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Abstract

School shootings are often motivated by the perpetrators' desire for media

attention and notoriety. As school shootings receive intense regional and

national media coverage, a high likelihood for copycat attacks can be expected.

We investigate whether a copycat effect can be detected in US state-level

school shooting data from 1990 to 2017. We do so by estimating spatio-

temporal panel count models and control for socio-economic characteristics,

as well as state and Federal gun control laws. Positive spatial and temporal

dependence indicate that the risk for additional school shootings in the same

and neighboring states increases after the initial attack.
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1 | INTRODUCTION

School shootings are tragic events with the ability to traumatize communities. The motivation for (attempted) school
shootings can often be linked to the perpetrators' desire for media attention and notoriety. Intense media coverage can
be observed after especially disturbing school shootings, like the Columbine school shooting in 1999, the Virginia Tech
shooting in 2007, and the Sandy Hook Elementary School shooting in 2012. Although campaigns against excessive
media coverage like “No notoriety” and “Don't name them” exist, it is still common that the biography of the shooter
and exact details of the attack are communicated to the public. Hence, it is very likely that potential copycat shooters
are exposed to initial attacks and inspired to imitate them. Follman and Andrews (2015), and Lankford and
Tomek (2018) study the so-called “Columbine effect” which denotes the hypothesis that the Columbine school shooting
influenced several subsequent school shootings. Some perpetrators referred directly to Columbine when they described
the motivation for their actions. Lankford and Tomek (2018) report that the Columbine shooting inspired at least
21 copycat shootings and 53 thwarted plots in the United States over a 15-year period.

Strikingly, the trajectory of the number of school shooting victims over the period 1990–2017 differs markedly from
the trajectory of other violent crimes in the United States over the same period. Figure 1a and b contrast the increasing
average number of victims of school shootings to a general decline in violent crimes per 1,000 inhabitants.1 Although
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we do not clearly see a spike in the state-level victim counts in the years immediately after the Columbine school shoot-
ing, we observe that the average number of victims is significantly larger in the second half of our sampling period. It
remains an open question why the victim counts of school shootings have increased over time. Several issues have been
put forth as potential explanatory factors like, for example, inadequate gun control laws (Blau et al., 2016; Gius, 2018),
dysfunctional families (Gerard et al., 2016), exposure to violent video games (Ferguson, 2008), and mental illnesses
(Newman & Fox, 2009).

Beyond exogenous factors, the frequency of school shooting incidents could partly be explained by copycat behavior
and social contagion following the idea that vulnerable youth are susceptible to suicide ideation brought on by the
influence of reports and portrayal of suicide in mass media (Lin et al., 2018; Torrecilla et al., 2019; Towers et al., 2015).
In this paper, we attempt to detect and estimate copycat effects using spatio-temporal panel count models. This class of
models allows us to quantify the degree of spatial and temporal dependence, that is, reveals whether an initial attack
spawns subsequent attacks in neighboring states and in the same state in the following years.

The literature on violent crimes and mass shootings uses the terms copycat effects and social contagion to describe
the spatio-temporal dependence of these incidents (see, e.g., Towers et al., 2015, Kissner, 2016, Lankford &
Tomek, 2018, Loeffler & Flaxman, 2018, and Torrecilla et al., 2019). We adopt the definition of copycat crimes from
(Helfgott, 2008, p. 377) stating that “[c]opycat crime is crime inspired by another crime that has been publicized in the
news media or fictionally or artistically represented whereby the offender incorporates aspects of the original offense
into a new crime” and follow Lankford and Tomek (2018) stating that “[…] the social contagion thesis suggests that per-
petrators receive so much attention for their attacks that each high-profile killer ends up “infecting” the minds of other
impressionable individuals.” Lankford and Tomek (2018) distinguish between contagion and copycat effects using the
temporal horizon of the subsequent attacks. Contagion describes the short-term imitative effects of a crime, while the
long-term imitative effects of a crime are categorized as copycat effects. We are primarily interested in estimating long-
term copycat effects in school shooting data.

The rare nature of this crime makes it difficult to profile school shooters. An earlier study (United States Secret Ser-
vice and United States Department of Education, 2004) analyzing the data of 41 perpetrators from 1974 to 2000 could not
generate an accurate profile of the average perpetrator. However, most perpetrators had experienced important losses or
personal failures and felt bullied, persecuted, or injured by others. The sample consisted only of male perpetrators and
95% of them were current students of the attacked school. Gerard et al. (2016) characterize the “average” US school
shooter over a sample of 28 cases. The shooter is predominantly male, Caucasian, a US citizen, and suffered from depres-
sion. Most cases involved the suicide of the perpetrator. Langman (2018) collects a list of perpetrators and their respective
influences on each other. For several school shootings, he can establish clear links to prior shootings which served as
inspiration. Particularly, the Columbine school shooting has served as inspiration for many subsequent shootings. Pah
et al. (2017) find evidence for the hypothesis that low perspectives of school-to-work transition increase gun violence in
schools. Consequently, it is important to control for variables that accurately describe socio-economic characteristics of
each state. Most perpetrators of school shootings plan their attack and take their time for preparations, while impulse
attacks are rare. A study by the Federal Bureau of Investigation (FBI) on mass shootings (Federal Bureau of
Investigation, 2014) reports that more than three-quarters of the perpetrators spent a week or longer planning their
attacks, while two-thirds spent at least a month planning, and some spent far longer. Although school shooters are a spe-
cific type of mass shooters and results for one type cannot easily be transferred to the other, it is reasonable to assume
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FIGURE 1 Time series plots: School shooting victims and violent crimes
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that school shootings are often premeditated. Estimating the temporal dependence helps us to answer whether the fre-
quency of school shootings in one state increases if the same state reports a higher number of victims in the past year.
Further, those perpetrators might be inspired by attacks in their (extended) neighborhoods and we try to answer whether
the frequency of school shootings increases in one state if neighboring states report a shooting in the current or past year.

