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Abstract

Across many fields in economics, a common approach to estimation of eco-
nomic models is to calibrate a sub-set of model parameters and keep them
fixed when estimating the remaining parameters. Calibrated parameters likely
affect conclusions based on the model but estimation time often makes a sys-
tematic investigation of the sensitivity to calibrated parameters infeasible. I
propose a simple and computationally low-cost measure of the sensitivity of
parameters and other objects of interest to the calibrated parameters. In the
main empirical application, I revisit the analysis of life-cycle savings motives
in Gourinchas and Parker (2002) and show that some estimates are sensitive
to calibrations.
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1 Introduction

Estimated dynamic economic models are now widely used across all fields of eco-
nomics. The estimation of structural models is, however, notoriously time consuming
and the estimation time increases drastically with the number of estimated param-
eters. A common approach to alleviate this computational burden is to calibrate a
sub-set of the model parameters and keep them fixed while estimating the remaining
parameters of interest.1 The calibrated parameter values are often based on external
sources such as previously published parameter estimates and will generally influ-
ence conclusions drawn from the estimated model.2 Unfortunately, a systematic
investigation of the sensitivity to calibrated parameters is often infeasible. If sensi-
tivity is investigated, the current practice is to report results from a few re-estimated
versions of the model. This approach is, however, generally very time consuming
and the number of alternative calibrations thus typically low, ultimately reducing
research transparency. In this paper, I propose a complementary approach that can
greatly improve transparency of structural research.

I propose a low-cost measure of the sensitivity of any quantity of interest to
the calibrated parameters. The sensitivity measure can often be calculated with
little additional programming and without significant computational cost since it
avoids re-estimation of the model parameters. The measure has a straightforward
interpretation as the effect from a marginal change in the calibrated parameters and
can e.g. be used to construct elasticities. Like most existing types of sensitivity
and robustness analyses, the proposed measure is thus local. I find the encouraging
result, however, that the measure provides a quite good approximation to even larger
changes in the calibrated parameters in my main empirical application.

The sensitivity measure is based on the General Method of Moments (GMM)
estimation framework, which includes most commonly used estimators. I rely on
standard asymptotic theory and utilize that this type of estimator has an asymp-
totic linear representation. Importantly, I impose no restrictions on the calibrated
parameters and they can e.g. be on the boundary of the parameter space. In the

1 See e.g. Gourinchas and Parker (2002); Scholz, Seshadri and Khitatrakun (2006); Cagetti and
De Nardi (2006); De Nardi, French and Jones (2010); French and Jones (2011); Blundell, Dias,
Meghir and Shaw (2016); Berger and Vavra (2015); Chiappori, Dias and Meghir (forthcoming);
Huo and Ríos-Rull (forthcoming) for a small sample of studies.

2 See e.g. Gourinchas and Parker (2002); Scholz, Seshadri and Khitatrakun (2006); Cagetti and
De Nardi (2006); De Nardi, French and Jones (2010); French and Jones (2011); Blundell, Dias,
Meghir and Shaw (2016); Berger and Vavra (2015); Chiappori, Dias and Meghir (forthcoming);
Huo and Ríos-Rull (forthcoming) for a small sample of studies.
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typical case in which calibrated calibrated parameters are assumed fixed at the true
population values or are consistent estimators of the population values, the sensi-
tivity measure is particularly simple to calculate.

The measure can be used to reduce the sensitivity to calibrations. The GMM
framework weights different moments through a weighting matrix chosen by the
researcher and the sensitivity measure thus depends on this weighting matrix. I
discuss how to implement an “optimal” weighting matrix that e.g. minimizes pa-
rameter sensitivity to calibrations. Using the “optimal” weighting matrix will thus
reduce sensitivity to calibrated parameters by potentially trading of efficiency.

The sensitivity of estimated parameters or other quantities of interest can be cal-
culated straightforwardly. The objects of primary interest are often some functions
of the parameters rather than the parameter estimates themselves. Such objects
of interest could for example be outcomes from counter factual policy reforms, op-
timal policy design or welfare measures. The proposed measure can quantify the
sensitivity of such model-based results to calibrations. In previous research – if the
sensitivity of such results are investigated – the most common approach is to re-
calculate the objects of interest from a change in the calibrated parameters while
the estimated parameters remain fixed at their originally estimated values. This
current approach completely ignores the effect on the estimated parameters and can
produce misleading results. The sensitivity measure I propose takes the effect on
the estimated parameters into account when approximating the effect from changing
calibrations, without costly re-estimations of the model.

Generalizations of the estimated model can be investigated without estimating
the richer and more complex model. A concrete application of the sensitivity mea-
sure is to investigate how sensitive results are to a particular generalization of the
estimated model. For example, imagine that σ ≥ 0 measures the degree of hetero-
geneity in some model parameter of interest. Imagine having estimated a restricted
version of the model without unobserved heterogeneity, i.e. with σ = 0 fixed. The
sensitivity measure can be used to assess the sensitivity of results to increasing σ
without having to re-estimate the more computationally time demanding model with
unobserved heterogeneity. The sensitivity measure thus increases transparency from
the point of the reader but can also guide the research process itself.

The sensitivity measure can greatly improve transparency of work in many fields
of economic research. I illustrate the usefulness of the approach through an applica-
tion to importance of different savings motives over the life cycle, as studied in the
seminal work by Gourinchas and Parker (2002). I show how the estimation results
are especially sensitive to the calibrated value of the risk-free interest rate, a param-
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eter not considered in their original robustness analysis. I compare the proposed
sensitivity measures to a brute force re-estimation and find very encouraging results
in the sense that the elasticities are close to the “true” percentage changes from
changes in the calibrated parameters. This is also true for even larger changes in
the risk-free interest rate although the sensitivity measure is based on a local linear
approximation. Interestingly, I find that their main result that buffer-stock saving
is the dominating savings motive early in working life while retirement saving or
life cycle motives are more important later in the working life is insensitive to the
calibrated parameters. A result that is also confirmed by a brute-force approach.

Finally, I also apply the sensitivity measure to recent research on home-ownership
and the option value of migration in Oswald (2019). I find that the willingness to
pay for the insurance value of migration against regional shocks are sensitive to
calibrated parameters related to idiosyncratic uncertainty. This example shows the
value of the sensitivity measure because the richness of the dynamic model prohibits
many re-estimations. The sensitivity measure thus increases the transparency of
such research significantly.

1.1 Existing Literature and Roadmap

The literature on sensitivity in economics is growing. Especially the sensitivity of
estimators to the included moments in GMM-type estimators has received recent
attention, see e.g. Kitamura, Otsu and Evdokimov (2013) and Andrews, Gentzkow
and Shapiro (2017, 2018). To my knowledge, however, the only paper investigating
the sensitivity of structural estimators to calibrated parameters is the recent pa-
per by Iskrev (2019). That paper focuses on Bayesian approaches to estimation of
macroeconomic models. I propose a measure based on a more commonly used type
of estimator, derived from the minimization of a quadratic criterion, in a frequentist
framework. Importantly, the approach in Iskrev (2019) requires identification of all
(both calibrated and estimated) model parameters simultaneously and the availabil-
ity of the covariance between the two sets of parameters. This e.g. precludes the
use of external sources for calibration, which is a very common approach.3 Another
related study is by Chernozhukov, Escanciano, Ichimura, Newey and Robins (2018)
who provide a setup for construction of locally robust moments that are orthogonal
to the calibrated parameters. Their approach can completely eliminate sensitivity
to calibrated parameters but relies on the availability of estimation information re-

3 A worst-case upper bound on the co-variance structure could be estimated following the approach
suggested in Cocci and Plagborg-Møller (2019), however.

3



garding the calibrated parameters. Again, this would preclude calibration based on
external sources.

