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Abstract

This paper studies identification and inference in transformation models with
endogenous censoring. Many kinds of duration models, such as the accelerated fail-
ure time model, proportional hazard model, and mixed proportional hazard model,
can be viewed as transformation models. I allow the censoring of duration outcome
to be arbitrarily correlated with observed covariates and unobserved heterogeneity.
I impose no parametric restrictions on the transformation function or the distribu-
tion function of the unobserved heterogeneity. In this setting, I partially identify the
regression parameters and the transformation function, which are characterized by
conditional moment inequalities of U-statistics. I provide an inference method for
them by constructing an inference approach for the conditional moment inequality
models of U-statistics. I apply the proposed inference method to evaluate the effect
of heart transplants on patients’ survival time using data from the Stanford Heart
Transplant Study.
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1 Introduction

Duration models are widely used in various empirical studies in economics and biomedical

sciences. This is because the outcomes of interest in empirical studies are often the dura-

tions until certain events occur. Durations of interest in economics include unemployment

durations, strike durations, insurance claim durations, and durations until the purchase

of durable goods.1

In practice, duration data are often censored. For example, unemployment durations

are likely to be censored due to some individuals dropping out of the survey. Dealing

with censoring has been a substantial challenge in duration analysis, and various methods

have been proposed. The standard approach is to assume that censoring is independent

of unobserved heterogeneity (conditional or unconditional on observed characteristics).

Studies employing this approach include Cox (1972), Powell (1984), Ying et al. (1995),

Yang (1999), Honoré et al. (2002), Hong and Tamer (2003), and Khan and Tamer (2007),

among others. However, in many cases, justifying this independence assumption is dif-

ficult. For example, in unemployment duration analysis, unemployed individuals with

low motivation to find a job, which is unobserved heterogeneity, may tend to drop out

of the survey at an early stage. Szydłowski (2019) presents a number of examples where

censoring is correlated with unobserved heterogeneity (i.e., censoring is endogenous).

In this paper, I study identification and inference in transformation models in the

presence of endogenous censoring. The transformation model is expressed as

T (Y ∗) = X ′β0 + U, (1.1)

where T (·) is a strictly increasing function; Y ∗ is a dependent variable, which represents

a duration outcome in this paper; X is a k-dimensional vector of observed covariates,

whose support is denoted by X ; β0 denotes k-dimensional regression parameters; and

U is an unobserved random variable that is independent of X. Many kinds of duration

models, such as the accelerated failure time model, proportional hazard model, and mixed

proportional hazard (MPH) model, can be viewed as transformation models.2 In this pa-
1van den Berg (2001) surveys the many applications of duration models.
2Aside from duration models, the class of transformation models contains other important kinds of

models, for example, the linear index model and Box-Cox transformation model.
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per, I consider nonparametric transformation models in which neither the transformation

function nor the distribution function of the unobserved heterogeneity is parametrically

specified. One important model represented by the nonparametric transformation model

is the nonparametric MPH model in which neither a baseline hazard function nor the

distribution function of the unobserved heterogeneity is parametrically specified.

Allowing for endogenous censoring, I partially identify the regression parameters β0

in the nonparametric transformation model (1.1). The identification is built on the rank

property of the nonparametric transformation model proposed by Han (1987). In his

work, he shows that if there is no censoring and at least one regressor has full-support

on the real line, the regression parameters are point identified up to scale by looking at

the rank correlation between the outcomes and regressors. In the presence of endogenous

censoring, I partially identify β0 by supposing in his rank correlation approach that each

censored outcome takes an infinitely large value or a value that corresponds to censoring

time. This reflects the fact that, concerning each censored outcome, all we know is that it

may take any value larger than censoring time. Moreover, unlike Han’s (1987) result, the

partial identification analysis does not require the full-support condition on the regressors.

The set of the parameters is characterized by conditional moment inequalities whose

sample moment is a U-statistic. Based on this, I construct an inference method for the

parameters by extending the inference approach for conditional moment inequality models

proposed by Andrews and Shi (2013) into the case of U-statistics. The inference method

can be applied not only to this work but also to other works involving conditional moment

inequalities of U-statistics. In this sense, this paper also contributes to the literature on

inference for conditional moment inequality models.3

It should be noted here that the set of the parameters discussed above is not necessarily

a sharp identified set. On the other hand, using concepts from random set theory (e.g.,

Beresteanu et al. (2011, 2012)), I characterize the sharp identified set as well. However,

constructing a feasible inference method based on it is difficult, whereas the proposed

parameters set is tractable to construct a feasible inference method. In the paper, I also

discuss the conditions under which the proposed parameters set becomes close to the
3Various inference methods for conditional moment inequality models have been proposed, for example,

by Andrews and Shi (2013, 2014, 2017), Chernozhukov et al. (2013), Armstrong (2014, 2015), Menzel
(2014), and so on. But, none of them can be applied to the sample moment functions of U-statistics.
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sharp set.

As an extension, I also study identification and inference for the transformation func-

tion, T (·), in the presence of endogenous censoring. In the case of no censoring or covariate

dependent censoring, some works have studied identification and inference for the trans-

formation function without parametric specifications (e.g., Horowitz (1996), Ye and Duan

(1997), and Chen (2002)). I partially identify the transformation function by incorporat-

ing endogenous censoring into Chen’s (2002) rank approach as well as provide its inference

procedure.

This paper is related to works that study endogenous censoring. Khan and Tamer

(2009), Khan et al. (2011, 2016), Li and Oka (2015), and Fan and Liu (2018) study iden-

tification and estimation of parameters in quantile regression models under endogenous

censoring. For cross-sectional linear quantile regression models, Khan and Tamer (2009)

provide a point identification result for the linear coefficients under a certain support con-

dition, and Khan et al. (2011) provide a sharp identification result without the support

condition. Under censoring characterized by a certain copula, Fan and Liu (2018) par-

tially identify the linear coefficients of the same model. Li and Oka (2015) and Khan et al.

(2016) consider panel quantile regression models with endogenous censoring and provide

partial identification results. Differently from these works, the identification result in

this paper does not rely on quantile modeling, copula characterization of censoring, or

panel data. Aside from quantile models, Szydłowski (2019) considers the parametric MPH

model and proposes a sharp identified set and inference for its parameters. While Szy-

dłowski (2019) considers the parametric MPH model, I consider the nonparametric one,

which is robust to the misspecification of the hazard function or the distribution function

of the unobserved heterogeneity. For competing risks models, Honoré and Lleras-Muney

(2006) partially identify the parameters in the accelerated failure time model, and Kim

(2018) derives computationally tractable bounds for distributions of latent durations by

exploiting the discreteness of observed durations. In this paper, I consider continuous

observed durations and do not specify competing risks.

The remainder of this paper is structured as follows. Section 2 describes the setup

and identification assumptions and then provides the main identification result for the

regression parameters. In this section, I also characterize the sharp identified set and
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compare the two parameter sets. Section 3 provides an inference method for the regression

parameters and derives its asymptotic properties. Section 4 presents some numerical

examples and Monte Carlo simulation results. The numerical examples show how the

proposed set varies depending on the degree of censoring and the support of the regressors.

The Monte Carlo simulation results show the finite sample properties of the proposed

inference method. Section 5 presents an empirical illustration, where I apply the inference

method to evaluate the effect of heart transplants on patients’ survival duration using data

from the Stanford Heart Transplant Study. Section 6 presents an identification result for

the transformation function, whose inference procedure is described in Appendix A.3.

I conclude this paper with some remarks in Section 7. All the proofs are presented in

Appendices A.1 and A.2.

2 Model and Identification

In this section, I first describe the setting of the paper and provide conditions for iden-

tification in Section 2.1. Subsequently, in Section 2.2, I present the main identification

result for the regression parameters. In Section 2.3, I characterize the sharp identified set

using concepts from random set theory and compare the proposed identification set with

the sharp identified set.

2.1 Model

We consider the transformation model in the form of (1.1). In the model, we do not specify

the transformation function, T (·), or the distribution function of the unobserved hetero-

geneity, denoted by FU(·). Because of this, we impose location and scale normalizations.

For the location normalization, as in Horowitz (1996), we suppose that the constant term

is equal to zero (i.e., X does not contain a constant term) and T (ỹ) = 0 for some finite

ỹ. For the scale normalization, we suppose that the absolute value of the first component

of β0 is equal to one (i.e., |β0,1| = 1), where β0,k denotes the k-th component of β0. Let

the normalized parameter space be denoted by B. Our focus is on the identification and

inference of the normalized regression parameters β0 in B.

The transformation model contains many kinds of duration models as its special cases:
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the accelerated failure time model, Cox’s proportional hazard model, and MPH model.4

In particular, the nonparametric MPH model is an important duration model represented

by a nonparametric transformation model. The MPH model is an extension of Cox’s

proportional hazard model in that individual unobserved heterogeneity is incorporated.

