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Abstract 
Some key features in the historical dynamics of U.S. Treasury bond yields—a trend in long-term 
yields, business cycle movements in short-term yields, and a level shift in yield spreads—pose 
serious challenges to existing equilibrium asset pricing models. This paper presents a new 
equilibrium model to jointly explain these key features. The trend is generated by learning from 
the stable components in GDP growth and inflation, which share similar patterns to the neutral 
rate of interest (R-star) and trend inflation (Pi-star) estimates in the literature. Cyclical 
movements in yields and spreads are mainly driven by learning from the transitory 
components in GDP growth and inflation. The less-frequent inverted yield curves observed 
after the 1990s are due to the recent secular stagnation and procyclical inflation expectation. 

Topics: Asset pricing; Financial markets; Interest rates 
JEL codes: G00, G12, E43 



1. Introduction

Some basic properties of the stochastic discount factor (SDF) have been established

in the literature. Examples include the volatility bound of the SDF (Hansen and Ja-

gannathan, 1991) and the permanent-transitory decomposition of SDF (Alvarez and Jer-

mann, 2005; Hansen and Scheinkman, 2009; Hansen, 2012). Given that the SDF from

any equlibrium model has direct implications for yield curves, the dynamics of the Trea-

sury yield curve should tell us, in addition to these basic properties, what a good SDF

should look like from a historical perspective. Figure 1 below shows some salient fea-

tures in the data: (1) a hump-shaped trend in the yields, (2) business cycle (cyclical)

movements in short-term yields and in the spreads between long- and short-term yields,

(3) more-frequent and deeper inverted curves (accompanied by more-frequent recessions)

pre-1990s than post-1990s, and (4) a positive yield spread on average.

Most equilibrium term structure models are designed to interpret and quantify the

means, volatilities, and average positive spreads in yields. Given the standard stationarity

assumption (which implies stationary short rates), it is hard for these models to generate

the hump-shaped trend in yields and match the unconditional volatility in the data.

As a result, both the low-frequency variations in the long-term yields and the cyclical

movements in the yield spreads are determined to be the risk premia (see, for example,

the inflation risk premium in Piazzesi and Schneider 2007). The key assumption for

generating a positive inflation risk premium and, hence, an upward-sloping yield curve,

is that inflation is bad news for future growth. However recent studies have shown that,

following the late 1990s, inflation has switched to a good-news event for future growth.1

This fact implies a negative inflation risk premium and a downward-sloping nominal curve

in equilibrium. Figure 1 shows the opposite: the yield spreads shifted to an even higher

level after the 1990s. Furthermore, it is hard to explain business cycle movements in

yield spreads using a risk-premium approach – moving from positive out of recessions

1See, for example, Burkhardt and Hasseltoft (2012); David and Veronesi (2013); Campbell et al.
(2017); Zhao (2020)
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to negative in a late expansion stage. Finally, the third fact – the more-frequent and

deeper inverted curves for pre-1990s than for post-1990s – has been overlooked in the

literature. Given the recent concern over the association between recessions and inverted

yield curves, we need an equilibrium interpretation for this fact. In this paper, we show

that the historical dynamics of the yield curve can largely be explained by movements in

the short-rate expectations and provide a joint-equilibrium understanding of these salient

features in the data.
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U.S. nominal yield spreads (10-year minus 1-year)

The end-of-quarter 10-year nominal, 1-year nominal yield, and their spreads are obtained from Gürkaynak et al. (2007)
from 1968:Q3 to 2018:Q2. The gray bars represent periods of recession defined by the NBER.
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It has long been recognized that nominal interest rates contain a slow-moving trend

component (Nelson and Plosser, 1982; Rose, 1988). Recent empirical studies propose

macro trends as the driving force behind this low-frequency variation. For example,

Kozicki and Tinsley (2001) and Cieslak and Povala (2015) document the empirical im-

portance of trend inflation (π∗t ) for explaining the secular decline in Treasury yields since

the early 1980s. Bauer and Rudebusch (2019) show that it is crucial to also include the

neutral rate of interest (r∗t ), which has driven the downward trend in long term yields over

the last 20 years. Both π∗t and r∗t (and hence short rates) are modeled as random-walk

processes in Bauer and Rudebusch (2019), and the resulting term premium component

– the difference between long-term interest rates and the model-implied expectations of

average future short-term rates – is relatively small and stationary. In most equilibrium

models, however, short rates are assumed to be stationary. Therefore, the large term pre-

mia (or residual term) in yields that contain both low-frequency variations and cyclical

movements are typically explained as certain types of risk premia.

To illustrate the role of learning in generating the observed low-frequency variations

in the yields and in matching the macro trends, we start with a simple equilibrium model

(model I) where both the output growth and inflation are exogenous and follow the i.i.d.

laws of motion. The representative agent with a constant relative risk aversion (CRRA)

utility does not, however, know the mean inflation and mean growth rates. Instead, the

agent uses a constant-gain learning scheme as proposed by Nagel and Xu (2019) to learn

the unconditional mean inflation and growth rates.2 This is a modified Bayesian approach,

where the learning is perpetual due to the agent’s fading memory. The posteriors for the

mean inflation and mean growth rates, as state variables, capture the trends in inflation

and growth. The bond yields implied by the model as linear functions of the posteriors

exhibit a hump-shaped trend.

The model-I implied r∗t , which is a linear function of the posterior for mean output

2The posteriors from standard Bayesian learning (about the fixed parameters) are random-walk pro-
cesses, which are potentially also consistent with the empirical modeling of the macro trends. However,
the posterior variance will decline deterministically to zero and the learning will converge (Collin-Dufresne
et al., 2016).
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growth, moves closely with the r∗t estimates in the literature. Not only does the model

capture the low-frequency variations, but the model-I-implied r∗t also exhibits a moderate

business cycle component. Furthermore, the posterior of the mean inflation matches

the survey-based trend inflation. As a result, the hump-shaped trend in the 10-year

Treasury yield (from the late 1960s to the late 1990s) reflects an increase in inflation

expectations before the mid-1980s and a secular decline afterwards. More recently, as

inflation expectations stabilized, the decline in the posterior for mean output growth

and, hence, the 10-year real yield, has been the main driver of the downtrend in nominal

yields.3 However, the posteriors affect the yields of all maturities equally, and the yields

for the short- and long-term bonds are almost identical. Therefore, model I cannot be

used to explain the cyclical movements in the short-term yield and in the spreads between

the long- and short-term yields.

To address these cyclical movements, we consider an extended version (model II),

where both the GDP growth and the inflation rates are decomposed into two components:

one stable and one transitory/volatile. Using the same learning scheme as above, the

representative agent learns about the unconditional mean output growth and inflation

rates from the stable component, and they learn about the stationary deviations from

the mean by using the transitory/volatile component. As in model I, the posteriors for

long-run mean inflation and growth affect short- and long-term bonds equally and, hence,

capture the trend in the yields. However, the posteriors for the transitory deviations from

the long-run mean are AR(1) processes. And they have larger impacts on the short-term

yield than on the long-term yield, which implies a positive (negative) spread when the

3In this model, output growth is given exogenously and r∗
t is driven by learning about the mean

growth. Alternative interpretations include lower productivity growth, changing demographics, a decline
in the price of capital goods, and strong precautionary savings flows from emerging market economies.
See, for example, Summers (2014); Kiley (2015); Rachel and Smith (2015); Carvalho et al. (2016);
Hamilton et al. (2016); Laubach and Williams (2016); Johannsen and Mertens (2018); Christensen and
Rudebusch (2019); Holston et al. (2017); Lunsford and West (2018); Del Negro et al. (2017). Caballero
et al. (2008) show that the downward trend in interest rates was due to a shortage of safe assets and the
increasing global imbalances. Farhi and Gourio (2019) find that rising market power, rising unmeasured
intangibles, and rising risk premia, played a crucial role for the decline in real short rates over the past
30 years.
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short-run beliefs are negative (positive). Therefore, model II can be used to generate

cyclical movements in the short-term yields and, hence, in the spreads.

The model-II implied 1-year nominal yield and the spread between 10- and 1-year

nominal yields closely track their historical movements. Out of recessions, the short-

term nominal yield starts to rise when the agent begins to revise their beliefs for short-

run growth and inflation upwards towards their long-run means (short-run deviations

are still negative and the spread is positive), and the spread starts to shrink as these

short-run expectations move towards becoming positive. This pattern continues until the

late expansion stage, when the short-run growth and inflation expectations are above

their long-run means (the short-run deviations are positive now), implying an inverted

yield curve.4 The agent then begins to revise their short-run beliefs sharply downwards,

entering a recession, and the spread switches from negative to positive.

Furthermore, Figure 10 shows that (1) the posteriors for short-run inflation and growth

deviations moved in opposite directions before the late 1990s and in the same direction

afterwards, and (2) the posteriors for both short-run inflation and growth deviations were

persistently negative for most of the post-2000 period (consistent with secular stagnation;

see, e.g., Summers 2014). These observations imply that short-run inflation and growth

expectations drove the yields in opposite directions pre-2000, and in the same direction

afterwards. Moreover, both short-run inflation and growth expectations imply positive

spreads for the past two decades. Therefore, consistent with the data, model II generates

more-frequent and deeper inverted curves for the period before the late 1990s than for

the most-recent period. From a monetary policy point of view, the Federal Reserve

faced a trade-off between short-run inflation and growth pre-2000 and no such trade-off

afterwards.5 Hence, we observe more-frequent recessions for the period before the late

4The model is consistent with our conventional understanding of business cycles. From trough to
peak, when the inflation and output gaps (short-run deviations in this model) are moving from negative
to positive, monetary policy turns from accommodative to contractionary (short-term yields increase)
according to the Taylor Rule. The difference between the standard Taylor Rule and the model-implied
short rate is discussed in Section 3.2.

5It is commonly believed that the U.S. economy was mostly hit by supply shocks before the late
1990s, and mostly hit by demand shocks afterwards, and that this generated the change in the correlation
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1990s and less-frequent recessions (or longer business cycles) for the period afterwards.
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Figure 10:

Short-run inflation deviation Short-run growth deviation

Short-run deviations

The model-implied posteriors for the short-run deviations from the long-run mean (x̃c,t and x̃π,t) are from 1968:Q3 to
2018:Q2. The gray bars represent periods of recession defined by the NBER.

Finally, the model-II-implied inflation expectations (posteriors) closely match the

survey-based short- and long-run inflation expectations. And as in model I, the model-

II-implied r∗t tracks very closely the r∗t estimates in the literature; hence, the model-II-

implied 10-year nominal yield moves closely with the data. Despite the fact that the

model-II-implied nominal spread can stay positive or negative for an extended period of

time at different phases of the business cycle, the level is almost in parallel lower than

data due to the stationary assumption (mean zero) for the short-run beliefs as well as

the CRRA utility.

