
Pendyala, Vishnu S.; Liu, Yuhong; Figueira, Silvia M.

Article

A framework for detecting injected influence attacks on
microblog websites using change detection techniques

Development Engineering

Provided in Cooperation with:
Elsevier

Suggested Citation: Pendyala, Vishnu S.; Liu, Yuhong; Figueira, Silvia M. (2018) : A framework for
detecting injected influence attacks on microblog websites using change detection techniques,
Development Engineering, ISSN 2352-7285, Elsevier, Amsterdam, Vol. 3, pp. 118-233,
https://doi.org/10.1016/j.deveng.2018.08.002

This Version is available at:
https://hdl.handle.net/10419/242295

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.deveng.2018.08.002%0A
https://hdl.handle.net/10419/242295
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Contents lists available at ScienceDirect

Development Engineering

journal homepage: www.elsevier.com/locate/deveng

A framework for detecting injected influence attacks on microblog websites
using change detection techniques

Vishnu S. Pendyala∗, Yuhong Liu, Silvia M. Figueira
Santa Clara University, USA

A R T I C L E I N F O

Keywords:
Cumulative sum
Discrete Kalman Filter
Sentiment analysis
Online Social Networks
Twitter bot
Attack injection
Microblogging

A B S T R A C T

Presidential elections can impact world peace, global economics, and overall well-being. Recent news indicates
that fraud on the Web has played a substantial role in elections, particularly in developing countries in South
America and the public discourse, in general. To protect the trustworthiness of the Web, in this paper, we present
a novel framework using statistical techniques to help detect veiled Web fraud attacks in Online Social Networks
(OSN). Specific examples are used to demonstrate how some statistical techniques, such as the Kalman Filter and
the modified CUSUM, can be applied to detect various attack scenarios. A hybrid data set, consisting of both real
user tweets collected from Twitter and simulated fake tweets is constructed for testing purposes. The efficacy of
the proposed framework has been verified by computing metrics, such as Precision, Recall, and Area Under the
ROC curve. The algorithms achieved up to 99.9% accuracy in some scenarios and are over 80% accurate for most
of the other scenarios.

1. Introduction

Social media has played an important role in Presidential elections
in the United States as far back as 2008, during Barack Obama's election
campaign (Cogburn and Espinoza-Vasquez, 2011). Its influence is so
powerful that the political cyber hacker, Andres Sepulveda once said
(Laquintano and Vee, 2017), “When I realized that people believe what
the Internet says more than reality, I discovered that I had the power to
make people believe almost anything.” His conviction turned out to be
disastrous to the developing nations in Latin America. He proved he
was right by faking social media accounts and using them to fabricate
trends to sway the results of various Presidential elections in South
American countries. This type of attack is also named as injected in-
fluence attack, which can be defined as the activity of posting malicious
microblogs, often but not always, using automated means in order to
hijack the opinions of the other users. The project described in this
paper is an effort to detect and prevent such malicious attacks in the
future.

Studies such as (Pak and Paroubek, 2010) have shown that Twitter
corpus adheres to the Zipf law and can be used for opinion mining using
sentiment analysis. Therefore the corpus of microblogs can be modeled
as a Zipfian distribution. A Zipfian distribution is a type of discrete
power law probability distribution. In an extensive survey on opinion
mining and sentiment analysis (Liu, 2012), Liu discussed the statistical

characteristics of the sentiment scores of opinion corpora.
Most of the current approaches, such as (Vosoughi, 2015), treat the

problem of detection of rumors on Twitter as a classification task and
use machine learning algorithms, such as SVM and Naive Bayes to train
the classifier. The existing work, however, fails to sufficiently exploit
the underlying characteristic of the problem, which is the fluctuation in
the opinions expressed in the microblogs. In addition, as smart attackers
often mimic normal users' behavior patterns to prevent themselves from
being detected, machine learning algorithms which focus on specific
patterns may often not perform well. For instance, the solutions pre-
sented in Vosoughi (2015) were successful in identifying around 70%
rumors correctly, as compared to the results from the solution presented
in this paper.

In this work, we propose to detect anomaly from another angle -
changes based on the hypothesis that to influence the public opinions,
the fake microblogs generated by malicious attackers will inevitably
cause changes in the normal opinions. The framework we propose in
this paper using change detection techniques utilizes this underlying
characteristic to accomplish the task of discerning the fake tweets from
the real ones, which is expected to result in better accuracy than the
routine Machine Learning approaches.

Please note that occasionally, normal users' sentiments may be
shifted due to the release of some startling news. However, such shifts
can be easily validated by cross-checking other information sources,

https://doi.org/10.1016/j.deveng.2018.08.002
Received 20 February 2018; Received in revised form 19 August 2018; Accepted 19 August 2018

∗ Corresponding author.
E-mail addresses: vpendyala@scu.edu (V.S. Pendyala), yhliu@scu.edu (Y. Liu), sfigueira@scu.edu (S.M. Figueira).

Development Engineering 3 (2018) 218–233

Available online 29 August 2018
2352-7285/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/23527285
https://www.elsevier.com/locate/deveng
https://doi.org/10.1016/j.deveng.2018.08.002
https://doi.org/10.1016/j.deveng.2018.08.002
mailto:vpendyala@scu.edu
mailto:yhliu@scu.edu
mailto:sfigueira@scu.edu
https://doi.org/10.1016/j.deveng.2018.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.deveng.2018.08.002&domain=pdf

such as recent released news on other media. For brevity and focus, we
do not include the cross-checking in this work and leave it as a future
direction. The experimental setup for this paper is designed such that
common injected attack scenarios are covered.

In addition, to cover the few cases where opinion shifts caused by
injected attacks cannot be distinguished from those caused by genuine
opinion shifts, the framework presented in this paper can be further
strengthened by correlating and corroborating the results with those
obtained by other techniques described in related literature. This paper
is hoped to initiate a substantial discussion on solving an important
problem that today's democracies, such as in the developing countries
in South America, as highlighted earlier and the world in general is
facing.

Cumulative Sum (i.e. CUSUM) is a statistical analysis technique
(Page, 1954) used for change detection. The technique was successfully
used on numerical data for anomaly detection in feedback-based online
reputation systems (Liu and Sun, 2010). A Kalman Filter is typically
used to predict values of data using a recursive algorithm. A series of
observed values differing substantially from predicted values can in-
dicate change.

Given that the sentiment scores from a microblog corpora can be
modeled as a probability distribution, we hypothesize that statistical
change detection techniques using CUSUM, modified for our purpose
and a Kalman Filter can be applied to the sentiment scores of a mi-
croblog corpora to identify opinion shifts and therefore hacker attacks.
Sentiment scores of microblogs on any given topic can be expected to be
reasonably predictable. Delirious posts are commonly identified by
humans, based on their out-of-whack sentiment. Machines can achieve
the same result once the sentiment is quantified as a numerical score.
Change detection techniques help in this process.

For this work, we chose the 2009 Iran elections as the domain, for
reasons discussed in one of the following sections. We scored the tweets
on the topic using automated sentiment analysis. We then applied our
modified CUSUM (mCUSUM) and Discrete Kalman Filter algorithms to
study the fluctuations in the sentiments. There was no apparent adverse
impact noticed to the extent of suspecting an attack. We then injected a
number of tweets with negative sentiment to simulate several scenarios.
We repeatedly applied the two techniques to analyze the tweet senti-
ments in the various scenarios and were successful in detecting the
injected tweets with an impressive accuracy of around 90%. For sim-
plicity, we use the words, microblogs and tweets interchangeably, but
the techniques discussed in this paper are by no means restricted for use
with Twitter.

To the best of our knowledge and literature survey, the paper is
unique in efficiently and successfully proposing a framework to use
Change Detection techniques such as modified CUSUM (mCUSUM) and
Kalman Filter with sentiment analysis to detect OSN hacker attacks
intended to influence voters in microblogs. Specifically, we have
modified the basic CUSUM in a novel way to make it better fit our
application scenario. We tested both the mCUSUM and Kalman Filter
Change Detection techniques, applied each one to various scenarios,
and compared the results. The results confirmed our hypothesis, so the
techniques explored here can possibly be extended to solve similar
problems after quantifying the sentiment trends or other critical aspects
of information. Moreover, based on the testing results, we further
propose a comprehensive way to perform anomaly detection by in-
tegrating mCUSUM and Kalman Filter in a flexible way. The model we
use is generic enough to be implemented as a framework.

Last but not least, due to the wide adoption of Web information,
protecting a trustworthy Web is also essential for other domains. For
example, there are a number of humanitarian projects that have been
made possible by the Web. One such possible application is Web-based
medical diagnosis using the techniques presented in Pendyala et al.
(2014) and Pendyala and Figueira (2017). These rely heavily on the
truthfulness of the underlying data, which is not entirely tamper-proof.
The use of CUSUM, modified for our purposes, and Discrete Kalman

Filtering techniques presented in this paper for detecting hacker attacks
is hoped to pave way for detection of tampering of critical data such as
in the medical domain as well.

The rest of the paper is organized as follows. Section 2 presents
existing literature. The next section, section 3 discusses the design as-
pects, detailing the framework, the approach, the techniques, and the
algorithms. Section 4 provides the experiment details and results. Sec-
tion 5 concludes the paper with a discussion on the results and future
directions.

