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Abstract 

This paper develops a new factor-analysis-based (FAB) approach for choosing the 

optimal direction in a directional distance function (DDF) analysis. It has the 

combined merits of factor analysis and slacks-based measure (SBM) and incorporates 

the relative ease with which various input-output could be adjusted. This development 

relieves the dependency of price information that is normally unavailable in the 

provision of public goods. This new FAB-DDF model has been applied on a dataset 

containing all public hospitals in New Zealand (NZ) observed during 2011-2017. The 

empirical results indicate that the average reduction across different labor is in the 

range of 3-10 percent, and the corresponding figure for capital input is 25.7 percent. 

The case-adjusted inpatient-discharge and price-adjusted outpatient-visit are used as 

measures of desirable output, the average efficiencies are 92.7 percent and 99 percent 

respectively. Hospital readmission within 28 days of discharge is used as a measure 

for undesirable output, and the average efficiency score is 90 percent. These evidence 

support the suspicion that perverse incentives might exist under the National Health 

Targets abolished in 2018, which was a set of six indicators used in the last decade to 

evaluate the performance of local District Health Boards. 

 

Keywords: factor-analysis-based measure; directional distance function; NZ hospital 

efficiency; hospital readmission 
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1. Introduction 

As the outcome of the integration between distance function and gauge function, the 

directional distance function (DDF) analysis has gathered considerable momentum in 

production economics with empirical applications in a wide range of areas such as 

labor, health, energy and transport etc. Built upon the exploration work established by 

many studies (Shephard, 1970; Shephard and Färe, 1974; McFadden, 1978; Färe, 

1988; and Luenberger, 1992, 1994, 1995), the first DDF was proposed by Chambers 

et al. (1996), and the analysis was further developed in Chung et al. (1997) and 

Chambers et al. (1998). Discussions about the theoretical properties of a DDF are 

available in these works as well as the modelling of bad (undesirable) outputs. 

However, little advancement has been made toward the choice of directions. A large 

number of applications arbitrarily set a fixed direction, which is either exclusively 

towards the reduction of bad output(s), or allowing for radical contraction in inputs at 

the same time. When it has been demonstrated that efficiency estimates may not be 

robust to the choice of directions in such analysis (Vardanyan and Noh, 2006; Agee et 

al. 2012; Pang and Deng, 2014), the issue of how to select the optimal direction 

emerged. For example, Pang and Deng (2014) find that the average efficiency of 

Chinese service sectors is above that of the industrial sectors if only reductions in 

sulfur dioxide and carbon dioxide emissions were considered. The conclusion would 

be reversed when labor, capital and energy inputs are allowed to be simultaneously 

contracted. 

 

Alternative directions were suggested previously (Färe et al. 2005; Färe et al. 2006; 

Kumar, 2006; Lee et al. 2002 etc.), but none of these studies treats direction as an 

endogenous choice variable until recently (Färe et al. 2013; Zofio et al. 2013; and 

Atkinson and Tsionas, 2016). The idea is to find the optimal direction towards profit 

maximization through the construction of a profit function. The optimal choice in the 

direction of marginal profit maximization is further suggested by Lee (2014) and 
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Deng (2016).1 Nonetheless, applications of the above techniques require data on 

prices. Given the difficulty of obtaining accurate information on price, especially the 

price of undesirable output, these developments are mainly theoretical with limited 

empirical attention. In addition, another constantly neglected aspect in performance 

studies is the ease at which inputs and outputs can be adjusted. To illustrate, for those 

inputs (or bad outputs) which can be easily reduced, the redundancy of these variables 

can happen immediately and therefore pose a lesser concern; on the contrary, for those 

that are more onerous to adjust, once committed, efficiency can only be improved in 

the long run and should be given more consideration in designing policies initiatives 

encouraging more efficient utilization of public resources. The new factor-analysis-

based DDF model proposed in this study addresses this issue and the application does 

not require data on prices. 