The common equilibrium explanation for the upward-sloping nominal yield curve is

the inflation risk premium (Piazzesi and Schneider, 2007), where inflation is bad news for

future growth and the agent prefers an early resolution to the uncertainty. Zhao (2020)

shows that this approach was less effective during the past two decades when inflation

switched from bad news to good news for future growth, providing an alternative worst-

between short-run inflation and growth expectations.
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case belief approach through ambiguity. We show that model II can be extended by

incorporating the intuition discussed in Zhao (2020). The ambiguity-averse representative

agent (with the recursive multiple priors, or maxmin, preferences in Epstein and Schneider

2003) has in mind a benchmark or reference measure of the economy’s dynamics that

represents the best estimate of the stochastic process. In model III, the reference measure

is the full stochastic environment presented in model II (including the posteriors). But

the agent is concerned that the reference measure is misspecified and believes that the

true measure is actually within a set of alternative measures that are statistically close to

the reference distribution. Using forecast dispersion to quantify the size of the ambiguity

(following Ilut and Schneider 2014), the model-III-implied short-rate expectations are

upward-sloping under investors’ worst-case equilibrium beliefs, which generates upward-

sloping nominal and real yield curves, even with a CRRA utility. The expectations

hypothesis (EH) roughly holds under the worst-case equilibrium belief; and the ex-post

predictability of excess bond returns is due to the difference between investors’ worst-

case expectations and the reference measure – providing a rational interpretation for

expectational errors in Froot (1989), Piazzesi et al. (2015), and Cieslak (2018).

Given that the benchmark measure in model III is the same as in model II, model

III can still match the trends and cycles in the yields. However, because of ambiguity,

the model-III-implied spreads are almost in parallel higher than the model-II-implied

spreads and can also match the yield spreads in the data. Furthermore, by comparing

the model-implied 1-year nominal yield with the data, we observe a recurring pattern

that the model-implied short-term yields are higher than those in the data, from trough

to expansion, but they are lower than those in the data during the late expansion periods.

Given that short-term yields are controlled by the Federal Reserve, this suggests that the

Federal Reserve kept the short rates low for a longer period than the model suggests and

there was a certain degree of overshoot during the late expansion periods (before the

recessions).

9



Related literature

This paper is related to a large literature on equilibrium asset/bond pricing models.

For example, see Wachter (2006), Lettau and Wachter (2011), David and Veronesi (2013),

Bansal and Shaliastovich (2013), Rudebusch and Swanson (2012), Albuquerque et al.

(2016), and Berrada et al. (2018). This paper is most closely related to Piazzesi and

Schneider (2007), who show the importance of the inflation risk premium in explaining

the upward-sloping nominal curve in a stationary state space model (for inflation and

growth). While most equilibrium bond-pricing models focus on the first/second moment

and the average spread in the yields, we show that some key features in the historical

dynamics of U.S. Treasury bond yields pose serious challenges to existing models, and we

provide a joint equilibrium understanding of the trends, cycles, and spreads in the data.

This paper differs from previous studies along some important dimensions. First,

the agent in this paper takes into consideration the risk of belief updating. Hence, the

posteriors for the long-run means are state variables, which move closely with the macro

trend estimates (r∗t and π∗t ) in the literature and explain the hump-shaped trend in

the yields. Most importantly, this is the first paper that decomposes both GDP growth

and inflation into two components and shows that learning about the long-run mean

drives the low-frequency variations in the yields and that the learning about the short-

run deviation from the mean drives the business cycle movements in the short-term yield

and, hence, in the spreads. Third, this paper provides an interpretation for an important

but often overlooked fact – the less-frequent inverted yield curves (and the less-frequent

recessions) after the 1990s. Finally, instead of the inflation risk premium (Piazzesi and

Schneider, 2007) and the real risk premium (Wachter, 2006; Albuquerque et al., 2016;

Berrada et al., 2018), the upward-sloping nominal and real curves in the U.S., at least

for the post-2000 periods, were partially due to persistently negative short-run inflation

and growth expectations and procyclical inflation expectations for most of these periods.

However, short-run inflation and growth expectations moved in opposite directions pre-

2000, which makes it hard for model II to generate an average upward-sloping nominal

curve (the short-run expectations and, hence, the yield spreads are stationary and mean

10



zero). We therefore rely on the worst-case belief approach (Zhao, 2020) to generate

upward-sloping nominal and real curves that are consistent with the data.

The paper is also related to a large empirical literature that links macro information

and macro trends with yield curve modeling.6 This paper bridges an important gap

between the empirical and equilibrium yield curve literature by interpreting macro trends

as posteriors for learning about long-run mean growth and inflation rates. Furthermore,

the paper also provides an equilibrium interpretation for the cyclical movements in short-

term yields and, hence, in yield spreads.

This paper is related to a number of papers that study the implications of ambiguity

and robustness for finance and macroeconomics.7 Model III incorporates the intuition in

Zhao (2020) to generate the upward-sloping nominal and real curves through the upward-

sloping short-rate expectations under the representative agent’s worst-case belief. Finally,

this paper is also related to some recent developments wherein the implications of learning

in finance were investigated. For example, Collin-Dufresne et al. (2016) show how a

standard Bayesian learning can generate subjective long-run risks when the representative

agent prefers an early resolution to uncertainty (Epstein and Zin, 1989). Building on

the insight in Malmendier and Nagel (2011) and Malmendier and Nagel (2016) that

the dynamics of the average individual’s expectations can be approximated closely by a

constant-gain learning scheme, Nagel and Xu (2019) show how this constant-gain learning

can help separate subjective and objective equity premia and explain the predictability

of excess returns. In this paper, we use the constant-gain learning scheme in a different

setting to explain bond yield dynamics.

The paper continues as follows. Section 2 outlines and solves model I in closed form

6See Singleton (1983), Fama and Bliss (1987), Kozicki and Tinsley (2001), Ang and Piazzesi (2003),
Diebold et al. (2006), Rudebusch and Wu (2008), Ludvigson and Ng (2009), Wright (2011), Cieslak and
Povala (2015), and Bauer and Rudebusch (2019), among many others.

7Recent papers that study the multiple-priors preference and its applications include Epstein and
Schneider (2007), Ilut (2012), Ilut and Schneider (2014), Ulrich (2013) , Gagliardini et al. (2009), Bianchi
et al. (2017), Ilut et al. (2018), Zhao (2017), and Zhao (2020), among many others. Papers on robustness
applications include Anderson, Hansen, and Sargent (2003), Cagetti, Hansen, Sargent, and Williams
(2002), Hansen (2007), and Hansen and Sargent (2001, 2010). For a detailed survey, see Epstein and
Schneider (2010).
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and discusses the model implications. Section 3 undertakes the same steps for model II.

Model III is solved in Section 4. Section 5 provides concluding comments.

2. Model I - Learning and trends in bond yields

In this section, we consider an endowment economy with a representative agent who

has a CRRA utility function. The agent learns with fading memory about the rates of

mean output growth and inflation. Equilibrium prices adjust such that the agent is happy

to consume the output as an endowment.

2.1. Learning with fading memory

Both the output growth and inflation follow the i.i.d. laws of motion, as follows:

∆gt+1 = µc + σcεc,t+1

πt+1 = µπ + σπεπ,t+1, (1)

where ∆gt+1 is the growth rate of real output and πt is inflation. εc,t+1 and επ,t+1 are the

i.i.d. normal shocks. The representative investor knows that both ∆gt+1 and πt+1 are

i.i.d., and also knows the values for σc and σπ, but not for µc and µπ. The agent forms

expectations about µc and µπ based on the history of the output growth and inflation

realizations, Hg
t ≡ {∆g0,∆g1, ...∆gt} and Hπ

t ≡ {π0, π1, ...πt}.

At each time t, a Bayesian agent updates the agent’s prior belief p(µc) or p(µπ) in a

way that assigns each past observation for ∆gt−j or πt−j equal weight in the posterior

probability. The equal-weighting of the past observations in Hg
t and Hπ

t means that there

is no decay in memory as the agent uses all of the available data in forming the posterior

beliefs.

In this paper, we use the constant-gain learning scheme proposed by Nagel and Xu

(2019), based on a weighted-likelihood approach used in the theoretical biology literature

(Mangel, 1990). Compared with standard constant-gain learning models, the learning

here allows us to derive the full posterior distribution. Taking output growth as an

12



example, with fading memory, the representative agent who has observed an infinite

history of past output growth ∆g forms their posterior

p(µc|Hg
t ) ∝ p(µc)

∞∏
j=0

[
exp

(
−(∆gt−j − µc)2

2σ2
c

)](1−υc)j

, (2)

where 1−υc is a positive number close to one and (1− υc)j represents a geometric weight

on each observation. The agent assigns more weight to the recent observations than to

the observations that are receding into the past. We work with uninformative priors in

the model, µc ∼ N (µc,0, σc,0) and µπ ∼ N (µπ,0, σπ,0), with σc,0 → ∞ and σπ,0 → ∞.8

The posteriors are given by the following:

µc|Hg
t ∼ N

(
µ̃c,t, υcσ

2
c

)
µπ|Hπ

t ∼ N
(
µ̃π,t, υπσ

2
π

)
, (3)

where

µ̃c,t = µ̃c,t−1 + υc (∆gt − µ̃c,t−1) = υc
∞∑
j=0

(1− υc)j ∆gt−j

µ̃π,t = µ̃π,t−1 + υπ (πt − µ̃π,t−1) = υπ
∞∑
j=0

(1− υπ)j πt−j . (4)

Unlike standard Bayesian learning, where the variance of the posterior converges to zero,

the learning is perpetual here. The variance of the posterior is the same as if the agent

had observed and fully retained in memory with equal weight Sg ≡ 1
υc

(Sπ ≡ 1
υπ
) realized

growth rate (inflation) observations. Although the actual number of observations is in-

finite, the loss of memory induced by the geometric weighted-likelihood implies that the

effective sample size is equal to a finite number Sg (Sπ). The posterior µ̃c,t (µ̃π,t) resulting

from this weighted-likelihood approach is identical to the posterior that one obtains from

a standard constant-gain updating scheme with gain υc (υπ).

8See Nagel and Xu (2019) for a discussion of the informative prior case.

13



To better understand the stochastic nature of the output growth and inflation from

the agent’s subjective viewpoint, we further derive the predictive distribution as follows:

∆gt+j|Hg
t ∼ N

(
µ̃c,t, (1 + υc)σ2

c

)
πt+j|Hπ

t ∼ N
(
µ̃π,t, (1 + υπ)σ2

π

)
, (5)

where j = 1, 2, ... and the variance of the predictive distribution contains both uncer-

tainty due to future shocks εc,t+j(επ,t+j), and uncertainty about µc(µπ). Denoting the

expectations under the predictive distribution by Ẽt, we can rewrite the posteriors as

follows:

µ̃c,t+1 = µ̃c,t + υc
√

1 + υcσcε̃c,t+1

µ̃π,t+1 = µ̃π,t + υπ
√

1 + υπσπε̃π,t+1, (6)

where ε̃c,t+1 = ∆gt+1−µ̃c,t
σc
√

1+υc and ε̃π,t+1 = πt+1−µ̃π,t
σπ
√

1+υπ . ε̃c,t+1/ε̃π,t+1 is N (0, 1) distributed and,

hence, is unpredictable under the time-t predictive distribution.

