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SPECIAL ISSUE

INDIRECT INFERENCE FOR TIME SERIES USING THE EMPIRICAL
CHARACTERISTIC FUNCTION AND CONTROL VARIATES

RICHARD A. DAVISa THIAGO DO RÊGO SOUSAb* AND CLAUDIA KLÜPPELBERGb

aDepartment of Statistics, Columbia University, New York, 10027, NY, USA
bCenter for Mathematical Sciences, Technical University of Munich, Boltzmannstr. 3 Garching, 85748, Germany

We estimate the parameter of a stationary time series process by minimizing the integrated weighted mean squared error
between the empirical and simulated characteristic function, when the true characteristic functions cannot be explicitly com-
puted. Motivated by Indirect Inference, we use a Monte Carlo approximation of the characteristic function based on i.i.d.
simulated blocks. As a classical variance reduction technique, we propose the use of control variates for reducing the vari-
ance of this Monte Carlo approximation. These two approximations yield two new estimators that are applicable to a large
class of time series processes. We show consistency and asymptotic normality of the parameter estimators under strong mix-
ing, moment conditions, and smoothness of the simulated blocks with respect to its parameter. In a simulation study we show
the good performance of these new simulation based estimators, and the superiority of the control variates based estimator for
Poisson driven time series of counts.
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1. INTRODUCTION

Let (Xj)j∈Z be a stationary time series, whose distribution depends on 𝜃 ∈ Θ ⊂ Rq for some q ∈ N. Denote by
𝜃0 ∈ Θ the true parameter, which we want to estimate from observations X1, … , XT of the time series. Maximum
likelihood estimation (MLE) has been extensively used for parameter estimation, since under weak regularity
conditions it is known to be asymptotically efficient. For many models, however, MLE is not always feasible to
carry out, due to a likelihood that may be intractable to compute, or maximization of the likelihood is difficult,
or because the likelihood function is unbounded on Θ. To overcome such problems, alternative methods have
been developed, for instance, the generalized method of moments (GMM) in Hansen (1982), the quasi-maximum
likelihood estimation (QMLE) in White (1982), and composite likelihood methods in Lindsay (1988).

In a similar vein, Feuerverger (1990) proposed an estimator based on matching the empirical characteristic
function (chf) computed from blocks of the observed time series and the true chf. More specifically, given a fixed
p ∈ N, the observed blocks of X1, … , XT are

Xj = (Xj, … ,Xj+p−1), j = 1, … , n, (1.1)

where n= T − p+ 1. In that article, a finite set of points in Rp needs to be chosen as arguments for which the true
and the empirical chf are compared. However, the practical choice of this set depends on the problem at hand and
the asymptotic results derived in Feuerverger (1990) do not offer practical guidance for choosing these points. To
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overcome this limitation Yu (1998) and Knight and Yu (2002) considered an integrated weighted squared distance
between the empirical and the true chfs.

This method has been used in a variety of applications; an interesting review article, Yu (2004) contains a
wealth of examples and references. More recent publications, where the method has been successfully applied to
discrete-time models include Knight et al. (2002), Meintanis and Taufer (2012), Kotchoni (2012), Milovanovic
et al. (2014), Francq and Meintanis (2016), and Ndongo et al. (2016). The method also applies to continuous-time
processes after discretization and has been used prominently for Lévy-driven models. The book Belomestny
et al. (2015) provides additional insight and references in this field.

The principal goal of this article is to extend the ideas of these articles to a more general setting. For example,
we do not assume the idealized situation for which the chf has an explicit expression as a function of 𝜃 ∈ Θ. We
propose two new estimators of 𝜃, which are based on replacing the true chf with estimates that are constructed
from a functional approximation of the chf constructed from simulated sample paths of (Xj(𝜃))j∈Z.

While much attention has been given to the choice of the integrated distance used when computing such esti-
mators, which under some regularity conditions can achieve the Cramér-Rao efficiency bound (see eq. (2.3) of
Knight and Yu (2002) and Proposition 4.2 of Carrasco et al. (2007)), the focus of our article is on the practical and
theoretical aspects that emerge when it is required to approximate the theoretical chf for parameter estimation. For
more details on the search for efficient estimators we refer to (Carrasco et al., 2007; Carrasco and Florens, 2014;
Carrasco and Kotchoni, 2017).

Our first estimator is computed from a simple Monte Carlo approximation to replace the true, but unknown chf.
This is similar to the simulated method of moments of McFadden (1989) and of the indirect inference method
(Smith (1993) and Gourieroux et al. (1993)). In particular, indirect inference has been successfully applied in
a variety of situations: parameter estimation of continuous time models with stochastic volatility (Bianchi and
Cleur (1996), Jiang (1998), Raknerud and Skare (2012), Laurini and Hotta (2013) and Wahlberg et al. (2015)),
robust estimation (de Luna and Genton (2001) and Fasen-Hartmann and Kimmig (2020)), and finite sample bias
reduction (Gourieroux et al. (2000); Gourieroux et al. (2010) and Do Rêgo Sousa et al. (2019)).

More precisely, for many different 𝜃 ∈ Θ, we simulate an i.i.d. sample of blocks denoted by

X̃j(𝜃) = (X̃(j)
1 (𝜃), … , X̃

(j)
p (𝜃)), j = 1, … ,H, (1.2)

for H ∈ N, and define a simulation based parameter estimator, which minimizes the integrated weighted mean
squared error, which is the integrated distance we use, between the empirical chf computed from the blocks (1.2)
of the observed time series and its simulated version computed from a large number of simulated paths of the time
series.

This is in contrast to the simulation based estimator defined in Section 5.2 of Carrasco et al. (2007), which is
computed from one long time series path instead of the i.i.d. sample of blocks in (1.2) (a similar method has been
applied by Forneron (2018) to estimate the structural parameters and the distribution of shocks in dynamic models).
Since we compute the Monte Carlo approximation of the chf from independent blocks, it should have smaller
variance than the corresponding one for dependent blocks. Our method gives a chf approximation which yields
strongly consistent and asymptotically normal parameter estimators. We also report their small sample properties
for different models.

Furthermore, as the Monte Carlo approximation of the chf is computed from i.i.d. blocks of a time series,
control variates techniques (see Glynn and Szechtman (2002) and Robert and Casella (2004)) provide an even
more accurate approximation for the chf. Control variates techniques are classical variance reduction methods
in simulation. The idea is to use a set of control variates, which are correlated with the chf. The method then
approximates the joint covariance matrix of the control variates and the chf, and uses it to construct a new Monte
Carlo approximation of the chf. We choose the first two terms in the Taylor expansion of the complex exponential
ei⟨t,X1(𝜃)⟩, ⟨t,X1(𝜃)⟩ and ⟨t,X1(𝜃)⟩2 for 𝜃 ∈ Θ as control variates, where ⟨⋅ , ⋅⟩ denotes the usual Euclidean inner
product in Rd. This requires knowing the mean and covariance matrix of X1(𝜃) for 𝜃 ∈ Θ.

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 42: 653–684 (2021)
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In assessing the performance of both the Monte Carlo approximation and the control variates approximation of
the chf, two trends emerge. First, both the Monte Carlo and the control variates approximations work better for
small values of the argument. Second, the control variates approximation performs much better than the Monte
Carlo approximation, in particular, for small values of the argument. As a consequence, we propose a control
variates based parameter estimator whose integrated mean squared error distinguishes between small and large
values of the argument.

Under regularity conditions we prove strong consistency of the proposed parameter estimators and asymptotic
normality of the simulation based parameter estimator. We find that the simulation based parameter estimator
is asymptotically normal with asymptotic covariance matrix equal to the one of the oracle estimator as derived
in Knight and Yu (2002). From this we conclude that there cannot be any improvement in the limit law for the
asymptotic normality of the control variates based estimator. However, we prove that it is computed from a better
approximation of the chf. Thus, the control variates estimator improves the finite sample performance compared
to the simulation based parameter estimator.

It is assumed throughout that (Xj)j∈Z is a stationary time series. This ensures that the blocks of random vari-
ables in (1.1) are stationary, from which we obtain convergence of the empirical chf to the joint chf. Now in
some restricted cases, our method can be adapted to special types of non-stationarity. For example, if (Xj)j∈Z is
non-stationary, but the differenced process ∇Xj =Xj −Xj− 1 is stationary, then our methodology can be applied
directly to ∇Xj. Similarly, if Xj = Yj + 𝜇j, where Yj is stationary and 𝜇j is a mean function that can be estimated
consistently say by �̂�j, then the methodology can be applied to Xj − �̂�j. We do not pursue this line of investigation
here.

The finite sample performance of the estimators is investigated for two important models. We begin with a
stationary Gaussian ARFIMA model, whose chf is explicitly known so that we can use the oracle estimator and
compare its performance with the simulated based estimator. Their performance is comparable and also very close
to the MLE, so in this model there is no need to use control variates. The second example is a nonlinear model for
time series of counts, which has been proposed originally in Zeger (1988) and applied, for instance, for modeling
disease counts (see also Campbell (1994), Chan and Ledolter (1995) and Davis et al. (1999)).

In the second example, the oracle estimator does not apply, since the chf of a Poisson-AR process cannot be
computed in closed form. For this model and different parameter sets, both the simulation based and the control
variates based estimators perform satisfactorily, and the control variates based estimator improves the performance
of the simulation based estimator considerably. When compared with the composite pairwise likelihood estimator
in Davis and Yau (2011), the control variates based estimator has comparable or even smaller bias.

Our article is organized as follows. In Section 2 we present the oracle estimator, and the estimators com-
puted from a Monte Carlo approximation and from a control variates approximation of the chf in detail. Here we
also motivate the choice of the control variates used. The asymptotic properties of the two new estimators are
established in Section 3. As all estimators are computed from true or approximated chf’s we assess their perfor-
mance in Section 4, first for a Gaussian AR(1) process and then for the Poisson-AR process. Practical aspects
of calculating the weighted least squares function are discussed in Section 5, as well as the estimation results
for finite samples. In Section 5.1 we compare the oracle estimator, the simulation based parameter estimator and
the MLE for a Gaussian ARFIMA model, whereas in Section 5.2 we compare the simulation based parameter
estimator and the control variates based estimator for the Poisson-AR process. The proofs of the main results
in Section 3, of Lemma 1 of Section 5, and the Tables discussed in Sections 5.1 and 5.2 are provided in the
Appendix.

2. PARAMETER ESTIMATION BASED ON THE EMPIRICAL CHARACTERISTIC FUNCTION

Throughout we use the following notation. For z ∈ C we use the L2-norm: |z| = √
z z, where z is the complex

conjugate of z. For x ∈ Rd and d ∈ N we denote by |x| the L2-norm, but recall that in Rd all norms are equivalent.
For z ∈ C the symbols ℜ(z) and ℑ(z) denote its real and imaginary part. For a function f ∶ Rq → Rp its Jacobi
matrix is given by ∇𝜃f (𝜃) = 𝜕f (𝜃)

𝜕𝜃T
∈ Rp×q and ∇2

𝜃
f (𝜃) = 𝜕vec(∇𝜃 f (𝜃))

𝜕𝜃T
∈ Rpq×q.

J. Time Ser. Anal. 42: 653–684 (2021) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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2.1. The Oracle Estimator

Let (Xj(𝜃))j∈Z be a stationary time series process, whose distribution depends on 𝜃 ∈ Θ ⊂ Rq for some q ∈ N.
Denote by 𝜃0 ∈ Θ the true parameter, which we want to estimate, and suppose that we observe X1, … , XT . Given
a fixed p ∈ N, define for 𝜃 ∈ Θ the p-dimensional blocks

Xj(𝜃) = (Xj(𝜃), … ,Xj+p−1(𝜃)), j = 1, … , n, (2.1)

where n=T − p+ 1. For j= 1, … , n, the observed blocks correspond to Xj = (Xj, … ,Xj+p−1), which can be used
to calculate the empirical characteristic function (chf), defined as

𝜑n(t) =
1
n

n∑
j=1

ei⟨t,Xj⟩, t ∈ R
p. (2.2)

Under mild conditions such as ergodicity, 𝜑n(t) converges a.s. pointwise to the true chf 𝜑(t) = Eei⟨t,X1⟩ for all
t ∈ Rp. We assume that p is chosen in such a way that 𝜑(⋅) uniquely identifies the parameter of interest 𝜃. The idea
of estimating 𝜃0 from a single time series observation by matching the empirical chf of blocks of the observed time
series and the true one has been proposed in Yu (1998) and Knight and Yu (2002), and we use the one in Knight
and Yu (2002), where the oracle estimator of 𝜃0 is defined as

�̂�n = argmin
𝜃∈Θ

Qn(𝜃), (2.3)

where

Qn(𝜃) = ∫
Rp

|𝜑n(t) − 𝜑(t, 𝜃)|2w(t)dt, 𝜃 ∈ Θ, (2.4)

with suitable weight function w such that the integral is well-defined, and chf

𝜑(t, 𝜃) = Eei⟨t,X1(𝜃)⟩, t ∈ R
p. (2.5)

In an ideal situation, 𝜑(⋅, 𝜃) has an explicit expression, which is known for all 𝜃 ∈ Θ.

