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Abstract
This note studies the effect of the availability of a test for a virus on the public
health of a population. It is shown by example that the existence of a freely
available and moderately informative test for a virus may lower society's
welfare in comparison to the case where no test exists or access to the test is
restricted. In this setting, any test provided to any subset of agents who would
find it optimal not to isolate absent the test improves welfare.
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1 | INTRODUCTION

In 2020, the virus COVID‐19 swept through the globe. One particular difficulty presented by the virus is that infected
individuals may be virtually asymptomatic and carry the virus without knowing it. Moreover, in the early stages of the
pandemic, there were well‐publicized shortages of medical tests for the virus, which made it impossible to test everyone,
even everyone with symptoms. To get around this, various solutions were proposed, including testing people in groups
(Gollier & Gossner, 2020) and testing for inconclusive symptoms like a high temperature.1

This purpose of this note is to present a simple example that illustrates that the existence (and availability) of a
moderately informative test can actually lower social welfare in comparison to the scenario when no such test exists (or
is available). This analysis, thus,

1. Supports the regulation of costless tests;
2. Provides a word of caution against moderately informative tests; and
3. Emphasizes the importance of the choice as to whom should be tested.

In the model we explore, there is a heterogeneous population of agents with different exposure likelihoods. Each
agent has a simple decision: whether to stay home and isolate (or self‐quarantine) or refrain from isolating and instead
go out. An agent incurs a reward from not isolating, but possibly suffers a cost as well–she encounters others if out and
neither wishes to become infected (if she is not infected) nor wishes to infect others (if she is infected). Thus, the
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prevalence of infected people who are not isolating is an endogenous equilibrium object determined by the individual
isolation decisions of the agents.

Each agent's welfare is affected by the decisions of others, and crucially, a change in the infection rate of those out
and about affects all of those who are not isolating. Accordingly, the mechanism that generates the possible welfare loss
due to a test is the worsening of the participant pool. A false negative from a less than fully informative test can
encourage risky people to refrain from isolating, increasing the chances of disease transmission. Although the infor-
mation provided is itself valuable, the gain in welfare as a result of this information is outweighed by the increased
disease prevalence among those an agent encounters.

The frequency of false negatives for the COVID‐19 virus is well‐documented. Indeed, the most common test for the
virus, the reverse transcriptase polymerase chain reaction (RT‐PCR) test has false negative rates at initial presentation
of symptoms that range from 30% to 40% (Ai et al., 2020; Fang et al., 2020; Yang et al., 2020). Moreover, these rates can
vary considerably depending on the time since exposure (Kucirka et al., 2020). Computed Tomography (CT) scans may
be more effective (Ai et al., 2020; Caruso et al., 2020; Fang et al., 2020), but even those may have high false negative rates
in the first few days following the onset of symptoms (Kanne et al., 2020).

In this note, the agents are completely rational, yet can be made worse off by the availability of an imperfect test.
This is because of the strategic nature of the societal interaction.

If this were merely a decision problem for each agent, any test would increase welfare.2 Moreover, it is understood
that an imperfect test can encourage sub‐optimal behavior if people misunderstand or if people do not realize that the
test is flawed. Here we discover that an imperfect test can be detrimental even when its quality is common knowledge and
when agents have no behavioral biases.

Although we find that there are some tests and testing protocols that can lower welfare, Proposition 2.2 reveals that
any test, provided it is given to people who have a (relatively) low likelihood of exposure–those who would refrain from
isolating absent a test–is welfare improving, since it both provides those agents with more information but also ensures
that the pool of agents participating in society improves. That is not to say that that group of people is the optimal group
to test, merely that such a protocol, according to this framework, cannot reduce welfare.

The last statement leads us to the following caveat: in this paper, we do not attempt to characterize optimal testing
protocols, nor do we provide a thorough cost‐benefit analysis of the participation/social‐distancing trade‐off. These are
both worthwhile concerns, yet the goal of this paper is more modest. Instead, we merely wish to expose a counter‐
intuitive aspect to testing, one that has seemingly been heretofore unmentioned and overlooked.