2.2. Valuation with fading memory

Unlike in a standard Bayesian environment, where the information structure can be

represented by a filtration with posterior beliefs following a martingale, with loss of

memory the information structure is not a filtration. The posterior in periods t + j are

updated based on different (but not more-informative) information available at time t.

Thus, the information structure is not a filtration. Nagel and Xu (2019) show that at

time t, the agent knows that the variation in µ̃c,t+j/µ̃π,t+j will be stationary and perceives

future increments ε̃c,t+j/ε̃π,t+j, j = 1, 2, ... as negatively serially correlated. However, the

agent cannot make use of this serial correlation by using ε̃c,t/ε̃π,t to forecast ε̃c,t+1/ε̃π,t+1,

because ε̃c,t/ε̃π,t is not observable.

To value the zero-coupon bond under this information structure, we use Mt+j|t to

denote the one-period SDF from t+j−1 to t+j, given the agent’s predictive distribution at

t. The time-t price of a zero-coupon bond that pays one unit of consumption two periods

14



from now is denoted as P (2)
t and satisfies the recursion

P
(2)
t = Ẽt[Mt+1|tP

(1)
t+1] = Ẽt

[
Mt+1|tẼt+1

(
Mt+2|t+1

)]
, (7)

and the valuation at t is based on the anticipation that the value of the asset at date t+1

will be determined by an agent – or a future self of the agent – who perceives ε̃c,t+1/ε̃π,t+1

as unpredictable.

2.3. Kalman filter alternative

The updating scheme in (4) is similar in spirit to optimal filtering with a latent

stochastic trend. For the output growth, if the agent perceives that µc follows a random

walk (µc,t = µc,t−1 + εµc,t), rather than a constant as in (1), then the resulting posterior

distribution from the steady-state Kalman filter is the same as the adaptive learning in

(3). With an appropriate choice of the volatility of the εµc,t shocks, the dynamics of the

posterior beliefs from the Kalman filter would be the same as those in the updating scheme

with fading memory in (4), however, with the information structure as a filtration. The

one-step-ahead predictive distribution and the assets valuation would also be the same. If

the true law of motion is (1) with a constant µc, then there will be a time-varying wedge

µc,t − µ̃c,t between the subjective and objective beliefs, which could play an important

role in generating predictions of excess bond returns. Given that there is no strong

empirical evidence of GDP growth predictions, especially for long-run growth, we stick

to the fading-memory interpretation in this model.

The same argument applies to the inflation process. However, U.S. inflation was

highly persistent before the late 1990s and became less predictable thereafter. It is more

reasonable to assume a latent random-walk trend with Kalman filter learning for the

period before the late 1990s and a constant mean with adaptive learning for the period

after the late 1990s. But, given that the model-implied bond prices and yields are the

same, to be consistent, we use the same constant-gain learning.
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2.4. Model solutions

Piazzesi and Schneider (2007) show the importance of Epstein and Zin (1989) prefer-

ences in generating a sizable inflation risk premium for long-maturity nominal bonds. To

illustrate the key role of trend inflation and trend output growth for long maturity bond

yields, we assume that investors have recursive preferences with a CRRA utility function

(i.e., they are indifferent between an early or late resolution of uncertainty):

Vt(Ct) = Ẽ (U (Ct) + βVt+1(Ct+1)) , (8)

where U (Ct) = C1−γ
t −1
1−γ , γ is the coefficient of the risk aversion and β reflects the in-

vestor’s time preference. Note that the agent evaluates the continuation value under

their subjective expectations.

2.4.1. Bond pricing

Since the representative agent forms expectations under their subjective beliefs when

making portfolio choices, the Euler equation holds under these subjective expectations.

Given the CRRA utility function, the log nominal pricing kernel or the nominal stochastic

discount factor can be written as follows:

m$
t+1|t = logβ − γ∆gt+1 − πc,t+1 = logβ − v′zt+1, (9)

where v′ = (γ, 1) and zt = (∆gt, πt)T . The time-t price of a zero-coupon bond that

pays one unit of consumption n periods from now is denoted as P (n)
t and it satisfies the

recursion

P
(n)
t = Ẽ[M$

t+1|tP
(n−1)
t+1 ] (10)

with the initial condition that P (0)
t = 1 and Ẽ is the expectation operator under the

predictive distribution. Given the linear Gaussian framework, we assume that p(n)
t =
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log(P (n)
t ) is a linear function of the posteriors µ̃t = (µ̃c,t, µ̃π,t)T

p
(n)
t = −A(n) − C(n)µ̃t. (11)

When we substitute p(n)
t and p(n−1)

t+1 in Euler equation (10), the coefficients in the pricing

equation can be solved with C(n) = C(n−1) + v′ = v′n, and A(n) = A(n−1) + A(1) −

0.5 ∗ V art
(
p

(n−1)
t+1

)
−Covt

(
p

(n−1)
t+1 ,m$

t,t+1

)
(see the appendix for details). The log holding

period return from buying an n period bond at time t and selling it as an n − 1 period

bond at time t+ 1 is defined as rn,t+1 = p
(n−1)
t+1 − p(n)

t , and the subjective excess return is

ern,t+1 = −Covt
(
rn,t+1,m

$
t,t+1

)
= −v′Covt (zt+1, µ̃t+1)C(n−1). The n period bond yield is

defined as y(n)
t = log(Y (n)

t ) = − 1
n
p

(n)
t .

As we can see from the solution, the yield parameter for the posterior µ̃t is constant

over horizon n and all of the variance and covariance terms are relatively small in the

data. Hence, given the CRRA utility (i.e., no extra term premium from the agent’s time

preference, in contrast to the Epstein and Zin (1989) case), the term premium is small in

this model, which implies a flat yield curve. To solve the price and yields for real bonds,

we can simply replace v′ with v′ = (γ, 0).

2.5. Empirical findings

Using the U.S. real GDP growth and the rate of inflation from the GDP deflator, we

can calculate the posterior beliefs for the output growth and inflation. We then show

that they closely match the estimated r∗ and π∗ in the literature. Given the analytical

solutions and the posteriors, we can calculate the model-implied 10-year nominal and real

bond yields, which match the historical movements in the data well.

2.5.1. Data

Real output growth and GDP deflator inflation are from the Bureau of Economic

Analysis for the period 1947.Q2 to 2018.Q2. The end-of-quarter yields for 1- to 10-year

bonds are from the daily dataset constructed by Gürkaynak et al. (2007) for the period

1962.Q1 to 2018.Q2. The Treasury inflation protected securities (TIPS) yields (2003.Q1
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γ β υc υπ σc σπ corr

3 1.019 0.01 0.045 0.94 0.64 -0.072

Table 1: Configuration of model-I parameters
Table 1 reports the parameter values for the output growth and inflation process and for the constant gain in learning. All
of the parameters are given in quarterly terms. The mean and standard deviation are in percentages.

to 2018.Q2) and the end-of-quarter yields for the three- and six-month Treasury bills are

obtained from the U.S. Department of the Treasury via the Fed database at the St. Louis

Federal Reserve (1969.Q4 to 2018.Q2). The forecasts for real output growth and inflation

are from the Philadelphia Fed’s survey of professional forecasters (SPF) for the period

1968.Q3 to 2018.Q2. The r∗ and π∗ variables are from Bauer and Rudebusch (2019) for

the period 1971.Q4 to 2017.Q2. We use 15 years (1947.Q2 to 1962.Q1) as training periods

for the posterior beliefs and show the results starting from 1962.Q2 when the bond yield

data first became available.

2.5.2. Parameters

The volatility parameters for the output growth and inflation are calibrated to match

their counterparts in the data. The correlation between the output growth and inflation

in the model is calibrated to match the correlation in the data. The constant-gain pa-

rameters υc and υπ are calibrated to match the variations in r∗t and π∗t .9 We follow the

literature and set the risk aversion to 3. The time preference β is calibrated to match

the level of the 10-year nominal yields in the data, which is close to the value in Piazzesi

and Schneider (2007). The resulting parameter values are shown in Table 1.

2.5.3. Posteriors versus r∗t and π∗t
The empirical literature has shown the importance of accounting for macro trends

in the term structure of the interest-rate modeling. However, the stationary assumption

in the leading equilibrium bond pricing models makes it hard to generate the histor-

9These parameters are within the range of values used in the literature for an optimal Kalman gain.
Gilchrist and Saito (2008) use v = 0.06138, Edge et al. (2007) use v = 0.11. Malmendier and Nagel
(2016) show that v = 0.018 for the quarterly data that fits the dynamics of the average belief about the
inflation expectations in the microdata.
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ically observed low-frequency variations in interest rates. The posterior mean of the

output growth (inflation) in Section 2.1 would be a random-walk process under a stan-

dard Bayesian learning; however, the posterior variance would decline deterministically

to zero and the learning would converge (Collin-Dufresne et al., 2016). In this paper, the

representative agent updates their subjective beliefs with a constant gain, which induces

memory loss and is otherwise a standard Bayesian. However, the learning in this model

is slow but perpetual, and it generates low-frequency variations in the posterior beliefs

that closely match the r∗t and π∗t that were estimated in the literature and, conveniently,

also implies a stationary economy.10

Figure 2 (left panel) shows the model-implied 10-year real yield (or the model-implied

r∗t ), which is a linear function of the posterior mean of the output growth, γµ̃c,t + Cov,

closely tracks the estimated mean r∗t . Given the CRRA utility, the term premium part

Cov is very small in the 10-year real yield, and variations in the model-implied 10-year

real yield are mainly driven by variations in µ̃c,t. The mean r∗t is taken from Bauer

and Rudebusch (2019) and is an average of the three macroeconomic estimates of r∗

obtained from Laubach andWilliams (2003), Lubik and Matthes (2015), and Kiley (2015).

Figure 2 (right panel) shows that the model-implied 10-year real yield and the three

individual estimates of r∗ also closely co-move for most of the sample. The three different

r∗ estimates diverged from each other before the 1980s. Model I not only captures the low-

frequency variations, but its implied r∗t also exhibits a moderate business cycle component,

with dips during recessions and some degree of recovery afterwards.

Figure 3 shows that the model-implied posterior belief of the mean inflation matches

very well the trend inflation π∗t obtained from Bauer and Rudebusch (2019). The trend

inflation is a survey-based measure, namely, the Federal Reserve’s series on the per-

ceived inflation target rate, denoted as the PTR. It measures the long-run expectations

of inflation in the price index of personal consumption expenditures (PCE). The result

confirms our assumption in the model that the representative agent forms their inflation

10At each time t, the agent perceives that shocks that occur today are negatively serially correlated
with future shocks; see proof in Nagel and Xu (2019).
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Mean r* 10-year real yield (model implied)

Average r* and the model implied 10-year real yield  
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Figure 2:

r* (LW) r* (LM) r* (Kiley) 10-year real yield (model implied)

Individual r* and the model implied 10-year real yield 

The average and individual r∗s (quarterly data) are obtained from Bauer and Rudebusch (2019) for the period 1971:Q4 to
2017:Q2. The three macroeconomic estimates of r∗s are obtained from Laubach and Williams (2003), Lubik and Matthes
(2015), and Kiley (2015), respectively. The model-implied 10-year real yields (quarterly data) are from 1962:Q1 to 2018:Q2.
The gray bars represent periods of recession as defined by the NBER.

expectations based on past inflation rates.

