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The Effect of Temperature on Energy Use and CO2
Emissions in the German Industry

February 24, 2021

PRELIMINARY DRAFT, PLEASE DO NOT CITE

Abstract

This paper adds to the scarce empirical evidence related to the impact of cli-
mate change on the manufacturing sector. To study the effect of temperature on
energy use and CO2 emissions daily temperature information from 11.000 German
municipalities are combined with the census of the manufacturing industry. The
census data covers the universe of German manufacturing plants with more than
20 employees, close to 40.000 plants annually, and spans across more than two
decades from 1995 to 2017. We find large and significant effects on CO2 emissions
from cold days reflecting heating demand, while higher emissions from electricity
consumption result from cooling needs. The increase in electricity related emissions
from hot days is approximately twice as high among labor-intensive plants as it is
among less labor-intensive plants. The response of direct emissions to cold days is
roughly one third larger for old plants compared to new plants. When our estimates
are combined with climate projections, direct emissions would decrease by about
12% by the end of the century due to rising temperatures under a business-as-usual
scenario. The respective changes under the emission reduction scenario are about
one-third of the changes under the business-as-usual scenario.

Keywords: Temperature, Climate Change, Manufacturing, Panel data, Energy use,
Carbon emissions
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1 Introduction

Among the various economic consequences of climate change, the impact of global
temperature rise on energy consumption is of particular importance (e.g., Auffhammer
and Mansur (2014)). Energy consumption affects and is affected by both climate change
and climate policy. In the short term, climate change will affect energy consumption
through weather variability and extreme events; in the longer term, adaptation measures
could limit the impact.

In this paper we add to the scarce empirical evidence related to the impact of climate
change on the manufacturing sector, by analyzing how temperature affects energy use
and related CO2 emissions in the German manufacturing sector. The manufacturing
sector in Germany itself accounts for approximately 200 million tons of CO2 emissions
per year, which is approximately one quarter of total emissions in Germany1. If indirect
emissions are taken into account, i.e. emissions resulting from the generation of elec-
tricity that the manufacturing firms purchase from the grid system, this share is even
much higher. Despite its relevance to economic development and its contribution to
climate change, there is little empirical evidence for the effect of temperature on the
manufacturing sector on the plant level. There are a few recent papers that provide
evidence for the effect of temperature on economic activity at the plant level. Zhang
et al. (2017) focused on temperature effects on productivity and factor reallocation in
China similarly to Chen and Yang (2019). Sudarshan et al. (2018) study the effects for
manufacturing in India and Addoum et al. (2020) focus on the United States. We are
not aware of any paper, that addresses specifically the question how temperature affects
carbon emissions in the manufacturing sector.

To study the effect of temperature on energy use and CO2 emissions we combine
daily temperature information from 11.000 municipalities with the German census of the
manufacturing industry. The census data covers the universe of German manufacturing
plants with more than 20 employees and spans across more than two decades from 1995
to 2017. Annually, we observe close to 40000 plants. Methodologically, similar to
for example Barreca et al. (2016) we regression relate plants’ yearly CO2 emissions
to the discretized temperature distribution. In line with what one would expect, our
estimates imply a large and significant increase of CO2 emissions in response to low

1Compare for example information from "Umwelt Bundesamt" (Umweltbundesamt, Nationale Trendta-
bellen für die deutsche Berichterstattung atmosphärischer Emissionen seit 1990, Emissionsentwicklung 1990
bis 2018).
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temperatures presumably reflecting heating needs. The effect of hot days on emissions
is less clear: we do find some evidence for increased electricity consumption, which
could plausibly be related to use of air conditioning. We also look at the effect of
temperature on gross output as a measure of plants economic performance. At the
macro level previous studies have documented a negative relationship between high
temperatures and economic performance in poor or developing countries but not in
advanced economies (Dell et al., 2012). In line with this literature, we do not find
a detrimental effect of high temperatures on gross output. In contrast, we find small
positive and significant effects of hot days on gross output. The previously mentioned
positive effect of high temperatures on electricity use is most likely in parts related to
the positive association between gross output and high temperatures.

Further, in order to investigate effect heterogeneities, existing adjustments to current
climate conditions and the mitigating role of technological advancement we slice the
sample in subsamples. First, we divide between more and less labor-intensive plants
to test the hypothesis that more labor intensive plants’ respond stronger to extreme
temperatures. If the productivity of labor is more sensitive to temperature fluctuations
than productivity of other factor inputs, labor-intensive firms will find it more profitable
to invest in heating and cooling. Second, we split the sample between plants located
in northern federal states and plants in federal states further south. The former tend to
experience more moderate climate. This gives some indication of adjustment to existing
climatic conditions. For instance, plants exposed to more frequent cold days may be
more inclined to invest in insulation. This would result in a dampened response of
direct emissions to low temperature. Third, we split the sample between older plants,
i.e. those that we observed in 1995 already and those established only after 1995
to get an indication for the role of technological progress and changed expectations.
Technologies such as insulation material or air conditioning have improved over time
and become cheaper. In addition, expectations regarding future climate conditions may
have changed. Newly built plants are more likely to be designed to reflect these changes
as retrofitting old plants with better insulation, for example, is often not worthwhile
from a company’s perspective. Changing expectations about future climate conditions
are expected to discourage investment in insulation while improved quality and lower
prices for insulation and higher energy prices will work in the opposite direction.

Finally, we link our estimates to projections for different climate change scenarios
and calculate the changes in emissions that our estimates imply.

The remainder of this paper is structured as follows: Section (2) reviews the related
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literature, in section (3) we introduce the datasets and provide some summary statistics
and in section (4) the empirical approach and results are presented. Section (5) links the
empirical estimates with climate projections and section (6) discusses the results and
concludes.

2 Literature Review

At the country level, a negative and significant association between high temperatures
and aggregate economic outcomes such as economic growth or production has been
documented. Dell et al. (2012) for example, show that temperatures that are 1°C above
the long run mean, lead to a reduction of per capita income by 1.5 percent in poor
countries. Using international trade data, Jones and Olken (2010) study the effect of
higher temperatures on a country’s exporting activities. In line with Dell et al. (2012)
they find that being 1°C warmer reduces export growth in poor countries by 2 to 5.7
percentage points. Furthermore, they find that the impacts are concentrated in ex-
ports of agricultural products and light manufacturing. In a panel for twenty-eight
Caribbean countries, Hsiang (2010) find a negative temperature effect in three out of six
non-agricultural sectors with output losses occurring in nonagricultural production sub-
stantially exceeding losses occurring in agricultural production. More recently,Kalkuhl
and Wenz (2020) use global subnational data for 1500 regions in 77 countries from
1900 - 2014 to estimate the effect of climate conditions on productivity. Their estimates
imply that temperature affects productivity levels but not the growth rate2. A growing
body of literature analysis the effect of climate change on energy consumption (for an
overview see Auffhammer and Mansur (2014)). These studies were primarily focused
on households’. Most closely related to our work Deschênes and Greenstone (2011) or
Auffhammer and Aroonruengsawat (2011) use panel data to study households’ adoption
to climate change by analyzing how residential electricity consumption responds to
temperature.