2 | THE MODEL

Let us consider the following formal model. There is a population that consists of a continuum of agents with measure
1. The Bernoulli random variable, Θ, corresponds to the infection status of an agent, where Θ = 1 denotes that an agent
is infected and Θ = 0 denotes that an agent is not infected. The only source of heterogeneity is an agent's prior exposure
to the disease, which we term her type. That is, an agent's type is her likelihood of infection, μ ∈ 0; 1½ �, where
μ : ¼P Θ¼ 1ð Þ. We impose that the population distribution of types has an atomless3 cumulative distribution function
F with support on [0, 1].

Each agent has a simple choice: either isolate (action I) or participate (action P). If an agent isolates, she obtains a
payoff normalized to 0. If an agent participates, then with probability τ she interacts with someone who is infected,
where τ is the average infection likelihood of those participating. Hence, τ is the chance that a agent who is not isolating
encounters an infected person. It is important to keep in mind that τ is an endogenous equilibrium object, determined
by the isolation decisions of the agents in the populace.

If an agent of type μ participates then her payoff is

u P; μ; τð Þ ¼ A − Bμ 1 − τð Þ − Cð1 − μÞτ

where A ≥ 0 is her reward from participating, C ≥ 0 is her loss from becoming infected, and B ≥ 0 is her loss from
infecting someone else. Note that, in contrast to τ, A, B, and C are exogenous parameters.

The solution concept that we use is Nash Equilibrium: given the actions of the other agents, no agent has a
(unilateral) profitable deviation. Due to the linearity of the payoff from P in an agent's type, any equilibrium must be of
a particular cut‐off form: all agents whose types are above (or below) a certain threshold will isolate, and all those whose
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types are below (or above) that threshold will not. Because there is a coordination‐like aspect of the game, there may
exist two kinds of equilibria; both those in which high types isolate and low types participate, but also the inverse.
Throughout we restrict attention to the first class of equilibria, since it seems to correspond closest to people's behavior
during the pandemic–by and large, sick people are encouraged to stay home, not go out. Moreover, the condition below
ensures that such an equilibrium exists.

We begin by looking at the case in which there is no test, so that we can subsequently compare welfare to the case in
which a test is available. We impose the following condition on the parameters:

Condition 2.1 There exists some type bμ such that

(i) Aþ Bþ Cð Þbτ − Bð Þμ − Cbτ ≥0; for all μ ≤ bμ; and
Aþ Bþ Cð Þbτ − Bð Þμ − Cbτ ≤0; for all μ ≥ bμ;

where,

bτ ¼ τ bμð Þ : ¼
∫bμ0 xdFðxÞ
F bμð Þ

and

(ii) bμ ≤ C
BþC

bτ is a conditional expectation: it is the average infected likelihood of those participating (those whose type, μ, is less
than the cutoff type, bμ). Inequality (ii) ensures that in this equilibrium, the payoff of each type μ ∈ 0; bμ½ � is decreasing in
τ, which is realistic: the welfare of the participants gets worse as it becomes more likely that they encounter infected
individuals.

A necessary condition for Condition 2.1 is that

Bþ Cð Þbτ ≤ B

That is, given bτ , an agent's participation payoff is decreasing in her own type. If Condition 2.1 holds, then trivially
there exists an equilibrium in which all types μ < bμ participate and all types μ > bμ isolate (indeed the first part of the
condition is necessary and sufficient for such an equilibrium to exist). Denote the aggregate payoff from this equilib-
rium by W, viz.,

W : ¼∫bμ0 Aþ Bþ Cð Þbτ − Bð Þx − C bτf gdFðxÞ

Clearly, this is an exceedingly simple model: the scenario is static and there are no benefits to testing other than to
guide agents' isolation decisions. For instance, there is no contact tracing in this model, nor are there benefits to society
from obtaining statistics about the spread, morbidity, or mortality of the disease. These are all important considerations
for determining optimal testing policies.