Since introduced in Lancaster (1979), it has been widely used in various empirical studies

in economics. In the nonparametric MPH model, the normalized parameters β0 can be

interpreted as the logs of the scale-normalized hazard ratios (see, e.g., Lancaster (1990)).

When the data are subject to censoring, the duration outcome Y ∗ cannot always

be observed. Instead, for unit i = 1, . . . , n, we observe Wi = (Y0i, Di, Xi), such that

Y0i = min {Y ∗
i , Ci} and Di = I [Y ∗

i ≤ Ci], where Ci is a random censoring variable and

I [·] denotes the indicator function. Di is a censoring indicator that takes the value zero if

Y ∗
i is censored and the value one if Y ∗

i is observed. Note that we consider right censoring

in the paper, but all the results presented below are easily extendable to left and interval

censoring. Using Di, Y0i can be expressed as Y0i = DiY
∗
i + (1 − Di)Ci. Let P be the

distribution function of (Y ∗, X, C).

Throughout this paper, we suppose that the following assumptions hold.

Assumption 2.1. The vectors (Y ∗
i , Ci, Xi), i = 1, . . . , n, are independent and identically

distributed (i.i.d) from the latent transformation model (1.1) with the distribution function

P , and B is a compact subset of Rk.

Assumption 2.2. U is distributed independently of X and has a continuous distribution.

Assumption 2.3. Let D = I [Y ∗ ≤ C] and Xuc = {x ∈ X : P (D = 1 | X = x) > 0}.

Then, P (Xuc) > 0.

Assumption 2.4. Xuc contains at least two distinct values.

Assumption 2.2 requires that U is independent of X. However, it does not restrict

the relationship between U and C, as we consider endogenous censoring. Assumption 2.3
4If T (Y ∗) = log Y ∗, the transformation model corresponds to the accelerated failure time model; if

T (Y ∗) = log∆(Y ∗),where ∆(·) is the integrated baseline hazard function, and U has the CDF F (u) =
1 − exp(−eu), the transformation model corresponds to Cox’s proportional hazard model; if T (Y ∗) =
log∆(Y ∗) and U = ε+ ν where ν is unobserved heterogeneity and ε has the CDF F (ε) = 1− exp(−eε),
the transformation model corresponds to the MPH model. For more details, see Horowitz (2009, Ch. 6).
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requires that the probability of censoring is not equal to one for all x. Under Assumption

2.4, in contrast to many works in the semiparametric literature, we do not impose a full-

support or full-rank condition on the regressors, in line with Magnac and Maurin (2008),

Blevins (2011), and Komarova (2013). By not doing so, we allow all the regressors to

be discrete random variables, to not have large support, or to be arbitrarily correlated

with each other. Magnac and Maurin (2008), Blevins (2011), and Komarova (2013)

discuss the difficulties of justifying these conditions in a number of cases, and provide

partial identification results for some other semiparametric models in the absence of these

conditions.

2.2 Identification for the Regression Parameters

This section presents the partial identification result for the regression parameters. Be-

cause the identification result I propose in this section is based on Han (1987), I first

briefly introduce his identification result in the absence of censoring.

Suppose now that there is no censoring (i.e., Y ∗ is always observed). In this case, under

Assumptions 2.1–2.3 and the full-support and full-rank conditions on the regressors, Han

(1987) shows that β0 uniquely satisfies the following rank property,

x′
iβ0 ≥ x′

jβ0 ⇔ P (Y ∗
i ≥ Y ∗

j | xi, xj) ≥ P (Y ∗
j ≥ Y ∗

i | xi, xj)

for all (xi, xj) ∈ X 2. Heuristically, β0 uniquely satisfies

x′
iβ0 ≥ x′

jβ0 ⇔ P (Y ∗
i ≥ Y ∗

j | xi, xj) ≥
1

2
(2.1)

for all (xi, xj) ∈ X 2. This rank property means that, for any given pair of (xi, xj), the

probability that Y ∗
i is larger than or equal to Y ∗

j is greater than or equal to 1/2 if and

only if x′
iβ0 is larger than or equal to x′

jβ0. Then, β0 is the unique value in B that satisfies

this rank relationship for any pair of (xi, xj). In other words, for any β 6= β0, there exist

at least one pair of (xi, xj) that violates the rank property (2.1).

In this paper, we actually suppose that censoring exists and it may be endogenous.

We cannot always observe Y ∗
i and do not have any information about the mechanism

of censoring. The censoring variable Ci may be arbitrarily correlated with the observed
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covariates Xi and the unobserved heterogeneity Ui.

In this situation, I derive a set of parameters that contains the true parameters β0. Let

Y1i = DiY
∗
i + (1 −Di)(+∞), which is an outcome variable that takes an arbitrary large

value when the primary outcome is censored, and recall that Y0i = DiYi + (1 − Di)Ci.

Then, because P (Y1i ≥ Y0j | xi, xj) ≥ P (Y ∗
i ≥ Y ∗

j | xi, xj) holds for all (xi, xj), the

following rank property holds from (2.1),

x′
iβ0 ≥ x′

jβ0 ⇒ P (Y1i ≥ Y0j | xi, xj) ≥
1

2
(2.2)

for all (xi, xj) ∈ X 2. Therefore, defining

BI ≡ {β ∈ B | x′
iβ ≥ x′

jβ ⇒ P (Y1i ≥ Y0i | xi, xj) ≥ 1
2

for all (xi, xj) ∈ X 2},

β0 is contained in BI . This parameters set is derived from a worst-case analysis where

we suppose that censored outcomes may take extreme values, C or +∞, for any given

value of x. This reflects the fact that concerning each censored outcome, all we know is

that it may take any value at least larger than its censored time. The following theorem

summarizes this identification result.

Theorem 2.1. Under Assumptions 2.1–2.4, β0 ∈ BI .

I provide the proof in Appendix A.1. There are some notes on this theorem. First, in

this theorem, we do not impose the full-support or full-rank condition on the regressors,

in contrast to many works in the semiparametric literature. Second, BI is not necessarily

sharp regardless of whether the full-support and full-rank conditions are imposed. Al-

though it is not necessarily sharp, it is easy to compute and tractable to construct an

inference method based on it, as we will see in Section 3. The following section shows

how the sharp identified set can be characterized, although it is difficult to construct an

inference method based on it.

2.3 Characterization of the Sharp Identified Set

In this section, I illustrate how the sharp identified set can be characterized using concepts

from random set theory. Subsequently, I compare the sharp identified set with BI . This
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comparison clarifies why BI is not sharp and in which situations it approaches the sharp

set. For the definitions and notations for random set theory used in this section, see, for

example, Molchanov (2005) or Beresteanu et al. (2012, Appendix A). Throughout this

section, for any variable A, we denote by Ã an independent copy of A.

Using concepts from random set theory, we can characterize the incomplete informa-

tion for the latent outcome variable Y ∗. For any random variable A, let Ax be the random

variable that has the conditional distribution of A given X = x. Then, for a given x ∈ X ,

what we observe for the latent outcome variable in the presence of endogenous censoring

can be expressed as the random set Yx defined by

Yx =

 {Y ∗
x }

(Cx,+∞)

if Dx = 1

otherwise
,

where Y ∗
x and Cx are, respectively, a latent outcome and a censoring variable given X = x,

and Dx = I [Y ∗
x ≤ Cx] is a censoring indicator given X = x. Hence, all the information

for the latent outcome variable can be expressed by stating that Y ∗
x ∈ Sel(Yx).5 Let B0

denote the sharp identified set of β0. Throughout this section, we suppose that the full-

support and full-rank conditions on the regressors hold to ensure the sharp identification

result.6

Combining the above random set representation with Han’s (1987) identification result

(2.1), B0 is characterized as the set of β such that there exists a family of pairs of selections

(Yxi
, Ỹxj

) ∈ Sel(Yxi
)× Sel(Ỹxj

) over (xi, xj) ∈ X 2 that satisfy the following:

x′
iβ ≥ x′

jβ ⇔ P (Yxi
≥ Ỹxj

) ≥ 1

2
(2.3)

for all (xi, xj) ∈ X 2, where Ỹx is the random set of Ỹx. Therefore, B0 is equivalent to

B0 =

{
β ∈ B | ∃

{
Yx ∈ Sel(Yxi

), Ỹxj
∈ Sel(Ỹxj

)
}

(xi,xj)∈X 2
,∀ (xi, xj) ∈ X 2, (2.3) holds

}
.

(2.4)
5For any random set Y, a random variable Y is called a measurable selection of Y if Y ∈ Y a.s., and

Sel (Y) is defined to be the set of all measurable selections of Y. See, for example, Molchanov (2005, Ch.
1) or Beresteanu et al. (2012, Appendix A).

