation

distribution when forecasting.

We further contribute to the literature by providing a full asymptotic analysis of the

smoothed bootstrap when forecasting with ARCH type models. First, we show that our

proposed kernel estimator based on the residuals is consistent. Second, we then prove that

the in-sample bootstrap process is geometric ergodic. Third, we show that the bootstrap

parameters are consistently estimated by QML on the in-sample bootstrap data. Finally,

we establish that our bootstrap simulations based on recursive one-step ahead forecasts

mimic the unknown h-day ahead conditional distribution of the return and volatility

series.

The bootstrap has been often studied in the existing forecast literature. Pascual, Romo,

and Ruiz (2006), henceforth PRR, propose an i.i.d. bootstrap scheme for a GARCH(1,1)

model to simulate h-step ahead prediction intervals that also incorporate an additional

component of uncertainty due to parameter estimation. In particular, they show through

a Monte Carlo experiment that their prediction intervals for the return and volatility series

of their model have the correct coverage. Trucíos and Hotta (2016) adapt the bootstrap

algorithm of PRR to obtain prediction intervals for EGARCH and GJR-GARCH models.

Chen, Gel, Balakrishna, and Abraham (2011) exploit the linear representation of the

GARCH process to utilize the sieve bootstrap to construct predictions intervals. Their
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approach has the advantage that computational costs are reduced by up to 100 times

compared to other bootstrap procedures for the GARCH model. To the best of our

knowledge, Reeves (2005) is the only contribution also providing an asymptotic analysis

of the i.i.d. bootstrap used to generate prediction intervals for a AR(1)-GARCH(1,1)

model. In contrast to Reeves (2005), our approach is based on a smoothed bootstrap for

a general class of ARCH models. At the same time, the bootstrap gets more and more

attention in the forecasting literature because it can simulate the complete probability

distribution of possible outcomes which is helpful in making economic decision; see, among

others, Aastveit, Foroni, and Ravazzolo (2017), and Tay and Wallis (2000). For instance,

describing the uncertainty of volatility forecasts is highly relevant for trading and pricing

volatility derivatives; cf. Vorbrink (2014).

To present numerical evidence of the performance of our smoothed bootstrap device, we

conduct a Monte Carlo experiment in which we calculate prediction intervals based on our

bootstrap forecasts. The results demonstrate that our device delivers prediction intervals

with correct coverage on average in di�erent stylized settings. Moreover, we show that the

numerical results for the smoothed bootstrap are robust to di�erent choices of the kernel

function and its bandwidth. Finally, in a short empirical illustration, we demonstrate that

our smoothed bootstrap performs at par with the standard i.i.d. bootstrap of PRR(2006).

This article is organized as follows: In Section 2, we introduce the model, its main

assumptions and some standard asymptotic results for the QML estimator. Next, in

Section 3, we provide details about the smoothed bootstrap forecasts. In Section 4, we give

a full asymptotic theory for the smoothed bootstrap. Section 5 reports the results of our

Monte Carlo experiment. Section 6 considers di�erent kernel functions and corresponding

bandwidths. Next, Section 7 contains a small empirical illustration while we conclude in

Section 8. Additional simulations, empirical results along with all proofs can be found in

the Appendix.

NOTATION: We use P ∗ and E∗ respectively, to denote the probability and expectation,

conditional on the original sample. With
w∗→p we denote weak convergence in probability;

that is Y ∗T
w∗→p Y means that, as the sample size T diverges, |P ∗ (Y ∗T ≤ x)− P (Y ≤ x)| p→

0 at all continuity points. Moreover, for a given sequence Y ∗T computed from the boot-

strap data, Y ∗T − Y = o∗p (1), in probability, or Y ∗T
p∗→p Y , means that for any ε > 0,

P ∗ (||Y ∗T − Y || > ε)
p→ 0 as T →∞. Similarly, Y ∗T = O∗p (1), in probability, means that, for

every ε > 0, there exists a constantM > 0 such that, for all large T , P (P ∗ ||Y ∗T || > M) < ε).

2 Model, Assumptions and Estimation

We consider a general class of ARCH models as in Kristensen and Rahbek (2005). That

is, assume that the observed process (Yt, Xt−1)Tt=1 with Yt ∈ R and Xt−1 ∈ Rm is described
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by the following ARCH model,

Yt = σtzt,

σ2
t = ω + α′Xt−1, (2.1)

where X0 := (x0, . . . , x1−q) is �xed, (zt)
T
t=1 is i.i.d. (0, 1), ω > 0, α ∈ R+ and Xt :=

h (Yt, . . . , Yt−q+1) ∈ Rm
+ is a measurable function of (Yt, . . . , Yt−q+1) for some �nite, �xed

q ≥ 1. The parameters of the models are given by θ := (ω, α′) ∈ Θ ⊂ Rm+1
+ .

Possible parameterizations for α′Xt−1 that fall into our class are the standard linear

ARCH(q) model given by α′Xt−1 =
∑q

i=1 αiY
2
t−i; see Engle (1982). Another important

example is the GJR-ARCH(q) model of Glosten, Jagannathan, and Runkle (1993) which

can be expressed as α′Xt−1 =
∑q

i=1 α1iI(Yt−i<0)Y
2
t−i + α2iI(Yt−i≥0)Y

2
t−i. More parametriza-

tion, which are part of our framework in eq. (2.1), are listed in Table 1 in Kristensen and

Rahbek (2005); see also Section 5 in Kristensen and Rahbek (2005).

Using eq. (2.1), the likelihood function for (G)ARCH models is readily available, and

therefore θ can be directly estimated via Gaussian QMLE. That is, we de�ne the Gaussian

QML estimator by

θ̂ = arg min
θ∈Θ

LT (θ) , (2.2)

where LT (θ) = 1
T

∑T
t=1 log (σ2

t (θ)) +
Y 2
t

σ2
t (θ)

with σ2
t (θ) = ω + α′Xt−1.

The asymptotic properties of θ̂ are well-understood in the literature. Here, we follow

Kristensen and Rahbek (2005) and assume that the following conditions for (Yt, Xt−1)Tt=1

and (zt)
T
t=1 hold throughout the remainder of our paper.

Assumption 2.1 (i) (Yt, Xt−1) is geometric ergodic such that for the true parameter

θ0 ∈ Θ a stationary solution exists with (ii) E [|log (Xi,t)|] <∞, 1 ≤ i ≤ m.

Assumption 2.2 The i.i.d. (0, 1) random variables zt have a symmetric Lebesgue density

pz which is everywhere positive and Lipschitz continuous on R. Moreover, E
[
(z2
t − 1)

2
]
<

∞.

In regard of the parameter space, Θ, and to ensure identi�cation of the model parameters,

we impose the next assumption.

Assumption 2.3 (i) The parameter space is given by Θ = [ω, ω]× [αi, αi]× . . .× [αm, αm]

for some 0 < ω < ω <∞ and 0 < αi < αi <∞ for i = 1, . . . ,m. (ii) for any γ ∈ Rm\{0}
and g ∈ R, P (γ′Xt−1 6= g) > 0.

Given Assumption 2.1, the strong LLN applies to (Yt, Xt−1) which is needed for the

asymptotic analysis. Later, we state explicit conditions such that Assumption 2.1 holds

5



for di�erent choices of α′Xt−1 in eq. (2.1). Assumption 2.2 is slightly stronger compared to

Kristensen and Rahbek (2005). We require in addition that the innovations have Lipschitz

continuous density. This slightly stronger assumption is imposed because it allows us to

apply Markov Chain theory to establish geometric ergodicity of the in-sample bootstrap

ARCH(q) process. Finally, Assumption 2.3 contains standard conditions which, in (i),

de�ne the parameter space and, in (ii), ensure identi�cation.

Under the above assumptions, it follows by Kristensen and Rahbek (2005) that

√
T
(
θ̂ − θ0

)
= OP (1) (2.3)

if θ0 is in the interior of Θ. This result will be used in Section 4 to demonstrate the

validity of the smoothed bootstrap. Note that it is the rate of convergence we use to show

our results and not the actual limiting distribution.

3 Smoothed Bootstrap Forecasts

In the following, we are interested in the h-step ahead conditional distribution of the return

process, P (Yh ≤ x|FT ), where FT contains all information up to and including T ; respec-

tively, the h-step ahead conditional distribution of the volatility process, P (σ2
h ≤ x|FT ) for

a forecasting horizon h > T . In general, these two expressions are analytically unknown.

One way to estimate them is through bootstrap based simulations.

For instance, we can generate B bootstrap replicates of future return and volatility

paths and use their empirical distribution functions to estimate the unknown h-step ahead

conditional distributions. One popular method to generate these replicates is the standard

i.i.d. bootstrap. More precisely, for the i.i.d. bootstrap, we sample with replacement

from the empirical distribution function of the centered residuals to generate bootstrap

innovations to simulate the h-step ahead conditional distributions. That is, we estimate

the centered residuals as

ẑt,c = ẑt − ẑ, (3.1)

where ẑt = Yt/ (ω̂ + α̂′Xt−1) and ẑ = T−1
∑T

t=1 ẑt. Then we sample bootstrap innova-

tions, z∗t , as z
∗
t ∼ i.i.d.F̂T , conditional on the original sample, where F̂T is the empirical

distribution function of the centered residuals.

The smoothed bootstrap we explore in this article is di�erent in one important aspect.

More precisely, after having obtained the centered residuals, we additionally use a kernel

density estimator,

p̂ẑ(y) =
1

Tu

T∑
t=1

K

(
y − ẑt,c
u

)
, (3.2)
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where K (·) is a kernel function and u its bandwidth, to estimate the probability density

function of zt, pz (y). Then, we use z∗t ∼ i.i.d.p̂ẑ(y), conditional on the data, to generate

our bootstrap replications to simulate the unknown conditional distributions. As we

discuss later, drawing from p̂ẑ (y) has several implications on the bootstrap data generating

process. Most importantly, it simpli�es key steps in the proofs of bootstrap validity.

In our paper, the smoothed bootstrap is combined with the bootstrap scheme in PRR.

This scheme is attractive mainly because of two aspects. First, it is independent of the

distribution of the model innovations since we draw bootstrap innovations from p̂ẑ (y).

Second, bootstrap forecasts also re�ect parameter uncertainty since the bootstrap param-

eters are re-estimated in each bootstrap repetition. Both aspects are crucial for generating

prediction intervals with correct coverage especially in cases where the sample is small or

the error term follows a non-normal distribution; see also, Thombs and Schucany (1990),

and Blasques, Koopman, Lasak, and Lucas (2015).

The smoothed bootstrap generates forecasts through the following algorithm:

Smoothed Bootstrap Algorithm:

(i) Obtain θ̂ = (ω̂, α̂′) in eq. (2.1) on the original sample, (Yt)
T
t=1, using Gaussian

QML estimation.

(ii) Compute the centered residuals, ẑt,c, as described in eq. (3.1).

(iii) Estimate the probability density function, p̂ẑ (y), as given in eq. (3.2).

(iv) Construct the in-sample bootstrap sample values, (Y ∗t , σ
∗2
t )

T
t=1, recursively from

σ∗2t = ω̂ + α̂′X̂∗t−1, Y
∗
t = z∗t σ

∗
t (3.3)

initialized at X∗0 = (Xm−1, . . . , X0)′, and with T bootstrap errors, (z∗t )
T
t=1,

drawn i.i.d. from p̂ẑ (y).

(v) Obtain θ̂∗ =
(
ω̂∗, α̂∗

′)
in eq. (2.1) on the bootstrap sample, (Y ∗t )Tt=1, using

Gaussian QML estimation.

(vi) Construct the bootstrap out-of-sample values, (Y ∗h , σ
∗2
h )

H
h=1, recursively from

σ∗2h = ω̂∗ + α̂∗
′
X∗h−1, Y

∗
h = z∗hσ

∗
h (3.4)

initialized at X∗0 = (XT−j, . . . , XT )′, j = m − 1, . . . , 0 and with H bootstrap

errors, (z∗h)
H
h=1 drawn i.i.d. from p̂ẑ (y).

(vii) Repeat step (iv) to (vi) and obtain a set of bootstrap replicates,
(
Y
∗(b)
h , σ

∗2(b)
h

)H
h=1

,

for b = 1, . . . , B.
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(viii) Calculate P ∗ (Y ∗h ≤ x|X∗0 = y) = 1
B

∑B
b=1 I

(
Y
∗(b)
h ≤ x

)
and P ∗ (σ∗2h ≤ x|X∗0 = y) =

1
B

∑B
b=1 I

(
σ
∗2(b)
h ≤ x

)
for x ∈ R.

Remark 3.1 Step (i), (ii), and (v) are similar to the approach of PRR. In the �rst two

steps, we estimate the model parameters; and then we obtain the centered residuals. In

step (v), we re-estimate the bootstrap parameters in each bootstrap repetition and thereby

allow our forecasts to re�ect parameter uncertainty.

Remark 3.2 In step (iii), we introduce a non-parametric kernel estimator such that we

can draw bootstrap innovations from p̂ẑ (y) instead of F̂T . Assumptions for the kernel

K (·) and its bandwidth u will be detailed in Section 4.

4 Asymptotic Properties of the Smoothed Bootstrap

In this section we prove that our forecasts, based on a smoothed bootstrap, mimic the

correct out-of-sample distribution of the return and volatility series in the limit.

The following discussion uses the ARCH(1) model of Engle (1982) to ease notation and

focus on the asymptotic arguments; thus, we set α′Xt−1 = αY 2
t−1 in eq. (2.1). Then,

according to our bootstrap algorithm the parameter estimates are obtained by Gaussian

QML estimation and de�ned as

θ̂ = arg min
θ∈Θ

LT (θ) , (4.1)

where LT (θ) = 1
T

∑T
t=1 log (σ2

t (θ)) +
Y 2
t

σ2
t (θ)

with σ2
t (θ) = ω + αY 2

t−1. In addition, Y0 is

given as initial value. Let θ0 = (ω0, α0)′ denote the true parameter values.

Corollary 4.1 Set α′Xt−1 = αY 2
t−1 in eq. (2.1) and suppose that α < 1 such that As-

sumption 2.1 holds. Further, suppose that Assumption 2.2 and Assumption 2.3 hold.

Then,
√
T
(
θ̂ − θ0

)
= OP (1).

Before discussing asymptotic theory for our bootstrap, we impose assumptions on the

kernel estimator, p̂ẑ(y), in eq. (3.2).

Assumption 4.1 Assume for the kernel K (·) and its bandwidth u > 0 in eq. (3.2) that

(a) K (·) is a measurable function K (y), y ∈ R, with (i) K (·) symmetric, pos-

itive and Lipschitz continuous, (ii)
∫
K (y) dy = 1, (iii)

∫
|K (y)| dy < ∞,

(iv) |y| |K (y)| → 0 as |y| → ∞, (v) sup
y∈R
|K (y)| <∞, (vi)

∫
K2 (y) dy <∞,

and (vii)
∫
|y|rK (y) dy <∞ for r ≥ 2.

(b) As T →∞, (i) u→ 0, and (ii) T 1/2−εu2 →∞ for some small ε > 0.
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The assumptions for K (·) in part (a) are standard for non-parametric density esti-

mation; e.g. see Pagan and Ullah (1999), Chapter 2. For instance, consider Assumption

4.1(a) (ii) which ensures that the kernel function is a probability density function. Most of

the standard choices for a kernel function, such as the Gaussian kernel, ful�ll Assumption

4.1(a). Observe that in Assumption 4.1(b) (ii) we require a slower rate of convergence for

the bandwidth u compared to the standard i.i.d. case. A slower rate is needed because

the kernel estimator is based on estimated residuals; see also Gao and Song (2008).

The next two results establish conditions which we use to show that the in-sample

bootstrap process, (Y ∗t )Tt=1, is geometrically ergodic, conditional on the data.

Lemma 4.1 Suppose that α0 < 1 and that Assumption 4.1 holds. Then,

sup
y∈R
|p̂ẑ (y)− pz (y)| = op

(
T−ε

)
for some ε > 0.

According to the result in the above lemma, p̂ẑ is uniform consistent estimator for pz (y)

when it is based on a non-parametric kernel density estimator. Note that this result

ensures that we can show that the in-sample bootstrap process is geometric ergodic; see

also Franke, Kreiss, Mammen, and Neumann (2002) and Franke, Neumann, and Stockis

(2004).

Lemma 4.2 Suppose that α0 < 1 and that Assumption 4.1 holds. Moreover, there exists

an appropriate sequence of sets ΩT ⊆ RT+1 with P ((Y0, . . . , YT ) /∈ ΩT ) = o(1) for T →∞
such that for (Y0, . . . , YT ) ∈ ΩT ,

σ̂ (y)E∗ [|z∗t |] ≤ C1 + C2|y| for all y ∈ R and some C1 <∞, C2 < 1,

where σ̂ (y) = (ω̂ + α̂y2)
1/2

.

Remark 4.1 C1 and C2 in Lemma 4.2 are functions of (Y0, . . . , YT ) such that the restric-

tions C1 <∞; respectively C2 < 1 hold with probability tending to one.

The result in the previous lemma ensures, along with the result in Lemma 4.1, that the

in-sample bootstrap process is geometric ergodic, conditional on the data. We state this

result next.

Lemma 4.3 Suppose that α0 < 1 and that Assumption 4.1 holds. Then, (Y ∗t )Tt=1 is

geometrically ergodic and β-mixing, conditional on the original sample, (Y0, . . . , YT ) ∈ ΩT .

Remark 4.2 Lemma 4.3 complements the �ndings in Theorem 2 of Franke, Kreiss, and

Mammen (2002); respectively in Theorem 2 of Franke, Neumann, and Stockis (2004).

Both papers show this result for their non-parametric bootstrap process.
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The proposed bootstrap is only relevant in our setting if it mimics properties of the

original process. More precisely, we want that the stationary distribution of (Y ∗t )Tt=1 is

close to that of (Yt)
T
t=1. This result requires that the estimators p̂ẑ (y) and σ̂ (y) are

consistent. Speci�cally, we need that σ̂ (y) converges uniformly in y. To ensure uniform

convergence, we restrict the estimator σ̂ to regions where the stationary density is above

some threshold, and hence enough observations are available.

Before formalizing the closeness between the stationary distributions of (Yt)
T
t=1 and

(Y ∗t )Tt=1, we describe these additional properties for p̂ẑ (y) and σ̂ (y).

Lemma 4.4 Suppose that α0 < 1 and that Assumption 4.1 holds. Let {YT} be a sequence
of sets with . . . ⊆ YT ⊆ YT+1 ⊆ . . . with YT =

[
−T δ, T δ

]
for some δ > 0. Then

(a) P (Yt ∈ YcT ) = O (T−ν) for some ν > 0.

Moreover,

(b) sup
y∈YT
|σ̂ (y)− σ (y)| = Op (T−ν),

(c) inf
y∈R

σ̂ (y) ≥ C > 0,

(d)
∫
|p̂ẑ (y)− pz (y)| dy = Op (T−ν).

Furthermore, we need some additional mild conditions on pz (y) for the next result; see

Franke, Neumann, and Stockis (2004).

Assumption 4.2 The density pz (y) has the following properties:

(a)
∫
|pz (y)− pz (y + a)| dy = O (a),

(b)
∫
|pz (y)− pz (y/ (1 + a))| dy = O (a).

Next, we formalize the result for the stationary distribution of the in-sample bootstrap

process, π∗T , and the original process, π.

Theorem 4.1 Suppose that α0 < 1 and that Assumption 4.1 and Assumption 4.2 hold.

Then, for ν > 0 and arbitrarily large Λ <∞, it holds that

sup
B
{
(
λ (B)T−ν + T−Λ

)−1 |π (B)− π∗T (B)|} ≤ C,

conditional on the original sample, (Y0, . . . , YT ) ∈ ΩT , where λ (·) denotes the Lebesgue

measure and B is a measurable subset of R.

Remark 4.3 The above theorem implies that π∗T approximates π with a rate equal to some

power of T−1. This approximation is used to prove the validity of in-sample con�dence

bands based on the bootstrap; see Franke, Neumann, and Stockis (2004).
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Before stating the result which describes the asymptotic behavior of the parameters

estimated on the bootstrap data, we describe the properties of the bootstrap residuals.

Lemma 4.5 Suppose that the assumptions of Theorem 4.1 hold. Then, E∗ [z∗t ] = op (1),

E∗ [z∗2t ] = 1+op (1), and E∗ [z∗4t ] = Op (1), conditional on the original sample, (Y0, . . . , YT ) ∈
ΩT . Moreover, it holds that

|P ∗ (z∗h ≤ x)− P (zh ≤ x)| p→ 0.

Next, we de�ne the Gaussian bootstrap QML estimator of the ARCH(1) model in eq.

(3.3) by

θ̂∗ = arg min
θ∈Θ

L∗T (θ) , (4.2)

where L∗T (θ) = 1
T

∑T
t=1 log(σ∗2t (θ)) +

Y ∗2t
σ∗2t (θ)

with σ∗2t (θ) = ω + αY ∗2t−1. In addition, Y0 is

given as initial value. Then, as a consequence of Lemma 4.5 and Lemma 4.1, we formalize

the asymptotic properties of θ̂∗ in the next lemma.

Lemma 4.6 Suppose that the assumptions of Theorem 4.1 hold. Then,
√
T
(
θ̂∗ − θ0

)
=

O∗P (1), conditional on the original sample, for (Y0, . . . , YT ) ∈ ΩT .

Finally, we are ready to state the main result of this paper in the following theorem.

Theorem 4.2 Suppose that the assumptions of Theorem 4.1 hold and let (Y ∗h , σ
∗2
h )

H
h=1

be generated as detailed in the algorithm given in Section 3. Then, conditional on the

original sample, (Y0, . . . , YT ) ∈ ΩT , it holds that

|P ∗ (Y ∗h ≤ x|Y ∗0 = y)− P (Yh ≤ x|Y0 = y)| p→ 0.

Moreover,

∣∣P ∗ (σ∗2h ≤ x|Y ∗0 = y
)
− P

(
σ2
h ≤ x|Y0 = y

)∣∣ p→ 0.

Remark 4.4 In practice, we use Y0 = Y ∗0 = YT to initialize the algorithm. This choice

of �xing the last observation in each bootstrap replications also ensure that the bootstrap

forecasts are conditional on the original sample.

Remark 4.5 We conjecture that the proposed smoothed bootstrap as well as the theory

can be extended to include GARCH(p,q)-type models. This analysis, however, is beyond

the scope of this article and left for future research.

11



5 Finite sample properties

We investigate the �nite sample properties of our smoothed bootstrap forecasts by means

of a Monte Carlo experiment. In the following, we consider the linear ARCH(1) model of

the general ARCH(q) model class. Moreover, we consider two di�erent assumptions for

the zt's: (i) zt ∼ i.i.d.N(0, 1), and (ii) zt ∼ i.i.d.t5(0, 1), where t5(0, 1) is the Student's t

distribution with 5 degrees of freedom, mean zero and variance one. The ARCH parameter

α takes values in {0.5, 0.8} while ω = 0.1. The sample size is T ∈ {500, 1000} and the

forecasting horizon, H, takes values in {1, 2, 5, 10, 20}. We implement a Gaussian kernel

for the smoothed bootstrap with a bandwidth that minimizes an L2 distance between the

density estimate and the true density as proposed in Silverman (1986):

K(x) =
1√
2π
e−

x2

2 , −∞ < x <∞,

u = 1.03τ̂T−0.2,

where τ̂ is the empirical standard deviation of the variables ẑt,c. Implementing a Gaus-

sian kernel implies that we can generate the smoothed bootstrap innovations, z∗t , using

following approach:

z∗t = z†t + uηt, (5.1)

where z†t ∼ i.i.d.F̂T , u is the bandwidth as before, and ηt ∼ i.i.d.N(0, 1); see Silverman

(1986).

We verify the performance of our smoothed bootstrap by checking if the forecasts are

correctly calibrated. Correct calibration means that the density forecasts coincides with

the true density of the predicted variable; cf. Aastveit, Foroni, and Ravazzolo (2017). We

study correct calibration by comparing the actual coverage of prediction intervals for the

out-of-sample return and volatility process based on our smoothed bootstrap forecasts

with a chosen nominal coverage level. That is, we repeat the following steps:

1. Generate a time series (Yt)
T+H
t=1 using the ARCH(1) model.

2. Use the Smoothed Bootstrap Algorithm to forecast the conditional distribution of

the return and volatility process from Step 1.

3. Based on the forecast from Step 2, construct prediction intervals with nominal

coverage of 95%.

For each repetition we calculate the coverage and length of our bootstrapped prediction

interval, where the length of a prediction interval is de�ned as the di�erence between the

97.5% and 2.5% quantile. We use B = 999 to obtain the forecasts of the distributions.
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We repeat the above three steps by M times and then compute the mean and standard

errors of our measures. In addition, we also compare our smoothed bootstrap forecasts

to the i.i.d. bootstrap forecasts of PRR. In this case, the bootstrap innovations are i.i.d.

draws from F̂T .

The results of our Monte Carlo study are summarized by Table 5.1 and 5.2. We make

the following observations: First, we note that both bootstrap procedures perform equally

well, that is, both procedures deliver the correct coverage on average. This observation is

closely related to innovation uncertainty and the similar performance of both bootstrap

procedures is best explained by Figure 5.1. This graph shows a QQ-plot of a random

sample of z∗t with size T = 500 obtained via smoothed bootstrap; respectively i.i.d. boot-

strap where the assumed distribution is t5(0, 1). We observe that both bootstrap methods

approximate the Student's t distribution equally well which is one reason for the similar

performance in terms of average coverage. Hence, in practice, it seems that it does not

matter if we use the smoothed or i.i.d. bootstrap. The same observations is also made in

Franke, Neumann, and Stockis (2004). Moreover, both bootstrap algorithms also incor-

porate estimation uncertainty which is another explanation for their good performance;

see Pascual, Romo, and Ruiz (2006) and Blasques, Koopman, Lasak, and Lucas (2015),

among others. Second, we see in Table 5.1 that the actual coverage of the bootstrap

intervals for the one-step ahead conditional volatility process is slightly below the nom-

inal coverage level when we consider the Student's t distribution. At this short horizon

the only variation in σ∗1 is due to θ̂∗ since YT is �xed in each bootstrap repetition. This

source of randomness is apparently not su�cient to model the conditional distribution

of σ1 appropriately. Then, as the forecast horizon increases and innovation uncertainty

becomes relatively more important than parameter uncertainty, the bootstrap prediction

intervals yield the correct coverage on average. The tables where α = 0.8 allow for similar

observations and are relegated to Appendix C.

As an alternative, we also consider the situation where the data generating process is a

GJR-ARCH(1) process with (ω, α, γ) = (0.1, 0.1, 0.35). As before, we let T ∈ {500, 1000}
and zt be N(0, 1). The properties of both bootstrap procedures are qualitatively the same

as for the ARCH(1) case; see Appendix C.

6 Sensitivity of the smoothed bootstrap to the choice of the kernel

and bandwidth

In the previous Monte Carlo experiment we used a Gaussian kernel with a plug-in band-

width. A natural question is how the form of the kernel function and the choice of the

bandwidth a�ect the smoothed bootstrap.