Furthermore, outside of their infection likelihoods, agents in this model are homogeneous. We do not distinguish
between essential and inessential workers, say, which is another vital component of a thorough cost‐benefit analysis of
testing. The model's homogeneity in this dimension also does not allow us to tackle the subtle issue that, in reality, not
all agents with the same infection likelihood are the same. Perhaps some high‐likelihood agents are travelers who have
recently returned from a virus hot‐spot, whereas others are doctors, who are likely to be sick by virtue of their occu-
pation. It is easy to see how distinguishing between these sorts of agents could be very important when choosing whom
to test.4

Yet another simplification is that the agents who participate interact with each other randomly. They cannot choose
the types with whom they interact, and neither the encounter rate of an agent nor whom an agent meets is affected by
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her infection probability. Again, this is perhaps unrealistic–a doctor is more likely to come into contact with infected
individuals than a traveller who has returned home from a hot‐spot, yet our model does not allow for this distinction.

Naturally, a model intended to guide policy directly should include many, if not all, of these details that are
conspicuously absent from this paper. However, as is noted above, the intent of this paper is not prescriptive. Our goal is
to discover and understand the counterintuitive notion that testing may lower welfare. The model is kept deliberately
simple in order to clearly illustrate the intuition of the result. We should expect similar incentives to be present in a
more complicated model, but they might be hidden or obfuscated by other factors.

2.1 | Testing participants cannot hurt

Now let us introduce testing to the scenario and derive our first result. Formally, a test, π, is a stochastic map:

π : 0; 1f g→ Δ Sð Þ

where S is some (compact) set of signal realizations. In the example that we explore later on, we assume that S consists
merely of two signal realizations–a positive result and a negative result–but for now, we need not make such a
restriction.

Then,

Proposition 2.2 Let 2.1 hold. Then, any test, π, given to any subset of types in the interval 0; bμ½ � begets an
equilibrium that yields society a payoff that is (at least weakly) greater than W.

Proof. It suffices to show that the payoff of each type μ ∈ 0; bμ½ � (weakly) increases in expectation. Moreover, recall
that the second part of Condition 2.1 implies that the payoff of each type μ ∈ 0; bμ½ � is decreasing in τ. Hence, if the pool
of agents in society improves (τ decreases) the payoffs of those agents increase.

If the testing protocol begets an equilibrium in which the new average likelihood of participants (τ*) is equal to bτ ,
then in expectation, the payoff of each type who is tested must weakly improve (this follows from Ramsey, 1990 and
Blackwell, 1951). Naturally, this payoff is further improved if τ) ≤ bτ and so we need only establish that there is an
equilibrium in which all types μ ∈ 0; μ)½ �, with μ) ≥ bμ participate, and τ) ≤ bτ .

Let G be the new distribution over types (beliefs about infection likelihood) as a result of the test. Note that by
definition,5 G is a mean‐preserving spread of F.6 There are two cases to consider: Case I, where GðbμÞ ¼ FðbμÞ; and Case
II, where GðbμÞ < FðbμÞ. The first case trivially yields the desired result (the pool of participants and the participation
decisions of the agents are unchanged).

Let us consider Case II and search for an equilibrium in which all types μ ∈ 0; μ)½ � participate, where μ) ≥ bμ. It is
straightforward to see footnote 77 that

bτ >
∫bμ0 xdGðxÞ
G bμð Þ

Define

τ μð Þ : ¼
∫ μ
0xdGðxÞ
G μð Þ

which is obviously increasing in μ. Accordingly, since we have assumed that Condition 2.1 holds, there must exist
some μ0 > bμ such that τ μ0ð Þ ¼ bτ . Clearly,

φ μð Þ : ¼ Aþ Bþ Cð Þτ μð Þ − Bð Þμ − Cτ μð Þ
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is continuous in μ. Evidently, φ bμð Þ is positive and φ μ0ð Þ is negative, so by the intermediate value theorem there exists
some μ) ∈ bμ; μ0ð Þ, with φ μ)ð Þ ¼ 0 and τ μ)ð Þ < bτ . Consequently, there exists an equilibrium in which all types μ ∈ 0; μ)½ �

participate, where μ) > bμ and τ) : ¼τ μ)ð Þ < bτ .
Note that because belief is a martingale, for each agent that is tested, there must be some test result that ensures that

her posterior type (remember, this is her posterior belief about her infection likelihood following a test result) is weakly
less than bμ and hence μ*.

