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Natural resources and technology                                     
– on the mitigating effect of green tech 

Tobias Wendler*, Daniel Töbelmann*, Jutta Günther* 

 

 

Abstract          

Drawing upon the literature on environmental innovation and social metabolism, this paper 

investigates whether technology can lessen the problem of scarce natural resources. We focus 

on fossil and biomass materials as important resources for production and consumption. Utiliz-

ing a dynamic panel approach, the paper empirically analyses whether environmental innova-

tions reduce the usage of biomass and fossil materials at the national level. Our results suggest 

that there is no consistent mitigating effect of green technology. Rather more, substantial het-

erogeneity in technology effects can be found between different types of resources. For bio-

mass, no significant technology effects are found. Fossil materials are saved by innovations in 

recycling as well as by new production and processing technologies. Further, substitutional 

dynamics of fossil energy carriers are of major importance.  
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1. Introduction 

 

When you are refueling your car, where is the fuel coming from? Is it biofuels from grain, 

electrical energy from solar panels, or still gasoline from oil? No matter what you drive and 

refuel, you are using specific resources, and the car used determines what these resources are. 

Our socio-metabolic profile, i.e. the ratio in which we use different resources,1 is intimately 

related with the technologies we use (Fischer-Kowalski 2011; Haberl et al. 2011). With the 

large-scale utilization of fossil fuels humanity has become capable of significantly influencing 

natural processes, leading researchers to label our current era as ‘Anthropocene’ (Steffen et al. 

2007). Due to the environmental crisis, reducing fossil use and even reversing the shift to fossil 

fuels has been suggested (Fischer-Kowalski 2011; Haberl et al. 2011). A substitution of fossil 

fuels by biomass is considered as a promising avenue (Gustavsson et al. 1995; Ingrao et al. 

2016). To enable such developments, however, new technologies, and particularly specific en-

vironmentally beneficial technologies are requested (Acemoglu et al. 2012; Aghion et al. 2016; 

Hepburn et al. 2018). But what are the actual effects of environmental innovation on the usage 

of biomass and fossil resources?  

In this paper, we aim at disentangling the effects of green innovation on the biomass and fossil 

fuel usage in European economies. We construct a panel dataset from 1990 to 2012, and utilize 

a dynamic panel approach. We focus on the 27 European Union (EU) countries,2 given their 

institutional commonalities due to the shared EU framework including the strong emphasis on 

green technologies as a means to confront climate change and resource scarcity.3 We use indi-

cators of Economy Wide Material Flow Accounting (EW-MFA) to capture the utilization of 

biomass and fossil resources, as is common in similar applications (Weisz et al. 2006; Fischer-

Kowalski et al. 2011; Behrens 2016; Agnolucci et al. 2017). To operationalize environmental 

innovation, we rely on patent data to construct knowledge stocks (see Section 2.2).  

                                                           
1 Such as biomass, fossil fuels, metal ores, or non-metallic minerals. 
2 Croatia is not included in our sample since it joined the EU in 2013. 
3 The EU has developed multiple programs and initiatives, setting ambitious targets for improvements in envi-
ronmental productivity. Many of these initiatives put improvements in resource efficiency at the heart of EU 
environmental policy in order to secure prosperity and competitiveness, while causing less harm to the envi-
ronment (European Commission 2008, 2010, 2011a, 2015). The shift to green technologies is considered a ne-
cessity in order to achieve the ambitious environmental and economic goals. This is reflected in the ‘EU Eco-
innovation Action Plan’ (EcoAP) (European Commission 2011b). 
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Our results suggest that the effects of green technologies differ not only by technological field, 

but by resource type as well. We find no evidence for resource saving effects of green innova-

tion in the case of biomass use. For fossil fuels, we find innovation in the areas recycling & 

reuse, and the production or processing of goods to have a reducing effect on fossil use, once 

substitutional dynamics within the fossil composition are controlled for. Further, country char-

acteristics could play a role for the magnitude of the technology effect on fossil use.  

A technological change capable of reducing material consumption plays a key role in the pur-

suits of reaching environmental goals. The concept of technological change is widely discussed 

in the literature as a means to achieve the aim of sustainable economic growth (Acemoglu 2002; 

Jaffe et al. 2002; Popp et al. 2010, 2011; Acemoglu et al. 2012), as environmental problems are 

not adequately addressable with current technologies (Popp et al. 2010). Hence, particularly 

environmental innovation (EI) (Barbieri et al. 2016) is of central interest. Empirical studies 

investigating the environmental effects of EI focus primarily on emissions (Carrión-Flores and 

Innes 2010; Wang et al. 2012; Weina et al. 2016; Zhang et al. 2017; Ghisetti and Quatraro 2017; 

Costantini et al. 2017; Cheng et al. 2019; Töbelmann and Wendler 2020; Georgatzi et al. 2020).4 

However, it is evident that economic activity is accompanied by various environmental pres-

sures. Material-use indicators have been considered appropriate to assess such integrated envi-

ronmental problems (Fischer-Kowalski et al. 2011; Behrens 2016; Agnolucci et al. 2017). Con-

cerning overall resource use, Wendler (2019) finds green innovation to reduce resource use 

while innovation in general does not. Further, the effects of green innovation are found to be 

heterogenous across technological fields (Wendler 2019). Nevertheless, it is still up to empirical 

studies to investigate the concrete effects of green technologies on specific material groups.  

Historically, it has been the shift from biomass to a fossil-based energy system that has facili-

tated unprecedented population and economic growth (Fischer-Kowalski 2011; Haberl et al. 

2011; Fischer-Kowalski et al. 2014). Biomass was the dominant material group for human use, 

before its relevance declined strongly within industrial societies (Krausmann et al. 2009; Haberl 

et al. 2011; Fischer-Kowalski et al. 2014). Fossil fuels were an irrelevant material group within 

the agrarian regime,5 but are a key ingredient to the material-use profile of industrial countries 

                                                           
4 Exceptions are the studies by Wurlod and Noailly (2018) and Wendler (2019). 
5 Three broad ‘socio-metabolic regimes’ have been distinguished, namely the hunter-gatherer regime, the 
agrarian regime, and the industrial regime (Haberl et al. 2011; Fischer-Kowalski et al. 2014). The industrial revo-
lution, i.e. the shift to a ‘fossil energy system’, marks the onset of the industrial regime and led to strong in-
creases in energy and material use, population density, and trends such as urbanization (Haberl et al. 2011; 
Fischer-Kowalski et al. 2014). 
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(Haberl et al. 2011; Fischer-Kowalski et al. 2014; Schaffartzik et al. 2016). Further, these ma-

terial groups build the foundation for modern societies as they are irreplaceable in terms of 

providing nutrition and energy (Weisz et al. 2006; Haberl et al. 2011; Schramski et al. 2015). 

There are doubts regarding the potential of alternative energy sources to enable similar societal 

organization (Haberl et al. 2011). Moreover, both materials are likely limited in their scope for 

endeavors towards a circular economy (Haas et al. 2015). While fossil fuels are essentially non-

renewable and thus represent a final consumption of environmental value by humans, unsus-

tainable reductions of living biomass are directly related with survival threats to the human 

species (Schramski et al. 2015). From a historical perspective, it has recently been suggested 

that the shift to fossil fuels be reversed (Fischer-Kowalski 2011; Haberl et al. 2011). Shifts to 

economic structures based on biomass and biological processes are being considered (Ingrao et 

al. 2016), as biomass use is viewed as being more sustainable (Gustavsson et al. 1995). Both 

biomass and fossil fuel usage are directly related to multiple environmental problems, such as 

land-use change and emissions (Behrens 2016). Further, given negative developments in energy 

returns on investments, the reduction of their use is a key concern for reductions of environ-

mental pressure (Behrens 2016).   

The remainder of the paper is structured as follows: section 2 introduces the data employed. 

Section 3 explains the method used in our analysis. Section 4 provides our empirical results, 

which are then discussed and concluded in section 5.      

2. Data 

 

2.1 Material input data 

 

We constructed a panel dataset for the EU-27 countries between 1990 and 2012. This time 

frame was chosen to make all variables compatible to the material use data, which offers time-

series starting from 1990.6 To analyze the effects of environmental innovation (EI) on material 

usage, we decided to focus on material input. Material input indicators can be derived from the 

EW-MFA methodology and account for all materials that enter the socio-economic system of 

a country (Bringezu et al. 2004; Fischer-Kowalski et al. 2011). Material input is calculated by 

summing up domestic extraction, i.e. materials extracted in the country itself, and material im-

ports (Im), i.e. materials entering the economy by being imported from abroad. Consumption 

indicators, i.e. material input minus exports, in our view perform worse than input indicators in 

                                                           
6 Concerning the indicator Raw Material Input (RMI). 
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capturing the material dependency of an economy to satisfy its production and consumption. 

Especially in light of analyzing technology effects, important information would be lost if re-

duced material inputs for exported goods were not accounted for.  