Properties of the kernel density estimate depend on the smoothness of the underlying

true density. From non-parametric density estimation it is known that the Epanechnikov
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Table 5.1: Prediction intervals for the volatility process with 95% coverage level, where
α = 0.5. For the bootstrap we set B = 999. Standard errors are given in parenthesis and
based on M = 1000.

zt T Method h

1 2 5 10 20

N(0,1) 500 PRR Coverage 94.700
(0.224)

94.050
(0.169)

94.160
(0.127)

94.320
(0.106)

94.295
(0.095)

Above 3.600
(0.186)

3.300
(0.130)

3.340
(0.090)

3.320
(0.073)

3.285
(0.058)

Below 1.700
(0.129)

2.650
(0.114)

2.500
(0.094)

2.360
(0.079)

2.420
(0.072)

Length 0.085
(0.176)

0.054
(0.854)

0.063
(0.857)

0.062
(0.583)

0.060
(0.337)

Smoothed 94.900
(0.220)

94.050
(0.169)

94.040
(0.129)

94.200
(0.110)

94.175
(0.099)

3.200
(0.176)

2.900
(0.119)

3.040
(0.085)

2.980
(0.070)

3.000
(0.057)

1.900
(0.137)

3.050
(0.126)

2.920
(0.103)

2.820
(0.087)

2.825
(0.079)

0.086
(0.181)

0.567
(0.925)

0.663
(0.871)

0.661
(0.631)

0.642
(0.432)

1000 PRR 93.000
(0.255)

94.000
(0.171)

94.780
(0.115)

94.860
(0.093)

94.650
(0.085)

4.800
(0.214)

3.800
(0.132)

2.940
(0.081)

2.820
(0.062)

3.010
(0.051)

2.200
(0.147)

2.200
(0.116)

2.280
(0.088)

2.320
(0.075)

2.340
(0.069)

0.054
(0.083)

0.050
(0.485)

0.059
(0.417)

0.058
(0.264)

0.057
(0.182)

Smoothed 93.300
(0.250)

94.150
(0.171)

94.560
(0.120)

94.630
(0.096)

94.455
(0.088)

4.100
(0.198)

3.350
(0.125)

2.880
(0.083)

2.740
(0.060)

2.840
(0.050)

2.600
(0.159)

2.500
(0.124)

2.560
(0.093)

2.630
(0.080)

2.705
(0.074)

0.055
(0.084)

0.514
(0.511)

0.602
(0.429)

0.598
(0.264)

0.593
(0.190)

t5(0, 1) 500 PRR 90.500
(0.293)

92.450
(0.199)

93.500
(0.143)

93.980
(0.116)

94.255
(0.100)

8.300
(0.276)

5.850
(0.173)

4.460
(0.110)

4.030
(0.078)

3.800
(0.062)

1.200
(0.109)

1.700
(0.103)

2.040
(0.096)

1.990
(0.086)

1.945
(0.078)

0.115
(0.218)

0.630
(1.027)

0.704
(0.977)

0.696
(0.720)

0.684
(0.534)

Smoothed 91.000
(0.286)

92.700
(0.197)

93.760
(0.142)

94.020
(0.118)

94.140
(0.105)

7.100
(0.257)

5.050
(0.162)

3.880
(0.104)

3.590
(0.076)

3.510
(0.061)

1.900
(0.137)

2.250
(0.117)

2.360
(0.102)

2.390
(0.093)

2.350
(0.085)

0.115
(0.219)

0.644
(1.083)

0.715
(0.948)

0.727
(0.789)

0.713
(0.602)

1000 PRR 91.000
(0.286)

93.350
(0.180)

94.680
(0.120)

94.830
(0.103)

95.020
(0.091)

6.700
(0.250)

4.700
(0.148)

3.360
(0.088)

3.060
(0.066)

2.895
(0.048)

2.300
(0.150)

1.950
(0.111)

1.960
(0.086)

2.110
(0.084)

2.085
(0.079)

0.091
(0.215)

0.623
(1.103)

0.702
(0.953)

0.691
(0.744)

0.670
(0.419)

Smoothed 91.000
(0.286)

93.150
(0.180)

94.560
(0.120)

94.770
(0.102)

94.935
(0.090)

6.600
(0.248)

4.600
(0.146)

3.260
(0.085)

3.020
(0.066)

2.850
(0.047)

2.400
(0.153)

2.250
(0.115)

2.180
(0.089)

2.210
(0.083)

2.215
(0.080)

0.091
(0.215)

0.646
(1.271)

0.712
(1.045)

0.693
(0.628)

0.678
(0.456)
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Table 5.2: Prediction intervals for the return process with 95% coverage level, where
α = 0.5. For the bootstrap we set B = 999. Standard errors are given in parenthesis and
based on M = 1000.

zt T Method h

1 2 5 10 20

N(0,1) 500 PRR Coverage 94.700
(0.224)

95.000
(0.161)

94.680
(0.120)

94.710
(0.092)

94.590
(0.068)

Above 2.400
(0.153)

2.050
(0.099)

2.660
(0.078)

2.620
(0.058)

2.640
(0.043)

Below 2.900
(0.168)

2.950
(0.122)

2.660
(0.080)

2.670
(0.059)

2.770
(0.044)

Length 1.651
(0.663)

1.749
(0.490)

1.740
(0.309)

1.734
(0.199)

1.734
(0.161)

Smoothed 94.600
(0.226)

95.000
(0.160)

94.820
(0.115)

94.900
(0.088)

94.760
(0.067)

2.100
(0.143)

2.050
(0.099)

2.600
(0.075)

2.530
(0.055)

2.565
(0.042)

3.300
(0.179)

2.950
(0.120)

2.580
(0.078)

2.570
(0.058)

2.675
(0.043)

1.665
(0.667)

1.771
(0.484)

1.773
(0.315)

1.763
(0.214)

1.759
(0.166)

1000 PRR 94.200
(0.234)

94.750
(0.177)

95.040
(0.115)

94.700
(0.089)

94.675
(0.068)

2.700
(0.162)

2.250
(0.108)

2.200
(0.071)

2.640
(0.057)

2.685
(0.042)

3.100
(0.173)

3.000
(0.129)

2.760
(0.082)

2.660
(0.059)

2.640
(0.043)

1.641
(0.552)

1.737
(0.365)

1.735
(0.208)

1.734
(0.137)

1.731
(0.119)

Smoothed 94.200
(0.234)

94.800
(0.175)

95.080
(0.115)

94.920
(0.086)

94.895
(0.066)

2.600
(0.159)

2.200
(0.110)

2.220
(0.072)

2.580
(0.057)

2.600
(0.042)

3.200
(0.176)

3.000
(0.129)

2.700
(0.082)

2.500
(0.057)

2.505
(0.042)

1.648
(0.555)

1.749
(0.365)

1.750
(0.213)

1.747
(0.143)

1.744
(0.115)

t5(0, 1) 500 PRR 95.400
(0.209)

94.600
(0.168)

95.000
(0.115)

94.550
(0.089)

94.645
(0.067)

2.300
(0.150)

2.750
(0.116)

2.400
(0.073)

2.720
(0.056)

2.745
(0.044)

2.300
(0.150)

2.650
(0.116)

2.600
(0.078)

2.730
(0.058)

2.610
(0.041)

1.613
(0.611)

1.686
(0.416)

1.690
(0.269)

1.694
(0.228)

1.690
(0.208)

Smoothed 95.200
(0.214)

94.700
(0.168)

95.420
(0.110)

94.920
(0.086)

94.865
(0.066)

2.300
(0.150)

2.750
(0.116)

2.200
(0.069)

2.550
(0.052)

2.625
(0.044)

2.500
(0.156)

2.550
(0.114)

2.380
(0.073)

2.530
(0.056)

2.510
(0.040)

1.629
(0.610)

1.714
(0.425)

1.716
(0.282)

1.717
(0.230)

1.719
(0.209)

1000 PRR 95.500
(0.207)

95.350
(0.160)

95.140
(0.116)

95.080
(0.085)

94.940
(0.061)

1.800
(0.133)

2.200
(0.107)

2.480
(0.078)

2.550
(0.056)

2.625
(0.040)

2.700
(0.162)

2.450
(0.115)

2.380
(0.076)

2.370
(0.054)

2.435
(0.039)

1.613
(0.669)

1.700
(0.447)

1.704
(0.293)

1.699
(0.202)

1.696
(0.165)

Smoothed 95.100
(0.216)

95.000
(0.163)

95.260
(0.115)

95.180
(0.085)

95.015
(0.060)

1.600
(0.125)

2.150
(0.106)

2.280
(0.076)

2.410
(0.055)

2.540
(0.040)

3.300
(0.179)

2.850
(0.120)

2.460
(0.075)

2.410
(0.054)

2.445
(0.038)

1.618
(0.677)

1.709
(0.446)

1.714
(0.284)

1.709
(0.193)

1.712
(0.169)
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Figure 5.1: QQ-plot of z∗t 's obtained via smoothed bootstrap (left) and i.i.d. bootstrap
(right) for sample size T = 500, where the underlying distribution is t5(0, 1).

kernel is L2 optimal for all smooth distributions; see Silverman (1986). The Epanechnikov

kernel is

K (x) =
3

4

(
1− x2

)
,−1 ≤ x ≤ 1. (6.1)

For choosing a bandwidth for the Epanechinkov kernel, there exist di�erent optimality

criteria. For instance, Hall and Wand (1988) obtain an optimal window by minimizing

an L1 and L2 distance between the true and estimated distribution. They obtain optimal

bandwidths of uL
2

E = 2.345τ̂T−0.2 under the L2 criterion, and uL
1

E = 2.279τ̂T−0.2 under

the L1 criterion, where τ̂ is again the empirical standard deviation of ẑt,c. Both optimality

considerations assume that the true density is normal. Sampling from the Epanechnikov

kernel is discussed in Silverman (1986) and hence the z∗t 's can be generated as follows:

1. Generate three uniform [−1, 1] random variates V1, V2, V3. If |V3| ≥ |V2| and |V3| ≥
|V1|, set ηt = V2; otherwise set ηt = V3.

2. z∗t = z†t + uηt, where z
†
t ∼ i.i.d.F̂T and u ∈ {uL1

E , u
L2

E }.

To assess the impact of the kernel function and its bandwidth on average coverage, we

follow the same Monte Carlo approach as outlined in Section 5. Table 6.1 suggests that

the choice of the Kernel and its bandwidth is not decisive when forecasting the conditional

distribution of the volatility process. The same conclusion holds true for the forecasts of

the conditional distribution of the return process; cf. Appendix C. This observation is

explained by studying Figure 6.1. In this �gure, we plot a QQ-plot of bootstrap inno-

vations, z∗t , drawn from a Epanechnikov kernel with bandwidth uL
1

E ; respectively uL
2

E for
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Figure 6.1: QQ-plot of z∗t 's obtained via smoothed bootstrap using the Epanechnikov
kernel with bandwidth hL

1

E (left); respectively hL
1

E (right) for sample size T = 500 where
the underlying distribution is t5(0, 1).

sample size T = 500 where the assumed distribution is Student's t with 5 degrees of

freedom. We observe that this kernel function for both bandwidths approximates the un-

derlying distribution well for both bandwidths such that innovation uncertainty is taken

into account.

7 Empirical illustration

Finally, we illustrate the performance of our smoothed bootstrap by replicating the em-

pirical results in PRR. In the paper of PRR, the authors construct prediction intervals

for the Spanish IBEX-35. Rather than using an ARCH(q) model, we proceed as in PRR

and apply a GARCH(1,1)1 model. The model parameters are recovered from daily closing

prices of the IBEX-35 ranging from January 2, 1996 to March 3, 2000 such that we have

1042 observations in total. As in PRR, we �rst �lter the original series to remove the

e�ect of extraordinary events that occurred in Spain during the considered period; cf.

PRR. The results of this �ltering step are available in Appendix D. For the rest of this

illustration, we will treat the residuals of the �ltering step, denoted Yt, as the underly-

ing return series. As seen in Table D.2, the return series distribution is leptokurtotic and

slightly skewed. Moreover, the levels of the series are not autocorrelated while the squared

series displays autocorrelation as typical for �nancial data. Next, we �t a GARCH(1,1)

model to Yt and obtain the centered residuals, ε̂t. The estimation output is provided in

Table D.3 and sample moments of the centered residuals are given in Table D.4. The

1Note that our theory can be extended to the GARCH(1,1) case.

17



Table 6.1: Prediction intervals for the volatility process with 95% coverage level, where
α = 0.5. We use the Epanechnikov kernel and for the bootstrap we set B = 999. Standard
errors are given in parenthesis and based on M = 1000.

zt T Bandwidth h

1 2 5 10 20

N(0,1) 500 uL
1

E Coverage 94.100
(0.236)

93.150
(0.194)

92.780
(0.149)

92.970
(0.128)

92.860
(0.117)

Above 1.100
(0.104)

1.600
(0.091)

2.100
(0.072)

2.090
(0.060)

2.180
(0.048)

Below 4.800
(0.214)

5.250
(0.175)

5.120
(0.134)

4.940
(0.116)

4.960
(0.105)

Length 0.088
(0.184)

0.618
(1.013)

0.751
(0.951)

0.767
(0.800)

0.757
(0.539)

uL
2

E 94.800
(0.222)

93.550
(0.189)

93.100
(0.147)

93.180
(0.127)

93.030
(0.115)

1.100
(0.104)

1.600
(0.091)

2.180
(0.074)

2.230
(0.062)

2.295
(0.050)

4.100
(0.198)

4.850
(0.169)

4.720
(0.130)

4.590
(0.113)

4.675
(0.102)

0.087
(0.183)

0.610
(1.000)

0.738
(0.922)

0.751
(0.786)

0.739
(0.512)

1000 uL
1

E 92.800
(0.258)

93.250
(0.186)

93.620
(0.134)

93.370
(0.113)

93.210
(0.102)

2.300
(0.150)

2.350
(0.106)

2.120
(0.072)

2.220
(0.055)

2.385
(0.047)

4.900
(0.216)

4.400
(0.160)

4.260
(0.118)

4.410
(0.102)

4.405
(0.092)

0.055
(0.084)

0.542
(0.533)

0.652
(0.455)

0.657
(0.291)

0.658
(0.214)

uL
2

E 93.200
(0.252)

93.550
(0.182)

93.840
(0.131)

93.570
(0.110)

93.445
(0.100)

2.400
(0.153)

2.400
(0.107)

2.160
(0.073)

2.270
(0.056)

2.440
(0.047)

4.400
(0.205)

4.050
(0.154)

4.000
(0.115)

4.160
(0.100)

4.115
(0.090)

0.055
(0.084)

0.538
(0.530)

0.645
(0.448)

0.649
(0.286)

0.649
(0.211)

t5(0, 1) 500 uL
1

E 91.800
(0.274)

92.400
(0.205)

92.760
(0.156)

92.960
(0.135)

93.060
(0.126)

5.000
(0.218)

3.950
(0.144)

3.160
(0.093)

2.990
(0.069)

2.900
(0.055)

3.200
(0.176)

3.650
(0.151)

4.080
(0.132)

4.050
(0.119)

4.040
(0.112)

0.114
(0.212)

0.695
(1.232)

0.815
(1.132)

0.833
(0.883)

0.828
(0.732)

uL
2

E 91.600
(0.277)

92.350
(0.205)

92.780
(0.156)

93.000
(0.134)

93.135
(0.124)

5.300
(0.224)

4.200
(0.147)

3.360
(0.096)

3.140
(0.071)

3.030
(0.056)

3.100
(0.173)

3.450
(0.147)

3.860
(0.129)

3.860
(0.117)

3.835
(0.109)

0.114
(0.213)

0.689
(1.233)

0.802
(1.101)

0.817
(0.861)

0.810
(0.713)

1000 uL
2

E 92.500
(0.263)

93.800
(0.178)

94.160
(0.130)

94.050
(0.115)

94.160
(0.106)

4.000
(0.196)

3.100
(0.123)

2.520
(0.077)

2.440
(0.057)

2.390
(0.042)

3.500
(0.184)

3.100
(0.136)

3.320
(0.110)

3.510
(0.104)

3.450
(0.099)

0.091
(0.213)

0.673
(1.221)

0.786
(1.240)

0.756
(0.752)

0.734
(0.491)

uL
1

E 92.500
(0.263)

93.850
(0.177)

94.300
(0.128)

94.190
(0.114)

94.330
(0.104)

4.100
(0.198)

3.150
(0.124)

2.540
(0.077)

2.470
(0.058)

2.425
(0.042)

3.400
(0.181)

3.000
(0.135)

3.160
(0.107)

3.340
(0.102)

3.245
(0.096)

0.091
(0.212)

0.668
(1.210)

0.779
(1.230)

0.748
(0.749)

0.725
(0.483)
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Figure 7.1: Histogram of one- and 20-step ahead predictions of returns based on PRR
and smoothed bootstrap.

distribution of the residuals is still leptokurtotic and slightly skewed, however, there is no

autocorrelation left in the residuals; cf. Figure D.2.

Next, we apply our smoothed bootstrap and the approach of PRR to create prediction

intervals based on the simulated distribution of the return and volatility series. The

forecasting period runs from March 4, 2000 to March 31, 2000. In Figure 7.1, we plot the

the estimated bootstrap densities for h = 1 and h = 20. We note that the future densities

are also asymmetric as observed with the returns before. Then, we use these densities to

plot 95% prediction intervals for the period h = 1, . . . , 20; cf. Figure 7.2. In addition,

we plot the histograms for the bootstrap predictions of the volatility for h = 1, 2, 10, 20

into the future. Again, the shape of the future volatility is highly asymmetric. Overall,

we can conclude that our smoothed bootstrap performs at par with the method of PRR.

This results is also true when we use the Epanechnikov kernel with the two previously

discussed bandwidths. The graphs for this kernel are available in Appendix D.

8 Conclusion

In this article, we have studied the asymptotic properties of the smoothed bootstrap

scheme for forecasting volatility models when applied to a large class of ARCH(q) models.

Speci�cally, we show that our smoothed bootstrap forecasts are asymptotically valid. In

regards of theory, we exploit that the smoothed bootstrap residuals are obtained using a
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Figure 7.2: 20-step ahead prediction intervals of future returns based on PRR (upper)
and smoothed bootstrap (lower).

Figure 7.3: Histogram of one- and 20-step ahead predictions of volatility based on PRR
and smoothed bootstrap.
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non-parametric kernel estimator.

As a result the smoothed bootstrap process posses a density which simpli�es the the-

oretical arguments considerably. More precisely, a well-behaved density of the bootstrap

process allows us to rely on results in Franke, Neumann, and Stockis (2004) to show that

our in-sample bootstrap process is geometric ergodic and approximates the underlying

process well, conditional on the original sample. Given these results, we argue that the

QML estimates based on the in-sample bootstrap process are consistent, conditional on

the original sample. We thereby contribute to the theoretical understanding of bootstrap

methods for (G)ARCH type process. In addition, we contribute to the forecasting liter-

ature for volatility models by providing a theoretically motivated alternative to existing

bootstrap methods.

A Monte Carlo experiment con�rms our theoretical results, that is, prediction intervals

based on our smoothed bootstrap forecast of the conditional distribution of the volatility

model are well calibrated. Moreover, the simulations show that our new bootstrap pro-

cedure delivers the same performance as existing bootstrap procedures while at the same

time being theoretically justi�ed. Our results also con�rm that forecast of conditional

distributions of volatility models should be corrected for parameter and innovation uncer-

tainty. In addition, we show that our smoothed bootstrap is robust to the choice of the

kernel function and its bandwidth. Finally, we demonstrate that our smoothed bootstrap

performs at part with the method of PRR(2006) in a small empirical illustration.

For future research, it would be interesting to extend our arguments to the more general

class of (G)ARCH type models.

Appendix

A Proofs

Proof of Corollary 4.1. The result is due to Theorem 3 in Kristensen and Rahbek

(2005). �

Proof of Lemma 4.1. To show the result, consider the triangle inequality and write

sup
y∈R
|p̂ẑ (y)− pz (y)| ≤ sup

y∈R
|p̂z (y)− pz (y)|+ sup

y∈R
|p̂ẑ (y)− p̂z (y)| .

=: T1 + T2. (A.1)

First, T1 = o (1) as T →∞ by Assumption 2.2 and Assumption 4.1. This holds because

of the consistency of the kernel density estimator with i.i.d. observations; cf. Theorem

2.8 in Pagan and Ullah (1999).

21



For T2 we use Assumption 4.1 in combination with ẑt,c = ẑt − ẑ to see that

T2 = sup
y∈R

∣∣∣∣∣ 1

Tu

T∑
t=1

K

(
y − ẑt,c
u

)
−K

(
y − zt
u

)∣∣∣∣∣
≤ 1

Tu2

T∑
t=1

k |ẑt − ẑ − zt|

≤ 1

u2
k |ẑ|+ 1

Tu2

T∑
t=1

k |ẑt − zt|

=: T3 + T4, (A.2)

where we used the Lipschitz property of K (·) with k ≥ 0 for the �rst inequality. The

second inequality is due to the triangle inequality.

Next, we exploit the de�nition of ẑ in (ii) of Algorithm 1 to write T3 as

T3 =
1

u2
k

∣∣∣∣∣ 1

T

T∑
t=1

ẑt

∣∣∣∣∣
=

1

u2
k

∣∣∣∣∣ 1

T

T∑
t=1

(ẑt − zt) +
1

T

T∑
t=1

zt

∣∣∣∣∣
≤ 1

Tu2

T∑
t=1

k |ẑt − zt|+
1

u2
k

∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣
=: T4 + T5. (A.3)

Further, for T4 it holds that

T4 =
1

Tu2

T∑
t=1

k

∣∣∣∣yt σ̂t − σtσ̂tσt

∣∣∣∣
=

1

Tu2

T∑
t=1

k

∣∣∣∣yt (σ̂t − σt) (σ̂t + σt)

σ̂tσt (σ̂t + σt)

∣∣∣∣
≤ 1√

Tu2

√
T (ω̂ − ω0)

1

T

T∑
t=1

k |zt|
1

σ̂t (σ̂t + σt)

+
1√
Tu2

√
T (α̂− α0)

1

T

T∑
t=1

k |zt|
Y 2
t−1

σ̂t (σ̂t + σt)

≤ 1

T 1/2−εu2T ε

√
T (ω̂ − ω0)

1

T

T∑
t=1

k |zt|
1

ω

+
1

T 1/2−εu2T ε

√
T (α̂− α0)

1

T

T∑
t=1

k |zt|
1

α

= op(T
−ε), (A.4)
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for some 0 < ε < 1
2
since T 1/2−εu2 →∞ by Assumption 4.1(b) (ii);

√
T (ω̂ − ω0) = Op (1)

and
√
T (α̂− α0) = Op (1) by Corollary 4.1; 1

T

∑T
t=1 k |zt|

1
ω

= Op (1) and 1
T

∑T
t=1 k |zt|

1
α

=

Op (1) by the LLN and Assumption 2.3. Finally, we turn to T5 to note that

T5 =
1

T 1/2−εu2T−ε
k

∣∣∣∣∣ 1√
T

T∑
t=1

zt

∣∣∣∣∣ = op
(
T−ε

)
, (A.5)

with 0 < ε < 1
2
,
∣∣∣ 1√

T

∑T
t=1 zt

∣∣∣ = Op (1) since the CLT applies due to Assumption 2.2 and

T 1/2−εu2 →∞ by Assumption 4.1(b) (ii).

Proof of Lemma 4.2. First, we note that

σ̂ (y)E∗ [|z∗t |] ≤ ω̂1/2E∗ [|z∗t |] + α̂
1/2
1 E∗ [|z∗t |] |y|

= C1 + C2|y|, (A.6)

where C1 = ω̂1/2E∗ [|z∗t |] and C2 = α̂
1/2
1 E∗ [|z∗t |]. Using a change of variable, we �nd or

the term E∗ [|z∗t |] that

E∗ [|z∗t |] =
1

T

T∑
t=1

∫ ∞
−∞
|ẑt,c + uψ|K (ψ) dψ

≤ 1

T

T∑
t=1

|ẑt,c|+ u

∫ ∞
−∞
|ψ|K (ψ) dψ

≤ 1

T

T∑
t=1

|ẑt| − |ẑ|+ o (1)

=
1

T

T∑
t=1

|ẑt|+ op (1) , (A.7)

where the second term in the second line is o (1) due to Assumption 4.1. Further,

|ẑ| =
∣∣∣ 1
T

∑T
t=1 ẑt

∣∣∣ = op (1) by Lemma B.1(a). Moreover, by Lemma B.1(b), we see

that 1
T

∑T
t=1 |ẑt| = 1

T

∑T
t=1 |zt| + oP (1) such that E∗ [|z∗t |] →p E [|zt|]. Thus, for T large

enough, we get that C1 ≤ ω1/2E [|zt|] < ∞ since ω̂ →p ω0 < ω. Next, we conclude

that E [|zt|] ≤ (E [|zt|])2 ≤ E [|z2
t |] = E [z2

t ] = 1, where the second inequality follows by

Jensen's inequality. Hence, E∗ [|z∗t |] →p E [|zt|] ≤ 1 and α̂ →p α0, for T large enough,

such that C2 < α
1/2
0 E [|zt|] < 1. �

Proof of Lemma 4.3. To show that (Y ∗t )Tt=1 is geometrically ergodic, we verify that

conditions (B2) and (B3) of Theorem 2 in Franke, Neumann, and Stockis (2004) hold.

First, since we assumed that α0 < 1, we have that (B2) holds if σ (y) = (ω0 + α0y
2)

1/2
is

bounded away from zero and if the density pz is continuous and everywhere positive. The
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former holds under Assumption 2.3 while the later holds under Assumption 2.2. Next,

condition (B3) of Franke, Neumann, and Stockis (2004) is satis�ed due to Lemma 4.1.

And hence the result follows. �

Proof of Lemma 4.4. To show (a), we �rst describe the tail behavior of (Yt)
T
t=1 by

Theorem 2.1 in Mikosch and St�aric�a (2000). We then use this behavior to show that

P (Yt ∈ YcT ) is bounded. First, note that the assumptions of Theorem 2.1 in Mikosch and

St�aric�a (2000) hold under the assumptions made in Corollary 4.1. Then the equation

E
(
α0z

2
t

)κ/2
= 1 (A.8)

has a unique positive solution. Let κ satisfy eq. (A.8). Then

P (|Yt| > y) ∼ cy−κ as y →∞, (A.9)

where

c = E |zt|κ
E
(

(ω0 + α0z
2
t σ

2
t )
κ/2 − (α0z

2
t σ

2
t )
κ/2
)

(κ/2)E (α0z2
t )
κ/2

ln (α0z2
t )

(A.10)

such that

P
(
|Yt| > T δ

)
∼ cT−κδ. (A.11)

Hence, as a result of eq. (A.11), it follows that

P (Yt ∈ YcT ) = P
(
|Yt| > T δ

)
= O

(
T−ν

)
, (A.12)

where we chose κδ > ν > 0.

To prove (b), we use the mean value theorem and note that

sup
y∈YT
|σ̂ (y)− σ (y)| = sup

y∈YT

∣∣∣∣∣ 1

2
√
ω̃ + α̃y2

[
(ω̂ − ω0) + (α̂− α0) y2

]∣∣∣∣∣
≤ 1

ω

1√
T

√
T |ω̂ − ω0|+

1

α

1√
T

√
T |α̂− α0|T 2δ

≤ Op

(
T−1/2

)
+Op

(
T−1/2

)
T 2δ

= Op

(
T−ν

)
, (A.13)

where θ̃1 = (ω̃, α̃) ∈
(
θ̂, θ0

)
to obtain the �rst line. Observe that the �rst inequality

holds under Assumption 2.3. The third line follows by the result of Corollary 4.1. Finally,

24



the last equality is obtained with setting 1
4
− δ > ν > 0 and for α0 > 0 which holds by

Assumption 2.3.

Next, to establish (c), we can use ω from Assumption 2.3 to bound inf
y∈R

σ̂ (y) away from

zero.

To prove (d), we write∫
|p̂ẑ (y)− pz (y)| dy =

∫
[−T δ,T δ]

|p̂ẑ (y)− pz (y)| dy

+

∫
[−T δ,T δ]{

|p̂ẑ (y)− pz (y)| dy.

(A.14)

For the �rst term we �nd that∫
[−T δ,T δ]

|p̂ẑ (y)− pz (y)| ≤ sup
y∈R
|p̂ẑ (y)− pz (y)| × 2T δ

= Op

(
T−ε

)
2T δ

= Op

(
T−ν

)
(A.15)

for some ε− δ > ν > 0, where we used that sup
y∈R
|p̂ẑ (y)− pz (y)| = Op (T−ε) from Lemma

(4.1). Furthermore, for second term in eq. (A.14) we obtain that∫
[−T δ,T δ]{

|p̂ẑ (y)− pz (y)| dy ≤
∫

[−T δ,T δ]{
p̂ẑ (y) dy +

∫
[−T δ,T δ]{

pz (y) dy, (A.16)

where for the latter term it holds that
∫

[−T δ,T δ]{ pz (y) dy = P
(
|zt| > T δ

)
= o (1). For the

former term we write∫
[−T δ,T δ]{

p̂ẑ (y) dy = 1−
∫

[−T δ,T δ]
p̂ẑ (y) dy

≤ 1−
∫

[−T δ,T δ]
pz (y) dy +

∫
[−T δ,T δ]

|py (y)− p̂ẑ (y)| dy

= 1−
(

1 +

∫
[−T δ,T δ]{

pz (y) dy

)
+

∫
[−T δ,T δ]

|py (y)− p̂ẑ (y)| dy

= op (1) , (A.17)

where the �rst equality holds since p̂ẑ is a density. And the last line follows by similar

arguments given before. �

Proof of Theorem 4.1. To show the result, we verify that the conditions of Theorem

3 in Franke, Neumann, and Stockis (2004) hold. First, (B1) is ful�lled if α0 < 1 which

is assumed in Corollary 4.1. Second, if (B1) holds, then condition (B2) in Franke, Neu-
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mann, and Stockis (2004) is satis�ed if σ (y) is bounded away from zero which holds by

Assumption 2.2. And if the density of the innovations is continuous and everywhere pos-

itive which is ensured by Assumption 2.3. Third, due to Lemma 4.1(a) and (b), we have

that (B3)(i) and (ii) hold. In addition, (B4)(ii)-(iv) are ful�lled by the results in Lemma

4.4. Finally, (B4)(v) is assumed in Assumption 4.2. Thus, conditions (B1) to (B4) in

Franke, Neumann, and Stockis (2004) hold and the result follows. �

Proof of Lemma 4.5 To prove the �rst part, using a change of variable, we �nd that

E∗ [z∗t ] =
1

T

T∑
t=1

∫ ∞
−∞

(ẑt,c + uψ)K (ψ) dψ

=
1

T

T∑
t=1

ẑt,c + u

∫ ∞
−∞

ψK (ψ) dψ

= op (1) (A.18)

where T−1
∑T

t=1 ẑt,c = 0 by construction and u
∫∞
−∞ ψK (ψ) dψ = o (1) by Assumption

4.1(b) (i).