2. Related work

There are a number of papers on the topics related to the influence
of OSNs, anomaly detection, and misinformation containment areas,
which are closely related to our project. We list some of the interesting
ones in the following subsections.

2.1. Influence of social media

The first set of papers we examined relate to whether microblogs
make a difference to the outcome of public opinion and decision
making. To evaluate the influence of the tweets, we need a quantitative
measure of their sentiment. Choy et al. did a sentiment analysis of the
tweets related to the Singapore Presidential elections (Choy et al.,
2011) to estimate the number of votes each candidate will get. Their
work proves the important role that tweets play in elections to the high
office and proves the correlation between the sentiment analysis of the
tweets and the election results. Similarly, the authors of Tumasjan et al.
(2010) examine the role tweets played in the German elections. One of
their conclusions is that even mentioning the party name in the tweet
has non-trivial impact. The more the number of mentions, the higher
the chances of winning the elections.

In an extensive analysis of the Twitter corpus on two significant
topics in the recent past, “Brexit” and “Trump”, Hall et al. (2018) lead
us to a powerful conclusion, “Society might well need to quickly de-
termine new ethical boundaries around the use of social media data
analysis during election campaigns, or AI could determine who our next
leaders will be.” Using analytical methods such as Sentiment Analysis,
Temporal Profiling, LDA Topic Modeling, and visualization artifacts,
such as Network Structure, they scrutinize the role that social media
played in the two important referendums: Brexit and US Presidential
elections.

Using quantitative analysis, authors of Jin et al. (2014a) portray
how rumors spread on Twitter during the Ebola crisis in Africa, high-
lighting the impact lies on microblogging websites have had on de-
veloping countries. More literature survey shows that there is pre-
dominant evidence that there is substantial impact of the social media
posts on the public opinion, supporting the purpose of this paper, which
is to detect malicious use of microblogging during crucial events like
elections. Burns and Eltham in their highly cited work (Burns and
Eltham, 2009), examine the impact of Twitter on the Iran Election crisis
that provides a sociological prelude to the technical discussion in this
paper.

2.2. Anomaly detection

Other researchers have approached the topic of anomaly detection.
The discussion on detecting certain type of security breach events such
as “Sarah Palin's email account was hacked” from the tweets using
semi-supervised learning methods in Ritter et al. (2015) gives good
insights into the process of examining and making sense of odd-
sounding tweets. Singh et al. (2014) propose ways to identify malicious
users using five different classifiers and compare the results. They
conclude that Random Forest resulted in highest accuracy. To improve
the accuracy of our prediction, we may consider using Random Forest
to extend our work in the future to confirm that the attacks we detect in

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

219

this work as coming from a malicious user.
Starbird et al. (2014) evaluate the effectiveness of the premise that

crowdsourced information flows can contain the misinformation. Sys-
tematically analyzing the flow of tweets related to three rumors, they
confirm that the premise is not valid and that there is a need for au-
tomated ways to detect falsity, which is what our paper presents. The
approach taken in Castillo et al. (2011), Qazvinian et al. (2011), Kwon
et al. (2017) and Yang et al. (2012) is somewhat similar to the one in
our earlier work, (Pendyala and Figueira, 2015). The authors extract
features from the tweets and build classifiers from them. The difference
is that we used automated annotation and a different feature set in our
previous paper.

In Jin et al. (2013, 2014b), the authors use Epidemiological mod-
eling, specifically, the SEIZ model framework, to capture the diffusion
of information on Twitter and suggest that the modeling can help in
identifying rumors from facts. This can be used as an ensemble ap-
proach to what we present in this paper to improve the accuracy of
detection. Authors of Chew and Eysenbach (2010) try sentiment ana-
lysis of the tweets and run Chi-square tests to examine the trends.

Hernandez-Suarez et al. (2018) apply Machine Learning to address
the problem of predicting cyber-attacks on Twitter using sentiment
analysis and L1 regularized regression model. They choose the tweets
pertaining to Donald Trump's election as the President of USA and
apply three Machine Learning Classifiers: Support Vector Machine,
Maximum Entropy, and Naive Bayes. From the results, they conclude
that Maximum Entropy performs best and use L1 regularization to
improve the prediction.

Authors of Hamidian and Diab (2016) analyze Twitter users' belief
in their posts using SVM Tree kernel model and other techniques to
detect rumors. NLP techniques are used to determine the belief. Their
premise, however may not be valid when the users are fake and mal-
icious, a scenario that our work focuses on. A similar and more so-
phisticated approach is taken by the authors of Liu et al. (2015) to
debunk rumors in real time. They use beliefs of the crowd and several
other language features for the purpose. None of these papers consider
the propagation patterns of the tweeted rumors, which is the crux of Wu
et al. (2015). They use a hybrid SVM classifier on the propagation
structure and some other features of the posts to detect rumors in the
dataset they selected from Weibo. Their work can also be used in
conjunction with our work to improve accuracy of the prediction.

2.3. Misinformation containment (MC)

There are a few studies on misinformation containment (MC), which
aim to control the propagation of false information. An interestingly
unique approach for Misinformation Containment (MC) is taken in
Budak et al. (2011) and Nguyen et al. (2012). The authors try to
identify Social Media influencers who can counter-campaign to contain
the rumors. The authors of Budak et al. (2011) further prove that the
problem is NP-hard and come up with a greedy algorithm and heuristics
to solve the problem - a possible strategy that can be tried after de-
tecting the misinformation using our work.

Cognitive Psychology, Page Rank algorithm, a “Retweet Graph” and
other artifacts are used to design a framework for MC in Kumar and
Geethakumari (2014). The framework can be used to complement our
work in detecting the misinformation. Authors of Jain et al. (2015) use
sentiment analysis like we do to detect rumors in their prototype, which
they call as “The Twitter Grapevine”. Their approach is much simpler,
in that they go by the “mismatch ratio” of the sentiment scores of tweets
made by established news media to those of the general public and
claim that it is effective enough. The role of rumors on the social media
is much more profound than is captured in the mismatch ratio - a fact
that the paper misses out.

Takahashi and Igata (2012) run content analysis and document
classification techniques on the tweet to distinguish rumors from facts.
This technique can be used on top of our work to enhance the accuracy.

Statistical properties of viral misinformation are presented in Bessi
(2017) using Extreme Value Theory methods. The dataset used is from
Facebook posts. As future work, some of the properties presented can
probably be leveraged in conjunction with our work to exploit temporal
correlations.

As far as we can see, none of the existing literature surveyed used
CUSUM, Kalman Filter, modified or directly, or any related techniques
to approach the problem of injected attacks. We modified these algo-
rithms in novel ways for the specific purpose, as described in the paper.
The modified algorithms already resulted in high rates of accuracy, that
there was really no need to come up with new ones or revise the
techniques beyond what was done for this work.

3. Methodology

We formulate the problem as follows: Given a set of microblogs, M,
on a topic, over a period of time, T, what is the probability, p, of de-
tecting a deliberate and possibly hacked attack, A, to inject negative
influence, IFA, on the Online Social Network (OSN), N, hosting the
microblogs? Negative influence can be defined as the sentiment in bad
thoughts about someone or something that encourages more bad
thoughts.

It is possible that negative influence is not only caused by a hacked
attack, but also by genuine happenings. To test the effectiveness of the
algorithms in detecting hacked attacks, the experiments are designed in
ways so as to simulate various scenarios of hacked attacks. The several
scenarios used in the experiments described in this paper closely follow
common attack patterns, which are not usually characteristic of gen-
uine opinion shifts.

There may still be rare cases where genuine opinion shifts resemble
those arising from common attack patterns. To differentiate between
the two, the results from the framework presented in this paper can be
cross-checked by other techniques covered in the related literature and
also corroborated with more reliable sources such as professional news
websites.

The solution needs to be general enough to be repeatable and
consistent as in a framework, with pluggable components. Since we
need to come up with a numerical value for the probability p, there is a
need for quantifying the tweets in terms of what they represent, usually
the sentiment they convey. The numerical values can then be processed
by statistical anomaly detection tools. The framework is detailed in the
following paragraphs.

3.1. Proposed anomaly detection framework

The approach presented here is general enough to use any Change
Detection technique with any quantifying process such as sentiment
analysis. The proposed framework for detecting attacks post-fact is il-
lustrated in Fig. 1. The framework comprises of four pluggable modules
detailed in the subsections below. We start by collecting microblogs
from OSN N on important topics that can potentially be targets of
getting hijacked. Microblogging services such as Twitter provide
streaming API's to search on specific hashtags and keywords for
achieving this. Once the set of microblogs M on a topic T is collected
over a period of time using the streaming API, the opinions are quan-
tified using appropriate quantifying techniques such as sentiment
analysis. The sentiment scores obtained for the microblogs are then
passed over to statistical anomaly detection tools such as mCUSUM or
Kalman Filter. The anomaly detection tool can then determine which of
the microblogs in the given corpus could potentially be the result of a
hack.