Two different material input indicators can be constructed. Direct Material Input (DMI) is con-

structed by adding import flows to domestic extraction, with imports being measured by their 

actual weight when crossing the border (UNEP 2016). Raw Material Input (RMI) accounts for 

upstream flows of imported commodities by assigning these as Raw Material Equivalents 

(𝑅𝑀𝐸𝐼𝑚) (UNEP 2016). These 𝑅𝑀𝐸𝐼𝑚 can be calculated by applying multiregional input-out-

put-models (Wiedmann et al. 2015). Both indicators have merits and drawbacks that are inher-

ent in their calculation. RMI introduces some uncertainties due to the application of input-out-

put-models (Eisenmenger et al. 2016) as well as potential sensitivity to changes in foreign tech-

nology and production, which influence the accounted upstream flows. On the contrary, DMI 

directly reflects the mass of materials actually processed in the economy. However, a major 

issue of DMI is that the offshoring of material intensive production steps is not accounted for 

(Schaffartzik et al. 2016). This can obscure results if reductions of material usage are mainly 

due to offshoring (Wiedmann et al. 2015), while the global reducing effect of reducing imports 

may also not be fully accounted for. Hence, given the focus of our study, we consider RMI as 

the more suitable indicator, and will base our main analysis on RMI. Nonetheless, we also con-

ducted the analysis for DMI and will compare the resulting differences between the two indi-

cators.      

We obtain data on material flows from the Global Material Flows Database, provided by the 

United Nations Environment Programme (UNEP) (UNEP 2016). The dataset is available at 

http://www.resourcepanel.org/global-material-flows-database. As mentioned above, the time-

series for Raw Material Equivalents ranges from to 1990 to 2012.7 We extract data on domestic 

extraction and imports and calculate RMI by adding 𝑅𝑀𝐸𝐼𝑚 to domestic extraction, while add-

ing regular import data in the construction of DMI. We construct the indicators this way, both 

for biomass and fossil fuels. If either domestic extraction or import data is missing we set our 

material input variable to missing. Within the period of 1990 to 2012 the same observations are 

missing for RMI and DMI for both material classes.      

We will now explore the material inputs of biomass and fossil fuels using the RMI indicator. 

We will start by shortly discussing the size relation of biomass and fossil fuel usage. Then we 

                                                           
7 Data after 2012 is available, however according to the Technical Annex should not be used for statistical anal-
ysis, since it might be increasingly projection based.  

http://www.resourcepanel.org/global-material-flows-database
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discuss the dynamics over time of both material groups. Lastly, we will explore the composition 

of biomass and fossil fuels,8 given that these are constructed of disaggregated material groups. 

Across our sample, biomass is quantitatively larger than fossil fuels. Biomass accounts on av-

erage for 1.26 times as much mass as fossil fuels. However, this relation diverges strongly 

(Min.: 0.29; Max.: 4.56). The relative significance of the two classes differs largely across 

countries. The highest average is found for Latvia with Biomass being 3.05 times as high as 

fossil fuels. The lowest average occurs in Slovakia, where biomass usage is only 0.46 times that 

of fossil usage. Figure 1 shows the dynamics of biomass and fossil RMI alongside GDP for all 

27 countries for the period 1993 to 2011. As can be seen, the proportions of biomass and fossils 

vary over time. While there is some growth in material inputs over time, it is evident that GDP 

growth is more pronounced. This indicates increased material efficiency. Comparing the first 

and last year (1993 and 2011), GDP is 1.43 times its initial value, while biomass is 1.29 times 

and fossils 1.11 times as large. This indicates that material efficiency improved more strongly 

for fossil materials than for biomass.     

 

Figure 1. RMI and GDP in the EU-27 per year 

                                                           
8 Concerning the composition analysis, data on DMI, not RMI, will be used as there is no more detailed data on 
RMI available. 
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Notes: On the left-hand side RMI data (bars) is scaled as gigatons (1.000.000.000 tons) per year. On the right-hand side GDP data (line) is 

scaled in thousand billion per year. The graph covers the period 1993 to 2011, as all countries contributed data for these years.9 

Across the whole sample biomass grows by 2.08% on average. These dynamics are much 

stronger for fossil fuels with 4.53% average growth. These strong dynamics however occur 

primarily in the early 90s, due to structural dynamics which are discussed later. When excluding 

the years before 1996 from the calculations, average growth of fossils decreases to 1.85%. 

These changes are much less pronounced for biomass, where average growth decreases to 

1.74%. For both material groups growth dynamics are more pronounced for RMI than for 

DMI.10 

Both biomass and fossil fuels are aggregated material groups consisting of subgroups with po-

tentially diverging dynamics (Weisz et al. 2006). Biomass is aggregated from five subclasses 

that are available on an MF13 level,11 namely crops, crop residues, grazed biomass and fodder 

crops, wood, and wild catch and harvest. Wood is considered to show different dynamics than 

agricultural biomass (Weisz et al. 2006). This could be particularly relevant given that we focus 

on material input indicators. Hence, we assessed the composition of Biomass DMI concerning 

potential underlying dynamics due to this distinction. Especially in Finland and Sweden wood 

is the most important biomass subgroup (>60%), followed by Estonia and Latvia (47%). Wood 

has the strongest changes in its biomass share in terms of magnitude. However, this corresponds 

to wood’s general biomass share, which is the second highest behind crops. Crops are less vol-

atile due to their subsistence character. In relative terms, the dynamics of wood usage are less 

pronounced than for wild catch and harvest, grazed biomass and fodder crops, and crop resi-

dues. Although the share of wood tends to increase over time, there are no clear patterns in 

these dynamics. Also, the strong volatility of the wood share seems to be in proportion to its 

overall relevance in the affected country. Hence, there are no compositional dynamics of bio-

mass that seem relevant for our empirical analysis. 

Fossil fuels are aggregated by summing up coal, petroleum, natural gas, and oil shale and tar 

sands. The composition plays a very important role, given that fossils mainly serve the same 

                                                           
9 For Fossil RMI the following countries and years are missing: Cyprus (2012), Czech Republic (1990-1992), Ger-
many (1990), Estonia (1990-1991), Lithuania (1990-1991), Latvia (1990-1991), Malta (2012), Slovenia (1990-
1991), Slovakia (1990-1992). Biomass RMI is missing for the same observations, except that data is given for 
Cyprus and Malta in 2012. 
10 For DMI the average growth rates have the following values. For the full sample (1990-2012): Biomass 1.33%, 
Fossil fuels 0.39%. For the reduced sample (1996-2012): Biomass 1.72%, Fossil fuels 0.64%.  
11 Material flow data disaggregated to 13 material classes, of which 5 are summed up to Biomass on MF-4 level, 
4 are summed up to fossil fuels and each 2 to metal ores and non-metallic minerals. 
Please note that data on Raw Material Equivalents (RME) is only available on an MF-4 level, which is why con-
ducting the actual analysis on MF-13 level is not possible. 
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purpose as to provide energy (Haas et al. 2015). Yet, substantial differences between the sub-

groups occur as the calorific value of coal only amounts to 30-50% of the calorific value of oil 

and gas (Weisz et al. 2006).12 Hence, we analyzed the fossil composition concerning the shares 

of coal compared to oil and gas. Oil shale and tar sands, according to the data, are not used by 

European countries. An exception is Estonia, which has high domestic extraction; ~85% of its 

fossil usage is accounted for by oil shale and tar sands. Therefore, Estonia was excluded from 

the calculation of the compositional dynamics. Strong substitutions of coal by oil or gas, and 

the other way around, could distort information. Such substitution would not be captured by 

energy structure variables13 but implies different amounts of available energy, which are not 

reflected by the respective material inputs. Therefore, we calculated the share of coal in fossil 

DMI on the one hand, and the share of gas plus oil in fossil DMI on the other hand. Then, we 

looked at the changes of the gas plus oil share.14 First, we clustered our time-series into four 

periods, from 1991-1995, 1996-2001, 2002-2007, and 2008-2012. It is striking that there seems 

to be a strong substitutional effect going on in the early 90s, as the average growth15 is by far 

highest in the first period with 1.15 %, and then decreases each period to 0.68%, 0.26% and 

0.04%. Hence, especially in the first years, coal was substituted by oil and gas. Likewise, in 

terms of absolute changes16 the first period is most volatile with 2.53%, followed by 2.12%, 

1.81%, and 1.59%. The highest average increase of oil and gas can be found in Luxembourg, 

Malta, Slovakia, Denmark, and Ireland. The highest volatility17 occurs in Finland and Latvia. 

Although dynamics in substitution remain after 1995, this first period has by far the strongest 

dynamics and substitution towards oil and gas. The yearly dynamics of coal substitution and 

volatility are presented in Figure 2. Coal substitution is high and constant in the early 90s. An 

overall peak can be found in 1998, where both coal volatility and substitution exceed 3% on 

average. The volatility remains rather stable across the whole sample, being smaller in the sec-

ond half of the sample. Substitution of coal is very pronounced in the early 90s, whereas it 

fluctuates around zero in the second half of the sample. 

                                                           
12 Coal produces more CO2 per unit of energy (Haberl et al. 2011).  
13 As all are still fossil energy carriers.  
14 We multiplied the change in the share by 100 to have the variable in %, e.g. a change from 0.01 to 0.02 im-
plies 0.01*100 = 1% change.  
15 Given the definition of the variable, positive average growth directly implies that the share of oil and gas in-
creased to the disadvantage of coal. 
16 Meaning that positive and negative change rates do not cancel out. 
17 Referring to absolute changes as explained in footnote before. 
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Figure 2. Yearly average changes within fossil DMI across European countries 

Notes: Coal Substitution refers to the average increase of the oil and gas share in fossil DMI. Coal volatility refers to the average changes of 

the oil and gas share in fossil DMI, regardless of the direction of change. Estonia was excluded from the calculations. 