2.5.4. 10-year Treasury yield and posteriors

While it has long been recognized that nominal interest rates contain a slow-moving

trend component (Nelson and Plosser, 1982; Rose, 1988), bond yields in an equilibrium

model (and no-arbitrage term structure models in general) are generally modeled as sta-

tionary, mean-reverting processes. As a result, it is hard to explain the low-frequency

variations in interest rates in such models, and these are mostly attributed to the term-

premium component, which is a residual term in empirical models and is usually inter-

preted as the inflation risk premium in equilibrium models.

As shown in Figures 2 and 3, the posteriors (γµ̃c,t and µ̃π,t) in model I match the macro

trends (r∗t and π∗t ). An illustration of the potential importance of these posteriors in the

10-year nominal yield is provided in Figure 4. The hump-shaped 10-year Treasury yield

from the late 1960s to the late 1990s reflects an increase in the inflation expectations

before the mid-1980s and a secular decline afterwards. Over the past two decades, as

inflation expectations have stabilized, the pronounced decline in the expectations for the

output growth and, hence, the 10-year real yield, are what mainly drive the downtrend in

nominal yields. As a result, the model-implied 10-year nominal yield captures the trend

movements in the 10-year Treasury yield for the whole sample.
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Figure 3:

π* Posterior mean inflation (model implied)

π* and posterior mean inflation

The trend inflation π∗ (quarterly survey-based PTR measure are obtained from FRB/US data) are obtained from Bauer
and Rudebusch (2019) from 1971:Q4 to 2017:Q2. The model-implied posterior belief for the mean inflation (quarterly data)
are from 1962:Q1 to 2018:Q2. The gray bars represent periods of recession as defined by the NBER.
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Figure 4:

10-year nominal yield 10-year real yield (model implied)

Posterior mean inflation (model implied) 10-year nominal yield (model implied)

10-year nominal yield and macro trends 

The end-of-quarter 10-year nominal yields are from Gürkaynak et al. (2007) for the period 1962:Q1 to 2018:Q2. The model
implied 10-year real yield, 10-year nominal yield, and posterior belief for mean inflation (quarterly data) are obtained for
the period 1962:Q1 to 2018:Q2. The gray bars represent periods of recession as defined by the NBER.
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2.5.5. Model-I limitations: cycle and spread in yields

In contrast to the anticipated utility case (Kreps, 1998; Cogley and Sargent, 2008),

belief updating is an important risk to the agent, and the posteriors are the only state

variables in model I (and, hence, the only source of risk for pricing). We have shown

that, with fading memory, the modified Bayesian learning is perpetual, and the resulting

posterior beliefs do a good job of tracking the macro trends. Therefore, model I provides

a good explanation of the trend in the 10-year Treasury yield. However, model I is silent

about two other important features in the yields – the cycle and the term spread.

Historically, short-term bond yields are lower (on average) and much more volatile

than long-term bond yields. The spread between long- and short-term bond yields starts

to be positive entering recessions, shrinks in the late expansion stage of the business cycle

and becomes inverted before recessions. Given the CRRA utility, the term premium

is small in model-I, and the model-implied yields for 10- and 1-year bonds are almost

identical. Hence, the model is not able to explain the dynamics in the term spread, nor

can it explain the cyclical movements in the short-term bond yields. In the next session,

we extend model I to overcome these shortcomings.

3. Model II - Learning, trends, and cycles in bond yields

In model II, we still consider an endowment economy with a representative agent who

has a CRRA utility function. As in model I, the agent learns with fading memory. But

here, both GDP growth and inflation rates are decomposed into two components: one

stable component and one transitory/volatile component. The agent learns about mean

output growth and inflation rates from the stable component and about the stationary

deviations from the mean from the transitory/volatile component. Equilibrium prices

adjust such that the agent is happy to consume the output as an endowment.

3.1. Decomposition and learning

The four components of GDP – investment spending, net exports, government spend-

ing, and consumption – do not move in lockstep with each other. In fact, their levels of

22



volatility greatly differ. Consumption is highly stable and varies less with the business

cycle. In contrast, the other three components vary greatly during economic contractions

and expansions. For this reason, we assume that there are two unknowns for the agent to

learn about in the output growth process: the long-run mean and a latent stochastic de-

viation from the mean (stationary). The agent learns about long-run mean GDP growth

only from the stable component (PCE), and they learn about the stationary deviation

from the mean by using only the volatile component (GDP growth excluding the PCE).

Similarly, for inflation, the agent learns about the long-run mean inflation only from core

inflation, and they learn about the transitory and stationary deviation from the mean

by using only the transitory price changes (the GDP deflator excluding core inflation).

Formally, output growth and inflation can be decomposed into the following (account

identity):

∆gt+1 = ∆g∗t+1 +Gapgt+1

πt+1 = π∗t+1 +Gapπt+1, (12)

where ∆gt+1 and πt+1 are the total real GDP growth and inflation, respectively. ∆g∗t+1

and π∗t+1 are growth in real consumption (scaled by total real GDP Ct+1−Ct
GDPt

) and core

inflation (scaled by total price level P coret+1 −P
core
t

Pt
), respectively. Gapgt+1 and Gapπt+1 are

the total GDP growth rate excluding ∆g∗t+1 and the total inflation rate excluding π∗t+1,

respectively.

Both real consumption growth and core inflation follow the i.i.d. laws of motion as

follows:

∆g∗t+1 = µ∗c + σcε
∗
c,t+1

π∗t+1 = µ∗π + σπε
∗
π,t+1, (13)

where ε∗c,t+1 and ε∗π,t+1 are the i.i.d. normal shocks. As with model I, the representative

agent knows that both ∆g∗t+1 and π∗t+1 are i.i.d., and they also know σc and σπ but not

23



the long-run mean µ∗c and µ∗π. The agent forms expectations about µ∗c and µ∗π, based on

the same learning scheme as in model I, with the same posteriors as follows:

µ∗c |H
g∗

t ∼ N
(
µ̃∗c,t, υ

∗
cσ

2
c

)
µ∗π|Hπ∗

t ∼ N
(
µ̃∗π,t, υ

∗
πσ

2
π

)
, (14)

where

µ̃∗c,t = µ̃∗c,t−1 + υ∗c
(
∆g∗t − µ̃∗c,t−1

)
µ̃∗π,t = µ̃∗π,t−1 + υ∗π

(
π∗t − µ̃∗π,t−1

)
, (15)

and the same predictive distribution,

∆g∗t+j|H
g∗

t ∼ N
(
µ̃∗c,t, (1 + υ∗c )σ2

c

)
π∗t+j|Hπ∗

t ∼ N
(
µ̃∗π,t, (1 + υ∗π)σ2

π

)
, (16)

where j = 1, 2, ..., Hg∗

t ≡ {∆g∗0,∆g∗1, ...∆g∗t }, and Hπ∗
t ≡ {π∗0, π∗1, ...π∗t }. Both Gap

g
t+1 and

Gapπt+1 are assumed to contain a latent stationary component as in Bansal and Yaron

(2004) and Piazzesi and Schneider (2007):

Gapgt+1 = xc,t+1 + σgapc εgapc,t+1

Gapπt+1 = xπ,t+1 + σgapπ εgapπ,t+1

xc,t+1 = ρcxc,t + σxc ε
x
c,t+1

xπ,t+1 = ρπxπ,t + σxπε
x
π,t+1, (17)

where εgapc,t+1, εgapπ,t+1, εxc,t+1, and εxπ,t+1 are i.i.d. normal shocks. The representative agent

knows all of the parameters but not xc,t+1 and xπ,t+1. They form expectations about

xc,t+1 and xπ,t+1, based on the same learning scheme as for the long-run mean but with

potentially different geometric weighting parameters, υgapc and υgapπ . The posteriors are
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given by the following:

xc,t+1|Hgap
g,t ∼ N

(
ρcx̃c,t, υ

gap
c

(
(σxc )2 + (σgapc )2

))
xπ,t+1|Hgap

π,t ∼ N
(
ρπx̃π,t, υ

gap
π

(
(σxπ)2 + (σgapπ )2

))
x̃c,t = ρcx̃c,t−1 + υgapc (Gapgt − ρcx̃c,t−1)

x̃π,t = ρπx̃π,t−1 + υgapπ (Gapπt − ρπx̃π,t−1) , (18)

where Hgap
g,t ≡ {Gapg0, Gap

g
1, ...Gap

g
t} and Hgap

π,t ≡ {Gapπ0 , Gapπ1 , ...Gapπt }. As discussed

in 2.3, the updating is the same as for an optimal Kalman filtering with an appropriate

choice of parameter values.

To better understand the stochastic nature of the output growth and inflation pro-

cesses from the agent’s subjective viewpoint, we calculate the total predictive distribution

∆gt+j|Hg
t ∼ N

(
µ̃∗c,t + ρcx̃c,t, (1 + υ∗c )σ2

c + (1 + υgapc )
(
(σxc )2 + (σgapc )2

))
πt+j|Hπ

t ∼ N
(
µ̃∗π,t + ρπx̃π,t, (1 + υ∗π)σ2

π + (1 + υgapπ )
(
(σxπ)2 + (σgapπ )2

))
, (19)

where j = 1, 2, ... and the variance of the predictive distribution contains both the un-

certainty due to future shocks and the uncertainty about µ∗c/µ∗π and xc,t+1/xπ,t+1. Hg
t

contains both Hg∗

t and Hgap
g,t , and Hπ

t contains both Hπ∗
t and Hgap

π,t .

3.2. Bond pricing

The Euler equation holds under the representative agent’s subjective expectations,

and the log nominal pricing kernel is the same as in model I. The time-t price of a

zero-coupon bond satisfies the same recursion as in equation (10).

Model I has two state variables (the posterior means for both the output growth and

inflation) that explain the trend in the long-term yields. However, the different GDP

growth and inflation components appear to have very different dynamics in the data;

hence, we allow the agent to learn the long-run mean and cyclical components from the

data separately in this model. Model II has four state variables: µ̃∗c,t, µ̃∗π,t, x̃c,t, and x̃π,t.
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Given the linear Gaussian framework, we assume that p(n)
t = log(P (n)

t ) is a linear function

of these state variables µ̃∗t = (µ̃∗c,t, µ̃∗π,t)T and xt = (x̃c,t, x̃π,t)T :

p
(n)
t = −A(n) −B(n)xt − C(n)µ̃∗t . (20)

When we substitute p(n)
t and p(n−1)

t+1 in the Euler equation (10), the coefficients in the pric-

ing equation can be solved with B(n) = B(n−1)ρ+v′ρ, C(n) = C(n−1)+v′ = v′n, and A(n) =

A(n−1)+A(1)−0.5∗V art
(
p

(n−1)
t+1

)
−Covt

(
p

(n−1)
t+1 ,m$

t,t+1

)
(see the appendix for details). The

subjective excess return is ern,t+1 = −Covt
(
rn,t+1,m

$
t,t+1

)
= −v′Covt

(
zt+1, µ̃

∗
t+1

)
C(n−1)−

v′Covt (zt+1, xt+1)B(n−1). All of the variance and covariance terms are relatively small in

the data. Hence, given the CRRA utility, the term premium is small in this model.