2.2. Estimator Based on a Monte Carlo Approximation of 𝜑(⋅, 𝜃)

Unfortunately, a closed form expression of the chf 𝜑(⋅, 𝜃) is for many time series processes not available. How-
ever, it can be approximated by a Monte Carlo simulation, and an idea borrowed from the simulated method of
moments (McFadden (1989), see also Smith (1993) and Gourieroux et al. (1993) for a similar idea in the context
of indirect inference) is to replace 𝜑(⋅, 𝜃) by its functional approximation constructed from simulated sample paths
of (Xj(𝜃))j∈Z. For many different 𝜃 ∈ Θ, we simulate, independent of the observed time series, an i.i.d. sample of
the blocks in (2.1) denoted by

X̃j(𝜃) = (X̃(j)
1 (𝜃), … , X̃

(j)
p (𝜃)), j = 1, … ,H, (2.6)

for H ∈ N, and define the Monte Carlo approximation of 𝜑(⋅, 𝜃) based on these simulations as

𝜑H(t, 𝜃) =
1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩, t ∈ R
p. (2.7)

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 42: 653–684 (2021)
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If we replace 𝜑(⋅, 𝜃) in (2.4) by 𝜑H(⋅, 𝜃), we obtain the simulation based parameter estimator

�̂�n,H = arg min
𝜃∈Θ

Qn,H(𝜃), (2.8)

where

Qn,H(𝜃) = ∫
Rp

|𝜑n(t) − 𝜑H(t, 𝜃)|2w(t)dt, (2.9)

with suitable weight function w such that the integral is well-defined.

Remark 2.1. An alternative approximation to (2.7) of the chf is based on generating one long time series path
and use the empirical chf of the consecutive blocks of p-dimensional random variables constructed as in (2.1)
(see Carrasco et al. (2007)). While being unbiased, the approximation will generally have larger variance than the
approximation (2.7). Nevertheless, when it is expensive to generate realizations even of dimension p, for instance,
when a long burn-in time is required to achieve stationarity, it may be computationally more efficient to generate
one long time series. While we do not pursue this approach here, the technical aspects of working with one long
time series are not much different than the estimate based on independent replicates as in (2.7), but might require a
much larger sample size than desired to control the variance of the estimate. This is especially true for long-memory
time series.

Since 𝜑H(⋅, 𝜃) is based on H i.i.d. time series blocks, we can reduce its variance further using control variates
to produce an even more accurate approximation for the chf. This will result in an improved version of �̂�n,H .

2.3. Estimator Based on a Control Variates Approximation of 𝜑(⋅, 𝜃)

The estimator �̂�n,H in (2.8) requires only that the stationary time series process can be simulated, and is therefore
easily applicable to a large class of models. When computing Qn,H(𝜃) of (2.9), it is very important that the error

𝜉H(t, 𝜃) = |𝜑H(t, 𝜃) − 𝜑(t, 𝜃)|, t ∈ R
p, 𝜃 ∈ Θ, (2.10)

in approximating the true chf is small, since it propagates to �̂�n,H . To reduce the variance of the empir-
ical chf 𝜑H(⋅, 𝜃), we use the method of control variates, an often used variance reduction technique in
the context of Monte Carlo integration (Glynn and Szechtman (2002), Oates et al. (2017), Portier and
Segers (2019)).

We construct a control variates approximation of 𝜑(⋅, 𝜃) from the i.i.d. sample X̃j(𝜃), j= 1, … , H, as in (2.6).
We also require explicit expressions for the moments E⟨t,X1(𝜃)⟩𝜈 for 𝜈 = 1, 2 and 𝜃 ∈ Θ.

Recall that X̃1(𝜃)
d
= X1(𝜃) for all 𝜃 ∈ Θ, so that both random variables have the same moments. As

in Portier and Segers (2019), we denote by P𝜃 the distribution of the block X1(𝜃) and by PH,𝜃 its empir-
ical version. For example, if f t(x)= ei⟨t, x⟩ for t, x ∈ Rp, we want to provide a good approximation for
𝜑(t, 𝜃) = Eft(X1(𝜃)) =∶ P𝜃(ft) for 𝜃 ∈ Θ. To apply the control variates technique, we need control func-
tions, which are correlated with ft(X1(𝜃)) and whose expectations are known. In the time series context, it is
often that we know the first and second order structure of the process in closed form. Even for complicated
models, for example, models defined in terms of stochastic integrals (see e.g., (Brockwell, 2001; Klüppel-
berg et al., 2004; Brockwell et al., 2006; Stelzer, 2010)) these expressions are available. The first and second
order of X1(𝜃) appear in the Taylor series of ft(X1(𝜃)) and therefore they are natural choices of control func-
tions. We also remark that if the time series process also allows for the computation of additional moments
expressions in closed form, which are correlated with ft(X1(𝜃)), then we encourage using them as control func-
tions while approximating the chf. We describe now the construction of the control variates approximation
in detail.

J. Time Ser. Anal. 42: 653–684 (2021) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12582 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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We use the first two terms in the Taylor series of the complex function f t(x), which suggests the vector of control
functions ht,𝜃 = (h1,t,𝜃 , h2,t,𝜃)T , where for 𝜈 = 1, 2,

h𝜈,t,𝜃(x) = ⟨t, x⟩𝜈 − E⟨t,X1(𝜃)⟩𝜈, t ∈ R
p,

so that P𝜃(ht,𝜃) = 0, the zero vector in R2. The Monte Carlo approximation of 𝜑(⋅, 𝜃) based on the i.i.d. sample
X̃j(𝜃), j= 1, … , H, is then

PH,𝜃(ft) =
1
H

H∑
j=1

ft

(
X̃j(𝜃)

)
= 1

H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩ = 𝜑H(t, 𝜃). (2.11)

Since EPH,𝜃(ft) = Eft(X1(𝜃)), the Monte Carlo approximation 𝜑H(t, 𝜃) is unbiased and has variance

Var[PH,𝜃(ft)] = H−1𝜎2
𝜃
(ft) with 𝜎2

𝜃
(ft) = P𝜃({ft − P𝜃(ft)}2). (2.12)

Then for every vector 𝛽 ∈ C2, we have that PH,𝜃(ft) − 𝛽TPH,𝜃(ht,𝜃) is also an unbiased estimator of 𝜑(t, 𝜃). Since
X̃j(𝜃), j= 1, … , H, is an independent sample, Var[PH,𝜃(ft) − 𝛽TPH,𝜃(ht,𝜃)] = H−1𝜎2

𝜃
(ft − 𝛽Tht,𝜃) and, if we differ-

entiate the map 𝛽 → 𝜎2
𝜃
(ft − 𝛽Tht,𝜃) with respect to 𝛽 and set it equal to zero, we obtain (cf. Approach 1 in Glynn

and Szechtman (2002)) the theoretical optimum

𝛽
(opt)
𝜃,ft

(ht,𝜃) = {P𝜃(ht,𝜃hT
t,𝜃)}

−1P𝜃(ht,𝜃ft), (2.13)

provided the inverse exists. In this case, the estimator

𝜑
(cvopt)
H (t, 𝜃) = PH,𝜃(ft) −

(
𝛽
(opt)
𝜃,ft

(ht,𝜃)
)T

PH,𝜃(ht,𝜃) (2.14)

has minimal asymptotic variance. To investigate the existence of the above inverse note that for each fixed t ∈ Rp

and 𝜃 ∈ Θ, the determinant of P𝜃(ht,𝜃hT
t,𝜃) is

Var
[⟨t, X̃1(𝜃)⟩]Var

[⟨t, X̃1(𝜃)⟩2
]
−

{
Cov

[⟨t, X̃1(𝜃)⟩, ⟨t, X̃1(𝜃)⟩2
]}2

.

Since by the Cauchy–Schwarz inequality,{
Cov

[⟨t, X̃1(𝜃)⟩, ⟨t, X̃1(𝜃)⟩2
]}2 ≤ Var

[⟨t, X̃1(𝜃)⟩]Var
[⟨t, X̃1(𝜃)⟩2

]
,

it follows (see e.g., Klenke (2013), Theorem 5.8) that

det
(
P𝜃(ht,𝜃hT

t,𝜃

)
= 0 ⇔ a⟨t, X̃1(𝜃)⟩ + b⟨t, X̃1(𝜃)⟩2 + c

a.s.
= 0, (2.15)

for some a, b, c ∈ R with |a|+ |b|+ |c|>0. As the scalar product is random, universal coefficients to satisfy the
right-hand side of (2.15) exist only in degenerate cases, which we do not consider.

Since 𝛽
(opt)
𝜃,ft

(ht,𝜃) is unknown, it needs to be estimated (e.g., by one of the methods in Glynn and Szecht-
man (2002), and we use the one described in eqs. (6) and (7) in Portier and Segers (2019)):

𝛽H,𝜃,ft
(ht,𝜃) =

{
PH,𝜃(ht,𝜃hT

t,𝜃) − PH,𝜃(ht,𝜃)PH,𝜃(hT
t,𝜃)

}−1{
PH,𝜃(ht,𝜃ft) − PH,𝜃(ht,𝜃)PH,𝜃(ft)

}
. (2.16)
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For the i.i.d. sample X̃j(𝜃), j = 1, … ,H, as in (2.6) we obtain the control variates approximation of 𝜑(⋅, 𝜃) given
by

𝜑(cv)
H (t, 𝜃) = PH,𝜃(ft) − 𝜅H(t, 𝜃), t ∈ R

p, (2.17)

where

𝜅H(t, 𝜃) =
(
𝛽H,𝜃,ft

(ht,𝜃)
)T

PH,𝜃(ht,𝜃). (2.18)

Recall from (2.11) that PH,𝜃(ft) = 𝜑H(t, 𝜃), so we could simply replace 𝜑H(t, 𝜃) in (2.9) by 𝜑(cv)
H (t, 𝜃) as given

in (2.17). However, as we shall see in Section 4, the control variates approximation 𝜑(cv)
H (t, 𝜃) provides superior

approximations of 𝜑(t, 𝜃) only for values of t, for which Var(⟨t, X̃1(𝜃)⟩) is small. Thus, we replace 𝜑H(t, 𝜃) in
(2.9) by a combination of 𝜑H(t, 𝜃) and 𝜑(cv)

H (t, 𝜃). More precisely, we propose the following control variates based
estimator:

�̂�
(cv)

n,H,k = argmin
𝜃∈Θ

Q(cv)
n,H,k(𝜃), (2.19)

where for appropriate k> 0,

Q(cv)
n,H,k(𝜃) = ∫

Rp

|||𝜑n(t) −
(
𝜑(cv)

H (t, 𝜃)1{V̂ar(⟨t,X1⟩)<k} + 𝜑H(t, 𝜃)1{̂Var(⟨t,X1⟩)≥k}

) |||2w(t)dt, (2.20)

w(t) = w(t)
V̂ar(⟨t,X1⟩) , with suitable weight function w such that the integral is well-defined.

It is worth mentioning that, for a fixed weight function w(⋅), the weight function w(⋅) can always be computed
since V̂ar(⟨t,X1⟩) depends only on the time series data. The downside of using the control variates based estimator
(2.19) is that one needs to resort to numerical integration. However, the procedure is feasible for moderate dimen-
sion p. As illustrated in the Poisson-AR example of Section 4.2, the control variates based estimator has improved
the performance over the simulation based estimator (2.8) considerably.

Note that V̂ar(⟨t,X1⟩) = tT Γ̂pt where Γ̂p = (�̂�p(i − j))p
i,j=1 with

�̂�p(h) =
1

n − h

n−h∑
j=1

(Xj − �̂�n)(Xj+h − �̂�n), h = 1, … , p, (2.21)

and �̂�n =
1

n

∑n
j=1 Xj. The choice of the indicator function 1{V̂ar(⟨t,X1⟩)<k} is justified by the fact that, when estimating

the parameter 𝜃0, we focus on approximations of 𝜑(t, 𝜃) for 𝜃 close to 𝜃0.

3. ASYMPTOTIC BEHAVIOR OF THE PARAMETER ESTIMATORS

Before performing the parameter estimation we need to make sure that the parameters are identifiable from the
model.

In the following we assume that the model parameters are identifiable from the chf. In our exam-
ples, the dimension p must be at least 2. For a specific choice of p, the minimum in (2.19) may not be
unique giving an identifiability problem of the estimated model. This may be remedied by increasing the
dimension p.

In the sequel, we will make various assumptions on different aspects of the underlying process, smoothness of
the model, moments of the process, and properties of the weight function. We group these assumptions into the
following categories.