6These conditions might not be needed to obtain the sharp identification result. But, to my knowledge,
there is no work that derives the sharp identification result for the nonparametric transformation model
in the absence of these conditions.
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Next, we look at the proposed set BI . From the definitions, Y1,x and Y0,x satisfy (i)

Y1,x, Y0,x ∈ Sel(Yx) for any x ∈ X and (ii) Y0,x ≤ Yx ≤ Y1,x for any Yx ∈ Sel(Yx) and

x ∈ X . Thus, for some given pair (xi, xj), the parameters set

{β ∈ B | x′
iβ ≥ x′

jβ ⇒ P (Y1i ≥ Y0j | xi, xj) ≥ 1
2
}

is equivalent to

{
β ∈ B | ∃

(
Yxi

, Ỹxj

)
∈ Sel(Yxi

)× Sel(Ỹxj
), (2.3) holds

}
,

which is the set of β such that, for the given (xi, xj), there exists a pair of selections(
Yxi

, Ỹxj

)
∈ Sel(Yxi

) × Sel(Ỹxj
) that satisfies the inequality (2.3). Therefore, from the

definition of BI , BI is characterized as a set of β such that, for any pair (xi, xj) ∈ X 2,

there exists a pair of selections
(
Yxi

, Ỹxj

)
∈ Sel(Yxi

)×Sel(Ỹxj
) that satisfy the inequality

(2.3). Formally, BI is characterized as

BI =
{
β ∈ B | ∀ (xi, xj) ∈ X 2,∃

(
Yxi

, Ỹxj

)
∈ Sel(Yxi

)× Sel(Ỹxj
), (2.3) holds

}
. (2.5)

The difference in the statements between (2.4) and (2.5) shows that B0 is contained

in BI , and hence BI is not necessarily sharp. An intuition for the non-sharpness of BI

is as follows. Suppose now a triple of realized values of X, (xi, xj, xk), and some β ∈ B

such that x′
iβ ≤ x′

jβ ≤ x′
kβ. In the construction of BI , when we compare xj with xk,

we suppose that the latent outcome variable Y ∗
xj

takes its smallest value, Cxj
, whereas

when we compare xj with xi, we suppose that Y ∗
xj

takes its largest value, +∞. However,

when characterizing the sharp identified set as (2.4), we compare among fixed selections

Yx ∈ Sel(Yx) over all x ∈ X ; that is, Yxi
is not changeable when compared with different

Ỹxj
over xj ∈ X . This difference explains why BI is not smaller than B0.

Remark 2.1. Although we could characterize the sharp set B0 as (2.4), it is hard to

compute. When examining whether a certain value of β is contained in B0, one would

have to search for the existence of selections Yx ∈ Sel(Yx), for all x ∈ X , that satisfy the

rank inequality (2.3) for all pairs (xi, xj) ∈ X 2. By contrast, the proposed set BI is easy

to compute. For this reason, I focus on BI in this paper rather than the sharp set.
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Beresteanu et al. (2011, 2012) suggest using the support function and Aumann expec-

tation to easily compute a sharp identified set. However, using this approach, one still

has to search for the selections Yx ∈ Sel(Yx), for all x ∈ X , to satisfy a certain equality.

Thus this approach does not so much ease the computation.

Remark 2.2. There are some situations when BI is close to B0. Comparing (2.4) with

(2.5) suggests that if the random set Yx does not widely vary, then BI is close to B0. There

are some such cases. First, with a lower amount of censoring, BI is closer to B0. This is

because when the censoring is unlikely to occur given any value of x ∈ X , the measurable

selections of Yx, in (2.4) and (2.5), take the single value Y ∗
x with high probabilities. The

second case is when Y ∗
x is not censored at small values; that is, Cx takes a large value

when Y ∗
x is censored. In this case, measurable selections in Yx do not widely vary, under

which the difference between (2.4) and (2.5) does not make much difference between BI

and B0. In the empirical example of the heart transportation study in Section 5, this case

corresponds to the case when each patient is unlikely to drop out of the study at an early

stage.

3 Inference

This section provides a statistical inference approach for the regression parameters in

model (1.1) based on the identification result presented in Section 2.2. I suggest a method

to construct a confidence set that covers the true parameter value β0 with a probability

greater than or equal to 1−α for α ∈ (0, 1). Because BI is characterized by conditional mo-

ment inequalities involving U-statistics, I construct the inference method by extending the

inference approach for conditional moment inequality models proposed by Andrews and

Shi (2013) (hereafter AS) into the U-statistics case. The approach transforms conditional

moment inequalities into an infinite number of unconditional ones, without information

loss, to construct a test statistic, and a confidence set is constructed by inverting the test

statistic and using critical values obtained via moment selection. We consider continuous

regressors in this section; but, if all regressors are discrete, we can apply inference meth-

ods for unconditional moment inequality models.7 The inference method I propose below
7Various inference methods for unconditional moment inequality models have been proposed by Imbens

and Manski (2004), Chernozhukov et al. (2007), Beresteanu and Molinari (2008), Romano and Shaikh
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is for U-statistics of order two, but it can be applied to U-statistics of greater order with

some obvious modifications.

3.1 Test Statistic and Critical Value

In this subsection, I construct the test statistic and then describe the inference procedure.

Let

m (Wi,Wj, β) = −1

2
+ I[Y1i ≥ Y0j] · I[X ′

iβ ≥ X ′
jβ] + I[Y1j > Y0i] · I[X ′

jβ > X ′
iβ].

Then, BI is a set of parameters that satisfy the following conditional moment inequalities,

EP [m (Wi,Wj, β) | xi, xj] ≥ 0 for all (xi, xj) ∈ X 2. (3.1)

To transform all the information from the conditional moment inequalities (3.1) into

unconditional ones, I adopt AS’s instrumental functions approach. From here, we suppose,

without loss of generality, that Xi is transformed via a one-to-one mapping so that each

of its elements lies in [0, 1] (i.e., X = [0, 1]k).8 The set of instrumental functions that we

consider is of the following form:

G = {g (xi, xj) = I [xi ∈ C1, xj ∈ C2] for (C1, C2) ∈ C} ,

where

C =
{
Ca,ã,r = "k

u=1 ((au − 1) / (2r) , au/ (2r)]× "k
u=1 ((ãu − 1) / (2r) , ãu/ (2r)] :

a = (a1, . . . , ak)
′ , ã = (ã1, . . . , ãk)

′ , (au, ãu) ∈ {1, 2, . . . , 2r}2

for u = 1, . . . , k and r = 1, 2, . . .} .

This set of instrumental functions transforms the conditional moment inequalities (3.1)

into infinitely many unconditional ones without loss of information. Accordingly, under

(2008, 2010), Stoye (2009), Andrews and Soares (2010), Bugni (2010), and so on.
8For example, following AS, the transformed regressors may be Xo

i = Φ
(
Σ̂

−1/2
X,n

(
Xi − X̄n

))
where

X̄n = n−1
∑n

i=1 Xi, Σ̂X,n = n−1
∑n

i=1

(
Xi − X̄n

) (
Xi − X̄n

)′, and Φ(x) = (Φ (x1) , . . . ,Φ(xK))
′, where

Φ(·) denotes the standard normal cumulative distribution function and x = (x1, . . . , xk)
′.
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Assumptions 2.1–2.4, BI is equivalent to

{β ∈ B : EP [m (Wi,Wj, β, g)] ≥ 0 for all g ∈ G} ,

where m (Wi,Wj, β, g) = m (Wi,Wj, β) · g (Xi, Xj) for g ∈ G. I formalize this result

as Lemma A.2 in Appendix A.2 with a proof. Other kinds of instrumental functions

introduced in AS could be applicable with modifications.

Define the sample moment function and sample variance function of m (Wi,Wj, β, g),

respectively, by

m̄n (β, g) =
1

n(n− 1)

∑
i 6=j

m (Wi,Wj, β, g)

and

σ̂2
n (β, g) =

{
1

n (n− 1) (n− 2)

∑
i 6=j 6=k

m (Wi,Wj, β, g)m (Wi,Wk, β, g)

−

(
1

n(n− 1)

∑
i 6=j

m (Wi,Wj, β, g)

)2
 .

Note that m̄n (β, g) and σ̂2
n (β, g) are U-statistics of orders two and three, respectively.

Because m̄n (β, g) is a non-degenerate U-statistic of order two, the asymptotic variance of
√
nm̄n (β, g) is VarP (EP [m (Wi,Wj, β, g) | Wi]), which is equivalent to9

EP [m (Wi,Wj, β, g)m (Wi,Wk, β, g)]− (EP [m (Wi,Wj, β, g)])
2 .