3.2. Corpora aggregation

Most microblog websites provide streaming APIs to access their
worldwide data stream. Software using these streaming APIs run as

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

220

clients to which user posts, events, and other data from the Microblog
websites are automatically pushed without needing to poll the server.
This data can be retrieved based on keyword and hashtag matches. The
websites also provide REST APIs to get static information such user
profiles or singular searches. Using a combination of the APIs, micro-
blogs can be collected and aggregated into corpora based on topics. A
few researchers have used these APIs and posted the resulting corpora
online for other researchers' use. For this work, we use one such corpus
as described in the subsequent sections.

3.3. Quantification of the microblogs: sentiment analysis

To facilitate analysis, the textual microblogs need to be converted to
numbers representing the sentiment they convey. Sentiment Analysis
helps us quantify the microblogs. Each microblog is assigned a senti-
ment score using NLTK python package, Affective Lexicon (AFINN)
(Nielsen, 2011) and Vader Sentiment Lexicon (Hutto and Gilbert,
2014). We uniquely combined the latter two for better coverage. We
downloaded the AFINN lexicon1 and fused it with the other in Hutto
and Gilbert (2014). Most of the words in the corpus we collected were
in the lexicon. Words not in the lexicon do no affect the sentiment ei-
ther ways. To improve the performance of the change detection, we
tried a few schemes to adjust the granularity of the sentiment scores and
chose the one which is best suited. In the final scheme, sentiment score
is calculated as follows.

∑=X X
Ns
i

(1)

where Xs is the sentiment score of the microblog, Xi is the score of
the individual word obtained from the AFINN and Vader lexicons
mentioned earlier. N is the number of words in the microblog.

3.4. Anomaly detection

3.4.1. Anomaly detection: the basic CUSUM
The basic CUSUM detector determines whether a parameter θ in a

probability density function (PDF) has changed. It essentially chooses
between two hypotheses: H0:θ= θ0 and H1:θ= θ1. Let pθ0 and pθ1
denote the PDF before and after the change, respectively. We do not
have to be concerned with how the PDFs are determined because when
we assume that the process is independent and identically distributed
(iid) Gaussian, all we need to know are the mean values of the

distribution and other terms cancel out. Let yk denote the kth sample of
the data sequence (i.e. quantified sentiment sequence). The basic
CUSUM decision function is

= ⎛

⎝
⎜ + ⎞

⎠
⎟−g g

p y
p y

max ln
()
()

, 0 ,k k
θ k

θ k
1

1

0 (2)

= ≥t k g hmin{ : } ,a k (3)

where h is threshold. Here, ta is called stopping time, the time when the
detector identifies a change and raises an alarm. Each time when gk≤ 0
or ≥g hk , CUSUM detector restarts by setting gk=0 and a new round
of detection begins.

When pθ0 is a Gaussian process with mean μ0, pθ1 is a Gaussian
process with mean μ1, and both have variance σ2, equation (2) detects
mean change and becomes

= ⎛
⎝

+ ⎛
⎝

− −
− ⎞

⎠
⎞
⎠

−g g y μ
μ μ

max
2

, 0 .k k k1 0
1 0

(4)

which can be written as

= + − −−g g y μ ωmax((), 0)k k k1 0 (5)

Even if the distributions are not Gaussian, the above detector is still
sensitive to mean change (Philips).

3.4.2. Modified CUSUM (mCUSUM)
The basic CUSUM does not consider that the change can last for

some time. It is somewhat simplistic for our purposes. Also, the above
discussion on basic CUSUM is unidirectional, applicable to positive
sentiment. To apply it to our problem, we enhanced it as described in
Liu and Sun (2010). We extended it to both directions, particularly
focusing on the negative sentiment in the other direction, the equation
for which is as follows

= + − −−
−g g μ y ωmax((), 0)k k k1 0 (6)

For brevity we will not repeat the MLE derivation already given in
Liu and Sun (2010). The end result is captured in the algorithms below.
In addition, we made a few other changes to the algorithm on top of Liu
and Sun (2010) as described below.

As can be seen from the discussion on basic CUSUM above, for
change detection, there are two key values: the mean before a change in
sentiment and the threshold. The basic CUSUM assumes that the change
occurs only after some time and uses the first few values, say the first 2,
5, or 10 values to determine the mean before change. We tried that first.
However, when we were trying to optimize the performance, we dis-
covered that using the mean for the sentiment scores of the entire
corpus as μ0 gave us far better accuracy, but at the cost of not being able
to apply it in realtime. The reason may be because the assumption that
change occurs only after some time may not always be true. The mean
or moving average can start fluctuating from the second value itself. As
we see in one of the scenarios, the attack can happen before anyone
even expresses their opinion. We want our solution to detect the attack
in this situation as well. The limitation that the modified CUSUM
cannot be applied in realtime will be addressed by the framework that
we propose toward the end.

The above approach of using the mean of the scores for the entire
corpus as reference will work because the corpus is expected to be huge
compared to the period of attacks. Attacks can sway the overall mean to
some extent, but, as we shall see, not so much as to jeopardize the
detection algorithm.

As part of the experiments, we varied the threshold and the pre-
sumed mCUSUM sensitivity constant, ω, which is known to be a posi-
tive value, in a nested loop to find the optimum threshold value that
results in best accuracy, using the training data. Since this is a routine
machine learning task, for brevity, we do not give the details of how to
compute the precision, recall, and other accuracy numbers. The final

Fig. 1. Framework for offline detection.

1 http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6010/zip/
imm6010.zip.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

221

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6010/zip/imm6010.zip
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6010/zip/imm6010.zip

algorithms are given as Algorithms #1–#3 below. For easy reference,
we call the CUSUM algorithm modified herein as mCUSUM. Algorithm
#1 computes gk using the equations (5) and (6).

Algorithm 1
mCUSUM: Compute gk values.

Input: ω, whose initial value is 0 and optimum value is determined
by trial in Algorithm 3 and Array of sentiment scores Y, obtained
as described in 3.3

Output: G+ and G−, Arrays of g+ and g− values after applying the
above equations

μ0= ∑ s
len S()

/* Iterate on the sentiment scores for each of the microblogs */
while (yk ε Y) do

−gk =max(gk−1 + (μ0− yk−ω), 0)
gk=max(gk−1 + (yk− μ0−ω), 0)

end while
=+ +G g[]k

=− −G g[]k

Algorithm #2 finds the fake tweets using the starting and stopping
time equations for the modified mCUSUM.

Algorithm 2
mCUSUM: Find Fake Microblogs.

Input: Threshold, τ and Array of sentiment scores Y.
Output: IFA, the confusion matrix (or array) indicating fake

microblogs; IFA[i]= 1 if the microblog is fake.
while (yk ε Y) do
/* The goal is to find indices start and stop repeatedly until we
iterate on all microblogs. These two indices indicate the interval
of attack */
start= stop= 0
while (i > 0 and i < len(Y) and −gk > τ) do

if (not start) then
at1= i
for j in reversed(xrange(i)) do
while (j > 0 and −gj > = −

−gj 1) do

j -= 1
end while
start = j + 1
break

end for
end if
i + = 1
if (start) then

at2= i
stop=m where at1 < = m < =at2 and

−gm =max(G−[at1:at2])
IFA[start:stop]= [1]
return(IFA)

end if
end while

end while

Algorithm #3 computes the optimum threshold and ω values and
feeds them into the above two algorithms to find the fake tweets. The
probability p in our problem statement is the value returned by fin-
dAUC() in the algorithm, using the final values of τ and ω.

Fig. 2 shows the sentiment scores for the tweets plotted in red in the
above half and the computed values of g− plotted in green in the lower

half. The sentiment scores are also plotted as a line in blue in the lower
half for contrast. The optimum threshold determined for this scenario is
quite close to 0, hence the line for the threshold is not clearly seen. As
can be seen, the sentiment scores vary between −5 on the negative side
to 3 on the positive side, with most of scores in the negative. The green
line in the bottom plot is what is used to determine which tweets are
fake, as we will see. An attack is not readily evident by looking at the
plots either at the top or bottom. The relationship between the green
line at the bottom and the red points at the top that is given in equation
(6) is also not easily recognized from the plots. But as we shall see, the
plots are from one of the scenarios of attack and the mCUSUM algo-
rithm is quite successful in detecting the attack.

Algorithm 3
Finding the Optimum Threshold, τ, mCUSUM constant, ω, and the Fake
Tweets Array, IFA.

Input: Array of sentiment scores Y
Output: IFA, Array of fake microblogs
// Iterate on the threshold
for (τtemp=0; τtemp < = 25; τtemp + = 0.25) do
// Iterate on the mCUSUM constant, ω
for (ωtemp=0; ωtemp < =1; ωtemp + = 0.05) do

/* Run the first part of the mCUSUM algorithm to fill the ‘g’
values in array, −Gtemp, using the array of given sentiment scores Y

*/
−Gtemp[τtemp, ωtemp]= cusum (ωtemp,Y)

/* Run the second part of the mCUSUM algorithm on G− to get
the array of fake tweets, IFA */

(continued on next page)

Fig. 2. Sentiment Score and the corresponding mCUSUM Plot for a Scenario; we
can see how −gk varies with the changes in sentiment score. Scenario 9, de-
scribed later in the paper, is chosen randomly - it can be any other scenario for
the purpose of illustration.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

222

Algorithm 3 (continued)

IFAtemp[τtemp, ωtemp]= findFakes (τtemp, −Gk)
/* Find the Area Under the ROC curve for these values of

threshold and ω */
Atemp[τtemp, ωtemp]= findAUC (IFAtemp)

end for
end for
/* Get the values of the threshold and ω which maximize the

accuracy of the prediction measured by the Area Under the ROC
curve, based on the already labeled tweet data */

τ, ω= getKeys (max (Atemp))
/* Using the above values run the mCUSUM algorithm one final

time to find the fake microblogs */
G−= cusum (ω, Y)
IFA= findFakes (τ, G−)

3.4.3. Statistical anomaly detection: discrete Kalman Filter
An excellent discussion on Kalman Filter is given in Welch and

Bishop (2001) and quite a few other publications as well, so we will not
go into the details of the theory. The general system of Kalman Filter
equations can be transformed into the following single variable case,
given by equations in Welch and Bishop (2001).