School shootings and the fear of copycat shooters have drastically negative effects on society. Besides the actual vic-
tims of a school shooting, traumatized communities often report secondary victimization in form of psychological
health issues. Rossin-Slater et al. (2019) estimate that a fatal school shooting increases the use of youth antidepressants
by 21.4% in the 2 years after the shooting. Moreover, Beland and Kim (2016) find that the academic performance of stu-
dents who remain enrolled in the attacked school decreases. Abouk and Adams (2013) investigate the effects of school
shootings on private school enrollment. They estimate that state-level enrollment in private high-schools increases by
10%–12% when a school shooting occurred in the previous year in the same state. While most severe school shooting
incidents sparked an intense national debate about gun control (Luca et al., 2020; Schildkraut & Hernandez, 2014), only
some incidents have led to changes in gun control laws. For example, Connecticut required background checks for all
firearm purchases after the Sandy Hook Elementary School shooting. Additionally, the economic effects of mass shoot-
ings and school shootings in particular have been investigated in several studies. Deangelis et al. (2011) estimate the
cost of additional school security. Gopal and Greenwood (2017) study the effects of mass shootings on stock prices of
firearm manufacturers. Brodeur and Yousaf (2019) observe a significant negative effect of mass shootings on local
employment, earnings, house prices, and consumer confidence, which is found to be exacerbated by extensive media
coverage. Moreover, Dursun (2019) examines whether in utero exposure to mass shootings has adverse effects on infant
health, and Yousaf (2019) examines the impact of mass shootings on electoral outcomes.

In our study, we follow Gius (2018) and estimate state-level panel count models for US school shooting data. Our base-
line model specification is the fixed effect Poisson panel model which accounts for the integer and non-negative nature of
victim counts. Our second model includes spatial terms in the form of contemporaneous and lagged neighboring victim
counts. The so-called Poisson spatial panel model (P-SPM) was proposed by Glaser et al. (2020) and applied to urban crime
counts in Pittsburgh, PA. Next, we apply a linear feedback model according to Blundell et al. (2002). Here, a first-order lag
of the dependent variable is added to the basic Poisson panel model specification. In contrast to the previous two models
which focused on either spatial or dynamic effects, our final model, the spatial panel linear feedback model (SPLFM), ana-
lyses relationships along both dimensions simultaneously. This enables us to separate both effects and provide insights
which cannot be obtained in one-dimensional approaches. Such models, that have at least one spatial and temporal term,
are classified as spatio-temporal models. Various approaches have been proposed in the crime literature, like the Bayesian
spatio-temporal model by Li et al. (2014) or the spatial random effects model by Liesenfeld et al. (2017). However, in this
paper, we follow Glaser et al. (2020) and use a multiplicative fixed effect model with spatial and dynamic lags. They
assume a Poisson probability model where the spatio-temporal effects impact the intensity equation, that is, it allows us to
estimate how a school shooting in one state increases or decreases the probability for a higher victim count in neighboring
states and the same state in the following year. Further, we can use our results to re-evaluate the impact of gun control
laws controlling for the spatial dimension of the data. More specifically, we can compare the results of the fixed effects
Poisson model proposed by Gius (2018) to the results obtained after controlling for spatial effects. The available dataset is
challenging from a statistical perspective with a small sample size (N = 48, T = 28) and many zero entries for the depen-
dent variable. We account for the potential occurrence of excess zeros using robust inference.

One explanation for the suspected “Columbine effect” is the intense media coverage of the Columbine shooting
which, in turn, might be partially explained by a changing media landscape. To control for confounding factors of this
kind, we include time-fixed effects in our panel models. Thereby, we pick up any (unobservable) variables without
state-level variation, for example also controlling for sentiment towards gun control, and advances in information tech-
nology which provides easier access to information about previous school shootings. Lankford and Tomek (2018) point
out that imitative mass killers need to be exposed to the model killer's behavior. Our dataset contains both intensively
covered school shootings with high victim counts and some minor incidents which only received regional media cover-
age. While information about the former events spreads through media transmissions and the proprietors receive wide
national coverage, information about the latter events is geographically restricted and proprietors gain only regional
notoriety. We aim to capture this difference by modeling the spatial dependence of school shootings.

Our results can help to plan the response of authorities to school shooting incidents. For example, we can quantify
whether there is a higher risk that a subsequent school shooting happens in neighboring states (spatial effect) or in the
same state in the next year (temporal effect) after an initial attack. Thereby, we take a “macro” perspective and focus
on which states are at a higher risk and, hence, should take preventive countermeasures, instead of a “micro”
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perspective taken by behavioral scientists who attempt to prevent school shootings by identifying individual students at
risk. While the main focus of this study is the quantification of copycat effects, we also contribute to the literature by
providing new evidence on the effect of gun control laws on school shootings.

The remainder of the paper is organized as follows. Section 2 outlines the econometric framework applied in the
empirical part of the paper. Section 3 details the dataset. Section 4 reports the results of the empirical application. Sec-
tion 5 concludes.

2 | METHODOLOGY

We consider several model specifications to address different features of our data. First, we estimate a static Poisson
fixed effects panel model and compare our results for the updated dataset to those originally reported in Gius (2018).
We assume that the data are generated from the following Poisson model to capture their integer and non-negative
nature. The model takes the form of

yit j μit,αi � Pois μitαið Þ,
μit =exp X 0

itβ
� �

,
ð1Þ

where yit is a variable counting the number of victims injured or killed during school shootings in state i at time t,
Xit = [xit1, …, xitK] is a K × 1 vector of regressors, β is a K × 1 vector of coefficients, and αi = exp(ηi) are multiplicative
individual fixed effects. Time fixed effects are implemented by adding yearly time dummies to the regressor matrix. N
denotes the number of states and T denotes the number of years in our sample. The coefficient estimates are obtained
using maximum likelihood estimation (MLE) according to Hausman et al. (1984) and we employ cluster-robust stan-
dard errors at the state level. This model specification is our starting point before we successively add spatial and
dynamic lags to capture copycat effects.