Despite its relevance for economic development and contribution to climate change,
there is little evidence related to the impact of climate change on the manufacturing
sector and associated adaptations. Few studies look at plants exposure to extreme events;
for example, Elliott et al. (2019) find strong but short lived negative effects of typhoons
on manufacturing plants’ sales in China. Plant level evidence for the effect of tempera-

2In spite of the studies referred to, studies at the sectoral level have mostly focused on agriculture (e.g.,
(Mendelsohn et al., 1994) or Deschênes and Greenstone (2007)). These studies have used cross-sectoral or
panel data and analyzed data for a specific country or region or made cross-country comparisons.
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ture on Total Factor Productivity (TFP) in the manufacturing sector is provided by Zhang
et al. (2017). They combine daily mean temperatures with a panel of Chinese plants
for the period 1998 till 2007. The authors document strong and non-linear negative
effects on output from temperatures at the tails of the temperature distribution. The
negative effect on output appears to be driven by a negative effect of temperature on TFP.
Their estimates imply that the negative effect of a 1°C shift in the annual distribution of
daily temperature on the manufacturing sector will cause a reduction of approximately
0.5% of Chinese GDP. Using climate projections for the middle of the 21st century
these estimates imply an annual output loss of 12% in the Chinese manufacturing sector.
Based on the same data as Zhang et al. (2017); Chen and Yang (2019) also find U-
shaped relation between temperature and output. Their estimates imply that daily mean
temperatures between 21°C and 24°C maximize output. In line with these relatively
high optimal temperatures, they find that above average temperatures in spring have a
positive effect on sales whereas high summer temperatures depress economic activity.
The detrimental effect of high summer temperatures is stronger in relatively cool regions
which is suggestive evidence for adaption by firms. Results from Sudarshan et al. (2018)
who use a panel of Indian manufacturing firms broadly confirm the negative effects
of high temperature on output estimated by Zhang et al. (2017) and Chen and Yang
(2019). However, Sudarshan et al. (2018) estimates suggest that declining output due
to extreme temperature can be fully explained by decreased labor productivity. Lower
labor productivity is caused by increased absenteeism and heat stress at the workplace.
Evidence for temperature effects on plants performance in developed countries is mixed:
Addoum et al. (2020) find no effect of temperature on firms in the US while Kabore
and Rivers (2020) document a negative effect of temperature extremes among Canadian
manufacturer. Their estimates imply that daily mean temperatures below -18°C and
above 24°C reduce output by 0.18% and 0.11% relative to a day with mean temperature
between 12°C and 18°C.

We add to this scarce evidence on the effect of temperature on firm behavior in
multiple ways. First, our main variable of interest are carbon emissions which has not
been analyzed in previous studies. Second, we address the need for further research on
the effect of temperature on firm level energy use that was emphasized by Auffhammer
and Mansur (2014). We use a unique panel dataset for the manufacturing sector in
Germany, a major industrial country. Third, we extent our analysis to the effect of
temperature on measures of plants’ economic performance. While this has been studied
for developing countries such as India and China, we focus on an industrialized country.
Among industrialized countries, Germany is a particularly interesting case since its
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climate is mostly temperate but varies by the geographical and topographical charac-
teristics of its regions. Due to the effect of the sea the climate of the North German
plain and the Baltic coast varies comparatively little over the seasons. The climate in
Central and Southern Germany is more varied due in part to the topographical features
of these regions. In Bavaria the climate is similar to the Austrian Alps with cold winters
and frequent snowfall whereas in Rhineland Palatine and Saarland in South Western
Germany the climate is held to be particularly pleasant.

3 Data and Descriptive Statistics

3.1 AFiD Panel - Manufacturing Firms

The main data source is the German census of manufacturer (AFiD), in particular the
so called "energy use module" ("Energieverwendung") which covers the universe of
German manufacturing plants with more than 20 employees. The energy use module
contains detailed information of plant specific fuel use in physical units (kWh) which
allows calculating CO2 emissions at the plant level based on fuel specific conversion
factors3. The dataset spans more than two decades from 1995 to 2017. However, for
the most part we restrict ourselves to data from 2003 onward due to a major change
in the reporting of energy variables between 2002 and 20034. Besides energy related
variables, the data contains a rich set of further plant level information such as sales, the
number of employees, export share and investment. In panel A of Table (1) we provide
some summary statistics from indicators of economic performance. For example, the
average plant in the sample has approximately 110 employees, a turnover of 22 million
Euro per year and an export share of roughly 20%. Comparing the mean plant with
the median plant indicates right skewed distributions. Panel B of Table (1) provides
summary statistics of plants’ total carbon emissions as well as their emissions by fuel
type. It can seen, that indirect emissions from electricity consumption account for
more than one third of total emissions. Together, oil and gas make up for another
third and coal consumption is approximately one quarter of total emissions5. Again
the distributions are heavily skewed to the right. For example, coal consumption is

3To calculate the plant level CO2 emissions we rely on the conversion factors provided by the Umwelt
Bundesamt (a Table with the respective information can be found here). The table gives the fuel specific time
varying CO2 content per Terajoule. This can be converted to CO2 per kWh. We then multiply the fuel use in
kWh with the respective conversion factor to get the CO2 emissions.

4For a detailed description of the dataset as well as the change in the reporting requirements see (Wagner
et al., 2010)

5Total emissions also include emissions from some additional sources of energy such as heat. All of which
play a minor role.
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Table 1 Economic Characteristics and Carbon Emissions from Different Fuel Types

Variable Mean Std. Dev p10 p50 (Median) p90 N

A. Economic Performance
Number of Employees 109 164.44 24 53 238 599128
Gross Output 22831.48 48862.62 1803.69 7086.95 54152.29 599128
Export Share 0.21 0.26 0 .09 0.61 599128
Total Energy Use 6926.84 25185.76 174.83 988.10 13356.04 599128

B. Carbon Emissions
Total CO2 Emissions 6616.17 141270.1 47.71 354.18 5371.16 676169
CO2 Emissions - Coal 1455.08 106815 0 0 0 676169
CO2 Emissions - Gas 1496.75 30482.05 0 21.30 911.23 676169
CO2 Emissions - Oil 746.86 40861.09 0 0 183.74 676169
CO2 Emissions - electricity 2613.60 24332.08 25.58 237.97 3465.96 676169

Notes: Source: Research Data Centres of the Federal Statistical Office and the Statistical Offices of the Länder: AFiD-Panel
Kostenstrukturerhebung und Energieverwendung, 2003-2017, own calculations.

zero at the 90th percentile because coal is generally used in only a few energy-intensive
industrial processes, but hardly ever for heating. Most plants use either gas or oil for
heating.

3.2 Temperature Data

We supplement the plant data with temperature information that we collected from the
German Meteorological Service ("Deutscher Wetterdienst") and the "European Climate
Assessment & Dataset project". We downloaded gridded daily mean temperatures to
calculate the mean temperature in all 11.000 German municipalities6. From the daily
means, we construct temperature bins, i.e we count the number of days per temperature
bin for each year and municipality. This information is then merged to the plant level
data using the official municipality identifier. Figure (A1) in the appendix summarizes
the temperature distribution over Germany for the period 1995 to 2017. On average
about three-quarters of the days in a year have a mean temperature between zero and
20°C. The bins in Figure (A1) are an unweighted average across municipalities and
years, thus, masking all spatial variation in climate conditions. Figure (1a) and (1b)
show the spatial variation at the community level for the average number of days below
-4°C and above 20°C. In contrast, days with mean temperature below -4°C barely occur
in regions with climates mediated by the sea. Hot days with mean temperature above
20°C are most frequent along the Rhine, especially in the metropolitan area around
Frankfurt. Metropolitan areas in general appear to be warmer than their neighboring
regions which could be due to geographical characteristics but also because daytime
heat is stored in the city (e.g. in buildings and concrete), emitted at night and therefore

6The median municipality has approximately 1.800 inhabitants and a size of 19km2.
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Figure 1 Average Number of Cold and Hot Days per Year

(a) Mean Tmp. below -4°C (b) Mean Tmp. above 20°C

Notes: Subfigure 1a plots the average number of days with mean temperature below -4°C for the
period 1995 until 2017. Subfigure 1b shows with average number of days with mean temperature
above 20°C for the period 1995 until 2017. Both maps show information at the municipality
level. Source: E-OBS dataset from the EU-FP6 project UERRA (https://www.uerra.eu) and the
Copernicus Climate Change Service

increasing the daily mean. With some knowledge of Germany’s geography Berlin,
Stuttgart or Cologne can be spotted easily in Figure (1b). Figure (A2) in the appendix
shows the annual mean temperature in municipalities for the period 1995 to 2017.