=−
−x xˆ ˆk k 1 (7)

= +−
−P P Qk k 1 (8)

=
+

−

−K
P

P Rk
k

k (9)

̂ ̂ ̂= + −− −x x K z x()k k k k k (10)

= − −P K P(1)k k k (11)

In the above equations, (7) and (8) comprise the time update and
the remaining 3 equations comprise the measurement update. zk are the
sentiment scores of individual microblogs. xk are analogous to the gk in
mCUSUM and have to be computed. For simplicity, we assume Q and R
to be constant, just like we did for ω in mCUSUM. Just like we com-
puted the optimum values for ω, the threshold τ by iterating through a
number of possible values, we do the same in case of Kalman Filter, by
iterating through a number of possible values for the offset τ and con-
stants Q, and R, using the training data.

Initial seed values for P, K and x̂k are assumed to be 0. Algorithms
#4 and #5 below directly apply the Discrete Kalman Filter equations to
detect fake tweets.

A plot of the sentiment scores of the tweets after applying the
Kalman Filter algorithm is shown in Fig. 3. The dots in green, above the
red line for τ are presumed to be genuine and the ones marked with a
‘+’ in maroon below the red τ line are detected to be part of an attack.
The scenario is that of injecting twelve fake tweets after a random
number of real tweets not exceeding forty. As can be seen from the
figure, Kalman Filter correctly identified most of the twelve maroon ‘+’
for every forty or less green dots as the scenario entails. There are of
course false positives. These and other results are discussed in detail
later. In this scenario, the optimum τ was determined to be −0.2 and is
shown by the red line. The line for the expected sentiment is shown in
blue, above the red line.

Algorithm 4
xhatCompute: Determine Expected Sentiments using Kalman Filter
Equations.

[1]
// Direct application of the Kalman Filter Equations
while (zkεZ) do

Algorithm 4 (continued)

// Time update
̂=−

−x xˆk k 1

= +−
−P P Qk k 1

// Measurement update

=
+

−

−K
P

P Rk
k

k

̂ ̂ ̂= + −− −x x K z x()k k k k k

= − −P K P(1)k k k
end while

Algorithm 5
Determining Optimum values of Q, R, and offset τ.

// Iterate on the possible values for τ, R, and Q
for (τtemp=-0.5; τtemp < = 0; τtemp + = 0.05) do
for (Rtemp=0, Rtemp < = 0.02; Rtemp + = 0.001) do

for (Qtemp=0, Qtemp < = 1e− 4; Qtemp + = 1e− 5) do
x̂k = xhatCompute(Rtemp, Qtemp, Z)
while (zkεZ) do

if (zk - ̂xk < τtemp) then
̂yk =1

end if
end while
// Just like for mCUSUM compute the accuracy of results for

each case
=AUC findAUC Y Y(,ˆ)temp temp

end for
end for

end for
τ, R, Q= getKeys((max(AUCtemp)))

=x xhatCompute R Q Zˆ (, ,)
while (zkεZ) do
if (zk - ̂xk < τ) then

(continued on next page)

Fig. 3. Kalman Filter results for the same scenario as for Fig. 2; ‘+’ in red are
identified as fake tweets; red line is the offset from the expected sentiment
drawn in blue; green dots are identified as genuine. Scenario 9, described later
in the paper, is chosen randomly - it can be any other scenario for the purpose of
illustration.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

223

Algorithm 5 (continued)

̂yk =1
end if

end while

3.5. Classification as real or fake post

The parameters computed during the statistical anomaly detection
module are used to classify the microblogs using the algorithms given in
this section. The algorithms are specific to techniques used in the pre-
vious model, so are included in the above section for ease of under-
standing.

4. Experiments

Realtime experiments using Twitter APIs, like Andres Sepulveda
did, could actually land one in trouble with the law. We therefore im-
plemented the offline framework that integrates mCUSUM and Discrete
Kalman Filter.

4.1. Dataset

To proceed with the experiments, we need an offline corpus M of
microblogs covering a major event T, preferably a Presidential election,
in view of the impact of the event and possible chances of an influence
attack IFA. The advantage of an offline corpus is the ease with which an
attack can be faked. A simulated attack will then be a matter of text
modification than using APIs to actually post the microblogs to sway
the influence. We tried using Twitter streaming APIs to collect live posts
over a few weeks, but the collection was not sufficiently big enough on
any single topic, particularly the US Presidential election that we
wanted to focus on. We therefore searched online and found a data set
of around 10 million tweets used for a paper in the CIKM conference.2

We analyzed the 10 million tweets and identified the following four
socially sensitive topics during the period based on the relative fre-
quencies of the hashtags:

1. Iran Elections3

2. Tea Party4

3. Haiti Earthquake5

4. Yankees6

We did an automated sentiment analysis of all the four categories of the
tweets as described in 3.3. The sentiment scores for the tweets were
tabulated and plotted for visual analysis. Of the above four, the tweets
related to the 2009 Iran Presidential elections, numbering 1650 seemed
to be ideally suited for our project, based on our goal and the sentiment
fluctuations in the corpus itself. Now we have M and T.

4.2. Injecting influence

Next, we need to inject negative influence IFA into these microblogs
to simulate Andres Sepulveda's “Social Media Predator” program's at-
tack A, but offline. Malicious accounts try to make their tweets diverse
to avoid being detected as robots. To generate diverse microblogs with
negative sentiment, we tried to build on top of a few random sentence
generators based on Hidden Markov Models using a set of words and
articles with negative sentiment that relate to the Iran elections. We

tried NLTK (Bird et al., 2009) based approaches as well, but the se-
mantic quality of the sentences generated using all these approaches
turned out to be poor.

As an alternative approach, we manually collected a series of online
articles containing negative sentiment on the topic. We wrote a python
program to use the Affective Lexicon (AFINN) (Nielsen, 2011) to ana-
lyze the sentiment of the sentences in the article. Sentences from the
articles with substantially negative sentiment were then selected by the
program and fed to another program that uses a simple markov chain
approach, which seemed to be popular with twitter bots. The latter
program generated random and reasonably sensible sentences, which
were compacted into microblogs of 140 characters or less. We used
these negative microblogs, numbering around 460, for injection into
the real world corpus to simulate various scenarios.

4.3. Scenarios

The experiments are organized to model various typical real world
scenarios as described in this section. These scenarios typically arise
from deliberate, injected attacks and not usually a result of, say, a hot
mic or a genuine leak. For instance, below is a function call to a typical
twitter bot that seems to be popular online:

tweetbot.twittertweetingstart(days = 0,
hours = 19, minutes = 30, keywords = None,
prefix = None, suffix = ‘#PyGaze’)

The above scenario is covered by scenario 5 below. Other scenarios
are similarly designed to simulate how attacks can happen in reality. It
may however be true sometimes that some of the scenarios may have
been caused by genuine happenings and not deliberately injected. Such
occurrences will have to be correlated to news media or use some other
techniques to rule out an injected attacked. This paper does not deal
with these corner cases. It can be reasonably assumed that the public
opinions on a specific topic do not change dramatically within a short
time window, without a deliberate attempt to inject negative influence.

The scenarios are also designed to take into consideration that not
all sentiment changes can be attributed to a malicious attack. There is a
chance that the performance of the algorithms could be impacted by
false positives. The scenarios are specifically designed also for negative
testing the algorithms and analyze the false positives rate.

We organize various scenarios in four different categories according
to how fake tweets are injected. The detailed discussions are explained
below.

4.3.1. Attack timing
Scenario #1. Fake tweets all at once, right at the beginning, fol-

lowed by several real tweets. This covers the case where the attacker
wants to preempt the influence on a topic by taking the lead.

Scenario #2. All fake tweets at once after a number of real tweets.
The results for both mCUSUM and Kalman Filter are same as in scenario
1. This implies that timing does not matter from the algorithm per-
spective, but may matter in reality because of the influence on other
tweets. This realtime influence fluctuation could not be tested because
our data set did not include a live attack or live users.

The plots for mCUSUM and Kalman Filter for this category are
shown in Figs. 4 and 5 respectively. Both the algorithms detect the
attack with high accuracy. The mCUSUM algorithm detected almost all
of the fake tweets, achieving a 99.9% accuracy. The plot in Fig. 4
clearly shows a rising −gk for around 460 tweets - the period of the
attack, irrespective of when the attack starts. In the figure at the top for
scenario #1, the attack started right away, causing −gk to rise until the
attack ended. In the second scenario at the bottom, the attack started
after about 400 tweets, when −gk also started rising until the attack
ended.