 

We first demonstrate that the selection of an optimal direction vector in a DDF 

analysis is equivalent to the choice of an optimal weight vector in a slacks-based 

measure (SBM) of efficiency. Next, we prove that the optimal weight vector in an 

SBM can be found using a factor-analysis-based approach.2 Although both 

parametric method (Färe et al. 2005, 2006, 2012; Chambers et al. 2013; Feng and 

Serletis, 2014; Atkinson and Tsionas, 2016; Badau et al. 2016) and nonparametric 

method (Chung et al. 1997; Boyd et al. 2002; Zofio et al. 2013; Lee, 2014; Pang et al. 

2015; Deng, 2016) are available to construct a DDF, this study focuses solely on the 

nonparametric technique. 

 

In terms of empirical application, a newly available multifaceted administrative 

dataset is employed. This dataset contains all public hospitals managed by the 20 local 

District Health Boards (DHBs) in NZ during the period of 2011-2017.3 The majority 

                                                   
1 Maximizing the marginal profit is considered to be a more practical approach compared to the conventional 

profit maximization because it involves a step-by-step improvement and ‘‘wait-and-see’’ decision process. 
2 For the principle of factor analysis method, refer to Boivin and Ng (2006), Foerster et al. (2011) and Johnson 

and Wichern (2013). 
3 Initially, there were 21 DHBs established in 2000, two of them were merged in 2010. The analysis in this study 

is built upon the stabilized post-merge period from 2011 to 2017. Profiles of the 20 DHBs are presented in 

Appendix 1. They vary considerably in size, with Waitemata being the largest DHB serving over half a million 
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of health care systems worldwide face challenges imposed by tight public budgets, an 

aging population, and more chronic diseases. In 2017, total health expenditures in NZ 

amounts to $24.5 billion and 9.2% of GDP (OECD Health Statistics). Debates about 

system inefficiency resulted in a series of major structural changes since the 1990s 

(Ashton, 2005, 2009; Cumming et al. 2014 and Mays et al. 2013). In spite of this, 

sound performance measures are yet to be established for the health sector. 

 

Healthcare services in NZ is mainly funded through tax. Public hospitals provide most 

of the secondary and tertiary healthcare services such as surgery, specialist treatments 

and emergency services. General practitioners, practice nurses, pharmacists and other 

health professionals working within a Primary Health Organization (PHO) are 

contracted by the government to provide primary healthcare services. District Health 

Boards (DHBs) were the local authorities responsible for providing health services to 

their geographically defined communities. DHBs own public hospitals as their 

provider arms and are funded by the Ministry of Health (MOH) through a population-

based funding formula (PBFF).4 Performance of the DHBs were monitored through 

quarterly assessment of the six indicators specified by the National Health Targets.5 

These targets are primarily partial output measures and there is no control for input 

usage. Many dimensions of healthcare services, such as acute hospital admissions and 

non-Emergency Department outpatient-visit, are completely unaccounted for. The 

degree to which the targets could create perverse incentives by diverting resources 

away from unmeasured services to measured ones were unknown. In other words, 

there were risks that the National Health Targets were achieved at the expenses of 

lowering overall productivity and efficiency. Many concern that the hospitals might, 

for instance, discharge acute patients sooner in order to accommodate more elective 

surgeries, leading to undesirable outcomes. This study employed the number of 

                                                   
population and West Coast being the smallest DHB with a population just over 30,000. 

4 The PBFF allocates resources between DHBs based on a core model which assesses the relative healthcare needs 

of the local populations via historical average expenditure for different demographic groups. The PBFF does 

incorporate adjusters to account for factors such as populations with low access to healthcare services, rural areas 

and overseas visitors and refugees. 
5 The National Health Targets are presented in Appendix 2, they were first introduced in 2008 aiming to improve 

the performance of the health sector. 
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readmissions within 28 days of discharge as a measure of undesirable (bad) output. 

 

The rest of the paper proceeds as follows. The next section discusses the dual 

correspondence between the directional distance function (DDF) and slacks-based 

measure (SBM) of efficiency. Section 3 develops the new FAB-DDF model and 

provides a step-by-step guide for application. The next section evaluates the 

efficiency of NZ public hospitals using this new approach and compares the results 

with those obtained under conventional DDFs and SBM. Section 5 concludes. 