Thus, σ̂2
n (β, g) is a consistent estimator of the asymptotic variance of

√
nm̄n (β, g). How-

ever, in practice, σ̂2
n (β, g) could be zero for some g ∈ G; so we use the modification

proposed by AS for σ̂2
n (β, g). The modified version of σ̂2

n (β, g) is

σ̄2
n (β, g) = σ̂2

n (β, g) + εσ̂2
n,

9For the variance of U-statistics, see, for example, van der Vaart (1998, Ch. 12).
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where σ̂2
n = σ̂2

n (β, 1), which is a consistent estimator of

σ2
P (β) = EP [m (Wi,Wj, β)m (Wi,Wk, β)]− (EP [m (Wi,Wj, β)])

2 ,

and ε is a regularization parameter that takes some fixed positive value. Based on some

simulation experiments, I recommend taking ε = 0.0001.10

Then, with ga,ã,r(xi, xj) = 1
[
(xi, xj) ∈

(
au−1
2r

, au
2r

]
×
(
ãu−1
2r

, ãu
2r

]]
, the test statistic at β

takes the form

Tn(β) =
∞∑
r=1

(
r2 + 100

)−1
∑

(a,ã)∈{1,··· ,2r}2
(2r)−2K

[
n

1
2 m̄n (β, ga,ã,r)

σ̄n (β, ga,ã,r)

]2
−

,

where [x]− = −x if x < 0 and [x]− = 0 if x ≥ 0. This test statistic is a version of AS’s

test statistic that is extended to the U-statistics of order two. Here, the inner summation

is taken over two indices, a and ã. In the implementation, we instead use an approximate

test statistic at β:

Tn,R(β) =
R∑

r=1

(
r2 + 100

)−1
∑

(a,ã)∈{1,··· ,2r}2
(2r)−2K

[
n

1
2 m̄n (β, ga,ã,r)

σ̄n (β, ga,ã,r)

]2
−

,

where R is some truncation integer chosen by the researcher.

To compute a critical value for Tn,R(β), I propose using an asymptotic approximation

version of the critical value. This is a simulated quantile of

TAsy
n,R (β) =

R∑
r=1

(
r2 + 100

)−1
∑

(a,ã)∈[1,··· ,2r]2
(2r)−2K

[
vn (β, ga,ã,r) + ϕn (β, ga,ã,r)

σ̄n (β, ga,ã,r)

]2
−
,

where (vn (β, g))g∈G is a zero mean Gaussian process with a covariance kernel evaluated

by

ĥ2 (β, g, g
∗) =

{
1

n (n− 1) (n− 2)

∑
i 6=j 6=k

m (Wi,Wj, β, g)m (Wi,Wk, β, g
∗)

−

[
1

n (n− 1)

∑
i 6=j

m (Wi,Wj, β, g)

]
·

[
1

n (n− 1)

∑
i 6=j

m (Wi,Wj, β, g
∗)

]}
.

10This value is different from the value recommended by AS, which is ε = 0.05.
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In the form of TAsy
n,R (β), (vn (β, ga,ã,r))a,ã,r approximates the asymptotic distribution of

(
n

1
2 [m̄n (β, ga,ã,r)− EP [m (Wi,Wj, β, ga,ã,r)]]

)
a,ã,r

.

ϕn (β, ga,ã,r) is a generalized moment selection (GMS) function to select binding moment

restrictions, which is given by

ϕn (β, ga,ã,r) = σ̂2
nBnI

[
κ−1
n n

1
2 m̄n (β, ga,ã,r) /σ̄n (β, ga,ã,r) > 1

]
,

where Bn and κn are two tuning parameters that should satisfy κn → ∞, κn/n
1/2 → 0,

and Bn → ∞ as n → ∞ a.s. In this paper, based on some simulation experiments, I

recommend using κn =

((
1− p̂

1/3
1−D

)2/5
× 0.6 ln(n)

) 1
2

and Bn = (0.8 ln (n) / ln ln (n))
1
2 ,

where p̂1−D = 1
n

∑n
i (1−Di) is the sample censoring rate.11 The recommended value of

κn decreases with the sample censoring rate. The following assumption summarizes the

requirements for the tuning parameters in the GMS function.

Assumption 3.1. The tuning parameters (κn, Bn) satisfy κn → ∞, κn/n
1/2 → 0, and

Bn → ∞ as n → ∞ a.s.

For a significance level of α < 1/2, the critical value is set to be the 1−α+η simulated

quantile of TAsy
n,R (β), where η is an arbitrarily small positive number (e.g., 10−6 following

AS). Letting ĉn,η,1−α(β) be the 1 − α + η quantile of TAsy
n,R (β), a nominal level 1 − α

confidence set is computed by

ĈSn,η,1−α = {β ∈ B : Tn,R(β) ≤ ĉn,η,1−α(β)} .

Note again that the inference approach presented above is for the U-statistics of order

two, but it can be applied to U-statistics of a greater order with some modifications.

In these modifications, the class of instrumental functions, the moment function, and its

sample variance function need to be changed for greater order; the inner double summation

in the test statistic needs to be replaced with more summation; and the tuning parameters

probably should be customized.
11The values for κn and Bn are different from the values recommend by AS, which are κn = (0.3 ln(n))

1
2

and Bn = (0.4 ln (n) / ln ln (n))
1
2 , respectively.
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3.2 Asymptotic Size and Power Properties

This subsection provides uniform asymptotic size and power properties of the inference

method. Let Q be the collection of all pairs of the regression parameters and distribution,

(β, P ), that satisfy (3.1) and Assumptions 2.1–2.4. Define

h2,P (β, g, g
∗) =EP [EP [m (Wi,Wj, β, g)m (Wi,Wk, β, g

∗) | Wi]]

− EP [m (Wi,Wj, β, g)]EP [m (Wi,Wj, β, g
∗)] , (3.2)

which is the covariance kernel between m (Wi,Wj, β, g) and m (Wi,Wj, β, g
∗) under dis-

tribution P . Let H2 be the collection of all possible covariance kernel functions on G ×G.

The following theorem presents the uniform size and power properties of the proposed

inference method.

Theorem 3.1. Suppose that Assumptions 2.1–2.4 and 3.1 hold, R = ∞, and α < 1/2.

(a) For every compact subset H2,cpt of H2, the confidence set ĈSn,η,1−α satisfies

lim
η→0

lim inf
n→∞

inf{
(β,P )∈Q:h2,P∈H2,cpt

}P
(
β ∈ ĈSn,η,1−α

)
= 1− α.

(b) Let β̃ ∈ B be a vector of parameters such that (3.1) is violated for some (xi, xj) ∈ X 2
uc.

Then, limn→∞ P (β̃ ∈ ĈSn,η,1−α) = 0.

The proof is provided in Appendix A.2. Theorem 3.1 (a) states that the proposed

confidence set is asymptotically conservative, which corresponds to Theorem 2(b) of AS.

The uniformity in the statement enables the asymptotic result to provide a good finite

sample approximation, which is well discussed in AS. Theorem 3.1 (b) states that the test

is consistent against a fixed alternative.

4 Simulation Studies

This section presents numerical examples and Monte Carlo simulation results. The nu-

merical examples show how the set BI varies with the degree of censoring and the support

of the regressors. The Monte Carlo simulations show the finite sample performance of
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the proposed inference method and demonstrate how it varies with various choices of the

tuning parameters.

4.1 Numerical Examples

This section provides some examples to show how BI varies depending on the degree of

censoring and the support of the covariates. We consider three MPH models (Models

1–3) with endogenous censoring that have the following form:

log Y = β1X1 + β2X2 + logU + log V,

logC = α0 + (γ0 + γ1X1 + γ2X2)× logU + logW.

In all the models, I set (β1, β2) = (0.5, 1.5) and (γ0, γ1, γ2) = (−0.5, 0.5,−1). In Models

1–3, I set α0 equal to +∞, 3, and 1.6, respectively. In Model 1, there is no censoring; in

Models 2 and 3, there is censoring, which is correlated with the covariates and unobserved

heterogeneity. The outcome is likely to be more censored in Model 3 than in Model 2. In

all the models, U , V , and W have unit exponential distributions, and X2 takes values in

{0, 1}. As for X1, we consider three cases; X1 takes values in (i) {−2.5,−2.0, . . . , 2.5},

(ii) {−5,−2.5, . . . , 5}, or (iii) {−5,−4.8, . . . , 5}. Support (ii) is wider than support (i),

while they have the same fineness; support (iii) is finer than support (ii), while they have

the same width. In these data generating processes (DGPs), the censoring is endogenous

because Y is correlated with C even conditional on X1 and X2, which occurs due to the

presence of U in both equations for log Y and logC. The parameter of interest here is

the scale normalized value of β2, whose true value is β2/ |β1| = 3.

Given the DGPs described above, BI is a set of parameter values that satisfy the

conditional moment inequality (3.1) for each pair of values of (X1, X2). I numerically

obtain BI by simulating the distributions of log Y and logC for each pair of values of

(X1, X2), from 5,000 random draws from each of the DGPs given the parameter space

B = {−1, 1} × [0, 9].