The Kalman Filter algorithm on the other hand achieved 83.2%

2 https://archive.org/download/twitter_cikm_2010/twitter_cikm_2010.zip.
3 https://fas.org/sgp/crs/mideast/R40653.pdf.
4 https://en.wikipedia.org/wiki/Tea_Party_movement.
5 http://www.cnn.com/2010/TECH/01/14/twitter.hoax.haiti/.
6 https://en.wikipedia.org/wiki/Yankee_Stadium.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

224

https://archive.org/download/twitter_cikm_2010/twitter_cikm_2010.zip
https://fas.org/sgp/crs/mideast/R40653.pdf
https://en.wikipedia.org/wiki/Tea_Party_movement
http://www.cnn.com/2010/TECH/01/14/twitter.hoax.haiti/
https://en.wikipedia.org/wiki/Yankee_Stadium

accuracy. It identifies quite a few tweets as fake, incorrectly. This is
because the Kalman Filter is based on expected sentiment that recur-
sively depends on the previous state. When the attack all happens at
once, the expected sentiment is negative during the attack, but gets
back into the positive region soon after. Most negative tweets, even if
genuine, therefore get identified as fake if they are not in the tolerance
offset from the expected sentiment score. This can be observed from
Fig. 5.

4.3.2. Viciousness
Scenario #3. The fake tweets alternating with real tweets right from

the beginning. The attacker monitors every genuine tweet and responds
to it negatively, a scenario quite common in the reality.

Scenario #4. Fake tweets alternating with real tweets after certain
number, say 400 of real tweets on the topic. The attacker watches for
some time, gauges the sentiment and decides to start swaying the in-
fluence by posting a negative tweet for every genuine tweet.

The plots for mCUSUM and Kalman Filter for the viciousness cate-
gory are shown in Figs. 6–8, 9 respectively. In the Scenario 3 plot for
mCUSUM in Fig. 6, we can see that −gk mostly rises as long as the attack
lasts and then changes direction immediately. There are many small
changes in direction along the green line, indicating the alternate
sentiment shifts designed in the scenario. Since the attack comprises of

Fig. 4. mCUSUM plots for the scenarios examining the effect of attack timing;
the detection results for these scenarios are almost perfect. The period of the
steep rise of −gk to its maximum, is the period of the attack.

Fig. 5. Kalman Filter plots for the scenarios examining the effect of attack
timing.

Fig. 6. mCUSUM plots for the Viciousness Scenario 3.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

225

around 460 fake tweets, the stopping time indicated by the change of
direction occurs at around 920th tweet, given that the fake tweets al-
ternate with the genuine tweets. It is apparent that the genuine tweets
did not contribute much to the sentiment shift because the overall
impact of the attack has −gk rising to its peak. We also notice a few
cusps toward the end, although there was no attack at that time. These
direction shifts can be attributed to genuine opinions.

The mCUSUM plot for the fourth scenario in Fig. 7 is quite similar to
the third, just that the attack starts after around 400 tweets. In this case
too, from the shape of −gk , it can be seen that the algorithm has cor-
rectly identified most of the fake tweets. It must be noted that the
threshold is not clearly seen in the plots because it is too close to the X-
axis.

The Kalman Filter plot in Figs. 8 and 9, for the scenarios is straight
forward. Each point on the plot is a raw sentiment score for one of the
tweets. The yellow circles are the sentiment scores of injected fake
tweets. They are mostly negative, so are predominantly in the lower
half of the Cartesian plane. The green dots are the sentiment scores of

the tweets that the Kalman Filter has identified as genuine and the red
“+” points are those of the fake tweets. A red “+” on a yellow circle
indicate the fake tweets that the algorithm has correctly identified. We
plot the sentiment score that we expect based on the previous tweets as
a blue line and the offset from it as a tolerance limit plotted as a red
line. The points below the red line are identified by Kalman Filter as
fake tweets.

As can be seen from Figs. 8 and 9, the Kalman Filter identifies most
of the fake tweets correctly, but is impacted by a number of false po-
sitives as well. The reason is the Kalman Filter's recursive dependence
on the previous state to compute the expected sentiment. Because of the
preponderance of genuine, positive sentiment tweets, the expected
sentiment is mostly positive, causing most negative sentiment tweets to
be identified as fake, even if they are genuinely posted.

In the plot for Scenario 3, the injected fake tweets can mostly be
seen to the bottom left, alternating with the green tweets, which are
mostly on the top. The Kalman filter identified most of the fake tweets,
but there are quite a few false positives as well to the right. The algo-
rithm correctly identified most of the genuine tweets. The blue line
representing the expected sentiment merged with the offset because the
tolerance limit for this scenario has been determined to be 0. It is clear
from the figure that the fake tweets have been injected only till the
920th tweet, since there were around 460 fake tweets alternating with
the genuine tweets. The Kalman Filter plot for Scenario 4 can be si-
milarly interpreted. Both the blue line for the expected sentiment and
the offset for tolerance in red can be seen in this plot. The attack starts
with a delay, but Kalman Filter identified a few false positives right at
the beginning. It can also be seen that the algorithm correctly identifies
most of the fake tweets and the genuine ones.

4.3.3. Weak attack power
Scenario #5. One fake tweet after a random number of genuine

tweets not exceeding a fixed number, say 40. That means only around
41 fake tweets for 1650 real tweets. This scenario is often achieved by
employing a bot. This scenario tests the case of weak influence. Both
mCUSUM and Kalman Filters are effective. Implies that even weak in-
fluences can be detected.

Scenario #6. Three fake tweets after a random number of real
tweets not exceeding a fixed number, say 40. This implies only 123 fake
tweets for our corpus of 1650 real tweets. This further tests the case of
weak influence.

Scenario #7. Up to six random number of fake tweets after a
random number of real tweets not exceeding, say 40. This implies only

Fig. 7. mCUSUM plots for the Viciousness Scenario 4.

Fig. 8. Kalman Filter plots for the Viciousness Scenario 3. The expected senti-
ment is hidden behind the red offset line because the offset in this case is 0.
Because of the preponderance of positive tweets, the expected sentiment is
mostly positive, causing most negative tweets to be identified as fake, even if
genuinely posted.

Fig. 9. Kalman Filter plots for the Viciousness Scenario 4.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

226

246 fake tweets for 1650 real tweets. This also is a test for the case of
weak, but increased influence.

The plots for mCUSUM and Kalman Filter for category examining
the weak influence are shown in Figs. 10–13, 14, 15 respectively. Key
things to note from the mCUSUM plots are that the injected fake tweets
are far and few, hence the cumulative negative sentiment represented
by the green line is far less compared to the previous scenarios. The
green line fluctuates and changes its direction at most places the fake
tweets are injected, implying that the mCUSUM identified the injected
fake tweets correctly, most of the time. Another point to note is that the
rise of the green line corresponds to the spikes of the sentiment score in
the opposite direction, giving the impression of a reflection. This is
because the blue line spikes to the bottom mostly indicate fake tweets
with negative sentiment. The green line captures the cumulative sum of
the sentiment score and changes direction when negative sentiment
attack is done with.

The Kalman Filter plots clearly indicate the injected fake tweets
with a yellow circle, as before. The blue line representing the expected
sentiment and the offset from it represented by the red line are dis-
tinctly visible in the weak influence scenarios, giving more benefit of
doubt to the tweets, since the influence is weak, which is quite intuitive.
Though most of the injected tweets are detected correctly, as indicated

Fig. 10. mCUSUM plots for the scenario 5 covering weak attack power.

Fig. 11. mCUSUM plots for the scenario 6 covering weak attack power.

Fig. 12. mCUSUM plots for the scenario 7 covering weak attack power.

Fig. 13. Kalman Filter plots for the scenario 5 covering weak attack power.

Fig. 14. Kalman Filter plots for the scenario 6 covering weak attack power.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

227

by a red “+” inside the yellow circle, there are also a number of false
positives. It can also be seen that most of the genuine tweets have also
been identified correctly. Performance metrics are discussed later in the
section on “Algorithm Performance Analysis”. As can be seen from
various figures, the algorithms are impacted by false positives differ-
ently, based on the scenario and the attack pattern. The reasons are
explained later, towards the end of the “Algorithm Performance
Analysis” section.

4.3.4. Random attacks
Scenario #8. Nine fake tweets after a random number of genuine

tweets not exceeding 40. Implies 369 fake tweets for 1650 real tweets.
This and the previous scenarios tell us how the algorithms fare with
gradually increasing influence.

Scenario #9. Twelve fake tweets after a random number of real
tweets not exceeding 40. Tests periodic and sporadic attacks, typically
using a microblog bot.

Scenario #10. Six fake tweets after a random number of real tweets
not exceeding 20. Tests the impact of increasing frequency of attack.

Scenario #11. One fake tweet after a random number of real tweets
not exceeding 4. This tests the impact of sporadic influence attacks.

Figs. 16–19 show the plots for the mCUSUM runs for this category of

Fig. 15. Kalman Filter plots for the scenario 7 covering weak attack power.