J. Time Ser. Anal. 42: 653–684 (2021) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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Assumptions A. (Parameter space and time series process).

(a.1) Θ is a compact subset of Rq and 𝜃0 ∈ Θo, the interior of Θ.
(a.2) (Xj)j∈Z is a stationary and ergodic sequence.
(a.3) (Xj)j∈Z is 𝛼-mixing with rate function (𝛼j)j∈N satisfying

∑∞
j=1 (𝛼j)1∕r < ∞ for some r > 1.

Assumptions B. (Continuity and differentiability in 𝜃).

(b.1) For each j ∈ N, the map 𝜃 → X̃j(𝜃) is continuous on Θ.
(b.2) For each j ∈ N, the map 𝜃 → X̃j(𝜃) is twice continuously differentiable in an open neighborhood around 𝜃0.

Assumptions C. (Moments).

(c.1) E|X1|u < ∞, where u= 2r/(r − 1) with r > 1 being such that (a.3) holds.
(c.2) E

∏p
j=1 |Xj|𝛼 < ∞ for some 𝛼 ∈ (u∕2, u] where u= 2r/(r − 1) with r > 1 being such that (a.3) holds.

(c.3) Esup𝜃∈Θ|X1(𝜃)|4 < ∞.
(c.4) For each 𝜃 ∈ Θ, E|∇𝜃X1(𝜃)| < ∞.
(c.5) Esup𝜃∈Θ|∇𝜃X1(𝜃)|2(1+𝜀) < ∞ and Esup𝜃∈Θ|∇2

𝜃
X1(𝜃)|1+𝜀 < ∞ for some 𝜀> 0.

Assumptions D. (Weight function).

(d.1) ∫
Rp w(t)dt < ∞.

(d.2) ∫
Rp |t|w(t)dt < ∞.

(d.3) ∫
Rp |t|2(1+𝜀)w(t)dt < ∞ for some 𝜀> 0.

(d.4) ∫
Rp

w(t)|t|2 dt < ∞.

Assumption B is indeed satisfied by many linear and nonlinear time series processes, in particular, when they
have a representation Xj(𝜃) = f (Zj,Zj−1, … ; 𝜃) or Xj(𝜃) = f (Zj,Xj−1(𝜃),Xj−2(𝜃), … ; 𝜃) for i.i.d. noise variables
(Zj)j∈Z, and f ∶ R∞ × Θ → R is a measurable function. Prominent examples are the MA(∞) and AR(∞) rep-
resentations of a causal or invertible ARMA(p, q) model (see e.g., eqs. (3.1.15) and (3.1.18) in Brockwell and
Davis (2013)) or the ARCH(∞) representation of a GARCH (p, q) model (see e.g., Francq and Zakoïan (2011),
Theorem 2.8). In this case, assumptions (b.1) and (b.2) will hold whenever the map f is continuously differen-
tiable for 𝜃 ∈ Θ. For example, if f is Lipschitz-continuous for 𝜃 ∈ Θ, then the continuity assumption (b.1)
holds.

The key asymptotic properties, consistency and asymptotic normality of our estimates are stated in the following
theorems. The proofs of these results are presented in the Appendix.

We formulate first the strong consistency results of the parameters.

Theorem 3.1. (Consistency of �̂�n,H). Assume that (a.1), (a.2), (b.1), and (d.1) hold. Let H =H(n)→∞ as n → ∞.

Then �̂�n,H

a.s.
→ 𝜃0 as n → ∞.

Theorem 3.2. (Consistency of �̂�
(cv)

n,H,k). Assume that the conditions of Theorem 3.1 hold, and additionally (a.3),

(c.1), (c.3), and (d.4). Let H =H(n)→∞ as n → ∞. Then �̂�
(cv)

n,H,k

a.s.
→ 𝜃0 as n → ∞.

The asymptotic normality of the simulation based parameter estimator reads as follows.

Theorem 3.3. (Asymptotic normality of �̂�n,H). Assume that Assumptions A and B, and the moment conditions
(c.2), (c.4), and (c.5) hold. Furthermore, assume that the weight function satisfies (d.1), (d.2) and (d.3). Set H =
H(n) ∶= H(n)n and H(n) → ∞ as n → ∞ and define

Kj(𝜃) = ∫
Rp

(
𝜕

𝜕𝜃
ℜ(𝜑(t, 𝜃)), 𝜕

𝜕𝜃
ℑ(𝜑(t, 𝜃))

)(
cos(⟨t,Xj⟩) −ℜ(𝜑(t, 𝜃))
sin(⟨t,Xj⟩) −ℑ(𝜑(t, 𝜃))

)
w(t)dt, j ∈ N (3.1)
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and

Q = ∫
Rp

(
𝜕

𝜕𝜃
ℜ(𝜑(t, 𝜃0)

)
,
𝜕

𝜕𝜃
ℑ(𝜑(t, 𝜃0)))

(
𝜕

𝜕𝜃
ℜ(𝜑(t, 𝜃0)

)
,
𝜕

𝜕𝜃
ℑ(𝜑(t, 𝜃0)) )Tw(t)dt. (3.2)

If Q is a non-singular matrix, then√
n(�̂�n,H − 𝜃0)

d
→ N(0,Q−1WQ−1), n → ∞, (3.3)

where

W = Var[K1(𝜃0)] + 2
∞∑

j=2

Cov[K1(𝜃0),Kj(𝜃0)]. (3.4)

Theorem 3.3 shows that �̂�n,H is asymptotically normal and achieves the same asymptotic efficiency as the oracle
estimator from (2.3) (see Theorem 2.1 in Knight and Yu (2002)). Therefore, there cannot be any improvement in

the limit law for the asymptotic normality of �̂�
(cv)

n,H,k. However, as we show in Section 4, �̂�
(cv)

n,H,k is based on a better

approximation of the chf 𝜑(⋅, 𝜃) than that used for �̂�n,H . Thus, the control variates estimator �̂�
(cv)

n,H,k improves the

finite sample performance compared to the simulation based estimator �̂�n,H .

Remark 3.4. As pointed out in (Knight and Yu, 2002, Remark 2.3), the asymptotic variance of �̂�n,H in (3.3)
can be approximated by replacing 𝜃0 by �̂�n,H in (3.2) and (3.4) and by replacing the infinite sum in (3.4) by an
approximating sum with a kernel and a convenient bandwidth using the methods suggested in Andrews (1991)
and Newey and West (1994).

4. ASSESSING THE QUALITY OF THE ESTIMATED CHF

We compare the performance of both the Monte Carlo approximation 𝜑H(⋅, 𝜃) and the control variates approxi-
mation 𝜑(cv)

H (⋅, 𝜃) of the chf as defined in (2.7) and (2.17), respectively. We start with the following comparison of
the two chf approximations.

Remark 4.1. (Comparison of 𝜑(cv)
H (⋅, 𝜃) and 𝜑H(⋅, 𝜃)). Assume that (c.3) holds, and let 𝜑(cvopt)

H and 𝜑(cv)
H be as

defined in (2.14) and (2.17), respectively. We use that 𝛽H,𝜃,ft
(ht,𝜃)

a.s.
→ 𝛽

(opt)
𝜃,ft

(ht,𝜃) as n → ∞ with limit given in (2.13).

This follows from the representation of 𝛽H,𝜃,ft
(ht,𝜃) as

𝛽H,𝜃,ft
(ht,𝜃) = 𝛽H,𝜃,ℜ(ft)(ht,𝜃) + i𝛽H,𝜃,ℑ(ft)(ht,𝜃)

and the almost sure convergence of both terms. The quantities needed to compute the estimator in (2.16) are, for
each 𝜈, 𝜅 = 1, 2:

PH,𝜃(ft) =
1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩, (4.1)

PH,𝜃(h𝜈,t,𝜃) =
1
H

H∑
j=1

(⟨t, X̃j(𝜃)⟩𝜈 − E⟨t,X1(𝜃)⟩𝜈) ,
PH,𝜃(fth𝜈,t,𝜃) =

1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩ (⟨t, X̃j(𝜃)⟩𝜈 − E⟨t,X1(𝜃)⟩𝜈) ,
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DOI: 10.1111/jtsa.12582 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



662 R. DAVIS, T. DO RÊGO SOUSA, AND C. KLÜPPELBERG

PH,𝜃(h𝜈,t,𝜃h𝜅,t,𝜃) =
1
H

H∑
j=1

(⟨t, X̃j(𝜃)⟩𝜈 − E⟨t,X1(𝜃)⟩𝜈) (⟨t, X̃j(𝜃)⟩𝜅 − E⟨t,X1(𝜃)⟩𝜅) . (4.2)

Hence, strong consistency of 𝛽H,𝜃,ft
(ht,𝜃) follows from the SLLN. This together with P𝜃(ht,𝜃) = 0 implies by

Theorem 1 in Glynn and Szechtman (2002) that, as H →∞,

H1∕2
(
ℜ

(
𝜑(cv)

H (t, 𝜃) − 𝜑(t, 𝜃)
)) d

→ N
(

0, 𝜎2
𝜃

(
ℜ(ft) − [𝛽(opt)

𝜃,ℜ(ft)
(ht,𝜃)]Tht,𝜃

))
,

H1∕2
(
ℑ

(
𝜑(cv)

H (t, 𝜃) − 𝜑(t, 𝜃)
)) d

→ N
(

0, 𝜎2
𝜃

(
ℑ(ft) −

[
𝛽
(opt)
𝜃,ℑ(ft)

(ht,𝜃)
]T

ht,𝜃

))
,

with

𝜎2
𝜃

(
ℜ(ft) − [𝛽(opt)

𝜃,ℜ(ft)
(ht,𝜃)]Tht,𝜃

) ≤ 𝜎2
𝜃

(
ℜ(ft)

)
and

𝜎2
𝜃

(
ℑ(ft) − [𝛽(opt)

𝜃,ℑ(ft)
(ht,𝜃)]Tht,𝜃

) ≤ 𝜎2
𝜃

(
ℑ(ft)

)
,

with 𝜎2
𝜃
(⋅) as defined in (2.12). Therefore, 𝜑(cv)

H (⋅, 𝜃) provides an approximation of the integral Qn(𝜃) in (2.4) with

smaller variance than𝜑H(⋅, 𝜃). As a consequence, this favors the control variates estimator �̂�
(cv)

n,H,k over the simulation

based estimator �̂�n,H for large sample sizes n ∈ N.

For all forthcoming examples we choose p= 3 and H = 3000. We begin with a stationary Gaussian AR(1) pro-
cess, where we know the chf 𝜑(⋅) explicitly, and then proceed to the Poisson-AR process, where we approximate
the true unknown chf by a precise simulated version.

4.1. The Gaussian AR(1) Process

We start with a stationary Gaussian AR(1) process to show how the method of control variates improves the Monte
Carlo approximation of its chf. Let (Xj(𝜃))j∈Z be the AR(1) process

Xj(𝜃) = 𝜙Xj−1(𝜃) + Zj(𝜃), j ∈ Z, (Zj(𝜃))j∈Z

iid∼N(0, 𝜎2), (4.3)

with parameter space Θ being a compact subset of {𝜃 = (𝜙, 𝜎) ∶ |𝜙| < 1, 𝜎 > 0}. Then the true chf of X1(𝜃) =
(X1(𝜃),X2(𝜃),X3(𝜃)) is given by 𝜑(t, 𝜃) = e−

1
2

tTΓ3(𝜃)t for t ∈ R3, where the covariance matrix Γ3(𝜃) is explicitly
known and identifies the parameter 𝜃 uniquely; see for example, Brockwell and Davis (2013), Example 3.1.2. For
a fixed 𝜃 ∈ Θ and many t ∈ R3 we compute the absolute errors

𝜉H(t, 𝜃) = |𝜑H(t, 𝜃) − 𝜑(t, 𝜃)| and 𝜉(cv)
H (t, 𝜃) = |𝜑(cv)

H (t, 𝜃) − 𝜑(t, 𝜃)| (4.4)

where 𝜑H(⋅, 𝜃) is the Monte Carlo approximation of the chf of X1(𝜃) = (X1(𝜃),X2(𝜃),X3(𝜃)) and 𝜑(cv)
H (⋅, 𝜃) its

control variates approximation. To understand how well we can approximate 𝜑(⋅, 𝜃), we plot in Figure 1, 𝜉H(t, 𝜃)
and 𝜉(cv)

H (t, 𝜃) against
√

Var[⟨t,X1(𝜃)⟩] for different parameters 𝜃. These quantities are computed from an i.i.d.
sample Xj(𝜃), j = 1, … ,H as in (2.6). To simulate i.i.d. observations from the model (4.3), we use the fact that the
one-dimensional stationary distribution is X1(𝜃) ∼ N(0, 𝜎2∕(1−𝜙2)), and then use the recursion in (4.3) to simulate
X2(𝜃) and X3(𝜃). We chose 500 randomly generated values of t from the 3-dimensional Laplace distribution with
chf given in (5.2).
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FIGURE 1. Gaussian AR(1) model: absolute error 𝜉H(t, 𝜃) (red) and 𝜉(cv)
H (t, 𝜃) (green) for p= 3 and H = 3000 as in -(4.4). We

use 500 randomly generated values of t ∈ R3 from the Laplace distribution (with chf as in (5.2) below), which are plotted
against

√
Var[⟨t,X1(𝜃)⟩]
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It is clear from Figure 1 that both the Monte Carlo and the control variates approximations work better
when

√
Var[⟨t,X1(𝜃)⟩] is small, and also that the control variates approximations are best for small values of√

Var[⟨t,X1(𝜃)⟩]. The superiority of the control variates approximation for all t and all parameter settings is clearly
visible, and already expected from Remark 4.1.