Table 1 presents the numerical results. In Table 1, each cell provides the numerically

computed BI for each model and each support of X1. As expected, BI shrinks as the

censoring rate decreases or the support becomes wider or finer. In particular, in Model 1,
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in which there is no censoring, BI shrinks to a singleton at the true parameter value when

X1 takes values from support (iii). In the same model, the computed sets from supports

(i) and (ii) are the same, which implies that the difference in widths between supports (i)

and (ii) does not affect the width of BI in Model 1.

Table 1: Computed BI for Models 1–3 and Supports (i)–(iii)

Model / Support of X1 Support (i) Support (ii) Support (iii)
Model 1 [2.51, 3.49] [2.51, 3.49] {3}
Model 2 [2.01, 3.50] [2.01, 3.49] [2.41, 3.39]
Model 3 [1.50, 4.99] [1.51, 4.00] [1.81, 3.80]

4.2 Monte Carlo Experiments

I also conduct Monte Carlo experiments to evaluate the size and power properties of the

proposed inference method. I use two DGPs (DGP1 and DGP2). In DGP1 and DGP2,

the data are derived from Model 2 and Model 3, respectively, where the distribution of

X1 is replaced with a normal distribution with a mean of zero and a standard deviation

of two; X2 takes values in {0, 1} with probability 1/2 for each; U , V , and W have unit

exponential distributions. The censoring rates in DGP1 and DGP2 are about 16% and

30%, respectively.

For the Monte Carlo experiments, 500 samples are drawn with sample sizes of 250

and 500. The critical values are simulated using 1,000 repetitions for the significance level

α = 0.05. Based on the inference method, I conduct a test of H0 : (3.1) holds against H1 :

(3.1) is violated at each value of (β1, β2) ∈ {1} × {0, 0.5, . . . , 9}, where I set β1 equal to

one for scale normalization. The true value of the normalized parameter β2/ |β1| is 3. As

a base case, I set the tuning parameters in the GMS function κn, Bn, and ε to the values

recommended in Section 3.1, and set R = 5. I also compare the results from the base case

with the results from various choices of the tuning parameters. I do not assume that the

researcher knows the exact distribution of X1; hence, I transform X1 into Xo
1 described in

Section 3.1 and use Xo
1 instead of X1. As for X2, I assume that the researcher knows its

exact distribution. Since X2 takes the two discrete values (0 and 1), I set the instrumental
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function as

ga,ã,d,d̃,,r(xi, xj) = I

[
(x1i, x1j) ∈

(
a− 1

2r
,
a

2r

]
×
(
ã− 1

2r
,
ã

2r

]
, (x2i, x2j) ∈

(
d, d̃
)]

for all (a, ã) ∈ {1, 2, . . . , 2r}2 and
(
d, d̃
)
∈ {0, 1}2, and use the following test statistic,

Tn,R(β) =
R∑

r=1

(
r2 + 100

)−1
∑

(
d,d̃

)
∈{0,1}2

∑
(a,ã)∈{1,··· ,2r}2

(2r × 2)−2

[
n

1
2 m̄n

(
β, ga,ã,d,d̃,r

)
σ̄n

(
β, ga,ã,d,d̃,r

) ]2
−

.

The critical value is taken as a simulated quantile of

TAsy
n,R (β) =

R∑
r=1

(
r2 + 100

)−1
∑

(
d,d̃

)
∈{0,1}2

∑
(a,ã)∈{1,··· ,2r}2

(2r × 2)−2

×

[
n

1
2

(
vn
(
β, ga,ã,d,d̃,r

)
+ ϕn

(
β, ga,ã,d,d̃,r

))
σ̄n

(
β, ga,ãd,d̃,r

) ]2
−

.

Figure 1 shows the graphs of rejection frequencies for the base case in DGP1 and

DGP2. The solid horizontal line in each figure indicates a rejection frequency of 0.05.

The dashed curve and dotted curve indicate the rejection frequencies for sample sizes of

250 and 500, respectively. As expected, all the rejection frequencies at the true point are

close to the nominal size α = 0.05. Furthermore, the rejection frequencies are close to

0.05 not only at the true parameter value but also in the intervals that contain it. The

95% confidence interval in DGP2 is wider than that in DGP1 for each sample size. It is

also wider with a sample size of 500 than with a sample size of 250 in each DGP. But

the rejection frequencies at extreme points, such as 0 and 8, are larger with a sample size

of 500 than with a sample size of 250 in each DGP. All the intervals are stretched more

toward positive values than toward negative values.

Table 2 shows the rejection frequencies at the true parameter value and (β1, β2) = (1, 0)

for several choices of the tuning parameters in DGP1 and DGP2. The point (β1, β2) =

(1, 0) is not contained in BI , as seen from the results of the numerical examples. Table 2

shows the degree of sensitivity of the inference to variation in sample size n, the choice of

the truncation integer R in the approximate test statistic, the value of ε for the modified

variance estimator σ̄2
n (β, g), and the choice of (κn, Bn) in the GMS function. The base
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case in Table 2 uses n = 250, R = 5, and the values of (κn, Bn, ε) recommended in Section

3.1. In the case of the last row of Table 2, the tuning parameter κn does not depend on

the sample censoring rate. The results in Table 2 shows that there is some sensitivity to

the sample size, the choice of (κn, Bn), R, and the value of ε. In particular, the sensitivity

to the choice of (κn, Bn) is high. A small value of ε leads to a high power of the test,

whereas it increases the size of the test.

Table 2: Rejection Frequencies for the Inference Method: Variation in Sample Size and
Choice of the Tuning Parameters

DGP1 DGP2
Case (β1, β2) = (1, 3) (β1, β2) = (1, 0) (β1, β2) = (1, 3) (β1, β2) = (1, 0)

Base Case 0.046 0.79 0.032 0.362
(n = 250, R = 5, ε = 0.0001)

ε = 0.001 0.046 0.716 0.028 0.29
ε = 0.00001 0.056 0.802 0.036 0.372

R = 3 0.040 0.590 0.038 0.180
R = 7 0.036 0.804 0.014 0.348

n = 100, ε = 0.001 0.050 0.328 0.044 0.152
n = 100, ε = 0.0001 0.068 0.438 0.052 0.216
n = 100, ε = 0.00001 0.082 0.460 0.050 0.232
n = 500, ε = 0.001 0.028 0.940 0.014 0.364
n = 500, ε = 0.0001 0.040 0.962 0.020 0.456
n = 500, ε = 0.00001 0.046 0.972 0.022 0.472
n = 1000, ε = 0.001 0.032 1.000 0.008 0.492
n = 1000, ε = 0.0001 0.034 1.000 0.018 0.644
n = 1000, ε = 0.00001 0.040 1.000 0.020 0.666
(κn, Bn) = 1/2 (κn, Bn) 0.302 0.950 0.144 0.568
(κn, Bn) = 2 (κn, Bn) 0.00 0.256 0.00 0.04
κn = (0.6 ln(n))

1
2 0.022 0.694 0.016 0.24
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Figure 1: Rejection Frequencies in DGP1 and DGP2

(a) DGP1

(b) DGP2

Notes: In each line, the horizontal line indicates parameter values at 0.0, 0.5, . . . , 8.0 and, at each of
these, the dashed curve and dotted curve indicate rejection frequencies for a sample size of 250 and
500, respectively. The solid horizontal line in each graph indicates a rejection frequency of 0.05. For
each graph and curve, the set of parameter values at which the curve is below the solid horizontal
line is a computed 95% confidence set.
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5 Empirical Illustration

I apply the proposed inference method to evaluate the effect of heart transplants on pa-

tients’ survival duration using the Stanford Heart Transplant Data taken from Kalbfleisch

and Prentice (1980). This data set consists of survival times (in days) of 103 patients; an

indicator of censoring, which takes the value one if the patient was dead (uncensored) or

zero if the patient was censored; an indicator of receiving a heart transplant, which takes

the value one if the patient received a heart transplant or zero otherwise; and ages (in

years) of patients at the time of acceptance into the program. Among the 103 patients,

27% (28 patients) are censored due to attrition or administrative censoring. The censor-

ing rates for the treated (transplanted) and untreated (not transplanted) groups are 35%

and 22%, respectively.

We consider the following censored transformation model,

T (Y0i) = min {Xi,ageβage +Xi,treatβtreat + Ui, T (Ci)} ,

where Y0i is the observed survival time, Xi,age is the age, Xi,treat is the transplant indica-

tor, Ui is the patient’s unobserved heterogeneity, and Ci is the censoring time of patient i.

Applying the proposed method, we allow the censoring to be arbitrarily correlated with

the patient’s age and unobserved heterogeneity. Further, we do not specify the transfor-

mation function or the distribution function of the patient’s unobserved heterogeneity.