Other recent related research includes Bonhomme and Weidner (2018); Chris-
tensen and Connault (2019); Honoré, Jørgensen and de Paula (2019); Armstrong
and Kolesár (2019) and Harenberg, Marelli, Sudret and Winschel (2019). Bon-
homme and Weidner (2018) study the sensitivity to model miss-specification and
provide estimators to minimize the effect on quantities of interest. Christensen and
Connault (2019) study counterfactual sensitivity to assumptions about unobserved
heterogeneity. Honoré, Jørgensen and de Paula (2019) propose measures related to
the effect on inference from e.g. changing the weighting put on moments in esti-
mation. Armstrong and Kolesár (2019) study the sensitivity to moments included
in estimation and proposes optimal weights that can reduce the sensitivity to in-
cluded moments. While all these measures are local, Harenberg, Marelli, Sudret
and Winschel (2019) suggest constructing a global approximation of the object of
interest to reduce the computational time required for global sensitivity analysis.
This approach has great potential for use in the context of structural estimation of
dynamic economic models but still requires a significant number of re-estimations
of the model. The local measure, I propose, could be used in junction with global
methods as a low-cost approach to guide the placement of evaluation nodes in the
approach proposed in Harenberg, Marelli, Sudret and Winschel (2019) to further
reduce the time required to implement such an approach.

In engineering and operations research, sensitivity and uncertainty quantifica-
tion of model outputs to model inputs have received substantial attention. Some
measures in this literature (see e.g. Borgonovo and Apostolakis, 2001) bears resem-
blance to the one, I propose, but in completely different contexts. There is also a
growing focus in this literature on global measures of sensitivity, see e.g. Borgonovo
and Plischke (2016) for a recent review.

The remainder of the paper is organized as follows. In the following section, I
specify the estimation framework and define the sensitivity measure. In Section 3,
I discuss how the proposed measure relates to some recent sensitivity measures. In
Section 4, I apply the measure to an empirical analysis of the relative importance of
alternative savings motives over the life cycle. In section 5, I apply the approach to a
rich model of home-ownership and migration before concluding in Section 6. Python
code generating all results in this paper is available from the author’s web-page.
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2 Framework and Sensitivity

I focus on situations in which interest lies in estimating a K × 1 vector of parame-
ters, θ, given some L×1 vector of calibrated parameters, γ̂. Interest may then be in
using these estimates to subsequently analyze different model outcomes and predic-
tions. While the proposed sensitivity measure has general applicability, I will focus
attention on estimation of dynamic economic models because such models typically
are time-consuming to estimate.

I assume that the estimation approach employed is of the form

θ̂ = arg min
θ∈Θ

gn(θ|γ̂)′Wngn(θ|γ̂)

where gn(θ|γ̂) = 1
n

∑n
i=1 f(θ|γ̂,wi) is some J × 1 vector valued function of the pa-

rameters and data, wi for i = 1, . . . , n, specified by the researcher. Wn is a J × J
positive semi-definite weighting matrix. When estimating dynamic economic mod-
els, evaluating gn(θ|γ̂) typically involves solving some model numerically. I assume
that the objective function satisfies standard regularity conditions and abstract from
any numerical approximation error associated with solving the model.4 In partic-
ular, I assume that there exists unique population parameters θ0 and γ0 such that
g(θ0|γ0) ≡ E [f(θ0|γ0,wi)] = 0.

This framework covers a wide range of frequently used approaches such as min-
imum distance, general method of moments (GMM), and maximum likelihood esti-
mation (MLE). Simulated versions of such estimators, such as simulated minimum
distance (SMD) and Indirect Inference (Smith, 1993; Gouriéroux, Monfort and Re-
nault, 1993) are also included in this class of estimators. The latter two approaches
are often employed when estimating dynamic economic models.

I am interested in constructing a measure of how sensitive results derived from
such an estimator are to the calibrated parameters. I will be more precise below but
quantities of interest could be the estimator itself or some other function of both sets
of parameters. By sensitivity I refer to questions of the form: How much does the
quantity of interest change from a marginal change in the calibrated parameters?

Importantly, I do not study the effect of the uncertainty regarding the calibrated
parameters on the inference on θ̂. This has been studied before in e.g. Newey
and McFadden (1994). While such inference corrections are related, they generally
require more structure on the calibration of γ̂. In particular, I imagine situations

4 see e.g. Newey and McFadden (1994).
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in which γ̂ could be estimated from different data-sources, by other researchers, or
published in other papers. In other words, the estimation function and uncertainty
related to γ̂ is likely not available to the researcher.

2.1 Current Practice to Sensitivity

In existing research the sensitivity to calibrated parameters is often not investigated,
albeit the likely importance for subsequent results derived from the estimated model.
If sensitivity to calibration is investigated the current practice is to report M es-
timation results, {θ̃m}M1 , from M alternative calibrations, {γ̃m}M1 , in a robustness
exercise where

θ̃m = arg min
θ∈Θ

gn(θ|γ̃m)′Wngn(θ|γ̃m).

While this approach has the potential to investigate alternative relevant calibrations,
it is somewhat arbitrary and to a great extend rely on the researcher’s priors on what
might be important or interesting to investigate. If the reader has a different prior
than the researcher on what the relevant alternatives to include in γ̃ are, the reader
cannot infer the implications of her own prior from the reported robustness results.
I view this as a lack of transparency.

Importantly, the current practice involves re-estimating the model M times,
which is potentially computationally time consuming if a dynamic economic model
is solved every time the objective function is evaluated. This, in turn, often leads to a
low value ofM , reducing the transparency drastically. The severity of this limitation
increases in the complexity of the underlying model and the dimensions of θ and γ.5

Paradoxically, the need for transparency is also increasing in the complexity and/or
the number of parameters. This motivates the low-cost measure I propose below.

An example of the current practice is also found in the main application below
in which I revisit the seminal work of Gourinchas and Parker (2002). Among other
things, they investigate the sensitivity of their estimation results to changing the
income shock variances and find that results are quite insensitive to these param-
eters. I confirm that finding using my proposed sensitivity measure. Interestingly,
however, the calibrated parameter that I find to be most important (the risk-free
interest rate) is not considered in their robustness exercise.

5 One approach could be to re-estimate the model for a changed value of each calibrated parameter
at a time while keeping the remaining fixed. This would lead to L = dim γ re-estimations of
the model. Since L is typically large, this simple strategy quickly becomes prohibitively time
consuming.
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2.2 Sensitivity Measure

I propose a systematic sensitivity measure that can be calculated without significant
additional computational cost. The interpretation of the measure is an approxima-
tion of the change in θ from a marginal change in the calibrated parameters. The
main sensitivity measure is local but I also discuss an alternative approach that can
in principle be used to emulate the current practice discussed above without the
computational burden of re-estimating the model for various γ̃.

The sensitivity measure is motivated by a standard representation used in asymp-
totic derivations. In particular, I use that estimators within the current framework
has an asymptotic linear form (Newey and McFadden, 1994), such that the estimator
can be represented as

θ̂(γ̂) = θ0 + Λn(γ̂)gn(θ0|γ̂) + op(n−
1
2 ) (1)

where Λn(γ̂) = −(G′nWnGn)−1G′nWn and Gn = ∂gn(θ|γ̂)
∂θ′

∣∣∣
θ=θ0

is the J ×K Jacobian
w.r.t. the estimated parameters. Although suppressed in the notation here, Gn

depends on the calibrated parameters, γ̂. Under fairly standard regularity condi-
tions, similar in spirit to those employed in e.g. Newey and McFadden (1994) and
Andrews, Gentzkow and Shapiro (2017), the estimator converges in probability to

θ(γ) = θ0 + Λ(γ)g(θ0|γ) (2)

where g(θ0|γ) ≡ E [f(θ0|γ,wi)], Λ(γ) = −(G′WG)−1G′W withG = E
[
∂f(θ|γ,wi)

∂θ′

∣∣∣
θ=θ0

]
and γ ≡ plimn→∞γ̂ is the probability limit of the calibrated parameters. This setup
e.g. allows for cases in which γ 6= γ0 and thus g(θ0|γ) 6= 0. θ̂ is a consistent esti-
mator if g(θ0|γ) = 0, which is the case if the calibrated parameters are consistent
estimators of the population values, plimn→∞γ̂ = γ0, or simply assumed fixed at
their population values, γ̂ = γ0.