2.1.1 | An example

To add intuition to the proof, let us briefly explore an example. Namely, let F be the uniform distribution on 0; 1½ � and
the parameters be such that bμ ¼ 1

2. Consider a binary test, π, that is given to types μ ∈ 1
4;

1
2

� �
, with

π þj1ð Þ ¼ π −j0ð Þ ¼
2
3

where the set of test outcomes is S¼ þ;−f g. Accordingly, each type in 1
4;

1
2

� �
will be “split” into two new types: with

probability μþ1
3 , outcome + will realize and the posterior belief (new type) of agent μ will be 2μ

1þμ ∈ 2
5;

2
3

� �
; and with

probability 2−μ
3 , outcome − will realize and the posterior belief (new type) of agent μ will be μ

2−μ ∈ 1
7;

1
3

� �
. This splitting is

depicted in Figure 1.
Furthermore, Figure 2 depicts the new cdf of types, G. Also depicted are ∫ μ

0GðxÞdx and ∫ μ
0FðxÞdx, which illustrates

that G is a mean‐preserving spread of F.

3 | HOW TESTS CAN LOWER WELFARE

Let us turn our attention to a simplified version of the previous section's model. We reduce the model as follows: now,
the population is inhabited by just two types of agents, ωH (high likelihood) and ωL (low likelihood). Proportion q = 3/4
of the population are ωL.

High likelihood agents, ωH, are infected with (prior) probability μH, where

μH : ¼P Θ¼ 1jωHð Þ ¼ 5=8

Likewise, μL denotes the prior probability that type ωL is infected:

μL : ¼P Θ¼ 1jωLð Þ ¼ 1=8

Recall that an agent may choose either to isolate (I) or not (P). We impose the following values for the pa-
rameters: A, her payoff from participation, equals 5/4; B, her penalty from infecting someone uninfected, is 2; and
C, her penalty from becoming infected, is 4. Thus, if she has a belief μ that she is infected, her payoff from not
isolating (P) is

u P; μ; τð Þ ¼
5
4
− 2μ 1 − τð Þ − 4 1 − μð Þτ

which simplifies to

u P; μ; τð Þ ¼
5
4
− 4τ − 2 − 6τð Þμ ð1Þ
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With no testing, the unique equilibrium is that in which agents of type ωH isolate and agents of type ωL participate.
Since only agents of type ωL are participating, the likelihood that an agent who is not isolating is infected is merely the
likelihood that an agent of type ωL is infected; viz., τ = μL = 1/8. On path, an agent of type ωL obtains a payoff of 19/32,
which is bigger than 0, her payoff from isolating. Should an agent of type ωH deviate and participate, she would obtain a
payoff of −1/32, less than her isolation payoff of 0.

In fact, an agent of type ωH would always prefer to isolate (since μH is so high), unless τ were precisely 0, which
could never happen at equilibrium. Consequently, this equilibrium is unique.

Without testing, the aggregate welfare for society, V, is

V ¼ q
5
4
− 4τ − 2 − 6τð ÞμL

� �

¼
3
4

19
32

� �

¼
57
128

≈ :45

F I GURE 1 Example 2.1.1 Splitting of beliefs (types) [Colour figure can be viewed at wileyonlinelibrary.com]

F I GURE 2 Example 2.1.1 Old (F, dashed lines) and new (G, solid lines) distributions of types [Colour figure can be viewed at
wileyonlinelibrary.com]
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3.1 | After the introduction of a test

We introduce a binary test to the scenario. The set of signal realizations is S : ¼ þ;−f g, corresponding to a positive test
and a negative test, respectively. Consequently, π can be written in terms of the variable p, where

p : ¼π −j1ð Þ; and π −j0ð Þ ¼ 1

The situation can be conveniently described by the following joint distribution of S and Θ for an agent with prior μi,
i = H, L:

Θ \ S − + P Θð Þ

1 μip μi 1 − pð Þ μi

0 1 − μið Þ 0 1 − μi

P Sð Þ μip þ 1 − μið Þ μi 1 − pð Þ 1

Note that in this model there are no false positives. This is done for expositional convenience and to allow us to
focus on the effect of the high false negative rates noted in the introduction.