4.2. The Poisson-AR Model

We consider a nonlinear time series process for time series of counts, which has been proposed originally in
Zeger (1988). A prototypical Poisson-AR(1) model suggested in Davis and Rodriguez-Yam (2005) assumes
that the observations (Xj(𝜃))j∈Z are independent and Poisson-distributed with means e𝛽+𝛼j(𝜃) where the process
(𝛼j(𝜃))j∈Z is a latent stationary Gaussian AR(1) process, given by the equations

𝛼j(𝜃) = 𝜙𝛼j−1(𝜃) + 𝜂j(𝜃), j ∈ Z, (𝜂j(𝜃))j∈Z

iid∼N(0, 𝜎2),

with parameter space Θ being a compact subset of {𝜃 = (𝛽, 𝜙, 𝜎) ∶ |𝜙| < 1, 𝛽 ∈ R, 𝜎 > 0}. The parameter
𝜃 is uniquely identifiable from the second order structure, which has been computed in Section 2.1 of Davis
et al. (2000).

For this model, the true chf of X1(𝜃) = (X1(𝜃),X2(𝜃),X3(𝜃)) cannot be computed in closed form. To mimic the
assessment of the errors in (4.4), we simulate 1,000,000 i.i.d. observations from X1(𝜃) by first simulating a Gaussian
AR(1) process (𝛼1(𝜃), 𝛼2(𝜃), 𝛼3(𝜃)) (as described in Section 4.1) and then simulating independent Poisson random
variables with means e𝛽+𝛼1(𝜃), e𝛽+𝛼2(𝜃) and e𝛽+𝛼3(𝜃), respectively. From this we compute the empirical characteristic
function and take it as 𝜑(⋅, 𝜃) in the absolute error terms (4.4).

We compare the performance of both the Monte Carlo approximation and the control variates approximation of
the chf. Figure 2 presents the results. The plots in Figure 2 are also in favor of the control variates approximation,
when compared to the Monte Carlo approximation.

5. PRACTICAL ASPECTS AND SIMULATION RESULTS

Our objective is to obtain a simple expression of the integrated mean squared error Qn,H(𝜃) in (2.9), which is
needed to compute the estimator in (2.8). For a weight function w in (2.9), we write

w̃(x) = ∫
Rp

ei⟨t,x⟩w(t)dt, x ∈ R
p, (5.1)

for its Fourier transform. Our preference is on weight functions such that (5.1) is known explicitly.

Example 5.1. (Weight functions and their characteristic functions).

(i) Laplace: w is a multivariate Laplace density with chf

w̃(t) = 1
(1 + (2𝜋2)−1 tT t)

, t ∈ R
p. (5.2)

(ii) Cauchy: w is a multivariate Cauchy density with chf

w̃(t) = e−
√

tT t, t ∈ R
p.

(iii) Gaussian: w is a standard multivariate Gaussian density with chf

w̃(t) = e−
1
2

tT t, t ∈ R
p. (5.3)
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FIGURE 2. Poisson-AR model: Absolute errors 𝜉H(t, 𝜃) (red) and 𝜉(cv)
H (t, 𝜃) (green) for p= 3 and H = 3000 as in (4.4). We use

500 randomly generated values of t ∈ R3 from the Laplace distribution (with chf as in (5.2) below), which are plotted against√
Var[⟨t,X1(𝜃)⟩]
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Lemma 5.2. Let Qn,H(𝜃) be as in (2.9) and w a weight function with Fourier transform w̃. Then

Qn,H(𝜃) =
1
n2

n∑
k=1

n∑
j=1

w̃(Xj − Xk) +
1

H2

H∑
j=1

H∑
k=1

w̃(X̃j(𝜃) − X̃k(𝜃))

− 1
Hn

H∑
k=1

n∑
j=1

(
w̃(Xj − X̃k(𝜃)) + w̃(X̃k(𝜃) − Xj)

)
. (5.4)

Formula (5.4) is very useful, since it avoids the computation of a p-dimensional integral. Additionally, since the
first double sum on the right-hand side of (5.4) does not depend on the argument 𝜃, for the optimization it can be
ignored.

Remark 5.3. When evaluating the integrated weighted mean squared errors (2.9), (2.20), or (5.4) in practice,
they need to be deterministic functions of 𝜃. This is enforced by taking a fixed seed for every j= 1, … , H, when
simulating X̃j(𝜃) for different values of 𝜃 ∈ Θ.

In the following two examples we study the finite sample behavior of the estimators �̂�n,H and �̂�
(cv)

n,H,k. We begin with
a stationary Gaussian ARFIMA model, whose chf is explicitly known so that we can use the oracle estimator from
Section 2.1. Afterwards we come back to the Poisson-AR process. We choose p= 3, since the three-dimensional
chf contains sufficient information to identify the parameter of interest. We also choose H = 3000.

5.1. The ARFIMA Model

Let (Xj(𝜃))j∈Z be the stationary Gaussian ARFIMA(0, d, 0) model

(1 − B)dXj(𝜃) = Zj(𝜃), j ∈ Z, (Zj(𝜃))j∈Z

iid∼N(0, 𝜎2),

where B is the backshift operator, with parameter space Θ being a compact subset of {𝜃 = (d, 𝜎) ∶ d ∈
(−0.5, 0.5), 𝜎 > 0}. Then the true chf of X1(𝜃) = (X1(𝜃),X2(𝜃),X3(𝜃)) is given by 𝜑(t, 𝜃) = e−

1
2

tTΓ3(𝜃)t for
t ∈ R3, 𝜃 ∈ Θ, where the covariance matrix Γ3(𝜃) is explicitly known and identifies the parameter 𝜃 uniquely; see
for example, Pipiras and Taqqu (2017), Corollary 2.4.4.

For the long-memory case, for each value of d ∈ {0.05, … , 0.45} we compare the new estimators with the MLE
method as implemented in the R package arfima. Thus, for many 𝜃 ∈ Θ, we generate i.i.d. Gaussian random
vectors with mean zero and covariance Γ3(𝜃) and use them to construct the simulation based estimator �̂�n,H .

Since the chf 𝜑(⋅, 𝜃) is known in closed form, we are able to compute the oracle estimator �̂�n from (2.4). To

compute the integral appearing in (2.4) in closed form, we choose the weight function w(t) = (2𝜋)−3∕2e−
1
2

tT t, t ∈
R3.

Then the integral in (2.4), which needs to be minimized with respect to the parameter 𝜃, can be evaluated
similarly as in (5.4), giving for the chf being known, that Qn(𝜃) can be written as

∫
R3

|||1
n

n∑
j=1

ei⟨t,Xj⟩ − e−
1
2

tTΓ3(𝜃)t|||2w(t)dt

=
(
det((2Γ3(𝜃) + I)−1)

) 1
2 + 1

n2

n∑
j=1

n∑
k=1

exp
{
− 1

2
(Xj − Xk)T (Xj − Xk)

}
(5.5)

− 2
(
det((Γ3(𝜃) + I)−1)

) 1
2 1

n

n∑
j=1

exp
{
−1

2
XT

j (Γ3(𝜃) + I)−1Xj

}
.
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We compare in Table AI the performance of the simulation based estimator �̂�n,H , the oracle estimator �̂�n in (2.3)
based on the minimization of (5.5), and the MLE. We fixed 𝜎 = 1 for all simulated sample paths used in the simu-
lation study. For both �̂�n and �̂�n,H , we also estimate 𝜎 but report only the performance for the estimator of d which
is the key parameter of interest in long-range dependence models. We notice that �̂�n,H is comparable to the oracle
estimator, so in this model there is no need to use control variates. When comparing both simulation based esti-
mators, the RMSEs are almost the same for all d ≥ 0.20. The MLE has a smaller RMSE, but both �̂�n and �̂�n,H have
a smaller bias than the MLE. In the simulations, the density plots for the estimates of d with d ∈ {0.25, 0.3} look
reasonably normal. On the other hand, the estimates when d is closer to 0.5 are rather skewed, which is expected
due to the constraint d < 0.5. In this case a larger sample is needed to obtain more normal looking densities.

Remark 5.4. We also investigate the feasibility of our new estimation procedures for misspecified models. We
take a Gaussian ARFIMA as the true model, but for the data we modify the distribution of its innovations. Specif-
ically, we consider the two cases of ARFIMA models driven by noise with a Laplace distribution and with a
Student’s t distribution with 6 degrees of freedom. The estimation results under the two misspecification scenar-
ios are shown in Tables AII and AIII of the Appendix. The quasi-oracle estimator is based on the Gaussian chf,
and the quasi-MLE (QMLE) is found by maximizing the Gaussian likelihood, even though the data are in fact
non-Gaussian. For both noise distributions, we see very little difference in the performance of the three estimators
(QMLE compared with MLE) from the Gaussian ARFIMA scenario in Table AI. In particular, our estimator con-
tinues to have small bias and RMSE that is comparable to the oracle estimator and only slightly larger than that of
the QMLE. Of course, it is known that the QMLE estimators behave asymptotically the same as the MLE when
the data is Gaussian.

5.2. The Poisson-AR Process

The Poisson-AR model has been defined in Section 4.2. We conduct a simulation experiment in the same setting
as in Table V in Davis and Rodriguez-Yam (2005) and Table III in Davis and Yau (2011). The results are shown in
Table AIV of the Appendix for n= 400 and nine different parameter settings, where we also classify the models
by the corresponding index of dispersion D of the random variable e𝛽+𝛼1 , which assumes values in {0.1, 1, 10} as
shown in Davis and Rodriguez-Yam (2005).

We compare both the simulation based estimator �̂�n,H and control variates based estimator �̂�
(cv)

n,H,k. We fix
H = 3 000, p= 3 and the three-dimensional Laplace density as in (5.2) for w. To simulate i.i.d. observations of
(X1(𝜃),X2(𝜃),X3(𝜃)) we proceed as explained in Section 4.2. The simulation based estimator �̂�n,H in (2.8) is com-

puted via (5.4). Unfortunately, such a formula cannot be obtained for the control variates based estimator �̂�
(cv)

n,H,k,

since the introduction of the correction 𝜅H in (2.18) introduces additional polynomial terms into Q(cv)
n,H,k in (2.20).

Thus, we resort to numerical integration to evaluate �̂�
(cv)

n,H,k.

Our findings are as follows. For D∈ {1, 0.1}, the control variates based estimator �̂�
(cv)

n,H,k for k= 1 presents smaller

bias and RMSE than the simulation based estimator �̂�n,H in most cases, in all others it is comparable. The smallest
RMSE values are shaded in Table IV. Additionally, a significant improvement in the bias for estimating 𝜙 is
noticeable for 𝜃 = (0.373, 0.500, 0.220) and 𝜃 = (0.373, 0.900, 0.111). This example shows the advantage of using
control variates to improve the estimation of the model parameters. This is not surprising in view of the improved
performance of estimating the characteristic function as seen in all three panels of Figure 2.

We compare now the control variates based estimator �̂�
(cv)

n,H,k in Table II of the Appendix, with the results for the
consecutive pairwise likelihood (CPL) from Table III in Davis and Yau (2011), which is referred to as CPL1 in that

article. The bias of �̂�
(cv)

n,H,k is smaller than that of CPL1 for the estimated 𝛽 and 𝜎 for almost all cases, in all others

it is comparable. For 𝜙 the bias of �̂�
(cv)

n,H,k and CPL1 are comparable, except that �̂�
(cv)

n,H,k shows poor performance for
estimating 𝜙 for the true parameter (𝛽, 𝜙, 𝜎) = (0.373, 0.9, 0.111). This is due to the fact that the simulated sample
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paths contain a large number of zeros, giving very little information for the parameter estimation. The estimated
values for 𝛽 look normal for all parameter choices. The sampling distributions of the other parameter estimates
look close to normal, except in the boundary. In particular, the density for the estimates of 𝜙 when 𝜙 = 0.9 or
𝜎 ∈ {0.22, 0.111} and estimates of 𝜎 when 𝜎 ∈ {0.22, 0.111} show some asymmetry, deviating from normality.
This is not unexpected because they are close to the boundary.
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APPENDIX A

Here we present the proofs of the main Theorems, as well as tables of results on the simulation study. Then,
in Section A.1 we provide the proofs of Theorems 3.1, 3.2, and 3.3. Finally, we present in Section A.2 the tables
summarizing the finite sample behavior of the simulation based estimators for ARFIMA models driven by noise
from Gaussian, Laplace, and Student’s t distributions, and the Poisson-AR(1) model discussed in Section 5.