3.3 Climate Projections

To project the effect of climate change on CO2 emissions and energy consumption in
the manufacturing sector we use end of century climate projections for Germany. These
projections can be downloaded from the World Climate Reseach Program (WCRP) and
were produced under the ReKiEs-De Project. We use projections from two different
climate models and for two representative concentration pathways (RCP). The first
projection is based on the global climate model MPI-ESM-LR and the regional down-
scaling model CCLM. The second projection is based on the global model EC-Earth
but the same downscaling model, i.e CCLM. Both models yield projections for the
"climate-protection-scenario" (RCP2.6) and the "business-as-usual" scenario (RCP8.5)7.
The projections start in 2006 and run until 2100. We discretize the annual projected
temperature distribution at the federal state level using the same temperature bins that

7ReKiEs-De stands for Regionale Klimaprojectionen Ensemble für Deutschland. Background information
regarding the different climate projections, their underlying global and regional models as well as general
information on the ReKiEs Project is available in the User Handbook.
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we used for the historical temperature information. Figure (A3) in the appendix shows
the discretized distribution of projected mean temperatures (red bars) under the RCP8.5
scenario alongside the historical distribution (blue bars)8. It can be seen easily that the
distribution of projected temperatures is shifted to the right.

4 Econometric Strategy and Empirical Results

We are interested in the effect of daily temperatures on plant level outcomes. The latter
is observed annually. To align frequencies we discretize the annual distribution of daily
mean temperatures into temperature bins as described in Section (3). This approach
has been widely used in the literature for example Deschênes and Greenstone (2011),
Zhang et al. (2017) or Barreca et al. (2016). Concretely, T j

mt is the number of days in
municipality m in year t with a mean temperature that lies in bin j. In total we define 10
bins with each interior bin having a width of 4°C. All days with a mean temperature
below -8°C are collected in T 1. T 10 is the count of days with mean temperature above
24°C. Figure (A1) shows the average number of days per bin across municipalities and
years. The estimation equation we take to the data reads as follwos:

yimt = βximt + ∑
j 6=z

θ
jT j

mt +νst +λrt + τi + εimt (1)

The dependent variable yimt can be the logarithm of any outcome of plant i, located in
municipality m in year t. The vector ximt contains strictly exogenous plant level controls.
Annual shocks common to subsectors are purged via year-by-sector fixed effects νst ,
time varying sub-region specific shocks are controlled for by λrt and time-invariant
plant characteristics are controlled for by the plant fixed effect τi. Finally, εimt is a
random disturbance term. The coefficients of interest are the semi-elasticities θ . Each
coefficient θ j captures the effect of an additional day in bin j relative to another day in
the leave-out-bin z. In our application it gives the percentage change in the outcome
that results from an additional day in bin j instead of that day being in bin z. With this
approach the effect of temperature on the outcome is assumed to be constant within bins
while the effect across bins can take any form. Coefficient θ j is consistently estimated
if the year to year temperature fluctuations experienced by plant i are exogenous which
is arguably true for a weather variable.

8For the historical temperature distribution we use the daily mean temperatures at the federal state level.
We then calculate the weighted average across federal stats. Weights are the share in total CO2 emissions in
the manufacturing sector that originate in the respective federal state.
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4.1 Main Results - CO2 Emissions

In practice we estimate variants of equation (1). The most parsimonious specification
includes only firm and year-sector fixed effects. We consecutively add further fixed
effects. Our preferred specification includes sizeclass-year fixed effects, exporter-year
fixed effects and east-west-year fixed effects9. With this specification we purge shocks
that are specific to plants located in federal states that were part of the former GDR
which is important as these federal states are still different in their economic structure.
We also control for shocks that might occur in export markets as well as for differential
shocks along the plant size distribution. We omit the number of days with a mean tem-
perature between 12°C and 16°C, thus, our coefficient estimates have to be interpreted
relative to this leave out bin. In Figure (2) we shows the estimated effect of an additional
day in bin j relative to the leave out bin on total CO2 emission as estimated from our
baseline specification.

The solid line in Figure (2) connects the point estimates, i.e. the semi elasticities
and the two dashed lines correspond to the 95th confidence intervals. Robust standard
errors are clustered at the firm level. The Figure shows that cold days cause an increase
in CO2 emissions. Concretely, an additional day with temperature below -8°C induces
an increase in annual CO2 emissions by approximately 0.15% relative to a day with
a mean temperature between 12°C and 16°C. The effects flattens out towards higher
temperature bins. An additional day with mean temperature between 8°C and 12°C
has an effect on total emissions that is indistinguishable from zero. As temperatures
rise further, total CO2 emissions do not change relative to a day with mean temperature
between 12 and 16°C. Results from alternative specifications are shown in Table (A2)
in the appendix. Across specifications the results remain qualitatively the same.

The effect of temperature on total emissions combines the effect of temperature
on emissions from different sources of energy. We separately investigate the response
of indirect emissions, i.e. the emissions contained in the electricity that plants buy
as well as direct emissions, i.e emissions resulting from plants burning fossil fuels.
Corresponding results are shown in Figure (3a) and Figure (3b). One can see that
the positive effect of low temperatures on total emissions as documented above is
driven by direct emissions. The point estimate from the lowest temperature bin implies
an increase in direct emissions by about 0.5% from a day with mean temperature

9All firms that export part of their sales are classified as exporter. Sizeclasses are five categories predefined
in the data based on the number of employees: 20 - 49 employees, 50-99 employees, 100 - 249 employees,
250-499 employees and more that 499 employees. A plant is assigned to the east if it is located in a federal
state that belonged to the former GDR.
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Figure 2 Estimated effect of a day in 9 temperature bins on annual CO2 emissions
relative to a day in the 16°C to 20°C bin

Notes: The effects are estimated on an unbalanced
panel covering the period 2003 until 2017. The number
of observations is 598576. Dashed lines show the 95th
confidence interval. Source: Research Data Centres of
the Federal Statistical Office and the Statistical Offices
of the Länder: AFiD-Panel Industriebetriebe, 1995-
2017, own calculations.

below -8°C relative to a day with mean temperature between 12°C and 16°C. The
effect declines almost linearly towards the leave out bin. Looking at the right end of
the temperature distribution one can see that direct emissions decrease further when
temperatures rise, probably related to even lower heating needs. Electricity consumption
appears largely unaffected by low temperatures (compare Figure (3b)) but increases
when temperatures rise. For example, a day with mean temperature above 24°C causes
emissions from electricity use to increase by approximately 0.07% relative to a day
with mean temperature in the leave out bin. The positive effect of hot temperatures
on electricity related emissions and the negative effect of hot days on direct emissions
combined, result in the null effect of hot temperatures on total emissions as shown in
Figure (2).

The effect on direct emissions could be decomposed further by looking at different
primary sources of energy such as coal, gas and oil (compare Table 1). While there
exists a sufficient number of observations with a non zero use of gas and oil only a
few hundred plants use coal on a regular basis. In Table (A6) and Table (A5) in the
appendix we show the respective point estimates. These are qualitatively very similar to
the combined effect on direct emissions.
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Figure 3 Estimated effect of a day in 9 temperature bins on annual CO2 emissions
relative to a day in the 16°C to 20°C bin by energy source

(a) Direct Emissions (b) Indirect Emissions

Notes: The effects are estimated on an unbalanced panel covering the period 2003 until 2017. Source:
Research Data Centres of the Federal Statistical Office and the Statistical Offices of the Länder: AFiD-
Panel Industriebetriebe, 1995-2017, own calculations.