To calculate the second moment, again using a change of variable, we obtain that

E∗
[
z∗2t
]

=
1

T

T∑
t=1

∫ ∞
−∞

(ẑt,c + uψ)2K (ψ) dψ

=
1

T

T∑
t=1

ẑ2
t,c + u2

∫ ∞
−∞

ψ2K (ψ) dψ + 2

(
1

T

T∑
t=1

ẑt,c

)
u

∫ ∞
−∞

ψK (ψ) dψ

=
1

T

T∑
t=1

ẑ2
t,c + o (1) ,

=
1

T

T∑
t=1

(ẑt − ẑ)2 + o (1)

=
1

T

T∑
t=1

ẑ2
t −

(
1

T

T∑
t=1

ẑt

)
+ o (1)

= 1 + op (1) , (A.19)

where the last two terms in the second line are o (1) by similar arguments as before. And

the last line is due to Lemma B.1(a), respectively (c).
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Next, to obtain the fourth moment, using the same approach as before, we get that

E∗
[
z∗4t
]

=
1

T

T∑
t=1

∫ ∞
−∞

(ẑt,c + uψ)4K (ψ) dψ

=
1

T

T∑
t=1

ẑ4
t,c + o(1)

= Op(1), (A.20)

where the second and third equality follow by similar arguments as before. And the last

equation holds under Lemma B.1(d).

Finally,

|P ∗ (z∗h ≤ x)− P (zh ≤ x) | =

∣∣∣∣∫ x

−∞
(p̂ẑ (y)− pz (y)) dy

∣∣∣∣
≤

∫ x

−∞
|p̂ẑ (y)− pz (y) |dy

≤
∫ ∞
−∞
|p̂ẑ (y)− pz (u) |dy

= oP (1) (A.21)

by the same arguments used in the proof of Lemma 4.4. �

Proof of Lemma 4.6. By Lemma 4.1, it holds that z∗t 's have the same properties

as the model innovations, conditional on the original sample. Due to Lemma 4.3, the

bootstrap process, (Y ∗t )Tt=1, is geometric ergodic, conditional on the data. Thus we have

that the bootstrap analogues of Assumption 2.1, 2.2 and 2.3 hold, conditional on the data.

Consequently, Corollary 4.1 holds, conditional on the original sample, which is enough to

establish the result. �

Proof of Theorem 4.2. For h = 1, we use a Taylor expansion and write

Y ∗1 =

(√
ω0 + α0y2 +

1

2
√
ω̃ + α̃1y2

(
(ω̂∗ − ω0) + (α̂∗ − α0) y2

))
z∗1

=
√
ω0 + α0y2z∗1 + o∗p (1) , (A.22)

where θ̃ = (ω̃, α̃) ∈
(
θ̂∗, θ0

)
. Then, |P ∗ (Y ∗1 ≤ x|X∗0 = y)− P (Y1 ≤ x|X0 = y)| p→ 0 since

z∗1
w∗→p z1 due to Lemma 4.5.
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For h = 2, we see that

Y ∗2 =
√
ω0 + α0Y ∗21 z∗2 +

1

2
√
ω̃ + α̃1Y ∗21

(
(ω̂∗ − ω0) + (α̂∗ − α0)Y ∗21

)
z∗2

=
√
ω0 + α0Y ∗21 z∗2 + o∗p (1) , (A.23)

where Y ∗21 = ω0z
∗2
1 + α0z

∗2
1 y

2 + o∗p(1). Now, by Lemma 4.5, (z∗1 , z
∗
2)

w∗→p (z1, z2) such that

convergence in terms of simultaneous distribution implies |P ∗ (Y ∗2 ≤ x|X∗0 = y)− P (Y2 ≤ x|X0 = y)| p→
0 by the bootstrap version of Slutsky's lemma.

In the case of h ≥ 3, we write

Y ∗h =
√
ω0 + α0Y ∗2h−1z

∗
h +

1

2
√
ω̃ + α̃1Y ∗2h−1

(
(ω̂∗ − ω0) + (α̂∗ − α0)Y ∗2h−1

)
z∗h

=
√
ω0 + α0Y ∗2h−1z

∗
h + o∗p (1) , (A.24)

where Y ∗h = ω0

∑h−1
k=0 α

k
0

∏k
m=0 z

∗2
h−m+αh0

(∏h−1
m=0 z

∗2
h−m

)
y2+o∗p (1). Then, with (z∗1 , . . . , z

∗
h)

w∗→
(z1, . . . , zh) such that convergence in terms of simultaneous distribution implies that

|P ∗ (Y ∗h ≤ x|X∗0 = y)− P (Yh ≤ x|X0 = y)| p→ 0 by the bootstrap version of Slutsky's

lemma.

For σ∗2h we get with h = 1 that

σ∗21 = ω̂∗ + α̂∗y2

=
(
ω0 + o∗p (1)

)
+
(
α0 + o∗p (1)

)
y2

= ω0 + α0y
2 + o∗p (1) , (A.25)

where the second quality holds due to Lemma 4.6. Next, for h ≥ 2, we write

σ∗2h = ω̂∗ +
h−1∑
k=1

α̂∗k
k∏

m=1

z∗2h−m + α̂∗

(
h−1∏
m=1

z∗2h−m

)
y2

= ω0 +
h−1∑
k=1

α0

k∏
m=1

z∗2h−m + α0

(
h−1∏
m=1

z∗2h−m

)
y2 + o∗p (1) . (A.26)

Again, with (z∗1 , . . . , z
∗
h)

w∗→p (z1, . . . , zh) such that convergence in terms of simultaneous

distribution implies that |P ∗ (σ∗2h ≤ x|X∗0 = y)− P (σ2
h ≤ x|X0 = y)| p→ 0 by the boot-

strap version of Slutsky's lemma.

�
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B Lemmas for the residuals

Lemma B.1 Suppose that the assumptions of Corollary 4.1 hold. Then, as T →∞,

(a)
∣∣∣ 1
T

∑T
t=1 ẑt

∣∣∣ =
∣∣∣ 1
T

∑T
t=1 zt

∣∣∣+ oP (1),

(b) 1
T

∑T
t=1 |ẑt| =

1
T

∑T
t=1 |zt|+ oP (1),

(c)
∣∣∣ 1
T

∑T
t=1 ẑ

2
t

∣∣∣ =
∣∣∣ 1
T

∑T
t=1 z

2
t

∣∣∣+ oP (1),

(d)
∣∣∣ 1
T

∑T
t=1 ẑ

4
t

∣∣∣ =
∣∣∣ 1
T

∑T
t=1 z

4
t

∣∣∣+ oP (1).

Proof of Lemma B.1. To show (a), we use the de�nition of ẑt and Yt to see that∣∣∣∣∣ 1

T

T∑
t=1

ẑt

∣∣∣∣∣ =

∣∣∣∣∣ 1

T

T∑
t=1

zt
σt
σ̂t

∣∣∣∣∣
≤

∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

zt

2
(
ω̃ + α̃Y 2

t−1

)1/2 (
ω̂ + α̂Y 2

t−1

)1/2

[
(ω̂ − ω0) + (α̂− α0)Y 2

t−1

]∣∣∣∣∣
≤

∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣+
1

ω
|ω̂ − ω0|

∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣+
1

α
|α̂− α0|

∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣
=

∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣+ oP (1) , (B.1)

where we use the mean value theorem with θ̃ = (ω̃, α̃) ∈
(
θ̂, θ0

)
to obtain the �rst

inequality. The second inequality follows under Assumption 2.3. And the last line is due

to Assumption 2.2 and Corollary 4.1.

For (b), we use the de�nition of ẑt and Yt to �nd that

1

T

T∑
t=1

|ẑt| =
1

T

T∑
t=1

∣∣∣∣ztσtσ̂t
∣∣∣∣

≤ 1

T

T∑
t=1

|zt|+
1

ω
|ω̂ − ω0|

1

T

T∑
t=1

|zt|+
1

α
|α̂− α0|

1

T

T∑
t=1

|zt|

=
1

T

T∑
t=1

|zt|+ oP (1) , (B.2)

where we used the same arguments to obtain the second line as in eq. (B.1). The last

line follows with Corollary 4.1 and under Assumption 2.2 and Assumption 2.3.
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To show (c), we use again the de�nition of ẑt and Yt to see that∣∣∣∣∣ 1

T

T∑
t=1

ẑ2
t

∣∣∣∣∣ =

∣∣∣∣∣ 1

T

T∑
t=1

σ2
t

σ̂2
t

z2
t

∣∣∣∣∣
≤

∣∣∣∣∣ 1

T

T∑
t=1

z2
t

∣∣∣∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

σ̂2
t − σ2

t

σ̂2
t

z2
t

∣∣∣∣∣
≤

∣∣∣∣∣ 1

T

T∑
t=1

z2
t

∣∣∣∣∣+
1

ω
|ω̂ − ω0|

∣∣∣∣∣ 1

T

T∑
t=1

z2
t

∣∣∣∣∣+
1

α
|α̂− α0|

∣∣∣∣∣ 1

T

T∑
t=1

z2
t

∣∣∣∣∣
=

∣∣∣∣∣ 1

T

T∑
t=1

z2
t

∣∣∣∣∣+ oP (1) , (B.3)

where the second inequality follows by using the de�nition of σ̂2
t and σt. Finally, the last

equality holds because of Corollary 4.1, Assumption 2.2, and Assumption 2.3.

Finally, for (d), we see that∣∣∣∣∣ 1

T

T∑
t=1

ẑ4
t

∣∣∣∣∣ =

∣∣∣∣∣ 1

T

T∑
t=1

z2
t

σ2
t

σ̂2
t

z2
t

σ2
t

σ̂2
t

∣∣∣∣∣
≤

∣∣∣∣∣ 1

T

T∑
t=1

z4
t

∣∣∣∣∣+ oP (1)

(B.4)

where the result follows by the same arguments used in deriving eq. (B.3). �
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C Additional simulation results

Table C.1: Prediction intervals for the volatility process with 95% coverage level, where
the DGP is a GJR-ARCH model with (ω, α, γ) = (0.1, 0.1, 0.35). For the bootstrap we
set B = 999. Standard errors are given in parenthesis and based on M = 1000.

zt T Method h

1 2 5 10 20

N(0,1) 500 PRR Coverage 94.000
(0.237)

94.500
(0.169)

94.460
(0.128)

94.560
(0.109)

94.630
(0.093)

Above 4.500
(0.207)

4.000
(0.141)

3.680
(0.095)

3.410
(0.068)

3.430
(0.053)

Below 1.500
(0.122)

1.500
(0.099)

1.860
(0.088)

2.030
(0.087)

1.940
(0.078)

Length 0.060
(0.069)

0.256
(0.198)

0.258
(0.110)

0.256
(0.087)

0.259
(0.087)

Smoothed 94.600
(0.226)

94.800
(0.162)

94.500
(0.127)

94.490
(0.111)

94.520
(0.098)

3.800
(0.191)

3.500
(0.130)

3.400
(0.090)

3.230
(0.066)

3.185
(0.051)

1.600
(0.125)

1.700
(0.103)

2.100
(0.094)

2.280
(0.091)

2.295
(0.084)

0.060
(0.070)

0.260
(0.194)

0.268
(0.111)

0.266
(0.091)

0.264
(0.089)

1000 PRR 93.600
(0.245)

93.950
(0.179)

93.880
(0.136)

93.910
(0.115)

94.155
(0.104)

4.300
(0.203)

3.550
(0.130)

3.260
(0.086)

3.110
(0.061)

2.930
(0.044)

2.100
(0.143)

2.500
(0.124)

2.860
(0.110)

2.980
(0.101)

2.915
(0.094)

0.043
(0.047)

0.244
(0.136)

0.249
(0.077)

0.247
(0.062)

0.247
(0.062)

Smoothed 94.100
(0.236)

93.950
(0.182)

93.720
(0.140)

93.780
(0.118)

93.955
(0.109)

3.700
(0.189)

3.150
(0.124)

3.080
(0.083)

2.890
(0.058)

2.785
(0.043)

2.200
(0.147)

2.900
(0.135)

3.200
(0.117)

3.330
(0.106)

3.260
(0.099)

0.044
(0.047)

0.247
(0.144)

0.254
(0.077)

0.251
(0.063)

0.253
(0.064)
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Table C.2: Prediction intervals for the return process with 95% coverage level, where the
DGP is a GJR-ARCH model with (ω, α, γ) = (0.1, 0.1, 0.35). For the bootstrap we set
B = 999. Standard errors are given in parenthesis and based on M = 1000.

zt T Method h

1 2 5 10 20

N(0,1) 500 PRR Coverage 95.200
(0.214)

94.150
(0.178)

94.680
(0.116)

94.800
(0.082)

94.505
(0.062)

Above 2.300
(0.150)

2.500
(0.111)

2.440
(0.072)

2.440
(0.053)

2.715
(0.039)

Below 2.500
(0.156)

3.350
(0.135)

2.880
(0.079)

2.760
(0.057)

2.780
(0.043)

Length 1.407
(0.306)

1.435
(0.142)

1.435
(0.091)

1.439
(0.087)

1.437
(0.090)

Smoothed 95.100
(0.216)

94.700
(0.169)

95.020
(0.112)

95.040
(0.078)

94.840
(0.059)

2.200
(0.147)

2.250
(0.106)

2.300
(0.070)

2.340
(0.051)

2.560
(0.037)

2.700
(0.162)

3.050
(0.130)

2.680
(0.078)

2.620
(0.056)

2.600
(0.042)

1.418
(0.308)

1.453
(0.144)

1.454
(0.092)

1.451
(0.088)

1.454
(0.086)

1000 PRR Coverage 95.300
(0.212)

95.050
(0.161)

95.120
(0.109)

94.770
(0.079)

94.860
(0.057)

Above 2.400
(0.153)

2.200
(0.105)

2.240
(0.069)

2.610
(0.050)

2.600
(0.036)

Below 2.300
(0.150)

2.750
(0.120)

2.640
(0.081)

2.620
(0.056)

2.540
(0.039)

Length 1.412
(0.278)

1.444
(0.117)

1.441
(0.073)

1.441
(0.070)

1.443
(0.071)

Smoothed 95.400
(0.209)

95.300
(0.157)

95.100
(0.108)

94.880
(0.077)

94.915
(0.056)

2.200
(0.147)

2.000
(0.100)

2.120
(0.066)

2.460
(0.049)

2.530
(0.036)

2.400
(0.153)

2.700
(0.119)

2.780
(0.082)

2.660
(0.057)

2.555
(0.039)

1.417
(0.282)

1.454
(0.119)

1.453
(0.072)

1.452
(0.072)

1.452
(0.073)
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Table C.3: Prediction intervals for the volatility process with 95% coverage level, where
α = 0.8. For the bootstrap we set B = 999. Standard errors are given in parenthesis and
based on M = 1000.

zt T Method h

1 2 5 10 20

N(0,1) 500 PRR Coverage 94.600
(0.226)

93.900
(0.171)

94.080
(0.127)

94.420
(0.105)

94.315
(0.094)

Above 4.200
(0.201)

3.500
(0.133)

3.280
(0.093)

3.070
(0.079)

3.105
(0.068)

Below 1.200
(0.109)

2.600
(0.113)

2.640
(0.092)

2.510
(0.075)

2.580
(0.067)

Length 0.196
(0.917)

2.241
(11.138)

3.227
(16.834)

3.243
(13.697)

3.009
(10.488)

Smoothed 95.000
(0.218)

93.900
(0.173)

93.960
(0.130)

94.300
(0.107)

94.190
(0.097)

3.400
(0.181)

3.050
(0.126)

2.960
(0.087)

2.840
(0.076)

2.905
(0.066)

1.600
(0.125)

3.050
(0.124)

3.080
(0.100)

2.860
(0.080)

2.905
(0.071)

0.197
(0.935)

2.290
(11.121)

3.310
(15.810)

3.676
(17.275)

3.421
(14.252)

1000 PRR 93.100
(0.253)

94.150
(0.168)

94.980
(0.110)

95.070
(0.089)

94.825
(0.080)

4.800
(0.214)

3.800
(0.132)

2.880
(0.082)

2.710
(0.064)

2.900
(0.058)

2.100
(0.143)

2.050
(0.111)

2.140
(0.080)

2.220
(0.067)

2.275
(0.060)

0.132
(0.680)

1.835
(7.371)

2.611
(11.328)

2.689
(8.254)

2.560
(6.463)

Smoothed 93.600
(0.245)

94.250
(0.167)

94.820
(0.113)

94.940
(0.090)

94.640
(0.082)

3.700
(0.189)

3.150
(0.121)

2.720
(0.083)

2.540
(0.062)

2.760
(0.056)

2.700
(0.162)

2.600
(0.122)

2.460
(0.085)

2.520
(0.071)

2.600
(0.063)

0.132
(0.693)

1.860
(7.465)

2.649
(10.410)

2.761
(9.047)

2.617
(5.670)

t5(0, 1) 500 PRR 90.000
(0.300)

92.050
(0.204)

93.160
(0.144)

93.740
(0.116)

93.900
(0.104)

8.700
(0.282)

5.800
(0.169)

4.200
(0.104)

3.690
(0.078)

3.585
(0.064)

1.300
(0.113)

2.150
(0.117)

2.640
(0.106)

2.570
(0.091)

2.515
(0.083)

0.180
(0.581)

1.678
(5.338)

2.012
(5.364)

1.964
(3.880)

1.837
(2.351)

Smoothed 90.800
(0.289)

92.600
(0.199)

93.260
(0.147)

93.660
(0.121)

93.725
(0.109)

7.500
(0.263)

5.100
(0.159)

3.900
(0.103)

3.460
(0.077)

3.450
(0.063)

1.700
(0.129)

2.300
(0.124)

2.840
(0.112)

2.880
(0.098)

2.825
(0.089)

0.179
(0.581)

1.683
(5.151)

2.038
(4.837)

2.027
(3.532)

1.962
(2.898)

1000 PRR 91.900
(0.273)

93.700
(0.176)

94.620
(0.118)

94.830
(0.102)

94.815
(0.090)

6.700
(0.250)

4.500
(0.147)

3.320
(0.091)

2.950
(0.071)

2.890
(0.052)

1.400
(0.117)

1.800
(0.106)

2.060
(0.084)

2.220
(0.081)

2.295
(0.076)

0.175
(0.819)

2.077
(9.489)

2.597
(11.083)

2.536
(10.834)

2.256
(6.535)

Smoothed 91.700
(0.276)

93.450
(0.179)

94.420
(0.123)

94.500
(0.107)

94.575
(0.092)

6.500
(0.247)

4.400
(0.142)

3.200
(0.089)

2.920
(0.072)

2.825
(0.052)

1.800
(0.133)

2.150
(0.117)

2.380
(0.092)

2.580
(0.087)

2.600
(0.080)

0.173
(0.802)

2.179
(10.896)

2.645
(12.148)

2.490
(9.123)

2.154
(5.031)
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Table C.4: Prediction intervals for the return process with 95% coverage level, where
α = 0.8. For the bootstrap we set B = 999. Standard errors are given in parenthesis and
based on M = 1000.

zt T Method h

1 2 5 10 20

N(0,1) 500 PRR Coverage 94.600
(0.226)

94.800
(0.165)

94.560
(0.128)

94.600
(0.106)

94.450
(0.085)

Above 2.400
(0.153)

2.350
(0.106)

2.880
(0.085)

2.830
(0.066)

2.795
(0.051)

Below 3.000
(0.171)

2.850
(0.120)

2.560
(0.081)

2.570
(0.065)

2.755
(0.050)

Length 2.144
(1.872)

2.447
(1.921)

2.490
(1.660)

2.480
(1.246)

2.456
(0.966)

Smoothed 94.800
(0.222)

95.050
(0.161)

94.960
(0.122)

94.880
(0.102)

94.830
(0.081)

2.100
(0.143)

2.150
(0.104)

2.580
(0.081)

2.650
(0.064)

2.575
(0.048)

3.100
(0.173)

2.800
(0.117)

2.460
(0.076)

2.470
(0.061)

2.595
(0.048)

2.162
(1.892)

2.483
(1.944)

2.550
(1.697)

2.538
(1.330)

2.510
(0.997)

1000 PRR 94.200
(0.234)

94.750
(0.182)

95.280
(0.119)

94.810
(0.096)

94.650
(0.078)

2.700
(0.162)

2.250
(0.111)

2.260
(0.074)

2.620
(0.059)

2.680
(0.046)

3.100
(0.173)

3.000
(0.133)

2.460
(0.080)

2.570
(0.060)

2.670
(0.047)

2.121
(1.563)

2.417
(1.547)

2.463
(1.184)

2.452
(0.841)

2.430
(0.614)

Smoothed 94.400
(0.230)

94.900
(0.176)

95.260
(0.121)

94.900
(0.098)

94.815
(0.078)

2.500
(0.156)

2.200
(0.110)

2.280
(0.077)

2.570
(0.060)

2.615
(0.046)

3.100
(0.173)

2.900
(0.127)

2.460
(0.080)

2.530
(0.061)

2.570
(0.046)

2.129
(1.548)

2.433
(1.471)

2.495
(1.221)

2.480
(0.892)

2.456
(0.634)

t5(0, 1) 500 PRR 95.600
(0.205)

94.500
(0.175)

94.880
(0.128)

94.510
(0.100)

94.415
(0.077)

2.300
(0.150)

2.950
(0.122)

2.500
(0.077)

2.780
(0.060)

2.880
(0.049)

2.100
(0.143)

2.550
(0.119)

2.620
(0.084)

2.710
(0.064)

2.705
(0.046)

1.952
(1.267)

2.117
(1.043)

2.130
(0.749)

2.117
(0.528)

2.112
(0.404)

Smoothed 95.600
(0.205)

94.800
(0.167)

95.200
(0.125)

94.740
(0.098)

94.645
(0.076)

2.200
(0.147)

2.600
(0.113)

2.280
(0.072)

2.650
(0.058)

2.740
(0.048)

2.200
(0.147)

2.600
(0.118)

2.520
(0.082)

2.610
(0.062)

2.615
(0.045)

1.966
(1.245)

2.153
(1.049)

2.165
(0.734)

2.160
(0.551)

2.156
(0.409)

1000 PRR 95.600
(0.205)

94.500
(0.175)

94.880
(0.128)

94.510
(0.100)

94.415
(0.077)

2.300
(0.150)

2.950
(0.122)

2.500
(0.077)

2.780
(0.060)

2.880
(0.049)

2.100
(0.143)

2.550
(0.119)

2.620
(0.084)

2.710
(0.064)

2.705
(0.046)

1.952
(1.267)

2.117
(1.043)

2.130
(0.749)

2.117
(0.528)

2.112
(0.404)

Smoothed 95.600
(0.205)

94.800
(0.167)

95.200
(0.125)

94.740
(0.098)

94.645
(0.076)

2.200
(0.147)

2.600
(0.113)

2.280
(0.072)

2.650
(0.058)

2.740
(0.048)

2.200
(0.147)

2.600
(0.118)

2.520
(0.082)

2.610
(0.062)

2.615
(0.045)

1.966
(1.245)

2.153
(1.049)

2.165
(0.734)

2.160
(0.551)

2.156
(0.409)
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Table C.5: Prediction intervals for the return process with 95% coverage level, where
α = 0.5. We use the Epanechnikov kernel and for the bootstrap we set B = 999. Standard
errors are given in parenthesis and based on M = 1000.

zt T Bandwidth h

1 2 5 10 20

N(0,1) 500 uL
1

E Coverage 95.700
(0.203)

95.750
(0.153)

95.500
(0.112)

95.570
(0.086)

95.670
(0.063)

Above 2.100
(0.143)

1.850
(0.100)

2.380
(0.075)

2.310
(0.054)

2.180
(0.039)

Below 2.200
(0.147)

2.400
(0.109)

2.120
(0.072)

2.120
(0.055)

2.150
(0.040)

Length 1.718
(0.689)

1.856
(0.510)

1.870
(0.351)

1.872
(0.249)

1.869
(0.199)

uL
2

E 95.100
(0.216)

95.500
(0.166)

95.920
(0.105)

95.560
(0.080)

95.425
(0.063)

2.300
(0.150)

1.950
(0.102)

1.840
(0.066)

2.240
(0.053)

2.295
(0.039)

2.600
(0.147)

2.550
(0.109)

2.240
(0.072)

2.200
(0.055)

2.280
(0.040)

1.681
(0.564)

1.803
(0.381)

1.813
(0.221)

1.811
(0.147)

1.811
(0.126)

1000 uL
1

E 95.100
(0.216)

95.500
(0.166)

95.920
(0.105)

95.560
(0.080)

95.425
(0.063)

2.300
(0.150)

1.950
(0.102)

1.840
(0.066)

2.240
(0.053)

2.295
(0.039)

2.600
(0.147)

2.550
(0.109)

2.240
(0.072)

2.200
(0.055)

2.280
(0.040)

1.681
(0.564)

1.803
(0.381)

1.813
(0.221)

1.811
(0.147)

1.811
(0.126)

uL
2

E 95.000
(0.218)

95.400
(0.167)

95.780
(0.107)

95.490
(0.081)

95.355
(0.063)

2.300
(0.150)

1.950
(0.102)

1.900
(0.068)

2.270
(0.054)

2.325
(0.039)

2.700
(0.147)

2.650
(0.109)

2.320
(0.073)

2.240
(0.055)

2.320
(0.041)

1.677
(0.563)

1.796
(0.379)

1.805
(0.218)

1.803
(0.146)

1.802
(0.125)

t5(0, 1) 500 uL
1

E 95.700
(0.203)

95.200
(0.165)

95.720
(0.107)

95.460
(0.081)

95.460
(0.062)

1.900
(0.137)

2.400
(0.109)

2.140
(0.067)

2.270
(0.050)

2.330
(0.041)

2.400
(0.173)

2.400
(0.116)

2.140
(0.075)

2.270
(0.053)

2.210
(0.037)

1.673
(0.630)

1.784
(0.458)

1.805
(0.330)

1.810
(0.270)

1.812
(0.241)

uL
2

E 95.600
(0.205)

95.050
(0.167)

95.620
(0.108)

95.360
(0.083)

95.355
(0.063)

2.000
(0.140)

2.550
(0.112)

2.200
(0.068)

2.310
(0.050)

2.385
(0.041)

2.400
(0.153)

2.400
(0.114)

2.180
(0.071)

2.330
(0.054)

2.260
(0.038)

1.667
(0.629)

1.773
(0.453)

1.792
(0.326)

1.797
(0.267)

1.798
(0.237)

1000 uL
1

E 95.400
(0.209)

95.500
(0.156)

95.460
(0.113)

95.480
(0.083)

95.440
(0.059)

1.500
(0.122)

1.850
(0.097)

2.140
(0.073)

2.230
(0.055)

2.295
(0.040)

3.100
(0.173)

2.650
(0.116)

2.400
(0.075)

2.290
(0.053)

2.265
(0.037)

1.651
(0.693)

1.766
(0.497)

1.765
(0.307)

1.760
(0.204)

1.765
(0.182)

uL
2

E 95.600
(0.205)

95.050
(0.167)

95.620
(0.108)

95.360
(0.083)

95.355
(0.063)

2.000
(0.140)

2.550
(0.112)

2.200
(0.068)

2.310
(0.050)

2.385
(0.041)

2.400
(0.153)

2.400
(0.114)

2.180
(0.071)

2.330
(0.054)

2.260
(0.038)

1.667
(0.629)

1.773
(0.453)

1.792
(0.326)

1.797
(0.267)

1.798
(0.237)
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D Empirical illustration

Table D.1: MA(1) �lter with dummies

constant γ D1 D2 D3

0.125 0.0561 -5.374 6.201 -7.147
(0.046) (1.398) (1.400) (1.409) 0.0561

Robust standard errors are given in parentheses. D1

takes value 1 on March 4, 1996. D2 takes value 1 on
September 23, 1998. D3 takes value 1 on September
10, 1998.