 

2.2 Patent data 

 

Given our interest in analyzing the effects of green technologies on material usage we utilize 

patent data on environmental innovation (EI). We construct knowledge stocks as a measure of 

installed and available technological capabilities (Popp 2002; Popp et al. 2011; Costantini et al. 

2017). Following Popp et al. (2011) the knowledge stock is constructed according to the fol-

lowing formula:    

𝐾𝑖,𝑡 =  ∑ 𝑒−ß1(𝑠)(1 − 𝑒−ß2(𝑠+1))𝑃𝐴𝑇𝑖,𝑡−𝑠

∞

𝑠=0

                         (1) 

ß1 is the knowledge depreciation rate, accounting for the decreasing relevance of technologies 

over time (Weina et al. 2016). ß2 is the diffusion rate, accounting for the time technologies 

need to spread (Weina et al. 2016). Due to multiplying the rate of diffusion with 𝑠 + 1, diffusion 
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is not constrained to zero in the current period (Popp et al. 2011). In line with previous work, 

we set the knowledge depreciation rate to 0.1, and the diffusion rate to 0.25 (Popp et al. 2011; 

Weina et al. 2016).  

The use of patent data is accompanied by drawbacks that have been extensively discussed in 

the literature (Lanjouw and Mody 1996; Johnstone et al. 2010; Popp et al. 2011; Haščič and 

Migotto 2015; Weina et al. 2016). Nonetheless, patent data is considered the most suited indi-

cator for innovation as it measures intermediate output, is quantitative, widely available and 

provides detailed information due to the technology classes assigned (Griliches 1990; Dernis 

and Khan 2004; Haščič and Migotto 2015).  

In order to avoid potential drawbacks of patent data we generated the patent data under the 

following conditions. We rely on multinational patent applications at the European Patent Of-

fice (EPO), thus avoiding issues concerning patent quality and comparability (Johnstone et al. 

2010). To further increase patent quality and avoid double counts, we count only the first EPO 

patent within a patent family. Given our focus on the utilization of an invention, we assign 

patents based on applicant data (Ghisetti and Quatraro 2017), counting the patent applications 

at which an applicant from a country participated. In order to capture the innovative effort un-

dertaken in a timely manner, we utilize patent applications instead of granted patents (Costan-

tini et al. 2017) and avoid regulatory delays when reflecting the timing of discovery by using 

the earliest filing year (Carrión-Flores and Innes 2010; Wang et al. 2012; Costantini et al. 2017; 

Wurlod and Noailly 2018). The patent data was retrieved from PATSTAT 2017b.18 

To distinguish EI from other innovations, we utilize the technological classes of patent appli-

cations. The WIPO Green Inventory (GI) (Kruse and Wetzel 2014; Albino et al. 2014; Ghisetti 

and Quatraro 2017) and the OECD EnvTech indicators (EnvTech) (Haščič and Migotto 2015; 

Ghisetti and Quatraro 2017; Costantini et al. 2017) have been made available to make such 

discrimination feasible. However, given the heterogeneity of technologies included in these 

lists we also use the data on several subdomains of EI as utilized by Wendler (2019), capturing 

potentially specific technological effects and dynamics. The comprehensive EI variable is con-

structed by using all technological classes encompassed by the GI and/or the EnvTech 

(EI_Full). Further, innovation in the area of alternative energy production (EI_AEP) and green 

technologies relating to transportation (EI_Transp) are considered, since achieving the decar-

bonization of mobility and energy provision is considered crucial to achieve environmental 

goals. EI in the area of recycling and reuse (EI_Recy) fundamentally relates to concepts of 

                                                           
18 The b refers to the autumn version. 
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resource efficiency and circular economy (European Commission 2015; Haas et al. 2015). Be-

yond that EI in relation to energy efficiency (EI_EnEff) is used, given the crucial importance 

of improved energy efficiency to reduce fossil usage. Further, climate change mitigation tech-

nologies in the production or processing of goods (EI_ProGo) are operationalized, given the 

resource intensity of manufacturing. To ensure that the effects found for a subdomain of EI are 

not due to mistakes in choosing the EI boundary, a variable capturing all innovations (Total 

Innovation) is used. If effects are found for an EI subdomain, but not for overall innovation, 

this robustness check ensures that we have isolated an actual effect of the specific EI technolo-

gies (Lanjouw and Mody 1996; Wurlod and Noailly 2018).  

2.3 Further data 

 

Further data is taken from the Cambridge Econometrics European Regional Database (ERD) 

and the World Bank World Development Indicators (WDI) database. Data on GDP and the 

sectoral share of the agricultural sector have been taken from the ERD. Data on energy struc-

ture, namely the share of fossil energy out of total energy, and data on net energy imports was 

taken from the WDI database. Descriptive statistics on all variables can be found in the Appen-

dix (Appendix A).  

 

3. Method 

A dynamic panel data approach is employed in this study, to incorporate the temporal depend-

ency and dynamic existing between material flows and their own past values (Shao et al. 2017). 

(2)   𝑅𝑀𝐼𝑖,𝑡 =  ∑ 𝛿𝑗𝑅𝑀𝐼𝑖,𝑡−𝑗 + 𝑋′𝑖,𝑡𝛽 + 𝜇𝑖 + 𝜓𝑡 + 𝜀𝑖,𝑡      𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑁 𝑎𝑛𝑑 𝑡 = 1, … , 𝑇

𝐽

𝑗=1

 

𝑅𝑀𝐼𝑡−𝑗 represents the lagged dependent variable (LDV), 𝑋′ is a 1 𝑥 𝑘 vector of regressors, 𝛽 

denotes the 𝑘 𝑥 1 vector of coefficients, 𝜇 the country fixed effects, 𝜓 the time fixed effects and 

𝜀 the error term. The subscript 𝑖 denotes the cross-sectional unit (country) and 𝑡 denotes the 

year. 

Due to the given data structure - and to avoid the potentially biased estimates19 and endogeneity 

problems - this study employs the one-step difference Generalized Method of Moments (GMM) 

                                                           
19 Employing the well-known Fixed-Effects estimator (FE), aiming to eliminate the country fixed effects, leads to 
endogeneity problems caused by the presence of the LDV and thus to inconsistent estimates (Baltagi 2012). 
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estimator, an instrumental variable (IV) method. This method, proposed by Arellano and Bond 

(1991), is widely known as the Arellano-Bond estimator (AB). The usage of this estimator is in 

line with econometric literature since it outperforms other methods in long panels (Judson and 

Owen 1999; Hwang and Sun 2018).  

The starting point of the AB estimator is given by first-differencing equation 2 above: 

(3)   ∆𝑅𝑀𝐼𝑖,𝑡 =  ∑ 𝛿𝑗∆𝑅𝑀𝐼𝑖,𝑡−𝑗 + ∆𝑋′𝑖,𝑡𝛽 + ∆𝜓𝑡 + ∆𝜀𝑖,𝑡

𝐽

𝑗=1

 

 

This eliminates 𝜇𝑖 but causes that the LDV again is correlated with the error (Baltagi 2012). 

This problem is encountered by the utilization of IV, in which the first-differenced variables 

are instrumented by their own lags. Those are highly correlated with the LDV, but not correlated 

with the error. The basis and suggested advantage of the GMM procedure is the comprehension 

of the orthogonality conditions existing between 𝑦𝑖𝑡 and 𝜀𝑖𝑡, which are the imposed moment 

conditions: 

(4)   𝐸[𝑅𝑀𝐼𝑖,𝑡−𝑠∆𝜀𝑖,𝑡] = 0 𝑎𝑛𝑑 𝐸[𝑋𝑖,𝑡−𝑠∆𝜀𝑖,𝑡] = 0 

  

𝑓𝑜𝑟 𝑡 = 𝑗 + 2, … , 𝑇 𝑎𝑛𝑑 𝑠 ≥ 𝑗 + 1 

The method requires that no second-order autocorrelation in the differenced equation is present, 

as this would render instruments invalid (Roodman 2009) and lead to inconsistent estimates 

(Castro 2013). On the contrary, first-order autocorrelation is uninformative (Roodman 2009). 

Further, the exogeneity of the instruments is needed for consistency. Therefore, the Sargan 

specification test is used, in order to test for the validity of instruments (Roodman 2009; Castro 

2013). 