Next, we look at the Nash Equilibria of the participation game with testing. As in Section 2, we focus on equilibria in
which agents who think their infection likelihood is low participate and agents who think their infection likelihood is
high do not. In this example, absent a test, this is the only equilibrium that exists, and we suppose that this is still the
equilibrium selected following a test. To put another way, we assume that introduction of the test does not qualitatively
alter the equilibrium selected to an (ostensibly less realistic) equilibrium in which low types isolate and high types
participate.

We consider three cases: in the first, only agents of type ωH have access to the test.

3.1.1 | Case 1 (testing only high likelihood)

Here we suppose that only agents of type ωH may take the test. There are three regions of false negative probabilities,
p, each of which beget a different equilibrium. If p is sufficiently low (p ≤ 0.73), then agents of type ωL participate and
agents of type ωH participate if and only if they get a negative test result. On the other hand, if p is in an intermediate
range (0.9 ≥ p ≥ 0.73), then such an equilibrium no longer exists. All agents of type ωL continue to participate, but now
only a fraction of the types ωH who have received negative results participate. Finally, if p is too high, only agents of type
ωL participate.

We start by calculating the values of p such that at equilibrium agents of type ωL participate and agents of type ωH
participate if and only if they get a negative test result.

The crucial variable is τ, the likelihood of encountering an infected agent while participating. Using the law of total
probability, it is

τHp ¼
qμL þ 1 − qð ÞμHp

qþ 1 − qð Þ μHpþ 1 − μHð Þ
¼

5pþ 3
5pþ 27

Using Bayes' law, the probability that type ωH is infected after a negative test is

μ−H ¼
μHp

μHpþ 1 − μH
¼

5p
5pþ 3

ð2Þ

Then, using Expression 1, agents of type ωH will participate after − if and only if
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5
4
− 4τHp − 2 − 6τHp

� �
μ−H ≥ 0 ð3Þ

which simplifies to p ≤ 9
5 −

12
5
ffiffi
5
p ≈ :73.

It is easy to verify that agents of type ωL prefer to participate for this range of p. Moreover, clearly, agents of type
ωH have no profitable deviation to action P after + , since they are sure that they are infected.

Should Inequality 1 fail to hold, there is no longer an equilibrium in which all agents of type ωH who have obtained a
negative test participate. However, for moderate p, there is also no equilibrium in which none of those agents partic-
ipate, since the resulting τ would be low enough to entice participation. Instead, fraction σ of the agents of type ωH who
have seen a negative test participate.

Observe that μ−H is the same as above, but the likelihood of encountering an infected agent is shaped by σ. This is

τ σð Þ ¼
qμL þ 1 − qð ÞσμHp

qþ 1 − qð Þσ μHpþ 1 − μHð Þ
¼

5pσ þ 3
5pσ þ 3σ þ 24

ð4Þ

Because some of the agents of type ωH isolate after a negative result and others do not, we need them to be
indifferent as to whether they participate after −. Thus, using Expression 1,

5
4
− 4τ σ)ð Þ − 2 − 6τ σ)ð Þð Þμ−H ¼ 0

Substituting in for τ σ)ð Þ, we obtain

σ) ¼
24 10p − 9ð Þ

5 25p2 − 42pþ 9ð Þ

which is feasible (lies in the interval [0, 1]) provided 0.73 ≤ p ≤ 0.9. Substituting σ* into Equation 4 we obtain the
equilibrium infection likelihood

τ σ)ð Þ ¼
15 1 − pð Þ

48 − 40p
ð5Þ

If p ≥ 0.9, then the only equilibrium yields the same payoff as the scenario without testing. The test is too unin-
formative to persuade any agents of type ωH and so as in the case without testing, only agents of type ωL participate,
yielding a payoff of 0.45.