Motivated by this formulation, I propose the sensitivity measure ∂θ
∂γ′ = ( ∂θ

∂γ(1)
, . . . , ∂θ

∂γ(L)
).

This is a K ×L Jacobian matrix with the derivative of θ(γ) with respect to the lth
element in γ being a K × 1 vector

∂θ

∂γ(l)
= ∂Λ(γ)

∂γ(l)
g(θ0|γ) + Λ(γ)∂g(θ0|γ)

∂γ(l)
(3)
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with

∂Λ(γ)
∂γ(l)

= −(G′WG)−1[∇′lWG+G′W∇l](G′WG)−1G′W + (G′WG)−1∇′lW

= −Λ∇lΛ + (G′WG)−1∇′lW (IJ×J +GΛ)

being a K × J matrix where ∇l ≡ ∂G
∂γ(l)

= E
[
∂2f(θ|γ,wi)
∂γ(l)∂θ′

∣∣∣∣
θ=θ0

]
is a J ×K Jacobian.

The sensitivity measure can be calculated using eq. (3) above in principle without
placing restrictions on the value of γ̂. Since the asymptotic linear representation is
an approximation around the true parameter, θ0, the approximation is most accurate
close to θ0. The approximation might thus be less accurate for values of γ̂ far from
γ0. Under the frequently employed assumption that γ = γ0, such that g(θ0|γ) =
g(θ0|γ0) = 0, the measure simplifies considerably.6

Definition 1 (Sensitivity of estimated parameters). Under the assumption that
g(θ0|γ) = 0, such that θ̂ is a consistent estimator of θ0, the sensitivity of the esti-
mated parameters to the calibrated parameters is the K × L matrix

S = ΛD (4)

where D = E
[
∂f(θ0|γ,wi)

∂γ′

]
is a J × L Jacobian w.r.t. the calibrated parameters.

The sensitivity measure can be estimated at low cost by plugging in estimates
of θ̂ and γ̂ as

Ŝn = Λ̂nD̂n. (5)

where Λ̂n = −(Ĝ′nWnĜn)−1Ĝ′nWn with Ĝn = ∂gn(θ|γ̂)
∂θ′

∣∣∣
θ=θ̂

and D̂n = ∂gn(θ̂|γ̂)
∂γ̂′ . Impor-

tantly, all elements of Λ̂n are already constructed when calculating the asymptotic
covariance matrix of θ̂ and only D̂n needs to be calculated.7 For example, if forward
finite differences are used to construct D̂n numerically, calculating Ŝn only requires
L = dim(γ) additional evaluations of the objective function. A brute force alterna-
tive approach to calculating ∂θ

∂γ′ could be to re-estimate θ for a small increase in each
element in γ and calculate the change in the estimated θ. This approach , however,

6 The measure S in equation (2) is similar to that derived in Newey and McFadden (1994) but with
the weight W included here. Newey and McFadden (1994) suggests this measure to determine if
the asymptotic variance of a two-step estimator should be corrected for the uncertainty associated
with the first-step estimator.

7 In fact, if asymptotic standard errors are corrected for the two-step estimation approach, as in
Gourinchas and Parker (2002), all elements of the sensitivity measure is already calculated.
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requires L re-estimations of the model. The brute force approach is thus generally
much more time consuming. In the main application below, I compare the proposed
sensitivity measure to such a brute-force approach and find only minor differences.

The sensitivity measure has a straightforward interpretation and the elasticity
of the kth estimated parameter to the lth calibrated parameter can be calculated as

E(k,l) = S(k,l)γ(l)/θ(k) (6)

assuming that γ(l), θ(k) 6= 0.

Example (Linear Regression). Consider a simple linear regression model with two
mean-zero explanatory variables, X1 and X2, and measurement error, ε,

Yi = β1X1,i + β2X2,i + εi

where E[ε|X1, X2] = 0 is the identifying assumption. Imagine fixing the second
parameter to β2 and only estimating β1,

β̂1 = arg min
β1

gn(β1|β2)2

with a single moment in gn(β1|β2) = 1
n

∑n
i=1(Yi − β1X1,i − β2X2,i)X1,i and W = 1.

This estimator can be found in closed form as

β̂1 =
∑n
i=1X1,i(Yi − β2X2,i)∑n

i=1X
2
1,i

. (7)

In this setting Gn = −∑n
i=1X

2
1,i and Dn = −∑n

i=1X1,iX2,i and the sensitivity
measure is

Sn = −
∑n
i=1X1,iX2,i∑n
i=1X

2
1,i

which converges in probability to −E[X1X2]·E[X2
2 ]−1. This is the negated regression

coefficient in a regression ofX2 onX1 with the sample covariance betweenX1 andX2

in the nominator. We see the intuitive result that if they are positively (negatively)
correlated, increasing β2 would lead to a reduced (increased) β̂1. We also see that if
they are uncorrelated, the estimator of β1 is completely insensitive to β2.

Because the linear asymptotic representation is exact in this example, Sn = ∂β̂1
∂β2

.
In general, however, such a direct derivative cannot be calculated in closed form and
I thus propose to use the approximation instead.
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2.3 Sensitivity of other Quantities of Interest

The primary interest is often not the parameter estimates themselves but rather
some statistics based on the model. Concretely, denote the F × 1 vector of quan-
tities of interest as h(θ, γ) = 1

n

∑n
i=1 hi(θ, γ|wi). These statistics potentially involve

simulations from variations of the estimated model. Examples include counter fac-
tual policy simulations and welfare measures. In turn, the reader might be mostly
interested in the sensitivity of h(•) to the calibrated parameters.

The proposed measure can easily be used to construct a sensitivity measure of
such other quantities of interest, as shown in the definition below.

Definition 2 (Sensitivity of quantities of interest). The sensitivity of a F ×1 vector
of statistics, h(θ, γ), to the calibrated parameters is given by the F × L matrix

H = A+BS (8)

where A = E
[
∂hi(θ0,γ|wi)

∂γ′

]
is a F × L Jacobian matrix of h(•) w.r.t. γ and B =

E
[
∂hi(θ,γ|wi)

∂θ′

∣∣∣
θ=θ0

]
is a F × J Jacobian matrix of h(•) w.r.t. θ.

This generalizes the proposed measure above: If the object of interest is the
estimated parameters, h(θ, γ) = θ, we have that F = K, A = 0K×1 and B = 1K×1

such that H = S. Like above, the sensitivity measure can be estimated by plugging
in the estimated values.

The derivatives A and B are often relatively fast to calculate numerically if
not known in closed form. For illustrative purposes, assume that forward finite
differences are used to construct all numerical derivatives. A naïve approach would
require L evaluations of the objective function to calculate S and L+K evaluations
of h(•) to calculate A and B. If a dynamic economic model is solved once per
evaluation of g(•) and h(•), the model is solved 2L+K additional times to calculate
the sensitivity measure of any quantity of interest. If, however, the model solutions
are stored, the additional number of model solutions to calculate is only L.

An alternative approach to calculating H could be to calculate the numerical
derivative of h(•) by brute force through re-estimating the model for small changes
in γ. This would, however, require L re-estimations of the model. If estimating the
model requires I(K) iterations per re-estimation, the sensitivity measure is I(K)
times faster than the brute force approach. In many empirical applications, I(K)
is likely to be relatively large even if good starting values are used making such
an approach infeasible. Reassuringly, I find only minor differences between the

10



suggested sensitivity measure and this brute force approach in the main application
below – where it is computationally feasible to compare the two approaches.