A.1. Proofs of the main results

In the following we define H =H(n) and H = H(n) = H(n)∕n, but omit the argument n for notational simplicity.
Throughout the letter c stands for any positive constant independent of the respective argument. Its value may
change from line to line, but is not of particular interest. For a matrix with only real eigenvalues 𝜆min(⋅) denotes
the smallest eigenvalue.

We often use the uniform SLLN, which guarantees for a continuous stochastic process (Z(t))t∈Rp satisfying

Esupt∈K|Z(t)| < ∞ that supt∈K|Z(t) − EZ(t)| a.s.
→ 0 as n → ∞ for every compact set K ⊂ Rp. More precisely, we

use the SLLN on the separable Banach space C(K), the space of continuous functions on the compact set K ⊂ Rp,
endowed with the sup norm (see e.g., Theorem 16(a) in Ferguson (1996) or Theorem 9.4 in Parthasarathey (1967)).

TABLE AI. Comparison of the simulation based estimator �̂�n,H for H = 3000, the oracle estimator �̂�n, and the MLE for sample
size n= 400. For all estimators we have taken p= 3 with w the Gaussian density as in (5.3). Reported results are based on 500

replications

ARFIMA model driven by standard Gaussian noise

d = 0.05 d = 0.10 d = 0.15

Bias Std RMSE Bias Std RMSE Bias Std RMSE

�̂�n,H 0.000 0.056 0.056 0.002 0.054 0.054 0.004 0.049 0.049

�̂�n −0.005 0.050 0.050 −0.004 0.047 0.047 −0.004 0.044 0.045
MLE −0.015 0.040 0.043 −0.015 0.040 0.043 −0.016 0.040 0.043

d = 0.20 d = 0.25 d = 0.30

Bias Std RMSE Bias Std RMSE Bias Std RMSE

�̂�n,H 0.003 0.047 0.047 0.000 0.046 0.046 −0.003 0.048 0.048

�̂�n −0.004 0.045 0.045 −0.006 0.044 0.044 −0.007 0.046 0.047
MLE −0.016 0.040 0.043 −0.017 0.039 0.043 −0.017 0.039 0.043

d = 0.35 d = 0.40 d = 0.45

Bias Std RMSE Bias Std RMSE Bias Std RMSE

�̂�n,H −0.006 0.050 0.051 −0.013 0.051 0.052 −0.022 0.047 0.052

�̂�n −0.009 0.049 0.050 −0.013 0.051 0.052 −0.021 0.048 0.052
MLE −0.019 0.039 0.043 −0.021 0.037 0.043 −0.027 0.034 0.043
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TABLE AII. Comparison of the simulation based estimator �̂�n,H for H = 3000, the quasi-oracle estimator �̂�n, and the QMLE
for sample size n= 400. For all estimators we have taken p= 3 with w the Gaussian density as in (5.3). Reported are results

based on 500 replications

ARFIMA model driven by standard Laplace noise

d = 0.05 d = 0.10 d = 0.15

Bias Std RMSE Bias Std RMSE Bias Std RMSE

�̂�n,H −0.004 0.062 0.062 −0.003 0.060 0.060 0.004 0.054 0.054

�̂�n −0.005 0.051 0.051 −0.003 0.049 0.049 0.001 0.048 0.047
QMLE −0.012 0.043 0.045 −0.013 0.043 0.045 −0.013 0.043 0.045

d = 0.20 d = 0.25 d = 0.30

�̂�n,H 0.008 0.049 0.050 0.012 0.051 0.053 0.012 0.049 0.051

�̂�n 0.005 0.047 0.047 0.009 0.046 0.047 0.010 0.046 0.047
QMLE −0.014 0.042 0.044 −0.014 0.042 0.044 −0.015 0.042 0.044

d = 0.35 d = 0.40 d = 0.45

�̂�n,H 0.009 0.045 0.046 −0.004 0.042 0.042 −0.022 0.037 0.043

�̂�n 0.006 0.044 0.044 −0.004 0.040 0.040 −0.023 0.035 0.042
QMLE −0.016 0.041 0.044 −0.019 0.039 0.044 −0.025 0.035 0.043

Proof of Theorem 3.1. Let

Q(𝜃) = ∫
Rp

|||𝜑(t, 𝜃0) − 𝜑(t, 𝜃)|||2w(t)dt

be the candidate limiting function of Qn,H(𝜃). For 𝛿 > 0 define the set

K𝛿 = {t ∈ R
p ∶ |t| ≤ 𝛿}. (A1)

Since |ei⟨t,X̃1(𝜃)⟩| = 1 for all 𝜃 and t, and the random elements (X̃j(𝜃), 𝜃 ∈ Θ)∞j=1 are i.i.d., the uniform SLLN holds
giving

sup
(t,𝜃)∈Θ×K𝛿

|||| 1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩ − 𝜑(t, 𝜃)
|||| a.s.
→ 0, n → ∞. (A2)

In particular, for 𝜃 = 𝜃0 we also have

sup
t∈K𝛿

||||1
n

n∑
j=1

ei⟨t,Xj⟩ − 𝜑(t, 𝜃0)
|||| a.s.
→ 0, n → ∞. (A3)

Applying the inequality ||a|2 − |b|2|≤2|a− b| for a, b ∈ C, |a|, |b| ≤ 1 gives

|Qn,H(𝜃) − Q(𝜃)| = ∫
Rp

||||||||1
n

n∑
j=1

ei⟨t,Xj⟩ − 1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩||||2 − |𝜑(t, 𝜃0) − 𝜑(t, 𝜃)|2||||w(t)dt

≤ 2∫
Rp

||||1
n

n∑
j=1

ei⟨t,Xj⟩ − 𝜑(t, 𝜃0) + 𝜑(t, 𝜃) − 1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩||||w(t)dt
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≤ 2∫
Rp

{||||1
n

n∑
j=1

ei⟨t,Xj⟩ − 𝜑(t, 𝜃0)
|||| + sup

𝜃∈Θ

||||𝜑(t, 𝜃) − 1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩||||
}

w(t)dt

≤ 2 sup
(t,𝜃)∈Θ×K𝛿

{||||1
n

n∑
j=1

ei⟨t,Xj⟩ − 𝜑(t, 𝜃0)
|||| + ||||𝜑(t, 𝜃) − 1

H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩||||
}

× ∫K𝛿

w(t)dt + 8∫Kc
𝛿

w(t)dt. (A4)

Applying sup𝜃∈Θ on both sides of (A4), using (A2) combined with (d.1), and taking the limit for 𝛿 ↓ 0 gives

sup
𝜃∈Θ

|Qn,H(𝜃) − Q(𝜃)| a.s.
→ 0, n → ∞. (A5)

Now we prove that Q(𝜃) = 0 if and only if 𝜃 = 𝜃0. Obviously Q(𝜃0) = 0. If 𝜃 ≠ 𝜃0, then the distributions of X1

and X̃1(𝜃) are different and thus also their characteristic functions are different. Since characteristic functions are
continuous, it follows that they are different at least on an interval with positive Lebesgue measure; hence Q(𝜃) > 0.
Therefore, Q(𝜃) is uniquely minimized at 𝜃0 and this fact together with (A5) gives strong consistency of �̂�n,H . ◾

Proof of Theorem 3.2. We have that V̂ar(⟨t,X1⟩) = tT Γ̂pt, with Γ̂p being the p-dimensional empirical covariance
matrix of the observed time series (X1, … , XT ) as in (2.21). Let k> 0 be fixed and

Q(cv)(𝜃) = ∫
Rp

|||𝜑(t, 𝜃0) − 𝜑(t, 𝜃)|||2 w(t)
tTΓpt

dt

be the candidate limiting function of Q(cv)
n,H,k(𝜃) in (2.20), where Γp is the theoretical p-dimensional covariance

matrix of the time series process (Xj)j∈Z.

Based on the definition of Q(cv)
n,H,k(𝜃) in (2.20), we divide the domain of integration in the integrated mean squared

error |Q(cv)
n,H,k(𝜃) − Q(cv)(𝜃)| into {V̂ar(⟨t,X1⟩) < k} and {V̂ar(⟨t,X1⟩) ≥ k}, equivalently into Ln = {t ∈ Rp ∶

tT Γ̂pt < k} and its complement Lc
n.

Recall also (2.17) and (2.18). Using |eix|=1 for all x ∈ R, together with |ab− cd|≤ |b||a− c|+ |c||b− d| for
a, b, c, d ∈ C gives for the integral on Lc

n:

|Q(cv)
n,H,k(𝜃) − Q(cv)(𝜃)|Lc

n
∶= ∫Lc

n

||||||1
n

n∑
j=1

ei⟨t,Xj⟩ − 1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩|||2 1

tT Γ̂pt
− |||𝜑(t, 𝜃0) − 𝜑(t, 𝜃)|||2 1

tTΓpt
|||w(t)dt

≤ ∫Lc
n

||||||1
n

n∑
j=1

ei⟨t,Xj⟩ − 1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩|||2 − |||𝜑(t, 𝜃0) − 𝜑(t, 𝜃)|||2||| 1

tT Γ̂pt
w(t)dt

+ 4∫Lc
n

||| 1

tT Γ̂pt
− 1

tTΓpt
|||w(t)dt. (A6)

By (a.3) and (c.1) it follows from Theorem 3(a) in Section 1.2.2 of Doukhan (1994) that

|||Cov(X0,Xj)
||| ≤ 8𝛼

1
r

j (E
|||X1

|||u ) 2
u → 0, j → ∞. (A7)
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Since Var(X1) > 0, it follows from (A7) combined with Proposition 5.1.1 in Brockwell and Davis (2013) that
det(Γp) > 0, and therefore, the minimum eigenvalue 𝜆min(Γp) of Γp is positive. Thus, for all t ∈ Rp,

tTΓpt ≥ 𝜆min(Γp) |t|2 > 0. (A8)

By (a.2) and the ergodic theorem Γ̂p

a.s.
→ Γp and, since the eigenvalues of a matrix are continuous functions of its

entries (cf. Bernstein (2009), Fact 10.11.2), also 𝜆min(Γ̂p)
a.s.
→ 𝜆min(Γp) > 0. It follows from (A8) and from the a.s.

convergence of the eigenvalues that there exists N > 0 such that

tT Γ̂pt ≥ |t|2𝜆min(Γ̂p) ≥ |t|2 𝜆min(Γp)
2

> 0, n ≥ N. (A9)

Thus, for t ∈ Lc
n we obtain

||| 1

tT Γ̂pt
− 1

tTΓpt
||| ≤ 2

k𝜆min(Γp)|t|2 |||tT (Γp − Γ̂p)t
||| ≤ 2|Γp − Γ̂p|

k𝜆min(Γp)
. (A10)

This together with (A10) gives the following upper bound for the right-hand side of (A6):

∫
Rp

||||||1
n

n∑
j=1

ei⟨t,Xj⟩ − 1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩|||2 − |||𝜑(t, 𝜃0) − 𝜑(t, 𝜃)|||2|||w(t)
k

dt +
8|Γp − Γ̂p|
k𝜆min(Γp) ∫Rp

w(t)dt. (A11)

The first integral can be estimated as |Qn,H(𝜃) −Q(𝜃)| in (A4) which tends to 0 uniformly for 𝜃 ∈ Θ provided that

(d.1) holds. Since Γ̂p

a.s.
→ Γp, also the second integral in (A11) tends 0 a.s. as n→∞.

We turn to the integrated mean squared error |Q(cv)
n,H,k(𝜃) − Q(cv)(𝜃)| on Ln. Let L = {t ∈ Rp ∶ |t| ≤ √

2k

𝜆min(Γp)
}.

The control variates correction used in (2.20) can be regarded as a continuous function g ∶ R9 → R2 whose
entries are the arithmetic means defined in (4.1)-(4.2). By (c.3) and the uniform SLLN, each of these arithmetic
means converge a.s. uniformly on L × Θ as n → ∞ and H →∞. Thus, it follows from the continuity of g and the
continuous mapping theorem that

sup
(t,𝜃)∈L×Θ

|𝜅H(t, 𝜃)|2 a.s.
→ 0. (A12)

For n≥N it follows from (A9) that Ln ⊆L and thus using the inequality

||||a + b|2c − |d|2e||| ≤ ||||a + b|2 − |d|2||||c| + |d|2|c − e|
≤ (|a − d| + |b|)(4 + |b|)|c| + 4|c − e|,

valid for a, b, c, d, e ∈ C with |d|≤2 gives

∫Ln

||||||
(

1
n

n∑
j=1

ei⟨t,Xj⟩ − 1
H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩
)

+ 𝜅H(t, 𝜃)
|||2 1

tT Γ̂pt
− |||𝜑(t, 𝜃0) − 𝜑(t, 𝜃)|||2 1

tTΓpt
|||w(t)dt

≤ ∫L

(|||1
n

n∑
j=1

ei⟨t,Xj⟩ − 𝜑(t, 𝜃0)
||| + ||| 1

H

H∑
j=1

ei⟨t,X̃j(𝜃)⟩ − 𝜑(t, 𝜃)||| + |𝜅H(t, 𝜃)|)
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×
(
4 + |𝜅H(t, 𝜃)|) w(t)

tTΓpt
dt + 4∫L

||| 1

tT Γ̂pt
− 1

tTΓpt
|||w(t)dt

=∶ I1,n(𝜃) + I2,n(𝜃).