We finish the analysis of Case 1 by inspecting aggregate welfare as a function of the probability p, VH (H for “High
likelihood”), the details of whose derivation we leave to Appendix A.1:

VH ¼

125p2 − 1530pþ 1917
128 5pþ 27ð Þ

; 0 ≤ p ≤
9
5
−

12
5
ffiffiffi
5
p

−
105p − 9
640p − 768

;
9
5
−

12
5
ffiffiffi
5
p ≤ p ≤

9
10

57
128

;
9
10

≤ p ≤ 1

8
>>>>>>><

>>>>>>>:

Comparing this to V, aggregate welfare when there are no tests, we see that VH < V = 57/128 for p ∈ :21; :9ð Þ, and VH

= V for p ∈ [0.9, 1]. Moreover, for all p ∈ :73; :9½ �, there is a Pareto decrease in welfare: agents of type ωH are no better off
and agents of type ωL are strictly worse off.
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3.1.2 | Case 2 (testing only low likelihood)

What if those tests from Case 1 were instead given to agents of type ωL? To ensure a fair comparison, suppose that there
are only enough tests to serve measure 1/4 of agents (so only 1/3 of agents of type ωL get tested). At equilibrium,
untested agents of type ωL participate, tested agents of type ωL participate if and only if they have a negative test result,
and agents of type ωH do not participate.

Now,

τLp ¼
2q
3 þ

q
3 p

2q
3 þ

q
3 μLpþ 1 − μLð Þ

μL ¼
pþ 2
pþ 23

It is obvious that agents of type ωL participate after a negative test since they would even with a perfectly unin-
formative test (p = 1). Likewise, they do not participate after a positive test since they are sure that they are infected.
Agents of type ωH do not participate since τLp is strictly greater than 0.

Consequently, aggregate welfare as a function of p is VL (L for “Low likelihood”):

VL ¼
2q
3

5
4
− 4τLp − 2 − 6τLp

� �
μL

� �

þ
q
3
μLpþ 1 − μLð Þ

5
4
− 4τLp − 2 − 6τLp

� �
μ−L

� �

¼
5p2 − 274pþ 1637

128 pþ 23ð Þ

where μ−L , the probability that type ωL, is infected after a negative test is obtained using Bayes' law. Evidently, VL ≥ V for
all p.

This case yields precisely the result that we uncovered in Section 2.1. Namely, any test applied to any subset of the
population whose members are participating in the absence of a test must improve society's welfare.

3.1.3 | Case 3 (testing everyone)

What if both types of agents have access to the test? Perhaps unsurprisingly, this case is qualitatively identical to Case 1.
For a sufficiently low p (p ≤ 0.76), agents of type ωL participate and agents of type ωH participate if and only if they get a
negative test result. If p is in an intermediate range (0.91 ≥ p ≥ 0.76), then all agents of type ωL continue to participate,
and only a fraction of the types ωH who have received negative results participate. If p is too high, only agents of type ωL
participate.

Leaving its derivation to Appendix A.1–since it is identical to the work for Case 1 mutatis mutandis–aggregate
welfare as a function of p is VT:

VT ¼

5p2 − 42pþ 45
16 pþ 3ð Þ

; 0 ≤ p ≤
39 − 6

ffiffiffiffiffi
11
p

25

3p
24 − 20p

;
39 − 6

ffiffiffiffiffi
11
p

25
≤ p ≤

69 − 2
ffiffiffiffiffiffiffiffi
534
p

25

15p2 − 294pþ 735
128pþ 896

;
69 − 2

ffiffiffiffiffiffiffiffi
534
p

25
≤ p ≤ 1

8
>>>>>>>>><

>>>>>>>>>:

Evidently, VT ≤ V for p ∈ :51; :9½ �. As in Case 1, there is an interval of p values, [0.76,.9], that begets a Pareto decrease
in the equilibrium welfare for society. Curiously, Case 3 illustrates that an extremely uninformative test can be strictly
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welfare improving. It provides some information to agents of type ωL but is insufficiently informative to persuade any
agents of type ωH to participate and so does not worsen the participant pool.

Unsurprisingly, welfare for society is higher when everyone can get tested (Case 3), than when only agents of type
ωH can get tested (Case 1). In both cases, an increase in τ drives the decrease in welfare, but in the Case 3, the effect of
this increase in τ is not as pernicious, due to the information acquired by the low likelihood types.

A graph of society's welfare as a function of p when there is no testing and in each of the three cases is depicted in
Figure 3.

Finally, recall that in the example, the test does not generate false positives. How does the false positive rate affect
welfare? As it turns out, the effect of the false positive rate is also ambiguous. It is possible that a high false positive rate
could be better for society due to its effect on the isolation decisions of agents of type ωH. Naturally, there are also
regions of the parameters in which welfare is decreasing in the false positive rate, which is driven by the intrinsic value
of information.