Table D.2: Sample moments of residuals from MA(1) �lter with dummies

Sample Size Mean SD Skewness Excess Kurtosis Max Min

1042 0.006 1.399 −0.270∗ 3.100∗ 6.052 -7.147

∗Signi�cant values at 5% level.

Figure D.1: Empirical autocorrelation functions of Yt; respectively Y
2
t .
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Table D.3: GARCH(1,1)

ω α β α + β

0.028 0.132 0.861 0.993
(0.014) (0.025) (0.024)

Robust standard errors are given in
parentheses.

Table D.4: Sample moments of centered residuals

Sample Size Mean SD Skewness Excess Kurtosis Max Min

1042 0.000 1.006 −0.176∗ 0.741∗ 4.615 -4.295

∗Signi�cant values at 5% level.

Figure D.2: Empirical autocorrelation function of ε̂t; respectively ε̂
2
t .
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Figure D.3: 20-step ahead prediction intervals of future returns based on Epanechnikov
kernel with bandwidth uL

1

E (upper); respectively uL
2

E (lower).

Figure D.4: Histogram of one- and 20-step ahead predictions of returns based on Epanech-
nikov kernel with bandwidth uL

1

E ; respectively uL
2

E .
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Figure D.5: Histogram of one- and 20-step ahead predictions of volatility based on
Epanechnikov kernel with bandwidth uL

1

E ; respectively uL
2

E .
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Bootstrap Forecasts for the Poisson Autoregressive Model�

Philipp Christian Kless,

Department of Economics,

University of Copenhagen, Denmark.

Abstract

We present a parametric bootstrap scheme to forecast the Poisson autoregressive

(PAR) model. More precisely, our bootstrap simulates the analytically unknown

multi-step ahead probability mass function (pmf) via recursive one-step ahead pre-

dictions of future counts using the Poisson distribution and the estimated model

parameters. By repeating this step a large number of times, we numerically approx-

imate the pmf of future counts. We prove that our bootstrap forecasts are asymp-

totically valid. We study the �nite sample properties of our forecasts by means of a

Monte Carlo experiment. This experiment supports our theoretical results, that is,

prediction intervals based on the forecasted pmf according to our bootstrap have the

correct coverage on average. Finally, in two empirical applications, we demonstrate

that our parametric bootstrap also improves the forecasting performance of the PAR

model for stock transaction data and monthly US default count data.

Keywords: Poisson autoregression; Bootstrap; Forecasting

�I thank Anders Rahbek, Rasmus Søndergaard Pedersen, and Michael H. Neumann for helpful com-
ments.
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1 Introduction

In this paper, we discuss a fully parametric bootstrap to approximate the analytically

unknown h-step ahead distribution of the Poissson autoregressive (PAR) model. This

model class assumes that the conditional distribution of the observations follows a Poisson

distribution where the intensity parameter varies over time. Applications of this model

span various academic �elds ranging from economics to medicine and focus on predicting

future counts. For instance, Agosto, Cavaliere, Kristensen, and Rahbek (2016) predict

time series counts of corporate defaults while Angelini and De Angelis (2017) implement

the PAR model to predict the outcome of football matches to develop a pro�table betting

strategy. Moreover, Liboschik, Fokianos, and Fried (2017) use the PAR model to design

a prediction-based monitoring procedure for infectious disease surveillance.

We contribute to the literature by proposing a simulation based forecasting approach

for the PAR model. More precisely, we discuss a fully parametric bootstrap scheme.

This parametric bootstrap can be applied to approximate the analytically unknown h-

step ahead conditional distribution of the count series. Our method simulates multi-step

ahead forecasts via recursive one-step ahead predictions of future counts using the Poisson

distribution and the estimated intensity parameter. By creating a large number of these

iterated multi-step ahead forecasts, we numerically approximate the probability mass

function (pmf) of future counts. This simulated pmf is then used to create prediction

intervals for the count time series. Our second contribution is that we develop asymptotic

theory for the discussed bootstrap approach. That is, we give explicit conditions such

that our simulated forecasts converge weakly to the unknown distribution of the future

counts. We also evaluate our bootstrap approach in Monte Carlo simulations as well as

in two empirical exercises with real data.

First, we study the �nite-sample properties of our bootstrap based pmf forecasts in a

controlled Monte Carlo setup. For this Monte Carlo experiment, we assume that the DGP

is a PAR model. Then, we compare the actual coverage of our prediction intervals, based

on the simulated pmf, with a chosen nominal coverage level such as 5%. For this setup,

we show that bootstrap based prediction intervals have a better coverage than a closed

form forecast method proposed in Agosto, Cavaliere, Kristensen, and Rahbek (2016).

Second, in two empirical exercises, we compute rolling one-step ahead prediction in-

tervals based on our simulated pmf via the bootstrap and the closed from approach of

Agosto, Cavaliere, Kristensen, and Rahbek (2016). The �rst data cover transactions of

a stock per minute and is the same as in Fokianos, Rahbek, and Tjøstheim (2009). The

second data contains monthly US default counts and is �rst analyzed in Agosto, Cavaliere,

Kristensen, and Rahbek (2016). For both data sets, we �nd that the bootstrap prediction

intervals always outperform the method of Agosto, Cavaliere, Kristensen, and Rahbek

(2016) in terms of coverage.
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In terms of existing literature, the PAR model is widely applied and therefore its

stochastic properties are well understood. For instance, Ferland, Latour, and Oraichi

(2006) give conditions such that the count process is stationary while mixing properties

and weak dependence are studied in Neumann (2011) and Doukhan, Fokianos, and Tjøs-

theim (2012), among others. Moreover, the asymptotic behavior of its (quasi) maximum

likelihood estimator ((Q)MLE) is also well established in the literature; cf. Fokianos, Rah-

bek, and Tjøstheim (2009), Ahmad and Francq (2016), and Agosto, Cavaliere, Kristensen,

and Rahbek (2016).

Our parametric bootstrap approach for the PAR model complements existing studies.

For instance, Hudecová, Hu²ková, and Meintanis (2015) propose a test that a given set of

counts can be formulated as a particular series of counts with a given conditional distri-

bution. Their test has power against the alternative of a di�erent conditional distribution

and even against the alternative of a di�erent model class. In a Monte Carlo power study,

they show that the bootstrap versions of the tests perform well. Moreover, Fokianos and

Fried (2010) introduce tests to detect intervention e�ects that generate various types of

outliers in count data. In particular, they apply a parametric bootstrap procedure based

on the maximum of the di�erent score test statistics to test for an intervention when the

type and the time of the intervention are unknown. The practical relevance of the boot-

strapped based test of Fokianos and Fried (2010) is con�rmed using simulated and real

data examples. For an alternative intervention testing procedure using the bootstrap see

also Liboschik, Kerschke, Fokianos, and Fried (2016). Another application of the boot-

strap is provided by Christou and Fokianos (2015a) who test the linearity of the mean

process when a non-linear model contains nuisance parameters that are not identi�ed

under the null. The lack of identi�cation a�ects their score based test such that classical

asymptotic theory does not apply. To obtain critical values in this situation, they use

a parametric bootstrap scheme based on the Poisson distribution. The empirical results

demonstrate that their bootstrap works well. Finally, Fokianos and Neumann (2013)

study a class of goodness-of-�t tests for parametric count time series models with power

against local alternatives. In an e�ort to approximate the asymptotic null distribution

of the statistical test, the authors advocate a parametric bootstrap method and prove

its asymptotic validity. Their empirical applications demonstrates that their bootstrap

works well in practice.

The article is organized as follows: In Section 2, we introduce the PAR model, discuss

its properties and give some standard asymptotic results for the maximum likelihood

estimator. Moreover, we discuss standard forecasting with the model. Next, in Section 3,

we introduce our forecasting algorithm and prove its asymptotic validity. In Section 4, we

report the results of our Monte Carlo experiment while Section 5 contains the empirical

applications. Section 6 concludes the paper. Finally, the Appendix contains additional

simulation results, empirical results, and all the proofs of the paper.
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2 The Poisson autoregressive model

Suppose that Yt is a time series of counts, e.g. the number of transactions per minute for

a given stock. In the following, we wish to model the dynamics of this process in terms

of its own past, {Yt−1, Yt−2, . . .}. We achieve this by modeling Yt as a conditional Poisson

distribution with time-varying intensity parameter, λt, expressed a linear function of past

counts and its own past. That is, we consider following model:

Yt|Ft−1 ∼ Poisson (λt) , t = 1, . . . , T, (2.1)

where Ft represents the σ-�eld generated by {Y0, . . . , Yt, λ0, . . . , λt}, that is, Ft = σ (Ys, s ≤ t)

and Poisson (λ) is a Poisson distribution with parameter λ. We close the model by choos-

ing a linear speci�cation for λt,

λt = ω + αYt−1 + βλt−1, (2.2)

where ω > 0 and α, β ∈ R+ such that λt > 0 since Yt is a non-negative integer. In

the following, we refer this model by PAR(1,1). The parameters of the model are given

by θ := (ω, α, β)′ ∈ Θ ⊂ R+. We let θ0 = (ω0, α0, β0)′ denote the true data-generating

parameter value. In addition, we assume that Y0 is �xed.

The chosen speci�cation allows us to model the dynamics of the number of counts in

terms of past counts which is captured by αYt−1 and βλt−1. This approach is similar to the

standard (G)ARCH process applied to describe the evolution of the conditional variance

of a continuously distributed variable; see Bollerslev (1986). Due to this similarity, the

Poisson autoregressive model is also referred to as an integer valued (G)ARCH process in

the literature; see Ferland, Latour, and Oraichi (2006).

2.1 Properties

In this section, we state su�cient conditions for the PAR model to be stationary, mixing

and ergodic. These stochastic properties have been studied in detail in the literature;

see, among others, Doukhan and Wintenberger (2008), Fokianos, Rahbek, and Tjøstheim

(2009), Neumann (2011), Doukhan, Fokianos, and Tjøstheim (2012, 2013), and Agosto,

Cavaliere, Kristensen, and Rahbek (2016). Most of the literature uses the concept of

τ -dependence, henceforth weak dependence, as de�ned in Doukhan and Wintenberger

(2008). Weak dependence is a stability concept for discrete-valued Markov chains which

implies stationarity and ergodicity. Importantly, establishing weak dependence allows us

to apply a LLN and a CLT to the studied process.

To establish weak dependence, we write the model in eq. (2.1) in terms of an i.i.d.

sequence of Poisson processes with unit intensity. More precisely, for each t, let Nt (·) be
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a Poisson process of unit intensity. Then, for any u > 0, the number of events Nt (u) is

distributed as a Poisson random variable with intensity u such that we can re-write eq.

(2.1) as

Yt = Nt (λt) , (2.3)

where Nt (·) is i.i.d. over time. We impose the following assumption on the model.

Assumption 2.1 (i) The innovations Nt (·) are i.i.d. over time, and (ii) α + β < 1.

Assumption 2.1(i) allows us to embed Yt in a Markov chain framework such that we

can apply the theory of weak dependence. The second part of Assumption 2.1 states that

the function L (Y, λ) = ω + αY + βλ is Lipschitz with Lipschitz coe�cient α + β < 1.

This condition is standard in the literature; cf. Doukhan and Wintenberger (2008).

Finally, Assumption 2.1 implies that the PAR model has a stationary and weakly de-

pendent solution, as proven in the next lemma.

Lemma 2.1 Under Assumption 2.1, there exists a weakly dependent stationary and er-

godic solution to eq. (2.1) for which E (|Yt|) <∞.

As a result of Lemma 2.1, we can use the LLN for stationary and ergodic processes that

will be needed in the next section for deriving the large sample properties of the below

proposed maximum likelihood estimator.

2.2 Estimation

Next, we discuss estimation of the PAR model by means of maximum likelihood. More-

over, we outline the well understood asymptotic theory for the estimated parameters; see,

among other, Fokianos, Rahbek, and Tjøstheim (2009), Agosto, Cavaliere, Kristensen,

and Rahbek (2016), and Ahmad and Francq (2016).

We consider the PAR model for Yt as given in eq. (2.1), that is, the conditional intensity

is given by

λt (θ) = ω + αYt−1 + βλt−1(θ). (2.4)

Then, the conditional log-likelihood function of θ in terms of the observations, {Y1, . . . , YT},
given initial values, {Y0, λ0}, is given by

LT (θ) =
T∑
t=1

lt (θ) , lt (θ) := Yt log λt (θ)− λt (θ) , (2.5)
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where any constant terms are omitted. The maximum likelihood estimator (MLE) is then

de�ned as

θ̂ := arg max
θ∈Θ

LT (θ) . (2.6)

The large sample properties of θ̂ are well-understood in the literature. We follow Ahmad

and Francq (2016) and assume that the following conditions hold throughout the rest of

this paper.

Assumption 2.2 The parameter space is given by Θ = [ω, ω] × [α, α] × [β, β] for some

0 < ω < ω <∞, 0 < α < α <∞, 0 < β < β < 1.

Assumption 2.3 The conditional distribution of Yt is not degenerated.

Assumption 2.2 restricts the parameter space and ensures, for instance, that λt is

bounded away from zero by assuming that ω > 0. Assumption 2.3 ensures identi�ca-

tion of the parameters. Both assumptions are standard in the literature.

Under the above assumptions, together with the Assumption 2.1 used to show station-

arity and existence of moments, we obtain the following asymptotic result for the MLE;

see Fokianos, Rahbek, and Tjøstheim (2009), and Ahmad and Francq (2016).

Theorem 2.1 Suppose that Assumptions 2.1, 2.2, and 2.3 hold, then

θ̂ →a.s. θ0 as T →∞.

If, in addition, θ0 is an interior point of Θ, then

√
T
(
θ̂ − θ0

)
→d N (0,Σ) , as T →∞,

where Σ is some positive de�nite matrix.

Remark 2.1 Under the conditions of Theorem 2.1, Ahmad and Francq (2016) show that

the asymptotic variance of MLE can be consistently estimated by Σ̂ = Ĵ−1Î Ĵ−1 with

Ĵ :=
1

T

T∑
t=1

1

λt

(
θ̂t

) ∂λt
(
θ̂
)

∂θ

∂λt

(
θ̂
)

∂θ′
, (2.7)

Î :=
1

T

T∑
t=1

 Yt

λt

(
θ̂
) − 1

2
∂λt

(
θ̂
)

∂θ

∂λt

(
θ̂
)

∂θ′
. (2.8)

Once the model parameters have been estimated, we can use them to forecast future

number of counts with the PAR model in eq. (2.1).
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2.3 Forecasting

In this section, we outline how we can obtain multi-step ahead forecast of the count

process, Yt, and its distribution without relying on bootstrap based simulations. This ap-

proach is �rst discussed in Agosto, Cavaliere, Kristensen, and Rahbek (2016); henceforth

ACKR(2016). More precisely, we apply a two step procedure: At �rst, we obtain a multi-

step ahead forecast of the time-varying intensity parameter, λt. Then, this point forecast

is inserted into the conditional distribution of the count to process to obtain prediction

intervals, for instance.

In terms of the mean square error, the optimal one-step ahead forecast of λt, given the

information available at time T and the model parameters, is

λT+1|T (θ) = ω + αYT + βλT (θ) . (2.9)

In general, we generate a multi-step ahead forecast of λT+h, for h > 1, by realizing that

for any k ≥ 1 the conditional intensity for λT+k can be represented as

λT+k (θ) = ω + (α + β)λT+k−1 (θ) + αηT+k−1,

where ηt := Yt − λt (θ) such that E
(
ηt|FYt−1

)
= 0. We then form a multi-step ahead

forecast of λT+h|T recursively through

λT+k|T (θ) = ω + (α + β)λT+k−1|T (θ) , k = 2, . . . , h, (2.10)

with λT+1|T (θ) being de�ned in eq. (2.9). Finally, given a point forecast of the intensity,

λT+h|T , we generate a forecast distribution of YT+h by

P (YT+h = y|FT ) =
λyT+h|T (θ) exp

(
−λT+h|T (θ)

)
y!

, y ∈ {0, 1, 2, . . .}. (2.11)

The before outlined approach is closely related to the concept of density forecasts; cf.

Tay and Wallis (2000). The only di�erence is that we are concerned with a discrete

valued-distribution. An easy way to illustrate the forecast distribution is by stating the

100 (1− p) % prediction interval implied by the forecast distribution for some p ∈ (0, 1).

That is, the (1− p) prediction interval has following form:

[
Q
(
p/2|λT+h|T (θ)

)
,Q
(
(1− p/2) |λT+h|T (θ)

)]
, (2.12)

where q 7→ Q (q|λ) is the quantile function of a Poisson distribution with intensity λ.

Observe that the expression in eq. (2.11) holds only for h = 1. The true distribution

of YT+h, given the information available at time T , is in general analytically unknown for
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h > 1. Therefore eq. (2.11) can only be regarded as an approximation of the probability

mass function for more than one-step ahead. As an alternative, we can simulate the pmf

by implementing our parametric bootstrap scheme as detailed in the next section.

3 Parametric Bootstrap Forecasts

As discussed before, the h-step ahead conditional distribution of the count process,

P (Yh = y|YT = x, λT = λ) is analytically unknown for forecasting horizons with h > 1.

As a solution, we can simulate multi-step ahead forecasts via recursive one-step ahead

predictions of future counts using the Poisson distribution and the estimated model pa-

rameters. Then, we create a large number of these recursive multi-step ahead forecasts

and use them to numerically approximate the unknown probability mass function of the

count process.

We summarize the above outlined bootstrap in the following algorithm:

Algorithm A:

(i) Obtain θ̂ in eq. (2.1) on the original sample {Yt}Tt=1 using ML estimation.

(ii) Given the information available at time T , construct forecasts recursively

through

λ∗T+h

(
θ̂
)

= ω̂ + α̂Y ∗T+h−1 + β̂λ∗T+h−1

(
θ̂
)
,

Y ∗T+h = NT+h

(
λ∗T+h

(
θ̂
))

, h = 1, . . . , H, (3.1)

where Y ∗T = x, λ∗T = λ, and Nt (·) is de�ned as before.

(iii) Obtain a set of replicates for λ
∗(i)
T+h

(
θ̂
)
and Y

∗(i)
T+h by repeating step (ii), say,

i = 1, . . . , B times.

(iv) Calculate P∗
(
Y ∗T+h = y|Y ∗T = x, λ∗T = λ

)
= 1

B

∑B
i=1 1

(
Y
∗(i)
T+h = y

)
for y ∈ N0.

Remark 3.1 Step (iv) of Algorithm A generates point forecasts of the probability mass

function, which can be used to construct prediction intervals for the future number of

counts, YT+h.

Remark 3.2 In practice, we set Y ∗T = YT = x to initialize Algorithm A in the case where

β = 0.

3.1 Asymptotic Properties of the Bootstrap

Next, we state the asymptotic validity of our parametric PAR bootstrap introduced in

Algorithm A. In the following, we split our results in two parts. The �rst result states
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the validity of Algorithm A for the PAR(1,1) while the second result demonstrates the

validity of the PAR(1,0) process with β = 0.

At �rst, we turn to the case where β > 0 such that we look at the PAR(1,1) process.

For this speci�cation the one-step ahead intensity is

λT+1(θ) = ω + αNT (λ) + βλ, (3.2)

where we use that YT = NT (λt−1) with λt−1 = λ, where λ is �xed. This expression leads

directly to the following result for the simulated one step ahead pmf.

Theorem 3.1 Suppose that Assumptions 2.1, 2.2, and 2.3 hold. Let P∗
(
Y ∗T+1 = y|NT (λ) = x

)
be generated as detailed in Algorithm A. Then

∣∣P (YT+1 = y|NT (λ) = x)− P ∗
(
Y ∗T+1 = y|NT (λ) = x

)∣∣→p 0,

as T →∞.

Next, we set β = 0 such that we are looking at the case where the intensity does not

depend on its own past values. This speci�cation makes λt a Markov Chain which is

exploited to show the following result.

Theorem 3.2 Suppose that Assumptions 2.1, 2.2, and 2.3 hold. Assume that β = 0 and

let P∗
(
Y ∗T+h = y|Y ∗T = x

)
be generated as detailed in Algorithm A. Then

∣∣P (YT+h = y|YT = x)− P ∗
(
Y ∗T+h = y|Y ∗T = x

)∣∣→p 0,

as T →∞.

Remark 3.3 We conjecture that the results in Theorem 3.1 can be extended to allow for

h > 1. This conjecture is con�rmed by simulations results in Section 4. The theoretical

analysis of simulated multi-step ahead forecasts is beyond the scope of this paper and left

for future research.

4 Monte Carlo Experiments

4.1 Algorithm A

In this section, we verify the performance of our Algorithm A by means of a Monte

Carlo experiment. As an alternative to our algorithm, we also implement the approach

suggested by ACKR(2016); cf. eq. (2.12). For the Monte Carlo experiment we repeat the

following steps:

1. Generate a time series, {Yt}T+H
t=1 , for the PAR model given in eq. (2.1).
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2. For this generated series, apply Algorithm A and the procedure of ACKR(2016) to

calculate prediction intervals with nominal coverage of 90%, 95%, and 99%.

We repeat these two steps N times such that we have a set of N prediction intervals

with some given nominal coverage for both methods. From this set we can empirically

access the actual coverage of the prediction intervals from Algorithm A and ACKR(2016).

That is, we simply compute the time series average of the number of times the true YT+h

lies outside the prediction interval. Then, we take the average of this number over the

N replications. In this experiment we set N = 1000 and use B = 1000 repetitions in

Algorithm A to simulate the prediction intervals.

We �rst look at the case where β = 0. Here, we consider sample sizes, T ∈ {200, 500, 1000},
and we generate the time series for four vales of α ∈ {0.6, 0.7, 0.8, 0.9} with ω = 4.2.

We present the results in Table 4.1. Our main �ndings are as follows: First, the method

of ACKR(2016) performs worse than Algorithm A over all considered scenarios. Second,

the performance of the method in ACKR(2016) decreases as the persistence of the count

process increases. Third, the actual coverage of Algorithm A tends to be a slightly larger

than the nominal coverage.

Looking at Figure 4.1, we can explain why the method of ACKR(2016) is not performing

as good as Algorithm A. In this �gure, we plot the true simulated pmf and compare

it to the pmf's obtained via Algorithm A and the method of ACKR(2016). The true

pmf is simulated using 1000 repetitions while T = 1000, α = 0.8, and ω = 4.2. We

observe that forecasts based on ACKR(2016) can only approximate the true pmf for h = 1

reasonably well. For larger forecasting horizons, the approximation based on ACKR(2016)

performs worse because it relies on the pmf of the Poisson distribution even though we

do not analytically know the pmf of the count process for h > 1. Hence, the method of

ACKR(2016) cannot model the heavier tails of the future count process in contrast to

Algorithm A. As we see from Figure 4.1, Algorithm A is quite accurate and can capture

the tails of the count process.

Next, we look at the situation where the DGP for the count series follows a negative

binomial distribution. For the estimation step and forecasting exercise we maintain the

assumption that the conditional distribution is Poisson. Hence, we are in a situation where

our model is misspeci�ed. This type of misspeci�cation plays no role for the estimation

step since our estimates are consistent even though we use the Poisson distribution; cf.

Ahmad and Francq (2016). Yet, we use the wrong distribution when we construct pre-

diction intervals. Speci�cally, we assume that Yt|Ft−1 ∼ NB (r, r/(λt + r)) with r > 0

and λt = ω + αYt−1. Here, we set α ∈ {0.6, 0.7, 0.8} while ω = 4.2 with r = 10 for

T ∈ {200, 500, 1000}. We refer to this speci�cation as NBAR(1). The results for this

setting are available in Table 4.2 and Appendix B. From these tables we note that neither

Algorithm A nor the procedure of ACKR(2016) perform well. That is, the actual coverage

is well below the nominal coverage for all speci�cations.
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Figure 4.1: PAR(1): The true simulated pmf (red) is compared to pmf's obtained via
Algorithm A (top row); respectively ACKR(2016) (bottom row) for h ∈ {1, 5, 20}. The
sample size is T = 1000 and α = 0.8 while ω = 4.2.

We also consider the situation where the DGP is a PAR(1,1) model with α = 0.2

and β = {0.6, 0.7} while ω = 4.2 and T ∈ {200, 500, 1000}. The values for α and β

are chosen such that they re�ect results often found in the literature where the sum of

the two coe�cients is close to 1; see Fokianos, Rahbek, and Tjøstheim (2009). Then we

follow the outline from before and obtain prediction intervals with 90%, 95%, and 99%

coverage for both forecasting methods. The results are available in Appendix B and allow

for the following conclusions: First, Algorithm A performs better than ACKR(2016) in

all settings. Especially for longer forecasting horizons the performance of Algorithm A

is better than that of ACKR(2016). Second, compared to the PAR(1) model as DGP,

the method of ACKR(2016) shows an increased performance and often provides an actual

coverage close to nominal.

Finally, we conduct the same robustness check as before. That is, we study the case

where the DGP of the count process follows a negative binomial distributions. We set

α = 0.2, β = 0.7 while ω = 4.2, T ∈ {200, 500, 1000}, and r = 10. The results of this

robustness check are relegated to Appendix B since its �ndings are qualitatively the same

as before.
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Table 4.1: PAR(1) model: Prediction intervals with 95% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α T Method h

1 5 10 20

0.6 200 Algorithm A 0.972
(0.165)

0.974
(0.089)

0.973
(0.065)

0.969
(0.051)

ACKR(2016) 0.968
(0.176)

0.923
(0.142)

0.915
(0.112)

0.911
(0.080)

500 Algorithm A 0.979
(0.143)

0.971
(0.089)

0.970
(0.067)

0.970
(0.050)

ACKR(2016) 0.976
(0.153)

0.928
(0.140)

0.914
(0.115)

0.910
(0.086)

1000 Algorithm A 0.983
(0.129)

0.971
(0.096)

0.969
(0.071)

0.969
(0.050)

ACKR(2016) 0.973
(0.162)

0.929
(0.146)

0.913
(0.113)

0.907
(0.081)

0.7 200 Algorithm A 0.973
(0.162)

0.968
(0.098)

0.967
(0.080)

0.965
(0.064)

ACKR(2016) 0.964
(0.186)

0.910
(0.164)

0.891
(0.137)

0.877
(0.110)

500 Algorithm A 0.964
(0.186)

0.963
(0.108)

0.967
(0.075)

0.968
(0.056)

ACKR(2016) 0.957
(0.203)

0.896
(0.178)

0.881
(0.141)

0.875
(0.109)

1000 Algorithm A 0.967
(0.179)

0.969
(0.097)

0.969
(0.072)

0.966
(0.057)

ACKR(2016) 0.955
(0.207)

0.905
(0.170)

0.888
(0.140)

0.877
(0.108)

0.8 200 Algorithm A 0.966
(0.181)

0.961
(0.110)

0.957
(0.094)

0.958
(0.077)

ACKR(2016) 0.959
(0.198)

0.863
(0.218)

0.832
(0.189)

0.810
(0.154)

500 Algorithm A 0.971
(0.168)

0.964
(0.110)

0.963
(0.088)

0.963
(0.070)

ACKR(2016) 0.965
(0.184)

0.865
(0.208)

0.835
(0.185)

0.812
(0.149)

1000 Algorithm A 0.962
(0.191)

0.962
(0.110)

0.959
(0.098)

0.958
(0.080)

ACKR(2016) 0.956
(0.205)

0.874
(0.198)

0.833
(0.185)

0.810
(0.149)

0.9 200 Algorithm A 0.960
(0.196)

0.952
(0.135)

0.949
(0.119)

0.938
(0.122)

ACKR(2016) 0.957
(0.203)

0.821
(0.246)

0.746
(0.247)

0.684
(0.222)

500 Algorithm A 0.963
(0.189)

0.956
(0.130)

0.959
(0.110)

0.954
(0.096)

ACKR(2016) 0.956
(0.205)

0.832
(0.238)

0.763
(0.232)

0.699
(0.209)

1000 Algorithm A 0.965
(0.184)

0.961
(0.123)

0.950
(0.121)

0.950
(0.105)

ACKR(2016) 0.964
(0.186)

0.840
(0.229)

0.759
(0.240)

0.698
(0.218)
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Table 4.2: NBAR(1) model: Prediction intervals with 95% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α T Method h

1 5 10 20

0.6 200 Algorithm A 0.870
(0.336)

0.855
(0.195)

0.856
(0.145)

0.856
(0.103)

ACKR(2016) 0.864
(0.343)

0.793
(0.222)

0.785
(0.168)

0.779
(0.123)

500 Algorithm A 0.855
(0.352)

0.852
(0.193)

0.860
(0.139)

0.861
(0.103)

ACKR(2016) 0.851
(0.356)

0.793
(0.215)

0.790
(0.163)

0.785
(0.120)

1000 Algorithm A 0.882
(0.323)

0.873
(0.179)

0.872
(0.130)

0.865
(0.099)

ACKR(2016) 0.883
(0.321)

0.814
(0.209)

0.802
(0.155)

0.786
(0.117)

0.7 200 Algorithm A 0.833
(0.373)

0.827
(0.225)

0.828
(0.170)

0.826
(0.126)

ACKR(2016) 0.828
(0.377)

0.743
(0.257)

0.716
(0.199)

0.695
(0.152)

500 Algorithm A 0.825
(0.380)

0.826
(0.221)

0.829
(0.166)

0.831
(0.124)

ACKR(2016) 0.829
(0.377)

0.738
(0.256)

0.717
(0.192)

0.706
(0.143)

1000 Algorithm A 0.819
(0.385)

0.831
(0.212)

0.833
(0.165)

0.829
(0.119)

ACKR(2016) 0.820
(0.384)

0.736
(0.245)

0.713
(0.195)

0.698
(0.139)

0.8 200 Algorithm A 0.763
(0.425)

0.738
(0.297)

0.733
(0.249)

0.735
(0.208)

ACKR(2016) 0.799
(0.401)

0.645
(0.297)

0.593
(0.240)

0.568
(0.191)

500 Algorithm A 0.714
(0.452)

0.716
(0.308)

0.721
(0.266)

0.723
(0.231)

ACKR(2016) 0.761
(0.426)

0.636
(0.291)

0.600
(0.245)

0.581
(0.202)

1000 Algorithm A 0.689
(0.463)

0.678
(0.347)

0.681
(0.309)

0.685
(0.284)

ACKR(2016) 0.794
(0.404)

0.667
(0.304)

0.629
(0.259)

0.609
(0.218)
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5 Empirical applications

To further illustrate the performance of Algorithm A, we look at two empirical applica-

tions. First, we use the data set from Fokianos, Rahbek, and Tjøstheim (2009) which

contains the number of transactions per minute for the stock Ericsson B during July 2,

2002. Second, we use the data from ACKR(2016) which cover monthly US corporate

default counts from 1982 through 2011.