In our next model specification, we include spatial lags to account for the geographic variation in the data. In this
model, spatial autocorrelation parameters are estimated to capture dependencies between different observations which rely
on geographical proximity. Consequently, these parameters measure to what degree perpetrators are influenced by school
shooting incidents in nearby states. For this purpose, we need to construct a spatial weights matrix W to express the geo-
graphic pattern of our data. In principle, many choices of the spatial weight matrix are available in the literature like, for
example, the full inverse distance matrix, the eight nearest neighbors matrix (Lambert et al., 2010) or the queen contiguity
matrix (Glaser et al., 2020). Although all choices are regularly used in empirical studies, we need to be aware that there are
some conceptual differences. The full inverse distance matrix consists of the inverse Euclidean distances for the centroids
of each pair of states in the sample and the eight nearest neighbors matrix is obtained by first calculating the inverse dis-
tance matrix, but then keeping only the values for the eight nearest neighbors of each observation and setting all other ele-
ments to zeros. In contrast, the entries of the queen contiguity matrix are defined in the following: wij =

aij
#neighbors, i, j = 1,

…, N, where aij = 1, if i is a neighbor of j (sharing a common border or a common vertex) and aij = 0, if i is not a neigh-
bor of j. Diagonal elements wii are set to zero. Using this definition, the queen contiguity matrix is then row-standard-
ized. We take the following perspective, assuming that an individual that lives in a state which is not in close proximity
to the state where a school shooting happened, might only hear about this incident through the media, that is, the spill-
over effect should die out after a certain distance to the initial shooting's location. As US states have very different geog-
raphy, considering simple inverse Euclidean distances for each pair of states does not seem to be a reasonable
measurement for our setting. The eight nearest neighbors matrix partly addresses this problem by introducing a cut-off
point. However, this cut-off point is chosen arbitrarily and because this concept is inflexibly restricted to the eight
nearest neighbors, border states are treated differently than centered states. Consequently, we base our main results on
the queen contiguity matrix which only indicates whether two counties share a common border or vertex.

The P-SPM following Glaser et al. (2020) is given by

yit j μit,αi � Pois μitαið Þ,

μit = ρ
XN
j=1

j≠i

wijyjt + λ
XN
j=1

j≠i

wijyjt−1 + exp X 0
itβ

� �
, ð2Þ
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where ρ denotes the spatial autocorrelation parameter for the cross section and λ measures the dependence on neigh-
boring observations in the previous time period.2 As we exclude own lags in the second term, we do not induce dynamic
endogeneity and the coefficients can again be estimated using MLE. We estimate our model based on the likelihood
function derived in Cameron and Trivedi (2005, p. 805). We note that the regressor matrix X might contain spatially
lagged regressors in the form of Wxtk for k = 1, …, K and the coefficients of these regressors can be estimated in the
same way.

To account for temporal dependence, we add an autoregressive term to the baseline Poisson model specifica-
tion. The autoregressive coefficient indicates whether perpetrators react to school shooting incidents in their home
states in the previous year. The linear feedback panel model (LFPM) according to Blundell et al. (2002) includes
the lag of the dependent variable additively instead of including it in the argument of the exponential function.
Inclusion of the lagged dependent variable in the exponential function may lead to rapidly exploding series which
does not happen in the LFPM as long as a stationarity condition is fulfilled. However, this model requires a differ-
ent estimation strategy to deal with endogenous regressors. A convenient alternative is the distribution-free gener-
alized method of moments (GMM) approach according to Hansen (1982). MLE does not yield consistent estimates
for the LFPM, but GMM using quasi-differencing transformations eliminates initial values and correlated heteroge-
neity (Mullahy, 1997). Alternatively, Blundell et al. (2002) suggest to use a presample mean estimator, which uses
presample information about the dependent variable to deal with the unobserved fixed effects. As no presample
school shooting data are available, we follow the GMM approach and use the efficient two-step GMM estimator.
The LFPM is given by

yit j μit �Pois μitð Þ,
μit = γyit−1 + exp X 0

itβ+ ηi
� �

,
ð3Þ

where the autocorrelation parameter should fulfill the condition γ ≥ 0 to ensure that the conditional expectation is posi-
tive. It is further assumed that the autocorrelation coefficient satisfies the stationarity condition γ < 1.

Windmeijer (2008) suggests to use either the Chamberlain quasi-differencing transformation (Chamberlain, 1992)
or the Wooldridge quasi-differencing transformation (Wooldridge, 1997) for GMM estimation. We assume that the
lagged dependent variable is the only endogenous regressor and all regressors in X are predetermined, that is, they are
uncorrelated with future and current shocks. We apply the Wooldridge quasi-differencing transformation in this paper
and the quasi-differenced errors (qit) are given by

qit =
yit−γyit−1ð Þ
exp X 0

itβ
� � −

yit−1−γyit−2ð Þ
exp X 0

it−1β
� � =

uit
exp X 0

itβ
� �− uit−1

exp X 0
it−1β

� � , ð4Þ

where uit is a mean-zero error term. In the case of a single regressor in X, the resulting (T − 1)2 − 1 moment conditions
hold if the respective regressor is predetermined. The conditional expectation of qit is given by

E qitjyi1,…,yit−2,Xi1,…,Xit−1ð Þ=0: ð5Þ

We denote with θ = (γ, β
0
)
0
the vector of parameters to be estimated. The GMM estimator θ̂ can be expressed by

θ̂=argmin
θ�Θ

1
N

XN
i=1

qi θð Þ0Zi

 !
H−1

N
1
N

XN
i=1

Z0
iqi θð Þ

 !
, ð6Þ

where qi(θ) is the T − 2 vector (qi3, qi4, …, qiT)
0
, Zi is the matrix of instruments, and HN is a weight matrix of the

moment conditions.
We follow Roodman (2009) and use collapsed instruments to avoid overfitting endogenous variables. Consequently,

the moment conditions are summarized over t and the resulting instrument matrix for two lags of the dependent vari-
ables and the regressors takes the form of
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Zi =

yi1 0 Xi2 Xi1

yi2 yi1 Xi3 Xi2

yi3 yi2 Xi4 Xi3

..

. ..
. ..

. ..
.

yiT−2 yiT−3 XiT−1 XiT−2

2
66666664

3
77777775
: ð7Þ

The first step GMM estimator θ̂1 can be determined using the initial weight matrix HN =1=NΣN
i=1Z

0
iZi and the second

step GMM estimator using the efficient weight matrix

HN =
1
N

XN
i=1

Z0
iqi θ̂1
� �

qi θ̂1
� �0

Zi: ð8Þ

The asymptotic variance of the efficient two-step GMM, estimator is estimated by

V̂ar θ̂2
� �

=
1
N

C θ̂2
� �0

H−1
N θ̂1
� �

C θ̂2
� �� �−1

, ð9Þ

where

C θ̂2
� �

=
1
N

XN
i=1

∂Zi0qi θð Þ
∂θ

�����
θ̂2

: ð10Þ

Note that the second step GMM estimator is efficient in the presence of heteroscedasticity of unknown form (Baum
et al., 2003).