2.4 Extensions

Sensitivity to Arbitrary Changes in γ. The sensitivity measure above can
be viewed as a linear approximation of the true effect of changing the calibrated
parameters one at a time. The sensitivity to an arbitrary change in γ, say ∆γ =
γ̃− γ̂ could be constructed as a sum of the individual derivatives (see e.g. Borgonovo
and Apostolakis, 2001). Denote the K × 1 vector of sensitivity measures of θ to the
jth element in γ as S(j), the sensitivity of θ to a change ∆γ could then be calculated
as

S∆γ =
J∑
j=1

S(j)∆γ(j).

Although this measure is based on a local asymptotic approximation, it performs
very well in the main empirical application below.

An alternative approach to investigating sensitivity to arbitrary changes in γ,
could be to directly use the asymptotic linear representation to get

S∆γ = θ̂(γ̃)− θ̂(γ̂)

= Λn(γ̃)gn(θ̂(γ̂)|γ̃)− Λn(γ̂)gn(θ̂(γ̂)|γ̂) (9)

which only requires re-calculating gn(θ̂(γ̂)|γ̃) and Λ̂n(γ̃) at the new set of calibrated
parameters. The latter entails calculating the gradient of the objective function
with respect to the K parameters in θ for each alternative γ̃. While this is still an
approximation, and potentially computationally more demanding than the measure
in eq. (4), it allows for arbitrary changes in γ simultaneously without costly re-
estimations of the model.8 In turn, this is a low-cost approximation of the current
practice outlined above. The same idea can be used to calculate the sensitivity of
other quantities of interest, H∆γ = h(θ̂(γ̃), γ̃)− h(θ̂, γ̂).

Sensitivity to Generalizations. The sensitivity measure can be used to inves-
tigate general versions of the estimated model. The key insight is again to use the
asymptotic linear form of the estimator for θ to avoid estimating of the general
model. In turn, the general model can be significantly more time consuming to

8 The accuracy of this approach can be improved by including higher order terms in the asymptotic
approximation of θ̂.
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solve and thus estimate.
To formalize this idea, partition γ into γ = (γ1, γ2) and denote the general

model as M(θ, γ1, γ2). Nested in the general model is the estimated model with
γ2 = 0 and associated moment function g(θ|M(θ, γ1, 0)), with a slight abuse of
notation. The sensitivity to a general version of the model is thus given by eq. (5)
with D = ∂g(θ|M(θ,γ1,γ2))

∂γ2

∣∣∣
γ2=0

. Alternatively, the approach above in eq. (9) could
be employed. The general model must be used when constructing the sensitivity
measure but this does not involve re-estimation. This is thus a low cost approach
to investigating the sensitivity to general versions of the model.

A particular example of interest could be individual or group-level heterogeneity.
Imagine e.g. that σ ≥ 0 measures the degree of heterogeneity in some model param-
eter of interest. Imagine having estimated a restricted version of the model without
unobserved heterogeneity, i.e. with σ = 0 fixed. We could evaluate the sensitivity to
σ as done above by simply using the model with heterogeneity when calculating the
derivative D. This approximation can shed light on the importance of allowing for
heterogeneity in the model without having to actually estimate the enriched model.
As such, this can also provide a valuable guidance tool in the research process, pro-
viding researchers with information on which model extensions could be expected
to generate large effects on the results and thus warrant further exploration.

Choice of Weighting Matrix. The degree of sensitivity depends on the weight-
ing matrix, W , used in estimation. In fact, the sensitivity measure can be used to
guide the choice of weighting matrix to be optimal in the sense that it minimizes the
sensitivity of the estimator to calibrated parameters. Since the sensitivity measure
can have both positive and negative entries, one object to minimize could be the
quadratic SS ′ = ΛDD′Λ′ or the trace thereof.

The optimal weighting matrix that minimizes SS ′ is Wopt = (DD′)−1, provided
the inverse exists. To see this, recall that the weighting matrix that minimizes the
asymptotic variance, ΛV Λ′ where V = V ar(f(θ0|γ0,wi)), is V −1 (Hansen, 1982).
Swapping DD′ for V gives the optimal weight matrix in terms of minimizing sen-
sitivity. This reduced sensitivity would come at the cost of reduced efficiency. An
estimator of Wopt could be based on an initial guess of θ at which D is estimated.
Alternatively, an iterative procedure can be implemented.

Other quantities than SS ′ could be minimized but would in general not have
closed form solutions. Note, however, that given some value of θ, the objective
function does not need to be re-evaluated while searching for the optimal weight-
ing matrix. One alternative, similar in spirit to that proposed by Armstrong and
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Kolesár (2019) to minimize the sensitivity to moment miss-specification, could be
to minimize the asymptotic variance of θ̂, under some (worst-case) bound on the
sensitivity.

3 Relation to Some Existing Sensitivity Measures

I here discuss some of the existing measures closest related to what I propose. The
sensitivity measure proposed by Andrews, Gentzkow and Shapiro (2017) is related to
the current measure. In particular, they propose to report Λ as a local measure of the
sensitivity of θ to the included estimation moments in gn(•). They do not consider
the topic of the current paper and thus do not discuss sensitivity to calibrated
parameters. The measure that I propose addresses this by weighting Λ by the effect
of the calibrated parameters on each included moment through D in equation (4).

Another important contribution to the improvement of transparency is the recent
work by Iskrev (2019). One of the sensitivity measures proposed in that study also
measures how the estimated parameters are influenced by calibrated parameters.
However, Iskrev (2019) focuses on Bayesian approaches and uses that the posterior
distribution of θ and γ is asymptotically jointly Normal to construct a local measure
of sensitivity. Denote Σθ and Σγ as the covariance matrices in the marginal asymp-
totic Normal distributions of θ and γ, respectively, and Σθ,γ as the covariance matrix
between the two sets of parameters. From the asymptotic approximate Normal dis-
tribution, we have that the conditional mean vector of the estimated parameters,
given the calibrated parameters, is

E[θ̂|γ̂] a= θ0 + Σθ,γΣ−1
γ (γ̂ − γ0)

and Iskrev (2019) proposes the sensitivity measure

Σθ,γΣ−1
γ . (10)

A drawback of this measure is, however, that it requires the calculation of the
covariance matrix between θ and γ, Σθ,γ. This covariance is, unfortunately, often
not readily available in many empirical applications considered in the current study.
If e.g. multiple data-sources or externally calibrated parameters are included in γ,
calculating the covariance between γ and θ is not straight forward – if not practi-
cally impossible.9 Besides the examples given in Footnote ??, an example of such

9 One strategy to uncovering upper bounds on the measure in (10) could be to use the worst-
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a situation is Gourinchas and Parker (2002). In that study, the Panel Study of In-
come Dynamics (PSID) is used to calibrate the exogenous income process in a first
step and then subsequently estimate preference parameters using the Consumer Ex-
penditure Survey (CEX), given the income process parameters. When the authors
subsequently calculate standard errors of the estimated preference parameters, the
authors assume that γ and θ are uncorrelated, implying that Σθ,γ = 0.

The measure in equation (10) is furthermore derived under the assumption that
both sets of parameters are identified simultaneously, while mine is not. This is
also evident from the linear regression example above where β1 and β2 cannot be
identified simultaneously from the one moment condition used. I view this as a
strength of my approach because one motivation for using an externally calibrated
γ could be due to the unavailability of data that could identify γ.

There is also a literature focusing on global sensitivity measures of quantities
of interest to model inputs. One approach could be to simulate γ′s from some as-
sumed distribution and investigate the resulting distribution of θ̂ from re-estimation
of the model for each value of the drawn γs.10 These methods would often require
re-estimation of the second-step parameters relatively many times making such ap-
proaches computationally prohibitively expensive to apply to rich dynamic economic
models, as I focus on here. The approach outlined in (9) could, however, be utilized
to reduce this computational complexity.