4.2 Additional Results: Effect on Gross Output

We estimate the effect of temperature on gross output and labor productivity measured
as gross output per worker. While this is interesting in itself it is also relevant for the
interpretation of the effect of temperature on carbon emissions. If output was boosted by
low temperatures, this could be an explanation for increased energy use. To investigate
the effect of temperature on gross output we rely on the same baseline specification as
for the effect on CO2 emissions. The estimated semi elasticities are shown in Figure
(4). We do not detect a systematic effect of cold temperatures on gross output. Only
the number of days with a mean temperature between -8°C and -4°C has a negative
and statistically significant effect. The pattern shown in Figure (4a) closely resembles
the one for electricity related CO2 emissions as shown in Figure (3b) suggesting a
high correlation between electricity use and gross output. This is very plausible as
electricity is an almost fully flexible input. Again similarly to electricity use there exists
a positive effect of high temperatures on gross output. Hence, the positive effect of high
temperatures on gross output could be an additional or alternative explanation for higher
electricity consumption on hot days. We therefore re-estimate the effect of temperature
on CO2 emissions from electricity controlling for gross output (compare Table (A7) in
the appendix). While this introduces a bad control problem it is informative regarding
the mere cooling effect. The respective point estimate decreases and remains only
marginally significant suggesting that the positive effect of hot temperatures on output
does play an important role in explaining the increase in electricity use. We further
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Figure 4 Estimated effect of a day in 9 temperature bins on gross output and labor
productivity relative to a day in the 12°C to 16°C bin

(a) Gross Output (b) Labor Productivity

Notes: The effects are estimated on an unbalanced panel covering the period 2003 until 2017. The
number of observations is 590605. Source: Research Data Centres of the Federal Statistical Office and
the Statistical Offices of the Länder: AFiD-Panel Industriebetriebe, 1995-2017, own calculations.

investigate this issue in the subsample analysis (Subsection 4.3)).

We scale gross output with the number of employees as a measure of labor produc-
tivity. Its response to temperature is qualitatively similar to that of gross output. The
marginally significant dip of gross output resulting form days with mean temperature
between -8°C and -4°C is insignificant but the positive effect at the right tail remains. We
will investigate this effect in more detail by looking at subsectors (4.3.4). For example,
the effect could be driven by sectors that are closely linked to the construction sector
where economic activity is higher during the summer.

4.3 Effect Heterogeneity

4.3.1 Split by Region

Depending on prevailing climate conditions one would expect different strategies by
firms to respond. In regions that experience cold winters frequently, it might be profitable
from a firms perspective to insulate buildings. This should lead to a smaller increase in
CO2 emissions in response to cold days. Regions in which hot periods are more likely
firms might invest in air conditioning causing a larger increase in electricity related CO2

emissions when temperatures are high. To investigate this adjustment behavior we split
the sample between plants located in the north and those located in the south. The north
of Germany experiences more moderate temperatures, i.e mild winters and relatively
cool summers. Thus, investing in insulation might appear less profitable in the north
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Figure 5 North South Split: Effect at the Tails

(a) Direct Emissions (b) Electricity related Emissions

Notes: The effects are estimated on an unbalanced panel covering the period 2003 until 2017. Source:
Research Data Centres of the Federal Statistical Office and the Statistical Offices of the Länder: AFiD-
Panel Industriebetriebe, 1995-2017, own calculations.

resulting in a larger CO2 response to cold days. Similarly, firms in the north might
not find it profitable to install air conditioning. In Figure (5) we plot the coefficient
estimates from the four outer temperature bins estimated on the respective subsamples.
The height of the bars give the point estimates and the vertical lines indicate the 95th
confidence intervals. Grey bars are the coefficients estimated from plants located in the
north and white bars the corresponding estimates from plants in the south. Figure (5a)
shows the effect on the log of direct emissions and Figure (5b) the effect on the log of
electricity consumption. The point estimates that capture the effect of cold days on direct
emissions are somewhat higher for plants in the north. All point estimates capturing
the effect of hot days on direct emissions are statistically indistinguishable from zero.
Taken together the difference in point estimates are small and neither the effect of cold
days nor the effect of hot days on direct CO2 emissions are statistically significantly
different between plants in the north and plants in the south. Thus, these estimates do
not support the hypothesis that firms adaption to climate conditions within Germany
alters the response of direct emissions on low temperatures in important ways. The same
holds true when turning to the effect of temperature on CO2 emissions resulting from
electricity use. All point estimates are statistically indistinguishable from zero. The
negative point estimate for the number of days with mean temperature between -8°C
and -4°C estimated on the full sample (compare Figure (3b)) is found only for firms
in the south. Probably, this effect operates through the negative effect on gross output
which is also present only in the subsample of plants located south (compare Table A8).
Again, none of the estimates is statistically different from the corresponding effect in
the other subsample (confidence intervals overlap).
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4.3.2 Split by Labor Intensity

To analyze the extent to which the response of emissions to temperature varies by the
labor intensity of plants, we split the sample by plants average labor intensity. Labor
intensity is calculated as the ratio of the number of employees to gross output. All plants
with an average labor intensity below the 40th percentile are classified as low labor
intensive plants. Plants with labor intensity above the 60th percentile are classified as
high labor intensive plants. One might expect that labor productivity is stronger affected
by temperature fluctuations than for example productivity of capital. If firms balance
the marginal productivity gains from heating against marginal cost of heating, plants
with a relatively high labor intensity will respond stronger to temperature fluctuations.
In other words: for the same outside temperature a more labor intensive plant will
spent more on heating than a less labor intensive plant10. Figure (6a) shows the point
estimates and corresponding confidence intervals from the effect on direct emissions
in both subsamples. The same for electricity related emissions is shown in Figure (6b).
The point estimates suggest that the percentage increase in direct emissions resulting
from cold days is somewhat higher in the group of more labor intensive plants. Still,
these differences are neither large relative to each other nor statistically significant.
Turing to the effect of temperature on electricity related emissions as shown in Figure
(6b), one can see that the effect from hot days is more pronounced among highly labor
intensive plants. Despite not being statistically significantly different from each other,
the point estimates suggest that the response of CO2 emissions from a hot day by a labor
intensive plant is roughly twice the response of a low labor intensive plant. As discussed
in Subsection (4.2), the increase in electricity consumption resulting form hot days is
most likely in parts related to the increase in sales. In Table (A8) in the appendix we
report the results from all sample splits with the logarithm of sales as the left hand side
variable. As one can see from Table (A8), the increase in sales at the right tail of the
temperature distribution is concentrated among plants with low labor intensity. This
indicates that cooling needs are driving the pronounced increase in electricity related
emissions in the group of plants with high labor intensity. This is also plausible, since
workers are likely to suffer more from high temperatures than machinery.

10Interestingly, this kind of differential effect would also open further adjustment options. Relocating the
vulnerable part of the economy, e.g. labor intensive production to geographic regions with more suitable
climatic conditions could cushion the overall effect of changed climatic conditions.
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Figure 6 Labor Intensity Split: Effect at the Tails

(a) Direct Emissions (b) Electricity related Emissions

Notes: The effects are estimated on an unbalanced panel covering the period 2003 until 2017. Plants
with an average labor intensity (number of workers per unit of sales) below the 40th percentile are
classified as low labor intensive plants. Plants with an average labor intensity above the 60th percentile
are classified as high labor intensive plants. There are 241972 observations with low labor intensity and
215996 observation with a high labor intensity to estimate the effect on electricity related emissions.
The corresponding numbers for direct emissions 22257 and 12973 respectively. Source: Research
Data Centres of the Federal Statistical Office and the Statistical Offices of the Länder: AFiD-Panel
Industriebetriebe, 1995-2017, own calculations.

4.3.3 Split by Plant Age

Besides adoption to region specific conditions and across plant heterogeneity one would
also expect a general time trend in the response of CO2 emissions to temperature e.g.
resulting from technological progress. Improved insulation material has been developed
and is available at lower cost. Moreover, expectation regarding future climate conditions
are different today from what they were decades ago changing firms calculations with
respect to the profitability of investments e.g in air conditioning. Newly established
plants are arguably more likely to adopt these new technologies or adjust to changes in
expectations as retrofitting old plants will most likely be more expansive than installing
new technologies when a plant is built. Therefore, we split the sample between plants
we observe in 1995 already and the rest11. The effect of days with cold and hot average
temperatures on direct emissions and emissions resulting form electricity use are shown
in Figure (7). The estimates imply that the response of direct CO2 emissions from
cold days is weaker among newly established plants. For example, a day with mean
temperature below -8°C causes an increase in emissions among old plants by 0.66%
relative to the leave out bin. The corresponding increase among newly established plants
is 0.43%. Days with a mean temperature between -8°C and -4°C cause an increase

11Unfortunately, we do not observe the data at which a plant came into being. The fact that we did not
observe some plant in 1995 does not necessarily imply that it did not exist in 1995. For example if a plant has
less than 20 employees it is not included in the sample. Moreover, plants sometimes change the economic
sector. If a plant changes from a sector outside manufacturing into manufacturing this could also explain why
it appears in the data only later.