Fig. 16. mCUSUM plot for scenario 8 examining the effect of random attacks.

Fig. 17. mCUSUM plots for scenario 9 examining the effect of random attacks.

Fig. 18. mCUSUM plots for scenario 10 examining the effect of random attacks.

Fig. 19. mCUSUM plots for scenario 11 examining the effect of random attacks.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

228

scenarios. The sentiment fluctuations in each scenario are visible from
the plots. The plots resemble the ones for weak influence. However,
since a bunch of fake tweets are posted together in this case, the cu-
mulative effect is much more profound as the heights of the green lines
demonstrate. The more closer the fake tweets are posted, the higher is
the cumulative impact of the period. The observed behavior is quite
along the lines of the intuitive reasoning.

The plots for the Kalman Filter runs for the same scenarios are in
Figs. 20–23. Each figure illustrates the performance of the algorithms
for the respective scenario. The scenarios are all different attack pat-
terns, resulting in different behavior and metrics. Once again, it can be
seen that most of the identification happens correctly, although there
are a few false positives represented by the red “+” points not enclosed
in a yellow circle. It can also be seen that the expected sentiment and
the offset from it are clearly seen, indicating some tolerance to senti-
ment fluctuations.

Fig. 20. Kalman Filter plots for scenario 8 examining the effect of random at-
tacks.

Fig. 21. Kalman Filter plots for scenario 9 examining the effect of random at-
tacks.

Fig. 22. Kalman Filter plots for scenario 10 examining the effect of random
attacks.

Fig. 23. Kalman Filter plots for scenario 11 examining the effect of random
attacks.

Table 1
Evaluation Metrics for one Scenario examining the effect of attack timing. These
metrics were computed for all scenarios. For brevity, only Scenario #2 has been
randomly chosen to illustrate the metrics. Any other scenario would have
served the purpose.

Metric / Detail mCUSUM Kalman Filter

Threshold / Offset 2 −6.9388
K 0.05 R=0.0120, Q=0
Fake Tweets Injected 459 459
Total Number of Tweets 2109 2109

AUC 0.9990 0.8326
True Positives 459 420
False Positives 3 412

F1 score 0.9967 0.6506
Precision 0.9935 0.5048
Recall 1 0.9150
Avg Precision 0.9967 0.7191

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

229

4.4. Algorithm Performance Analysis

A table of all the evaluation metrics we adopted to measure the
performance of the algorithms and the corresponding statistical para-
meters is given in Table 1. The table is for one scenario. Results for
other scenarios are collectively presented and analyzed later. This one
scenario is for illustrating the various metrics in detail. In this particular
scenario, #2, chosen for no specific reason, mCUSUM identified almost
all 459 fake tweets resulting in a recall of 1 and an F1 score of 0.997.
Kalman Filter identified 420 out of the 459 fake tweets, but is impacted
by a number of false positives, which drops its performance.

The third section of Table 1 gives the Precision, Recall, and the
metrics based on these, namely, F1 score and Average Precision. As can
be seen, though Recall is high for Kalman Filter, the F1 score or F-
measure, which is the harmonic mean of Precision and recall, is low
because of the low precision.

For detection problems, the standard evaluation criteria include
Receiver Operating Characteristic (ROC) curve, which describes the
relationship between detection rate and false alarm rate, as well as
precision and recall. We chose ROC curve and precision / recall to do
the comparison. Fig. 24 shows the performance of mCUSUM in ROC
space for scenario #9. The x-axis measures the false positive rate, given
as (1− specificity), indicating how liberal or less specific the algorithm
is in classifying the tweets. Specificity is the true negative rate and is a
measure for the proportion of fake tweets that are correctly identified as
such.

Y-axis plots the true positive rate, which is the same as recall, also
known as sensitivity. The closer the curve is to the point (0,1), the
greater the Area Under the curve (AUC) and the better the performance
of the algorithm, because (0,1) is the point when there are no false
positives and all true positives. The variable that the curve plots is the
ability of the algorithm to classify the tweets correctly. The python li-
brary we used plots the performance of the algorithm in the ROC space
rather than plot the points for varying thresholds. The resulting Fig. 24
shows the parameters involved in computing the AUC. The algorithm's
performance, plotted on a Precision Recall curve for the same scenario
is shown in Fig. 25.

Recall rate is satisfactory for most scenarios, but precision is not as
good in some cases because of false positives. mCUSUM accumulates
the difference between the expected value and the observed value. The
expected value is computed based on the entire corpus and not just the
previous tweets. When the fake tweets all come at once, the accumu-
lated differences are substantial and can be clearly differentiated from
the genuine tweets.

The following two subsections further analyze the performance of
the algorithms with respect to AUC and false positive rates.

4.4.1. AUC analysis
Fig. 26 shows the comparison of the Area Under the ROC Curve

(AUC) for the algorithms for various scenarios. AUC is a good measure
for the performance of algorithms. Higher AUC implies that the algo-
rithm has done a good job at distinguishing between injected fake
tweets and the genuine ones. As can be seen, both the algorithms per-
formed quite well on the data in all the scenarios and the results are
meaningful.

As expected, from Fig. 26, mCUSUM worked accurately
(AUC=0.999) for the scenarios where the fake tweets all come at once,
irrespective of the timing. In case of Kalman Filter, the expected sen-
timent recursively depends on the previous state. In the first scenario,
the attack starts right at the beginning. There are no genuine tweets
before the attack. Kalman Filter, therefore does not know what scores
can be classified as genuine, although the attack happens in the be-
ginning. It is for this reason and reasons explained in previous sections
that Kalman Filter does not perform as well as mCUSUM for the first
few scenarios.

For scenarios 5 to 11, instead of injecting fake tweets in regular
intervals, we used a random interval to make it closer to the real life
scenario and performance of the tools is still good. Kalman Filter out-
performs mCUSUM in two of these scenarios, #5 and #11, where the

Fig. 24. Performance of mCUSUM applied to Scenario 9 plotted in ROC space. Fig. 25. Performance of mCUSUM for the same Scenario 9 plotted in the
Precision / Recall space.

Fig. 26. Values of the Area Under the ROC Curve are plotted on the Y-axis for
each scenario.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

230

fake tweets are interleaved with the genuine ones closely, because
mCUSUM is not sensitive enough when weak attacks occur periodically.
Kalman Filter works better when there is preponderance of the genuine
tweets preceding the fake ones because of its recursive dependence on
the preceding state. mCUSUM performs better in all other cases since it
is post-fact resulting in a better estimate for the expected score.
mCUSUM is almost 100% accurate when the fake tweets are all inserted
at once for reasons explained earlier.

For the mCUSUM threshold τ, we used the range (0, 25) with 0.25
increments to find the optimum permutation of threshold τ and ω which
maximizes AUC, the Area Under the Receiver Operating Characteristic
(ROC) curve. However, experiments showed that the optimum
threshold is quite close to 0. For sensitivity constant ω, we used the
range (0, 1) with 0.05 increments, covering most possible permutations
of values in nested loops.

Similarly for the Kalman Filter, we used three nested loops for the
offset τ, and presumed constants, R, and Q to find the permutation that
yields the best AUC. Here too, the optimum τ was close to or often 0, as
we saw in the plots as well.

The number of true positives influences the performance more than
the other measures in some scenarios. Scenario 5 particularly, greatly
depends on the accuracy of the confusion matrix. AUC can be 0 even if
the indices are off by 1, demonstrating the sensitivity of the constants.

For mCUSUM, we tried computing the μ0 in the loop considering
only the microblogs posted till then, like is done for basic CUSUM, in-
stead of at the beginning, but the performance in terms of AUC values,
was not as good as when we used the mCUSUM logic. Same results if μ0
is computed for just the first few tweets instead of for all. A mean re-
presentative of all the scores, post-fact is apparently a better measure
for the expected sentiment to measure and accumulate the differences
than the mean of just the first few tweets or even the tweets posted till
then. This limits the applicability of the mCUSUM algorithm for re-
altime / online detection. We overcome this limitation in the frame-
work discussed in the section on “The Proposed Comprehensive
Anomaly Detection”.

4.4.2. False positives analysis
The algorithms are impacted by false positives as illustrated in

Fig. 27. The Y-axis plots the fraction FalsePositives
TotalTweets

for each scenario given
on the X-axis. For the first two scenarios, mCUSUM does not result in
any false positives, whereas the Kalman Filter produces a substantial
number of them. The reason is as follows. The Kalman Filter recursively
depends on the previous state to detect changes. In the first two sce-
narios, however, there is no genuine post to establish accurate “pre-
vious state” for Kalman Filter, which makes it ineffective. On the other
hand, as the mCUSUM uses the average of overall sentiment score as the
mean for change detection, as long as the majority of the posts are real,

it can perform accurate change detection. The recall rate for both the
algorithms in all the scenarios is quite high.

The mCUSUM false positive rate for scenarios 3, 4, and 11 is par-
ticularly high because of the frequent fluctuations in the sentiment
score. In all the three scenarios, fake tweets are posted at very short
intervals. In scenarios 3 and 4, the interval is 1 - fake tweets alternate
with the genuine ones. The more frequent the fluctuations, the more
confused is the CUSUM algorithm. The first two scenarios form one
pattern that is explained in the previous paragraph, where the attack
happens in succession. The frequent fluctuation pattern we saw in
scenarios 3, 4, and 11 is the other. All the remaining scenarios are in
between these two patterns, so the false positives vary accordingly for
both the mCUSUM and the Kalman Filter.