Finally, we combine the spatial and dynamic extensions to specify our spatio-temporal panel model. SPLFM is given
by

yit j μit �Pois μitð Þ,

μit = γyit−1 + ρ
XN
j=1

j≠i

wijyjt +exp X 0
itβ+ ηi

� �
: ð11Þ

Unlike in the P-SPM specification, we do not include a lagged spatial term in our spatio-temporal model because the
inclusion of such terms leads to identification problems (see, e.g., Anselin et al., 2008 and Elhorst, 2010, for a more
detailed discussion). The model is estimated using the quasi-differenced GMM approach outlined for the LFPM. If we
assume that the regressors in X are predetermined, we can use a similar instrument matrix as before, adding lags of the
contemporaneous spatial term. For this case, two lags of the dependent variable, yt − 2 and yt − 3, two lags of the contem-
poraneous spatial term, Wyt − 2 and Wyt − 3, and two lags of the regressors, Xt − 1 and Xt − 2 are chosen. Hence, the fol-
lowing collapsed instrument matrix is used for our full model

Zi =

yi1 0 Wy1½ �i 0 Xi2 Xi1

yi2 yi1 Wy2½ �i Wy1½ �i Xi3 Xi2

yi3 yi2 Wy3½ �i Wy2½ �i Xi4 Xi3

..

. ..
. ..

. ..
. ..

.

yiT−2 yiT−3 WyT−2½ �i WyT−3½ �i XiT−1 XiT−2

2
66666664

3
77777775
, ð12Þ
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where [Wyt]i denotes the ith row of the product Wyt.
According to Elhorst (2008), the trade-off between the temporal and spatial autocorrelation coefficient requires that

our model satisfies joint stationary conditions. The following stationary conditions, taken from Elhorst (2012) and Gla-
ser et al. (2020), have to be satisfied to obtain a stable system:

ρwmax−1< γ<1−ρwmax if ρ≥ 0

ρwmin−1< γ <1−ρwmin if ρ<0,

where wmin and wmax denote the smallest and largest characteristic root of the spatial weight matrix, respectively.3

To further investigate spillover effects and compare direct effects to the findings for our baseline model specification
without spatio-temporal terms, we derive the reduced form of the SPLFM and the Jacobian ∂E(yt)/∂Xtk. The derivations
needed to compute those are given in Appendix B in the Supporting Information. LeSage and Pace (2009) use the mean
of the diagonal of ∂E(yt)/∂Xtk as the direct effect and the average row sum, excluding the elements on the diagonals, as
indirect or spillover effects. Following Yesilyurt and Elhorst (2017), we compute short-term direct and indirect effects
by setting γ = 0. Statistical inference for marginal effects is based on the parametric bootstrap outlined in Appendix C
in the Supporting Information.

3 | DATA

We extend the dataset on US school shootings during the period 1990–2014 originally collected by Gius (2018) to
include the years 2015 to 2017. The dataset contains counts of people injured and people killed in school shootings for
each state, socio-economic variables, and information on state and Federal gun control laws. Our definition of school
shootings encompasses any shootings which happened at an educational institution. We model the total number of vic-
tims (injured or killed), because a single school shooting incident usually leads to fatal and nonfatal injuries and, from
a statistical perspective, this specification minimizes the occurrence of zero counts. In addition, the total victim count is
often communicated in the media following school shooting incidents and a higher overall victim count usually evokes
increased media attention.

The socio-economic control variables include population density, per household median income, proportion of popu-
lation with college degree, unemployment rate, proportion of population aged 5–18, per capita alcohol consumption, and
ratio of firearm suicides to total suicides. As the income per capita variable was discontinued by the US Census Bureau
in 2014, we instead use median income (in 10,000 USD) per household for the full sample period. The firearm suicide
variable is a popular proxy for gun ownership prevalence because it is highly correlated with survey-based estimates
(Azrael et al., 2004; Lang, 2013). We extend the set of variables with an additional variable to capture the effect of
nonschool-related mass shooting events in a state. For this purpose, we construct an indicator variable taking the value
one if a mass shooting happened in a given state-year. The list of events is based on a database of mass public shootings
assembled by Siegel et al. (2020).4 To further investigate whether nonschool-related mass public shootings are imitated
by school shooters and whether these types of copycat behaviors act as confounding factors in our spatio-temporal
models, we also include a spatial lag of the mass shootings variable.

Descriptive statistics on all variables used in this study are reported in Table 1. We find that the within-variation of
per capita alcohol consumption and the state background checks variable is much smaller than the between-variation.
Since our fixed effects models eliminate between-variation, it becomes difficult to estimate the coefficients of these
variables.

We include gun law variables indicating whether a state conducts background checks for private party sales,
whether it bans assault weapons, and whether it has restrictive concealed carry weapons (CCW) laws. As the Federal
assault weapons ban was in effect during the period 1994–2004, we follow Gius (2018) and set the assault weapons ban
dummy variable to 1 for all states during the Federal assault weapons ban period. The dummy variable for CCW laws is
set to 1 for all states that either prohibit private citizens to carry concealed weapons or are “may issue” states, that is,
they can deny requests for concealed carry permits from qualified applicants. We also include a dummy variable indi-
cating whether states impose a private sales background checks law. In contrast to Gius (2018), we do not consider a
Federal background check variable in our model specification. The variable is statistically insignificant in the original
model which is not surprising, considering that the law is in effect from 1994 until the end of the sampling period and
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therefore very little within-variation is available to estimate its coefficient in static models. Likewise, we find that
the variable does not improve the explanatory power of our baseline Poisson model. Furthermore, estimating the
LFPM and the SPLFM with the quasi-differencing GMM estimator eliminates the first 3 years from our sample so
that we do not have enough variation to estimate the coefficient. Consequently, this variable has been eliminated
from all models in this paper. Considering that gun control laws are often changed after debates over incidents of
gun violence, we have to account for the potential endogeneity of those variables in our instrument matrix. We
need to assume that our gun law variables are predetermined, that is, gun control laws are fixed for each year and
cannot be changed retrospectively. Although changes in legislation are usually passed and announced a certain
period of time before they are enacted, there is a concern that prolific shooting events may trigger a swift change in
the legislation. To ensure that our gun law variables are independent of current and future shocks, we use one
period lagged gun law variables.5