As we can see from the solution, the yield parameter (C(n)

n
) for the posterior mean

µ̃∗t is constant over horizon n; therefore, the impacts of µ̃∗t on the long- and short-term

yields are the same, which explains the low-frequency movements (trend) in the yields.

However, the yield parameter for xt, B
(n)

n
, is decreasing over horizon n. Hence, the impact

of xt on the short-term yield is bigger than on the long-term yield, which captures the

cyclical movements in the short-term yields. The spread between the long- and short-term

yields is mainly driven by the cyclical component xt, which could be positive or negative

for many periods (depending on the persistence parameter ρ). Still, in contrast with the

data, the model-II-implied spread is mean zero because of the stationarity assumption for

xt. To solve the price and yields for real bonds, we can simply replace v′ with v′ = (γ, 0).

3.2.1. Taylor Rule interpretation

The one-quarter-ahead nominal yield from equation (20) is a market-based short rate

that reflects investors’ expectations (of growth and inflation). Given its performance in

matching short-term interest rates in the data (see Section 3.3), one natural question is:

What is the connection with the Taylor Rule (Taylor, 1993)? To answer this question,

the one-quarter-ahead rate from equation (20) can be rewritten as follows:
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y
(1)
t = A(1) + γµ̃∗c,t + µ̃∗π,t + ρπx̃π,t + γρcx̃c,t

= r∗t + µ̃∗π,t + ρπx̃π,t + γρcx̃c,t

= i∗t + ρπx̃π,t + γρcx̃c,t, (21)

where the neutral real rate of interest r∗t = A(1) + γµ̃∗c,t and the neutral nominal rate i∗t =

r∗t +µ̃∗π,t. x̃c,t and x̃π,t are the short-run growth rate and inflation expecations, respectively.

The nominal short rate in equation (21) is similar to a Taylor Rule specification in the

literature, with a few exceptions. The first difference is that r∗t and i∗t move endogenously,

instead of as constants. Secondly, x̃c,t is the short-run growth-rate deviation from its

long-run mean and not an output deviation from its potential in level. Finally, x̃π,t is the

short-run inflation deviation from its long-run mean and not a realized inflation deviation

from a constant target.

3.3. Empirical findings

We use the same data sets as in model I, but the real GDP growth and rate of inflation

are decomposed into one stable component and one transitory component, respectively.11

We can then calculate the posterior beliefs for the long-run mean and the stationary

deviation from the mean. Again, we show that the model-implied r∗t closely matches the

estimated r∗t in the literature and the total posterior belief for inflation closely matches

the survey-based trend in inflation. As a result, the model-implied 10-year nominal bond

yields closely match the historical trend movements in the 10-year Treasury yields. In

addition, the model can also capture the cyclical movements in 1-year Treasury yields.

11Note that the core inflation data are available starting from 1959.Q2. Therefore, we use about 10
years (1959.Q2 - 1968.Q3) of data as a training period for the posterior beliefs and show the results
starting from 1968.Q3.
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γ β υ∗c υ∗π υgapc υgapπ corr∗

4 1.0245 0.015 0.05 0.12 0.2 -0.14

ρc ρπ σc σπ σcx σπx corrgap

0.92 0.98 0.42 0.33 0.64 0.35 -0.04

Table 2: Configuration of model-II parameters
Table 2 shows the parameter values for the output growth and inflation processes and for the constant gain in learning.
All of the parameters are given in quarterly terms. The means and standard deviations are in percentages.

3.3.1. Parameters

The volatility parameters for the consumption growth and core inflation are cali-

brated to match their counterparts in the data. As shown in the appendix, even though

we have two different parameters for growth gap (inflation gap) volatility, σxc and σgapc

(σxπ and σgapπ ), these parameters can be considered as one for the model’s solution; hence,

σcx =
√

(σxc )2 + (σgapc )2 (σπx =
√

(σxπ)2 + (σgapπ )2) is calibrated to match the volatility

in the transitory GDP growth (transitory inflation). In the model, the correlations be-

tween output growth and inflation (for both the stable and transitory components) are

calibrated to match the correlations in the data.

The parameters for learning in inflation υ∗π, ρπ, and υgapπ are calibrated to match the

variations in π∗t and the one-quarter-ahead mean survey inflation expectation (persistence

and volatility). The parameters for learning in growth υ∗c , ρc, and υgapc are calibrated to

match the variations in r∗t and in the 1-year nominal yields (persistence and volatility).12

We follow the literature and set the risk aversion as 4, and the time preference, β, is

calibrated to match the level of the 10-year nominal yields in the data. The resulting

parameter values are reported in Table 2.

3.3.2. Posteriors versus r∗t and π∗t
It is well understood by investors that some components of inflation and GDP growth

are more volatile than others. Hence, it is natural for the agent to separately learn the

long-run mean and the stationary deviation from the mean. The agent uses a longer

12These parameter values imply that investors learn the long-run mean growth (inflation rate) through
an effective sample size of 16 years (5 years), and they learn the business cycle deviations through an
effective sample size of 1-2 years.
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Figure 5:

π* 10-year posterior mean inflation (model implied)

π* and 10-year posterior mean inflation

The trend inflation π∗ (the quarterly survey-based PTR measure obtained from FRB/US data) are obtained from Bauer
and Rudebusch (2019) for the period from 1971:Q4 to 2017:Q2. The model-implied total posterior belief for the 10-year-
ahead mean inflation (quarterly) was obtained for the period from 1968:Q3 to 2018:Q2. The gray bars represent periods
of recession as defined by the NBER.

effective sample size to learn the long-run mean and a shorter effective sample size to

learn the short-run deviation (υ∗c < υgapc and υ∗π < υgapπ ). With the same learning with

memory loss, the representative agent slowly but perpetually updates their posterior

beliefs.

Figure 5 shows that the model-implied total posterior belief for the 10-year-ahead

mean inflation matches the survey-based PTR trend inflation π∗t . Similarly, Figure 6

shows that the model-implied total posterior belief for the 1-quarter-ahead mean inflation

also closely tracks the survey mean for the 1-quarter-ahead inflation from the SPF. The

result confirms our assumption that the agent forms their inflation expectations differently

for the long-run versus the short-run. Figure 7 shows the model-implied r∗t , which is a

linear function of only the posterior for the long-run mean growth γµ̃∗c,t + Cov closely

tracks the three macroeconomic estimates of r∗.13

13To be consistent with the concept of r∗, the short-run effect from x̃c,t on the real yield is not
included for our calculation of the model-implied r∗ because it will eventually vanish. Therefore, the
model-implied r∗ equally affects the real yields of any maturity.
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Figure 6:

Survey mean inflation expectations Posterior mean inflation expectations (model implied)

One-quarter-ahead inflation expectations - posterior vs. survey

The mean survey one-quarter-ahead inflation (quarterly data) are obtained from the Philadelphia Fed’s SPF from 1968:Q3
to 2018:Q2. The model-implied total posterior belief for 1-quarter-ahead mean inflation (quarterly) covers the period from
1968:Q3 to 2018:Q2. The gray bars represent periods of recession as defined by the NBER.
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Figure 7:

r* (LW) r* (LM) r* (Kiley) r* (model implied)

Individual r* and model implied r*

The individual r∗s (quarterly data) are obtained from Bauer and Rudebusch (2019) for the period from 1971:Q4 to 2017:Q2.
The three macroeconomic estimates of r∗s are obtained from Laubach and Williams (2003), Lubik and Matthes (2015),
and Kiley (2015). The model-implied r∗ (quarterly) covers the period from 1968:Q3 to 2018:Q2. The gray bars represent
periods of recession as defined by the NBER.
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3.3.3. One-year and 10-year Treasury yields, and their spread

In model I, we show the importance of macro trends in explaining the movements in

the long-term nominal yield. For the same reason, the posteriors for the long-run mean

growth and inflation move slowly and match the macro trends in model II, and Figure

8 shows the importance of these posteriors in the 10-year nominal yield.14 The secular

decline in the 10-year Treasury yield after the 1980s was mainly driven by a combination

of two phenomena: first, a downtrend in inflation expectations and then a steady decline

in r∗t .

Due to the lack of cyclical movements in the posteriors, model I is limited to explaining

only the trend in the long-term yields. In model II, however, learning about the deviation

from the mean allows the model to also capture the cyclical movements in the short-term

yields. Figure 9 (left panel) shows that the model-implied 1-year nominal yield tracks the

historical data for the 1-year Treasury yield relatively well, with some exceptions. For

the post-global financial crisis period, the 1-year Treasury yields were mostly constrained

by the zero lower bound, but the model-implied 1-year nominal yields were much more

volatile, and these two bonds recently began to line up again.15 Also at the beginning

of the sample period, the model-implied 1-year nominal yield seems to have been more

volatile, which suggests that the agent could have been using different constant-gain

parameters for these periods.

Another limitation of model I is that the spread between the long- and short-term

bond yields is almost zero, due to the CRRA utility and the equal impacts of the posteriors

on the yields of any maturity. In model II, it is still true that the impacts of µ̃∗t on the

yields of all maturities are the same (capturing the long-run trends). But, as shown

in the solution, the impact of xt (as AR(1) processes) on the short-term yield is bigger

14The long-term yield is less sensitive to the short-run belief movements, and its variations (trend and
business cycle) are mainly driven by updating the beliefs in the long-run mean growth and inflation rates
(as in model I).

15Note that the whole nominal yield curve for the post-global financial crisis period is distorted by the
zero lower bound, quantitative easing, and other unconventional monetary policies. The model-implied
yield curve for these periods is very different from the data, which can be used as shadow rates, and they
started to line up again after 2015.

31



than on the long-term yield, which implies that when the short-run beliefs are negative

(positive), the spread would be positive (negative). Hence, model II can generate cyclical

movements in the short-term yield and in the spread, mostly due to variations in xt.

Figure 9 (right panel) shows that the model-implied 10-year-minus-1-year yield spread

tracks the business cycle movements in Treasury yield spreads quite well.

Starting from the previous trough, the short-term nominal yield starts to rise when

the agent begins to revise their beliefs about the short-run growth and inflation rates

upwards towards their long-run means (the short-run deviations are still negative and

the spread is positive), and the spread starts to shrink as these short-run deviations

are turning from negative to positive. This pattern continues until the late expansion

stage (or peak) when both the short-run growth rate and inflation expectations are above

their long-run means (short-run deviations are positive now), which implies an inverted

yield curve. From the previous trough to peak, both the inflation gap and the output

gap move from negative to positive, and monetary policy turns from accommodative to

contractionary (short-term yields increase), similar to the Taylor Rule. The agent then

begins to revise their short-run beliefs sharply downwards, entering a recession (from

positive to negative), and the spread switches from negative to positive.