4 | BRIEF DISCUSSION

Determining the optimal way to guide a society through a pandemic and calculating optimal testing protocols is a
challenging task. Such an undertaking is made even more difficult by the myriad of constraints that must be satisfied–
logistical, resource, cognitive, and political, to name a few. Here we bypass such concerns and merely explore a counter‐
intuitive aspect of testing engendered by the interconnected nature of society.

Namely, we find that the introduction of a moderately informative test can make society worse off and can even
result in a Pareto decrease in welfare. This is because the test worsens the pool of participants–it makes it more likely
that agents encounter infected agents who, thanks to the test, are sufficiently confident that they are not infected due to
a false negative produced by the test.

F I GURE 3 Society's welfare in Cases 1 (VH, solid line), 2 (VL, solid line), 3 (VT, dashed line), & with no testing (V, dashed line) [Colour
figure can be viewed at wileyonlinelibrary.com]
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On the other hand, as Proposition 2.2 illustrates, every test is welfare improving, so long as it is given (or available)
only to agents who participate in equilibrium in the absence of the test. Such a protocol guarantees that the pool of
participants in society improves and provides valuable information to agents, to boot.

As we have stressed throughout, this paper does not prescribe optimal testing protocols. There are a number of
contemporaneous papers that do, under a variety of different assumptions and set‐ups. Kasy and Teytelboym (2020)
allow for perfectly informative (but costly) tests, and investigate the dynamic problem of how to test individuals in order
to both inform quarantine protocols and also learn about the virus's prevalence rate. Ely et al. (2020) assume a finite
quantity of heterogeneous tests and study how to allocate such tests to heterogeneous agents. Lipnowski and
Ravid (2020) explore a similar problem, but look at how to pool tests optimally. Deb et al. (2020), in turn, allow for
targeted testing and transfers to agents.

Crucially, in comparison to this paper, none of those papers contain a strategic interaction between the agents in the
population. In each such paper, agents and planners are merely tasked with decision problems and so the value of
information is positive. The important decision then, is the choice of whom to test or how to test, given limited re-
sources or costly tests. As we encounter here, introducing strategic concerns adds a novel wrinkle, one that may be
important to keep in mind when determining policy.

Our discovery that information may be detrimental is related to the phenomenon discovered by Kremer (1996),
who shows that increased prevalence of the AIDS virus may worsen the pool of available partners due to the fatalism of
high‐activity people. In this note, the welfare loss is also due to a worsened pool of participants, which effect is driven
by not by fatalism but by the increased (rational) confidence of high‐likelihood individuals consequent to negative test
results.

A number of other recent papers have pointed out other counterintuitive incentives in models of epidemics and
disease transmission. Those include Talamàs and Vohra (2020), who show that the introduction of a moderately
effective vaccine can result in Pareto losses in welfare for society; and Heinsalu (2020), who illustrates that increasing
the infection risk early in a pandemic may be optimal. However, the mechanism behind the result in Talamàs and
Vohra (2020) is completely different to that in this paper. There, the authors assume a network structure and allow
agents to choose with whom they match. In contrast to this paper, fixing the partnership structure of their model or
imposing that matching is random ensures that even a partially effective vaccine is a Pareto improvement to welfare.
In their paper, it is only when agents may choose with whom to match that imperfect vaccines can have a desta-
bilizing effect on society's partnership network, begetting a denser (and hence worse) network, and thereby lowering
welfare.

With that in mind, it would be interesting to investigate whether the results of this paper extend to a finite
population with a network structure. Likewise, it is unclear how allowing agents to make more sophisticated decisions–
letting them choose not just whether to isolate but also with whom to interact–would affect the findings. Given
the results of Talamàs and Vohra (2020), it is reasonable to suspect that a similar destabilizing effect could manifest as
the result of an imperfect test.
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ENDNOTES
1 See, e.g., this April 4th CNBC article.
2 See e.g. Ramsey (1990); Blackwell (1951), who (among many others) establish that the well‐known result that in decision problems, the
value of information is always positive.