The stationarity of variables was tested using unit root tests. According to the Fisher-test with 

drift, no variable is clearly non-stationary in levels (Appendix B). However, we also conducted 

all stationarity tests for 1996 to 2012, where the fossil energy variable is non-stationary. Hence, 

we included fossil energy in first differences into the model, for both time periods.  
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4. Empirical Results 

 

We now turn to the empirical estimations carried out. To secure the plausibility of our instru-

mentation choices and results, the AR2-test20 and the Sargan test results support our modelling 

decisions.21 We checked for soundness, specifically that the coefficient of the LDV lies either 

nearby or in-between the range of the estimated coefficient for fixed effects (downward biased) 

and OLS (upward biased) (Roodman 2009). We do not report the results here, as there is no 

additional information gained. For each material group and indicator combination we chose a 

homogenous way of instrumentation to secure comparability. We treat the lagged dependent 

variable as predetermined and instrument it starting earliest with the second-lag of the non-

lagged dependent variable (Roodman 2009). For DMI we allowed more lags as instruments 

than for RMI, to secure sound estimations. Innovation and GDP are treated as endogenous 

(Costantini et al. 2017; Agnolucci et al. 2017). Further variables are treated as exogenous. We 

instrumented Innovation with the second to fourth lag.22 GDP is instrumented with its second 

and third lag. AB estimations were conducted under orthogonal deviations transformation, in-

stead of a first-difference transformation (Hayakawa 2009; Roodman 2009; Hsiao and Zhou 

2017). 

4.1 Biomass 

We now turn to our estimations concerning the usage of biomass. As indicated in section 2.1, 

we do focus on the overall sample. The results for all EI variables and Total Innovation can be 

found in Table 1.23 We considered our different EI classes in order to reflect potentially specific 

effects. Changes in the areas of EI_AEP and EI_Transp were considered to relate to the increas-

ing importance of biomass materials for fuel usage and energy generation. Bioenergy is con-

sidered a potential field that may cause both the shift towards using biomass-based materials 

and additional material demand (Bird Life International 2016). However, our results below 

show that none of these two groups exert a specific effect. Improvements in EI_EnEff could 

relate to reductions of used energy crops or fuel wood. Yet, energy efficiency also remained 

insignificant. The classes of which the most direct effect could have been expected are EI_Recy 

                                                           
20 Testing for second-order autocorrelation. 
21 Except for few cases, where however changing the instrumentation would not qualitatively influence the rel-
evant results. 
22 Note that for Total Innovation and EI_Full, test results supported to go deeper. Hence, we used lags 3 to 5 for 
these two innovation variables only. 
23 For some specifications we find the Sargan test to lie outside the desired realm. For consistency, we reported 
results for the chosen combination of instruments despite this. Please note that by varying the instrument 
choices the Sargan test moves into the desired realm, while the results remain stable. 
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and EI_ProGo. These can be quite directly related to reductions of biomass needed for paper 

production, reusage of wood products, reduced energy need, and further aspects that have a 

potential to influence biomass usage (Haas et al. 2015). These categories also do not have a 

significant effect, which also holds for Total Innovation and EI_Full. We also tested specifica-

tions for DMI (Appendix C) with the main results remaining unchanged. 

 Table 1 - GMM results for RMI Biomass for all countries from 1990-2012 

 (1) (2) (3) (4) (5) (6) (7) 

Model AB AB AB AB AB AB AB 
Dep. Var. RMI 

Biomass 

RMI 

Biomass 

RMI 

Biomass 

RMI 

Biomass 

RMI 

Biomass 

RMI 

Biomass 

RMI 

Biomass 

L1.RMI Biomass 0.477* 0.451 0.641** 0.565** 0.746*** 0.682** 0.634* 

 (0.251) (0.303) (0.254) (0.220) (0.218) (0.252) (0.309) 
Total Innovation -0.0451       

 (0.0330)       

EI_Full  -0.0331      
  (0.0292)      

EI_EnEff   -0.00681     

   (0.0186)     
EI_AEP    -0.0238    

    (0.0201)    

EI_Transp     -0.0313   
     (0.0271)   

EI_Recy      -0.0205  

      (0.0232)  
EI_Manu       -0.0246 

       (0.0265) 

GDP 0.713*** 0.631** 0.654** 0.579*** 0.564** 0.565* 0.792** 

 (0.244) (0.243) (0.244) (0.203) (0.222) (0.302) (0.354) 

Agricultural Intensity 3.475*** 3.062*** 3.363*** 2.942*** 2.998*** 3.002*** 3.954*** 

 (0.764) (0.708) (0.829) (0.650) (0.954) (0.955) (1.213) 
Time-effects Yes Yes Yes Yes Yes Yes Yes 

Observations 552 550 513 530 497 501 495 
No. of Countries 27 27 27 27 27 27 27 

No. Of Instruments 31 31 31 31 31 31 31 

AR1-Test -2.64 
[0.008] 

-2.53 
[0.012] 

-2.55 
[0.011] 

-2.64 
[0.008] 

-2.59 
[0.010] 

-2.75 
[0.006] 

-2.29 
[0.022] 

AR2-Test 0.99 

[0.322] 

0.95 

[0.340] 

1.52 

[0.128] 

1.52 

[0.128] 

1.54 

[0.124] 

1.34 

[0.182] 

1.49 

[0.136] 
Sargan-Test 12.74 

[0.047] 

12.25 

[0.057] 

10.22 

[0.116] 

5.13 

[0.528] 

11.31 

[0.079] 

1.76 

[0.940] 

6.40 

[0.380] 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

We continue by briefly discussing the results concerning the other variables. The coefficient of 

the lagged dependent variable lies at ~0.6 and is significant across most specifications, support-

ing the usage of a dynamic model. 

GDP is found to be significant with a coefficient ranging between 0.56 and 0.79, indicating that 

a 1% increase of GDP is associated with a 0.56 to 0.79% increase of biomass RMI. This result 

seems counterintuitive as biomass is usually considered a subsistence material, being mainly 

bound to population dynamics and not as much to economic development (Weisz et al. 2006; 

Krausmann et al. 2009; Steinberger et al. 2010; Steinberger and Krausmann 2011). However, 
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despite being a subsistence material, increases in affluence have been noted to change e.g. die-

tary patterns towards more animal products (Weinzettel et al. 2013; Wiedmann et al. 2015) that 

cause high material usage (Weisz et al. 2006; Haas et al. 2015).   

The agricultural sector is highly significant and exerts an over-proportional effect on biomass 

RMI. A one percentage point increase in the value-added share of the agricultural sector is 

associated with a 3 to 4% increase of RMI. This is likely due to the high biomass intensity of 

agriculture, such as livestock (Weisz et al. 2006). The results seem to correspond to findings 

that higher shares of the agricultural sector are related to lower levels of material productivity 

(Gan et al. 2013; Fernández-Herrero and Duro 2019).       

As discussed in section 2, we did not find relevant compositional dynamics of the biomass 

variable. Still, we conducted an analysis under the exclusion of countries, when analyzing those 

innovation variables which were somewhat close to significant results in the full sample.24 The 

country groups that were taken into consideration were those which have a high share of wood 

(Finland and Sweden), countries with a very specialized composition - namely more than 60% 

share of the main biomass group on average - (Malta, Finland, Netherlands and Sweden), and 

countries with the highest volatility of the wood share (Estonia and Latvia, and additionally 

also Finland, Luxembourg, Sweden and Slovakia). Further, we excluded the year 1998, as in 

this year the strongest dynamics of wood and crops (5% respective 3%) were observed.  How-

ever, none of these robustness checks had any influence on the results. Similarly, alternative 

instrumentation did not change the results in a relevant way.  

4.2 Fossils 

We continue with our results on fossil material usage. Given our findings in section 2.1, we 

decided to put our main focus on the time-frame 1996 to 2012, to avoid distortions by dynamics 

within our dependent variable. The growth dynamics of RMI were extremely high in the early 

90s, coinciding with strong substitutional dynamics within the fossil variable, as coal was 

strongly substituted by oil and gas. We will discuss differences between the results for 1996-

2012 and the full time-period in light of these observations. As an additional control on substi-

tutional dynamics we included energy imports, to capture reductions of domestic coal in favor 

of oil and gas. 

                                                           
24 We tested those constellations were the p-value of Innovation was below 0.3. 
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The results are displayed in Table 2. Total innovation and innovation in the areas of EI_Full,25 

EI_EnEff, EI_AEP and EI_Transp are found to exert no relevant effect on fossil usage. In the 

case of EI_AEP we also conducted the analysis under the exclusion of the fossil energy variable, 

which did not change the results. Yet, we do find that EI_Recy and EI_ProGo can be seen as 

significant in this sample. EI_Recy is significant at the 5% level with a coefficient of -0.024, 

indicating that a 1% increase is associated with a 0.024% reduction of fossil RMI. EI_ProGo is 

significant at the 10% level, with a coefficient of -0.0155. While both EI_Recy and EI_ProGo 

are insignificant in the full sample from 1990 to 2012 (Appendix D), their coefficient sizes are 

of a similar magnitude, specifically -0.0164 for EI_Recy and -0.0076 for EI_ProGo. It should 

be noted that for DMI, all innovation variables remain insignificant in both samples (Appendix 

E and Appendix F).  