3.3.4. Inverted curves, secular stagnation, and recessions

Figure 10 shows that (1) the posteriors for the short-run deviations (x̃c,t and x̃π,t)

moved in opposite directions before 2000 and in the same direction afterwards, and (2)

x̃c,t and x̃π,t were persistently negative for most of the post-2000 period.16 Given the bond

yield solution in Section 3.2, the impacts of x̃c,t and x̃π,t on short-term nominal yields

(and hence on the nominal spread) likely canceled each other out before 2000, and they

simultaneously lowered the short-term nominal yields (and hence increased the nominal

spread) afterwards. Therefore, the model can generate an upward shift in the nominal

spread that is consistent with the data in Figure 1. These observations are also consistent

16The first observation is consistent with the finding that inflation was bad news for future growth
before 2000 (Piazzesi and Schneider, 2007) and switched to good news afterwards (Burkhardt and Has-
seltoft, 2012; David and Veronesi, 2013; Campbell et al., 2017; Zhao, 2020).
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Figure 8:

10-year nominal yield 10-year posterior mean inflation (model implied)

10-year real yield (model implied) 10-year nominal yield (model implied)

10-year nominal rate and macro trends

The end-of-quarter 10-year nominal yields are obtained from Gürkaynak et al. (2007) for the period from 1968:Q3 to
2018:Q2. The model-implied 10-year real yield, 10-year nominal yield, and the total posterior belief for the mean inflation
(quarterly data) are for the period from 1968:Q3 to 2018:Q2. The gray bars represent periods of recession as defined by
the NBER.
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Figure 9:

1-year nominal yield 1-year nominal yield (model implied)

1-year nominal yield
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Figure 9:

Nominal 10-1 spread Nominal 10-1 spread (model implied)

Nominal (10-year - 1-year) spread - actual vs. model

The end-of-quarter 1-year nominal yields and the 10-year nominal - 1-year nominal yield spreads are obtained from Gürkay-
nak et al. (2007) for the period from 1968:Q3 to 2008:Q2. The model-implied 1-year nominal yields and the 10-year nominal
- 1-year nominal yield spreads are for the period from 1968:Q3 to 2018:Q3. The gray bars represent periods of recession as
defined by the NBER.
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with the secular stagnation statement in Summers (2014) that the output gap (x̃c,t in

this model) and the inflation gap (x̃π,t in this model) were persistently negative after

2000. The secular decline in r∗t and the 10-year Treasury yield were mainly driven by the

decline in the posteriors for the long-run means, and the declines in short- to mid-term

Treasury yields were further due to the persistently negative x̃c,t and x̃π,t.

From a monetary policy point of view, the Federal Reserve faced a trade-off between

short-run inflation and growth pre-2000 (the U.S. economy was mostly hit by supply

shocks); the Fed had to raise the short-rate to either lower inflation while the output gap

was negative (1970-1985) or to lower the output gap while the inflation gap was negative

(1985-2000). However, starting in 2000, the U.S. economy was mostly hit by demand

shocks, and the Fed could stay low for a longer period of time without facing a trade-off

between the inflation and output gaps. Hence, we observed more-frequent recessions for

the period before the late 1990s and less-frequent recessions (or longer business cycles)

for the period afterwards.

3.3.5. Model II limitations: upward-sloping yield curve

Given the trend (µ̃∗t ) and cycle (xt) as the posterior beliefs, model II is able to match

both the long-run trend and the cyclical variations in the yields. However, despite the fact

that the model-II-implied nominal spread can stay positive or negative for an extended

period of time at different phases of the business cycle, the level was almost in parallel

lower than data (as shown in Figure 9) due to the stationary assumption for xt and the

CRRA utility (hence, the model-implied spread is stationary and mean zero). But, in the

data, the spread between the long- and short-term bond yields was positive, in general,

and only became inverted before recessions.

The standard equilibrium mechanism used to generate an upward-sloping nominal

yield curve is the inflation-risk-premium approach by Piazzesi and Schneider (2007),

which relies on inflation as bad news for future growth and the assumption that agents

prefer an early resolution to uncertainty. Given that inflation switched from bad to good

news for future growth over the past two decades, we extend model II in the next section
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by incorporating an alternative worst-case belief approach (Zhao, 2020). The model-III-

implied short-rate expectations (both nominal and real) are upward-sloping under the

agent’s equilibrium worst-case belief and, hence, is consistent with the data; the model-

implied spread is positive on average.

4. Model III - Learning, trends, cycles, and spreads in bond yields

In model III, we continue to consider an endowment economy with a representative

agent who has a CRRA utility function. However, the agent is assumed to have limited

information about the stochastic environment and, hence, faces both risk and ambiguity.

Here, the risk refers to the situation where there is a probability law that guides the

choice. At the same time, the ambiguity-averse agent (with recursive multiple priors

or a maxmin preference by Epstein and Schneider 2003) lacks the confidence to assign

probabilities to all of the relevant events. Instead, they act as if they are evaluating future

prospects using a worst-case probability drawn from a set of multiple distributions.

Investors in this economy have in mind a benchmark or reference measure of the

economy’s dynamics that represents the best estimate of the stochastic process. In model

III, the reference measure is the full stochastic environment in model II (including the

posteriors). But the agent is concerned that the reference measure is misspecified and

believes that the true measure is actually within a set of alternative measures that are

statistically close to the reference distribution.17 Equilibrium prices adjust such that the

ambiguity-averse agent is happy to consume the output as an endowment.

17The empirical literature found that professional forecasters, and even central banks, make systematic
forecast errors by comparing the mean forecasts and the subsequent realized values (Faust and Wright,
2009; Cieslak, 2018). In this model, the reference measure represents the best point estimate from the
data and the agents would use it for forecasting. However, the agents are more cautious when they make
decisions and, instead, they use the worst-case belief for decision making. Therefore, ambiguity in this
model provides a rational explanation for the expectation errors.
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4.1. Learning and ambiguity

We assume the total predictive distribution from model II as the reference measure,

which can be rewritten as follows:

∆gt+1 = µ̃∗c,t + ρcx̃c,t + εc,t+1

πt+1 = µ̃∗π,t + ρπx̃π,t + επ,t+1, (22)

where εc,t+1 is a combination of ε̃∗c,t+1, ε̃
gap
c,t+1, and ε̃xc,t+1. επ,t+1 is a combination of ε̃∗π,t+1,

ε̃gapπ,t+1, and ε̃xπ,t+1. µ̃∗c,t, µ̃∗π,t, x̃c,t, and x̃π,t have exactly the same dynamics as in model

II. However, the agent is concerned that their reference measure is misspecified and that

the true measure is actually within a set of alternative measures that are statistically

close to the reference measure. The set of alternative measures is generated by a set of

different mean output growth (inflation) rates around the reference mean value µ̃∗c,t+ρcx̃c,t
(µ̃∗π,t+ρπx̃π,t). Specifically, under alternative measure pã, the output growth and inflation

rates are as follows:

∆gt+1 = ãc,t + µ̃∗c,t + ρcx̃c,t + ε̃c,t+1

πt+1 = ãπ,t + µ̃∗π,t + ρπx̃π,t + ε̃π,t+1, (23)

where ãc,t ∈ Ac,t = [µ̃∗c,t + ρcx̃c,t− ac,t, µ̃∗c,t + ρcx̃c,t + ac,t] and ãπ,t ∈ Aπ,t = [µ̃∗π,t + ρπx̃π,t−

aπ,t, µ̃
∗
π,t + ρπx̃π,t + aπ,t] with both ac,t and aπ,t being positive. Each trajectory of ãt

will yield an alternative measure pã for the joint process. A larger ac,t(aπ,t) implies that

investors are less confident about the reference distribution.18

Using the forecast dispersion from the Blue Chip Financial Forecast (BCFF) survey

as a measure for the size of the ambiguity, Zhao (2020) finds that, before the late 1990s,

the size of the ambiguity for long-horizon inflation was bigger than that for short horizons

and that this pattern was reversed afterwards. However, the size of the ambiguity for

18Ilut and Schneider (2014) link the size of ambiguity with the observed volatility under the reference
measure and provide a detailed discussion for the source of ambiguity.
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long-term real output growth was always smaller than those for the short term. Together

with the fact that the positive inflation shocks changed from negative to positive news

about future growth in the past 20 years, the ambiguity-averse agent chose the upper

bound (aπ,t) as the worst-case measure for inflation before the late 1990s and the lower

bound (−aπ,t) as the worst-case measure afterwards, while for output growth (as the

endowment), the agent always chose the lower bound (−ac,t) as the worst-case measure in

equilibrium. Zhao (2020) showed that the expectations hypothesis roughly holds under

investors’ worst-case beliefs and the upward-sloping nominal and real yield curves are

mainly driven by the upward-sloping nominal and real short-rate expectations.

We follow Zhao (2020) and model ac,t (aπ,t) as a random walk with drift as follows:

ac,t+1 = µac + ac,t + σacεac,t+1 + σaca εa,t+1

aπ,t+1 = µaπ + aπ,t + σaπa εa,t+1, (24)

where µac and µaπ are the drift parameters, which can be positive or negative. ac,t and

aπ,t are driven by a common exogenous shock εa,t+1, where the coefficients σaca and σaπa
capture the correlation between them. εac,t+1 is an ac,t specific shock that captures the

difference of these two.

4.2. Preference: recursive multiple priors

Piazzesi and Schneider (2007) show the importance of the Epstein and Zin (1989)

preference in generating a sizable inflation risk premium. To illustrate the key role of

the ambiguity yields, we assume investors have a recursive multiple-priors preference

axiomatized by Epstein and Schneider (2003) but with the same CRRA utility function

as in model I:

Vt(Ct) = min
pt∈Pt

Ept (U (Ct) + βVt+1(Ct+1)) , (25)

where U (Ct) = C1−γ
t −1
1−γ , γ is the coefficient of the risk aversion and β reflects the investor’s

time preference.
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4.3. Bond pricing

The Euler equation holds under the representative agent’s worst-case belief, and the

log nominal pricing kernel is the same as in model I. The time-t price of a zero-coupon

bond satisfies the same recursion in equation (10), but the expectation is under the

worst-case belief.

Model II has four state variables (the posterior beliefs µ̃∗c,t, µ̃∗π,t, x̃c,t, and x̃π,t ) that

explain the trends and cycles in the yields. To generate upward-sloping nominal and real

yield curves, we add two more state variables in Model III: ac,t and aπ,t. Given the linear

Gaussian framework, we assume that p(n)
t = log(P (n)

t ) is a linear function of these state

variables µ̃∗t = (µ̃∗c,t, µ̃∗π,t)T , xt = (x̃c,t, x̃π,t)T and at = (ac,t, aπ,t)T :

p
(n)
t = −A(n) −B(n)xt − C(n)µ̃∗t −D(n)at. (26)

When we substitute p(n)
t and p

(n−1)
t+1 in the Euler equation (10), the coefficients in the

pricing equation can be solved with B(n) = B(n−1)ρ+v′ρ, C(n) = C(n−1)+v′ = v′n, D(n) =

D(n−1)+v′φa = v′nφa, and A(n) = A(n−1)+A(1)−0.5∗V art
(
p

(n−1)
t+1

)
−Covt

(
p

(n−1)
t+1 ,m$

t,t+1

)
+

D(n−1)µa (see the appendix for details), where φa represents the equilibrium choice of the

upper or lower bounds, which are equal to −1 or +1 on the diagonal. All of the variance

and covariance terms are relatively small in the data. Hence, given the CRRA utility,

the subjective excess return is small in this model.