Alaska and Hawaii were dropped from our dataset because they have no neighboring states which is problematic
for our spatial model specifications with global spatial autocorrelation coefficients. Particularly in our main specifica-
tion using a queen contiguity spatial weighting matrix, they have no common borders or vertices with other states
which means that Alaska and Hawaii can neither infect others nor be infected by others. We have excluded those states
for all other models to make our results comparable across different specifications. This leaves us with a dataset over
the dimensions N = 48 and T = 28, a total of 1,344 observations. Unfortunately, it is not possible to extend the cross-
sectional dimension of our dataset. If we considered a higher geographic resolution, say using county-level data, we
would have a more substantial problem with entities reporting only zeros over the sampling period in our Poisson
count models. Six states are automatically dropped from the Poisson FE model because no injuries or deaths occurred
from 1990 to 2017 (Idaho, Maine, Montana, New Hampshire, North Dakota, Rhode Island).6 California has the highest
number of years with at least one school shooting (20), followed by Texas (11) and Ohio (10). A heatmap indicating the
total number of victims (injured or killed) per million inhabitants over the sampling period is depicted in Figure 2. It is
remarkable that Oregon has by far the highest victim counts per state population being a “shall” state and requiring
background checks for private sales, but not regulating assault weapons.7 Figure 3 depicts the spatio-temporal variation

TABLE 1 Descriptive statistics

Variable Mean Min Max Within Between

Number of deaths and injuries 0.65 0 58 8.643 0.760

Assault weapons ban 0.46 0 1 0.226 0.031

Federal background checks 0.86 0 1 0.127 0.00

State background checks 0.30 0 1 0.034 0.182

“Shall” CCW 0.62 0 1 0.106 0.135

“May” CCW 0.22 0 1 0.047 0.131

“Allow” CCW 0.04 0 1 0.017 0.022

Population 59.75 0.72 393.99 77.30 4,170.54

Total area 61.63 1.04 261.80 0.00 2,191.41

Per household median income 4.37 0.36 8.21 0.93 0.38

Proportion of population with college degree 25.42 2.20 43.40 17.55 16.91

Unemployment rate 5.59 2.21 14.90 2.56 0.93

Proportion of population aged 5–18 20.08 14.00 29.80 4.89 1.55

Per capita alcohol consumption 2.33 1.20 4.80 0.03 0.23

Total suicides 0.71 0.06 4.30 0.02 0.47

Firearm suicides 0.39 0.00 2.20 0.01 0.13

Note: The variables are pooled over all states. Population is given in 100,000 inhabitants, median income per household in 10,000 USD, total suicides and

firearm suicides are measured per 1,000 inhabitants. Proportion of population with college degree, unemployment rate, and proportion of population aged 5–18
are given in percent. Per capita alcohol consumption is reported in gallons of ethanol. The column labeled “Within” (“Between”) contains the within-variation
(between-variation) of the respective variables.
Abbreviation: CCW, concealed carry weapons.
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in gun control variables. In general, we observe that the number of states with restrictive gun laws has increased over
the sampling period. Also, it appears that states with restrictive laws are grouped in regional clusters. For example, the
states with assault weapon bans in 2017 (Figure 3b) are largely clustered on the East Coast (with the addition of Califor-
nia and Hawaii) and the states allowing for CCW in 1990 are predominately located in the Midwest.

4 | EMPIRICAL RESULTS

4.1 | Explanatory variables

Our baseline model specification is a Poisson fixed effects model. As we have a fixed number of states in this setting, we
cannot assume that our sample is a random draw of observations. Therefore, we account for unobserved heterogeneity
with individual fixed effects thereby eliminating the between-variation of our variables. Further, we include state-
specific variables like population density and median income which might be correlated with individual state fixed
effects. Hence, we cannot assume independence between the unobserved fixed effect and the regressors
(Wooldridge, 2002, p. 247). In contrast to Gius (2018), we do not use population weights for the Poisson FE model, but
the results with and without population weights are quite similar for our baseline model specification.8 As we encoun-
tered some problems with numerical instability in the dynamic and spatial models, we have decided to work without
population weights throughout the paper. Otherwise the results would not be comparable across specifications. The
results for all panel count models are reported in Table 2.

Our results differ from the results originally reported in Gius (2018) in some aspects. For example, the coefficient of
state background checks is significantly negative instead of being insignificantly positive in the original Poisson FE
model. The only change in state background checks laws over the period 2015 to 2017 has occurred for Montana and
Nevada, both adopting a stricter regulation in 2016. Nevertheless, adding these periods seems to be responsible for those
changes, because re-estimating our model (still excluding Alaska and Hawaii, as well as the Federal background check
variable) for the period 1990–2014 yields the initial result. We also find a different sign of the CCW variable, unemploy-
ment rate, and per capita alcohol consumption. Coefficients of our gun law variables have the same sign over all

FIGURE 2 Heatmap indicating the total number of victims (injured or killed) per million inhabitants for all US states from 1990 to 2017
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specifications. The coefficient of the assault weapons ban variable becomes insignificant for model specifications
involving temporal lags. However, if we estimate marginal effects for the SPLFM (see Table 3), we find a significant
direct effect. Spillover effects are also significant in the short-run and long-run. The coefficient of state background
checks (concealed carry laws) on victim counts is significantly negative (positive) over all specifications. The signifi-
cant CCW coefficient suggests that states with strict concealed carry laws on average have higher victim counts.
This is a surprising result considering that Gius (2018) reports a negative albeit insignificant effect for this variable
and that it is generally believed that stricter concealed carry laws should prohibit perpetrators from bringing guns
to school. However, our results are in line with the findings of Gius (2014) on state-level murder rates. CCW laws
might be a response to a high level of gun-related acts of violence. Hence, states which tend to have a higher inten-
sity of shootings are more likely to have (stricter) CCW laws. Although we use state-fixed effects and account for

(a)

States with assault weapons ban in 1990

(b)

States with assault weapons ban in 2017

(c)

States with background checks law in 1990

(d)

States with background checks law in 2017

(e)

States with restrictive CCW laws in 1990

(f)