15



Figure 7 Age Split: Effect at the Tails

(a) Direct Emissions (b) Electricity related Emissions

Notes: The effects are estimated on an unbalanced panel covering the period 2003 until 2017. Plants that
we observe in 1995 already are classified as old plants (17940 of which emit CO2 directly and 258772
emit CO2 indirectly via electricity use). Plants observed only later are classified as new plants (24889
of which emit CO2 directly and 328495 emit CO2 indirectly via electricity use). Source: Research
Data Centres of the Federal Statistical Office and the Statistical Offices of the Länder: AFiD-Panel
Industriebetriebe, 1995-2017, own calculations.

in emissions by 0.59% among old plants and by 0.378°C among new plants. These
differences could be a result of the availability of better or cheaper insulation material.
Note, that changes in the expectation of future climate conditions would rather result in
fewer investment in insulation, since cold periods are expected to be less likely. Turning
to the effect of hot days on electricity related emissions, one can see from Figure (7b),
that the effect among old plants is small and indistinguishable from zero. In the sample
of newly established plants the estimated increase in electricity related CO2 emissions
caused by a day with mean temperature between 20°C and 24°C is 0.06% and from
a day with mean temperature above 24°C the increase amounts to 0.11%. Looking
at the effect of temperature on gross output for old and new plants separately (Table
(A8) in the appendix) one can see that the positive effect on sales from hot days is
stronger among old plants. This indicates that other factors contribute to the increase in
electricity related CO2 emissions among new plants when daily mean temperatures are
high. This is in line with anecdotal evidence of increased adoption of air conditioning
in recent years which could be caused by firms expecting high temperatures to occur
more frequently.

4.3.4 Effects by Economic Sector

Due to the closure of the statistical office for guest researchers (because of Covid) we
could not yet get the results for the sectoral analysis.
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5 Projections

We combine the estimated relationship between temperature and CO2 emissions with
end of century climate projections which were introduced in subsection (3.3). Figure A3
in the appendix shows the average number of days per temperature bin for the historical
temperature distribution (blue bars) and the days per bin from the projected temperatures
(red bar) in the end of the century (average day count between 2080 and 2099). The day
count in each bin is done at the federal state level. To aggregate up federal states we
weight them by the respective share of carbon emissions in the manufacturing sector as
observed in the AFiD data. We follow Deschênes and Greenstone (2011) and implement
their error-correction method in order to correct for systematic errors in the projections12.
To calculate the implied change in carbon emissions one has to multiply each regression
coefficient with the respective difference in the number of days per bin, i.e the difference
in the height of the bars. In Table (2) we report the projected change in emissions
under a business as usual scenario and a emission reduction scenario (RCP2.6) for
two climate models. For each model-scenario combination we calculate the change in
total emissions, direct emissions and electricity related emissions for the middle of this
century (average across 2050 - 2069) as well as the end of the century (average across
2080 - 2099).

Table 2 Projected Change of Carbon Emissions in Percent

Source - CO2 Emissions Time Horizon EC-EARTH-RCA4 EC-EARTH-RCA4 (RCP26) MPI-ESM-LR-CCLM MPI-ESM-LR-CCLM (RCP26)
CO2-Total Mid Century -0.81 -0.54 -0.80 -0.73
CO2-Total End Century -2.08 -0.52 -1.70 -0.83
CO2-Electricity Mid Century 0.65 -0.14 0.73 0.25
CO2-Electricity End Century 1.55 -0.00 1.59 0.27
CO2-Direct Mid Century -5.22 -1.59 -5.40 -3.64
CO2-Direct End Century -12.80 -2.15 -11.13 -4.05

The table shows the change in CO2 emissions that results from combining the regression estimates from the baseline model with the projected change in
temperatures. Mid century refers to the average of 2050-2069 and end century to the average of 2080-2099. The columns are different combinations of climate
models and CO2 emission scenarios.

From the signs of the point estimates, it is obvious that linking them with climate
change projections will generate a decrease in direct emissions and an increase in
electricity related emissions. Across almost all model-scenario combinations both
effects grow larger over time (end century vs. mid century). Combining baseline
estimates for direct emissions with climate projections under a no reduction scenario
implies a decrease in direct emissions by approximately 5% in the middle of this
century and by 11-12% by the end of the century. The respective changes under the
emission reduction scenario are roughly one third the changes under the business as

12We use the period from 2006 to 2018 to compare the simulated mean temperatures in each federal state
with the actual temperature realization. For each day we take the average of the differences between projected
mean temperature and actual mean temperature. These day specific average projection errors are then added
to the projected temperatures on each day.
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usual scenario. For CO2 emissions from electricity we calculate a moderate increase
under the no reduction scenario by approximately 1.5% for the end of the century. It
needs to be emphasized that this exercise should not be seen as a prediction but rather
as an interpretation of the empirical results against the backdrop of projected climate
change. For these calculations to be valid predictions, firms’ response to temperature has
to remain constant over time and the distribution of firms across regions is not allowed
to change depending on climate. In other words, the economy is not allowed to adjust in
any way to climate change. The results from the subsample analysis presented earlier
invalidate these assumptions already. Splitting the sample by plant age indicated that
the response of emissions to hot days is likely to become larger while the response to
cold days tends to be dampened. In Table (3) we recalculate the changes in emissions
using the coefficient estimates from the subsample of plants built more recently. Their
response to temperature will plausibly be a closer approximation to the future response
of plants to climate shocks. Emissions from electricity use increase by approximately
3% by the end of the century while direct emissions fall by approximately 9%. The
calculated net effect on emissions is then very close to zero.

Table 3 Projected Change of Carbon Emissions in Percent - Coefficients from
Subsample of New Plants

Source - CO2 Emissions Time Horizon EC-EARTH-RCA4 EC-EARTH-RCA4 (RCP26) MPI-ESM-LR-CCLM MPI-ESM-LR-CCLM (RCP26)
CO2-Total Mid Century -0.02 -0.26 -0.01 -0.29
CO2-Total End Century -0.19 -0.27 -0.09 -0.39
CO2-Electricity Mid Century 1.38 0.09 1.44 0.58
CO2-Electricity End Century 3.23 0.16 3.00 0.59
CO2-Direct Mid Century -3.88 -1.07 -4.07 -2.74
CO2-Direct End Century -9.68 -1.45 -8.60 -3.25

The table shows the change in CO2 emissions that results from combining the regression estimates from the baseline model on the sample of plants erected
after 1995 with the projected change in temperatures. Mid century refers to the average of 2050-2069 and end century to the average of 2080-2099. The
columns are different combinations of climate models and CO2 emission scenarios.

6 Conclusion and Discussion

In this paper, we estimate the effect of temperature on energy use and carbon emissions
on the German manufacturing sector. We find large and significant effects on CO2

emissions by cold days presumably reflecting heating needs. For example, a day with
mean temperature below -8°C causes an increase in CO2 emissions at the plant level
by about 0.5% relative to a day with a mean temperature between 12°C and 16°C. This
effect is driven by the responses of CO2 emissions from gas and oil. Indirect carbon
emissions resulting from electricity use do not respond to low temperatures. In contrast,
electricity related emissions increase slightly when temperatures are high. Our baseline
estimates imply that an additional day with mean temperature above 24°C increases
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annual emissions from electricity use by 0.07% relative to a day with mean temperature
between 12°C and 16°C. This reaction could plausibly reflect increased electricity use
resulting from cooling needs.