As in model II, µ̃∗t explains the low-frequency movements (trend) in the yields and xt
captures the cyclical movements in the short-term yields. The yield parameter (D(n)

n
) for

ambiguity at is v′φa (constant over horizon n); hence ac,t lowers the yields for the whole

sample period (φac = −1), and aπ,t lowers (raises) the yields for the second subperiod

when φaπ = −1 (the first subperiod when φaπ = 1). The impacts of at on the long- and

short-term yields are the same, and the upward-sloping nominal and real yield curves are

mainly driven by increases in A(n)

n
over horizon n due to µa. To solve the price and yields

for real bonds, we can simply replace v′ with v′ = (γ, 0).
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4.3.1. Model intuition

Given the closed-form solution, the intuition of the model follows directly from the

fact that interest rates reflect investors’ worst-case expectations.

First, the agent chooses the lowest growth rate as their worst-case belief in equilibrium;

thus, the ambiguity about growth pushes down real yields. Given that the size of the

ambiguity for growth is higher for short horizons, short-term real rates are pushed down

by more than long-term real rates. Therefore, the real yield curve slopes upward.

Second, the ambiguity about the inflation rate contributes to an upward-sloping nom-

inal yield curve but for different reasons in the two regimes. Pre-2000, positive inflation

shocks were bad news for future growth – the worst-case inflation was the highest rate;

thus, the ambiguity about inflation pushed up nominal yields. Since there was more am-

biguity about long-run inflation, the long-term nominal yields were pushed up by more

than just the short-term nominal yields. Post-2000, positive inflation shocks were good

news for future growth – the worst-case inflation was the lowest rate; thus, the ambiguity

about inflation pushed down the nominal yields. But now there is more ambiguity about

the short-run inflation, and the short-term nominal yields are pushed down farther than

the long-term nominal yields are. In both cases, the model implies an upward-sloping

and steeper nominal yield curve.

4.4. Empirical findings

We use the same data sets as in model II. We also use the forecast dispersions for the

real output growth and inflation obtained from the Philadelphia Fed’s SPF as a measure

for the realized size of the ambiguity. Then we can calculate the realized values for all of

the state variables and, hence, the model-implied yields. Since the only change in model

III is the ambiguity, the model can still match the historical trends and cycles in the

yields as in model II. In addition, the model generates upward-sloping nominal and real

yield curves as in the data.

39



γ β υ∗
c υ∗

π υgapc υgapπ corr∗

4 1.0255 0.015 0.05 0.12 0.2 -0.14

ρc ρπ σc σπ σcx σπx corrgap

0.92 0.98 0.42 0.33 0.64 0.35 -0.04

µac µaπ σac σaca σaπa
Period 1 -0.0044 0.0029 0.012 -0.009 0.010
Period 2 -0.0043 -0.0063 0.009 0.0047 0.015

Table 3: Configuration of model-III parameters
Table 3 reports the parameter values for the output growth and inflation processes, the constant gain in learning, and
the ambiguity process. All of the parameters are given in quarterly terms. The means and standard deviations are in
percentages.

4.4.1. Parameters

All of the parameters (excluding the ambiguity parameters) are estimated the same

way as in model II. The ambiguity parameters are the same as in Zhao (2020), where the

whole sample period is split into two subperiods and the parameters are different for each

subperiod (mainly the trend parameter for the inflation ambiguity µaπ). The realized size

of the ambiguity is measured by the past one-year average of the SPF forecast dispersions

that are calculated by the 60th percentile minus the 40th percentile of the individual

forecasts. The resulting parameter values are reported in Table 3.

4.4.2. Trends, cycles, and spreads in the yields, and r∗t
As shown in Table 3, the parameters for the inflation process are exactly the same as

in model II; hence, the posterior beliefs for the short- and long-term inflation expectations

in this model are also exactly the same as shown in Figures 5 and 6. Both the learning

parameters and the posterior beliefs for the short- and long-term output growth are

also the same as in model II. However, the time preference is slightly different from the

previous value; therefore, as shown in Figure 11, the model-implied r∗t is almost the same

as before.19

As in models I and II, Figure 12 shows the importance of the posteriors for the long-

19To be consistent with the concept of r∗, neither the short-run effect from x̃c,t on the real yield, nor
the effect of ambiguity on the yields, is included for calculation of the model-implied r∗.
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run mean growth and inflation in explaining the movements in the long-term nominal

yield, and Figure 13 shows the importance of the posteriors for the short-run deviation

from the long-run mean in explaining the movements in the 1-year nominal yield. The

limitation of model II is that the model-implied spread is mean zero because of the

stationarity assumption for xt. The short-rate expectations (both nominal and real)

are upward-sloping under the agent’s equilibrium worst-case belief in this model and,

hence, are consistent with the data. The model-implied spread is positive, on average.

Furthermore, Figure 14 shows that the dynamics of the model-implied spread match the

data well.
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Figure 11:

r* (LW) r* (LM) r* (Kiley) r* (model implied)

Individual r* and model implied r*

The individual r∗s (quarterly data) are obtained from Bauer and Rudebusch (2019) and cover the period from 1971:Q4 to
2017:Q2. The three macroeconomic estimates of r∗s are obtained from Laubach and Williams (2003), Lubik and Matthes
(2015), and Kiley (2015). The model-implied r∗ (quarterly) represents the period from 1968:Q3 to 2018:Q2. The gray bars
represent periods of recession as defined by the NBER.
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Figure 12:

10-year nominal yield 10-year posterior mean inflation (model implied)

10-year real yield (model implied) 10-year nominal yield (model implied)

10-year nominal yield and macro trends

The end-of-quarter 10-year nominal yields are obtained from Gürkaynak et al. (2007) for the period from 1968:Q3 to
2018:Q2. The model-implied 10-year real yield, the 10-year nominal yield, and total posterior belief for the mean inflation
(quarterly data) represent the period from 1968:Q3 to 2018:Q2. The gray bars represent periods of recession as defined by
the NBER.
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Figure 13:

1-year nominal yield 1-year nominal yield (model implied)

1-year nominal yield

The end-of-quarter 1-year nominal yields are obtained from Gürkaynak et al. (2007) for the period from 1968:Q3 to 2018:Q2.
The model-implied 1-year nominal yield represents the period from 1968:Q3 to 2008:Q4. The gray bars represent periods
of recession as defined by the NBER.
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Figure 14:

Nominal 10-1 spread Nominal 10-1 spread (model implied)

Nominal spread (10-1) - actual vs. model

The end-of-quarter 10-year minus 1-year nominal yield spreads are obtained from Gürkaynak et al. (2007) for the period
from 1968:Q3 to 2018:Q2. The model-implied 10-year minus 1-year nominal yield spread represents the period from 1968:Q3
to 2008:Q4. The gray bars represent periods of recession as defined by the NBER.

Finally, by comparing the model-implied (both models II and III) 1-year nominal

yields with the data in Figures 13 and 9, we observe a recurring pattern that the model-

implied short-term yields are higher than the data from the trough to the expansion,

and they are lower than those in the data for the late expansion periods. Given that the

short-term yields are controlled by the Federal Reserve, this suggests that the Federal

Reserve kept the short rates low for a longer period than suggested by the model (behind

the curve) and there was a certain degree of overshoot during the late expansion periods

(before recessions). This is consistent with Taylor (2018), who argued that the over-

accommodative policy between 2003 and 2005 was a source of the housing bubble.

4.4.3. Expectations hypothesis and predictability of bond returns

Investors’ subjective nominal and real short-rate expectations, reflecting their worst-

case beliefs in growth and inflation, are upward sloping. And given the CRRA utility

(the subjective bond premium ern,t+1 is close to zero), the model-implied yields for long-

term bonds are roughly equal to the average of the expected (worst-case) future short

rates. Thus, the EH roughly holds under the subjective equilibrium belief. However,
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because long-run growth and inflation evolve over time under a true distribution that is

different from their worst-case beliefs, investors’ ambiguity about long-run inflation or

GDP growth does not materialize when the time arrives. At each time t, the realized

one-step-ahead ambiguity (a1c,t or a1π,t) contains only the random walk with no trend

(the trend has not materialized). Hence, the realized one-step-ahead ambiguity does

not become larger or smaller as investors had perceived in the past, and the realized

short rates (nominal and real) are lower than expected under their worst-case beliefs.

These differences and the current yield spreads/forward rates are both driven by a trend

component in the ambiguity process. Hence, consistent with the empirical evidence,

the realized excess bond returns are predictable. To an observer outside the model, the

difference between the worst-case expectation and the realized short rate (governed by

the benchmark measure) looks like expectational error but is rational for agents inside the

model who face ambiguity, thus, providing a rational interpretation for the expectational

errors in Froot (1989), Piazzesi et al. (2015), and Cieslak (2018). A detailed discussion

and formal tests of the EH (Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005)

are provided in Zhao (2020).

5. Conclusion

This paper bridges the gap between empirical and equilibrium yield curve studies

by providing an equilibrium interpretation for the trends, cycles, and spreads in histor-

ical Treasury bond yields. The representative agent learns the long-run mean and the

short-run deviation from the mean separately from the different components of the GDP

growth and inflation rates. Instead of using all of the available data in forming the pos-

terior beliefs, the past data gradually lose relevance for learning, either because of fading

memory or because it is perceived as irrelevant. The slow-moving trend component in

the yields is driven by the posteriors for the long-run mean inflation and growth rates,

which also move closely with the r∗t and π∗t estimations in the literature. The cyclical

movements in the short-term yields and in the spreads between the long- and short-term

yields are mostly driven by belief-updating regarding the short-run deviation from the
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mean. The secular stagnation and the upward trend in the Treasury yield spread are

tightly coupled because both are driven by persistently negative short-run deviations for

both inflation and growth. At each point in time, the amount of Knightian uncertainty

the ambiguity-averse agent faces is different for the long run versus the short run, which

gives rise to upward-sloping short-rate expectations under the agent’s worst-case beliefs

and, hence, upward-sloping nominal and real yield curves.

Empirical yield curve modeling has been widely used by central banks and practition-

ers. However, equilibrium yield curve models are rarely used because of their inaccuracy.

Given the historical performance of the model and its closed-form solutions, the model

can be used for real-time interest-rate forecasting, using survey forecasts or central bank

projections for GDP growth and inflation as inputs. To increase its performance, one

important future research avenue would be to extend the model and incorporate the in-

flation risk premium in Piazzesi and Schneider (2007) as well as the potentially stochastic

volatility.
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Appendix - Model Solution
Since model III is a comprehensive model and the solutions to models I and II are

embedded in the model-III solution, we will only provide the model III solution in this

appendix.

A. Forcing process

Under the worst-case measure, the economic dynamics follow

∆gt+1 = φacac,t + ∆g∗t+1 +Gapgt+1

πt+1 = φaπaπ,t + π∗t+1 +Gapπt+1,

where ∆gt+1 and πt+1 are the total real GDP growth and inflation, respectively. ∆g∗t+1

and π∗t+1 are the real consumption growth (scaled by total real GDP Ct+1−Ct
GDPt

) and core

inflation (scaled by total price level P coret+1 −P
core
t

Pt
), respectively. Gapgt+1 and Gapπt+1 are

the total GDP growth rate excluding ∆g∗t+1 and the total inflation rate excluding π∗t+1,

respectively. φac and φac represent the equilibrium choice of the upper or lower bound,

respectively, equal to −1 or +1.