 Table 2 - GMM results for RMI Fossils for all countries from 1996-2012 

 (1) (2) (3) (4) (5) (6) (7) 

Model AB AB AB AB AB AB AB 
Dep. Var. RMI 

Fossils 

RMI 

Fossils 

RMI 

Fossils 

RMI 

Fossils 

RMI 

Fossils 

RMI 

Fossils 

RMI 

Fossils 

L1. RMI Fossils 0.919*** 0.856*** 0.896*** 0.912*** 0.867*** 0.825*** 0.867*** 

 (0.0962) (0.100) (0.0765) (0.112) (0.0879) (0.113) (0.0871) 
Total Innovation 0.000321       

 (0.0134)       
EI_Full  0.00395      

  (0.0207)      

EI_EnEff   -0.00433     
   (0.0122)     

EI_AEP    0.00348    

    (0.0216)    
EI_Transp     -0.00690   

     (0.0130)   

EI_Recy      -0.0237**  
      (0.00965)  

EI_ProGo       -0.0155* 

       (0.00805) 
GDP 0.0786 0.156 0.140 0.0803 0.114 0.258 0.209 

 (0.167) (0.179) (0.158) (0.233) (0.144) (0.176) (0.138) 

D1. Fossil Energy 0.396 0.426* 0.504* 0.394 0.577** 0.400 0.425 
 (0.271) (0.246) (0.254) (0.261) (0.262) (0.239) (0.260) 

Energy imports -0.109* -0.141** -0.127** -0.111 -0.124** -0.162** -0.154*** 

 (0.0613) (0.0622) (0.0548) (0.0806) (0.0553) (0.0691) (0.0531) 
Time-effects Yes Yes Yes Yes Yes Yes Yes 

Observations 427 427 408 418 390 402 399 

No. of Countries 27 27 27 27 27 27 27 
No. of Instruments 27 27 27 27 27 27 27 

AR1-Test -1.98 

[0.048] 

-1.94 

[0.052] 

-1.62 

[0.106] 

-1.71 

[0.086] 

-1.76 

[0.078] 

-1.52 

[0.128] 

-1.52 

[0.127] 
AR2-Test -0.74 

[0.462] 

-0.51 

[0.608] 

0.15 

[0.880] 

-0.09 

[0.929] 

-0.28 

[0.779] 

0.18 

[0.857] 

0.17 

[0.863] 

Sargan-Test 11.80 
[0.067] 

15.53 
[0.017] 

5.40 
[0.494] 

11.86 
[0.065] 

8.49 
[0.204] 

7.10 
[0.312] 

5.89 
[0.435] 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

                                                           
25 Please note that under different instrumentation the Sargan test switches into the acceptable realm. Given 
that we wanted to present a consistent instrumentation across all EI groups we decided to report this specifica-
tion, despite of the issues indicated by the Sargan test. However, the qualitative results are not different in 
sound specifications.  
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We tested our main findings concerning EI_Recy and EI_ProGo (sample 1996-2012) for ro-

bustness based on country exclusions, instrument changes, time restrictions, and adjusted model 

specifications. Concerning country exclusion, we considered two relevant criteria. First, given 

that we analyze fossil material usage, we consider the relevance of the domestic fossil industry. 

Recent studies have shown that this may be related to lower levels of environmental regulation 

(Stevens 2019), which could affect the EI-fossil-relationship. Second, we considered the coun-

tries’ developmental level, as this is generally considered a relevant factor for environmental 

impact (Stern 2004). To determine countries with a high level of fossil industry, we computed 

the Domestic Resource Dependency (DRD) as the share of domestic extraction in fossil DMI 

(Weisz et al. 2006). For the developmental level, we computed average GDP per capita as a 

proxy of affluence (Shao et al. 2017). Therefore, we exclude Estonia and Poland concerning 

high DRD of fossils. Luxembourg, Denmark, and Ireland were excluded as the most affluent 

countries. Bulgaria, Romania, and Latvia as the least affluent countries (Appendix G).  

When excluding countries, EI_ProGo becomes insignificant in all three cases. The coefficient 

increases as the high DRD countries are excluded (to -0.0186), while becoming smaller for both 

excluding the most and least developed countries.26 For EI_Recy, the results for excluding coun-

tries are reported in Appendix G since relevant changes emerge. In principle, EI_Recy remains 

significant at the 5% level in all cases.  The coefficient slightly decreases when excluding coun-

tries based on their developmental level. Nevertheless, in the case of excluding Estonia and 

Poland, the coefficient jumps upwards in magnitude to -0.035. This could indicate that wors-

ened environmental regulation due to the domestic fossil industry (Stevens 2019) may be re-

lated to less saving of materials via available technologies. Given that lower activity in this EI 

field would be captured by the variable itself, the changing coefficient implies that innovation 

in this area is not related to the common reductions of fossil usage in these countries. Such 

findings would have important implications concerning the relevance of EI, if the effects are 

strongly dependent on country characteristics. However, these findings should be treated with 

caution from a methodological perspective, but also because other country characteristics could 

be the cause - such as being a catch-up country (Günther 2015; Gräbner et al. 2018).  

When changing the instrumentation, the coefficient of EI_ProGo remains fairly stable, while 

the level of significance ranges between significance at the 10% level and insignificance. Con-

cerning the instrumentation, the result of EI_Recy proved to be very robust. Given strong fossil 

dynamics in 1998 (section 2.1), we also tested excluding 1998 from the analysis. The result of 

                                                           
26 The results for country exclusion in the case of EI_ProGo are not reported here. 
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EI_Recy remained stable, both in terms of coefficient size and significance. EI_ProGo lost its 

significance, yet the coefficient also remained stable. Further, we analyzed alternative specifi-

cations in two ways. First, we reduced the model to only the LDV, GDP, and Innovation – 

excluding energy imports and fossil energy. EI_Recy remained significant and similar in mag-

nitude, EI_ProGo lost its significance yet the coefficient size again remained stable. Second, 

we included as an additional variable the share of the industry sector, to control potential effects 

of sectoral composition (Carattini et al. 2015). The industry sector proved to be insignificant, 

and the results of EI_Recy and EI_ProGo where virtually identical to the core model (Table 2), 

both in terms of coefficient size and significance levels.27   

Crucial for the validity of our estimation approach is the compliance to the sequential exogene-

ity assumption, which implies the moment conditions. To secure this it is required that suffi-

ciently many lags of the dependent variable are included (Acemoglu et al. 2019). Therefore, we 

also checked our two significant EI fields with inclusion of two respective three lags of resource 

use (Appendix H). Our result for EI_Recy remains significant at the 5% level for both additional 

specifications, with the coefficient increasing in magnitude.28 The results for EI_ProGo remain 

virtually identical with two lags included, while increasing in magnitude but losing significance 

with three lags included. 

We continue by discussing our findings concerning further determinants. The lagged dependent 

variable has a coefficient of ~0.85, and ~0.6 in the full sample (Appendix D), supporting the 

use of a dynamic model. 

GDP is generally considered to lead to increases in material usage, and fossils are considered 

to depend strongly on the level of economic development (Steinberger et al. 2010, 2013). On 

the contrary, this dependency is generally discussed to differ across the developmental levels 

(Steinberger et al. 2013). Our results differ somewhat between the two samples and indicators, 

which can likely be due to the discussed weight disparities in the fossil variable (Weisz et al. 

2006). For RMI, in the full sample the coefficient ranges between ~0.3 and ~0.6 with varying 

significance levels (Appendix D), while being insignificant throughout for 1996 to 2012 (Table 

2). For DMI, the coefficient is smaller in the full sample ranging between ~0.15 and ~0.2 (Ap-

pendix E), yet of similar magnitude for 1996-2012 with ~0.15 to ~0.3 (Appendix F). These 

unclear results could be related both to the choice of specification and model.  

                                                           
27 The results concerning instrument reduction, exclusion of 1998, and specification changes are not reported, 
as no additional insights were gained. 
28 With two lags of resource use, however, the AR2 test fails to reject the absence of serial correlation. 
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To control for changes in the energy supply structure29 we included the share of fossil energy 

in the energy supply. Given the non-stationarity in levels we included the variable in first-dif-

ferences. The coefficient ranges between ~0.4 and ~0.6 in Table 2, and is somewhat larger for 

the full sample in the case of RMI. For DMI (Appendix E and Appendix F) the coefficient is 

around 1. Hence, given that the variable is included in first-differences, an acceleration of one 

percentage point is associated with a 1% increase of fossil DMI, and a 0.4 to 0.6% increase of 

RMI. The closer coupling in the case of DMI may be related to the consideration that the up-

stream requirements included in imported commodities may reduce the fossil share that is used 

for energy generation, compared to the alternative use of fossils as raw material (Weisz et al. 

2006).  

As shown in section 2.1, the substitution of coal by oil and gas should be considered a poten-

tially intervening dynamic for our analysis. For this reason, we used the sample starting in 1996, 

in order to avoid the strong changes in the early 90s to influence our results. Further, given the 

general tendency within European economies to substitute domestic coal via fossil fuel im-

ports,30 we included energy imports31 as a control variable. It should capture substitution dy-

namics beyond the exclusion of the first years in our sample. Our estimation results support this 

consideration, as energy imports are mostly significant (Table 2) with a coefficient of ~-0.15. 

This indicates that increasing net energy imports by one percentage point reduces fossil usage 

by 0.15%. One explanation could be that higher dependence on the world market is associated 

with less secure energy supply (Zhao and Wu 2007), which may result in uncertainty and re-

duced usage. However, especially in the short-term, a country’s energy demand is likely ine-

lastic (Zhao and Wu 2007). Hence, we consider this variable to capture the aforementioned 

substitution effect within our dependent variable. This interpretation is supported by the fact 

that within the full sample for RMI (Appendix D), the effect of energy imports is even larger 

with the coefficient ranging between ~-0.25 and ~-0.4. This likely relates to the strong substi-

tutional dynamics in the early 90s.  