To investigate effect heterogeneities, we split the sample by plants’ labor intensity,
between geographic regions and plants age. We find that the increase in electricity
related emissions from hot days is approximately twice as high among labor inten-
sive plants as it is among less labor intensive plants. However, the response of direct
emissions to cold days indicates hardly any difference. This result suggests that labor
intensive firms invest more in order to mitigate high temperatures which would be in line
with adverse economic effects from high temperatures being larger when labor intensity
is high. By splitting the sample between plants located in the north of Germany and
those in the south we seek to understand adjustments to different climatic conditions.
The coefficient estimates that describe the responsiveness of direct emissions to cold
days are somewhat larger for plants in the north. There exist no systematic differences
between plants in different regions with respect to the responsiveness of electricity
related emissions to hot days. The absence of regional adjustment as indicated by
our estimates could be due to comparably little variation in climatic conditions within
Germany. Last, we split the sample by plants’ age. The response of direct emissions
to cold days is estimated to be roughly one third larger among old plants compared to
new plants. Similarly, the increase in electricity related emissions is comparably large
among newly established plants while it is small and statistically indistinguishable from
zero among old plants. The dampened response to cold days by new plants could be
explained by the availability of better materials for example to insulate buildings. This
also gives an indication of the energy savings potential if old plants were retrofitted.
The stronger response of new plants’ electricity consumption to high temperatures is in
line with anecdotal evidence for increased adoption of air conditioning.

We extend our analysis to the effect of temperature on gross output. In line with the
existing literature (for example Dell et al., 2012), we do not find a detrimental effect of
high temperatures on gross output. In contrast, we find small positive and significant
effects of hot days on gross output. The previously mentioned positive effect of high
temperatures on electricity use is partly related to the positive association between gross
output and high temperatures.

Our analysis suggests that warmer temperatures will make it somewhat easier for
Germany as a whole to reduce its emissions. We link our estimates to climate projections
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to calculate the implied future changes in emissions. On the one hand, these calculations
yield a decrease in direct emissions by approximately 12% under a business-as-usual
scenario by the end of the century. On the other hand, more frequent occurrence of
hot days will most likely increase electricity demand for cooling. The net effect as we
calculate it is still negative. Moreover, cooling needs are likely to coincide with the
availability of low carbon electricity (PV) and thus our projections will rather overstate
the increase in CO2 emissions from air conditioning.
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Figure A1 Annual Average of Days per Temperature-Bin

Notes: The bar plot shows the average number of days per temperature bin in Germany. The average
is calculated over time and space, i.e over the period 1995 until 2017 and across all municipalities.
Note that municipalities are not not weighted by their geographic size. Source: E-OBS dataset
from the EU-FP6 project UERRA (https://www.uerra.eu) and the Copernicus Climate Change
Service
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Table A1 Effect of Temperature on Gross Output

Log Gross Output
(1) (2) (3) (4)

[Temp <−8C] -.00041 -.0002 -.00046 -.00023
(.00031) (.00028) (.00031) (.00028)

[−8C < Temp <−4C] -.0008 -.00059 -.00083 -.00062
(.00023) (.00021) (.00023) (.00021)

[−4C < Temp < 0C] -.00003 -.00007 -.00008 -.00011
(.00018) (.00016) (.00018) (.00016)

[0C < Temp < 4C] .00017 .00009 .00015 .00007
(.00014) (.00013) (.00014) (.00013)

[4C < Temp < 8C] .00026 .00017 .00025 .00016
(.00012) (.00011) (.00012) (.00011)

[8C < Temp < 12C] .00019 .00017 .00019 .00017
(.00008) (.00008) (.00008) (.00008)

[16C < Temp < 20C] -.00016 -.00012 -.00013 -.0001
(.00008) (.00008) (.00008) (.00008)

[20C < Temp < 24C] .00052 .00037 .00054 .0004
(.00011) (.00011) (.00011) (.0001)

[24C < Temp] .00084 .00078 .00081 .00077
(.0002) (.00018) (.0002) (.00018)

Year-Sizeclass Fixed Effects No Yes No Yes
Year-Export Fixed Effects No No Yes Yes
Year-East-West Fixed Effects Yes Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes
N 590605 590605 590605 590605

Notes: The table reports the coefficient estimates for all temperature bins using different specifications. The de-

pendent variable is the logarithm of gross output. Standard errors clustered at the firm level are reported in paren-

thesis. Source: Research Data Centres of the Federal Statistical Office and the Statistical Offices of the Länder:

AFiD-Panel Kostenstrukturerhebung und Energieverwendung, 2003-2017, own calculations.
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Table A2 Effect of Temperature on CO2 Emissions

Log of Total CO2 Emissions
(1) (2) (3) (4)

[Temp <−8C] .00126 .00146 .00124 .00144
(.00034) (.00033) (.00034) (.00033)

[−8C < Temp <−4C] .00067 .00081 .00065 .0008
(.00025) (.00024) (.00025) (.00024)

[−4C < Temp < 0C] .00086 .00082 .00084 .0008
(.0002) (.00019) (.0002) (.00019)

[0C < Temp < 4C] .00082 .00074 .0008 .00074
(.00016) (.00015) (.00016) (.00015)

[4C < Temp < 8C] .00055 .00047 .00055 .00047
(.00013) (.00013) (.00013) (.00013)

[8C < Temp < 12C] .0001 .00009 .00009 .00008
(.00009) (.00009) (.00009) (.00009)

[16C < Temp < 20C] -.00007 -.00005 -.00007 -.00005
(.00009) (.00009) (.00009) (.00009)

[20C < Temp < 24C] .00022 .0001 .00023 .00011
(.00013) (.00012) (.00013) (.00012)

[24C < Temp] .00001 -.00003 0 -.00004
(.00023) (.00022) (.00023) (.00022)

Year-Sizeclass Fixed Effects No Yes No Yes
Year-Export Fixed Effects No No Yes Yes
Year-East-West Fixed Effects Yes Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes
N 590195 590195 590195 590195

Notes: The table reports the coefficient estimates for all temperature bins using different specifications. The de-

pendent variable is the logarithm of total carbon emissions. Standard errors clustered at the firm level are reported

in parenthesis. Source: Research Data Centres of the Federal Statistical Office and the Statistical Offices of the

Länder: AFiD-Panel Kostenstrukturerhebung und Energieverwendung, 2003-2017, own calculations.
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Table A3 Effect of Temperature on Direct CO2 Emissions

Log of Direct CO2 Emissions
(1) (2) (3) (4)

[Temp <−8C] .00545 .0056 .00542 .00558
(.00055) (.00054) (.00055) (.00054)

[−8C < Temp <−4C] .00485 .00502 .00485 .005
(.0004) (.00039) (.0004) (.0004)

[−4C < Temp < 0C] .00351 .00349 .00349 .00348
(.00031) (.00031) (.00031) (.00031)

[0C < Temp < 4C] .0019 .00185 .00189 .00185
(.00025) (.00025) (.00025) (.00025)

[4C < Temp < 8C] .0012 .00115 .0012 .00115
(.00022) (.00022) (.00022) (.00022)

[8C < Temp < 12C] .00007 .00004 .00006 .00004
(.00015) (.00015) (.00015) (.00015)

[16C < Temp < 20C] -.00016 -.00015 -.00016 -.00014
(.00015) (.00015) (.00015) (.00015)

[20C < Temp < 24C] -.00069 -.00078 -.00069 -.00078
(.0002) (.0002) (.0002) (.0002)

[24C < Temp] -.00194 -.00199 -.00195 -.00199
(.00036) (.00036) (.00036) (.00036)

Year-Sizeclass Fixed Effects No Yes No Yes
Year-Export Fixed Effects No No Yes Yes
Year-East-West Fixed Effects Yes Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes
N 546362 546362 546362 546362

Notes: The table reports the coefficient estimates for all temperature bins using different specifications. The de-

pendent variable is the logarithm of direct carbon emissions, i.e. total emissions minus emissions resulting from

electricity bought from the grid system. Standard errors clustered at the firm level are reported in parenthesis.