For scale normalization, I set |βage| = 1. Our interest is then on the scale-normalized

regression parameter of Xi,treat (i.e., βtreat/ |βage|), which can be interpreted as the log

of the scale-normalized hazard ratio. We compare the proposed method with the par-

tial rank estimator (PRE) proposed by Khan and Tamer (2007). This is robust up to

covariate-dependent censoring and consistently estimates the regression parameters in a

nonparametric transformation model.

Table 3 shows the inference results. It presents the point estimate obtained from the

PRE and 95% confidence intervals obtained from the PRE and the proposed method.

The confidence interval obtained from the PRE is computed based on 1,000 bootstrap

pseudo samples from the data. For the proposed method, I set R = 5 and use the values

of the tuning parameters recommended in Section 3.1 but ε = 0.001 as this seems more
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conservative for the small sample according to the Monte Carlo simulation results in the

previous section. The confidence interval obtained from the proposed method does not

have a finite upper bound. This may be because the age does not have sufficiently large

support to derive a finite upper bound of the identified set. The estimate obtained from

the PRE is positive and is significantly different from zero. The 95% confidence interval

obtained from the proposed method is entirely positive and covers the confidence interval

obtained from the PRE. The inference result from the proposed method shows that even if

the censoring is arbitrarily correlated with the patient’s age or unobserved heterogeneity,

the heart transplant has a positive effect on the patient’s survival time.

Table 3: Empirical Illustration: Inference Results

PRE Proposed Method
Estimate 41.4 -

95% Confidence Interval [17.3, 57.3] [10.6, +∞]

6 Identification of the Transformation Function

In this section, I propose a partial identification result for the transformation function

T (·) in the presence of endogenous censoring. We focus on the transformation function at

a particular value of y ∈ R, T (y). Although we do not identify the distribution function

of the unobserved heterogeneity in this paper, knowing about T (·) and β0 enables us to

predict some useful parameters (e.g., average partial effect) given the distribution of the

unobserved heterogeneity. Further, the shape of T (·) is informative to infer the type of

duration model.

The identification is built on the rank approach proposed by Chen (2002). Let T0(·)

be the true transformation function. In the case with no censoring, provided that As-

sumptions 2.1–2.3 and the full-rank and full-support conditions on the regressors hold

and that the true regression parameters β0 are given,12 Chen (2002) shows that T0 (y)

12Under the supposed conditions, β0 can be point identified by, for example, applying Han’s (1987)
maximum rank correlation approach.
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uniquely satisfies the following rank property:

P (Y ∗
i ≥ y | xi) ≥ P

(
Y ∗
j ≥ ỹ | xi

)
whenever x′

iβ0 − x′
jβ0 ≥ T0(y) (6.1)

for all (xi, xj) ∈ X 2, where recall that ỹ is such that T (ỹ) = 0 for the location normal-

ization. Thus, T0 (y) is point identified under the supposed conditions. He also provides

an inference method based on this identification result.

In the presence of endogenous censoring, I partially identify T0 (y) using a similar idea

to that presented in Section 2.2. If β0 was given, since P (Y1i ≥ y | xi) ≥ P (Y ∗
i ≥ y | xi)

and P
(
Y ∗
j ≥ y | xj

)
≥ P (Y0j ≥ y | xj) hold for all (xi, xj), it follows from (6.1) that T0 (y)

is contained in

{
t ∈ R : X ′

iβ0 −X ′
jβ0 ≥ t ⇒ P (Y1i ≥ y | xi) ≥ P (Y0j ≥ ỹ | xi) for all (xi, xj) ∈ X 2

}
.

(6.2)

However, in the presence of endogenous censoring, we cannot point identify β0; instead,

we can obtain the set BI , as described in Section 2.2, which contains β0. Thus, letting

TI,β (y) equal

{
t ∈ R : X ′

iβ −X ′
jβ ≥ t ⇒ P (Y1i ≥ y | xi) ≥ P (Y0j ≥ ỹ | xi) for all (xi, xj) ∈ X 2

}
and TB (y) = {TI,β (y) | β ∈ B} for any parameter set B, we have that T0 (y) ∈ TBI

(y).

Note that due to the similar reason discussed in Section 2.3, TI,β0 (y) is not a sharp

identified set of T0 (y) even if β0 is known. Hence, TB0 is not a sharp identified set even

if we obtain B0. The following theorem formalizes the identification result.

Theorem 6.1. Under Assumptions 2.1–2.4, T0 (y) ∈ TBI
(y) for any y ∈ R.

The proof is provided in Appendix A.1. This identification result also does not depend

on the full-rank or full-support condition on the regressors. The identified set shrinks as

censoring is less likely to occur. In Appendix A.3, I present a joint inference procedure

for β0 and T0 (y).
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7 Concluding Remarks

In this paper, I propose a partial identification and inference approach for a nonpara-

metric transformation model in the presence of endogenous censoring. I partially identify

the regression parameters and the transformation function, each of which is characterized

by conditional moment inequalities involving a U-statistic. I also characterize the sharp

identified set of the regression parameters, using the concepts from random set theory,

though it is hard to compute. Comparison between the proposed set and sharp identi-

fied set makes clear when the proposed set approaches to the sharp set. Based on the

identification result, I propose an inference method by extending the inference approach

for conditional moment inequality models, proposed by Andrews and Shi (2013), into the

U-statistics case, and I derive its asymptotic properties. Numerical examples illustrate

the characteristics of the proposed set, and the results of Monte Carlo experiments show

the size and power properties of the proposed inference method. As an empirical applica-

tion, I apply the inference method to evaluate the effect of heart transplants on patients’

survival duration by using data from the Stanford Heart Transplant Study, from which I

find that heart transplants have a positive effect on patients’ survival duration regardless

of the structure of censoring.
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A Appendix

In this appendix, Section A.1 provides proofs of Theorems 2.1 and 6.1. Section A.2

provides a proof of Theorem 3.1 with some auxiliary lemmas. Section A.3 provides a joint

inference procedure for the regression parameters and the transformation function based

on the identification results presented in Sections 2.2 and 6.

A.1 Proofs of Theorems 2.1 and 6.1

This section provides proofs of Theorems 2.1 and 6.1.

Proof of Theorem 2.1. From the definitions of Y1i and Y0i, the following holds for all

(xi, xj) ∈ X 2,

P (Y1i ≥ Y0j | xi, xj)− P (Y0j ≥ Y1i | xi, xj) ≥ P (Y ∗
i ≥ Y ∗

j | xi, xj)− P (Y ∗
j ≥ Y ∗

i | xi, xj).

For the conditional multinomial distribution P (Y ∗
i , Y

∗
j | xi, xj), it holds for all (xi, xj) ∈

X 2 that

P
(
Y ∗
i ≥ Y ∗

j | xi, xj

)
− P

(
Y ∗
j ≥ Y ∗

i | xi, xj

)
=P

(
T−1 (x′

iβ0 + Ui) ≥ T−1
(
x′
jβ0 + Uj

)
| xi, xj

)
− P

(
T−1

(
x′
jβ0 + Uj

)
≥ T−1 (x′

iβ0 + Ui) | xi, xj

)
=P

(
x′
iβ0 + Ui ≥ x′

jβ0 + Uj | xi, xj

)
− P

(
x′
jβ0 + Uj ≥ x′

iβ0 + Ui | xi, xj

)
=P (Ui − Uj ≥ −∆x′β0 | xi, xj)− P (Uj − Ui ≥ ∆x′β0 | xi, xj) ,

where ∆x ≡ xi−xj. The first and second equality holds because T (·) and, automatically,

its inversion T−1(·) are strictly monotonic increasing functions under Assumption 2.1.

Under Assumptions 2.3 and 2.4, X takes at least two distinct values on Xuc. Then,

because the above difference has the same sign as ∆x′β0 = x′
iβ0−x′

jβ0 under Assumptions

2.1 and 2.2, it follows that

x′
iβ0 ≥ x′

jβ0 ⇒ P
(
Y ∗
i ≥ Y ∗

j | xi, xj

)
≥
(
Y ∗
j ≥ Y ∗

i | xi, xj

)
⇒ P (Y1i ≥ Y0j | xi, xj) ≥ P (Y0j ≥ Y1i | xi, xj)

⇔ P (Y1i ≥ Y0j | xi, xj) ≥
1

2
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for all (xi, xj) ∈ X 2. This implies that β0 ∈ BI .

Proof of Theorem 6.1. Under Assumptions 2.1–2.4, by Theorem 2.1, β0 ∈ BI . Then, it

suffices to show that T0 (y) ∈ TI,β0 (y) for any y ∈ R.

Note that, from the definitions of Y1i and Y0i, the following holds for all (xi, xj) ∈ X 2,

P (Y1i ≥ y | xi)− P (Y0j ≥ ỹ | xj) ≥ P (Y ∗
i ≥ y | xi)− P (Y ∗

j ≥ ỹ | xj).