 

                                                           
29 For specific EI areas such as EI_Recy it is not assumed that an effect of EI should be changes in the relevance 
of fossil energy. Hence, if such changes would not be controlled for and correlated with EI in the respective 
field, results could be biased.    
30 See e.g. https://www.eea.europa.eu/data-and-maps/indicators/net-energy-import-dependency/net-energy-
import-dependency-assessment-2 [accessed December 20, 2020] 
31 Net energy imports as share of energy use.  

https://www.eea.europa.eu/data-and-maps/indicators/net-energy-import-dependency/net-energy-import-dependency-assessment-2
https://www.eea.europa.eu/data-and-maps/indicators/net-energy-import-dependency/net-energy-import-dependency-assessment-2
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5. Discussion and Conclusion 

 

In this paper we analyzed the effects of green technologies on material usage in European econ-

omies between 1990 and 2012. More specifically, we were interested in potentially different 

relationships of specific green technology areas with the material groups biomass and fossil 

fuels. This interest emerges from a number of factors. First, there is a historically close inter-

connection of biomass and fossil usage to the structure of human societies (Haberl et al. 2011; 

Fischer-Kowalski et al. 2014). Second, biomass and fossil fuels are crucially relevant for 

providing energy - both for subsistence and the maintenance of current societal organization 

(Weisz et al. 2006; Steinberger et al. 2010; Haberl et al. 2011). Third, they contribute to a wide 

array of fundamental environmental pressures, including greenhouse gas emissions, land use 

change and impacts on the carbon cycle (Behrens 2016).  

A high degree of relevance is attributed to green innovation in the pursuit of international en-

vironmental goals (Popp et al. 2010; European Commission 2011b; Acemoglu et al. 2012). We 

considered it important to empirically assess and quantify the effects of green technologies on 

biomass and fossil usage, due to the pursuits of substituting fossils with biomass (Gustavsson 

et al. 1995; Ingrao et al. 2016). We have utilized data on material inputs to quantify material 

usage, and patent data to quantify green innovation. Previous work on the environmental effects 

of environmental innovation focused on the effects on emission indicators, energy intensity, 

and resource use in general. 

There are several avenues for future research that emerge from our analysis. First, as our results 

indicate that innovation stocks in most green technology areas are not significantly related to 

reductions, research as to why environmentally beneficial technologies may not come to frui-

tion is needed. Second, our discussion on country differences (see section 4.1) should provide 

motivation to conduct similar analyses on other country samples, in order to gain insights on 

the role that institutional factors play for the environmental effects of green technologies. 

Lastly, further research on the heterogenous effects of technology on different material groups 

is required. Given the data availability of our time-series dimension, our chosen estimation ap-

proach could not account for econometric issues like parameter heterogeneity or cross-sectional 

dependence.32 With increasing data availability and an increasing time-series dimension treat-

ing these limitations lends itself as natural extension to assess similar research questions.      

                                                           
32 Cross-sectional dependence and parameter heterogeneity could be tackled e.g. with the Common Correlated 
Effects (CCE) estimator (Pesaran 2006). However, the CCE estimator requires strict exogeneity of regressors 
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Our results indicate that green technologies are not associated with significant changes in bio-

mass usage in European economies, although we considered specific areas of green technology. 

Especially innovation in areas such as alternative energy production, or recycling and reuse, 

were considered to capture directed effects. In the case of EI_AEP we expected that increases 

of biomass as an energy source may be related to increased demand (Bird Life International 

2016). However, it has been shown that connecting patent data to actual changes in energy 

structure may be difficult to capture (Popp et al. 2011). For recycling and reuse we expected 

reducing effects, given that recycling of e.g. paper should be connected to reduced material 

demand (Haas et al. 2015). Despite not having found an effect, it would certainly be exaggerated 

to claim that technology and biomass usage are not related. Rather, we consider that isolation 

of the effects of green technology on biomass usage is difficult due to several aspects. First, a 

high share of biomass usage is related to nutrition, which is hardly influenced by technological 

improvements (Haas et al. 2015). Second, biomass as an aggregated indicator is constituted by 

inherently heterogeneous material groups, which are largely related to agricultural biomass, but 

also to wood following different determinants (Weisz et al. 2006). Especially given the crucial 

relevance of nutritional patterns (Weinzettel et al. 2013; Wiedmann et al. 2015), it may be con-

tended from this analysis that technology does not seem to be the key determinant of biomass 

usage.  

Analyzing fossil fuel usage appeared to be rather homogenous, as most fossil materials are used 

for energy generation (Haas et al. 2015; Behrens 2016). Nonetheless, we considered levels of 

heterogeneity arising from different calorific values between material groups (Weisz et al. 

2006). In this vein, we analyzed two different samples and included energy imports to control 

substitutional dynamics within the dependent variable, mostly away from coal towards oil and 

gas (Weisz et al. 2006). When analyzing the sample from 1996 to 2012 we found two innovation 

variables to significantly reduce fossil usage. These distinctions may be due to the effect cap-

tured by the different innovation variables. Total Inno and EI_Full may suffer from a causal 

perspective, given that many technologies are included, which clearly do not relate to fossil 

usage. Therefore finding significant parameters becomes less likely (Wurlod and Noailly 2018). 

EI_AEP and EI_Transp may be difficult to capture in such empirical settings, given that 

changes in the energy supply system or the transportation system are fundamental and large-

scale socio-technical changes that could be hard to capture. Nevertheless, the effects of these 

technology areas on fossil usage in general seem likely, which is also suggested by the effect 

                                                           
(Chudik and Pesaran 2015), and its dynamic version is not applicable with our data characteristics (Chudik and 
Pesaran 2015; Everaert and De Groote 2016).  
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of the energy structure variable on fossil usage. By contrast, the case of EI_EnEff appears more 

puzzling, although larger time-lags concerning e.g. the renewal of building stocks seem plausi-

ble. Innovation in areas such as EI_Recy and EI_ProGo are likely to be closely associated with 

incremental improvements, which can be implemented promptly on a firm-level and directly 

relate to reductions of fossil materials. Given that most fossil materials are used for energy 

generation and are less available for recycling (Haas et al. 2015), these effects may be related 

to less energy need, or related effects. Identifying the exact causal relationships between tech-

nologies and fossil reductions is beyond the scope of this study; yet it seems to be an interesting 

avenue for more detailed research on these technologies. Interestingly, the significant effects of 

EI_Recy and EI_ProGo are exclusively found for Raw Material Input, not for Direct Material 

Input, where upstream flows are not accounted for. One explanation could be that larger 

amounts of fossils are embedded in imports for RMI. This could amplify the effects of recycling 

or reusing materials when upstream flows are reduced as well, which is not sufficiently ac-

counted for in the DMI indicator. 

Due to the similar empirical setting, our results are well comparable to previous findings on 

overall resource use (Wendler 2019). While EI_EnEff has been found to reduce overall resource 

use, we find such effect neither on biomass nor fossil use. On the flipside, for EI_ProGo we 

find a slightly significant effect on fossil use in our main analysis (Table 2) that is comparable 

to the findings by Wendler (2019). Further, as for overall resource use EI_Recy turns out to be 

most clearly connected with reductions in fossil materials. However, the effect of EI_Recy on 

fossils is substantially smaller compared to effects on overall resource use (Wendler 2019).33 

To sum up, while there are no technology effects found regarding biomass, even for fossils the 

technology effects are much less pronounced compared to overall resource use. Hence, our 

results point to heterogenous technology effects on different material groups, demanding fur-

ther research on those dynamics.   

 

 

 

 

                                                           
33 The effect of EI_Recy (compare Table 2) is not sensitive to the inclusion of specific control variables. It re-
mains virtually identical when including only GDP and the share of the industry sector besides the lagged de-
pendent variable.  
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Appendix  

 

Appendix A - Descriptive statistics 

 

Variable Unit Obs Mean Std. Dev. Min Max Source 

Biomass 

Direct Material 

Input  
(DMI Biomass) 

Million 

Tons 

606 69.3 78.4 0.379 323 UN Environment International Re-

source Panel Global Material Flows 

Database 

Biomass  

Raw Material 

Input 
(RMI Biomass) 

Million 

Tons 

606 104 133 1.11 575 UN Environment International Re-

source Panel Global Material Flows 

Database 

Fossils  

Direct Material 
Input 

(DMI Fossils) 

Million 

Tons 

604 85.8 109 0.797 565 UN Environment International Re-

source Panel Global Material Flows 
Database 

Fossils  
Raw Material 

Input 

(RMI Fossils)  

Million 
Tons 

604 102 126 0.542 595 UN Environment International Re-
source Panel Global Material Flows 

Database 

Agricultural In-
tensity: Sector 

Share in Gross 

Value Added 

Share 620 .0345 .0281 .0028 .1587 Cambridge Econometrics European 
Regional Database (ERD) 

GDP Billions 

of Euro 

620 384.00 601.25 2.80 2539.85 Cambridge Econometrics European 

Regional Database (ERD) 