Source: Research Data Centres of the Federal Statistical Office and the Statistical Offices of the Länder: AFiD-

Panel Kostenstrukturerhebung und Energieverwendung, 2003-2017, own calculations.
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Table A4 Effect of Temperature on CO2 Emissions from Electricity Use

Log of CO2 Emissions from Electricity Use
(1) (2) (3) (4)

[Temp <−8C] -.00015 .00006 -.00018 .00004
(.00038) (.00037) (.00038) (.00037)

[−8C < Temp <−4C] -.00062 -.00048 -.00064 -.0005
(.00028) (.00027) (.00028) (.00027)

[−4C < Temp < 0C] .00003 -.00002 0 -.00004
(.00022) (.00021) (.00022) (.00021)

[0C < Temp < 4C] .00036 .00028 .00034 .00027
(.00017) (.00017) (.00018) (.00017)

[4C < Temp < 8C] .00023 .00016 .00023 .00015
(.00015) (.00015) (.00015) (.00015)

[8C < Temp < 12C] .0001 .0001 .0001 .0001
(.00011) (.0001) (.00011) (.0001)

[16C < Temp < 20C] -.00012 -.0001 -.00012 -.00009
(.0001) (.0001) (.0001) (.0001)

[20C < Temp < 24C] .00044 .00032 .00045 .00033
(.00014) (.00014) (.00014) (.00014)

[24C < Temp] .00074 .00069 .00073 .00069
(.00025) (.00025) (.00025) (.00025)

Year-Sizeclass Fixed Effects No Yes No Yes
Year-Export Fixed Effects No No Yes Yes
Year-East-West Fixed Effects Yes Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes
N 587267 587267 587267 587267

Notes: The table reports the coefficient estimates for all temperature bins using different specifications. The de-

pendent variable is the logarithm of carbon emissions from electricity bought from the grid system. Standard

errors clustered at the firm level are reported in parenthesis. Source: Research Data Centres of the Federal Statisti-

cal Office and the Statistical Offices of the Länder: AFiD-Panel Kostenstrukturerhebung und Energieverwendung,

2003-2017, own calculations.
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Table A5 Effect of Temperature on CO2 Emissions from Oil Use

Log of CO2 Emissions from Oil Use
(1) (2) (3) (4)

[Temp <−8C] .00671 .00652 .0067 .00653
(.001) (.00099) (.001) (.00099)

[−8C < Temp <−4C] .00394 .00358 .00388 .00356
(.00072) (.00072) (.00072) (.00072)

[−4C < Temp < 0C] .00388 .00378 .00392 .0038
(.00056) (.00056) (.00056) (.00056)

[0C < Temp < 4C] .00214 .00208 .00222 .00214
(.00048) (.00048) (.00048) (.00048)

[4C < Temp < 8C] .0016 .00159 .00165 .00162
(.00041) (.00041) (.00041) (.00041)

[8C < Temp < 12C] .00039 .00047 .00045 .00051
(.00028) (.00028) (.00028) (.00028)

[16C < Temp < 20C] -.00076 -.00067 -.00078 -.00068
(.00027) (.00027) (.00027) (.00027)

[20C < Temp < 24C] -.00103 -.00101 -.00107 -.00104
(.00039) (.00039) (.00039) (.00039)

[24C < Temp] -.00093 -.0008 -.00093 -.0008
(.00068) (.00067) (.00068) (.00067)

Year-Sizeclass Fixed Effects No Yes No Yes
Year-Export Fixed Effects No No Yes Yes
Year-East-West Fixed Effects Yes Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes
N 232659 232659 232659 232659

Notes: The table reports the coefficient estimates for all temperature bins using different specifications. The de-

pendent variable is the logarithm carbon emissions resulting from oil use. Standard errors clustered at the firm

level are reported in parenthesis. Source: Research Data Centres of the Federal Statistical Office and the Statisti-

cal Offices of the Länder: AFiD-Panel Kostenstrukturerhebung und Energieverwendung, 2003-2017, own calcu-

lations.
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Table A6 Effect of Temperature on CO2 Emissions from Gas Use

Log of CO2 Emissions from Gas Use
(1) (2) (3) (4)

[Temp <−8C] .00406 .00412 .00405 .00411
(.00074) (.00074) (.00074) (.00074)

[−8C < Temp <−4C] .0029 .00298 .00292 .003
(.00053) (.00053) (.00053) (.00053)

[−4C < Temp < 0C] .00285 .00277 .00283 .00277
(.00042) (.00041) (.00042) (.00041)

[0C < Temp < 4C] .00189 .00179 .00188 .00178
(.00033) (.00033) (.00033) (.00033)

[4C < Temp < 8C] .00122 .00113 .00122 .00113
(.00029) (.00028) (.00029) (.00028)

[8C < Temp < 12C] .00045 .00042 .00043 .00041
(.0002) (.0002) (.0002) (.0002)

[16C < Temp < 20C] -.00025 -.00021 -.00024 -.0002
(.0002) (.0002) (.0002) (.0002)

[20C < Temp < 24C] -.00008 -.00019 -.00007 -.00017
(.00027) (.00027) (.00027) (.00027)

[24C < Temp] -.00058 -.00064 -.0006 -.00065
(.00048) (.00048) (.00048) (.00048)

Year-Sizeclass Fixed Effects No Yes No Yes
Year-Export Fixed Effects No No Yes Yes
Year-East-West Fixed Effects Yes Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes
N 389079 389079 389079 389079

Notes: The table reports the coefficient estimates for all temperature bins using different specifications. The de-

pendent variable is the logarithm of carbon emissions resulting from gas use. Standard errors clustered at the

firm level are reported in parenthesis. Source: Research Data Centres of the Federal Statistical Office and the

Statistical Offices of the Länder: AFiD-Panel Kostenstrukturerhebung und Energieverwendung, 2003-2017, own

calculations.
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Table A7 Effect of Temperature on CO2 Emissions with Log of Sales as Control

Total Emissions Direct Emissions Indirect Emissions

[Temp <−8C] .0015 .00563 .00011
(.00032) (.00054) (.00036)

[−8C < Temp <−4C] .00098 .00511 -.00031
(.00023) (.00039) (.00026)

[−4C < Temp < 0C] .00083 .00349 0
(.00018) (.00031) (.0002)

[0C < Temp < 4C] .00072 .00184 .00025
(.00015) (.00025) (.00016)

[4C < Temp < 8C] .00042 .00111 .0001
(.00013) (.00022) (.00014)

[8C < Temp < 12C] .00004 .00001 .00005
(.00009) (.00015) (.0001)

[16C < Temp < 20C] -.00002 -.00012 -.00006
(.00008) (.00015) (.0001)

[20C < Temp < 24C] 0 -.00085 .0002
(.00012) (.0002) (.00013)

[24C < Temp] -.00026 -.00212 .00045
(.00021) (.00036) (.00024)

Control Log of Gross Output Yes Yes Yes
Year-Sizeclass Fixed Effects Yes Yes Yes
Year-Export Fixed Effects Yes Yes Yes
Year-East-West Fixed Effects Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes
Firm Fixed Effects Yes Yes Yes
N 590195 546362 587267

Notes: The table reports the coefficient estimates for all temperature bins using different specifications. The dependent variable is the

logarithm of carbon emissions resulting from gas use. Standard errors clustered at the firm level are reported in parenthesis. Source:

Research Data Centres of the Federal Statistical Office and the Statistical Offices of the Länder: AFiD-Panel Kostenstrukturerhebung

und Energieverwendung, 2003-2017, own calculations.