For the conditional multinomial distribution P (Y ∗
i , Y

∗
j | xi, xj), it holds that

P (Y ∗
i ≥ y | xi)− P (Y ∗

j ≥ ỹ | xj)

=P (x′
iβ0 + Ui ≥ T0 (y) | xi)− P

(
x′
jβ0 + Uj ≥ 0 | xj

)
=FU

(
−x′

jβ0

)
− FU (T0 (y)− x′

iβ0)

for all (xi, xj) ∈ X 2, where FU (·) is the distribution function of U and T (ỹ) = 0 holds

from the location normalization. Under Assumptions 2.3 and 2.4, X takes at least two

distinct values on Xuc. Then, since the above difference has the same sign as ∆x′β0−T0 (y)

under Assumptions 2.1 and 2.2, we have

x′
iβ0 − x′

jβ0 ≥ T0 (y) ⇒ P (Y ∗
i ≥ y | xi)− P (Y ∗

j ≥ ỹ | xj) ≥ 0

⇒ P (Y1i ≥ y | xi)− P (Y0j ≥ ỹ | xj) ≥ 0

for all (xi, xj) ∈ X 2. This implies that T0 (y) ∈ TI,β0 (y).

A.2 Proof of Theorem 3.1

This section provides a proof of the uniform asymptotic probability results for the inference

method presented in Section 3. The outline of the proof is same as that of the proofs of

Theorems 2 (b) and 3 in AS, but I modify them for the case of U-statistics. Let denote

weak convergence of a stochastic process in the sense of Pollard (1990). The following
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notations are similar to the notations introduced in AS,

vn,P (β, g) = n
1
2 (m̄n (β, g)− EP [m (Wi,Wj, β, g)]) /σp (β)

and

ĥ2,n,P (β, g, g∗) =

{
1

n (n− 1) (n− 2)

∑
i 6=j 6=k

m (Wi,Wj, β, g)m (Wi,Wk, β, g
∗)

−EP [m (Wi,Wj, β, g)] · EP [m (Wi,Wj, β, g
∗)]} /σ2

P (β) .

Let {vh2 (g) : g ∈ G} be a mean zero Gaussian process with some covariance kernel h2 (·, ·)

on G × G.

To prove Theorem 3.1, I first prove that the following two lemmas hold. Lemma

A.1 implies that Assumption EP in AS holds. Lemmas A.2 implies that a version of

Assumption CI in AS, which is modified for the case of U-statistics, holds.

Lemma A.1. Suppose that Assumptions 2.1–2.4 hold. For any subsequence {(βan , Pan) ∈ Q : n ≥ 1}

such that

lim
n→∞

sup
g,g∗∈G

∥∥h2,Pan
(βan , g, g

∗)− h2 (g, g
∗)
∥∥ = 0

for some covariance kernel h2(·, ·) on G × G, we have

(a) √
anvan,Pan

(βan , ·) vh2 (·) as n → ∞, and

(b) sup
(g,g∗)∈G×G

∥∥∥ĥ2,an,Pan
(βan , g, g

∗)− h2 (g, g
∗)
∥∥∥→

p
0 as n → ∞.

Lemma A.2. Suppose that Assumptions 2.1–2.4 hold. For any β ∈ B and any distribution

function P , let

XP (β) =
{
(xi, xj) ∈ X 2 : EP [m (Wi,Wj, β) | xi, xj] < 0

}
.

Then, for any β ∈ B and P for which P ((Xi, Xj) ∈ XP (β)) > 0, there exists some g ∈ G

such that

EP [m (Wi,Wj, β, g)] < 0.
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The next lemma with a proof is auxiliary to Lemma A.1.

Lemma A.3. Let β ∈ B and P be the limit distribution of Pn. Define F1 = {f1(wi, wj, β, g) : g ∈ G}

and F2 = {f2(wi, wj, wk, β, g, g
∗) : (g, g∗) ∈ G × G}, where

f1(wi, wj, β, g) = m (wi, wj, β, g)− EP [m (wi, wj, β, g)]

and

f2(wi, wj, wk, β, g, g
∗) =m (wi, wj, β, g)m (wi, wk, β, g

∗)

− EP [m (Wi,Wj, β, g)] · EP [m (Wi,Wj, β, g
∗)] .

Then, F1 and F2 are Euclidean classes of functions for constant envelopes 1 and 1/2,

respectively.

Proof of Lemma A.3. We first consider the class of function G defined in Section 3.1. This

class of functions is represented as

G = {I [(au − 1) / (2r) < xi ≤ au/ (2r)] · I [(ãu − 1) / (2r) < xj ≤ ãu/ (2r)] :

a = (a1, . . . , ak)
′ , ã = (ã1, . . . , ãk)

′ , (au, ãu) ∈ {1, 2, . . . , 2r}2

for u = 1, . . . , k and r = 1, 2, . . .} .

Because the collection of cells on the real line is a Vapnik-Chervonenkis (VC) class of sets

(see van der Vaart and Wellner (1996, Example 2.6.1), the collection of all subgraphs,

{(xi, xj, t) : t < g (xi, xj)}, of the function in G forms a VC class of sets in X 2×R. Hence,

G is a VC class of functions. Combining this result with Lemma 2.6.18 in van der Vaart

and Wellner (1996), F1 and F2 are VC-classes of functions. Thus, from Corollary 19

in Nolan and Pollard (1987), F1 and F2 are Euclidean classes of functions. F1 and F2

obviously have the constant envelopes 1 and 1/2, respectively, from their definitions.

I provide proofs of Lemmas A.1 and A.2 and Theorem 3.1 below.
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Proof of Lemma A.1.(a). While Lemma A.1 is stated in terms of a subsequence {an}, for

notational simplicity, I prove it for the sequence {n}. All of the arguments in this and

the next proofs proceed with {an} instead of {n}.

I use Theorem 5 in Nolan and Pollard (1988) to show that the weak convergence

result in Lemma A.1.(a) holds. Let Np (ε, R,F , F ) denote the Lp (Q)-covering number of

radius ε for the functional space F with envelope function F where Q is some probability

measure. Denote the class of functions Pf1 (x, ·, β, g) on X by PF1, where f1 and F1 are

defined in Lemma A.3. Let β ∈ B and P be the limit distribution of Pn.

To apply Theorem 5 in Nolan and Pollard (1988), it suffices to show that the following

conditions hold:

(i) supQ

∫ 1

0
logN2 (ε,Q,F1, F ) dε < ∞, supQ P

[∫ 1

0
logN2 (ε,Q,F1, F ) dε

]2
< ∞, and

supQ P
[∫ 1

0
logN2 (ε,Q, PF1, PF ) dε

]2
< ∞;

(ii) for each η > 0 and ε > 0, there exists a γ > 0 such that

lim
n→∞

sup
Q

P

 γ∫
0

logN2 (ε,Q, PF1, PF ) dε > η

 < ε,

where Q is any probability measure. I show below that these two conditions are satisfied.

I first consider condition (i). From Lemma A.3, the class of functions F1 is Euclidean

for the constant envelope F = 1. Then, from Corollaries 21 in Nolan and Pollard (1987),

the class of functions PF1 is also a Euclidean class for the constant envelope 1. From

page 789 in ?, if a Euclidean class has a constant envelope function, then the upper bound

of the Lp (Q)-covering number of radius ε for it is uniform in any probability measure Q.

Therefore, since F1 and PF1 are Euclidean classes with constant envelopes, for any 0 <

ε ≤ 1, there exist some constants K2, K∗
2 , V2, and V ∗

2 such that N2 (ε, R,F1, F ) ≤ K2ε
−2V2

and N2 (ε, R, PF1, PF ) ≤ K∗
2ε

−2V ∗
2 , for any probability measure Q. Then, it follows that

sup
Q

1∫
0

logN2 (ε,Q,F1, F ) dε ≤
1∫

0

(
logK2ε

−2V2
)
dε < ∞,

sup
Q

 1∫
0

logN2 (ε,Q,F1, F ) dε

2

≤

 1∫
0

(
logK2ε

−2V2
)
dε

2

< ∞,
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and

sup
Q

 1∫
0

logN2 (ε,Q, PF1, PF ) dε

2

≤

 1∫
0

(
logK∗

2ε
−2V ∗

2
)
dε

2

< ∞.

These imply that condition (i) is satisfied.

Next, as γ ↘ 0,

sup
R

γ∫
0

logN2 (ε, R, PF1, PF ) dε ≤
γ∫

0

logK∗
2ε

−2V ∗
2 dε

= γ logK∗
2 − 2V ∗

2 γ log γ

→ 0.

This implies that condition (ii) is satisfied. Therefore, from Theorem 5 in Nolan and

Pollard (1988) and σPn (β) →
p
σP (β), Lemma A.1.(a) holds.