EI_Full Stock  621 1449.74 3868.92 0 32174.14 PATSTAT 2017b 

EI_AEP Stock  621 521.25 1285.04 0 10342.2 PATSTAT 2017b 

EI_Transp Stock  621 192.04 614.47 0 6008.21 PATSTAT 2017b 

EI_Recy Stock  621 83.07 194.10 0 1309.30 PATSTAT 2017b 

EI_EnEff Stock  621 285.89 768.56 0 7326.65 PATSTAT 2017b 

EI_ProGo Stock  621 114.72 295.39 0 2658.38 PATSTAT 2017b 

Total Inno Stock  621 8541.33 21704.97 .43 167442.2 PATSTAT 2017b 

Energy imports 
(net):  

Share of energy 

use 

Share 621 .5363 .3081 -.6569 1 World Bank  
World Development Indicators 

Fossil fuel en-
ergy consump-

tion: 

Share of total en-
ergy use 

Share 617 .7720 .1797 .1888 1 World Bank  
World Development Indicators 
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Appendix B - Unit Roots 

 

 Fisher ADF 
Inv. X2 

Fisher 
ADF 

Inv. N 

Fisher 
ADF 

Inv. L 

Fisher 
ADF 

M. Inv. X2 

Biomass 

Direct Material Input  
(DMI Biomass) 

171.2216 

[0.0000] 

-8.3902 

[0.0000] 

-8.8128 

[0.0000] 
 

11.2797 

[0.0000] 

Biomass  

Raw Material Input 
(RMI Biomass) 

156.7622 

[0.0000] 

-7.4689 

[0.0000] 

-7.9136 

[0.0000] 

9.8883 

[0.0000] 

Fossils  

Direct Material Input 
(DMI Fossils) 

135.5247 

[0.0000] 

-6.4446 

[0.0000] 

-6.5406 

[0.0000] 

7.8447 

[0.0000] 

Fossils  

Raw Material Input 

(RMI Fossils)  

215.2174 

[0.0000] 

-8.8106 

[0.0000] 

-10.838 

[0.0000] 

15.5131 

[0.0000] 

Agricultural Intensity 146.2266 

[0.0000] 

-7.2012 

[0.0000] 

 

-7.3568  

[0.0000] 

8.8745 

[0.0000] 

GDP 141.9617 
[0.0000] 

-7.0293 
[0.0000] 

-7.1370 
[0.0000] 

8.4641  
[0.0000] 

EI_Full 128.59 

[0.0000] 

-4.95 

[0.0000] 

-5.55 

[0.0000] 

7.18 

[0.0000] 

EI_AEP 109.03 
[0.0000] 

-4.15 
[0.0000] 

-4.46 
[0.0000] 

5.30 
[0.0000] 

EI_Transp 67.65 

[0.0488] 

-0.98 

[0.1625] 

-0.86 

[0.1954] 

1.77 

[0.0388] 

EI_Recy 120.24 
[0.0000] 

-4.87 
[0.0000] 

-5.12 
[0.0000] 

6.37 
[0.0000] 

EI_EnEff 94.28 

[0.0006] 

-1.84 

[0.0325] 

-1.85 

[0.0333] 

3.88 

[0.0001] 

EI_ProGo 126.60 

[0.0000] 

-4.35 

[0.0000] 

-5.21 

[0.0000] 

6.99 

[0.0000] 

Total Inno 180.35 

[0.0000] 

-7.94 

[0.0000] 

-8.90 

[0.0000] 

12.16 

[0.0000] 

Energy imports (net) 
 

144.4517 
[0.0000] 

-6.6384 
[0.0000] 

-6.9846 
[0.0000] 

8.7037 
[0.0000] 

Fossil fuel energy consumption 91.4306 

[0.0011] 

-2.5773 

[0.0050] 

-2.6620 

[0.0043] 

3.6018 

[0.0002] 

 Variables used are in logarithm or share. 

Fisher-ADF: The Fisher-type unit-root tests are based on augmented Dickey–Fuller (Fisher-ADF) tests with drift and  one lag; the null hypoth-

esis is that “all panels contain unit-roots”; the test does not require a balanced panel. Statistics and respective p-values (in square brackets) are 
reported for each type of Fisher test: inverse chi-squared, inverse normal, inverse logit and modified inverse chi-squared.  
Δ is the first difference operator. 
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Appendix C - GMM results for DMI Biomass for all countries from 1990 to 2012 

 

 (1) (2) (3) (4) (5) (6) (7) 

Model AB AB AB AB AB AB AB 

Dep. Var. DMI 

Biomass 

DMI 

Biomass 

DMI 

Biomass 

DMI 

Biomass 

DMI 

Biomass 

DMI 

Biomass 

DMI 

Biomass 

L1.DMI Biomass 0.514 0.532 0.636** 0.519 0.741*** 0.642* 0.596 
 (0.343) (0.323) (0.269) (0.331) (0.248) (0.333) (0.383) 

Total Innovation -0.0303       

 (0.0404)       
EI_Full  -0.0335      

  (0.0413)      

EI_EnEff   -0.000356     
   (0.0240)     

EI_AEP    -0.0313    

    (0.0392)    

EI_Transp     -0.0254   

     (0.0306)   

EI_Recy      -0.00750  
      (0.0306)  

EI_Manu       -0.0188 

       (0.0285) 
GDP 0.802** 0.799* 0.658* 0.768* 0.576* 0.583 0.776 

 (0.382) (0.421) (0.333) (0.413) (0.301) (0.385) (0.481) 

Agricultural Intensity 4.494*** 4.297*** 3.915*** 4.196** 3.400** 3.748** 4.505** 
 (1.556) (1.547) (1.251) (1.565) (1.346) (1.591) (2.073) 

Time-effects Yes Yes Yes Yes Yes Yes Yes 
Observations 552 550 513 530 497 501 495 

No. of Countries 27 27 27 27 27 27 27 

No. of Instruments 36 36 36 36 36 36 36 
AR1-Test -1.74 

[0.082] 

-1.87 

[0.062] 

-2.29 

[0.022] 

-1.90 

[0.058] 

-2.17 

[0.030] 

-2.02 

[0.044] 

-1.75 

[0.081] 

AR2-Test 0.89 

[0.374] 

0.98 

[0.325] 

1.08 

[0.281] 

1.03 

[0.304] 

1.10 

[0.270] 

0.74 

[0.459] 

0.89 

[0.371] 

Sargan-Test 7.08 

[0.793] 

5.83 

[0.885] 

17.45 

[0.095] 

5.98 

[0.874] 

12.35 

[0.338] 

9.67 

[0.560] 

13.45 

[0.265]s 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix D - GMM results for RMI Fossils for all countries from 1990 to 2012 

 
 (1) (2) (3) (4) (5) (6) (7) 

Model AB AB AB AB AB AB AB 

Dep. Var. RMI 
Fossils 

RMI 
Fossils 

RMI 
Fossils 

RMI 
Fossils 

RMI 
Fossils 

RMI 
Fossils 

RMI 
Fossils 

L1. RMI Fossils 0.306 0.285 0.581*** 0.576*** 0.671*** 0.630*** 0.620*** 

 (0.202) (0.219) (0.209) (0.160) (0.152) (0.124) (0.131) 

Total Innovation 0.0788       
 (0.0867)       

EI_Full  0.0588      
  (0.0808)      

EI_EnEff   0.00219     

   (0.0198)     
EI_AEP    0.00375    

    (0.0290)    

EI_Transp     0.0148   

     (0.0366)   

EI_Recy      -0.0164  

      (0.0228)  
EI_ProGo       -0.00757 

       (0.0178) 

GDP 0.277 0.393 0.554* 0.473 0.261 0.423* 0.424** 
 (0.443) (0.429) (0.284) (0.284) (0.271) (0.215) (0.169) 

D1. Fossil Energy 0.680** 0.802*** 0.658** 0.561** 0.746*** 0.482* 0.512** 

 (0.249) (0.256) (0.266) (0.250) (0.237) (0.251) (0.240) 
Energy imports -0.378*** -0.397** -0.321* -0.299* -0.217* -0.253** -0.273** 

 (0.107) (0.163) (0.174) (0.158) (0.127) (0.112) (0.104) 

Time-effects Yes Yes Yes Yes Yes Yes Yes 
Observations 544 542 511 528 495 499 491 

No. of Countries 27 27 27 27 27 27 27 

No. of Instruments 32 32 32 32 32 32 32 
AR1-Test -1.38 

[0.167] 

-1.28 

[0.199] 

-1.66 

[0.096] 

-1.88 

[0.060] 

-1.78 

[0.075] 

-1.82 

[0.069] 

-1.76 

[0.078] 

AR2-Test -0.25 
[0.804] 

-0.26 
[0.793] 

0.49 
[0.621] 

0.21 
[0.834] 

0.22 
[0.828] 

0.62 
[0.532] 

0.53 
[0.596] 

Sargan-Test 10.77 

[0.096] 

11.51 

[0.074] 

2.68 

[0.848] 

5.24 

[0.514] 

7.72 

[0.260] 

1.99 

[0.921] 

2.67 

[0.849] 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix E - GMM results for DMI Fossils for all countries from 1990 to 2012 