 

2. Dualities 

2.1. The directional distance functions 

Let 𝒙 = (𝑥1, ⋯ , 𝑥𝑁) ∈ ℜ+
𝑁 denotes the vector for inputs, 𝒚 = (𝑦1, ⋯ , 𝑦𝑀) ∈ ℜ+

𝑀 

denotes a vector of desirable (good) outputs and 𝒃 = (𝑏1, ⋯ , 𝑏𝐵) ∈ ℜ+
𝐵  denotes a 

vector of undesirable (bad) outputs. The production possibility set which represents 

the technology describing the transformation of inputs into outputs is given by: 

𝕋𝐃𝐃𝐅 = {(𝒙, 𝒚, 𝒃): such that 𝒙 can produce (𝒚, 𝒃)}. (2.1) 

One can refer to Chambers et al. (1996), Chung et al. (1997), and Färe et al. (2006) 

for the standard assumptions made on the technology.6 A DDF is an alternative way 

to represent the technology from a computational viewpoint and can be described as: 

𝐷⃗⃗ (𝒛; 𝒈) = max{𝛽: (𝒛 + 𝛽𝒈)′ = (𝒙 + 𝛽𝒈𝒙, 𝒚 + 𝛽𝒈𝒚, 𝒃 + 𝛽𝒈𝒃) ∈ 𝕋𝐃𝐃𝐅}. (2.2) 

Here, 𝒛 = (𝒙, 𝒚, 𝒃)′ is the collective vector in ℜ+
𝑁 × ℜ+

𝑀 × ℜ+
𝐵  containing all 

observed inputs and outputs. 𝒈 = (𝒈𝒙, 𝒈𝒚, 𝒈𝒃)
′ is the vector of “directions” in which 

the observed inputs and outputs could be scaled. It is natural to specify that 𝒈𝒙 < 𝟎, 

𝒈𝒚 > 𝟎 and 𝒈𝒃 < 𝟎. Thus, this function seeks the simultaneous maximum 

                                                   
6 Standard assumptions include: it is a convex, closed set; doing nothing is feasible; there is no free lunch; inputs 

and good outputs are freely disposable; good and bad outputs are null-joint and weakly disposable etc. 
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proportional reduction in (𝒙, 𝒃) and expansion in 𝒚. The distance is conventionally 

measured in a preassigned fixed direction to the boundary of 𝕋𝐃𝐃𝐅, for example, 

arbitrarily setting 𝒈 = (−𝒙, 𝒚,−𝒃)′. Common properties of the DDF include: 

P1: Translation: 𝐷⃗⃗ (𝒛 + 𝜏𝒈;𝒈) = 𝐷⃗⃗ (𝒛; 𝒈) − 𝜏. 

P2: Homogeneity of degree minus one in 𝒈: 𝐷⃗⃗ (𝒛; 𝜏𝒈) = 𝜏−1𝐷⃗⃗ (𝒛; 𝒈). 

P3: Input monotonicity: 𝐷⃗⃗ (𝒙, 𝒚, 𝒃; 𝒈) ≥ 𝐷⃗⃗ (𝒙, 𝒚, 𝒃; 𝒈) for 𝒙̌ ≥ 𝒙. 

P4: Good output monotonicity: 𝐷⃗⃗ (𝒙, 𝒚̌, 𝒃; 𝒈) ≤ 𝐷⃗⃗ (𝒙, 𝒚, 𝒃;𝒈) for 𝒚̌ ≥ 𝒚. 

P5: Bad output monotonicity: 𝐷⃗⃗ (𝒙, 𝒚, 𝒃̌; 𝒈) ≥ 𝐷⃗⃗ (𝒙, 𝒚, 𝒃; 𝒈) for 𝒃̌ ≥ 𝒃. 

P6: Concavity: 𝐷⃗⃗ (𝒛; 𝒈) is concave in 𝒛 + 𝛽𝒈 ∈ 𝕋𝐃𝐃𝐅. 

P7: Non-negativity: 𝐷⃗⃗ (𝒛; 𝒈) ≥ 0 if and only if 𝒛 + 𝛽𝒈 ∈ 𝕋𝐃𝐃𝐅. 