States with restrictive CCW laws in 2017

FIGURE 3 Spatio-temporal variation of state gun laws
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the potential endogeneity of CCW laws in terms of school shootings, this variable might still be affected by the
reverse causality that CCW laws become stricter over time in states with a higher tendency for gun violence. We
report changes in CCW laws after 2014 for West Virginia and New Hampshire which both became constitutional
carry states in 2016 and 2017, respectively. Also, Illinois became a “shall” state after previously banning the public
carrying of firearms completely (see also Figure 3e,f for the evolution of gun control laws from 1990 to 2017). The
coefficient of per capita alcohol consumption switches from negative to positive if we account for spatio-temporal
terms. However, if we compute marginal effects, both direct and indirect effects become insignificant. The effect of
a higher per household median income on victim counts is larger when we account for temporal dependence. The
unemployment rate does not have a significant effect in our baseline specification which is a surprising difference

TABLE 2 Results for spatio-temporal panel count models

1 2 3 4
P-FEPM P-SPM LFPM SPLFM

Wyt 0.368***

(0.012)

Wyt − 1 0.255***

(0.092)

yt − 1 0.426*** 0.402***

(0.053) (0.010)

Assault weapons ban −1.008*** −0.978*** −1.189 −0.780

(0.224) (0.303) (1.031) (1.015)

State background checks −0.300*** −0.253*** −0.643* −0.306***

(0.046) (0.065) (0.400) (0.048)

Concealed carry laws 0.830*** 0.824*** 1.963*** 1.197***

(0.079) (0.082) (0.238) (0.034)

Population density 1.461*** 1.620*** 2.166*** 2.007***

(0.017) (0.018) (0.287) (0.076)

Per household median income 0.697*** 0.517*** 2.620*** 2.808***

(0.095) (0.105) (0.088) (0.024)

Proportion of population with college degree 4.639*** 8.352*** 4.620 4.279***

(1.197) (1.344) (4.472) (0.227)

Unemployment rate −1.467 −3.977 −5.326 −5.037***

(3.211) (3.765) (13.432) (1.560)

Proportion of population aged 5–18 25.426*** 24.359*** 25.051*** 29.974***

(1.679) (1.890) (4.176) (1.129)

Per capita alcohol consumption −0.616*** −0.583*** 1.294*** 1.481***

(0.304) (0.045) (0.439) (0.070)

Ratio of firearm suicides to total suicides 2.646*** 2.525*** 2.707 2.490***

(0.295) (0.400) (2.234) (0.329)

Mass shooting 1.974*** 1.960*** 2.153*** 1.604***

(0.422) (0.619) (0.530) (0.051)

Mass shooting (spatial lag) 0.341 0.324 0.566***

(0.557) (1.880) (0.215)

Note: Results for the Poisson fixed effects panel model (P-FEPM), Poisson spatial Panel model (P-SPM), linear feedback panel model (LFPM), and spatial linear

feedback panel model (SPLFM). Standard errors are given in parentheses. We use cluster-robust standard errors for Models 1 and 2, and two-step generalized
method of moment standard errors for Models 3 and 4. W is a queen contiguity spatial weighting matrix. Coefficient estimates for time-fixed effects (included
in all specifications) are not reported. *, **, and *** denote 10%, 5%, and 1% statistical significance, respectively.
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from the results reported in Gius (2018). Following Pah et al. (2017), we would expect to find a positive coefficient
for this variable because a higher unemployment rate implies worse perspectives of school-to-work transition. This
finding might be explained by the fact that 3 years were added to the dataset in which states with generally low
unemployment rates had a relatively high victim count. The effect of the occurrence of a nonschool-related mass
public shooting on the intensity of school shootings is positive and significant in our baseline specification. After
the inclusion of spatio-temporal terms, we still find a significantly positive effect for the same state but also report
additional spillover effects from neighboring states.

4.2 | Spatio-temporal effects

We now discuss our estimated spatio-temporal effects and their implications for potential copycat effects. The dimen-
sion of our dataset (N = 48, T = 28) allows us to estimate the temporal dependence with higher precision than the

TABLE 3 Direct/indirect effects in the spatial panel linear feedback model (SPLFM)

Coefficients

Short–term effects Long–term effects

Direct Indirect Direct Indirect

Wyt 0.368***

(0.011)

yt − 1 0.402***

(0.021)

Assault weapons ban −0.780*** −0.524*** −0.272*** −0.956** −1.215**

(0.083) (0.139) (0.087) (0.260) (0.474)

State Background Checks −0.306 −0.206 −0.107 −0.376 −0.477

(0.355) (0.545) (0.283) (1.003) (1.374)

Concealed Carry Laws 1.197*** 0.804* 0.417* 1.467* 1.865*

(0.273) (0.425) (0.219) (0.767) (1.102)

Population density 2.007*** 1.348 0.700 2.461 3.128

(0.586) (0.903) (0.471) (1.617) (2.255)

Per household median income 2.808*** 1.886* 0.979 3.442* 4.375

(0.697) (1.141) (0.671) (2.065) (3.660)

Proportion of population with college degree 4.279*** 2.874*** 1.492** 5.246*** 6.668**

(0.682) (1.079) (0.607) (1.992) (3.176)

Unemployment rate −5.037*** −3.383*** −1.757*** −6.175*** −7.849**

(0.481) (0.831) (0.511) (1.545) (3.284)

Proportion of population aged 5–18 29.974*** 20.132*** 10.453*** 36.745*** 46.705***

(0.244) (2.329) (2.042) (4.747) (14.740)

Per capita alcohol consumption 1.481 0.995 0.517 1.816 2.308

(1.670) (2.556) (1.312) (4.622) (6.115)

Ratio of firearm suicides to total suicides 2.490*** 1.673 0.868 3.053 3.880

(0.701) (1.081) (0.567) (1.960) (2.852)

Mass shooting 1.604*** 1.114* 1.101* 2.098* 3.944*

(0.397) (0.626) (0.631) (1.162) (2.310)

Mass shooting (spatial lag) 0.566**

(0.229)

Note: Results for SPLFM. Standard errors are given in parentheses. We use bootstrap standard errors for coefficients, direct and indirect effects. W is a queen

contiguity spatial weighting matrix. Coefficient estimates for time-fixed effects (included in all specifications) are not reported. *, **, and *** denote 10%, 5%,
and 1% statistical significance, respectively.
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spatial dependence. The availability of 28 time periods is considered moderate to large in panel settings whereas the
fixed number of 48 states, unfortunately, is quite small (Glaser et al., 2020). Figure 4a and b depict the individual auto-
correlation functions of each state and the average autocorrelation function of the victim counts variable, respectively.
We find that the first lag of the average autocorrelation function is significantly positive which gives a first hint that
including a temporal effect in our panel count models could improve the explanatory power of the model.