From (A8), (A12), (A2), and (A3) with K𝛿 = L for 𝛿 =
√

2k∕𝜆min(Γp)) ,and (d.4) it follows that sup𝜃∈ΘI1,n(𝜃)
a.s.
→ 0

as n → ∞. Finally, sup𝜃∈ΘI2,n(𝜃)as.→0 by similar arguments as used in (A10) and (A11), since for t∈L, also
applying (d.4),

||| 1

tT Γ̂pt
− 1

tTΓpt
||| ≤ 2

(𝜆min(Γp))2|t|4 |tT (Γp − Γ̂p)t| ≤ 2|Γp − Γ̂p|
(𝜆min(Γp))2|t|2

and

∫
Rp

w(t)|t|2 dt < ∞.

◾

Proof of Theorem 3.3. By the definition of �̂�n,H in (2.8) and under assumptions (a.1) and (b.2) we have

∇𝜃Qn,H(�̂�n,H) = 0.

A Taylor expansion of order 1 of ∇𝜃Qn,H around 𝜃0 gives

0 = ∇𝜃Qn,H(𝜃0) + ∇2
𝜃
Qn,H(𝜃n)(�̂�n,H − 𝜃0)

where 𝜃n

a.s.
→ 𝜃0 as n → ∞. Therefore, asymptotic normality of

√
n(�̂�n,H − 𝜃0) will follow by the delta method, if

we prove that as n → ∞:

(1)
√

n∇𝜃Qn,H(𝜃0) converges weakly to a multivariate normal random variable, and
(2) ∇2

𝜃
Qn,H(𝜃n) converges in probability to a non-singular matrix.

We start with the first point and compute the partial derivatives of Qn, H:

𝜕

𝜕𝜃(i)
Qn,H(𝜃) =

𝜕

𝜕𝜃(i)

(
∫

Rp

|𝜑n(t) − 𝜑H(t, 𝜃)|2w(t)dt

)
= ∫

Rp

𝜕

𝜕𝜃(i)
(ℜ(𝜑n(t) − 𝜑H(t, 𝜃))2 +ℑ(𝜑n(t) − 𝜑H(t, 𝜃))2)w(t)dt

= −2∫
Rp

(ℜ(𝜑n(t) − 𝜑H(t, 𝜃))
𝜕

𝜕𝜃(i)
ℜ(𝜑H(t, 𝜃))

+ℑ(𝜑n(t) − 𝜑H(t, 𝜃))
𝜕

𝜕𝜃(i)
ℑ(𝜑H(t, 𝜃)))w(t)dt, i ∈ 1, … , q. (A13)

Recall that 𝜑n(t) and 𝜑H(t, 𝜃) denote the empirical characteristic functions of the observed blocks (X1, … ,Xn)
as in (2.2) and of its Monte Carlo approximation (X̃1(𝜃), … , X̃H(𝜃)) as in (2.7), respectively. Define the partial
derivatives of the real and imaginary part of 𝜑H(t, 𝜃):

b(i)
H (t, 𝜃) = 1

H

H∑
j=1

(
− sin(⟨t, X̃j(𝜃)⟩)
cos(⟨t, X̃j(𝜃)⟩)

)⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃)⟩, i = 1, … , q, (A14)
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and summarize them into

bH(t, 𝜃) =
⎛⎜⎜⎜⎝
(b(1)

H (t, 𝜃))T

⋮

(b(q)
H (t, 𝜃))T

⎞⎟⎟⎟⎠ . (A15)

Then consider (
ℜ(𝜑n(t) − 𝜑(t, 𝜃0))
ℑ(𝜑n(t) − 𝜑(t, 𝜃0))

)
−

(
ℜ(𝜑H(t, 𝜃) − 𝜑(t, 𝜃0))
ℑ(𝜑H(t, 𝜃) − 𝜑(t, 𝜃0))

)
=∶ gn(t) − g̃H(t, 𝜃). (A16)

Abbreviate bH(t) ∶= bH(t, 𝜃0) and g̃H(t) ∶= g̃H(t, 𝜃0). Then it follows from (A13), (A15) and (A16) that

∇𝜃Qn,H(𝜃0) = 2∫
Rp

bH(t)gn(t)w(t)dt − 2∫
Rp

bH(t)g̃H(t)w(t)dt. (A17)

We analyze the asymptotic behavior of the first term in (A17) in Lemma A.3. More precisely, we show there that
∫K𝛿

bH(t)gn(t)w(t)dt for K𝛿 as in (A1) converge in distribution to a q-dimensional Gaussian vector. Afterwards,
Lemmas A.4 and A.5 show that as 𝛿 → ∞, componentwise in Rq,

lim sup
n→∞

Var

(
∫Kc

𝛿

bH(t)
√

ngn(t)w(t)dt

)
→ 0,

and

and ∫Kc
𝛿

E[b1(t)]G(t)w(t)dtP→0

where G is a zero mean R2-valued Gaussian field. The formula given in (A17) tells us that the term E[b1(t, 𝜃)]
will appear in the asymptotic covariance formula of the limiting distribution of the estimator. Therefore it is worth
writing it in terms of the chf (2.5). ◾

Remark A.1. For each i∈ {1, … , q} and 𝜃 ∈ Θ, it follows from (A14) that

E[b(i)
1 (t, 𝜃)] = E

(
− sin(⟨t, X̃j(𝜃)⟩)
cos(⟨t, X̃j(𝜃)⟩)

)⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃)⟩

= E

(
𝜕

𝜕𝜃(i)
cos(⟨t, X̃j(𝜃)⟩), 𝜕

𝜕𝜃(i)
sin(⟨t, X̃j(𝜃)⟩)) (A18)

Since both sin and cos are bounded by 1 we can use (c.5) to interchange expectation and differentiation in (A18).
This combined with (A15) gives

E[b1(t, 𝜃)] =
(
𝜕

𝜕𝜃
E cos(⟨t, X̃j(𝜃)⟩), 𝜕

𝜕𝜃
E sin(⟨t, X̃j(𝜃)⟩)) =

(
𝜕

𝜕𝜃
ℜ(𝜑(t, 𝜃)), 𝜕

𝜕𝜃
ℑ(𝜑(t, 𝜃))

)
(A19)

This remark will be used later in the proof of Theorem 3.3.
We show by a standard Chebyshev argument that the second term in (A17) converges in probability componen-

twise to 0 in (A48). The convergence of the second derivatives ∇2
𝜃
Qn(𝜃n) will be the topic of Lemma A.6. For the

scalar products above we use the following bounds several times below.
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Lemma A.2. Let 𝜈 ≥ 1, t ∈ Rp, k, i∈ {1, … , q} and j ∈ Z be fixed and assume that (b.2) holds.Then the
following bounds hold true.

(a) If E|∇𝜃X1(𝜃)|𝜈 < ∞ for 𝜃 ∈ Θ, then there exists a constant c> 0 such that

E
|||⟨t, 𝜕

𝜕𝜃(k)
X̃j(𝜃)⟩|||𝜈 ≤ c|t|𝜈E|∇𝜃X1(𝜃)|𝜈, t ∈ R

p. (A20)

(b) If E|∇2
𝜃
X1(𝜃)|𝜈 < ∞ for 𝜃 ∈ Θ, then there exists a constant c> 0 such that

E
|||⟨t, 𝜕

𝜕𝜃(k)𝜕𝜃(i)
X̃j(𝜃)⟩|||𝜈 ≤ c|t|𝜈E|∇2

𝜃
X1(𝜃)|𝜈, t ∈ R

p. (A21)

The same bounds hold uniformly, taking expectations over sup𝜃∈Θ or over supt∈K for some compact K ⊂ Rp at
both sides of (A20) and (A21), provided the corresponding expectations exist.

Proof. (a) Applying the Cauchy–Schwarz inequality for the inner product, the fact that (X̃j(𝜃), 𝜃 ∈ Θ)
d
=

(X̃1(𝜃), 𝜃 ∈ Θ)
d
= (X1(𝜃), 𝜃 ∈ Θ), bounding the L2-norm by the L1-norm, employing the inequality |∑p

j=1 𝛽j|𝜈 ≤
p𝜈−1 ∑p

j=1 |𝛽j|𝜈 valid for 𝛽1, … , 𝛽p ∈ R and 𝜈 ≥ 1 gives

E
|||⟨t, 𝜕

𝜕𝜃(k)
X̃j(𝜃)⟩|||𝜈 ≤ |t|𝜈E||| 𝜕

𝜕𝜃(k)
X̃j(𝜃)

|||𝜈 = |t|𝜈E||| 𝜕

𝜕𝜃(k)
X1(𝜃)

|||𝜈
≤ |t|𝜈E( p∑

r=1

||| 𝜕

𝜕𝜃(k)
Xr(𝜃)

||| )𝜈 ≤ p𝜈−1|t|𝜈 p∑
r=1

E
||| 𝜕

𝜕𝜃(k)
Xr(𝜃)

|||𝜈
≤ p𝜈−1|t|𝜈 p∑

r=1

E|∇𝜃Xr(𝜃)|𝜈 = p𝜈|t|𝜈E|∇𝜃X1(𝜃)|𝜈 =∶ c|t|𝜈E|∇𝜃X1(𝜃)|𝜈 . (A22)

Part (b) follows by analogous calculations. ◾

Lemma A.3. Under assumptions (a.2), (b.2), (a.3), (c.2) and (c.4) we have on the Borel sets of Rq,

∫K𝛿

bH(t)
√

ngn(t)w(t)dt
d
→ ∫K𝛿

E[b1(t)]G(t)w(t)dt, n → ∞, (A23)

where G is an R2-valued Gaussian field.

Proof. Under assumptions (a.3) and (c.2), it follows from Lemma 4.1(2) in Davis et al. (2018) that
√

n(𝜑n(⋅) −
𝜑(⋅, 𝜃0)) convergences in distribution on compact subsets of Rp to a complex-valued Gaussian field G̃, equiva-
lently the vector of real and imaginary part converge to a bivariate Gaussian field G. Since the random elements
(X̃j(𝜃), 𝜃 ∈ Θ)j∈N are i.i.d. and the partial derivatives exist by (b.2), also (X̃j(𝜃0),∇𝜃X̃j(𝜃0))j∈N are i.i.d. Then it
follows from the definitions (A14), (A15), and Lemma A.2 with K = K𝛿) in combination with (c.4) that

Esup
t∈K𝛿

|b1(t)| ≤ c sup
t∈K𝛿

|t|E|∇𝜃X1(𝜃0)| ≤ c|𝛿|E|∇𝜃X1(𝜃0)| < ∞. (A24)

Hence, the uniform SLLN guarantees that

sup
t∈K𝛿

|bH(t) − Eb1(t)| a.s.
→ 0, n → ∞.
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Slutsky’s theorem gives then bH(⋅)
√

ngn(⋅, 𝜃0) convergences in distribution on compact subsets of Rp to
E[b1(⋅)]G(⋅) as n → ∞. The result in (A23) follows from the continuity of the integral by another application of
the continuous mapping theorem on C(K𝛿). ◾

Lemma A.4. Under assumptions (a.3), (b.2), (c.4) and (d.2) we have componentwise in Rq,

lim sup
n→∞

Var(∫Kc
𝛿

bH(t)
√

ngn(t)w(t)dt) → 0, 𝛿 → ∞. (A25)

Proof. Since bH(⋅) and gn(⋅) are independent and Egn(t) = 0, we have E[bH(t)gn(t)] = 0 for all t ∈ Rp. An
application of the Cauchy–Schwartz inequality for integrals gives

Var(∫Kc
𝛿

bH(t)
√

ngn(t)w(t)dt) = E(∫Kc
𝛿

bH(t)
√

ngn(t)w(t)dt )2

≤ (E∫Kc
𝛿

|bH(t)|2n|gn(t)|2w(t)dt)

(
∫Kc

𝛿

w(t)dt

)
. (A26)

We first obtain a bound for the product between the first component gn, 1(⋅) of gn(⋅) and the first component b(i)
H,1(⋅)

of b(i)
H (⋅). Define for t ∈ Rp

Uj(t) = cos(⟨t,Xj⟩) −ℜ(𝜑(t, 𝜃0))

Vj(t) = − sin(⟨t, X̃j(𝜃0)⟩)⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃0)⟩, j ∈ Z. (A27)

Then,

gn,1(t) =
1
n

n∑
j=1

Uj(t) and b(i)
H,1(t) =

1
H

H∑
j=1

Vj(t), t ∈ R
p.