Property P1 states that if inputs and bad outputs are contracted by 𝜏(|𝒈𝒙|, |𝒈𝒃|)7 and 

good outputs are expanded by 𝜏𝒈𝒚, then the value of the resulting distance function 

will be more efficient by the amount 𝜏. Property P2 is the analog of P1, stating that 

changing the unit of direction vector does not change the relative size of inefficiency. 

Property P3 is a monotonicity property corresponding to strong disposability of 

inputs. It states that if a firm produces the same amount of desirable and undesirable 

outputs, but with more inputs, inefficiency will not decrease. Similarly, property P4 

states that if desirable output increase, holding inputs and undesirable outputs 

constant, inefficiency does not increase. Property P5 is monotonicity with respect to 

bad output, increase in bad output will lead to non-decreasing inefficiency, holding 

inputs and desirable outputs constant. Property P6 is proven in Luenberger (1992) and 

is equivalent to assume the production possibility set 𝕋𝐃𝐃𝐅 is convex. Property P7 

specifies that inefficiency is non-negative, zero inefficiency exists if and only if the 

observation is operating on the boundary of 𝕋𝐃𝐃𝐅, i.e. 100% efficient. 

 

2.2. The slacks-based measure of efficiency 

The production possibility set in a SBM of efficiency can be defined in a similar way 

as the following: 

                                                   
7 Here, |∙| is to obtain the absolute values for all elements of a vector. 
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𝕋𝐒𝐁𝐌 = {(𝒙, 𝒚, 𝒃): such that 𝒙 can produce (𝒚, 𝒃)}. (2.3) 

One can refer to Tone (2001) and Fukuyama and Weber (2009) for the standard 

assumptions made on the technology. A slacks-based measure of efficiency can be 

considered as the weighted sum of input excesses, bad output excesses and good 

output shortfalls, the corresponding description is specified as: 

𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛; 𝒗) = max{𝒗𝒔: (𝒛 + 𝒔)′ = (𝒙 + 𝒔𝒙, 𝒚 + 𝒔𝒚, 𝒃 + 𝒔𝒃) ∈ 𝕋𝐒𝐁𝐌}. (2.4) 

Here, 𝒗 = (𝒗𝒙, 𝒗𝒚, 𝒗𝒃) ∈ ℜ+
𝑁 × ℜ+

𝑀 × ℜ+
𝐵 is the exogenous weights assigned to 

various dimensional slacks which are collectively represented by the vector 𝒔 =

(𝒔𝒙, 𝒔𝒚, 𝒔𝒃)
′. Similar to analysis in DDF, it is common to consider that 𝒗𝒙 < 𝟎, 𝒗𝒚 >

𝟎, and 𝒗𝒃 < 0. Properties of the SBM of efficiency include: 

D1: Translation: 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛 + 𝜏𝒗; 𝒗) = 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛; 𝒗) − 𝜏(‖𝒗‖2)
2. 

D2: Homogeneity of degree one in 𝒗: 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛; 𝜏𝒗) = 𝜏𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛; 𝒗). 

D3: Input monotonicity: 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒙, 𝒚, 𝒃; 𝒗) ≥ 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒙, 𝒚, 𝒃; 𝒗) for 𝒙̌ ≥ 𝒙. 

D4: Good output monotonicity: 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒙, 𝒚̌, 𝒃; 𝒗) ≤ 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒙, 𝒚, 𝒃; 𝒗) for 𝒚̌ ≥ 𝒚. 

D5: Bad output monotonicity: 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒙, 𝒚, 𝒃̌; 𝒗) ≥ 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒙, 𝒚, 𝒃; 𝒗) for 𝒃̌ ≥ 𝒃. 

D6: Concavity: 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛; 𝒗) is concave in 𝒛 + 𝒔 ∈ 𝕋𝐒𝐁𝐌. 

D7: Non-negativity: 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛; 𝒗) ≥ 0 if and only if 𝒛 + 𝒔 ∈ 𝕋𝐒𝐁𝐌. 