Recently, Harenberg, Marelli, Sudret and Winschel (2019) have proposed a poly-
nomial chaos expansion to alleviate the computational burden associated with global
sensitivity (or uncertainty quantification) approaches. However, building on series
expansions, that approach also requires the re-estimation of the dynamic economic
model atM evaluation nodes to construct a global approximation of θ̂. If the dimen-
sion of the parameter space is large and/or the model complex, this can be quite
computationally time demanding if a reasonable approximation is desired. Com-
bining the local low-cost measure, that I propose, with the approach proposed in
Harenberg, Marelli, Sudret and Winschel (2019) could potentially reduce the com-
putational time required to perform global sensitivity analysis significantly: The
local measure can guide researchers in which parameters are likely to require more
evaluation nodes for a given degree of approximation accuracy.

case upper bound on the co-variance structure following the approach suggested in Cocci and
Plagborg-Møller (2019).

10See, e.g. Borgonovo and Plischke (2016) for a recent literature review.
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4 Application: Life-Cycle Savings Motives

In a seminal paper, Gourinchas and Parker (2002) estimate a dynamic structural
model of life cycle consumption and saving using data for the US. They use the
estimated model to study the importance of life cycle (retirement) and buffer (risk)
related motives for saving over the life cycle. Here, I illustrate the usefulness of the
sensitivity measure through my implementation of that analysis.

The recursive form of the model is

Vt(Mt, Pt) = max
Ct∈(0,Mt]

vt
C1−ρ
t

1− ρ + βEt[Vt+1(Mt+1, Pt+1)]

s.t.

Mt+1 = (1 + r)(Mt − Ct) + Yt+1

Yt+1 = Pt+1Ut+1

Pt+1 = Gt+1PtNt+1

logNt+1 ∼ N (0, σ2
n)

Ut+1 =

 Ũt+1 with probability 1− p

0 with probability p

log Ũt+1 ∼ N (0, σ2
u)

for t ≤ T where β is the discount factor and ρ is the coefficient of constant relative
risk aversion (CRRA). Initial wealth, W26 = (1+r)(M25−C25), is drawn from a log-
normal distribution such that logW26 ∼ N (ω26, σ

2
ω26) and initial permanent income

is P26 for all households. Consumers face log-normal permanent and transitory in-
come shocks, denoted Nt and Ut, respectively. Furthermore, consumers experience a
transitory zero-income shock with probability p. The income growth factor, Gt, and
taste shifter associated with family composition, vt, evolves deterministically and
are perfectly foreseeable by consumers. At retirement, a simple linear consump-
tion function is assumed to apply, cT+1 = γ0 + γ1mT+1 where cT+1 = CT+1/PT+1

and mT+1 = MT+1/PT+1 are normalized consumption and marked resources, re-
spectively. Further details of the economic model as well as the numerical solution
approach is given in the Supplemental Material and in the original paper.

The authors estimate θ = (β, ρ, γ0, γ1) and keep all other parameters (which I
denote γ) fixed at calibrated values using simulated minimum distance,

θ̂ = arg min
θ
g(θ|γ)′Wg(θ|γ)
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where

g(θ|γ) =


logCdata

26 − logCsim
26 (θ|γ)

...
logCdata

65 − logCsim

65 (θ|γ)


′

with logCsim

a (θ|γ) being the log average simulated consumption of age-group a for a
given θ and logCdata

a is the log average consumption of age group a in the Consumer
Expenditure Survey, net of family and cohort variation. The preferred weight is
diagonal with the inverse of the variance of the empirical moments on the diagonal.11

The calibrated parameters are reported in Table 1 and Figure A1 in the Sup-
plemental Material where ω̃26 = exp(ω26). I use values identical to Gourinchas
and Parker (2002). I re-estimate β and ρ using my implementation while fixing
γ0 = 0.0015 and γ1 = 0.071 to the estimated values in Gourinchas and Parker
(2002) and use the re-estimated model throughout. The estimates are reported in
the bottom of the left panel of Figure A2 in the Supplemental Material and are
slightly different compared to those in Gourinchas and Parker (2002). The model
fit is also reported in the Supplemental Material.

Table 1: Calibrated Parameters.
σn σu p ω̃26 σω26 r

0.0212 0.044 0.00302 0.061 1.784 0.0344

4.1 Sensitivity of Parameter Estimates

Table 2 reports the sensitivity measure (in elasticities) in columns 2–3 together
with brute-force elasticities based on re-estimation of the model in columns 4–5.
The brute force calculated effect on the kth element of θ of a ε percent increase in
the lth element in γ is calculated as (θ̃l(k) − θ̂(k))/θ̂(k) · 100 where θ̃l(k) is the kthe
element in θ̃l = arg minθ∈Θ gn(θ|γ̃l)′Wngn(θ|γ̃l) with γ̃l = γ̂(1L + ιl · ε/100) being the
original calibration with an increase of ε percent in the lth calibrated parameter.
All sensitivity measures are very close to the brute force calculations without being

11For each value of θ, I solve the model using the endogeneous grid method (EGM), proposed by
(Carroll, 2006), rather than time iteration used in Gourinchas and Parker (2002). The EGM
is faster and more accurate than time iteration (see e.g. Jørgensen, 2013). The Supplemental
Material contains a detailed description of the implementation. All Python code and data used
herein are available online. I am grateful to Pierre-Olivier Gourinchas, Jonathan Parker and
Isaiah Andrews for supplying some of their original code and data.
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based on re-estimations of the model. This suggests that the finite sample behavior
of the sensitivity measure is quite good for this application.

I find that the discount rate is relatively insensitive to the fixed parameters while
the CRRA coefficient, ρ, is sensitive to all calibrated parameters. As also found in
Gourinchas and Parker (2002), I find that lowering the transitory and permanent
income shock variances have minuscule effects on the value of the estimated discount
factor and only slightly affect the estimated risk aversion coefficient.

Table 2: Sensitivity of Parameters.
Elasticities.

Sensitivity Re-estimation
measure (brute force)

β̂ ρ̂ β̂ ρ̂

σn -0.001 -0.023 -0.003 0.055
σu 0.001 -0.069 0.001 -0.063
p 0.008 -0.361 0.009 -0.408
r -0.001 -1.365 -0.010 -0.945
ω̃26 -0.010 0.435 -0.010 0.413
σω26 -0.016 0.670 -0.013 0.599

Notes: The table reports the sensitivity of
the estimated parameters in θ to the cal-
ibrated parameters in γ. The left panel
reports the proposed sensitivity measure
as elasticities. The right panel shows the
same statistics calculated “brute force” as
the percentage change relative to the base-
line with re-estimated θ parameters.

The CRRA coefficient is particularly sensitive to the probability of a zero-income
shock, p, the initial wealth distribution, ω̃26 = exp(ω26) and σω26 , and the risk-free
interest rate, r. Like the CRRA coefficient, the zero-income shock probability, p,
affects the curvature of the consumption function for lower levels of resources (see,
e.g. the discussion in Carroll, 1992, 1997). Increasing either ρ or p would tend to
lower consumption for low levels of resources. In turn, if p is increased, ρ would
have to decrease to match the observed consumption profile. On the other hand,
if the mean initial level of wealth is increased either through an increase in ω̃26 or
σω26 , the CRRA coefficient, ρ̂, would increase to maintain the fit of the observed
consumption profile. Such a positive relationship is also found in Gourinchas and
Parker (2002).