Under (a.3) it follows from Theorem 3(a) in Section 1.2.2 of Doukhan (1994) that for fixed t,

|Cov(U0(t),Uj(t))| ≤ 8𝛼
1
r

j (E|U0(t)|u ) 2
u , j ∈ N, (A28)

where u = 2r

(r−1)
and, thus, it follows from the stationarity of (Uj(t))j∈N combined with (A28) and the fact that

|U0(t) |≤2 that

nE
|||1
n

n∑
j=1

Uj(t)
|||2 = 1

n

n∑
j=1

EU2
j (t) +

2
n

n−1∑
j=1

(1 − k
n
)E|U0(t)Uj(t)|

≤ EU2
0(t) + 16(E|U0(t)|u ) 2

u

∞∑
j=1

𝛼
1∕r
j

≤ 4 + 64
∞∑

j=1

𝛼
1∕r
j < ∞, (A29)
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where the bound is independent of t. Recall that H = H(n) = H(n)n. Under (c.4), it follows from the i.i.d. property
of (Vj(t))j∈N

nE
||| 1
H

H∑
j=1

Vj(t) − EV0(t)
|||2 = nVar

⎛⎜⎜⎝ 1

Hn

Hn∑
j=1

Vj(t)
⎞⎟⎟⎠ =

EV2
1 (t)

H(n)
≤ c|t|2E|∇𝜃X1(𝜃0)|2

H(n)
≤ c|t|2

H(n)
. (A30)

Using the fact that ||| 1

n

∑n
j=1 Uj(t)

||| ≤ 2, adding and subtracting EV0(t) with the inequality |a+ b|2 ≤ 2(|a|2 + |b|2),
and (A30) gives

nE
|||1
n

n∑
j=1

Uj(t)
|||2||| 1

H

H∑
j=1

Vj(t)
|||2 ≤ 2nE

|||1
n

n∑
j=1

Uj(t)
|||2(EV0(t))2 + 8nE

||| 1
H

H∑
j=1

Vj(t) − EV0(t)
|||2

≤ c

(
1 + |t|2

H(n)

)
. (A31)

The calculations in (A29), (A30), and (A31) can now be applied to show that for all n ∈ N,

nE|gn(t)|2|bH(t)|2 ≤ c

(
1 + |t|2

H(n)

)

and, thus, it follows from (A26) together with (d.1) and (d.3) that

lim sup
n→∞

Var

(
∫Kc

𝛿

bH(t)
√

ngn(t)w(t)dt

)
≤ lim sup

n→∞

c

H(n)∫Kc
𝛿

(1 + |t|2)w(t)dt∫Kc
𝛿

w(t)dt → 0, 𝛿 → ∞. (A32)

◾

Lemma A.5. Under assumptions (b.2), (d.2) and (c.4)

∫Kc
𝛿

E[b1(t)]G(t)w(t)dt
P
→ 0, 𝛿 → ∞.

Proof. It follows from (A14), (A15), (c.4), and (A24) E|b1(t)| ≤ c|t|E|∇𝜃X1(𝜃0)| < ∞. Now we find an upper
bound for the variance of each component of G(t) for a fixed t. Let Uj(t) be as defined at the left-hand side of (A27)

and notice that the first component of G(t) is the distributional limit of 1√
n

∑n
j=1 Uj(t). Since (Uj(t))j∈N is 𝛼-mixing

by (a.3), we can apply the CLT in Ibragimov and Linnik (1971) (Theorem 18.5.3 with 𝛿 = 2∕(r− 1)) and find that
the variance of the first component of G(t) is given by

𝜎2
U = E[U2

0(t)] + 2
∞∑

j=1

E[U0(t)Uj(t)].

This combined with Theorem 3(a) in Section 1.2.2 of Doukhan (1994) and the fact that EUj(t) = 0 and |Uj(t) |≤2
for all j ∈ N gives by (a.3) and (A28)

|𝜎2
U| ≤ 4 +

∞∑
j=1

|Cov(U0(t),Uj(t))| ≤ 4 + 8
∞∑

j=1

(2𝛼j)1∕r(E|U0(t)|u ) 2
u ≤ 4 + 64

∞∑
j=1

(2𝛼j)1∕r.
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A similar calculation shows that the variance of the second component of G(t) is also bounded by a finite constant,
which does not depend on t. Therefore, E|G(t)| ≤ c. This combined with (A24) and assumption (d.2) gives

E
|||∫Kc

𝛿

E[b1(t)]G(t)w(t)dt||| ≤ cE|∇𝜃X1(𝜃0)|∫Kc
𝛿

|t|w(t)dt → 0, 𝛿 → ∞.

Since L1-convergence implies convergence in probability the result follows. ◾

This proves part (1) of the delta method. We now turn to part (2). To calculate the second derivatives of Qn,H(𝜃),
which exist by (b.2), we rewrite (A13) as

𝜕

𝜕𝜃(i)
Qn,H(𝜃) = −2∫

Rd

{(
1
n

n∑
j=1

cos(⟨t,Xj(𝜃)⟩) − 1
H

H∑
j=1

cos(⟨t, X̃j(𝜃)⟩)) 𝜕

𝜕𝜃(i)
ℜ(𝜑H(t, 𝜃))

+
(

1
n

n∑
j=1

sin(⟨t,Xj(𝜃)⟩) − 1
H

H∑
j=1

sin(⟨t, X̃j(𝜃)⟩)) 𝜕

𝜕𝜃(i)
ℑ(𝜑H(t, 𝜃))

}
w(t)dt

=∶ 2∫
Rd

{in,H(t, 𝜃)jH,i(t, 𝜃) − kn,H(t, 𝜃)lH,i(t, 𝜃)}w(t)dt.

For the second derivatives we calculate for every i, k∈ {1, … , q},

𝜕

𝜕𝜃(k)𝜕𝜃(i)
Qn,H(𝜃) = 2∫

Rp

{
jH,k(t, 𝜃)jH,i(t, 𝜃) + in,H(t, 𝜃)gH,k,i(t, 𝜃)

+ lH,k(t, 𝜃)lH,i(t, 𝜃) − kn,H(t, 𝜃)hH,k,i(t, 𝜃)
}

w(t)dt, (A33)

where we summarize all quantities used in the following list:

in,H(t, 𝜃) =
1
n

n∑
j=1

cos(⟨t,Xj⟩) − 1
H

H∑
j=1

cos(⟨t, X̃j(𝜃)⟩)
jH,i(t, 𝜃) =

𝜕

𝜕𝜃(i)
in,H(t, 𝜃) =

1
H

H∑
j=1

sin(⟨t, X̃j(𝜃)⟩)⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃)⟩

gH,k,i(t, 𝜃) =
𝜕

𝜕𝜃(k)
jH,i(t, 𝜃)

= 1
H

H∑
j=1

cos(⟨t, X̃j(𝜃)⟩)⟨t, 𝜕

𝜕𝜃(k)
X̃j(𝜃)⟩⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃)⟩

+ sin(⟨t, X̃j(𝜃)⟩)⟨t, 𝜕

𝜕𝜃(k)𝜕𝜃(i)
X̃j(𝜃)⟩

kn,H(t, 𝜃) =
1
n

n∑
j=1

sin(⟨t,Xj⟩) − 1
H

H∑
j=1

sin(⟨t, X̃j(𝜃)⟩)
lH,i(t, 𝜃) = − 𝜕

𝜕𝜃(i)
kn,H(t, 𝜃) =

1
H

H∑
j=1

cos(⟨t, X̃j(𝜃)⟩)⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃)⟩

hH,k,i(t, 𝜃) =
𝜕

𝜕𝜃(k)
lH,i(t, 𝜃)
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= 1
H

H∑
j=1

− sin(⟨t, X̃j(𝜃)⟩)⟨t, 𝜕

𝜕𝜃(k)
X̃j(𝜃)⟩⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃)⟩

+ cos(⟨t, X̃j(𝜃)⟩)⟨t, 𝜕

𝜕𝜃(k)𝜕𝜃(i)
X̃j(𝜃)⟩.

Lemma A.6. If the assumptions (a.2), (b.1), (b.2), (c.5), (d.3) hold and (𝜃n)n∈N ⊂ Θ satisfying 𝜃n

a.s.
→ 𝜃0, then for

every k, i∈ {1, … , q}, as n → ∞

𝜕

𝜕𝜃(k)𝜕𝜃(i)
Qn,H(𝜃n)

P
→ ∫

Rp

(Ej1,k(t, 𝜃0)Ej1,i(t, 𝜃0) + El1,k(t, 𝜃0)El1,i(t, 𝜃0))w(t)dt. (A34)

Proof. We first prove that as n → ∞

∫
Rp

in,H(t, 𝜃n)gH,k,i(t, 𝜃n)w(t)dt
P
→ ∫

Rp

Ei1,1(𝜃0, t)Eg1,k,i(𝜃0, t)w(t)dt. (A35)

Step 1: Uniform convergence on Θ: It follows from the i.i.d. property of the random elements (X̃j(𝜃), 𝜃 ∈ Θ)j∈N

that the sequence (X̃j(𝜃),∇𝜃X̃j(𝜃),∇2
𝜃
X̃j(𝜃), 𝜃 ∈ Θ)j∈N is i.i.d. Lemma A.2 together with (c.5) gives the uniform

bound

Esup
𝜃∈Θ

|g1,k,i(t, 𝜃)| ≤ c(|t|2Esup
𝜃∈Θ

|∇𝜃X1(𝜃)|2 + |t|Esup
𝜃∈Θ

|∇2
𝜃
X1(𝜃)|) < ∞,

and it follows from the uniform SLLN that for every fixed t ∈ Rp

sup
𝜃∈Θ

|gH,k,i(t, 𝜃) − Eg1,k,i(t, 𝜃)| a.s.
→ 0, n → ∞. (A36)

Similarly,

sup
𝜃∈Θ

||| 1
H

H∑
j=1

cos(⟨t, X̃j(𝜃)⟩) −ℜ(𝜑(t, 𝜃))||| a.s.
→ 0, n → ∞. (A37)

Because of (a.2) the ergodic theorem gives

1
n

n∑
j=1

cos(⟨t,Xj⟩) a.s.
→ ℜ(𝜑(t, 𝜃0)), n → ∞. (A38)

Therefore, (A37) combined with (A38) and the triangle inequality imply

sup
𝜃∈Θ

|in,H(t, 𝜃) − Ei1,1(t, 𝜃)| a.s.
→ 0, n → ∞. (A39)

Step 2: Pointwise convergence of in,H(t, 𝜃n)gH,k,i(t, 𝜃n): The triangle inequality implies

|in,H(t, 𝜃n)gH,k,i(t, 𝜃n) − Ei1,1(𝜃0, t)Eg1,k,i(𝜃0, t)|
≤ |in,H(t, 𝜃n)gH,k,i(t, 𝜃n) − Ei1,1(t, 𝜃n)Eg1,k,i(t, 𝜃n)|
+ |Ei1,1(t, 𝜃n)Eg1,k,i(t, 𝜃n) − Ei1,1(𝜃0, t)Eg1,k,i(𝜃0, t)|

≤ sup
𝜃∈Θ

{|in,H(t, 𝜃)gH,k,i(t, 𝜃) − Ei1,1(t, 𝜃)Eg1,k,i(t, 𝜃)|}
wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 42: 653–684 (2021)
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+ |Ei1,1(t, 𝜃n)Eg1,k,i(t, 𝜃n) − Ei1,1(𝜃0, t)Eg1,k,i(𝜃0, t)|. (A40)