5.1 Ericsson B Data

The �rst data set contains the number of transactions per minute for the stock Ericsson B

during July 2, 2002. The data set has 460 observations which cover eight hours of trading.

Note that the �rst and last minutes of transactions are not taken into account. The

data are also used in Fokianos, Rahbek, and Tjøstheim (2009) to illustrate the empirical

performance of PAR(1,1) model. Here, we estimate at �rst the model parameters. Then,

we use the method of ACKR(2016) and Algorithm A to construct out-of-sample forecasts

for the data.

When looking at Figure 5.1, we observe that the number of trades are highly autocor-

related. Moreover, the data displays overdispersion since its mean is 9.9 while its sample

variance equals 32.8. In a next step, we �t a PAR(1,1) model as in Fokianos, Rahbek,

and Tjøstheim (2009) to the data at hand. The parameter estimates are given in Table

and are comparable with Fokianos, Rahbek, and Tjøstheim (2009). We note that α̂ + β̂

are close to unity which is comparable to the unit-root phenomenon in autoregressive

time series modeling. For instance, this behavior is similar to the so-called IGARCH case

where there is high-persistence in the conditional variance.

Finally, Figure 5.2 plots diagnostic tools to help us judge the �t of the PAR(1,1) model.

First, the upper left part of this �gure illustrates that the predicted values de�ned as

Ŷt = λ̂t(θ̂) are a good approximation of the observed transactions per minute. Second, the

upper right part of Figure 5.2 plots the sample autocorrelation function of the Pearson

residuals which are de�ned as ε̂t =
(
Yt − λt(θ̂)

)
/

√
λt(θ̂). Under a correct model, the

Pearson residuals should be a white noise sequence with constant variance as seen in

the �gure. Third, in the bottom left part of Figure 5.2, we see the probability integral

transform (PIT) which is not uniformly distributed on [0, 1]. A deviation from a uniform

distribution over the unity interval indicates that the assumption of a Poisson distribution

might be violated; cf. Liboschik, Fokianos, and Fried (2017). Finally, we plot the marginal

calibration in the bottom right of Figure 5.2. For a well speci�ed model, we expect that

the marginal distribution of the �tted values resembles the marginal distribution of the

observations. Major deviations from zero indicate a misspeci�ed model; cf. Christou and

Fokianos (2015b). Hence, we conclude that the PAR(1,1) model successfully removes the
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temporal dependence, but the Poisson assumption is likely to be violated.

Next, we perform a pseudo-out-of-sample forecasting exercise for the PAR(1,1) model.

That is, we split the data set in two parts where the �rst part of size T0 = 300 is used for

initial estimation of the PAR(1,1) model. The remaining data Yt with t = T0 + 1, . . . , T

is retained for the forecasting exercise outlined next.

First, we de�ne

θ̂t = arg max
θ

Lt (θ)

to be the MLE using data until t ≥ T0, where Lt (θ) =
∑t

s=1 ls (θ) with ls (θ) = ys log λs (θ)−
λs (θ).

Then, we use θ̂ and compute the corresponding one-step ahead prediction interval based

on Algorithm A. In addition, we forecast using on the approach of ACKR(2016); cf. eq.

(2.12). Next, we repeat this exercise for t = T0 + 1, . . . , T such that we create a series of

prediction intervals. That is, we obtain {Lt+1|t(p), Ut+1|t(p)} for t = T0 + 1, . . . , T , where

Lt+1|t(p), and Ut+1|t(p) are the lower and upper limits of the prediction intervals for the

coverage probability, p. This rolling approach is comparable to the setup in ACKR(2016)

and mimics a situation where a forecaster starts at time T0. Then, as new observations

arrive, the forecaster updates his estimates and obtains new forecasts. The two series

are plotted in Figure 5.3 for a coverage probability of 95%. Upon visual inspection, both

procedures for constructing prediction intervals appear to perform equally well.

Next, we use the {Lt+1|t(p), Ut+1|t(p)}, t = T0+1, . . . , T , to calculate the actual coverage

and evaluate the intervals via standard backtesting methods. The �rst test we apply

is the unconditional coverage (UC) test by Kupiec (1995). The second method is the

conditional coverage test (CC) by Christo�ersen (1998). The results are available in Table

5.2 and allow for the following conclusions: First, we conclude that the prediction intervals

based on Algorithm A always have a coverage closer to nominal than the ones based on

ACKR(2016). Second, none of the two methods passes any of the formal statistical

tests. This result can be explained by the fact that both procedures rely on the Poisson

distribution to create the prediction intervals. However, as evident from the PIT and

marginal calibration plot in Figure 5.2, the Poisson distribution does not provide a good

�t for the data. And as a result, forecasts based on this assumption will also perform

poorly. This observations is also in line with our results from the Monte Carlo experiment.

5.2 US corporate default count

Our second data example looks at the data set used in Agosto, Cavaliere, Kristensen, and

Rahbek (2016) which contains monthly observations of US cooperate default counts. More

precisely, the data contains the monthly number of bankruptcies among Moody's rated

industrial �rms in the United States from 1982 until 2011 which gives us 360 observations.
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Figure 5.1: Top: The number of transactions per minute for the stock Ericsson B during
July 2, 2002. Bottom: Empirical autocorrelation function of the number of transactions.

Table 5.1: PAR(1,1) estimates for the Er-
icsson B data obtained via MLE.

ω α β α + β

0.581 0.198 0.744 0.943
(0.277) (0.034) (0.052)

Robust standard errors are given in
parentheses.

Table 5.2: Coverage of the one-step ahead prediction intervals and p-values for Uncondi-
tional Coverage (UC) and Conditional Coverage (CC) Test for the Ericsson B data.

Coverage probability, p

Method 90% 95% 99%

ACKR(2016) Coverage 0.812 0.843 0.906
UC 0.000 0.000 0.000
CC 0.001 0.000 0.000

Algorithm A 0.843 0.868 0.918
0.014 0.000 0.000
0.034 0.000 0.000
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Figure 5.2: Top left: Fitted values and observed process. Top right: Sample autocorre-
lation of the Pearson Residuals. Bottom left: Probability Integral Transform. Bottom
Right: Marginal Calibration Plot.

Figure 5.3: Top: One-step ahead prediction intervals based on ACKR(2016) with nominal
coverage of 95%. Bottom: One-step ahead prediction intervals based on Algorithm A with
nominal coverage of 95%.
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The data is collected from Moody's Credit Risk Calculator. As with the transaction data,

we see from Figure 5.4 that the default counts are highly correlated and cluster over time.

Moreover, the distribution of the default counts is over-dispersed with a mean of 3.51

while the empirical variance is 15.57.

In ACKR(2016), the authors also include exogenous regressors in the intensity speci�-

cation in their empirical analysis. We denote this speci�cation by PARX in the following.

Adding exogenous regressors allows the authors to study to what extent autocorrelation

and clustering of the default counts depend on common risk factors. Among the covari-

ates are �nancial, credit market, and macroeconomic variables such the Leading Index

released by the Federal Reserve denoted by LI. Moreover, ACKR(2016) also consider re-

alized volatility (RV ) on the S&P 500 to take into the impact of uncertainty in �nancial

markets on default counts. For more details see ACKR(2016).

The analysis of ACKR(2016) arrives at two preferred models which are a PAR(2,1)

model and a PARX(2,1) speci�cation which includes RV and LI as exogenous covariates.

The parameter estimates are obtained via MLE and reproduced in Table 5.3. From this

table we note that α̂1 +α̂2 decreases for the speci�cation with covariates. This observation

shows that covariates are important in explaining the dependence of default counts over

time. However, a strong link between the conditional intensity and past default counts

remains since α̂1 + α̂2 is not close to zero which would imply conditional independence of

default counts over time. In terms of misspeci�cation, we turn to Figure 5.5 and Figure 5.6

which plot the �tted values, the sample autocorrelation function of the Pearson Residuals,

the PIT and the marginal calibration plot for the corresponding model. Both speci�cations

successfully remove the temporal dependence according to the autocorrelation function

of the residuals. Moreover, in this example it appears that the Poisson distribution is a

reasonable assumption when looking at the PIT plot and marginal calibration plot for

both models.

As in the previous section, we continue with a pseudo-out-of-sample forecasting exercise

for the PAR(2,1) and PARX(2,1) model. We split the data into two parts where the �rst

part is of size T0 = 200 and is used for initial estimation. The remaining data Yt for

t = T0 + 1, . . . , T is reserved for the forecasting exercise. For this exercise, we stick to the

same approach as in the section before. That is, we estimate θ̂ based on a rolling window

and then obtain one-step ahead prediction intervals for both model speci�cations using

the method of ACKR(2016) and Algorithm A. We repeat this exercise for t = T0+1, . . . , T

such that we get a series of prediction intervals and intensity forecasts. These series are

plotted in Figure 5.7 and 5.8, respectively. Upon visual inspection, both models and both

forecasting procedures perform equally well.

Finally, we apply the tests for UC and CC on the series of prediction intervals. The

results of the tests are available in Table 5.4 and allow for the following observations:

First, we conclude that the intervals based on Algorithm A always have coverage closer to
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Figure 5.4: Top: Number of defaults per month among Moody's rated US industrial �rms
from 1982 until 2012. Bottom: Empirical autocorrelation function of the default counts.

Table 5.3: Estimations results for PAR and PARX model speci�cation via MLE.

ω α1 α1 β RV LI− α̂1 + α̂2 AIC BIC

PAR(2,1) 0.313 0.239 0.224 0.444 - - 0.464 -1515.33 -1530.66
PARX(2,1) 0.255 0.189 0.204 0.489 27.99 0.772 0.393 -1491.64 -1514.95

Robust standard errors are given in parentheses. Moreover, note that L− denotes the negative
part of LI, that is, LI− = I{LI<0}|LI|. This step is requited to ensure the non-negativity of
the chosen intensity speci�cation.

nominal, except for the interval with 99% coverage. Second, Algorithm A passes the tests

for UC and CC for all con�dence levels except for the 99% level. Third, the approach

of ACKR(2016) only passes both tests for the PARX model for prediction intervals with

90% coverage.

When we compare these results with the test results for the transaction counts per

minute, we see that our Algorithm A delivers prediction intervals with the correct cover-

age. However, as a prerequisite for this good performance, we need that the assumption

of a Poisson distribution is reasonable for the studied count data. In addition, our results

are line with ACKR(2016) and con�rm that exogenous covariates seem to improve the

forecasting performance of the model at hand. Finally, we note how di�cult it is to model

extreme quantiles, e.g. the 99% quantile, of the distribution correctly. This observation

is in line with Tay and Wallis (2000).
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Figure 5.5: PAR(2,1) model. Top left: Fitted values and observed process. Top right:
Sample autocorrelation of the Pearson Residuals. Bottom left: Probability Integral Trans-
form. Bottom Right: Marginal Calibration Plot.

Figure 5.6: PARX(2,1) model. Top left: Fitted values of and observed process. Top
right: Sample autocorrelation of the Pearson Residuals. Bottom left: Probability Integral
Transform. Bottom Right: Marginal Calibration Plot.
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Figure 5.7: PAR(2,1) model. Top: One-step ahead prediction intervals based on
ACKR(2016) with nominal coverage of 95%. Bottom: One-step ahead prediction in-
tervals based on Algorithm A with nominal coverage of 95%.

Figure 5.8: PARX(2,1) model. Top: One-step ahead prediction intervals based on
ACKR(2016) with nominal coverage of 95%. Bottom: One-step ahead prediction in-
tervals based on Algorithm A with nominal coverage of 95%.

61



Table 5.4: Coverage of the one-step ahead prediction intervals and p-values for Uncon-
ditional Coverage (UC) and Conditional Coverage (CC) Test for the US default count
data.

PAR PARX

Coverage probability, p Coverage probability, p

Method 0.1 0.05 0.01 0.1 0.05 0.01

ACKR(2016) Coverage 0.850 0.900 0.962 0.875 0.906 0.962
UC 0.047 0.010 0.007 0.308 0.022 0.007
CC 0.122 0.027 0.020 0.531 0.014 0.020

Algorithm A 0.875 0.931 0.962 0.906 0.937 0.962
0.308 0.301 0.007 0.790 0.484 0.007
0.149 0.542 0.020 0.858 0.387 0.020

6 Conclusion

In this article, we introduce a fully parametric bootstrap scheme to simulate the ana-

lytically unknown h-step probability mass function of the PAR model. In addition, we

study the asymptotic properties of our bootstrap approach. Especially, we show that our

bootstrap forecasts are asymptotically valid.

We also look at the �nite-sample properties of our bootstrap approach in a controlled

Monte Carlo setup. We showed that prediction intervals based on our Algorithm A are

more accurate in terms of coverage compared to the procedure proposed in ACKR(2016).

When the DGP is governed by a negative binomial distribution, then the performance of

both methods decreases. However, Algorithm A still delivers the best results. Finally, in

the empirical applications, we illustrate how Algorithm A produces prediction intervals

with correct coverage for the US default data set when using a well speci�ed model.

Further issues are left for future research. First, the performance of our Algorithm A

crucially depends on the assumption that the conditional distribution is Poisson. Hence,

when this assumption is violated, Algorithm A performs poorly and some form of robust-

ness against model mis-misspeci�cation would be desirable. Second, Algorithm A does

not take estimation uncertainty into account which is also an interesting extension; cf.

Hansen (2006).
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Appendix

A Proofs

Proof of Theorem 2.1.

The results follow from using the same arguments as given in Section 3.1 in Ahmad and

Francq (2016). �

Proof of Lemma 2.1.

To show the result, we follow Agosto, Cavaliere, Kristensen, and Rahbek (2016) and verify

that the conditions of Theorem 3.1 in Doukhan and Wintenberger (2008) hold for the

process {Yt}Tt=1. First, we write Yt = Nt (λt) = Nt (ω + αYt−1 + βλt−1) =: F (Xt−1;Nt),

where Xt = (Yt, λt). Then, we choose an Orlicz function, Φ (x), such that Φ (x) = x, x ∈
R+, and de�ne the norm ||X||Φ as

||X||Φ = inf

{
u > 0 with E

[
Φ

(
||X||
u

)]
≤ 1

}
,

where ||·|| denotes the norm of a Banach space. In our case, we note that ||X||Φ = E (|X|).
Thus, by de�nition, ||F (0;Nt)||Φ = E |Nt(ω)| < ∞ and we have that condition (3.3) of

Doukhan and Wintenberger (2008) is satis�ed. Next, for any two deterministic sequences

x = (y, λ) ∈ N0 × (0,∞) and x′ = (y′, λ′) ∈ N0 × (0,∞), we �nd that

||F (x;Nt)− F (x′;Nt)||Φ = E (|Nt (ω + αy + βλ)−Nt (ω + αy′ + βλ′)|)

= |ω + αy + βλ− ω − αy′ + βλ′|

= α |y − y′|+ β|λ− λ′|, (A.1)

where the second equality follows from the properties of the Poisson process Nt (·). Con-
sequently, condition (3.1) of Doukhan and Wintenberger (2008) holds if α+ β < 1. Since

α+β < 1 by assumption, Theorem 3.1 in Doukhan and Wintenberger (2008) applies and

there exists a weakly dependent stationary and ergodic solution to eq. (2.1). Moreover,

all moments of the joint process (Yt, λt) exist and are �nite. �

The main tool for showing Theorem 3.2 is the following:

Proposition 1 (Billingsley 1999, Theorem 3.2) Suppose that (XM,T , XT ) are some ran-

dom variables, that XM and X are non-stochastic, and that

(i) |XM,T −XM |
p→ 0, as T →∞,

(ii) |XM −X| → 0, as M →∞,

(iii) lim
M→∞

lim sup
T→∞

P (|XM,T −XT | ≥ ε) = 0, for each ε > 0.
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Then XT →p X as T →∞.

Proof of Theorem 3.1.

It follows that

∣∣P (YT+1 = y|NT (λ) = x)− P ∗
(
Y ∗T+1 = y|NT (λ) = x

)∣∣
=

∣∣∣∣exp (ω + αx+ βλ) (ω + αx+ βλ)y

y!

−
exp

(
ω̂ + α̂x+ β̂λ

)(
ω̂ + α̂x+ β̂λ

)y
y!

∣∣∣∣→p 0, (A.2)

as T →∞, by Theorem 2.1 and Proposition 2.27 in White (2001). �

Proof of Theorem 3.2.

For h = 1 it follows that

∣∣P (YT+1 = y|YT = x)− P ∗
(
Y ∗T+1 = y|Y ∗T = x

)∣∣
=

∣∣∣∣∣∣exp (λT+1(θ))λyT+1(θ)

y!
−
exp

(
λ∗T+1(θ̂)

)
λ∗yT+1(θ̂)

y!

∣∣∣∣∣∣
=

∣∣∣∣exp (ω + αx) (ω + αx)y

y!
− exp (ω̂ + α̂x) (ω̂ + α̂x)y

y!

∣∣∣∣→p 0, (A.3)

as T →∞, by Theorem 2.1 and Proposition 2.27 in White (2001).

Let h = 2. Then, since YT+h is Markovian,

P (YT+2 = y|YT = x) =
∞∑
i=0

P (YT+2 = y|YT+1 = i)P (YT+1 = i|YT = x) =:
∞∑
i=0

fi ≤ 1,

with fi non-random. Likewise,

P ∗
(
Y ∗T+2 = y|Y ∗T = x

)
=
∞∑
i=0

P ∗
(
Y ∗T+2 = y|Y ∗T+1 = i

)
P ∗
(
Y ∗T+1 = i|Y ∗T = x

)
=:

∞∑
i=0

fi,T ≤ 1,

where the index T signi�es the dependence on θ̂ = (ω̂, α̂)′. We have that

P (YT+2 = y|YT = x)− P ∗
(
Y ∗T+2 = y|Y ∗T = x

)
=

∞∑
i=0

(fi − fi,T ) .
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For any positive integer M , de�ne

SM :=
M∑
i=0

fi and SM,T :=
M∑
i=0

fi,T .

Next, we check that Proposition 1 applies. First, we obtain that

|SM − SM,T | =

∣∣∣∣∣
M∑
i=0

(fi − fi,T )

∣∣∣∣∣→p 0, as T →∞,

by the same arguments from eq. (A.3). Second, by de�nition,

|SM − S| → 0, as M →∞,

where S :=
∑∞

i=0 fi = P (YT+2 = y|YT = x). Finally, it remains to show that

lim
M→∞

lim sup
T→∞

P (|SM,T − ST | ≥ ε) = 0,

where ST :=
∑∞

i=0 fi,T . Note that

|SM,T − ST | =

∣∣∣∣∣
M∑
i=0

fi,T −
∞∑
i=0

fi,T

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=M

fi,T

∣∣∣∣∣ .
Further, fi,T →p fi, as T → ∞, by the same arguments from eq. (A.3). In addition, by

Theorem 6.6.2 in Resnick (2001), E [|fi,T − fi|]→ 0, as T →∞, since fi,T ≤ 1. Then,

P

(∣∣∣∣∣
∞∑
i=M

fi,T −
∞∑
i=M

fi

∣∣∣∣∣ > ε

)
≤ E |

∑∞
i=M fi,T −

∑∞
i=M fi|

ε

=
E |
∑∞

i=M (fi,T − fi)|
ε

≤ E
∑∞

i=M |fi,T − fi|
ε

=

∑∞
i=M E |fi,T − fi|

ε
→ 0, as T →∞,

where the last equality follows because |fi,T − fi| is positive for all i. Moreover, as (fi :

i = 0, ...) is summable,
∑∞

i=M fi → 0, as M → ∞, due to Theorem 2.25 in Davidson

(1994). Hence limM→∞ lim supT→∞ P (|SM,T − ST | ≥ ε) = 0. We conclude that

|S − ST | →p 0, as T →∞,
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i.e. that

|P (YT+2 = y|YT = x)− P ∗
(
Y ∗T+2 = y|Y ∗T = x

)
| →p 0,

as T →∞.

Next, let h = 3. Then, since YT+h is Markovian,

P (YT+3 = y|YT = x) =
∞∑
i=0

∞∑
j=0

P (YT+3 = y|YT+2 = i)P (YT+2 = i|YT+1 = j)

×P (YT+1 = j|YT = x)

=
∞∑
i=0

P (YT+3 = y|YT+2 = i)P (YT+2 = i|YT = x)

:=
∞∑
i=0

f̃i

with f̃i non-random. Likewise,

P ∗
(
Y ∗T+3 = y|Y ∗T = x

)
=

∞∑
i=0

∞∑
j=0

P ∗
(
Y ∗T+3 = y|Y ∗T+2 = i

)
P ∗
(
Y ∗T+2 = i|Y ∗T+1 = j

)
×P ∗

(
Y ∗T+1 = j|Y ∗T = x

)
=

∞∑
i=0

P ∗
(
Y ∗T+3 = y|Y ∗T+2 = i

)
P ∗
(
Y ∗T+2 = i|Y ∗T+x = x

)
:=

∞∑
i=0

f̃i,T ,

where T index signi�es the dependence on θ̂. Hence we can use the same arguments made

for h = 2 to show the result for h = 3.

Moreover, for h ≥ 4 similar arguments as before hold and the result follows. �
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B Additional simulations results

Table B.1: PAR(1) model: Prediction intervals with 90% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α T Method h

1 5 10 20

0.6 200 Algorithm A 0.944
(0.230)

0.941
(0.133)

0.943
(0.098)

0.939
(0.072)

ACKR(2016) 0.927
(0.260)

0.871
(0.181)

0.860
(0.140)

0.854
(0.100)

500 Algorithm A 0.959
(0.198)

0.943
(0.126)

0.940
(0.095)

0.939
(0.073)

ACKR(2016) 0.941
(0.236)

0.878
(0.175)

0.862
(0.143)

0.855
(0.106)

1000 Algorithm A 0.953
(0.212)

0.943
(0.135)

0.939
(0.101)

0.938
(0.070)

ACKR(2016) 0.934
(0.248)

0.875
(0.185)

0.856
(0.144)

0.850
(0.102)

0.7 200 Algorithm A 0.946
(0.226)

0.937
(0.137)

0.934
(0.111)

0.931
(0.089)

ACKR(2016) 0.924
(0.265)

0.849
(0.201)

0.824
(0.166)

0.808
(0.129)

500 Algorithm A 0.936
(0.245)

0.929
(0.147)

0.933
(0.109)

0.932
(0.083)

ACKR(2016) 0.916
(0.277)

0.831
(0.215)

0.816
(0.170)

0.806
(0.130)

1000 Algorithm A 0.940
(0.237)

0.937
(0.141)

0.936
(0.106)

0.934
(0.083)

ACKR(2016) 0.916
(0.277)

0.842
(0.210)

0.823
(0.167)

0.809
(0.127)

0.8 200 Algorithm A 0.937
(0.243)

0.922
(0.167)

0.916
(0.138)

0.919
(0.107)

ACKR(2016) 0.919
(0.273)

0.796
(0.246)

0.759
(0.213)

0.733
(0.170)

500 Algorithm A 0.942
(0.234)

0.925
(0.164)

0.927
(0.129)

0.926
(0.098)

ACKR(2016) 0.920
(0.271)

0.795
(0.244)

0.761
(0.216)

0.738
(0.167)

1000 Algorithm A 0.942
(0.234)

0.928
(0.157)

0.923
(0.135)

0.922
(0.108)

ACKR(2016) 0.921
(0.270)

0.811
(0.232)

0.762
(0.210)

0.735
(0.165)

0.9 200 Algorithm A 0.927
(0.260)

0.911
(0.186)

0.902
(0.171)

0.890
(0.163)

ACKR(2016) 0.921
(0.270)

0.753
(0.272)

0.672
(0.256)

0.606
(0.223)

500 Algorithm A 0.924
(0.265)

0.920
(0.175)

0.921
(0.148)

0.913
(0.132)

ACKR(2016) 0.915
(0.279)

0.760
(0.272)

0.684
(0.249)

0.619
(0.213)

1000 Algorithm A 0.939
(0.239)

0.924
(0.175)

0.909
(0.165)

0.909
(0.142)

ACKR(2016) 0.932
(0.252)

0.768
(0.265)

0.680
(0.255)

0.619
(0.223)
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Table B.2: PAR(1) model: Prediction intervals with 99% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α T Method h

1 5 10 20

0.6 200 Algorithm A 0.995
(0.071)

0.994
(0.039)

0.994
(0.028)

0.992
(0.023)

ACKR(2016) 0.994
(0.077)

0.981
(0.075)

0.977
(0.059)

0.974
(0.045)

500 Algorithm A 0.993
(0.083)

0.992
(0.041)

0.992
(0.029)

0.991
(0.023)

ACKR(2016) 0.996
(0.063)

0.979
(0.076)

0.975
(0.062)

0.973
(0.047)

1000 Algorithm A 0.997
(0.055)

0.992
(0.044)

0.991
(0.033)

0.991
(0.024)

ACKR(2016) 0.997
(0.055)

0.977
(0.081)

0.974
(0.064)

0.972
(0.047)

0.7 200 Algorithm A 0.991
(0.094)

0.992
(0.045)

0.992
(0.035)

0.991
(0.025)

ACKR(2016) 0.994
(0.077)

0.970
(0.092)

0.959
(0.082)

0.952
(0.070)

500 Algorithm A 0.994
(0.077)

0.991
(0.052)

0.992
(0.032)

0.992
(0.023)

ACKR(2016) 0.995
(0.071)

0.964
(0.105)

0.959
(0.083)

0.954
(0.067)

1000 Algorithm A 0.990
(0.099)

0.992
(0.047)

0.992
(0.034)

0.991
(0.027)

ACKR(2016) 0.992
(0.089)

0.969
(0.096)

0.960
(0.082)

0.954
(0.065)

0.8 200 Algorithm A 0.996
(0.063)