The parameter to which the estimates are most sensitive (in percentage terms)
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is the risk-free interest rate, r, with an elasticity of around −1.4. This parameter is
not varied in the original study. The sign is negative because increasing the risk free
interest rate increases the value of holding wealth through a dominating substitution
effect, decreasing consumption.12 The same is true with the CRRA coefficient. In
turn, increasing the interest rate will lead to a reduction in ρ̂ in order to match the
consumption age profile in the data.

Is the sensitivity measure also a good approximation to larger changes in the
calibrated parameters? Table 3 investigates this question by increasing the risk-
free interest rate from one to five percent. The table shows the sensitivity measure
elasticities from (6) in the top panel through linear extrapolation together with the
actual (brute-force) percentage change in the estimated parameter values in the
bottom panel. The latter brute-force approach requires re-estimation of the model
for each new value of r but measures the “true” finite sample effects of the interest
changes considered. Since the sensitivity measure is a derivative of an asymptotic
approximation calculated at the baseline r, one would expect it to approximate the
percentage change best for small changes. This is confirmed by a very good approx-
imation to a one-percent increase in r and a slight reduction in the quality of the
approximation to a five-percent increase in r. Overall, however, the approximation
performs very well.

4.2 Sensitivity of Savings Motives.

A key result in Gourinchas and Parker (2002) is the decomposition of the saving
motives over the life cycle. In particular, the estimated model suggests that before
age 40, households save predominantly due to buffer against income shocks, referred
to as buffer savings. In the remaining working life until age 65, the primary savings
motive is to sustain a desired consumption level in retirement, referred to as life-cycle
savings. To investigate the sensitivity of this result, I construct a measure of the
difference in the two savings-motives below, following the approach in Gourinchas
and Parker (2002).

Denote savings as the change in end-of-period wealth sj,t = Aj,t−Aj,t−1. Solving
and simulating an alternative model without income uncertainty and a modified
retirement consumption rule, the life-cycle saving is defined as

sLCj,t = ALCj,t − ALCj,t−1

12See e.g. the discussion in Carroll, Slacalek and Sommer (2019).
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Table 3: Sensitivity of Estimates to Large
Changes in r. Elasticities.

Change in interest rate, r
1 pct. 2 pct. 3 pct. 4 pct. 5 pct.

Sensitivity measure

β̂ -0.001 -0.002 -0.003 -0.004 -0.005
ρ̂ -1.365 -2.731 -4.096 -5.462 -6.827

Re-estimated θ (brute force)

β̂ -0.010 -0.023 -0.033 -0.051 -0.063
ρ̂ -0.945 -1.774 -2.696 -3.338 -4.225

Notes: The table reports the sensitivity of θ to the
risk-free interest rate, r. In the top panel is the
proposed sensitivity measure reported as elastic-
ities in percent. In the bottom panel, the brute-
force percentage increase relative to the baseline
r in estimated parameters are reported. All other
parameters are fixed at their calibrated/estimated
values.

where the parameters of this model is σn = σu = p = 0 and γ1 = 0.0615.13 I also
allow for borrowing in this version of the model up to 5 times the level of permanent
income. The buffer saving is then given as sBj,t = sj,t − sLCj,t .

Figure 1 shows the average age profiles of these measures in the left panel and
the average age profile of wealth split by life cycle and buffer wealth in the right
panel. Let sLC30 denote the saving due to life-cycle motives at age 30 and let sB30

be the savings due to buffer motives at age 30. I then calculate the difference
h30 = sB30 − sLC30 and similarly at age 60, h60. Table 4 shows the elasticities of these
statistics with respect to the calibrated parameters.

The savings motives decomposition is rather insensitive to the calibrated param-
eters. While the estimated parameters are sensitive to e.g. the interest rate, the
effect of the changed interest rate on the savings motives are counter-balanced by
the adjustment in θ from the change in γ. In the current application, this happens

13The retirement consumption function is modified such that there is full certainty after retirement,

γ1 = 1− β̂
1
ρ (1 + r)

1
ρ −1

1−
(
β̂

1
ρ (1 + r)

1
ρ −1
)D−T

where D = 88 and T = 65.
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Figure 1: Savings Motives Decomposition.

(a) Savings Decomposition.
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(b) Wealth Decomposition.

30 40 50 60
Age

0

100

200

Th
ou

sa
nd

s o
f 1

98
7 

do
lla

rs

Life Cycle Wealth
Buffer Wealth
Total wealth

Notes: The left panel illustrates the saving decomposition into life cycle savings and buffer savings,
comparable to the top panel of figure 7 in Gourinchas and Parker (2002). The right panel illustrates
the wealth decomposition into life cycle wealth and buffer wealth, comparable to the bottom panel
of figure 7 in Gourinchas and Parker (2002).

to such a degree that the savings motive decomposition is hardly affected by the
calibrated parameters. The reason for this is likely that the age profile of consump-
tion (mirror of savings) is included in the estimation moments. In turn, roughly
speaking, the estimator basically adjusts the estimated parameters to changes in γ
as to leave the savings profile unaffected.14

The low-cost sensitivity measure is almost identical to the brute-force elastici-
ties, calculated from re-estimating the model. This is very encouraging because it
suggests that, at least in the current application, the proposed sensitivity measure
has the potential to capture the complex effects on h(•) from changing γ through
the direct effect (A) and the indirect effect (B ·S) without having to re-estimate the
model.

Table 5 shows the sensitivity measure of the savings-motives from larger changes
in the risk-free interest rate, r. I include the brute-force re-estimation results in the
middle panel and a third measure in the bottom panel based on the change in the
savings motives from changing r while keeping θ fixed at their baseline estimated
values. This latter statistic is sometimes reported as a low-cost analysis of the

14This result is similar in spirit to that found in Druedahl and Jørgensen (2017). Simulation
results in that paper based on the buffer-stock model suggests that a slight miss-calibration
of the persistence parameter in the income process leads to significant bias in the subsequent
parameter estimates but does not seem to significantly alter the marginal propensity to consume
from the estimated model.
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Table 4: Sensitivity of Saving Motives.
Elasticities.

Sensitivity Re-estimation
measure (brute force)

He
30 He

60 He
30 He

60

σn 0.046 -0.008 0.046 -0.008
σu 0.011 0.000 0.012 0.001
p 0.009 0.013 0.013 0.012
r 0.011 -0.120 -0.012 -0.127
ω̃26 0.006 -0.011 0.003 -0.012
σω26 -0.006 -0.046 -0.039 -0.061

Notes: The table reports the sensitivity of
the difference between the level of buffer
and life-cycle savings at age 30 and 60. The
left panel reports the proposed sensitivity
measure as elasticities. The right panel
shows the same statistics calculated as the
percentage change relative to the baseline
with re-estimated θ parameters.

sensitivity to calibrated parameters. I denote this measure as Be since it is closely
related to B in (8).

Again, the results are extremely encouraging. The sensitivity measure is very
close to the “true” brute-force percentage changes, even for larger interest rate in-
creases. On the other hand, the bottom panel shows that results from changing r
while keeping θ fixed leads to significant overestimation of the effect of a change in
the interest rate. This is because this latter measure does not take into account that
the estimated θ will adjust to such a change in the calibration and thus also affect
the calculated statistics.
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Table 5: Sensitivity of Saving Motives to Large
Changes in r. Elasticities.

Change in interest rate, r
1 pct. 2 pct. 3 pct. 4 pct. 5 pct.

Sensitivity measure
He

30 0.011 0.022 0.034 0.045 0.056
He

60 -0.120 -0.239 -0.359 -0.479 -0.599
Re-estimated θ (brute force)

He
30 -0.012 -0.020 -0.029 -0.016 -0.025

He
60 -0.127 -0.254 -0.384 -0.505 -0.639

Fixed θ
Be

30 -1.005 -2.004 -2.998 -3.987 -4.971
Be

60 -0.523 -1.037 -1.542 -2.040 -2.528
Notes: The table reports the sensitivity of the differ-
ence between the level of buffer and life-cycle savings
at age 30 and 60. The top panel reports the proposed
sensitivity measure as elasticities. The middle panel
shows the same statistics calculated as the percent-
age change relative to the baseline with re-estimated
θ parameters for the various values of r. The bot-
tom panel illustrates the percentage change in the
statistics from the change in r while keeping θ fixed
at their baseline estimated values.