Since 𝜃n

a.s.
→ 𝜃0 and the map 𝜃 → Ei1,1(t, 𝜃)Eg1,k,i(t, 𝜃) is continuous in Θ, (by (b.2) and (c.5)) it follows that the

second term on the right-hand side of (A40) converges a.s. to zero. Additionally, since the uniform convergences
on (A36) and (A39) imply the uniform convergence of the product in,H(t, 𝜃)gH,k,i(t, 𝜃) on Θ it follows that the first
term on the right-hand side of (A40) also converges a.s. to zero.
Step 3: L1-convergence: Since we have already shown a.s. convergence, it follows from Theorems 6.25(iii) and
6.19 in Klenke (2013) (with H(x)= |x|1+ 𝜀) that L1-convergence follows provided that

sup
n∈N

E|in,H(t, 𝜃n)gH,k,i(t, 𝜃n)|1+𝜀 < ∞

for some 𝜀> 0. Using the fact that |in,H(t, 𝜃n)| ≤ 2 and the inequality | 1

n

∑n
j=1 𝛽j|1+𝜀 ≤ 1

n

∑n
j=1 |𝛽j|1+𝜀, 𝛽1, … , 𝛽n ∈

R, we obtain

E|in,H(t, 𝜃n)gH,k,i(t, 𝜃n)|1+𝜀 ≤ 21+𝜀
E|gH,k,i(t, 𝜃n)|1+𝜀

≤ 21+𝜀

H

H∑
j=1

E
||| cos(⟨t, X̃j(𝜃n)⟩)⟨t, 𝜕

𝜕𝜃(k)
X̃j(𝜃n)⟩⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃n)⟩

+ sin(⟨t, X̃j(𝜃n)⟩)⟨t, 𝜕

𝜕𝜃(k)𝜕𝜃(i)
X̃j(𝜃n)⟩|||1+𝜀

≤ 21+𝜀

H

H∑
j=1

E
|||⟨t, 𝜕

𝜕𝜃(k)
X̃j(𝜃n)⟩⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃n)⟩ + ⟨t, 𝜕

𝜕𝜃(k)𝜕𝜃(i)
X̃j(𝜃n)⟩|||1+𝜀, (A41)

since | cos(⋅)|, | sin(⋅)| ≤ 1. Now we use the inequality |a+ b|1+ 𝜀 ≤ 2𝜀(|a|1+ 𝜀 + |b|1+ 𝜀) for a, b ∈ R, assumption
(c.5) for the uniform bound in Lemma A.2 and the fact that the sequence (X̃j(𝜃),∇𝜃X̃j(𝜃),∇2

𝜃
X̃j(𝜃), 𝜃 ∈ Θ)j∈N is

i.i.d. to continue

≤ 21+2𝜀 1
H

H∑
j=1

(E|||⟨t, 𝜕

𝜕𝜃(k)
X̃j(𝜃n)⟩⟨t, 𝜕

𝜕𝜃(i)
X̃j(𝜃n)⟩|||1+𝜀 + E

|||⟨t, 𝜕

𝜕𝜃(k)𝜕𝜃(i)
X̃j(𝜃n)⟩|||1+𝜀)

≤ c
1
H

H∑
j=1

(|t|2(1+𝜀)E|∇𝜃X1(𝜃n)|2(1+𝜀) + |t|1+𝜀E|∇2
𝜃
X1(𝜃n)|1+𝜀)

≤ c(|t|2(1+𝜀)Esup
𝜃∈Θ

|∇𝜃X1(𝜃)|2(1+𝜀) + |t|1+𝜀Esup
𝜃∈Θ

|∇2
𝜃
X1(𝜃)|1+𝜀) ∶= v(t) < ∞. (A42)

Step 4: Convergence of the random integrals: Define the sequence of functions

vn(t) = E|in,H(t, 𝜃n)gH,k,i(t, 𝜃n) − Ei1,1(𝜃0, t)Eg1,k,i(𝜃0, t)|, t ∈ R
p,

and recall that from the L1-convergence showed in Step 3, for every t ∈ Rp we have vn(t)→ 0 as n → ∞. From the
definition of the function v in the last line of (A42) it follows that supn∈Nvn(t) ≤ 2v(t). Additionally, assumption
(d.3) implies that

∫
Rp

v(t)w(t)dt < ∞.
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Therefore, it follows from Fubini’s Theorem and dominated convergence that

E
|||∫

Rp

(
in,H(t, 𝜃n)gH,k,i(t, 𝜃n) − Ei1,1(𝜃0, t)Eg1,k,i(𝜃0, t)

)
w(t)dt|||

≤ E∫
Rp

|in,H(t, 𝜃n)gH,k,i(t, 𝜃n) − Ei1,1(𝜃0, t)Eg1,k,i(𝜃0, t)|w(t)dt

= ∫
Rp

vn(t)w(t)dt → 0, n → ∞, (A43)

and therefore the convergence in probability of (A35) follows from the L1-convergence in (A43).
The proofs for the other three remaining integrals on the right-hand side of (A33) follow along the same lines.

The result in (A34) is then a consequence of the fact that for all t ∈ Rp, Ei1,1(t, 𝜃0) = Ek1,1(t, 𝜃0) = 0. ◾

Proof of Theorem 3.3. We handle each term in (A17) separately. As a direct consequence of Theorem 3.1 and
Lemmas A.3–A.6,

−2(∇2
𝜃
Qn,H(𝜃n))−1∫

Rp

bH(t)
√

ngn(t)w(t)dt
d
→ N(0,Q−1WQ−1), n → ∞,

where Q = (Qk,i)
q
k,i=1 with

Qk,i = ∫
Rp

(
Ej1,k(t, 𝜃0)Ej1,i(t, 𝜃0) + El1,k(t, 𝜃0)El1,i(t, 𝜃0)

)
w(t)dt, (A44)

W = Var

(
∫

Rp

E[b1(t)]G(t)w(t)dt

)
,

and G being the R2-valued Gaussian field from Lemma A.3. For arbitrary k, r ∈ {1, … , q} we have

Wk,r = Cov

(
∫

Rp

E[b(k)
1 (t)]TG(t)w(t)dt,∫

Rp

E[b(r)
1 (t)]TG(t)w(t)dt

)
= ∫

Rp∫Rp

E[b(k)
1 (t)]TE[G(t)G(s)T]E[b(k)

1 (s)]w(t)w(s)dtds. (A45)

Since (Xj)j∈N is 𝛼-mixing by (a.3), we can apply the CLT in Ibragimov and Linnik (1971) (Theorem 18.5.3 with
𝛿 = 2∕(r − 1)) and find that

E[G(t)G(s)T] = E[F1(t)F1(s)T ] + 2
∞∑

j=2

E[F1(t)Fj(s)T ], (A46)

where

Fj(t) =

(
cos(⟨t,Xj⟩) −ℜ(𝜑(t, 𝜃0))
sin(⟨t,Xj⟩) −ℑ(𝜑(t, 𝜃0))

)
. (A47)

Substituting (A46) and (A47) into (A45) gives with Fubini’s Theorem

Wk,r = ∫
Rp∫Rp

{
E[b(k)

1 (t)]T(E[F1(t)F1(s)T] + 2
∞∑

j=2

E[F1(t)Fj(s)T])E[b
(k)
1 (s)]w(t)w(s)

}
dtds
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= ∫
Rp∫Rp

E[b(k)
1 (t)]TE[F1(t)F1(s)T ]E[b

(k)
1 (s)]w(t)w(s)dtds

+ 2
∞∑

j=2
∫

Rp2
E[b(k)

1 (t)]T
E[F1(t)Fj(s)T ]E[b

(k)
1 (s)]w(t)w(s)dtds

= E

(
∫

Rp

E[b(k)
1 (t)]TF1(t)w(t)dt

)2

+ 2
∞∑

j=2

E

[(
∫

Rp

E[b(k)
1 (t)]TF1(t)w(t)dt

)(
∫

Rp

E[b(k)
1 (s)]TFj(t)w(s)ds

)]
,

which combined with Remark A.1 gives (3.4). By the same arguments of interchanging expectation and
differentiation from Remark A.1 we obtain

Ej1,i(t, 𝜃) = − 𝜕

𝜕𝜃(i)
ℜ(𝜑(t, 𝜃)) and El1,i(t, 𝜃) =

𝜕

𝜕𝜃(i)
ℑ(𝜑(t, 𝜃)).

This together with (A44) gives

Qk,i = ∫
Rp

( 𝜕

𝜕𝜃(k)
ℜ(𝜑(t, 𝜃0)),

𝜕

𝜕𝜃(k)
ℑ(𝜑(t, 𝜃0)))(

𝜕

𝜕𝜃(i)
ℜ(𝜑(t, 𝜃0)),

𝜕

𝜕𝜃(i)
ℑ(𝜑(t, 𝜃0)) )Tw(t)dt,

leading to (3.2).
The second term in (A17) is, up to a constant,

∫
Rp

bH(t)g̃H(t)w(t)dt.

It follows from the fact that (X̃j(𝜃0))j∈N

d
= (Xj)j∈N combined with (A32) that

Var
(
∫

Rp

bH(t)
√

ng̃H(t)w(t)dt
) ≤ c

H(n)

(
∫

Rp

(1 + |t|2)w(t)dt
)(

∫
Rp

w(t)dt
)
=∶ c

H(n)
→ 0, (A48)

as n → ∞. Thus (3.3) follows from Chebyshev’s inequality. ◾

A.2. Finite sample behavior of the estimators

A.2.1. ARFIMA models driven by noise from Gaussian, Laplace, and Student’s t distributions
A.2.2. Poisson-AR model
Data sharing: Data sharing is not applicable to this article as no datasets were analyzed or used in this study.
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TABLE AIII. Comparison of the simulation based estimator �̂�n,H for H = 3000, the quasi-oracle estimator �̂�n, and the QMLE
for sample size n= 400. For all estimators we have taken p= 3 with w the Gaussian density as in (5.3). Reported results are

based on 500 replications

ARFIMA model driven by standard Student’s t noise with 6 degrees of freedom

Bias Std RMSE Bias Std RMSE Bias Std RMSE

d = 0.05 d = 0.10 d = 0.15

�̂�n,H −0.002 0.063 0.063 0.005 0.059 0.060 0.008 0.053 0.054

�̂�n −0.002 0.052 0.052 −0.001 0.050 0.050 0.000 0.048 0.048
QMLE −0.012 0.039 0.041 −0.012 0.039 0.041 −0.013 0.039 0.041

d = 0.20 d = 0.25 d = 0.30

�̂�n,H 0.008 0.049 0.050 0.004 0.050 0.050 0.008 0.050 0.050

�̂�n 0.001 0.047 0.047 0.002 0.047 0.047 0.001 0.047 0.047
QMLE −0.013 0.039 0.041 −0.014 0.039 0.041 −0.014 0.039 0.041

d = 0.35 d = 0.40 d = 0.45

�̂�n,H 0.002 0.049 0.049 −0.009 0.043 0.044 −0.029 0.038 0.048

�̂�n −0.004 0.046 0.046 −0.014 0.043 0.045 −0.031 0.038 0.049
QMLE −0.016 0.038 0.041 −0.018 0.037 0.041 −0.024 0.033 0.041

TABLE AIV. Comparison of the simulation based estimator �̂�n,H of (2.8) and the control variates based estimator �̂�
(cv)

n,H,k of
(2.19) with k= 1 for sample size n= 400. For all estimators we have taken H = 3000, p= 3 with w the Laplace density as in
(5.2). Reported results are based on 500 replications. The models are classified by the index of dispersion D = e𝛽+𝛼1 . For each

setting, the smallest RMSEs are shaded

Poisson-AR(1) model

𝛽 𝜙 𝜎 𝛽 𝜙 𝜎 𝛽 𝜙 𝜎

D= 10

TRUE −0.613 −0.500 1.236 −0.613 0.500 1.236 −0.613 0.900 0.622

Bias(�̂�n,H) −0.015 0.025 0.002 −0.012 0.014 −0.032 −0.016 −0.010 0.002

RMSE(�̂�n,H) 0.096 0.101 0.119 0.148 0.107 0.120 0.298 0.054 0.128

Bias(�̂�
(cv)

n,H,k) 0.023 0.031 −0.007 0.006 0.002 −0.018 0.061 −0.007 −0.036

RMSE(�̂�
(cv)

n,H,k) 0.102 0.129 0.122 0.138 0.098 0.098 0.285 0.049 0.132

D= 1

TRUE 0.150 −0.500 0.619 0.150 0.500 0.619 0.150 0.900 0.312

Bias(�̂�n,H) −0.004 0.024 −0.016 −0.006 0.005 −0.023 −0.016 −0.033 0.028

RMSE(�̂�n,H) 0.057 0.144 0.088 0.074 0.141 0.081 0.147 0.084 0.095

Bias(�̂�
(cv)

n,H,k) 0.003 −0.011 −0.017 0.001 0.023 −0.019 0.003 −0.009 −0.012

RMSE(�̂�
(cv)

n,H,k) 0.055 0.124 0.085 0.071 0.102 0.069 0.145 0.062 0.087

D= 0.1

TRUE 0.373 −0.500 0.220 0.373 0.500 0.220 0.373 0.900 0.111

Bias(�̂�n,H) −0.011 0.032 −0.045 −0.015 −0.322 −0.036 −0.019 −0.517 0.044

RMSE(�̂�n,H) 0.043 0.408 0.098 0.047 0.657 0.102 0.066 0.801 0.099

Bias(�̂�
(cv)

n,H,k) −0.002 0.056 −0.044 −0.003 −0.120 −0.038 −0.004 −0.310 0.031

RMSE(�̂�
(cv)

n,H,k) 0.042 0.482 0.112 0.045 0.504 0.108 0.062 0.555 0.090
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