Property D1 states that if inputs and bad outputs are contracted by 𝜏(|𝒗𝒙|, |𝒗𝒃|) and 

good outputs are expanded by 𝜏𝒗𝒚, then the value of the resulting slacks-based 

measure will be more efficient by the amount 𝜏(‖𝒗‖2)
2. Property D2 implies that a 

change in the unit of the weight vector does not affect the relative size of inefficiency. 

Property D3 is a monotonicity property corresponding to strong disposability of 

inputs, inefficiency will not decrease for a firm produces the same amount of outputs 

with more inputs. Likewise, D4 and D5 are monotonicity properties with respect to 

desirable and undesirable output(s). Property D6 is equivalent to say that 𝕋𝐒𝐁𝐌 is 

convex and D7 indicates inefficiency cannot be negative. 

 

2.3. The dual relationship between DDF and SBM 
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It is obvious that DDF and SBM share intuitively the same properties, the issue of 

choosing a particular direction towards the technological frontier is also one and the 

same (Chung et al. 1997; Chambers et al. 1998; Tone, 2001; Färe and Grosskopf, 

2000; Färe et al. 2005; Fukuyama and Weber, 2009; and Hudgins and Primont, 2007). 

To illustrate the idea in a two-dimensional space, one could consider a simplified 

scenario with only one good output (𝑦) and one bad output (𝑏) for a fixed input vector 

𝒙, as presented in Figure 1. The collective vector 𝒈 = (𝟎, 𝑔𝑦, 𝑔𝑏)
′ represents the 

direction from an observed location A to a frontier location B; whereas in a slacks-

based measure, the same direction from A to B would be represented by the weight 

vector 𝒗 = (𝟎, 𝑣𝑦, 𝑣𝑏). Given an observation operating at point A, different directions 

will lead to different projection points onto the frontier, i.e. different Bs, therefore the 

distance from A to B will vary depends on the particular directional path being taken. 

The results from an efficiency benchmarking exercise won’t be robust and 

comparable (Vardanyan and Noh, 2006; Agee et al. 2012; Pang and Deng, 2014; 

Atkinson and Tsionas, 2016) without an agreed direction. 

 

[Insert Figure 1 approximately here] 

 

As illustrated by Figure 1, tan 𝜃 = 𝑔𝑦 |𝑔𝑏|⁄  can be used to locate the projection 

direction in a DDF analysis. The larger 𝑔𝑦 is relative to |𝑔𝑏|, the closer the direction 

is to AC⃗⃗⃗⃗  ⃗; conversely, the smaller 𝑔𝑦 is relative to |𝑔𝑏|, the closer the direction is to 

AD⃗⃗⃗⃗  ⃗. In a SBM of efficiency, 𝑣𝑦 and |𝑣𝑏| indicate the preference degree of objective 

function to reductions in good-output and bad-output slacks. One can view the weight 

vector 𝒗 as same as the direction vector 𝒈 (Fukuyama and Weber, 2009). The larger 

𝑣𝑦 is relative to |𝑣𝑏|, the closer the direction is to AC⃗⃗⃗⃗  ⃗ in a slacks-based measure; the 

smaller 𝑣𝑦 is relative to |𝑣𝑏|, the closer the direction would be to AD⃗⃗⃗⃗  ⃗. 

 

Provided that the choice of a direction vector 𝒈 in a DDF analysis is equivalent to 
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the choice of the weight vector 𝒗 in a SBM of efficiency, let’s consider a DDF 

specified as below: 

𝐷⃗⃗ (𝒛; 𝒈) = max{𝛽: (𝒛 + 𝛽𝒈)′ = (𝒙 + 𝛽𝒈𝒙, 𝒚 + 𝛽𝒈𝒚, 𝒃 + 𝛽𝒈𝒃) ∈ 𝕋𝐃𝐃𝐅} (2.5) 

𝕋𝐃𝐃𝐅 = {(𝒙, 𝒚, 𝒃): ∑ (𝜌𝑘𝒙𝑘)𝐾
𝑘=1 ≤ 𝒙; ∑ (𝜌𝑘𝒚𝑘)𝐾

𝑘=1 ≥ 𝒚; ∑ (𝜌𝑘𝒃𝑘)𝐾
𝑘=1 ≤ 𝒃;  𝝆 =

(𝜌1, ⋯ , 𝜌𝐾) ≥ 0, ‖𝝆‖1 = 1}. 