Both real consumption growth and core inflation follow the i.i.d. laws of motion

∆g∗t+1 = µ∗c + σcε
∗
c,t+1

π∗t+1 = µ∗π + σπε
∗
π,t+1,

52



where ε∗c,t+1 and ε∗π,t+1 are i.i.d. normal shocks. The agent knows that both ∆g∗t+1 and

π∗t+1 are i.i.d., and they also know σc and σπ but not the long-run mean µ∗c and µ∗π. The

agent forms expectations about µ∗c and µ∗π based on the constant-gain learning scheme,

with the posteriors

µ∗c |H
g∗

t ∼ N
(
µ̃∗c,t, υ

∗
cσ

2
c

)
µ∗π|Hπ∗

t ∼ N
(
µ̃∗π,t, υ

∗
πσ

2
π

)
,

where

µ̃∗c,t = µ̃∗c,t−1 + υ∗c
(
∆g∗t − µ̃∗c,t−1

)
µ̃∗π,t = µ̃∗π,t−1 + υ∗π

(
π∗t − µ̃∗π,t−1

)

and the predictive distribution

∆g∗t+j|H
g∗

t ∼ N
(
µ̃∗c,t, (1 + υ∗c )σ2

c

)
π∗t+j|Hπ∗

t ∼ N
(
µ̃∗π,t, (1 + υ∗π)σ2

π

)
,

where j = 1, 2, ..., Hg∗

t ≡ {∆g∗0,∆g∗1, ...∆g∗t }, and Hπ∗
t ≡ {π∗0, π∗1, ...π∗t }.

Both Gapgt+1 and Gapπt+1 are assumed to contain latent stationary components

Gapgt+1 = xc,t+1 + σgapc εgapc,t+1

Gapπt+1 = xπ,t+1 + σgapπ εgapπ,t+1

and

xc,t+1 = ρcxc,t + σxc ε
x
c,t+1

xπ,t+1 = ρπxπ,t + σxπε
x
π,t+1,

where εgapc,t+1, εgapπ,t+1, εxc,t+1, and εxπ,t+1 are i.i.d. normal shocks. The representative agent
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knows all of the the parameters but not xc,t+1 and xπ,t+1. They form expectations about

xc,t+1 and xπ,t+1, based on the same learning scheme as for the long-run mean but with

potentially different geometric weighting parameters, υgapc and υgapπ . The posteriors are

given by

xc,t+1|Hgap
g,t ∼ N

(
ρcx̃c,t, υ

gap
c

(
(σxc )2 + (σgapc )2

))
xπ,t+1|Hgap

π,t ∼ N
(
ρπx̃π,t, υ

gap
π

(
(σxπ)2 + (σgapπ )2

))

and

x̃c,t = ρcx̃c,t−1 + υgapc (Gapgt − ρcx̃c,t−1)

x̃π,t = ρπx̃π,t−1 + υgapπ (Gapπt − ρπx̃π,t−1)

where Hgap
g,t ≡ {Gapg0, Gap

g
1, ...Gap

g
t} and Hgap

π,t ≡ {Gapπ0 , Gapπ1 , ...Gapπt }, and the total

predictive distribution is given by

∆gt+j|Hg
t ∼ N

(
µ̃∗c,t + ρcx̃c,t, (1 + υ∗c )σ2

c + (1 + υgapc )
(
(σxc )2 + (σgapc )2

))
πt+j|Hπ

t ∼ N
(
µ̃∗π,t + ρπx̃π,t, (1 + υ∗π)σ2

π + (1 + υgapπ )
(
(σxπ)2 + (σgapπ )2

))

where j = 1, 2, ... and the variance of the predictive distribution contains both the un-

certainty due to future shocks and the uncertainty about µ∗c/µ∗π and xc,t+1/xπ,t+1. Hg
t

contains both Hg∗

t and Hgap
g,t , and Hπ

t contains both Hπ∗
t and Hgap

π,t .

The size of ambiguity ac,t and aπ,t are modeled as a random walk with drift as follows:

ac,t+1 = µac + ac,t + σacεac,t+1 + σaca εa,t+1

aπ,t+1 = µaπ + aπ,t + σaπa εa,t+1,

where µac and µaπ are the drift parameters, which can be positive or negative. ac,t and

aπ,t are driven by a common exogenous shock εa,t+1, where the coefficients σaca and σaπa
capture the correlation between them. εac,t+1 is an ac,t specific shock that captures the
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difference between these two.

To solve the model, we first rewrite the dynamics of the whole economy in vector

forms as follows:

zt+1 = φaat + µ̃∗t + ρxxt + σz ε̃z,t+1

xt+1 = ρxxt + υgap (Gapt+1 − ρxxt)

µ̃∗t+1 = µ̃∗t + υ∗
(
∆z∗t+1 − µ̃∗t

)
at+1 = µa + at + σaεat+1,

where zt+1 = (∆gt+1, πt+1)T , z∗t+1 = (∆g∗t+1, π
∗
t+1)T , Gapt+1 = (Gapgt+1, Gap

π
t+1)T , xt+1 =

(x̃c,t+1, x̃π,t+1)T , at+1 = (ac,t+1, aπ,t+1)T , µ̃∗t = (µ̃∗c,t, µ̃∗π,t)T , µa = (µac , µaπ)T , υgap = υgapc 0

0 υgapπ

, υ∗ =

 υ∗c 0

0 υ∗π

, ρx =

 ρc 0

0 ρπ

, φa =

 φac 0

0 φaπ

, σz =

 σc 0

0 σπ

,
σa =

 σac σaca

0 σaπa

, ε̃z,t+1 = (ε̃c,t+1, ε̃π,t+1)T , and εat+1 = (εac,t+1, εa,t+1)T . The shocks

ε̃c,t+1, ε̃π,t+1, εd,t+1, εac,t+1, and εa,t+1∼i.i.d. N(0, 1).

B. Stochastic discount factor

Given the CRRA utility, the nominal stochastic discount factor can be written as

follows:

m$
t,t+1 = logβ − γ∆gt+1 − πc,t+1 = logβ − v′zt+1,

where v′ = (γ, 1). For the real stochastic discount factor, we can replace v′ with v′ =

(γ, 0).

55



C. Bond yields

The time-t price of a zero-coupon bond that pays one unit of consumption n periods

from now is denoted as P (n)
t and it satisfies the recursion,

P
(n)
t = Epot [M

$
t,t+1P

(n−1)
t+1 ]

with the initial condition that P (0)
t = 1 and Epot is the expectation operator for the worst-

case measure. Given the linear Gaussian framework, we assume that p(n)
t = log(P (n)

t ) is

a linear function of µ̃∗t , xt, and at as follows:

p
(n)
t = −A(n) −B(n)xt − C(n)µ̃∗t −D(n)at.

When we substitute p(n)
t and p(n−1)

t+1 in the Euler equation, the coefficients in the pricing

equation can be solved with B(n) = B(n−1)ρ + v′ρ, C(n) = C(n−1) + v′ = v′n, D(n) =

D(n−1)+v′φa = v′nφa, and A(n) = A(n−1)+A(1)−0.5∗V art
(
p

(n−1)
t+1

)
−Covt

(
p

(n−1)
t+1 ,m$

t,t+1

)
+

D(n−1)µa, where

V art
(
p

(n−1)
t+1

)
=

(
B(n−1)

)
V art (xt+1)

(
B(n−1)

)′
+

(
C(n−1)

)
V art

(
µ̃∗t+1

) (
C(n−1)

)′
+

(
D(n−1)

)
V art (at+1)

(
D(n−1)

)′
+ 2

(
B(n−1)

)
Covt

(
xt+1, µ̃

∗
t+1

) (
C(n−1)

)′
+ 2

(
B(n−1)

)
Covt (xt+1, at+1)

(
D(n−1)

)′
+ 2

(
C(n−1)

)
Covt

(
µ̃∗t+1, at+1

) (
D(n−1)

)′
,

Covt
(
p

(n−1)
t+1 ,m$

t,t+1

)
= v′Covt (xt+1, zt+1)

(
B(n−1)

)′
+ v′Covt

(
µ̃∗t+1, zt+1

) (
C(n−1)

)′
+ v′Covt (at+1, zt+1)

(
D(n−1)

)′
,

and
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A(1) = −logβ − 0.5 ∗ v′V art (zt+1) v.

Given the small impacts of the covariance terms, we assume all of the covariances in the

V art
(
p

(n−1)
t+1

)
and Covt (at+1, zt+1) to be zero for simplicity.

The nominal bond yields can be calculated as y(n)
t = − 1

n
p

(n)
t = A(n)

n
+ B(n)

n
xt+ C(n)

n
µ̃∗t +

D(n)

n
at. The log holding period return from buying an n periods bond at time t and selling

it as an n − 1 periods bond at time t − 1 is defined as rn,t+1 = p
(n−1)
t+1 − p

(n)
t , and the

subjective excess return is ern,t+1 = −Covt
(
rn,t+1,m

$
t,t+1

)
= −Covt

(
p

(n−1)
t+1 ,m$

t,t+1

)
. To

solve the price and yields for the real bonds, we can simply replace v′ with v′ = (γ, 0).

D. Kalman filter alternative

In this section, we show that, in terms of the subjective belief dynamics and bond

prices, the adaptive learning scheme in our model is equivalent to a full-memory optimal-

learning model. Taking output growth as an example, in this full-memory model the agent

perceives a latent AR(1) trend growth rate and uses the Kalman filter to optimally track

this latent trend, while objectively the trend growth rate is constant. The information

structure is a filtration and Markovian. In the agent’s subjective view, the past data

gradually loses relevance for forecasting, not because of fading memory but because it is

perceived as irrelevant given the perceived stochastic drift over time in the trend growth

rate.

Suppose the agent’s perceived law of motion for output growth is as follows:

∆gt+1 = µc,t + εt+1

µc,t+1 = ρµµc,t + ςt+1,

where εt+1 ∼ N (0, σ2
ε ) and ςt+1 ∼ N

(
0, σ2

ς

)
. The agent knows σε, σς , and ρµ but perceives

µc,t as a latent AR(1) process. Given a diffuse prior and an infinite history, Hg
t , of the

observed data on ∆g, the steady-state optimal forecast µ̃c,t+1|t is updated as follows (see,
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e.g., Edge et al. (2007) and Gilchrist and Saito (2008))

µ̃c,t+1|t = ρµµ̃c,t|t−1 +K(∆gt − ρµµ̃c,t|t−1)

with

K = Σ
Σ + σ2

ε

Σ = σ2
ε

2
(
−(1− ρ2

µ − φ) +
√

(1− ρ2
µ − φ)2 + 4φ

)
φ = σ2

ς

σ2
ε

.

The steady-state Kalman filtering is equivalent to adaptive learning with appropriately

chosen parameter values. Hence, bond pricing in this perceived stochastic trend setting

is the same as in the fading-memory setting.
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