5 Application: Home-ownership and the Option
Value of Regional Migration

The previous application facilitated a direct comparison of the sensitivity measure
with a more brute force approach. In this second application, I illustrate the use-
fulness of the measure by applying it to a rich model that requires significant com-
putational time to solve and estimate.15 In turn, the brute-force approach is for all
practical purposes infeasible.

Motivated partly by the empirical fact that homeowners migrate less than renters,
Oswald (2019) estimates a rich dynamic programming model of home-ownership and
migration. He then uses the estimated model to show that although the frequency of
migration among homeowners is relatively low, they still value the migration option

15I am grateful to Florian Oswald for supplying An, Bn, Dn, Gn, and Wn in his application,
making my analysis possible.
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because this option acts as an insurance against adverse regional shocks.
In the model, individuals choose in which region to live, dj ∈ D, where j denotes

age. Simultaneously, they choose whether to own a house, hj ∈ {0, 1} and how much
to consume, cj, and thus how much wealth to carry over to the following period, aj+1.
I refer the reader to the original paper for a detailed description of the model and
give only a brief outline of the model here. Individuals make their optimal choices
taking into account 10 state variables in xj = (aj, zj, sj,Fj, hj−1, dj−1, τ, j) denoting,
respectively, assets, an individual income shock, household size, an aggregate 2-
dimensional price vector, housing status coming into the current period, current
region index, time-invariant moving cost type and age.16 I denote the transition
density as xj+1 ∼ Γ(xj, dj, hj, cj).

Letting εj,dj denote a region-specific Extreme Value Type I taste shock, and
stacking the |D| shocks in εj, the recursive form of the model is

Vj(xj, εj) = max
dj∈D
{v(xj|dj) + εj,dj}

v(xj|dj) = max
cj ,hj

u(cj, hj, dj;xj) + βEj[v(xj+1)]

v(xj+1) = log
∑
k∈D

exp(v(xj+1|k))


xj+1 ∼ Γ(xj, dj, hj, cj).

Oswald (2019) fixes L = 8 calibrated parameters in γ = (γ̃, β, ρ, σ, φ, χ, r, rm) and
estimates K = 19 parameters in θ by SMD. Both sets of parameters are reproduced
in Table 6. Adopting some of the notation from the original paper the estimator is

θ̂ = arg min
θ

(m− m̂(θ|γ̂))′Wn(m− m̂(θ|γ̂))

where m is a set of J = 38 moments calculated from the data and m̂(θ|γ̂) are similar
moments calculated from simulated data from the model at θ. The weighting matrix,
Wn, is chosen to be diagonal.

The sensitivity measure elasticities of the estimated parameters are reported in
Table A1 in the Supplemental Material. The estimated parameters are especially
sensitive to the values of the first four parameters: The value of the risk aversion
parameter, γ̃, the discount factor, β, the persistence of income shocks, ρ, and the
standard error of idiosyncratic income shocks, σ. Interestingly, the parameter ad-

16Oswald (2019) allows for cohort effects and indices in the original paper thus has a time-dimension
denoted by t. For ease of exposition, I abstract from that here.
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Table 6: Parameters in Oswald (2019).
Estimated parameters in θ value Calibrated parameters in γ value
Utility function CRRA coefficient γ̃ 1.43
Owner premium size 1 ξ1 −0.009 Discount factor β 0.96
Owner premium size 2 ξ2 0.003 AR(1) of pers. inc. shock ρ 0.96
Util. of cons. scale η 0.217 Std. of pers. inc. shock σ 0.118
Continuation value ω 4.364 Transaction cost φ 0.06
Moving costs Down-payment proportion χ 0.20
Constant α0 3.165 Risk-free interest rate r 0.04
Age α1 0.017 30-year mortgage rate rm 0.055
Age2 α2 0.0013
Owner α3 0.217
Household size α4 0.147
Proportion of high type πτ 0.697
Amenities
New England ANwE 0.044
Middle Atlantic AMdA 0.112
Middle Atlantic AStA 0.168
West North Central AWNC 0.090
West South Central AWSC 0.122
East North Central AENC 0.137
East South Central AESC 0.063
Pacific Apcf 0.198
Mountain AMnt 0.124

justing the continuation value of a house at the terminal period, ω, and the share
of high-types, πτ , seem relatively insensitive to most calibrated parameters.

Oswald (2019) uses the estimated model to calculate the option value of migra-
tion. To do so, a welfare measure is simulated under the baseline economy as

V (θ̂, γ̂) = 1
JN

N∑
i=1

J∑
j=1

max
dj∈D
{v(xij, dj; θ̂, γ̂) + εijdj}

= 1
JN

N∑
i=1

J∑
j=1

u(c?ij, h?ij, d?it;xij, θ̂, γ̂) + βEj[v(xi,j+1; θ̂, γ̂)]

where superscript ? denotes optimal choices. Likewise, a similar welfare measure
is simulated under an alternative economy in which the option to migrate is not
available in the model but a consumption compensation of δ is introduced:

Ṽ (δ|θ̂, γ̂) = 1
JN

N∑
i=1

J∑
j=1

u(δ · c̃?ij, h̃?ij, d̃?ij; x̃ij, θ̂, γ̂) + βEj[v(x̃i,j+1; θ̂, γ̂)]
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where “̃” illustrates optimal behavior under this alternative regime. To calculate
the consumption value of the option of migration δ is chosen as

δ̂(θ̂, γ̂) = arg min
δ

(V (θ̂, γ̂)− Ṽ (δ|θ̂, γ̂))2.

This exercise yields an estimated option value of migration of around ∆̂ = (δ̂ −
1) · 100 = 19.2% (Oswald, 2019, Table 12). Table 7 illustrates the sensitivity of this
measure to calibrated parameters. All numbers are elasticities. Interestingly, the
option value of migration is clearly most sensitive to calibrated parameters related
to risk: A one-percent increase in the risk aversion coefficient would increase the
option value of migration with around one percent and a one-percent increase in
the persistence of income shocks would decrease the option value with around half
a percent.

Table 7: Sensitivity of the Option Value of Migration. Elasticities.
γ̃ β ρ σ φ χ r rm

∆̂e 1.349 -0.127 -0.524 -0.026 0.005 -0.053 -0.002 0.002
Notes: The table reports the sensitivity of the estimated option value of mi-
gration, δ, in Oswald (2019). Elasticities are reported.

The sensitivity measure can increase transparency and improve our understand-
ing of underlying mechanisms in complex models. The main component in the
option value of migration is insurance against adverse regional shocks. If a con-
sumer in the model is more risk averse, insurance against such risk is more valuable.
On the other hand, if the consumer face greater idiosyncratic income risk due to
more persistent income shocks (larger ρ), such an insurance mechanism is relatively
less valuable. The reason is that increased idiosyncratic income risk will lead to in-
creased savings in order to buffer against this risk. With more buffer-stock savings,
the consumer will also have more self-insurance against adverse regional shocks. In
turn, the option value of migration would be lower.

6 Concluding Discussion

The complexity of estimated structural dynamic economic models has increased
dramatically with the computational power of computers. To maintain credibility
and transparency as the complexity of models increase, systematic low-cost measures
of the sensitivity of results based on such estimated models should, in my opinion,
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be developed and reported by researchers.
A standard approach to estimation of dynamic economic models is to calibrate a

sub-set of the model parameters and keep them fixed while estimating the remaining
parameters of interest. If the importance of such calibrations is investigated, it is
now standard to re-estimate the model using a few permutations of the calibrated
parameters. In this paper, I propose an alternative approach to this relative time-
consuming approach that is applicable to most popular estimators. The sensitivity
measure is simple and fast to implement, yet offers an easy interpretation of the
sensitivity of any quantity of interest to the calibrated parameters. In turn, the pro-
posed sensitivity measure can greatly improve transparency of structural research.