 
 (1) (2) (3) (4) (5) (6) (7) 

Model AB AB AB AB AB AB AB 

Dep. Var. DMI 
Fossils 

DMI 
Fossils 

DMI 
Fossils 

DMI 
Fossils 

DMI 
Fossils 

DMI 
Fossils 

DMI 
Fossils 

L1. DMI Fossils 0.780*** 0.788*** 0.747*** 0.666*** 0.692*** 0.705*** 0.725*** 

 (0.0685) (0.0720) (0.0978) (0.0851) (0.110) (0.0592) (0.122) 

Total Innovation 0.00118       
 (0.0156)       

EI_Full  -0.00365      
  (0.0204)      

EI_EnEff   -0.00715     

   (0.0198)     
EI_AEP    -0.0118    

    (0.0294)    

EI_Transp     -0.0200   

     (0.0247)   

EI_Recy      -0.00866  

      (0.0163)  
EI_ProGo       -0.00499 

       (0.0146) 

GDP 0.219* 0.223 0.159 0.266* 0.146 0.200* 0.189 
 (0.119) (0.133) (0.145) (0.140) (0.155) (0.0984) (0.147) 

D1. Fossil Energy 0.957** 1.051*** 1.092*** 0.965** 1.299*** 0.996*** 1.011** 

 (0.408) (0.371) (0.356) (0.350) (0.381) (0.357) (0.370) 
Energy imports -0.100* -0.100 -0.0822 -0.121* -0.0754 -0.101* -0.103 

 (0.0577) (0.0618) (0.0538) (0.0658) (0.0537) (0.0537) (0.0691) 

Time-effects Yes Yes Yes Yes Yes Yes Yes 
Observations 544 542 511 528 495 499 491 

No. of Countries 27 27 27 27 27 27 27 

No. of Instruments 37 37 37 37 37 37 37 
AR1-Test -2.64 

[0.008] 

-2.58 

[0.010] 

-2.35 

[0.019] 

-2.32 

[0.020] 

-2.05 

[0.041] 

-2.41 

[0.016] 

-2.22 

[0.026] 

AR2-Test 1.14 
[0.254] 

1.10 
[0.269] 

0.89 
[0.372] 

1.11 
[0.266] 

0.40 
[0.692] 

1.31 
[0.191] 

1.16 
[0.245] 

Sargan-Test 6.35 

[0.849] 

11.70 

[0.386] 

11.36 

[0.414] 

8.68 

[0.652] 

3.70 

[0.978] 

16.65 

[0.119] 

4.27 

[0.961] 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix F - GMM results for DMI Fossils for all countries from 1996 to 2012 

 

 (1) (2) (3) (4) (5) (6) (7) 

Model AB AB AB AB AB AB AB 

Dep. Var. DMI 

Fossils 

DMI 

Fossils 

DMI 

Fossils 

DMI 

Fossils 

DMI 

Fossils 

DMI 

Fossils 

DMI 

Fossils 

L1. DMI Fossils 0.855*** 0.893*** 0.683*** 0.762*** 0.536 0.814*** 0.766*** 
 (0.0875) (0.0770) (0.126) (0.125) (0.343) (0.0822) (0.164) 

Total Innovation -0.00665       

 (0.0172)       
EI_Full  0.00363      

  (0.0184)      

EI_EnEff   -0.0272     
   (0.0185)     

EI_AEP    0.00174    

    (0.0260)    

EI_Transp     -0.0529   

     (0.0501)   

EI_Recy      -0.00179  
      (0.0149)  

EI_ProGo       -0.00399 

       (0.0186) 
GDP 0.200** 0.141 0.324* 0.212 0.330 0.130 0.192 

 (0.0766) (0.106) (0.172) (0.166) (0.345) (0.111) (0.163) 

D1.Fossil Energy  0.867** 0.870** 0.942*** 0.856** 1.129*** 0.866** 0.898** 
 (0.395) (0.405) (0.327) (0.364) (0.339) (0.368) (0.356) 

Energy imports -0.124*** -0.109** -0.167*** -0.132*** -0.165 -0.121** -0.144** 
 (0.0436) (0.0441) (0.0549) (0.0472) (0.104) (0.0448) (0.0590) 

Time-effects Yes Yes Yes Yes Yes Yes Yes 

Observations 427 427 408 418 390 402 399 
No. of Countries 27 27 27 27 27 27 27 

No. of Instruments 31 31 31 31 31 31 31 

AR1-Test -2.59 

[0.010] 

-2.53 

[0.011] 

-2.45 

[0.014] 

-2.30 

[0.021] 

-1.61 

[0.106] 

-2.35 

[0.019] 

-2.26 

[0.024] 

AR2-Test 1.03 

[0.303] 

0.95 

[0.341] 

0.94 

[0.346] 

0.92 

[0.359] 

0.36 

[0.722] 

1.20 

[0.231] 

1.13 

[0.259] 
Sargan-Test 18.00 

[0.055] 

10.20 

[0.423] 

13.62 

[0.191] 

17.69 

[0.060] 

11.49 

[0.321] 

19.79 

[0.031] 

9.08 

[0.525] 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix G - Robustness checks for RMI Fossils / EI_Recy results from 1996 to 2012 

 

 (1) (2) (3) (4) 

Criteria None High DRD High GDP 

pc 

Low  

GDP pc 

Countries excluded None EE & PL LU & DK & 

IE 

BG & RO & 

LV 
Dep.Var. RMI 

Fossils 

RMI 

Fossils 

RMI 

Fossils 

RMI 

Fossils 

L1. RMI Fossils 0.825*** 0.647** 0.805*** 0.828*** 

 (0.113) (0.245) (0.108) (0.127) 
EI_Recy -0.0237** -0.0347** -0.0181** -0.0211** 

 (0.00965) (0.0164) (0.00851) (0.0100) 
GDP 0.258 0.600 0.208 0.251 

 (0.176) (0.406) (0.173) (0.189) 

D1. Fossil Energy 0.400 0.576** 0.506* 0.276 

 (0.239) (0.211) (0.266) (0.241) 

Energy imports -0.162** -0.260* -0.222*** -0.152* 

 (0.0691) (0.142) (0.0603) (0.0839) 
Time-effects Yes Yes Yes Yes 

Observations 402 370 354 371 

No. of Countries 27 25 24 24 
No. of Instruments 27 27 27 27 

AR1-Test -1.52 

[0.128] 

-1.41 

[0.160] 

-1.32 

[0.186] 

-1.50 

[0.132] 
AR2-Test 0.18 

[0.857] 

0.13 

[0.900] 

0.40 

[0.689] 

0.33 

[0.745] 

Sargan-Test 7.10 
[0.312] 

7.04 
[0.317] 

5.35 
[0.500] 

8.69 
[0.192] 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix H - Robustness checks for RMI Fossils / EI_Recy & EI_ProGo from 1996 to 2012 with additional lags 

 

 (1) (2) (3) (4) (5) (6) 

Model AB AB AB AB AB AB 

Dep. Var. RMI Fossils RMI Fossils RMI Fossils RMI Fossils RMI Fossils RMI Fossils 

L1. RMI Fossils 0.825*** 0.729*** 0.656*** 0.867*** 0.842*** 0.764*** 

 (0.113) (0.127) (0.140) (0.0871) (0.124) (0.175) 
L2. RMI Fossils  0.0677 0.00553  0.0159 -0.0338 

  (0.0709) (0.0865)  (0.0983) (0.109) 

L3. RMI Fossils   0.0893   0.0762 
   (0.0694)   (0.0813) 

EI_Recy -0.0237** -0.0262** -0.0283**    

 (0.00965) (0.0101) (0.0120)    
EI_ProGo    -0.0155* -0.0164* -0.0210 

    (0.00805) (0.00828) (0.0130) 

GDP 0.258 0.329** 0.427** 0.209 0.231** 0.341* 

 (0.176) (0.157) (0.160) (0.138) (0.103) (0.176) 

D1. Fossil Energy 0.400 0.409 0.439* 0.425 0.428 0.452* 

 (0.239) (0.243) (0.233) (0.260) (0.262) (0.249) 
Energy imports -0.162** -0.184** -0.221** -0.154*** -0.161*** -0.201** 

 (0.0691) (0.0716) (0.0826) (0.0531) (0.0565) (0.0921) 

Time-effects Yes Yes Yes Yes Yes Yes 
Observations 402 402 402 399 399 399 

No. of Countries 27 27 27 27 27 27 

No. of Instruments 27 27 27 27 27 27 
AR1-Test -1.52 

[0.128] 

-2.84 

[0.005] 

-2.99 

[0.003] 

-1.52 

[0.127] 

-3.49 

[0.000] 

-3.61 

[0.000] 
AR2-Test 0.18 

[0.857] 

-2.36 

[0.018] 

-1.24 

[0.214] 

0.17 

[0.863] 

-1.50 

[0.133] 

-0.40 

[0.686] 

Sargan-Test 7.10 
[0.312] 

5.53 
[0.355] 

2.18 
[0.702] 

5.89 
[0.435] 

5.88 
[0.318] 

3.88 
[0.423] 

       Robust standard errors in parentheses 

       *** p<0.01, ** p<0.05, * p<0.1 
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