0.993
(0.041)

0.990
(0.043)

0.989
(0.038)

ACKR(2016) 0.994
(0.077)

0.944
(0.137)

0.918
(0.134)

0.906
(0.113)

500 Algorithm A 0.995
(0.071)

0.992
(0.050)

0.992
(0.036)

0.991
(0.032)

ACKR(2016) 0.995
(0.071)

0.944
(0.135)

0.928
(0.126)

0.912
(0.107)

1000 Algorithm A 0.987
(0.113)

0.991
(0.046)

0.990
(0.043)

0.989
(0.034)

ACKR(2016) 0.986
(0.117)

0.947
(0.134)

0.922
(0.135)

0.908
(0.114)

0.9 200 Algorithm A 0.991
(0.094)

0.990
(0.052)

0.989
(0.048)

0.983
(0.057)

ACKR(2016) 0.994
(0.077)

0.917
(0.169)

0.858
(0.199)

0.802
(0.200)

500 Algorithm A 0.992
(0.089)

0.992
(0.045)

0.992
(0.042)

0.991
(0.035)

ACKR(2016) 0.996
(0.063)

0.922
(0.169)

0.875
(0.182)

0.817
(0.184)

1000 Algorithm A 0.990
(0.099)

0.990
(0.058)

0.986
(0.058)

0.986
(0.051)

ACKR(2016) 0.989
(0.104)

0.919
(0.171)

0.854
(0.205)

0.807
(0.196)
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Table B.3: NBAR(1) model: Prediction intervals with 90% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α T Method h

1 5 10 20

0.6 200 Algorithm A 0.791
(0.407)

0.781
(0.225)

0.785
(0.167)

0.785
(0.120)

ACKR(2016) 0.791
(0.407)

0.714
(0.245)

0.708
(0.185)

0.702
(0.133)

500 Algorithm A 0.792
(0.406)

0.787
(0.217)

0.793
(0.163)

0.792
(0.118)

ACKR(2016) 0.794
(0.404)

0.727
(0.235)

0.719
(0.173)

0.709
(0.128)

1000 Algorithm A 0.803
(0.398)

0.803
(0.214)

0.804
(0.152)

0.796
(0.114)

ACKR(2016) 0.801
(0.399)

0.736
(0.230)

0.723
(0.169)

0.708
(0.126)

0.7 200 Algorithm A 0.754
(0.431)

0.753
(0.254)

0.752
(0.191)

0.748
(0.143)

ACKR(2016) 0.752
(0.432)

0.660
(0.269)

0.631
(0.206)

0.610
(0.156)

500 Algorithm A 0.757
(0.429)

0.749
(0.256)

0.755
(0.187)

0.756
(0.137)

ACKR(2016) 0.761
(0.426)

0.663
(0.273)

0.638
(0.201)

0.621
(0.149)

1000 Algorithm A 0.752
(0.432)

0.757
(0.240)

0.756
(0.186)

0.752
(0.132)

ACKR(2016) 0.756
(0.429)

0.662
(0.264)

0.638
(0.203)

0.617
(0.145)

0.8 200 Algorithm A 0.710
(0.454)

0.664
(0.307)

0.656
(0.254)

0.654
(0.210)

ACKR(2016) 0.736
(0.441)

0.570
(0.297)

0.521
(0.237)

0.495
(0.189)

500 Algorithm A 0.640
(0.480)

0.633
(0.311)

0.639
(0.265)

0.643
(0.228)

ACKR(2016) 0.694
(0.461)

0.566
(0.299)

0.529
(0.247)

0.511
(0.207)

1000 Algorithm A 0.624
(0.484)

0.608
(0.347)

0.608
(0.302)

0.610
(0.269)

ACKR(2016) 0.736
(0.441)

0.603
(0.313)

0.566
(0.269)

0.544
(0.229)
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Table B.4: NBAR(1) model: Prediction intervals with 99% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α T Method h

1 5 10 20

0.6 200 Algorithm A 0.932
(0.252)

0.938
(0.137)

0.942
(0.098)

0.943
(0.069)

ACKR(2016) 0.933
(0.250)

0.895
(0.173)

0.889
(0.131)

0.886
(0.095)

500 Algorithm A 0.935
(0.247)

0.940
(0.125)

0.946
(0.091)

0.947
(0.068)

ACKR(2016) 0.933
(0.250)

0.893
(0.168)

0.894
(0.125)

0.893
(0.095)

1000 Algorithm A 0.961
(0.194)

0.953
(0.117)

0.953
(0.084)

0.949
(0.066)

ACKR(2016) 0.959
(0.198)

0.914
(0.148)

0.907
(0.115)

0.898
(0.089)

0.7 200 Algorithm A 0.916
(0.277)

0.922
(0.162)

0.922
(0.123)

0.921
(0.093)

ACKR(2016) 0.913
(0.282)

0.853
(0.217)

0.837
(0.171)

0.823
(0.131)

500 Algorithm A 0.932
(0.252)

0.930
(0.146)

0.928
(0.115)

0.928
(0.092)

ACKR(2016) 0.930
(0.255)

0.854
(0.206)

0.838
(0.165)

0.831
(0.125)

1000 Algorithm A 0.924
(0.265)

0.925
(0.154)

0.924
(0.124)

0.923
(0.090)

ACKR(2016) 0.919
(0.273)

0.858
(0.196)

0.839
(0.166)

0.825
(0.121)

0.8 200 Algorithm A 0.856
(0.351)

0.844
(0.260)

0.846
(0.225)

0.848
(0.199)

ACKR(2016) 0.882
(0.323)

0.764
(0.271)

0.723
(0.230)

0.697
(0.185)

500 Algorithm A 0.823
(0.382)

0.826
(0.282)

0.830
(0.253)

0.831
(0.230)

ACKR(2016) 0.873
(0.333)

0.763
(0.267)

0.728
(0.230)

0.707
(0.186)

1000 Algorithm A 0.772
(0.420)

0.782
(0.336)

0.786
(0.312)

0.785
(0.299)

ACKR(2016) 0.877
(0.328)

0.779
(0.266)

0.745
(0.230)

0.726
(0.193)

70



Table B.5: PAR(1,1) model: Prediction intervals with 90% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α + β T Method h

1 5 10 20

0.2 + 0.6 200 Algorithm A 0.873
(0.333)

0.900
(0.145)

0.907
(0.102)

0.912
(0.073)

ACKR(2016) 0.884
(0.320)

0.897
(0.148)

0.901
(0.106)

0.902
(0.077)

500 Algorithm A 0.917
(0.276)

0.914
(0.128)

0.917
(0.091)

0.915
(0.069)

ACKR(2016) 0.921
(0.270)

0.908
(0.133)

0.909
(0.094)

0.904
(0.074)

1000 Algorithm A 0.905
(0.293)

0.915
(0.127)

0.916
(0.094)

0.917
(0.073)

ACKR(2016) 0.902
(0.297)

0.907
(0.134)

0.903
(0.101)

0.903
(0.078)

0.2 + 0.7 200 Algorithm A 0.860
(0.347)

0.884
(0.158)

0.892
(0.117)

0.896
(0.085)

ACKR(2016) 0.865
(0.342)

0.876
(0.162)

0.879
(0.122)

0.878
(0.092)

500 Algorithm A 0.883
(0.321)

0.901
(0.152)

0.897
(0.112)

0.903
(0.081)

ACKR(2016) 0.889
(0.314)

0.896
(0.153)

0.883
(0.118)

0.883
(0.088)

1000 Algorithm A 0.896
(0.305)

0.892
(0.150)

0.898
(0.112)

0.905
(0.079)

ACKR(2016) 0.895
(0.307)

0.884
(0.155)

0.881
(0.119)

0.880
(0.089)
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Table B.6: PAR(1,1) model: Prediction intervals with 95% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α + β T Method h

1 5 10 20

0.2 + 0.6 200 Algorithm A 0.948
(0.222)

0.954
(0.100)

0.956
(0.071)

0.957
(0.052)

ACKR(2016) 0.949
(0.220)

0.951
(0.101)

0.949
(0.075)

0.949
(0.056)

500 Algorithm A 0.959
(0.198)

0.957
(0.097)

0.958
(0.069)

0.957
(0.051)

ACKR(2016) 0.954
(0.209)

0.950
(0.100)

0.951
(0.073)

0.948
(0.057)

1000 Algorithm A 0.956
(0.205)

0.960
(0.089)

0.960
(0.064)

0.961
(0.048)

ACKR(2016) 0.955
(0.207)

0.956
(0.094)

0.956
(0.068)

0.952
(0.053)

0.2 + 0.7 200 Algorithm A 0.925
(0.263)

0.942
(0.117)

0.945
(0.084)

0.947
(0.062)

ACKR(2016) 0.923
(0.267)

0.937
(0.121)

0.935
(0.093)

0.932
(0.071)

500 Algorithm A 0.939
(0.239)

0.951
(0.101)

0.948
(0.076)

0.952
(0.055)

ACKR(2016) 0.940
(0.237)

0.944
(0.112)

0.936
(0.087)

0.936
(0.066)

1000 Algorithm A 0.940
(0.237)

0.943
(0.109)

0.949
(0.078)

0.953
(0.054)

ACKR(2016) 0.941
(0.236)

0.939
(0.114)

0.938
(0.087)

0.937
(0.064)
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Table B.7: PAR(1,1) model: Prediction intervals with 99% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α + β T Method h

1 5 10 20

0.2 + 0.6 200 Algorithm A 0.985
(0.122)

0.989
(0.047)

0.991
(0.030)

0.992
(0.022)

ACKR(2016) 0.982
(0.133)

0.986
(0.056)

0.988
(0.037)

0.989
(0.026)

500 Algorithm A 0.989
(0.104)

0.991
(0.042)

0.992
(0.028)

0.991
(0.022)

ACKR(2016) 0.991
(0.094)

0.989
(0.046)

0.990
(0.032)

0.989
(0.025)

1000 Algorithm A 0.991
(0.094)

0.992
(0.042)

0.993
(0.028)

0.992
(0.020)

ACKR(2016) 0.989
(0.104)

0.989
(0.049)

0.990
(0.033)

0.990
(0.023)

0.2 + 0.7 200 Algorithm A 0.983
(0.129)

0.988
(0.054)

0.988
(0.037)

0.989
(0.029)

ACKR(2016) 0.989
(0.104)

0.986
(0.059)

0.984
(0.046)

0.983
(0.036)

500 Algorithm A 0.981
(0.137)

0.987
(0.051)

0.988
(0.036)

0.990
(0.024)

ACKR(2016) 0.985
(0.122)

0.986
(0.055)

0.985
(0.043)

0.985
(0.030)

1000 Algorithm A 0.990
(0.099)

0.988
(0.048)

0.989
(0.035)

0.991
(0.023)

ACKR(2016) 0.992
(0.089)

0.984
(0.056)

0.985
(0.042)

0.985
(0.030)

Table B.8: NBAR(1,1) model: Prediction intervals with 90% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α + β T Method h

1 5 10 20

0.2 + 0.6 200 Algorithm A 0.685
(0.465)

0.670
(0.222)

0.672
(0.160)

0.677
(0.117)

ACKR(2016) 0.685
(0.465)

0.663
(0.222)

0.658
(0.160)

0.659
(0.117)

500 Algorithm A 0.646
(0.478)

0.663
(0.218)

0.675
(0.159)

0.672
(0.115)

ACKR(2016) 0.653
(0.476)

0.652
(0.223)

0.660
(0.163)

0.654
(0.118)

1000 Algorithm A 0.690
(0.462)

0.672
(0.219)

0.681
(0.157)

0.682
(0.113)

ACKR(2016) 0.694
(0.461)

0.663
(0.218)

0.665
(0.159)

0.662
(0.115)

73



Table B.9: NBAR(1,1) model: Prediction intervals with 95% coverage based on Algorithm
A and ACKR(2016). The results for Algorithm A are based on B = 1000 simulations.
Standard errors are given in parenthesis and based on N = 1000.

α + β T Method h

1 5 10 20

0.2 + 0.6 200 Algorithm A 0.773
(0.419)

0.756
(0.204)

0.758
(0.148)

0.760
(0.109)

ACKR(2016) 0.776
(0.417)

0.745
(0.206)

0.742
(0.151)

0.743
(0.111)

500 Algorithm A 0.737
(0.440)

0.750
(0.203)

0.759
(0.149)

0.758
(0.107)

ACKR(2016) 0.732
(0.443)

0.737
(0.207)

0.743
(0.153)

0.738
(0.110)

1000 Algorithm A 0.762
(0.426)

0.747
(0.206)

0.759
(0.144)

0.763
(0.105)

ACKR(2016) 0.766
(0.423)

0.735
(0.209)

0.742
(0.148)

0.743
(0.108)

Table B.10: NBAR(1,1) model: Prediction intervals with 99% coverage based on Al-
gorithm A and ACKR(2016). The results for Algorithm A are based on B = 1000
simulations. Standard errors are given in parenthesis and based on N = 1000.

α + β T Method h

1 5 10 20

0.2 + 0.6 200 Algorithm A 0.891
(0.312)

0.880
(0.153)

0.878
(0.116)

0.878
(0.085)

ACKR(2016) 0.886
(0.318)

0.864
(0.164)

0.861
(0.122)

0.860
(0.091)

500 Algorithm A 0.870
(0.336)

0.875
(0.154)

0.878
(0.114)

0.878
(0.082)

ACKR(2016) 0.871
(0.335)

0.860
(0.163)

0.862
(0.119)

0.859
(0.086)

1000 Algorithm A 0.874
(0.332)

0.867
(0.167)

0.878
(0.115)

0.881
(0.081)

ACKR(2016) 0.871
(0.335)

0.855
(0.173)

0.862
(0.121)

0.862
(0.085)
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Estimation Uncertainty in GARCH Option Prices*

Philipp Christian Kless,

Department of Economics,

University of Copenhagen, Denmark.

Abstract

We investigate the impact of estimation uncertainty on GARCH option prices

via two novel bootstrap algorithms. First, we design a bootstrap algorithm that

allows us to assess the impact of parameter uncertainty on GARCH option prices.

For this bootstrap, we assume that the conditional distribution of the innovations is

normal under the equivalent martingale measure, Q. Next, we introduce estimation

uncertainty by varying the GARCH model parameters in each bootstrap repetition

while we keep the innovations �xed. In each bootstrap repetition, we vary the model

parameters by drawing them from the asymptotic distribution of the proposed esti-

mator. This design allows us to make sure that the only variation in the bootstrap

stems from parameter uncertainty. By means of simulations, we �nd that the im-

pact of estimation uncertainty is higher for options at the money. In addition, we

introduce a second bootstrap which is more general. The second bootstrap allows

for conditional distributions under Q with more skewness and heavier tails than the

normal distribution. In an empirical application of the second bootstrap, we show

that the uncertainty contained in option prices leads to variation in the metric used

to evaluate the pricing performance of competing models. As a result, we �nd that

no single GARCH speci�cation dominates in terms of average relative pricing error

when taking parameter uncertainty into account.

Keywords: GARCH; Option pricing; Bootstrap

*I thank Anders Rahbek and Rasmus Søndergaard Pedersen for helpful comments and suggestions.
Moreover, I thank Ke Zhu for providing his MATLAB code.
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1 Introduction

We consider option pricing under a general GARCH framework. In this setup, option

prices are obtained via Monte Carlo simulations since the option prices have no closed

form solution in general. Moreover, option prices depend on the unknown GARCH model

parameters which are typically recovered from historical time series data using quasi

maximum likelihood estimation (QMLE). As a result of relying on estimated parameters,

instead of the true unknown model parameters, estimated option prices are subject to

estimation uncertainty.

In this paper, we contribute to the literature by making this uncertainty explicit with

the help of two bootstrap methods. At �rst, we design a bootstrap algorithm where

we simulate a large number of option prices where the only source of variation stems

from variation in the used model parameters. We achieve this by �xing the innovation

path in each bootstrap repetition. More precisely, we �rst construct the risk-neutral

Esscher measure under Q such that the discounted asset price is a martingale. Then,

we use Monte Carlo methods to simulate one option price. In a subsequent bootstrap

repetition, we simulate another option price via Monte Carlo methods where we use the

same innovations from before and only change the parameter estimates. For our bootstrap,

we generate new model parameters by drawing them from their asymptotic distribution

with an estimated covariance matrix. That is, we assume that parameter uncertainty

is re�ected by the covariance matrix of the parameter estimates and their asymptotic

distribution. This idea has been previously used in Bams, Lehnert, and Wol� (2005)

to construct prediction intervals for Value-at-Risk models; see also Blasques, Koopman,

Lasak, and Lucas (2015).

We implement our �rst bootstrap method and quantify the amount of estimation un-

certainty in option prices. For this experiment, we assume that the DGP is a GARCH-

in-mean (GIM) or AR(1)-GARCH model with normal innovations under Q. The model

parameters and their covariance matrix are estimated on real S&P500 data using QMLE.

For both models, we �nd that estimation uncertainty is larger for option prices at the

money.

For our second bootstrap method, we generalize our �rst method. That is, we let the

innovations paths di�er in each bootstrap repetition. Making this change allows us to

extend our bootstrap also to GARCH models where the conditional distribution of the

innovations under Q is more skewed and has heavier tails than the normal distribution.

For instance, we later assume that the conditional distribution of the innovations is shift

negative gamma. This type of distribution is attractive because it is skewed and has

heavier tails than a normal distribution which leads to an improved pricing performance;

cf. Siu, Howell, and Yang (2004), and Zhu and Ling (2015).

In an empirical illustration, we implement our second bootstrap to option prices written
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on the S&P500. We implement di�erent GARCH models with various speci�cation for

the conditional distribution of the innovations. We demonstrate that option prices are

subject to parameter uncertainty and show therefore high variation. In addition, we show

that this variation also makes the metric used to evaluate pricing performance subject to

estimation uncertainty. As a consequence, no single GARCH model dominates all other

models when we take parameter uncertainty into account.

In terms of related literature, we note that discrete-time GARCH option pricing models

have become popular in recent years. One reason for this increased popularity is that

GARCH models are easily estimated compared to continuous-time models. In most of

the studies using GARCH models for option pricing, the model parameters are recovered

from historical time series data using QMLE; see among others Duan and Zhang (2001),

Badescu and Kulperger (2008), and, Zhu and Ling (2015). However, under the GARCH

framework, the markets are incomplete and an in�nite number of risk neutral measures

exists. In the following, we use the Esscher transform to �nd a risk-neutral measure

which allows us to price options. This concept was �rst used by Siu, Howell, and Yang

(2004) in the context of option pricing. One advantage of this measure is that it allows

for option pricing under GARCH models with non-normal innovations. In addition, this

transform has shown a good performance in empirical applications; cf. Badescu and

Kulperger (2008), and Chorro, Guégan, and Ielpo (2015), and Zhu and Ling (2015). In

terms of the impact of parameter estimation on option prices, the literature is sparser.

For instance, Phillips and Yu (2005) show that estimation bias is transmitted into bond

option prices. As a bias correction method, they propose a jackknife estimator which

mitigated the bias due to parameter estimation; see also Dotsis and Markellos (2007).

Similar studies exist for Value-at-Risk (VaR) models where Bams, Lehnert, and Wol�

(2005) show how to adjust VaR calculations to account for parameter uncertainty; see

also Pascual, Romo, and Ruiz (2006). Moreover, Blasques, Koopman, Lasak, and Lucas

(2015) follow a comparable approach and demonstrate how to adapt in- and out-sample

con�dence bands for observation driven models to parameter uncertainty. To the best of

our knowledge, estimation uncertainty has not been studied for GARCH option prices.

This article is organized as follows: In Section 2, we introduce a risk-neutral Esscher

measure under Q. Section 3 provides details about the used GARCH processes under

Q. Section 4 shows how to obtain option prices via Monte Carlo methods. Section

5 discusses parameter estimation and its related uncertainty. Section 6 introduces our

�rst bootstrap to quantify estimation uncertainty while Section 7 quanti�es numerically

estimation uncertainty. Section 8 gives details about our generalized bootstrap while

Section 9 contains an empirical application. Section 10 concludes the paper. Appendix A

contains additional derivations. Finally, Appendix B provides additional simulation along

with additional empirical results.
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2 Conditional Esscher Transforms for GARCH models

Similar to Badescu and Kulperger (2008), we consider a discrete-time economy with the

time index T = {t|t = 0, . . . , τ} of trading dates consisting of one risk-free asset and one

risky stock. Let (Σ,P,F) be a complete �ltered probability space where P is the historical

probability measure. Denote by Ft a sequence of increasing σ-�elds of F representing all

market information up to time t; we assume that F0 = {∅,Σ} and Fτ = F .
Let (S0, S) = (S0

t , St)t≥0 be the price process of the risk-free asset and the risky stock;

respectively. In this discrete-time setting, we assume that the stock price process St is

adapted to the �ltration F . The risk-free asset price process S0
t is deterministic with S0

t =

e−rt, where r is a constant continuously compounded risk-free interest rate. Moreover, we

write yt = log St
St−1

for the continuously compounded return process following a GARCH

process under the historical probability measure P. That is,

yt = mt + zt
√
ht, (2.1)

where zt|Ft−1 follows an arbitrary distribution D(0, 1) with mean zero and variance one.

For the conditional variance, we assume that ht ∈ Ft−1. Moreover, mt ∈ Ft−1 is the

conditional mean which may depend on ht and some other unknown parameters such as

the constant unit risk premium ν, for instance. The model in eq. (2.1) includes a large

class of GARCH models; cf. Section 3.

We impose a no-arbitrage condition by assuming that the stock price admits an equiv-

alent martingale measure (EMM). A probability measure Q is an EMM wrt P if

EQ[e−rtSt|Ft−1] = e−r(t−1)St−1.

Remark 2.1 In the option pricing literature, it is well known that the market is incom-

plete in our discrete time setting; see Jacod and Shiryaev (1998). Therefore there may be

an in�nite number of risk neutral measures to price contingent claims.

In the following, we use the approach of Gerber and Shiu (1994) to get a risk-neutral

measure via the conditional Esscher transform; see also Zhu and Ling (2015), and Chapter

3 in Chorro, Guégan, and Ielpo (2015). For this approach, we assume for the conditional

moment generating function of yt, given in eq. (2.1), wrt Ft−1 under P that

MP
yt|Ft−1

(z) = EP[ezyt |Ft−1] =

∫ ∞
−∞

ezxdF

(
x−mt√

ht

)
<∞ almost surely, (2.2)

where z ∈ R, for all t ≥ 0. Moreover, letMQ

yt|Ft−1
(z) be the conditional moment generating
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function of yt wrt Ft−1 under the EMM, Q. Then, Zhu and Ling (2015) show that

MQ

yt|Ft−1
(z) =

MP
yt|Ft−1

(z + δt)

MP
yt|Ft−1

(δt)
, (2.3)

where δt ∈ Ft−1. Moreover, Zhu and Ling (2015) show that from eq. (2.3) it follows that

EQ[e−rtSt|Ft−1] = e−r(t−1)St−1M
Q

yt|Ft−1
(1).

Hence, {e−rtSt : t = 0, . . .} is a martingale under Q i� e−rMQ

yt|Ft−1
(1) = 1 such that

MP
yt|Ft−1

(1 + δt)

MP
yt|Ft−1

(δt)
= er for all t. (2.4)

If there exists a unique solution to eq. (2.4) δt, the martingale measure Q, associated

with this δt, is the EMM; cf. Zhu and Ling (2015).

Now, a fair price of a European call option with strike, K, and maturity, τ , at current

time t, denoted Vt, is

Vt = EQ[e−r(τ−t) max(Sτ −K, 0)|Ft−1], (2.5)

with Sτ = St exp
(∑τ

i=t+1 yi
)
. Note that Vt has no closed form in general. We rely on

Monte Carlo simulation to approximate Vt where we simulate the dynamics of {yi}τi=t+1

under Q; see also Section 4. Hence, we need to use the conditional moment generating

function under Q to obtain Sτ .

The are several economic justi�cations for the choice of the Esscher transform for deriva-

tive pricing. For instance, Gerber and Shiu (1996) show that this transform can be mo-

tivated if the representative agent is an expected utility maximizer with power utility

functions. Moreover, Badescu and Kulperger (2008) demonstrate that the Esscher trans-

form is justi�ed by a log-linear pricing kernel as a function of yt. Another advantage is

that the Esscher transform can be used as long as the moment generating function of

the innovations exists. Finally, Badescu, Elliott, Kulperger, Miettinen, and Siu (2011)

demonstrate that the Esscher transform has a good empirical performance when compared

to other risk-neutral measures.

3 GARCH processes under Q

In this section, we discuss di�erent speci�cations of mt, ht, and zt|Ft−1 in eq. (2.1) and

derive their properties underQ. In general, we study two choices formt. First, we consider

the case where mt = r + ν
√
ht which is the usual GARCH-in-mean (GIM) speci�cation;

see Badescu and Kulperger (2008) for instance. Second, we look at the case where mt
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follows an AR(p) model; cf. Duan and Zhang (2001), and Zhu and Ling (2015). For

both cases we specify the conditional variance, ht, as a standard linear GARCH model as

introduced in Bollerslev (1986). We also consider the NGARCH model of Engle and Ng

(1993) which captures the leverage e�ect in volatility. In addition, the practical usefulness

of the NGARCH model has been demonstrated in the literature; cf. Zhu and Ling (2015).

Finally, we consider three choices for the conditional distribution of the innovations under

Q: zt is conditionally (i) normal, (ii) shift negative gamma (SNG), and (iii) shift negative

inverse Gaussian (SNIG). The SNG and SNIG distribution are popular choices in the

literature because they allow for more kurtosis and skewness than the normal distribution

and have shown good performance in practice; cf. Siu, Howell, and Yang (2004) and

Christo�ersen, Heston, and Jacobs (2006).

The following results can be derived using the approach outlined in the previous section;

see also Zhu and Ling (2015). For more details see also Appendix A.

3.1 GIM models

First, let mt = r + ν
√
ht−1 with ht being a standard GARCH model where zt|Ft−1 ∼

N(0, 1). This model choice serves as a benchmark for the rest of the paper. Next we

state the dynamics under Q for the NGARCH model with zt|Ft−1 ∼ N(0, 1), SNG(a)

and SNIG(d), where a and d parameterize the conditional skewness and kurtosis of the

innovations; see also Zhu and Ling (2015).

GARCH

Under P, assume for the model in eq. (2.1) that

yt = r + ν
√
ht + εt, εt = zt

√
ht,

ht = ω + αε2t−1 + βht−1, (3.1)

where zt|Ft−1 ∼ N(0, 1), r is the risk-free rate, ν is the unit risk premium, and ω > 0,

and α, β ≥ 0.

Using the results from Section 2, we �nd that under Q,

yt = r − ht/2 + ε∗t , ε
∗
t |Ft−1 ∼ N(0, ht),

ht = ω + α

(
ε∗t−1 −

ht−1

2
− ν
√
ht−1

)2

+ βht−1. (3.2)

These dynamics were also obtained in the seminal paper of Duan (1995).
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NGARCH

Under P, we have for the model in eq. (2.1) that

yt = r + ν
√
ht + εt, εt = zt

√
ht,

ht = ω + α
(
εt−1 − γ

√
ht−1

)2

+ βht−1, (3.3)

where γ ≥ 0, and zt|Ft−1 ∼ N(0, 1), SNG(a), or SNIG(d).

With the approach from Section 2, we get under Q if zt|Ft−1 ∼ N(0, 1) that

yt = r + ν
√
ht + ε∗t , ε

∗
t |Ft−1 ∼ N(0, ht),

ht = ω + α

(
ε∗t−1 −

ht−1

2
− (γ + ν)

√
ht−1

)2

+ βht−1. (3.4)

Using the results from Section 2, we obtain under Q if zt|Ft−1 ∼ SNG(a) that

yt = r + ν
√
ht + ε∗t ,

ε∗t =
√
aht + ξ∗t , ξ

∗
t ∼ −G (a, bt) ,

ht = ω + α
(
ε∗t−1 − γ

√
ht−1

)2

+ βht−1, (3.5)

where G(a, b) denotes a Gamma distribution with shape parameter a and scale parameter

b. Moreover,

bt =

[
exp

(
ν
√
ht +

√
aht

a

)
− 1

]−1

.