5. The Proposed Comprehensive Anomaly Detection

From the above discussion, on one hand, it can be seen that the
Kalman Filter suffers from false positives in certain scenarios. This is
particularly true for the common scenarios 1 and 2, as the results in
Fig. 27 show. On the other hand, the mCUSUM cannot be applied in
realtime. This calls for an improved solution that we will describe in
this section.

We explained in the mCUSUM section that μ0 is the average of all
sentiment scores till then. Due to this limitation of the mCUSUM al-
gorithm requiring the μ0 value to be computed on the tweets post-fact,
the framework presented in the earlier sections can be used only offline.
However, it is preferable if the attacks are detected in realtime to curtail
any resulting damage. We address these limitations of the first frame-
work by proposing a second framework as illustrated in Fig. 28.

Using the training data, parameters, such as τ, ω for mCUSUM and τ,
Q, and R for the Discrete Kalman Filter algorithms are first computed
offline. The parameters are then fed into the corresponding instances of
the algorithms which run on the live microblogs. The microblogs are
first processed by the Discrete Kalman Filter and if the algorithm flags
possible influence attacks often, mCUSUM gets invoked. It runs on the
past few hundreds of the microblog posts to determine if an attack is
indeed in progress and alerts accordingly.

The reason for using an ensemble of the two algorithms is for one to
overcome the limitations of the other. Kalman Filter can be applied
realtime, but is impacted by false positives in certain scenarios.
mCUSUM is less impacted by false positives for the common scenarios
but can work only on offline data for the reason discussed above. Cross-
checking the realtime results from Kalman Filter with those from run-
ning mCUSUM on immediate past offline data will therefore result in

Fig. 27. False Positives as a fraction of the total number of tweets for each
scenario plotted on the Y-axis. Fig. 28. Framework for detecting microblog attacks on OSNs.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

231

better accuracy, when it comes to realtime attack detection. The second
framework shown in Fig. 28 proposes this arrangement.

6. Discussion

To the best of our knowledge, we did not find similar work using the
same or similar Change Detection techniques applied to sentiment
scores of tweets to identify injected attacks. As mentioned earlier, so-
lutions proposed by other researchers using other techniques, such as
those presented in Vosoughi (2015) specifically were successful in
identifying around 70% rumors correctly, as compared to the results
from the solution presented in this paper. Also, in the above sections,
we compared the results from the mCUSUM and Kalman Filter algo-
rithms and proposed a framework that purports to workaround the
drawbacks of one with the advantages of the other.

This work successfully demonstrated how change detection techni-
ques can be used to identify influence shifts on OSNs, using anomaly
detection algorithms modified for the purpose. The results confirmed
our hypothesis so as to continue research in the direction. The experi-
mental settings comprehensively cover various real-world scenarios.
We used statistical techniques to uncover the patterns of adverse in-
fluence that closely follow the real-world scenarios. However, there are
some limitations as discussed below.

It must be noted that the purpose of an injected influence hacker
attack is to change the public sentiment on a topic. It is not an as-
sumption, but a basic premise, the ground truth, that the attack cor-
responds to a change in sentiment. The only effect of a successful in-
jected influence attack is a change in sentiment. It may be true that not
all sentiment changes are a result of an attack. But it is rare that public
discourse shifts significantly without a deliberate attack to inject in-
fluence.

That is the reason we identified and simulated several scenarios to
see if the techniques can recognize the attacks and evaluated the ac-
curacy for each scenario. Our results have shown that the attack could
be identified with a significant rate of accuracy. It also showed that
there are quite a few false positives, those which were not injected, but
were a result of other factors like hot mic etc. The false positives are
duly tabulated and incorporated into the evaluation of our algorithms.

It is well known that most estimators and predictors work well on
Gaussian distributions. This holds for mCUSUM and Kalman Filter.
However, as mentioned earlier, Gaussian assumption is not mandatory
for CUSUM (Philips) and for Kalman Filter as well. But Gaussian dis-
tributions do help improve the performance in both cases.

As can be seen from the mCUSUM Algorithm #1, the mean is
computed on all the sentiment scores of the microblogs so far. That
means the mCUSUM algorithm works only post-fact. Only after we
analyze the sentiments of all the microblogs do we know which one of
them could possibly be part of an attack. Kalman Filter can fare better
in that respect as it can immediately predict the sentiment score of the
next microblog and if the actual score differs from this by a significant
offset, it can be considered as manipulating the influence.

It must also be noted that we do not distinguish between the mi-
crobloggers. Typically, multiple malicious accounts are controlled by
one attacker. They share the same attack goal as to increase or decrease
the sentiment of the microblog. Computing the correlations between
the accounts may further help in the detection process. Also, for our
experiments, we focused only on negative sentiment influence because
many studies, such as (Ansolabehere et al., 1999; Baumeister et al.,
2001) have confirmed that negativity has the most impact on cam-
paigns. The human mind has greater sensitivity to unpleasant news. The
work can easily be extended to cover positive sentiment.

The results from the framework we proposed can be further con-
firmed by using the framework in conjunction with some of the other
techniques we discussed in the related work section. Beyond this, it may
not be reasonably possible to really know if a tweet has been posted
with a malicious intent. More details and discussion on the topic are

presented in the first author's book (Pendyala, 2018).

7. Conclusion and future directions

A malicious scheme that has the potential to alter the outcome of a
country's presidential election is serious problem. Through this work,
we proposed a few ways in which such schemes can be detected, ex-
perimentally evaluated the methods, and achieved significantly accu-
rate results. As highlighted in the Related Work section, Misinformation
Containment is proven to be NP-hard. We cannot solve the problems in
this category completely accurately. There is no definitive way to de-
termine if an opinion shift on microblogging sites is entirely attribu-
table to a malicious attack. But the algorithms we used to the solve the
problem seem to be reasonably accurate at making such a determina-
tion. The accuracy of determining a deliberate injected attack can be
further improved by correlating the results from our experiments with
true happenings, such as described in the news media or other more
reliable sources. The ideas presented in this paper can be further
strengthened by using them in conjunction with technologies such as
blockchain.

There are a few other ways this work itself can be enhanced further.
First and foremost is to do the experiments live, probably on an ex-
clusive students' internal microblogging website, creating one if it
doesn't already exist and study how the injected microblogs influence
the opinion of others. We can then see if the algorithms presented here
can actually detect the injected microblogs.

Microbloggers' correlation analysis can help achieve better accuracy
rates. Simple Euclidean distance can be used for user correlation ana-
lysis. However, the condition for incorporating correlation analysis of
microbloggers is that the users involved in one topic are also involved
in other topics. This condition may not be true for this specific case if
the attacker's only goal is the manipulation of one specific topic. There
is some scope for improvement in generating the semantic scores as
well.

While surveying the existing literature in Section 2, we have high-
lighted how this work can be used in conjunction with other techniques.
Those are some of the enhancements that can be taken up for future
work.

A future project based on this one is to deploy the change detection
techniques on news articles, text transcripts of video and audio news,
and news media in general. It will show how much media can influence
crucial events, such as a Presidential election. Such a project can be
particularly useful given that allegations of a corrupt, paid media are
growing day by day in large democracies and developing countries like
India.

This paper is hoped to open up plethora of ideas in the direction of
evolving an entirely truthful World Wide Web, eventually.

Conflicts of interest

There are no conflicts of interest.

Acknowledgment

The authors are grateful to Santa Clara University for funding the
Open Access publication fee for this article.

References

Ansolabehere, S., Iyengar, S., Crigler, A.N., Holbrook, T.M., Huckfeldt, R., Sprague, J.,
1999. Going negative. In: How Political Advertisements Shrink & Polarize the
Electorate.

Baumeister, R.F., Bratslavsky, E., Finkenauer, C., Vohs, K.D., 2001. Bad is stronger than
good. Rev. Gen. Psychol. 5 (4), 323.

Bessi, A., 2017. On the statistical properties of viral misinformation in online social
media. Phys. A Stat. Mech. Appl. 459–470.

Bird, S., Klein, E., Loper, E., 2009. Natural Language Processing with Python: Analyzing

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

232

http://refhub.elsevier.com/S2352-7285(18)30023-X/sref1
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref1
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref1
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref2
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref2
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref3
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref3
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref4

Text with the Natural Language Toolkit. O'Reilly Media, Inc.
Budak, C., Agrawal, D., El Abbadi, A., 2011. Limiting the spread of misinformation in

social networks. In: Proceedings of the 20th International Conference on World Wide
Web. ACM, pp. 665–674.

Burns, A., Eltham, B., 2009. Twitter Free iran: an Evaluation of Twitter's Role in Public
Diplomacy and Information Operations in iran's 2009 Election Crisis. Retrieved from:
http://vuir.vu.edu.au/15230/1/CPRF09BurnsEltham.pdf.

Castillo, C., Mendoza, M., Poblete, B., 2011. Information credibility on twitter. In:
Proceedings of the 20th International Conference on World Wide Web. ACM, pp.
675–684.