The autoregressive coefficient of the linear feedback model has an interesting and straightforward interpretation
similar to autoregressive models for continuous data (Blundell et al., 2002). A positive coefficient (γ = 0.426 for LFPM
and γ = 0.402 for SPLFM) suggests that the intensity of school shootings increases for the next year and that the depre-
ciation rate of this increase over the following years is 1 − γ. Assuming exponential decay of a first-order autoregressive
model, it holds that 90% of the temporal effect of a school shooting incident has decayed after approximately 4 years. It
follows that the increased alertness of authorities directly after these incidents seems to be justified to deter copycat
shooters. In the medium and long-term, we suspect that observing school shootings in the same state does not matter
as much for the perpetrators' motivation as the notoriety of a specific attack and the subsequent media coverage (see,
e.g., the well-studied “Columbine effect”). However, our current dataset does not allow us to investigate this further.

As school shootings are rare events, our dataset has clusters of zero victim counts. To investigate whether the
repeated occurrence of years with zero school shootings drives our results, particularly with respect to the relatively
high temporal dependence, we tried to generate data that mimic our present dataset albeit under the hypothesis that no
temporal dependence of school shootings exists. To do so, we ran simulation experiments for which we generated a
dependent variable (N = 48, T = 28) containing only zero entries. Then, we randomly selected 4 years, the average
number of years with at least one school shooting per state, and drew from a Poisson distribution with intensity param-
eter of four, the average number of victims per school shooting. Finally, we evaluated the performance of the quasi-
differenced GMM estimator. It appears that the autocorrelation parameter (γ = 0 in this setting) is accurately estimated

1 2 3 4 5 6 7 8

Lags

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Lag

A
C

F

1 2 3 4 5 6 7 8

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Years

M
or

an
's

 I 
pe

r 
ye

ar

−
0.

1
0.

0
0.

1
0.

2
0.

3

(a) (b)

(c)

FIGURE 4 These figures depicts some aspects of the spatio-temporal dependence structure. Panel (a) depicts the state-specific

autocorrelation function and panel (b) depicts the autocorrelation function averaged over all states. Panel (c) depicts the Moran's I statistic

for each year

SCHWEIKERT ET AL. 731



which shows that our results for the empirical dataset are not driven by excess zeros. Nevertheless, we need to account
for this feature of the data by using our second step GMM estimates to obtain valid standard errors.

Towers et al. (2015), Kissner (2016), and Lankford and Tomek (2018) also study the temporal dependence of crime
but do so at a higher frequency. Towers et al. (2015) use a self-excitation contagion model and find that school shoot-
ings are contagious for an average of 13 days. However, their model does not use the panel structure of their state-level
data to eliminate unobserved heterogeneity. Kissner (2016) analyzes active shootings using a series hazard model and
reports an increased hazard for 2 weeks after the initial shooting. In contrast, Lankford and Tomek (2018) do not find
evidence for short-term contagion. We test for contemporaneous spatial dependence in Figure 4c where the Moran's I
statistic (Moran, 1950) is reported for each year. Moran's I for row-standardized weight matrices is given by

It =

PN
i=1

PN
j=1wij yit−�ytð Þ yjt−�yt

� �
PN

i=1 yit−�ytð Þ2 , t=1,…,T: ð13Þ

The measure was developed for a cross-section of data so that we have to compute it repeatedly for each year, indicated
by the subscript t. Unfortunately, there is no distributional theory available for Moran's I calculated from count data,
but we can employ a bootstrap procedure to obtain inferential statements (Jin & Lee, 2015; Lin et al., 2011; Ren
et al., 2014). To do so, we draw elements of our variable of interest, place it randomly on our map, and recompute
Moran's I. Using 400 bootstrap draws, we can compare the original Moran's I statistic to the bootstrap distribution and
determine the p-value. The majority of yearly victim counts do not appear to have a statistically significant spatial
dependence. However, it has to be noted that the lack of significance might be attributed to the large number of zeros
in school shooting data. Further, the spatial dependence is only measured for a specific year and does not control for
the influence of other variables.

In our spatial panel models, we measure spatial autoregressive effects while simultaneously controlling for con-
founding factors and unobserved heterogeneity. Additionally, we observe that the lagged spatial term seems to have
more explanatory power than the contemporaneous spatial term. We report our results for the P-SPM only with a
lagged spatial term. Excluding the contemporaneous spatial term improves our results (reaching a different local opti-
mum with a higher log likelihood value). The log likelihood value of the P-SPM is larger than the log likelihood value
of the Poisson FE model (−2,648.49 > − 2,690.14) and further testing shows that controlling for the spatial lag variable
significantly improves the explanatory power of our model. The significant spatial terms in the P-SPM and the SPLFM
tell us that copycat shooters are influenced by school shootings in neighboring states.9 Consequently, authorities of
neighboring states should consider the possibility of copycat shooters if incidents happened in the current or past year.
Although the value of the spatial coefficients is smaller than the autoregressive coefficient, we should not conclude that
regional spillovers are less likely to occur than temporal clusters of school shootings in the same state because spatio-
temporal autocorrelation lacks a common metric.10 Towers et al. (2015) find little evidence for spatial clustering in their
mass shootings and school shootings data.

To study the sensitivity of our results to certain influences omitted from our main specification, we conduct several
robustness checks. First, we use additional variables on state-level violent crime, for example, the murder rate per
100,000 inhabitants. These variables do not seem to have a significant impact, further emphasizing that school shoot-
ings are distinct from other violent crimes. Second, we include the divorce rate per 1,000 inhabitants and variables on
the percentage of minorities in the state. The percentage of Blacks and Hispanics has a negative (although insignificant)
impact on the school shooting intensity. In contrast, the divorce rate has a positive and significant effect. This result
provides further empirical support for the characterization in Gerard et al. (2016) that school shooters are predomi-
nantly Caucasian and often come from broken homes.11 However, the inclusion of those variables does not affect the
coefficient estimates of other variables in our main specification.