Finally, if zt|Ft−1 ∼ SNIG(d) we get under Q that

yt = r + ν
√
ht + ε∗t ,

ε∗t =
√
dht + c−1

t

√
ht
d
ξ∗t , ξ

∗
t ∼ −IG(d

√
ct),

ht = ω + α
(
ε∗t−1 − γ

√
ht−1

)2

+ βht−1, (3.6)

where IG (d
√
c) stands for a inverse Gaussian distribution with mean parameter d

√
c. In

addition,

ct =
1

4

(
−ν
√
ht −

√
dht

2d
− 2

√
dht

−ν
√
ht −

√
dht

)2

.
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3.2 AR(p) models

As an alternative, we consider a class of models where we assume that mt = φ0 +∑p
i=1 φiyt−i for p > 1. We choose ht as a standard linear GARCH model with zt|Ft−1 ∼

N(0, 1). Moreover, we specify ht as NGARCH model and take zt|Ft−1 ∼ N(0, 1), SNG(a),

or SNIG(d); see also Zhu and Ling (2015).

GARCH

Under P, assume for the model in eq. (2.1) that

yt = φ0 +

p∑
i=1

φiyt−i + εt, εt = zt
√
ht,

ht = ω + αε2t−1 + βht−1, (3.7)

where zt|Ft−1 ∼ N(0, 1).

Using the results from Section 2, we �nd that under Q,

yt = r − ht/2 + ε∗t , ε
∗
t |Ft−1 ∼ N(0, ht),

ht = ω + αz∗
2

t−1 + βht−1, (3.8)

where z∗t = ε∗t + r − ht
2
− φ0 −

∑p
i=1 φiyt−i.

NGARCH

Under P, assume for the model in eq. (2.1) that

yt = φ0 +

p∑
i=1

φiyt−i + εt, εt = zt
√
ht,

ht = ω + α
(
εt−1 − γ

√
ht−1

)2

+ βht−1, (3.9)

where zt|Ft−1 ∼ N(0, 1), SNG(a), or SNIG(d).

If zt|Ft−1 ∼ N(0, 1), we obtain under Q that

yt = r − ht
2

+ ε∗t , ε
∗
t |Ft−1 ∼ N(0, ht),

ht = ω + α
(
z∗t−1 − γ

√
ht−1

)2

+ βht−1. (3.10)
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Next, if zt|Ft−1 ∼ SNG(a), the dynamics under Q are

yt = φ0 +

p∑
i=1

φiyt−i + ε∗t ,

ε∗t =
√
aht + ξ∗t , ξ

∗
t ∼ −G

(
a, b̄t

)
,

ht = ω + α
(
ε∗t−1 − γ

√
ht−1

)2

+ βht−1, (3.11)

where

b̄t =

[
exp

(
µ̄∗t − r +

√
aht

a

)
− 1

]−1

with µ̄∗t = φ0 +
∑p

i=1 φiyt−i.

Finally, if zt|Ft−1 ∼ SNIG(a), then under Q it follows that

yt = φ0 +

p∑
i=1

φiyt−i + ε∗t ,

ε∗t =
√
dht +

1

c̄t

√
ht
d
ξ∗t , ξ

∗
t ∼ −IG

(
d
√
c̄t
)
,

ht = ω + α
(
ε∗t−1 − γ

√
ht−1

)2

+ βht−1, (3.12)

where

c̄t =
1

4

(
r − µ̄∗t −

√
dht

2d
− 2

√
dht

r − µ̄∗t −
√
dht

)2

.

Given the dynamics under Q, we next turn how to simulate the return series under Q

and obtain a simulation based option prices.

4 Simulation based GARCH option prices

In this section, we discuss a simulation based procedure to price Vt. More precisely, the

option price, Vt, in eq. (2.5) has no closed form in general. Hence, we rely on Monte

Carlo simulations to approximate Vt at current time t given some parameter estimates.

We follow Zhu and Ling (2015) and use the following algorithm:

Pricing Algorithm:

1. Obtain Sτ = St exp
(∑τ

i=t+1 yi
)
, where {yi}τi=t+1 is simulated under Q according to

eq. (3.2), (3.4), (3.5), (3.6), (3.8), (3.10), (3.11), and (3.12); respectively.
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2. Compute

vt = e−r(τ−t) max{Sτ −K, 0}.

3. Repeat Step 1 and 2 N times to get a sequence
{
v

(n)
t

}N
n=1

and obtain Vt by Ṽt =

1
N

∑N
n=1 v

(n)
t .

Note that in our simulations we rely on empirical martingale simulation (EMS) as a

variance reduction tool; see Duan and Simonato (1998). The EMS approach is based on

the observation that option prices simulated using Monte Carlo methods to approximate

expectations under one equivalent martingale measure (EMM) often violate arbitrage

conditions. To overcome the preceding problem and to increase simulation accuracy, the

EMS method adjusts Monte Carlo simulations such that the call-put parity is enforced.

That is, they replace the n-th path of S
(n)
τ by

Ŝ(n)
τ =

S
(n)
τ

1
N

∑N
n=1 S

(n)
τ

Ste
r(τ−t). (4.1)

Hence, the modi�ed price estimates changes to

V̂t =
er(τ−t)

N

N∑
i=1

max
{
Ŝ(n)
τ −K, 0

}
. (4.2)

Asymptotic properties of V̂t have been studied in Duan and Simonato (1998). The EMS

approach is widely applied to improve the numerical e�ciency of Monte Carlo simulations

in GARCH option pricing models; cf. Barone-Adesi, Engle, and Mancini (2008) and

Chorro, Guégan, and Ielpo (2012).

5 Parameter estimation and estimation uncertainty

In the previous section, we discussed how to obtain simulation based option prices for

the di�erent GARCH speci�cations. However, to implement this Monte Carlo approach,

we need to recover the unknown parameters from historical time series data. We do this

by using a two-step approach. More precisely, in a �rst step, we estimate the GARCH

model parameters using QMLE where we assume that the innovations are Gaussian. And

in a second step, we estimate the distributional parameters a, and d by the method of

moments approach. This two step approach is common in the literature and performs

well; see Chapter 4 in Chorro, Guégan, and Ielpo (2015) for a large empirical application.
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To estimate the model parameters, we assume as before that under P,

yt = mt(θ) + εt(θ),

εt(θ) = zt
√
ht(θ), t = 1, . . . , T, (5.1)

where zt ∼ N(0, 1), T < τ , and θ contains the GARCH model parameters to be estimated.

Let θ0 denote the true, data-generating value.

Then, the conditional Gaussian log-likelihood function of θ in terms of the observations,

given some initial values ε0 and h0, takes following form

LT (θ) = −
T∑
t=1

lt(θ), lt(θ) =
ε2t (θ)

ht(θ)
+ log ht(θ), (5.2)

where we omitted any constant terms. The quasi maximum likelihood estimator is then

computed as

θ̂ = arg max
θ∈Θ

LT (θ), (5.3)

where Θ denotes the parameter space. Under certain assumptions, it can be shown that

θ̂ is asymptotically normal distributed, that is,

√
T
(
θ̂ − θ0

)
→d N (0,Σ) , (5.4)

where Σ is some positive de�nite matrix, as T → ∞. For instance, Francq and Zakoïan

(2004) provide conditions for estimators of ARMA-GARCH to be asymptotically normal

while Conrad and Mammen (2016) state conditions for the asymptotic normality of esti-

mators in GIM models. We conjecture that the same result holds for the estimators of

the NGARCH model.

Remark 5.1 Observe that Σ is estimated by

Σ̂ = Ĵ−1Î Ĵ−1, (5.5)

where Î = T−1
∑T

t=1(∂lt(θ̂)/∂θ)(∂lt(θ̂)/∂θ
′) and Ĵ = T−1

∑T
t=1 ∂

2lt(θ̂)/∂θ∂θ
′.

In the second step, we estimate the distributional parameters a and d by methods

of moments. That is, we exploit that E (z3
t |Ft−1) = −2√

a
if zt|Ft−1 ∼ SNG(a) and

E (z3
t |Ft−1) = −3√

d
if zt|Ft−1 ∼ SNIG(d) such that

â =

(
2
∑
h

3/2
t (θ̂)∑
ε3t (θ̂)

)2

and d̂ =

(
3
∑
h

3/2
t (θ̂)∑
ε3t (θ̂)

)2

, (5.6)
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see Zhu and Ling (2015), and Siu, Howell, and Yang (2004),

Naturally, the estimation of the model parameters introduces estimation uncertainty

in the simulated GARCH option prices. In this paper, we follow Blasques, Koopman,

Lasak, and Lucas (2015), and Bams, Lehnert, and Wol� (2005) to approximate parame-

ter uncertainty by the covariance matrix of the parameter estimates and its asymptotic

distribution. That is, we use eq. (5.4) to generate a new set of GARCH model parameters,

θ∗ as follows:

θ∗ ∼ N

(
θ̂,

1

T
Σ̂

)
, (5.7)

where θ̂ is estimated by QMLE. In addition, we obtain a new set of distributional param-

eters, a∗, and b∗ through

a∗ =

(
2
∑
h

3/2
t (θ∗)∑
ε3t (θ

∗)

)2

and d∗ =

(
3
∑
h

3/2
t (θ∗)∑
ε3t (θ

∗)

)2

. (5.8)

Remark 5.2 As an alternative to using eq. (5.8), one could consider to estimate the

standard errors of â and b̂ such that we generate a∗ by drawing from N
(
â, 1

T
σ̂a
)
; respec-

tively d∗ by drawing from N
(
d̂, 1

T
σ̂d

)
.

6 Bootstrap algorithm to quantify estimation uncertainty

In this section, we follow Bams, Lehnert, and Wol� (2005), and Blasques, Koopman,

Lasak, and Lucas (2015) to model parameter uncertainty. That is, we outline a bootstrap

algorithm that allows us to assess the impact of parameter uncertainty on Ṽt. More pre-

cisely, we simulate a large number of Ṽt via the bootstrap by repeating Pricing Algorithm

1 many times. For this bootstrap, we �x the innovations under Q and only allow for

variation in the model parameters. That is, for each bootstrap repetition, we generate

a new set of parameters by θ∗ ∼ N(θ̂, 1
T

Σ̂). we can only �x the innovations under Q if

we assume that the innovations are Gaussian. In the other two cases, the distributional

parameters bt, and ct; respectively b̄t, and c̄t vary over time. Hence, we cannot eliminate

innovation uncertainty by �xing the innovations in each bootstrap repetition. One way

to minimize innovation uncertainty in the non-Gaussian cases is to use a large number of

Monte Carlo repetitions. However, for the sole purpose of illustrating parameter uncer-

tainty, we argue that it is better to use a Gaussian distribution such that we can exclude

innovation uncertainty completely.

Bootstrap Algorithm 1:

1. Obtain θ̂ as eq. (5.3) and Σ̂ as in eq. (5.5) using the historical data set {yt}Tt=1.
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2. Draw
{
z

(n)
t

}τ
t=T+1

i.i.d. from N(0, 1) for n = 1, . . . , N .

3. Draw θ∗ ∼ N(θ̂, 1
T

Σ̂). If the parameter constraints are violated, then draw a new

set of θ∗.

4. Obtain S
(n)
τ = ST exp

(∑τ
t=T+1 y

(n)
t

)
, where

{
y

(n)
t

}τ
t=T+1

is simulated under Q ac-

cording to eq. (3.2), (3.4), or (3.8), using
{
z

(n)
t

}τ
t=T+1

, and θ∗.

5. Compute

vT = e−r(τ−T ) max{Sτ −K, 0},

where Sτ from Step 4 is inserted.

6. Repeat Step 4 and 5 N times to get a sequence
{
v

(n)
T

}N
n=1

and calculate ṼT =

1
N

∑N
n=1 v

(n)
T .

7. Repeat Step 3 to 6 B times to get a sequence
{
Ṽ
∗(b)
T

}B
b=1

.

Remark 6.1 Note that we �x the innovations {z(n)
t }τt=T+1 from Step 2 in each of the B

repetitions. This design ensures that the only variation in {Ṽ ∗(b)T }Bb=1 is due to variation

in θ∗.

Remark 6.2 Note that in Step 3 we ensure that the parameter constraints are met when

drawing new model parameters θ∗. For instance, we ensure that ω∗ > 0 such that condi-

tional variance stays strictly positive.

7 Monte Carlo experiment

Next, we conduct a Monte Carlo experiment to quantify estimation uncertainty in GARCH

option prices. That is, we simulate a large number of Ṽ ∗T via Bootstrap Algorithm 1 for

call options written on the S&P500 index. We do this for the GIM-GARCH and AR(1)-

GARCH model with Gaussian innovations; cf. eq. (3.2), and (3.8).

First, to determine the parameter values for our numerical experiment, we use QMLE

to �t the GIM-GARCH and AR(1)-GARCH model to historical daily log-return series of

the S&P500 index. Our data contains T = 1437 observations ranging from January 4,

2010 to September 7, 2015.

Second, we obtain a large number of GARCH option prices via Bootstrap Algorithm 1

where we set r = 3%, ST = 1990.20, TM := (τ − T ) ∈ {21, 45, 64, 82, 125}, N = 50, 000,

andB = 999. Finally, the strike isK ∈ {1700, 1750, 1800, 1850, 1900, 1950, 2000, 2050, 2100,

2150, 2200, 2250}. And hence the moneyness, denoted M, ranges from 0.85 to 1.13.
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Table 7.1: GIM-GARCH(1,1) parameter estimators and their robust standard errors for
S&P500 obtained via QMLE.

ν ω α β α + β

0.102 4.18× 10−6 0.1551 0.807 0.959
(0.026) (0.000) (0.025) (0.026)

Once the we simulated a series of Ṽ ∗T ,
{
V
∗(b)
T

}B
b=1

, we calculate the median, the 2.5%-

and 97.5%-quantile along with µ = 1
B

∑B
b=1 Ṽ

∗(b)
T , and σ =

√
1

B−1

∑B
b=1

(
Ṽ
∗(b)
T − µ

)2

as

summary statistics. In addition, we also state the length of this prediction interval as

∆ = 97.5%-quantile− 2.5%-quantile. The results are discussed next.

7.1 GIM-GARCH

The estimation results are reported in Table 7.1. The persistence of the model implied

by these parameters is α + β = 0.959 which is in line with what is usually found in the

empirical literature.

In Figure 7.1, we plot σ of
{
V
∗(b)
T

}B
b=1

against moneyness and time to maturity. We

make the following observations when looking at Figure 7.1. First, for a given time to

maturity, we observe that the variation in option prices, measured by σ, is bigger for

options at the money or close to being at the money.

This observation is in line with the fact that options at the money have the largest

sensitivity wrt the variance of the price of the underlying stock (vega). More precisely,

the variance is modeled as a GARCH process which is subject to estimation uncertainty.

Hence, the impact of estimation uncertainty is largest for option prices at the money.

Second, for a given moneyness, the variation in the option prices increases as the time to

maturity increases. This �nding is also intuitive since with an increasing time horizon,

the model parameters could be subject to structural change which increases parameter

uncertainty. This in turn leads to a larger variation in option prices. For instance,

standard deviation of option prices with 21 days to maturity is less than the level of

options with 45 days to maturity. Further summary statistics for
{
Ṽ
∗(b)
T

}B
b=1

are tabulated

in Table B.3 in Appendix B.

7.2 AR(1)-GARCH

Compared to the GIM-GARCH model, we introduce one additional parameter in the

conditional mean part of the return process. The AR structure in the conditional mean

is chosen to model the autocorrelation in the return process. We use the same data

and sample size as in the GIM-GARCH case to estimate the AR(1)-GARCH model. The
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Figure 7.1: Standard deviation plotted against moneyness (M) and time to maturity (TM)
for the GIM-GARCH with normal innovations.

Table 7.2: AR(1)-GARCH(1,1) parameter estimators and their robust standard errors for
S&P500 obtained via QMLE

φ0 φ1 ω α β α + β

2.762× 10−4 -0.026 4.069× 10−6 0.140 0.817 0.958
(0.000) (0.028) (0.000) (0.025) (0.026)

results are presented in Table 7.2. Compared to the previous case, the parameter estimates

of the volatility parameters remain almost unchanged. Also, the persistence of the model

is almost the same as before; α + β = 0.958.

In general, we draw the same conclusions from Figure 7.2 as in the GIM-GARCH case.

That is, for a given moneyness, the variation of the option prices is highest for at the

money options. Moreover, option prices vary more as the time to maturity increases for

a given moneyness. In general it holds that option prices with a longer maturity have

a higher variation. However, it is surprising that the AR(1)-GARCH model has not in

general a higher level of variation than the simpler GIM-GARCH model. A plausible

observation would be that the AR(1)-GARCH model has a higher level of variation since

this model has one additional parameters leading to more estimation uncertainty which

should also be re�ected in the variation of the simulated option prices. Further summary

statistics for
{
Ṽ
∗(b)
T

}B
b=1

are tabulated in Table B.4 in the Appendix B.

8 Bootstrap algorithm for GARCH option prices

In the previous two sections, we demonstrated that option prices are subject to estima-

tion uncertainty which varies with moneyness and time to maturity. To acknowledge

this uncertainty in GARCH option prices, we propose in the following another bootstrap
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Figure 7.2: Standard deviation plotted against moneyness (M) and time to maturity (TM)
for the AR(1)-GARCH(1,1) model

algorithm. For this second bootstrap, we additionally introduce variation in the innova-

tion paths in each bootstrap repetition. This modi�cation allows us to simulate a large

number of option prices for various GARCH model speci�cations where the conditional

distribution under Q is non-normal; cf. Section 3. The variation in model parameters is

again introduced by using θ∗ ∼ N
(
θ̂, 1

T
Σ̂
)
.

Bootstrap Algorithm 2:

1. Obtain θ̂ as eq. (5.3) and Σ̂ as in eq. (5.5) using the historical data set {yt}Tt=1.

2. Draw θ∗ ∼ N(θ̂, 1
T

Σ̂) and calculate a∗ when zt|Ft−1 ∼ SNG(a) as in eq. (5.8);

respectively d∗ when zt|Ft−1 ∼ SNIG(d). If the parameter constraints are violated,

then draw a new set of θ∗.

3. Obtain Sτ = ST exp
(∑τ

t=T+1 yt
)
, where {yt}τt=T+1 is simulated under Q according

to eq. (3.2), (3.4), (3.5), (3.6), (3.8), (3.10), (3.11), or (3.12), and using θ∗ in

combination with a∗ or d∗ if needed.

4. Compute

vT = e−r(τ−T ) max{Sτ −K, 0},

where Sτ from Step 3 is inserted.

5. Repeat Step 3 and 4 N times to get a sequence
{
v

(n)
T

}N
n=1

and calculate ṼT =

1
N

∑N
n=1 v

(n)
T .

6. Repeat Step 2 to 5 B times to get a sequence
{
Ṽ
∗(b)
T

}B
b=1

.
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Figure 9.1: Box plot of total AREB for all considered speci�cations. The green triangle
depicts the sample mean of the corresponding AREB while the red line is the median.
The results are based on N = 50, 000 and B = 999.

In the next section, we will see how our Bootstrap Algorithm 2 performs when applied

to real data.

9 Empirical illustration

In this section, we implement Bootstrap Algorithm 2 on a real data set to illustrate the

variation in GARCH option prices. The empirical study is performed using European

Call option data available in Schoutens (2003). We use this data set because it makes our

�ndings comparable to results in Badescu and Kulperger (2008) and Zhu and Ling (2015).

The data set contains 54 European Call options written on S&P500 stock index at the

close of the market on April 18, 2002. The closing prices on this day was S0 = 1124.47,

and the annual risk-free rate r is 1.9%. The strike prices range from $975 to $1325 while

the time to maturity is TM := τ − T ∈ {22, 46, 109, 173, 234} days. The parameters of

all pricing models are estimated using the log-return of daily closing prices of the index

from January 04, 1988 to April, 17, 2002. In total we have T = 3606 observations.

For our analysis, we follow Zhu and Ling (2015) and estimate three di�erent models:

First, we obtain estimates for the simple GIM-GARCH model which will serve as a bench-

mark. Second, we also estimate a GIM-NGARCH model. Finally, we obtain parameter

estimates for a AR(3)-NGARCH model. The estimates are available in Table B.1 in

Appendix B. In terms of misspeci�cation, we calculate the Ljung and Box test for the

residuals; respectively squared residuals; cf. Table B.2 in Appendix B. From this table,

we conclude that the AR-type model provide a good �t for the log-return series. This

is not true for the GIM-type speci�cations which cannot �t the conditional mean of the

log-return series properly.
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Table 9.1: Summary statistics of ARE for SNG innovations

Model κ TM {ARE(b)}Bb=1

µ 2.5% 97.5% ∆

GIM-NGARCH 0.7 22 2.36 1.14 4.24 3.10
AR-NGARCH 0.7 1.20 0.71 2.35 1.64

46 2.58 0.54 5.80 5.26
2.03 0.48 4.60 4.12

109 2.00 0.75 4.58 3.83
2.70 1.62 4.42 2.81

173 3.23 2.22 5.73 3.51
4.45 3.31 6.44 3.12

234 5.03 3.68 8.79 5.11
6.48 4.75 9.33 4.58

All 3.06 2.01 5.56 3.55
3.58 2.52 5.42 2.91

All results are based on N = 50, 000 and B = 999.
Note that µ = 1

B

∑B
b=1 ARE

(b) and ∆ = 97.5%-quantile−
2.5%-quantile

Based on our estimation results, we next implement Bootstrap Algorithm 2 to simulate

B option prices,
{
Ṽ
∗(b)
T

}B
b=1

. We set N = 50, 000 and B = 999 for the simulations. To

get an understanding of the variation in the simulated option prices, we obtain the 95%

con�dence intervals for each price and tabulate it together with the true option price.

For instance, we show the con�dence intervals for the GIM-NGARCH model with SNG

innovations in Table B.7 in Appendix B. From this table, we see that the length of a

given prediction interval increases as the time to maturity increases. Hence, this implies

that our simulated option prices vary more as the time horizon increases. This �nding is

qualitatively the same for all models as seen from the remaining tables in Appendix B.

Uncertainty in the simulated option prices also implies uncertainty in the metrics used

to evaluate the performance of the di�erent model implied prices. In our setting, we

choose the average relative error (ARE) to highlight this uncertainty. Speci�cally, for all

simulated option price, Ṽ
∗(b)
T , we calculate the ARE as

ARE =
1

K

K∑
j=1

∣∣V model
j − V market

j

∣∣
V market
j

× 100, (9.1)

where K is the total number of options, V market
j is the market price of the jth option while

V model
j is the jth option price implied by Bootstrap Algorithm 2. Note that V model

j depends

on the initial variance, h1, which we set to (κσε), where σε is the estimated volatility of
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Table 9.2: Summary statistics of ARE for SNIG inno-
vations

Model κ TM {ARE(b)}Bb=1

µ 2.5 97.5 ∆

GIM-NGARCH 0.7 22 2.55 1.38 4.03 2.65
AR-NGARCH 0.7 2.67 1.63 3.88 2.24

46 3.22 0.59 5.92 5.33
3.49 1.29 5.59 4.30

109 2.47 1.01 4.98 3.97
3.35 1.68 5.21 3.53

173 3.49 2.63 5.95 3.32
4.47 3.38 6.53 3.14

234 5.41 4.17 9.02 4.86
6.69 4.91 9.78 4.86

All 3.47 2.21 6.01 3.81
4.25 2.67 6.25 3.57

All results are based onN = 50, 000 andB = 999. Note
that µ = 1

B

∑B
b=1ARE

(b) and ∆ = 97.5%-quantile −
2.5%-quantile

the last trading day of the return series and κ is a user chosen tuning parameter. In

our setting, we take the same κ's as proposed in Zhu and Ling (2015). Following this

procedure, provides us with a series of ARE denoted by AREB :=
{
ARE(b)

}B
b=1

. We

next calculate the sample mean, µ = 1
B

∑B
b=1ARE

(b), the 95% con�dence interval, and

the length of the con�dence interval, ∆ = 97.5%-quantile − 2.5%-quantile. Summary

statistics for AREB of the GIM-GARCH with normal innovations is shown in Table

9.3. The results for the GIM-NGARCH and AR(3)-NGARCH model with SNG or SNIG

innovations are shown in Table 9.1; respectively Table 9.2. In Figure 9.1, we show a box

plot of the total AREB for all models.

We make the following observations: First, the sample mean of the total AREB for all

considered speci�cations is comparable to the results in Badescu and Kulperger (2008) and

Zhu and Ling (2015). Second, the con�dence intervals of AREB of the GIM-NGARCH are

longer than the interval for the AR-NGARCH model regardless of the chosen innovations

for all maturities. Third, in the case of normal innovations, the con�dence intervals

of AREB of the standard GIM-GARCH model are widest over all maturities. Fourth,

in terms of the lowest mean of the total AREB, the GIM-GARCH model with SNG

innovations performs best; cf. Table 9.1. However, we see from Figure 9.1 that the

variation of AREB for the GIM-NGARCH model with SNG innovations is larger than in

the AR-NGARCH model with normal innovations which has a comparable mean in terms
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Table 9.3: Summary statistics of ARE for normal innova-
tions

Model κ TM {ARE(b)}Bb=1

µ 2.5 97.5 ∆

GIM-NGARCH 0.7 22 2.08 0.66 3.85 3.19
AR-NGARCH 0.7 2.17 0.93 3.38 2.45
GIM-GARCH 0.6 2.36 1.40 4.11 3.18

46 1.75 0.62 4.44 3.81
1.71 0.64 3.51 2.87
4.01 3.52 5.48 4.83

109 2.51 2.00 3.93 1.93
2.56 2.19 3.53 1.34
6.01 5.37 7.71 5.52

173 4.27 3.76 5.53 1.77
4.31 3.97 4.88 0.91
8.72 7.48 11.36 7.39

234 6.12 5.29 8.40 3.11
5.92 5.48 6.85 1.37
12.77 9.31 19.43 13.95

All 3.44 2.91 4.86 1.95
3.43 2.97 4.38 1.42
7.20 6.20 9.74 6.77

All results are based on N = 50, 000 and B = 999.
Note that µ = 1

B

∑B
b=1ARE

(b) and ∆ = 97.5%-quantile −
2.5%-quantile
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of total AREB.

Overall, we �nd that, when only looking at the sample mean of the total AREB, the

GIM-NGARCH model with SNG innovations performs best. This is the same conclusion

as in Zhu and Ling (2015). Yet, when we also take the variation in the total AREB

into account, the conclusion changes. That is, the AR-NGARCH model with normal

innovations has a slighlty higher sample mean of 3.44 compared to 3.04, however, the

length of the 95% con�dence is 1.95 compared to 3.55 for the GIM-NGARCH model

with SNG innovations. Hence, no single speci�cation outperforms the other models when

taking estimation uncertainty into account.

10 Conclusion

In this article, we discuss two aspects of the impact of estimation uncertainty on GARCH

option prices. First, we design a bootstrap algorithm that allows us to generate a large

number of option prices where the only source of variation stems from parameter uncer-

tainty. We choose to model parameter uncertainty by the asymptotic distribution of the

model parameters and their corresponding covariance matrix. In a numerical example,

we show that the impact of parameter uncertainty is higher for options at the money.

Second, based on our �rst observation, we propose another bootstrap algorithm that

allows us to adapt option prices, based on general GARCH models, to parameter uncer-

tainty. In an empirical application, we demonstrate that this parameter uncertainty is

also transmitted to the metric used to evaluate option prices. More precisely, the GIM-

NGARCH model with SNG innovations has the lowest total ARE on average. However,

compared to the comparable average total ARE of the AR(3)-NGARCH model with nor-

mal innovations, the total ARE of this GIM-NGARCH is subject to higher variation. As

a result, no single GARCH speci�cation dominates when we take parameter uncertainty

into account.

Further issues are left for future research. First, it would be interesting to increase our

sample size and see how our method performs on a larger data set. Second, one could

try to implement the bootstrap approach of Pascual, Romo, and Ruiz (2006) to account

for parameter uncertainty. For this approach the model parameters are re-estimated in

each bootstrap step which is a way to non parametrically approximate the distribution of

the model parameters. However, this method also comes with a high computational cost

which might be even more time consuming in the context of option pricing. Finally, an

interesting question is to �nd a metric for option pricing evaluation which takes explicitly

estimation uncertainty into account or is robust against it.
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Appendix

A Processes for a risky asset under Q

In this section we follow Zhu and Ling (2015) and provide an overview of the processes

of an asset return under Q when zt is conditionally (i) normal, (ii) shift negative gamma

(SNG), or (iii) shift negative inverse Gaussian (SNIG).

A.1 normal innovations

First, we study the return process of an asset under Q when the innovations follow

a standard normal distribution. That is, suppose that zt|Ft−1 ∼ N(0, 1). Then, the

moment generating function under measure P is

MP
yt|Ft−1

(z) = exp

(
zµt +

z2ht
2

)
.