Applying the proposed measure to the seminal work by Gourinchas and Parker
(2002) of savings motives over the life cycle, I illustrate the usefulness of the mea-
sure. The authors report re-estimated parameters varying a set of fixed parameters
but do not consider e.g. the effect of the fixed risk-free interest rate. I find that
especially the point estimate of the constant relative risk aversion is sensitive to
several calibrated parameters – especially the risk-free interest rate. While the main
sensitivity measure is a local asymptotic approximation, the main application shows
very encouraging results in the sense that the low-cost sensitivity measure is very
close to the “true” brute-force effects from re-estimating the model. This is true for
even relative large changes in the interest rate.
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A Model Implementation: Gourinchas and Parker
(2002)

A.1 Additional figures

Figure A1: Income Growth and Family Shifter Calibration.
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Notes: The figure shows the calibrated income growth, Gt+1, and the relative family shifter,
v(Zt+1)/v(Zt).

Figure A2 shows the proposed sensitivity measure. The left panel reports the
raw sensitivity measure with respect to key calibrated parameters and the right
panel shows the elasticities.
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Figure A2: Sensitivity of Parameter Estimates.

(a) Sensitivity.

β̂ ρ̂

σn -0.040 -2.035
σu 0.028 -2.927
p 2.620 -222.603
r -0.029 -73.842
ω̃26 -0.160 13.232
σω26 -0.008 0.699
Estimates 0.944 1.860

(b) Elasticities.

σn σu p r ω̃26 σω26

β̂

ρ̂
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Notes: The figure illustrates the sensitivity of θ̂ with respect to the fixed parameters γ. The
left panel shows the raw sensitivity measure, Ŝ, together with my estimates of β and ρ from my
implementation using the original data and weight matrix. The right panel shows elasticities, Ê ,
in a heatmap with estimated parameters on the y-axis and fixed parameters on the x-axis.

Figure A3: Model Fit.

30 40 50 60
Age

18

20

22

24

26

Th
ou

sa
nd

s o
f 1

98
7 

do
lla

rs

Fitted consumption
Raw consumption
Income

Notes: The figure illustrates the observed average income and consumption age profiles together
with simulated average consumption from the re-estimated model.
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A.2 Solution Approach

As Gourinchas and Parker (2002), I use the Euler equation of a normalized model.
From their Gauss code, and Appendix p.86 of the original paper, it seems that they
assume that income is affected by the same taste shifter as consumption/utility. In
the solution, I thus assume that Yt+1 = v

1/ρ
t+1Pt+1Ut+1. We can then normalize by

Ptv
1/ρ
t to get the Euler equation in normalized terms as

c−ρt = max{m−ρt , β(1 + r)E[(Gt+1Nt+1ft+1)−ρc−ρt+1]

where ft+1 =
(
vt+1
vt

) 1
ρ adjusts for family composition. Normalized resources evolves

according to
mt+1 = (1 + r)at(Gt+1Nt+1ft+1)−1 + Ut+1

where at = mt − ct is end-of-period normalized wealth. Constructing a grid of end-
of-period wealth as −→a and approximating the expectation with two-dimensional
Gauss-Hermite quadrature, optimal consumption can be found in closed form using
the endogenous grid method (EGM) proposed by Carroll (2006) by inverting the
Euler equation

c?t =
(1 + r)β

Q∑
k=1

Q∑
j=1

[(Gt+1N
(k)ft+1)−ρ

(
č

(k,j)
t+1

)−ρ
]
− 1

ρ

where č(k,j)
t+1 = čt+1((1+r)(Gt+1N

(k)ft+1)−1−→a +U (j)) is the linearly interpolated next-
period consumption for a given set of quadrature nodes (k, j). The endogenous grid
over resources is then −→mt = −→a + c?t (−→mt). The credit constraint can be handled by
including a lower point of (mt+1, ct+1) = (0, 0) when interpolating the next-period
solution. I use 300 points in the −→a grid and Q = 10 quadrature nodes in each
dimension. The implied consumption function is illustrated in Figure 1 with the
calibrated parameters given below. The retirement consumption function is given
by c?T+1(mT+1) = γ0 + γ1mT+1.

A.3 Simulating Data

To simulate synthetic data (normalized by v1/ρ
t ), I draw Nsim × T standard normal

shocks {ñj,t, ũj,t}Nsim,T1,1 together with uniform draws {ej,t}Nsim,T1,1 . I can then construct
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permanent and transitory income shocks, respectively, as

nj,t = exp(σnñj,t)

uj,t = exp(σuũj,t)(1− p)−11(ej,t > p)

I also draw standard normal initial wealth {w̃j,26}Nsim1 and construct initial nor-
malized resources as mj,26 = exp(ω26 + σω26w̃j,26) + uj,26. Income is simulated as

Pj,t =

 P26 if t = 26

GtPj,t−1nj,t else

Yj,t = Pj,tuj,t

and resources are

mj,t = (1 + r)(mj,t−1 − cj,t−1)(Gtnj,tft)−1 + uj,t

where consumption is found as the linearly interpolated optimal consumption solved
above, cj,t = čt(mj,t) and non-normalized consumption is then Cj,t = cj,t · Pj,t. All
simulations are based on Nsim = 500, 000 simulated individuals.

B Additional Figures and Tables Oswald (2019)
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Table A1: Sensitivity of Parameters in Oswald (2019). Elasticities.
γ̃ β ρ σ φ χ r rm

ξ̂1 114.817 -86.300 -189.804 -3.443 1.378 -1.868 -0.179 -0.190
ξ̂2 -1050.357 209.728 2772.968 -2.366 -5.134 37.807 1.255 1.537
η̂ -36.763 10.532 232.386 -2.831 -5.039 -1.397 -0.023 0.069
ω̂ 0.165 0.162 -0.047 -0.003 -0.023 -0.006 -0.001 0.000
α̂0 -1.174 -0.019 2.211 0.010 0.013 0.023 0.001 -0.000
α̂1 -85.165 -32.862 547.621 -1.296 -7.673 0.002 -0.122 -0.028
α̂2 1554.699 201.729 -3620.681 -21.701 18.066 -10.432 -0.093 -2.910
α̂3 -0.936 3.430 20.203 0.129 0.015 0.016 0.008 0.005
α̂4 37.091 -3.228 -17.754 -0.277 -0.088 -0.977 -0.058 0.033
π̂τ 0.057 -0.003 -0.057 -0.000 -0.003 -0.002 -0.000 0.000
ÂNwE 62.353 -0.490 -75.947 0.373 2.561 -1.728 0.008 -0.134
ÂMdA -127.703 11.875 437.474 -1.113 -5.718 2.360 0.088 0.019
ÂStA -29.806 3.227 -9.579 0.042 -0.107 0.731 0.024 -0.032
ÂWNC -237.423 6.282 -21.925 3.446 2.524 8.880 0.379 -2.884
ÂWSC 56.868 0.880 -54.668 0.416 0.827 -0.892 -0.024 0.050
ÂENC -4.929 0.411 12.863 -0.049 -0.035 0.074 -0.004 0.002
ÂESC 214.474 18.102 -1198.287 -2.251 12.797 -4.375 0.642 0.463
ÂPcf -2.024 0.576 20.273 0.215 0.228 0.203 -0.008 0.019
ÂMnt 281.108 131.541 -2120.151 37.155 -1.200 12.639 0.665 -0.504

Notes: The table reports the sensitivity of the estimated θ parameters in Oswald (2019). Elastic-
ities are reported.
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