29



Table A8 Impact on Gross Output

Log of Gross Output
North vs. South Old vs. New Labor Intensity

North South Old New High Low

[Temp <−8C] .00054 -.00089 -.00062 .00017 -.00046 .00016
(.00063) (.0004) (.00037) (.00043) (.00045) (.00047)

[−8C < Temp <−4C] .00009 -.00101 -.00137 -.00002 -.00063 -.00075
(.00041) (.00031) (.00028) (.00031) (.00033) (.00035)

[−4C < Temp < 0C] -.00018 -.00051 -.00044 .00016 -.00002 -.00038
(.00033) (.00024) (.00022) (.00024) (.00026) (.00027)

[0C < Temp < 4C] -.0003 -.00005 -.00012 .00025 .00009 -.00008
(.00024) (.0002) (.00017) (.00019) (.0002) (.00021)

[4C < Temp < 8C] -.00037 .00021 .00006 .00021 .00018 .00005
(.00023) (.00016) (.00014) (.00017) (.00018) (.00018)

[8C < Temp < 12C] -.00065 .00017 .00015 .00018 .00017 .00005
(.00015) (.00011) (.0001) (.00011) (.00012) (.00013)

[16C < Temp < 20C] .00023 -.00005 .00002 -.00018 -.00017 -.00002
(.00018) (.00011) (.0001) (.00011) (.00012) (.00013)

[20C < Temp < 24C] .00044 .00022 .00061 .00029 .00012 .00061
(.00022) (.00017) (.00014) (.00015) (.00016) (.00018)

[24C < Temp] .0003 .00026 .00097 .00063 .00033 .0011
(.00043) (.0003) (.00025) (.00026) (.00028) (.0003)

Year-Sizeclass Fixed Effects Yes Yes Yes Yes Yes Yes
Year-Export Fixed Effects Yes Yes Yes Yes Yes Yes
Year-East-West Fixed Effects Yes Yes Yes Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes
N 357060 233545 330551 260054 217247 243492

Notes: The table reports the coefficient estimates for all temperature bins (obviously except for the leave out bin) from the baseline
model estimated on subsamples with the logarithm of gross output as the lhs variable. Standard errors are clustered at the firm level
and reported in parenthesis. Plants observed in 1995 already are classified as old plants. Plants are those with a labor to sales ratio
above the 60th percentile are classified as "high labor intensity". Plants with a labor to sales ratio below the 40th percentile are clas-
sified as low labor intensity plants. Source: Research Data Centres of the Federal Statistical Office and the Statistical Offices of the
Länder: AFiD-Panel Industriebetriebe, 2003-2017, own calculations.
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Table A9 Impact on Direct CO2 Emissions

Log of Direct CO2 Emissions
North vs. South Old vs. New Labor Intensity

North South Old New High Low

[Temp <−8C] .00479 .0043 .00657 .00437 .00586 .00473
(.00126) (.00075) (.00074) (.0008) (.00087) (.0009)

[−8C < Temp <−4C] .0048 .00334 .00588 .00373 .00458 .00488
(.0008) (.00057) (.00055) (.00057) (.00062) (.00066)

[−4C < Temp < 0C] .0035 .00237 .0044 .00235 .00316 .00323
(.00063) (.00046) (.00043) (.00045) (.0005) (.00051)

[0C < Temp < 4C] .00227 .00149 .00235 .00127 .00173 .00138
(.00049) (.00038) (.00034) (.00037) (.00041) (.00041)

[4C < Temp < 8C] .00156 .00061 .00151 .00072 .00092 .00105
(.00045) (.0003) (.00029) (.00032) (.00035) (.00036)

[8C < Temp < 12C] -.00012 .00012 .00037 -.00027 -.00002 -.00022
(.0003) (.0002) (.00021) (.00022) (.00024) (.00024)

[16C < Temp < 20C] .00037 -.00002 -.00031 .00001 -.00005 -.00049
(.00036) (.00021) (.0002) (.00023) (.00025) (.00024)

[20C < Temp < 24C] -.00028 -.00037 -.00066 -.00075 -.00052 -.00116
(.00044) (.00031) (.00028) (.00029) (.00032) (.00033)

[24C < Temp] -.00126 -.00053 -.00229 -.00146 -.00156 -.00244
(.00086) (.00057) (.00049) (.00053) (.00058) (.00059)

Year-Sizeclass Fixed Effects Yes Yes Yes Yes Yes Yes
Year-Export Fixed Effects Yes Yes Yes Yes Yes Yes
Year-East-West Fixed Effects Yes Yes Yes Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes
N 216445 329917 248619 297743 198850 226893

Notes: The table reports the coefficient estimates for all temperature bins (obviously except for the leave out bin) from the baseline
model estimated on subsamples with the logarithm of direct carbon emissions as the lhs variable. Standard errors are clustered at
the firm level and reported in parenthesis. Plants observed in 1995 already are classified as old plants. Plants are those with a labor
to sales ratio above the 60th percentile are classified as "high labor intensity". Plants with a labor to sales ratio below the 40th per-
centile are classified as low labor intensity plants. Source: Research Data Centres of the Federal Statistical Office and the Statistical
Offices of the Länder: AFiD-Panel Industriebetriebe, 2003-2017, own calculations.
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Table A10 Impact on CO2 from Electricity Use

Log of CO2 Emissions from Electricity
North vs. South Old vs. New Labor Intensity

North South Old New High Low

[Temp <−8C] .00054 -.00041 -.0002 .0001 -.00025 -.00002
(.00085) (.00052) (.00047) (.00056) (.0006) (.00061)

[−8C < Temp <−4C] .0005 -.00069 -.00048 -.00072 -.00123 -.0002
(.00053) (.0004) (.00036) (.0004) (.00044) (.00043)

[−4C < Temp < 0C] .00029 -.00028 -.00006 -.00014 -.00052 .00002
(.00041) (.00031) (.00027) (.00032) (.00035) (.00034)

[0C < Temp < 4C] .00014 .00013 .00024 .00027 0 .00024
(.00032) (.00026) (.00023) (.00025) (.00029) (.00027)

[4C < Temp < 8C] .00004 .00021 .00011 .00011 .00004 .00011
(.00031) (.00021) (.00019) (.00022) (.00025) (.00023)

[8C < Temp < 12C] -.00035 .00002 .00001 .00017 .00017 -.00012
(.00021) (.00014) (.00014) (.00015) (.00017) (.00017)

[16C < Temp < 20C] .00031 .00004 -.00022 .00004 .00014 -.00033
(.00024) (.00014) (.00012) (.00015) (.00017) (.00015)

[20C < Temp < 24C] .00054 .00009 .0001 .00061 .00045 .00027
(.00029) (.00022) (.00018) (.00021) (.00023) (.00022)

[24C < Temp] .00078 .00058 .00033 .00112 .00103 .00053
(.00058) (.0004) (.00032) (.00036) (.00041) (.00038)

Year-Sizeclass Fixed Effects Yes Yes Yes Yes Yes Yes
Year-Export Fixed Effects Yes Yes Yes Yes Yes Yes
Year-East-West Fixed Effects Yes Yes Yes Yes Yes Yes
Year-Sector Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes
N 232544 354723 258772 328495 215996 241972

Notes: The table reports the coefficient estimates for all temperature bins (obviously except for the leave out bin) from the baseline
model estimated on subsamples with the logarithm of carbon emissions resulting from electricity use as the lhs variable. Standard
errors are clustered at the firm level and reported in parenthesis. Plants observed in 1995 already are classified as old plants. Plants
are those with a labor to sales ratio above the 60th percentile are classified as "high labor intensity". Plants with a labor to sales
ratio below the 40th percentile are classified as low labor intensity plants. Source: Research Data Centres of the Federal Statistical
Office and the Statistical Offices of the Länder: AFiD-Panel Industriebetriebe, 2003-2017, own calculations.
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Figure A2 Mean Temperature

Notes: The temperature is the mean of the annual means from
1995 until 2017 at the municipality level. Source: E-OBS dataset
from the EU-FP6 project UERRA (https://www.uerra.eu) and the
Copernicus Climate Change Service
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Figure A3 Average Number of Days per Temperature-Bin: Historical and
Projected Distribution

Notes: The height of the bars give the average number of days per temperature bin. The average is
a weighted average across federal states with weightes being a federal state’s share in total CO2
emissions in the manufacturing industry. The blue bars are historical temperatures and the red bars
the projected temperatures for the end of the century (2080-2099). Source: E-OBS dataset from
the EU-FP6 project UERRA (https://www.uerra.eu) for the historical data. The projection has been
produced by the Copernicus Climate Change Service. The projections result from the business as
usual scenario (RCP8.5).
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