Due to eq. (2.4), we �nd that

δt =
1− µt
ht

− 1

2

such that

MQ

yt|Ft−1
(z) = exp

[
z

(
r − ht

2

)
+
z2ht

2

]
(A.1)

by eq. (2.3). Finally, under Q,

yt = r − ht
2

+ ε∗t , (A.2)

where ε∗t |Ft−1 ∼ N(0, ht); cf. Zhu and Ling (2015). Note that this result is the same as in

the seminal paper of Duan (1995) where the local risk-neutral measure was used instead

of the Esscher transform.

A.2 Shift Negative Gamma innovations

We also consider the case where the innovations follow a Shift Negative Gamma (SNG)

distribution. That is, zt = (ξt + a)/
√
a, where a > 0 and ξt|Ft−1 ∼ −G(a, 1) with G(a, b)

being a Gamma distribution with shape parameter a and scale parameter b. Then, we

say that zt is conditionally SNG which is denoted by zt|Ft−1 ∼ SNG(a). Compared to the

Gaussian distribution, the SNG distribution is skewed and has fatter tails; cf Siu, Howell,

and Yang (2004).
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Assume that zt|Ft−1 ∼ SNG(a) in eq. (2.1), then

yt = µt + εt (A.3)

where εt =
√
aht +

√
ht/aξt under P. Following Zhu and Ling (2015) and using eq. (2.2),

we �nd that

MP
yt|Ft−1

(z) =
aa/2 exp

[
z
(
µt +

√
aht
)](√

a+ z
√
ht
)a , (A.4)

for z > − a
ht
. Next, by eq. (2.4), we have that δt = bt −

√
aht, where

bt =

[
exp

(
µt − r +

√
aht

a

)
− 1

]−1

. (A.5)

Given δt and eq. (2.3), it follows that

MQ

yt|Ft−1
(z) =

exp
[
z
(
µt +

√
aht
)]

(1 + z/b)a
, (A.6)

for z > −bt if bt > 0. Consequently, we have that under Q,

yt = µt + ε∗t , (A.7)

where ε∗t =
√
aht + ξ∗t , where ξ

∗
t |Ft−1 ∼ −G(a, b); cf. Zhu and Ling (2015).

A.3 Shift negative inverse Gaussian innovations

As a last alternative, we assume that zt = (ξt + d)/
√
d with d > 0, ξt|Ft−1 ∼ −IG(d),

where IG(d) denotes an inverse Gaussian parameter with parameter d. Here, we say that

zt is conditionally shift negative inverse Gaussian (SNIG) and denote this by zt|Ft−1 ∼
SNIG(d). Again, as the SNG distribution, the SNIG distribution also has fatter tails and

is more skewed than the normal distribution.

Assume that zt|Ft−1 ∼ SNIG(d) in eq. (2.1), then

yt = µt + εt (A.8)

with εt =
√
dht +

√
ht/dξt under P. As before, we use eq. (2.2), (2.3), and (2.4) to see

that

MQ

yt|Ft−1
(z) = exp

{(
µt +

√
dht

)
z + d

[√
1 + 2

√
ht/dδt −

√
1 + 2

√
ht/d (z + δt)

]}
,(A.9)
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where for δt ∈ Ft−1 it holds that

1 + 2
√
ht/dδt =

1

4

(
r − µt −

√
dht

2d
− 2

√
dht

r − µt −
√
dht

)2

=: ct; (A.10)

see Zhu and Ling (2015). As a result, it follows under Q that

yt = µt + ε∗t , (A.11)

where ε∗t =
√
dht + c−1

t

√
ht/dξ

∗
t with ξ

∗
t |Ft−1 ∼ −IG

(√
ctd
)
.
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B Additional simulation and empirical results

Table B.1: Estimation results of di�erent GARCH models. Robust standard errors are
given in parenthesis.

GIM-GARCH GIM-NGARCH AR-NGARCH

ν 0.064
(0.016)

0.034
(0.016)

φ0 1.4e−4

(0.015)

φ1 0.042
(0.018)

φ2 1.3e−4

(0.023)

φ3 −0.041
(0.022)

ω 3.7e−6

(0.000)
5.68e−6

(0.000)
6.99e−6

(0.000)

α 0.123
(0.061)

0.127
(0.054)

0.131
(0.039)

β 0.847
(0.085)

0.787
(0.081)

0.762
(0.061)

θ 0.532
(0.226)

0.599
(0.227)

a 39.22 68.43
d 88.25 153.76

Table B.2: p-values of the Ljung-Box test for serial autocorrelation in the residuals ẑt;
respectively squared residuals ẑt

Model 5 10 20 50

GIM-GARCH ẑt 0.010 0.027 0.017 0.015
ẑ2
t 0.639 0.917 0.993 0.999

GIM-NGARCH ẑt 0.013 0.024 0.020 0.014
ẑ2
t 0.425 0.821 0.973 0.964

AR-NGARCH ẑt 0.633 0.458 0.198 0.058
ẑ2
t 0.504 0.864 0.947 0.797
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Table B.3: Summary statistics for the GIM-GARCH
model

TM K µ median σ 2.5% 97.5% ∆

21 1700 291.286 291.286 0.017 291.250 291.321 0.071
1750 241.814 241.814 0.033 241.746 241.881 0.135
1800 193.018 193.020 0.062 192.890 193.141 0.251
1850 145.793 145.796 0.111 145.560 146.009 0.449
1900 102.035 102.040 0.177 101.654 102.382 0.727
1950 64.527 64.532 0.239 64.018 64.992 0.974
2000 36.305 36.311 0.258 35.752 36.818 1.065
2050 18.350 18.355 0.222 17.875 18.791 0.916
2100 8.651 8.654 0.157 8.314 8.965 0.651
2150 3.963 3.963 0.099 3.750 4.161 0.411
2200 1.853 1.853 0.057 1.731 1.968 0.237
2250 0.893 0.892 0.034 0.822 0.960 0.138

45 293.748 293.749 0.089 293.567 293.928 0.361
245.523 245.525 0.136 245.243 245.797 0.554
198.734 198.737 0.203 198.315 199.137 0.823
154.559 154.564 0.287 153.957 155.128 1.170
114.491 114.499 0.370 113.710 115.224 1.514
80.208 80.217 0.434 79.292 81.067 1.775
53.094 53.102 0.454 52.133 53.993 1.859
33.348 33.354 0.424 32.450 34.187 1.737
20.066 20.070 0.357 19.310 20.774 1.464
11.754 11.758 0.279 11.162 12.308 1.147
6.831 6.832 0.205 6.397 7.242 0.845
4.017 4.018 0.146 3.709 4.313 0.603

64 296.161 296.162 0.163 295.830 296.489 0.658
249.000 249.004 0.234 248.521 249.467 0.946
203.740 203.745 0.320 203.078 204.379 1.300
161.394 161.400 0.414 160.534 162.219 1.684
123.180 123.192 0.502 122.135 124.180 2.045
90.265 90.277 0.564 89.089 91.389 2.299
63.496 63.508 0.583 62.280 64.657 2.377
42.940 42.956 0.556 41.781 44.049 2.269
28.036 28.045 0.491 27.012 29.015 2.003
17.831 17.833 0.407 16.980 18.644 1.665
11.227 11.229 0.319 10.557 11.867 1.309
7.058 7.059 0.244 6.546 7.549 1.003

82 298.868 298.873 0.242 298.379 299.356 0.978
252.681 252.687 0.328 252.011 253.337 1.326
208.642 208.648 0.427 207.765 209.497 1.732
167.703 167.711 0.525 166.621 168.748 2.128
130.766 130.774 0.613 129.500 131.989 2.488
98.684 98.699 0.671 97.298 100.026 2.728
72.065 72.085 0.690 70.640 73.444 2.804
50.993 51.012 0.664 49.620 52.323 2.703
35.136 35.151 0.604 33.887 36.346 2.458
23.630 23.637 0.521 22.550 24.675 2.125
15.643 15.647 0.429 14.754 16.504 1.750
10.266 10.268 0.341 9.558 10.954 1.395

125 305.376 305.384 0.415 304.533 306.214 1.681
261.237 261.244 0.521 260.174 262.286 2.112
219.544 219.555 0.630 218.258 220.802 2.544
180.979 180.989 0.733 179.482 182.432 2.950
146.113 146.129 0.820 144.440 147.740 3.300
115.531 115.548 0.878 113.742 117.275 3.534
89.422 89.439 0.895 87.596 91.206 3.609
67.753 67.771 0.877 65.964 69.503 3.539
50.379 50.399 0.826 48.696 52.032 3.336
36.870 36.888 0.746 35.349 38.366 3.016
26.679 26.690 0.655 25.344 27.994 2.650
19.100 19.103 0.562 17.953 20.229 2.276

All results are based on N = 50, 000 and B = 999. Note that µ =

1
B

∑B
b=1 Ṽ

∗(b)
T , σ =

√
1

B−1

∑B
b=1

(
Ṽ
∗(b)
T − µ

)2
, and ∆ = 97.5%-quantile −

2.5%-quantile.
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Table B.4: Summary statistics for the AR(1)-GARCH
model

TM K µ median σ 2.5% 97.5% ∆

21 1700 291.186 291.186 0.015 291.157 291.217 0.060
1750 241.651 241.650 0.030 241.593 241.712 0.119
1800 192.773 192.773 0.059 192.659 192.894 0.235
1850 145.489 145.488 0.111 145.274 145.712 0.437
1900 101.795 101.792 0.183 101.437 102.158 0.720
1950 64.550 64.545 0.250 64.059 65.040 0.981
2000 36.694 36.692 0.273 36.155 37.228 1.073
2050 18.943 18.942 0.237 18.477 19.413 0.936
2100 9.207 9.204 0.173 8.872 9.552 0.680
2150 4.370 4.370 0.111 4.157 4.597 0.440
2200 2.110 2.109 0.067 1.980 2.249 0.269
2250 1.049 1.048 0.041 0.971 1.133 0.162

45 293.303 293.302 0.076 293.157 293.460 0.304
244.916 244.915 0.125 244.675 245.174 0.498
197.978 197.975 0.193 197.608 198.375 0.767
153.723 153.721 0.283 153.177 154.304 1.126
113.730 113.727 0.375 113.008 114.493 1.485
79.708 79.705 0.446 78.849 80.612 1.763
52.955 52.951 0.471 52.046 53.910 1.864
33.534 33.529 0.443 32.678 34.434 1.755
20.455 20.452 0.377 19.730 21.227 1.497
12.204 12.203 0.299 11.630 12.820 1.189
7.245 7.245 0.223 6.817 7.710 0.893
4.352 4.351 0.163 4.038 4.694 0.656

64 295.385 295.382 0.141 295.113 295.674 0.561
248.001 247.998 0.214 247.590 248.437 0.847
202.559 202.556 0.304 201.972 203.177 1.204
160.130 160.127 0.405 159.354 160.948 1.594
121.988 121.980 0.501 121.031 122.998 1.967
89.299 89.293 0.571 88.204 90.449 2.245
62.879 62.872 0.595 61.735 64.081 2.346
42.692 42.687 0.571 41.596 43.851 2.254
28.091 28.085 0.508 27.118 29.129 2.010
18.068 18.061 0.426 17.249 18.943 1.694
11.530 11.527 0.338 10.886 12.229 1.344
7.366 7.363 0.262 6.865 7.914 1.048

82 297.761 297.757 0.212 297.357 298.196 0.838
251.317 251.314 0.299 250.744 251.926 1.181
207.074 207.070 0.404 206.301 207.893 1.592
166.047 166.042 0.511 165.069 167.075 2.006
129.192 129.187 0.606 128.036 130.410 2.374
97.325 97.318 0.671 96.043 98.672 2.629
71.040 71.035 0.696 69.709 72.440 2.731
50.345 50.341 0.675 49.055 51.709 2.654
34.826 34.822 0.617 33.651 36.079 2.428
23.577 23.570 0.536 22.560 24.674 2.114
15.740 15.731 0.445 14.891 16.659 1.768
10.446 10.440 0.357 9.767 11.190 1.423

125 303.587 303.578 0.366 302.897 304.338 1.440
259.162 259.153 0.478 258.265 260.140 1.875
217.278 217.268 0.594 216.161 218.484 2.323
178.620 178.610 0.706 177.292 180.049 2.757
143.792 143.782 0.800 142.284 145.406 3.122
113.405 113.392 0.866 111.774 115.151 3.377
87.595 87.584 0.890 85.920 89.391 3.471
66.283 66.271 0.876 64.634 68.058 3.424
49.292 49.278 0.828 47.735 50.975 3.240
36.115 36.103 0.751 34.703 37.651 2.948
26.187 26.175 0.662 24.945 27.547 2.603
18.810 18.798 0.571 17.742 19.992 2.250

All results are based on N = 50, 000 and B = 999. Note that µ =

1
B

∑B
b=1 Ṽ

∗(b)
T , σ =

√
1

B−1

∑B
b=1

(
Ṽ
∗(b)
T − µ

)2
, and ∆ = 97.5%-quantile −

2.5%-quantile.
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Table B.5: 95% prediction intervals for GIM-GARCH with normal innovations

K TM = 22 TM = 46 TM = 109 TM = 173 TM = 234

975 161.60 173.30
[156.64, 158.48] [163.54, 166.96]

995 144.80 157.00
[138.78, 141.03] [146.87, 150.81]

1025 120.10 133.10 146.50
[113.40, 116.28] [123.39, 128.03] [132.16, 138.27]

1050 84.50 100.70 114.80
[81.15, 82.26] [93.93, 97.31] [105.43, 110.54]

1075 64.30 82.50 97.60
[60.82, 62.28] [76.33, 80.08] [89.05, 94.53]

1090 43.10
[41.68, 42.39]

1100 35.60 65.50 81.20
[34.28, 35.09] [60.72, 64.77] [74.30, 80.04]

1110 39.50
[37.14, 38.94]

1120 22.90 33.50
[21.82, 22.73] [31.63, 33.44]

1125 20.20 30.70 51.00 66.90 81.70
[19.23, 20.15] [29.09, 30.90] [47.36, 51.49] [61.29, 67.17] [72.35, 79.80]

1130 28.00
[26.69, 28.51]

1135 25.60 45.50
[24.44, 26.25] [42.64, 46.76]

1140 13.30 23.20 58.90
[12.77, 13.66] [22.32, 24.12] [54.31, 60.24]

1150 19.10 38.10 53.90 68.30
[18.50, 20.26] [36.21, 40.30] [50.01, 55.92] [61.00, 68.45]

1160 15.30
[15.22, 16.90]

1170 12.10
[12.42, 14.01]

1175 10.90 27.70 42.50 56.60
[11.20, 12.74] [27.22, 31.07] [40.40, 46.12] [51.06, 58.45]

1200 19.60 33.00 46.10
[20.11, 23.66] [32.26, 37.73] [42.42, 49.67]

1225 13.20 24.90 36.90
[14.66, 17.84] [25.53, 30.68] [35.02, 42.03]

1250 18.30 29.30
[20.10, 24.83] [28.75, 35.42]

1275 13.20 22.50
[15.74, 19.98] [23.49, 29.74]

1300 17.20
[19.08, 24.93]

1325 12.80
[15.47, 20.81]

All results are based on N = 50, 000 and B = 999.
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Table B.6: 95% prediction intervals for GIM-NGARCH with normal innovations

K TM = 22 TM = 46 TM = 109 TM = 173 TM = 234

975 161.60 173.30
[159.06, 161.03] [166.67, 170.00]

995 144.80 157.00
[141.41, 143.63] [150.14, 153.73]

1025 120.10 133.10 146.50
[116.18, 118.79] [126.60, 130.57] [135.63, 140.58]

1050 84.50 100.70 114.80
[82.83, 84.01] [96.56, 99.51] [108.34, 112.58]

1075 64.30 82.50 97.60
[62.43, 63.82] [78.55, 81.73] [91.50, 95.94]

1090 43.10
[42.52, 43.22]

1100 35.60 65.50 81.20
[34.98, 35.74] [62.40, 65.67] [76.19, 80.74]

1110 39.50
[38.04, 39.59]

1120 22.90 33.50
[21.99, 22.81] [32.19, 33.75]

1125 20.20 30.70 51.00 66.90 81.70
[19.24, 20.07] [29.46, 31.03] [48.29, 51.58] [62.48, 67.02] [73.88, 79.41]

1130 28.00
[26.89, 28.44]

1135 25.60 45.50
[24.45, 26.00] [43.23, 46.51]

1140 13.30 23.20 58.90
[12.33, 13.08] [22.17, 23.69] [55.06, 59.55]

1150 19.10 38.10 53.90 68.30
[18.03, 19.48] [36.33, 39.51] [50.45, 54.88] [61.87, 67.34]

1160 15.30
[14.47, 15.82]

1170 12.10
[11.44, 12.67]

1175 10.90 27.70 42.50 56.60
[10.11, 11.30] [26.55, 29.46] [40.10, 44.32] [51.27, 56.55]

1200 19.60 33.00 46.10
[18.82, 21.38] [31.37, 35.28] [42.02, 47.04]

1225 13.20 24.90 36.90
[12.92, 15.09] [24.11, 27.68] [34.07, 38.75]

1250 18.30 29.30
[18.22, 21.39] [27.31, 31.61]

1275 13.20 22.50
[13.54, 16.31] [21.68, 25.56]

1300 17.20
[17.00, 20.49]

1325 12.80
[13.19, 16.26]

All results are based on N = 50, 000 and B = 999.
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Table B.7: 95% prediction intervals for GIM-NGARCH with SNG innovations

K TM = 22 TM = 46 TM = 109 TM = 173 TM = 234

975 161.60 173.30
[159.88, 162.24] [167.74, 171.46]

995 144.80 157.00
[142.24, 144.87] [151.19, 155.16]

1025 120.10 133.10 146.50
[116.96, 119.95] [127.53, 131.97] [136.64, 142.17]

1050 84.50 100.70 114.80
[83.28, 84.75] [97.29, 100.51] [109.12, 113.84]

1075 64.30 82.50 97.60
[62.80, 64.49] [79.11, 82.52] [92.08, 97.00]

1090 43.10
[42.74, 43.68]

1100 35.60 65.50 81.20
[35.13, 36.12] [62.70, 66.26] [76.57, 81.51]

1110 39.50
[38.09, 39.94]

1120 22.90 33.50
[21.94, 22.96] [32.11, 33.97]

1125 20.20 30.70 51.00 66.90 81.70
[19.13, 20.14] [29.33, 31.19] [48.31, 51.86] [62.65, 67.55] [74.13, 80.03]

1130 28.00
[26.70, 28.54]

1135 25.60 45.50
[24.23, 26.02] [43.19, 46.64]

1140 13.30 23.20 58.90
[12.01, 12.98] [21.89, 23.64] [55.05, 59.96]

1150 19.10 38.10 53.90 68.30
[17.65, 19.32] [36.10, 39.49] [50.34, 55.20] [61.90, 67.69]

1160 15.30
[13.99, 15.54]

1170 12.10
[10.89, 12.32]

1175 10.90 27.70 42.50 56.60
[9.54, 10.91] [26.04, 29.16] [39.71, 44.39] [51.07, 56.69]

1200 19.60 33.00 46.10
[18.12, 20.92] [30.76, 35.06] [41.53, 46.94]

1225 13.20 24.90 36.90
[12.13, 14.53] [23.37, 27.22] [33.39, 38.45]

1250 18.30 29.30
[17.35, 20.76] [26.48, 31.22]

1275 13.20 22.50
[12.62, 15.59] [20.77, 25.06]

1300 17.20
[16.06, 19.85]

1325 12.80
[12.25, 15.57]

All results are based on N = 50, 000 and B = 999.
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Table B.8: 95% prediction intervals for GIM-NGARCH with SNIG innovations

K TM = 22 TM = 46 TM = 109 TM = 173 TM = 234

975 161.60 173.30
[159.69, 161.53] [167.45, 170.37]

995 144.80 157.00
[142.03, 144.12] [150.86, 154.01]

1025 120.10 133.10 146.50
[116.74, 119.14] [127.19, 130.69] [136.23, 140.61]

1050 84.50 100.70 114.80
[83.29, 84.37] [97.04, 99.67] [108.78, 112.55]

1075 64.30 82.50 97.60
[62.77, 64.08] [78.81, 81.66] [91.76, 95.69]

1090 43.10
[42.79, 43.48]

1100 35.60 65.50 81.20
[35.18, 35.93] [62.42, 65.33] [76.21, 80.20]

1110 39.50
[38.07, 39.53]

1120 22.90 33.50
[21.98, 22.79] [32.10, 33.57]

1125 20.20 30.70 51.00 66.90 81.70
[19.17, 19.99] [29.32, 30.78] [48.05, 50.98] [62.31, 66.32] [73.68, 78.62]

1130 28.00
[26.68, 28.15]

1135 25.60 45.50
[24.20, 25.64] [42.90, 45.80]

1140 13.30 23.20 58.90
[12.08, 12.84] [21.86, 23.29] [54.76, 58.74]

1150 19.10 38.10 53.90 68.30
[17.62, 19.00] [35.86, 38.67] [50.07, 53.99] [61.46, 66.34]

1160 15.30
[13.97, 15.26]

1170 12.10
[10.88, 12.04]

1175 10.90 27.70 42.50 56.60
[9.54, 10.64] [25.86, 28.46] [39.49, 43.23] [50.62, 55.39]

1200 19.60 33.00 46.10
[17.98, 20.28] [30.54, 34.06] [41.20, 45.76]

1225 13.20 24.90 36.90
[12.04, 13.95] [23.17, 26.36] [33.09, 37.37]

1250 18.30 29.30
[17.22, 20.05] [26.26, 30.14]

1275 13.20 22.50
[12.52, 14.97] [20.56, 24.06]

1300 17.20
[15.88, 18.99]

1325 12.80
[12.10, 14.81]

All results are based on N = 50, 000 and B = 999.
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Table B.9: 95% prediction intervals for AR-NGARCH with normal innovations

K TM = 22 TM = 46 TM = 109 TM = 173 TM = 234

975 161.60 173.30
[158.82, 160.11] [166.32, 168.35]

995 144.80 157.00
[141.19, 142.66] [149.80, 152.01]

1025 120.10 133.10 146.50
[116.02, 117.72] [126.33, 128.80] [135.21, 138.31]

1050 84.50 100.70 114.80
[82.87, 83.71] [96.49, 98.37] [108.14, 110.80]

1075 64.30 82.50 97.60
[62.53, 63.52] [78.55, 80.58] [91.39, 94.18]

1090 43.10
[42.61, 43.13]

1100 35.60 65.50 81.20
[35.08, 35.64] [62.47, 64.56] [76.17, 79.05]

1110 39.50
[38.23, 39.34]

1120 22.90 33.50
[22.10, 22.70] [32.40, 33.51]

1125 20.20 30.70 51.00 66.90 81.70
[19.36, 19.96] [29.69, 30.79] [48.44, 50.52] [62.56, 65.43] [73.75, 77.24]

1130 28.00
[27.12, 28.20]

1135 25.60 45.50
[24.70, 25.76] [43.42, 45.48]

1140 13.30 23.20 58.90
[12.42, 12.98] [22.41, 23.45] [55.19, 58.04]

1150 19.10 38.10 53.90 68.30
[18.27, 19.27] [36.55, 38.54] [50.61, 53.42] [61.80, 65.24]

1160 15.30
[14.68, 15.62]

1170 12.10
[11.63, 12.50]

1175 10.90 27.70 42.50 56.60
[10.29, 11.11] [26.75, 28.60] [40.28, 42.95] [51.28, 54.58]

1200 19.60 33.00 46.10
[19.00, 20.66] [31.55, 34.04] [42.11, 45.21]

1225 13.20 24.90 36.90
[13.08, 14.49] [24.31, 26.58] [34.19, 37.07]

1250 18.30 29.30
[18.44, 20.43] [27.46, 30.10]

1275 13.20 22.50
[13.75, 15.46] [21.82, 24.20]

1300 17.20
[17.16, 19.29]

1325 12.80
[13.34, 15.25]

All results are based on N = 50, 000 and B = 999.
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Table B.10: 95% prediction intervals for AR-NGARCH with SNG innovations

K TM = 22 TM = 46 TM = 109 TM = 173 TM = 234

975 161.60 173.30
[160.04, 161.79] [168.14, 170.71]

995 144.80 157.00
[142.54, 144.48] [151.77, 154.52]

1025 120.10 133.10 146.50
[117.56, 119.77] [128.43, 131.47] [137.80, 141.40]

1050 84.50 100.70 114.80
[83.73, 85.00] [98.13, 100.58] [110.32, 113.56]

1075 64.30 82.50 97.60
[63.48, 64.89] [80.27, 82.77] [93.59, 96.99]

1090 43.10
[43.19, 44.01]

1100 35.60 65.50 81.20
[35.68, 36.53] [64.17, 66.71] [78.29, 81.80]

1110 39.50
[39.19, 40.65]

1120 22.90 33.50
[22.62, 23.48] [33.30, 34.78]

1125 20.20 30.70 51.00 66.90 81.70
[19.84, 20.69] [30.55, 32.00] [50.01, 52.54] [64.57, 68.05] [76.35, 80.36]

1130 28.00
[27.96, 29.36]

1135 25.60 45.50
[25.47, 26.85] [44.94, 47.42]

1140 13.30 23.20 58.90
[12.75, 13.56] [23.16, 24.48] [57.12, 60.54]

1150 19.10 38.10 53.90 68.30
[18.90, 20.18] [37.93, 40.32] [52.47, 55.83] [64.27, 68.23]

1160 15.30
[15.19, 16.39]

1170 12.10
[12.03, 13.13]

1175 10.90 27.70 42.50 56.60
[10.63, 11.69] [27.86, 30.12] [41.98, 45.20] [53.59, 57.37]

1200 19.60 33.00 46.10
[19.86, 21.87] [32.98, 36.05] [44.13, 47.79]

1225 13.20 24.90 36.90
[13.69, 15.45] [25.47, 28.30] [35.95, 39.41]

1250 18.30 29.30
[19.33, 21.86] [28.99, 32.18]

1275 13.20 22.50
[14.40, 16.65] [23.06, 26.03]

1300 17.20
[18.17, 20.85]

1325 12.80
[14.13, 16.54]

All results are based on N = 50, 000 and B = 999.
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Table B.11: 95% prediction intervals for AR-NGARCH with SNG innovations

K TM = 22 TM = 46 TM = 109 TM = 173 TM = 234

975 161.60 173.30
[158.99, 160.24] [166.36, 168.30]

995 144.80 157.00
[141.32, 142.73] [149.76, 151.89]

1025 120.10 133.10 146.50
[116.02, 117.67] [126.13, 128.51] [134.83, 137.83]

1050 84.50 100.70 114.80
[83.02, 83.86] [96.35, 98.18] [107.80, 110.33]

1075 64.30 82.50 97.60
[62.57, 63.56] [78.28, 80.25] [90.86, 93.53]

1090 43.10
[42.73, 43.27]

1100 35.60 65.50 81.20
[35.14, 35.73] [62.02, 64.04] [75.44, 78.17]

1110 39.50
[37.99, 39.11]

1120 22.90 33.50
[22.01, 22.62] [32.08, 33.21]

1125 20.20 30.70 51.00 66.90 81.70
[19.22, 19.83] [29.33, 30.45] [47.80, 49.84] [61.68, 64.42] [72.77, 76.17]

1130 28.00
[26.72, 27.83]

1135 25.60 45.50
[24.26, 25.35] [42.72, 44.73]

1140 13.30 23.20 58.90
[12.16, 12.72] [21.94, 23.02] [54.22, 56.92]

1150 19.10 38.10 53.90 68.30
[17.74, 18.76] [35.74, 37.69] [49.59, 52.26] [60.70, 64.04]

1160 15.30
[14.11, 15.06]

1170 12.10
[11.04, 11.90]

1175 10.90 27.70 42.50 56.60
[9.70, 10.52] [25.85, 27.65] [39.15, 41.75] [50.03, 53.28]

1200 19.60 33.00 46.10
[18.06, 19.64] [30.32, 32.78] [40.73, 43.85]

1225 13.20 24.90 36.90
[12.17, 13.50] [23.08, 25.29] [32.77, 35.67]

1250 18.30 29.30
[17.22, 19.18] [26.04, 28.67]

1275 13.20 22.50
[12.59, 14.27] [20.43, 22.78]

1300 17.20
[15.82, 17.91]

1325 12.80
[12.10, 13.91]

All results are based on N = 50, 000 and B = 999.
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