Proof of Lemma A.1.(b). Let β ∈ B and P be the limit distribution of Pn. Since F1 and

F2 are Euclidean classes with constant envelopes from Lemma A.3, by applying Corollary

7 in Sherman (1994), it follows that

sup
G

∥∥∥∥∥ 1

n (n− 1)

∑
i 6=j

f1(wi, wj, β, g)

∥∥∥∥∥→
p
0

and

sup
G2

∥∥∥∥∥ 1

n (n− 1) (n− 2)

∑
i 6=j 6=k

f2(wi, wj, wk, β, g, g
∗)

∥∥∥∥∥→
p
0.

Therefore, letting h2 (β, g, g
∗) be given by (3.2) and further divided by σ2

P (β), as σPn (β) →
p

σP (β), we have

sup
g,g∗∈G2

∥∥∥ĥ2,an,Pn (βan , g, g
∗)− h2 (β, g, g

∗)
∥∥∥

≤ sup
G2

∥∥∥∥∥ 1

n (n− 1) (n− 2)

∑
i 6=j 6=k

f2(wi, wj, wk, β, g, g
∗)/σP (β)

∥∥∥∥∥
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+

{
sup
G

∥∥∥∥∥ 1

n (n− 1) (n− 2)

∑
i 6=j

f1(wi, wj, β, g)/σP (β)

∥∥∥∥∥
}2

+ op (1)

→
p

0.

Proof of Lemma A.2. It suffices to show that

EP [m (Wi,Wj, β, g)] ≥ 0 ∀g ∈ G

⇒ EP [m (Wi,Wj, β) | Xi, Xj] ≥ 0 a.s. (A.1)

I invoke Lemma C1 in AS. Let R be a semiring of subsets of R2k and

µ (C) = EP [m (Wi,Wj, β) I [(Xi, Xj) ∈ C]]

for C ∈ σ (C) = B
(
R2k
)
, where σ (C) denotes the σ-field generated by C and B

(
R2k
)

is

the Borel σ-field on R2k. σ (C) = B
(
R2k
)

is a well known result. I show that all conditions

of Lemma C1 in AS are satisfied. Then, condition (A.1) holds from Lemma C1 in AS.

First, C is a semiring of subsets of R2k. Since m (Wi,Wj, β) and I [(Xi, Xj) ∈ C]

are bounded functions, µ(·) satisfies the boundedness condition of Lemma C1 in AS.

The other conditions of Lemma C1 in AS also hold by the same argument of Lemma

3 in AS. Thus, by applying Lemma C1 in AS, µ (C) ≥ 0 for all C ∈ C implies that

EP [m (Wi,Wj, β) I [(Xi, Xj) ∈ C]] ≥ 0 for all σ (C), which is equivalent to B
(
R2k
)
. This

implies that the result of Lemma A.2 in this appendix holds.

Proof of Theorem 3.1. To show that Theorem 3.1 holds, it suffices to show that all re-

quired conditions in Theorems 2.1.(b) and 3 in AS are satisfied. Since we use the modified

method moments function proposed by AS (Equation 3.8 in AS), Lemma 1 in AS guar-

antees that our definition of Tn,R (β) satisfies Assumptions S1–4 in AS. Lemma A.1 in

this appendix implies that Assumption EP in AS is satisfied. Assumption 2.2 guarantees

that the continuity condition of Assumption GMS (a) in AS is satisfied. Assumption 3.1

implies that the tuning parameters in the GMS function satisfy Assumptions GMS1 and
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GMS2 (b) and (c) in AS. Lemma A.2 in this appendix has the same role as Assumption

CI in AS. Therefore, by the same arguments in Sections 12 and 14.1–2 in AS, Theorem

3.1 in this paper holds.

A.3 Inference for the Transformation Function

This section provides a joint inference procedure for β0 and T0 (y), for a particular value

of y ∈ R, based on the identification results presented in Sections 2 and 6. The infer-

ence procedure is constructed by applying the conditional moment inequality inference

approach presented in Section 3 to both the conditional moment inequality (3.1) and the

one in (6.2).

Let

m†
y (Wi,Wj, β, t) = (I [Y1i ≥ y]− I [Y0j ≥ ỹ]) · I[X ′

iβ −X ′
jβ ≥ t]

+ (I [Y1j ≥ y]− I [Y0i ≥ ỹ]) · I[X ′
jβ −X ′

iβ ≥ t]

and m†
y (Wi,Wj, β, t, g) = m†

y (Wi,Wj, β, t) · g (Xi, Xj) for any g ∈ G. Then, TI,β (y) is

equivalent to {
t ∈ R : EP

[
m†

y (Wi,Wj, β, t, g)
]
≥ 0 for all g ∈ G

}
.

Define the sample moment function and sample variance function, respectively, by

m̄†
y,n (β, t, g) =

1

n (n− 1)

∑
i 6=j

m†
y (Wi,Wj, β, t, g)

and

σ̂†2
y,n (β, t, g) =

{
1

n (n− 1) (n− 2)

∑
i 6=j 6=k

m†
y (Wi,Wj, β, t, g)m

†
y (Wi,Wk, β, t, g)

−

(
1

n(n− 1)

∑
i 6=j

m†
y (Wi,Wj, β, t, g)

)2
 .

Since the function m̄†
y,n (β, t, g) is a U-statistic of order two, the estimator of its asymptotic

variance, σ̂†2
y,n (β, t, g), is constructed by a similar form to σ̂2

n (β, g) in Section 3.1. In
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practice, we use the modified sample variance function:

σ̄†2
y,n (β, t, g) = σ̂†2

y,n (β, t, g) + εσ̂†2
y,n,

where σ̂†2
y,n = σ̂†2

y,n (β, t, 1) and ε is the regularization parameter (e.g., ε = 0.0001). Then,

an approximate test statistic at β and t is constructed as

Ty,n,R(β, t) =
R∑

r=1

(
r2 + 100

)−1
∑

(a,ã)∈{1,··· ,2r}2
(2r)−2K

[n 1
2 m̄n (β, ga,ã,r)

σ̄n (β, ga,ã,r)

]2
−

+

[
n

1
2 m̄†

y,n (β, t, ga,ã,r)

σ̄†
y,n (β, t, ga,ã,r)

]2
−


for some truncation integer R chosen by the researcher. Note that this test statistic com-

prises two normalized sample moments, m̄n (β, ga,ã,r) /σ̄n (β, ga,ã,r) and m̄†
y,n (β, t, ga,ã,r) /σ̄

†
y,n (β, t, ga,ã,r),

for β0 and T0(y), respectively.

We can compute the critical value for Ty,n,R(β, t) as a simulated quantile of

TAsy
y,n,R(β, t) =

R∑
r=1

(
r2 + 100

)−1
∑

(a,ã)∈[1,··· ,2r]2
(2r)−2K

([
vn (β, ga,ã,r) + ϕn (β, ga,ã,r)

σ̄n (β, ga,ã,r)

]2
−

+

[
v†y,n (β, t, ga,ã,r) + ϕ†

y,n (β, t, ga,ã,r)

σ̄†
y,n (β, t, ga,ã,r)

]2
−

 ,

where
(
v†y,n (β, t, g)

)
g∈G is a zero mean Gaussian process with a covariance kernel evaluated

by

ĥ†
y,2 (β, t, g, g

∗) =

{
1

n (n− 1) (n− 2)

∑
i 6=j 6=k

m†
y (Wi,Wj, β, t, g)m

†
y (Wi,Wk, β, t, g

∗)

−

[
1

n (n− 1)

∑
i 6=j

m†
y (Wi,Wj, β, t, g)

]
·

[
1

n (n− 1)

∑
i 6=j

m†
y (Wi,Wj, β, t, g

∗)

]}
,

and ϕ†
y,n (β, t, ga,ã,r) is a GMS function given by

ϕ†
y,n (β, t, ga,ã,r) = σ̂†2

y,nBnI
[
κ−1
n n

1
2 m̄†

y,n (β, t, ga,ã,r) /σ̄
†
y,n (β, t, ga,ã,r) > 1

]
.

34



Here Bn and κn are two tuning parameters that should satisfy Assumption 3.1. (e.g.,

κn =

((
1− p̂

1/3
1−D

)2/5
× 0.6 ln(n)

) 1
2

and Bn = (0.8 ln (n) / ln ln (n))
1
2 ). For a significance

level of α < 1/2, let ĉy,η,1−α (β, t) be the 1 − α + η sample quantile of TAsy
y,n,R(β, t) with

an arbitrarily small number η (e.g., 10−6). Then, the (1− α)-level confidence set for

(β0, T0 (y)) is computed by

{(β, t) ∈ B × R : Ty,n,R(β, t) ≤ ĉy,η,1−α (β, t)} .

The size and power properties stated in Theorem 3.1 could apply to this confidence set.
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