5 | CONCLUSION

As noted in the introduction, school shootings are tragic events with the ability to traumatize communities. One of
the more common motivations for school shootings is the perpetrators' desire for media attention. According to
Lankford and Tomek (2018), the Columbine shooting inspired at least 21 copycat shootings and 53 thwarted plots
in the United States over a 15-year period. Hence, school shootings may be partly explained by copycat behavior.
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In this paper, we attempted to detect and estimate copycat effects using spatio-temporal panel count models. This
class of models allowed us to determine whether an initial school shooting spawned subsequent attacks in neigh-
boring states and the same state in the following years. Estimating the temporal dependence helped us to answer
whether the frequency of school shootings in one state increases if the same state reports a higher number of vic-
tims in the past year.

In our study, we followed Gius (2018) and estimated state-level panel count models for US school shooting data.
Our baseline model specification is the fixed effect Poisson panel model which accounts for the integer and non-
negative nature of victim counts. Our second model included spatial terms in the form of contemporaneous and lagged
neighboring victim counts. Third, we applied a linear feedback model adding a first-order lag of the dependent variable
to the basic model specification. In contrast to the previous two models which focused on either spatial or dynamic
effects, our final model analyzed relationships along both dimensions simultaneously.

Using state-level data for the period 1990–2017, our results indicate that there are significant spatio-temporal effects
in state-level school shooting data. Consequently, there is a higher risk that a school shooting happens in neighboring
states (spatial effect) and in the same state in the next year (temporal effect) after an initial attack. This information
may help authorities plan a response after school shooting incidents. In addition, we found that the victim counts clus-
ter temporally after an initial shooting which suggests that the media should alter their coverage of school shootings
and mass killings in general (Lankford & Tomek, 2018). Ideally, the media should find a way to cover these events
while minimizing the risk of provoking additional shootings.

Another question that arises in the context of a changing media landscape is whether the advent of social media
accelerates the copycat effect. Although we observe a higher number of school shootings after 2005, it is difficult to cap-
ture this effect in our model. It would be helpful to estimate our model for several sample splits, but this is infeasible
considering the small sample sizes. Following the hypothesis that social media helps to disseminate information about
school shootings and thereby helps to inspire copycat attacks, the spatial effect which is more related to regional news
coverage should have a decreasing impact over time.

Possible extensions of our panel count models involve the use of different probability models which account for
overdispersion and zero-inflated data. Spatio-temporal panel count models based on a negative binomial or generalized
Poisson distribution might be better suited for our setting where many zero counts and a few very large counts are
reported. To the best of our knowledge, spatio-temporal panel models with multiplicative fixed effects using these distri-
butional assumptions are currently not available.

Our study, however, suffers from several shortcomings. First is the use of state-level data to determine the impact of
copycat behavior in school shootings. States are rather large, heterogeneous areas that have diverse community settings,
spanning the range from very urban to very rural, and these areas have varying gun ownership rates. Hence, firearms
may be more easily obtainable in some areas of a state than in others. Therefore, it may be easier to perpetrate a school
shooting in certain areas of a state than in others. Regardless of these shortcomings, the available data indicate that the
use of county-level data is not viable primarily because school shootings are so rare, and most counties in the United
States may go for decades with no school shootings. Hence, even though states are very heterogeneous in nature, it may
not be possible to use smaller geographic divisions given the infrequency of school shootings. Another shortcoming of
using state-level data is the aggregation of victim counts over a year which makes it impossible to distinguish between
state-years characterized by several events with low victim counts and single events with a high victim count typically
evoking more intense media coverage. Consequently, future research could be focused on modeling copycat behavior
in event-specific data.

Although not of primary concern of the present study, the impact of gun control laws on school shootings is an
important area of research that should be further explored in future research. Results of the present study indicate that
states with restrictive CCW laws have more school shooting victims while the use of state-level background checks
resulted in fewer school shooting victims. The assault weapons ban produced mixed results. These results should be
viewed with caution because many school shooting perpetrators are students themselves, and, in many cases, are not
legally allowed to own or possess certain types of firearms. Hence, the gun control measures examined in the present
study may not apply to them.

School shootings and the fear of copycat shooters have drastically negative effects on society. Traumatized commu-
nities often report secondary victimization in form of psychological health issues. The academic performance of stu-
dents who remain enrolled in the attacked school declines and additional security at those schools is costly. Given these
negative outcomes related to school shootings, it is imperative that we find ways in which to reduce the number of
school shooting incidents. The results of the present study may serve as a useful guide in attempting to negate the
effects of the extensive media coverage of school shootings and hence reduce the likelihood of copycat school shooters.
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ENDNOTES
1 According to the FBI's Uniform Crime Reporting Program, violent crime is composed of four offenses: murder and non-negligent man-
slaughter, forcible rape, robbery, and aggravated assault.

2 The P-SPM can be classified as a simultaneous autoregressive model. A recent overview of this class of models can be found in Czado
et al. (2014).

3 The largest characteristic root of row-standardized spatial weight matrices is unity by definition.
4 They define mass public shooting as “[…] an incident in which four or more victims are fatally shot in a public location within a 24-hr
period in the absence of other criminal activity, such as robberies, drug deals, and gang conflict.” We delete the events classified as school
shootings from this list.

5 We thank an anonymous reviewer for this suggestion.
6 Alaska reports three injured and three killed during school shootings, while Hawaii has no victims over the sampling period.
7 Not surprisingly, California being the most populous state has the highest total number of victims over the sampling period. A heatmap
indicating the total number of victims is depicted in Appendix S1.

8 The results for a Poisson fixed effects model with population weights are reported in the Appendix S1. The largest differences are found
for the coefficient of the population density variable which is much larger in the model without population weights.

9 We report our results only for the queen contiguity spatial weight matrix, but the results for other specifications of the spatial weight
matrix can be obtained from the authors upon request. We find that our estimates of the lagged spatial effect are sensitive to the choice of
the spatial weight matrix. However, estimates of all other coefficients are robust to this choice.

10 Anselin et al. (2008) discuss the lack of a common metric as a central difficulty in space–time modeling. While spatial autocorrelation is
measured in the geographical units, in our case “neighbors” in space by means of a spatial weight matrix, the temporal autocorrelation is
measured for “neighbors” in time by means of the customary time lags. Hence, it is not straightforward to compare the speed of both
dimensions of the dynamic space–time process.

11 The results of our robustness checks are not reported in the paper, but can be obtained from the authors upon request.
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