 

One can simultaneously specify a SBM as: 

𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛; 𝒗) = max{𝒗𝒔: (𝒛 + 𝒔)′ = (𝒙 + 𝒔𝒙, 𝒚 + 𝒔𝒚, 𝒃 + 𝒔𝒃) ∈ 𝕋𝐒𝐁𝐌} (2.6) 

𝕋𝐒𝐁𝐌 = {(𝒙, 𝒚, 𝒃): ∑ (𝜌𝑘𝒙𝑘)𝐾
𝑘=1 ≤ 𝒙; ∑ (𝜌𝑘𝒚𝑘)𝐾

𝑘=1 ≥ 𝒚; ∑ (𝜌𝑘𝒃𝑘)𝐾
𝑘=1 ≤ 𝒃;  𝝆 =

(𝜌1, ⋯ , 𝜌𝐾) ≥ 0, ‖𝝆‖1 = 1}, 

where 𝐾 is the number of observations or decision making units (DMUs), 𝒛𝑘 =

(𝒙𝑘, 𝒚𝑘, 𝒃𝑘)′ is the collective input and output vector for observation 𝑘 = 1,2,⋯ , 𝐾. 

The sign of inequality in ∑ (𝜌𝑘𝒃𝑘)𝐾
𝑘=1 ≤ 𝒃 is often replaced by equality (Boyd et al. 

2002; Pang and Deng, 2014), but this makes no difference to the results of the 

analysis. 

 

For a given direction vector 𝒈, the specifications provided by (2.5) and (2.6) would 

be equivalent if the following two supplementary conditions have been imposed on 

the weight vector 𝒗: 

𝒔 = (𝒔𝒙, 𝒔𝒚, 𝒔𝒃)
′ ∥ 𝒈 = (𝒈𝒙, 𝒈𝒚, 𝒈𝒃)

′, (2.7) 

𝒗𝒈 = 1. (2.8) 

Equation (2.7) means the collective slacks vector 𝒔 and the direction vector 𝒈 are 

parallel to each other. Equation (2.8) implies that the inner product of vector 𝒗′ and 

𝒈 equals to unity, so the weight vector and direction vector cannot be vertical.8 For a 

DDF with a particular direction vector 𝒈, one can always find an equivalent SBM by 

incorporating (2.7) and (2.8) into the constraints of specifying the 𝕋𝐒𝐁𝐌. Conversely, 

                                                   
8 Proof of equation (2.8) is provided in Appendix 3. 
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for a SBM with a specific weight vector 𝒗, one can always find the corresponding 

equivalent DDF by including the same constraints in 𝕋𝐃𝐃𝐅. In other words, the 

problem of setting a direction vector 𝒈 in DDF can always be converted to choosing 

a weight vector 𝒗 in SBM. 

 

Table 1 presents eight common directional settings, where 𝒈 = (𝟎, 𝒚,−𝒃)′ is the 

most frequently adopted choice in the literature; 𝒈 = (−𝒙, 𝟎, 𝟎)′, 𝒈 = (𝟎, 𝒚, 𝟎)′ or 

𝒈 = (𝟎, 𝟎, −𝒃)′ are equivalent to the conventional DEA analysis with either inputs 

orientation, good outputs orientation, or bad outputs orientation; 𝒈 = (−𝝍𝒙 ⊙

𝒙,𝝍𝒚 ⊙ 𝒚,−𝝍𝒃 ⊙ 𝒃)
′
 where ‖𝝍𝒙‖1 + ‖𝝍𝒚‖1

+ ‖𝝍𝒃‖1 = 1 is equivalent to the 

conventional SBM model (Fukuyama and Weber, 2009; Krüger, 2017), therefore it 

does not deal with the issue of finding the optimal weight vector in a SBM either. 