Chew, C., Eysenbach, G., 2010. Pandemics in the age of twitter: content analysis of tweets
during the 2009 h1n1 outbreak. PLoS One 5 (11), e14118.

Choy, M., Cheong, M.L., Laik, M.N., Shung, K.P., 2011. A Sentiment Analysis of singapore
Presidential Election 2011 Using Twitter Data with Census Correction. arXiv pre-
print arXiv:1108.5520. .

Cogburn, Derrick L., Espinoza-Vasquez, Fatima K., 2011. From networked nominee to
networked nation: examining the impact of Web 2.0 and social media on political
participation and civic engagement in the 2008 Obama campaign. J. Polit. Market. 10
(1–2), 189–213.

Hall, Wendy, Tinati, Ramine, Jennings, Will, 2018. From Brexit to Trump: social mediaś
role in democracy. Computer 51 (1), 18–27.

Hamidian, S., Diab, M.T., 2016. Rumor identification and belief investigation on twitter.
In: Proceedings of NAACL-HLT, pp. 3–8.

Hernandez-Suarez, Aldo, Sanchez-Perez, Gabriel, Toscano-Medina, Karina, Martinez-
Hernandez, Victor, Perez-Meana, Hector, Olivares-Mercado, Jesus, Sanchez, Victor,
2018. Social sentiment sensor in twitter for predicting cyber-attacks using l1 reg-
ularization. Sensors 18 (5).

Hutto, C.J., Gilbert, E., 2014. Vader: A parsimonious rule-based model for sentiment
analysis of social media text. In: Eighth International AAAI Conference on Weblogs
and Social Media.

Jain, S., Sharma, V., Kaushal, R., 2015–2020. Towards automated real-time detection of
misinformation on twitter. In: Advances in Computing, Communications and
Informatics (ICACCI), IEEE International Conference on, pp. 2016.

Jin, F., Dougherty, E., Saraf, P., Cao, Y., Ramakrishnan, N., 2013. Epidemiological
modeling of news and rumors on twitter. In: Proceedings of the 7th Workshop on
Social Network Mining and Analysis. ACM.

Jin, Fang, Wang, Wei, Zhao, Liang, Dougherty, Edward, Cao, Yang, Lu, Chang-Tien,
Ramakrishnan, Naren, 2014a. Misinformation propagation in the age of twitter.
Computer 47 (12), 90–94.

Jin, F., Wang, W., Zhao, L., Dougherty, E., Cao, Y., Lu, C.T., Ramakrishnan, N., 2014b.
Misinformation propagation in the age of twitter. Computer 47 (12), 90–94.

Kumar, K.K., Geethakumari, G., 2014. Detecting misinformation in online social networks
using cognitive psychology. Human-centric Comput. Inf. Sci. 4 (1), 1.

Kwon, S., Cha, M., Jung, K., 2017. Rumor detection over varying time windows. PLoS One
12 (1) e0168344.

Laquintano, Timothy, Vee, Annette, 2017. How automated writing systems affect the
circulation of political information online. Lit. Compos. Stud. 5 (2), 43–62.

Liu, B., 2012. Sentiment analysis and opinion mining. Synth. Lect. Human Lang. Technol.
5 (1), 1–167.

Liu, Y., Sun, Y., 2010. Anomaly detection in feedback-based reputation systems through
temporal and correlation analysis. In: Social Computing (SocialCom), IEEE Second

International Conference on, pp. 65–72.
Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S., 2015. Real-time rumor debunking on

twitter. In: Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management. ACM, pp. 1867–1870.

Nguyen, N.P., Yan, G., Thai, M.T., Eidenbenz, S., 2012. Containment of misinformation
spread in online social networks. In: Proceedings of the 4th Annual ACM Web Science
Conference. ACM, pp. 213–222.

Nielsen, F., 2011. A New Anew: Evaluation of a Word List for Sentiment Analysis in
Microblogs. arXiv preprint arXiv:1103.2903. .

Page, Ewan S., 1954. Continuous inspection schemes. Biometrika 41 (1/2), 100–115.
Pak, A., Paroubek, P., 2010. Twitter as a corpus for sentiment analysis and opinion

mining. LREc 10.
Pendyala, Vishnu, 2018. Veracity of Big Data: Machine Learning and Other Approaches to

Verifying Truthfulness. Springer.
Pendyala, V.S., Figueira, S., 2015. Towards a truthful world wide web from a humani-

tarian perspective. In: Global Humanitarian Technology Conference (GHTC), IEEE
International Conference on.

Pendyala, V.S., Figueira, S., 2017. Automated medical diagnosis from clinical data. In:
Third International Conference on Big Data Computing Service and Applications.

Pendyala, V.S., Fang, Y., Holliday, J., Zalzala, A., 2014. A text mining approach to au-
tomated healthcare for the masses. In: Global Humanitarian Technology Conference
(GHTC), IEEE International Conference on.

Thomas K. Philips. Monitoring active portfolios: The cusum approach. http://www.
northinfo.com/documents/144.pdf.

Qazvinian, V., Rosengren, E., Radev, D.R., Mei, Q., 2011. Rumor has it: identifying
misinformation in microblogs. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
pp. 1589–1599.

Ritter, A., Wright, E., Casey, W., Mitchell, T., 2015. Weakly supervised extraction of
computer security events from twitter. In: Proceedings of the 24th International
Conference on World Wide Web. ACM, pp. 896–905.

Singh, M., Bansal, D., Sofat, S., 2014. Detecting malicious users in twitter using classifiers.
In: Proceedings of the 7th International Conference on Security of Information and
Networks. ACM.

Starbird, K., Maddock, J., Orand, M., Achterman, P., Mason, R.M., 2014. Rumors, false
flags and digital vigilantes: misinformation on twitter after the 2013 boston marathon
bombing. In: iConference Proceedings.

Takahashi, T., Igata, N., 2012. Rumor detection on twitter. In: Soft Computing and
Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent
Systems (ISIS), Joint 6th International Conference on, pp. 452–457.

Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M., 2010. Predicting elections with
twitter: what 140 characters reveal about political sentiment. In: ICWSM, vol. 10. pp.
178–185.

Vosoughi, S., 2015. Automatic Detection and Verification of Rumors on Twitter (Doctoral
Dissertation). .

Welch, G., Bishop, G., 2001. An introduction to the kalman filter. In: SIGGRAPH Course
Notes. ACM, Los Angeles, CA Course 8. ACM.

Wu, K., Yang, S., Zhu, K.Q., 2015. False rumors detection on sina weibo by propagation
structures. In: 31st International Conference on Data Engineering, pp. 651–662.

Yang, F., Liu, Y., Yu, X., Yang, M., 2012. Automatic detection of rumor on sina weibo. In:
Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. ACM.

V.S. Pendyala et al. Development Engineering 3 (2018) 218–233

233

http://refhub.elsevier.com/S2352-7285(18)30023-X/sref4
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref5
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref5
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref5
http://vuir.vu.edu.au/15230/1/CPRF09BurnsEltham.pdf
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref7
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref7
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref7
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref8
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref8
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref9
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref9
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref9
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref10
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref10
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref10
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref10
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref11
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref11
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref12
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref12
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref13
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref13
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref13
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref13
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref14
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref14
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref14
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref15
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref15
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref15
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref16
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref16
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref16
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref17
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref17
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref17
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref18
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref18
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref19
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref19
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref20
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref20
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref21
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref21
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref22
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref22
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref23
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref23
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref23
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref24
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref24
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref24
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref25
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref25
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref25
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref26
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref26
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref27
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref28
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref28
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref29
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref29
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref30
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref30
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref30
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref31
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref31
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref32
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref32
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref32
http://www.northinfo.com/documents/144.pdf
http://www.northinfo.com/documents/144.pdf
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref34
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref34
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref34
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref34
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref35
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref35
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref35
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref36
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref36
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref36
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref37
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref37
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref37
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref38
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref38
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref38
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref39
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref39
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref39
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref40
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref40
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref41
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref41
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref42
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref42
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref43
http://refhub.elsevier.com/S2352-7285(18)30023-X/sref43

	A framework for detecting injected influence attacks on microblog websites using change detection techniques
	Introduction
	Related work
	Influence of social media
	Anomaly detection
	Misinformation containment (MC)

	Methodology
	Proposed anomaly detection framework
	Corpora aggregation
	Quantification of the microblogs: sentiment analysis
	Anomaly detection
	Anomaly detection: the basic CUSUM
	Modified CUSUM (mCUSUM)
	Statistical anomaly detection: discrete Kalman Filter

	Classification as real or fake post

	Experiments
	Dataset
	Injecting influence
	Scenarios
	Attack timing
	Viciousness
	Weak attack power
	Random attacks

	Algorithm Performance Analysis
	AUC analysis
	False positives analysis

	The Proposed Comprehensive Anomaly Detection
	Discussion
	Conclusion and future directions
	Conflicts of interest
	Acknowledgment
	References