3 This assumption is not significant, but eases notation.
4 I thank an anonymous referee for highlighting this aspect of optimal testing.
5 Indeed, this is precisely the definition of a mean‐preserving spread introduced in Rothschild and Stiglitz (1970).
6 Moreover, since F is atomless, G will not have atoms except possibly at 0 and 1. The proof proceeds with the implicit assumption that
G does not have an atom on 1, but that is just to ease notation and simplify the arguments. If G does have an atom there, the result
continues to hold.

7 Refer to Lemma A.1 in the Appendix.
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APPENDIX

A | Omitted Results and Derivations
Lemma A.1

bτ ¼
∫bμ0 xdFðxÞ
F bμð Þ

>
∫bμ0 xdGðxÞ
G bμð Þ
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Proof. Directly, using integration by parts

∫bμ0 xdFðxÞ
F bμð Þ

¼ bμ −
∫bμ0 FðxÞdx
F bμð Þ

> bμ −
∫bμ0 FðxÞdx
G bμð Þ

> bμ −
∫bμ0GðxÞdx
G bμð Þ

¼
∫bμ0 xdGðxÞ
G bμð Þ

which used the facts that F bμð Þ > G bμð Þ and G is a mean preserving spread of F, of which one definition is that

∫ μ
0GðxÞdx ≥ ∫ μ

0FðxÞdx

for all μ ∈ 0; 1½ � (an equivalent statement is that F second order stochastically dominates G).

A.1 | Sections 3.1.1 and 3.1.3 aggregate welfare derivations A

Case 2 (Section 3.1.2) is omitted, since the lone derivation may be found in the text.

A.1.1 | Case 1 (testing only high likelihood) A

For 0 ≤ p ≤ 9
5 −

12
5
ffiffi
5
p ≈ :73, aggregate welfare, VH, is

VH ¼ q
5
4
− 4τHp − 2 − 6τHp

� �
μL

� �

þ 1 − qð Þ μHpþ 1 − μHð Þ
5
4
− 4τHp − 2 − 6τHp

� �
μ−H

� �

¼
125p2 − 1530pþ 1917

128 5pþ 27ð Þ

For 9
10 ≥ p ≥ 9

5 −
12
5
ffiffi
5
p , since each high type, ωH is receiving a payoff of 0, we have

VH ¼ q
5
4
− 4τ σ)ð Þ − 2 − 6τ σ)ð Þð ÞμL

� �

¼ −
105p − 9
640p − 768

If 1 ≥ p ≥ 9
10, aggregate welfare is the same as in the case without a test; namely, VH ¼ 57

128 ≈ :45.

A.1.2 | Case 3 (testing everyone) A

First, let 0 ≤ p ≤ 39−6
ffiffiffiffi
11
p

25 ≈ :76. Let us calculate τTp . Directly,

τTp ¼ p
qμL þ 1 − qð ÞμH

q μLpþ 1 − μLð Þ þ 1 − qð Þ μHpþ 1 − μHð Þ
¼

p
pþ 3

Then, aggregate welfare, VT, is

VT ¼ q μLpþ 1 − μLð Þ
5
4
− 4τTp − 2 − 6τTp

� �
μ−L

� �

þ 1 − qð Þ μHpþ 1 − μHð Þ
5
4
− 4τTp − 2 − 6τTp

� �
μ−H

� �
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which simplifies to

VT ¼
5p2 − 42pþ 45

16 pþ 3ð Þ

For 39−6
ffiffiffiffi
11
p

25 ≤ p ≤ 69−2
ffiffiffiffiffi
534
p

25 ≈ :91, we have

VT ¼ q μLpþ 1 − μLð Þ
5
4
− 4τ σ)ð Þ − 2 − 6τ σ)ð Þð Þμ−L

� �

¼
3p

24 − 20p

If 1 ≥ p ≥ 69−2
ffiffiffiffiffi
534
p

25 , aggregate welfare is

VT ¼ q μLpþ 1 − μLð Þ
5
4
− 4τ− − 2 − 6τ−ð Þμ−L

� �

¼
15p2 − 294pþ 735

128pþ 896

where we used the fact that

τ− ¼ μ−L ¼
p

7þ p
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