Moreover, the first three directional choices are generally considered to be exogenous 

(Chambers et al. 1996; Charnes et al. 1978; Fӓre et al. 2005, 2006; Feng and Serletis, 

2014), which lack appropriate theoretical justification but the programs are relatively 

easy to solve. The rest considers the choice of direction as endogenous, and it is 

determined through common behavioral assumption such as (marginal) profit 

maximization. The resulting mathematical program is however more complicated to 

solve. This study attempts to find an optimal solution for endogenous directional 

choice without relying on price information but utilizes the potential correlation 

between observations. 

[Insert Table 1 approximately here] 

 

3. The Factor-Analysis-Based Directional Distance Function (FAB-DDF) 

3.1. The factor-analysis-based distance measure 

Let us denote the distance from an observed location A to its projection onto the 

frontier location B as ‖𝐵 − 𝐴‖ = ‖𝒔‖, where 𝒔 = (𝒔𝒙, 𝒔𝒚, 𝒔𝒃)
′ ∈ ℜ+

𝑁 × ℜ+
𝑀 × ℜ+

𝐵  is 
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the collective vector of slacks associated with all inputs and outputs, and 𝒔𝒚 ≥ 𝟎, 

𝒔𝒙 ≤ 𝟎, and 𝒔𝒃 ≤ 𝟎. In the slacks-based measure specified by equation (2.6), this 

distance is provided by ‖𝒔‖𝐶 = 𝒗 ∙ 𝒔 with an exogenously preassigned weight vector 

𝒗. For example, the slacks-based measure in Fukuyama and Weber (2009) sets the 

following: 

𝒗 = (
−1

2𝑁

1

𝑥1
, ⋯ ,

−1

2𝑁

1

𝑥𝑁
,

1

2(𝑀+𝐵)

1

𝑦1
, ⋯ ,

1

2(𝑀+𝐵)

1

𝑦𝑀
,

−1

2(𝑀+𝐵)

1

𝑏1
, ⋯ ,

−1

2(𝑀+𝐵)

1

𝑏𝐵
). (3.1) 

Next let us consider two alternative measures of distance: 

The Euclidean distance ‖𝒔‖𝐸 = (𝒔′𝒔)1 2⁄ , (3.2) 

The Mahalanobis distance ‖𝒔‖𝑀 = (𝒔′𝜮−1𝒔)1 2⁄ , (3.3) 

with 𝜮 represents the input-output covariance matrix. 

The Mahalanobis distance is often preferred because it is unitless and scale-invariant 

through the incorporation of the correlation structure in the data set. However, it is a 

nonlinear combination of the distances (slacks) in various dimensions, the task of 

solving the corresponding nonlinear programming problem is a nontrivial one. 

Nonetheless, as a weighted distance it makes the slacks from various dimensions 

comparable. In other words, it reduces the multi-dimensional input-output vector 𝒛 =

(𝒙, 𝒚, 𝒃)′ ∈ ℜ+
𝑁 × ℜ+

𝑀 × ℜ+
𝐵  into a one dimensional scalar measure. 

 

The core idea behind the factor analysis is similar, which is the approximation of the 

covariance matrix 𝜮 (Johnson and Wichern, 2013). A typical linear factor analysis 

equation can be specified as: 

𝒛(𝑁+𝑀+𝐵)×1 = 𝝁(𝑁+𝑀+𝐵)×1 + 𝑳(𝑁+𝑀+𝐵)×𝑄𝑭𝑄×1 + 𝜺(𝑁+𝑀+𝐵)×1, (3.4) 

where 𝜇𝑖 is the mean of variable 𝑖 across all observations; 𝑳 is the loading matrix; 

𝐹𝑖 is the 𝑖th common factor; 𝑄 ≤ 𝑁 + 𝑀 + 𝐵 is the number of common factors; 𝜀𝑖 

is the 𝑖th specific factor; 𝑭 and 𝜺 are independent; 𝔼(𝑭) = 𝟎, Cov(𝑭) = 𝑰; 
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𝔼(𝜺) = 𝟎, Cov(𝜺) = 𝜳, where 𝜳 is a diagonal matrix; the relationships of 𝜮 =

Cov(𝒛) = 𝑳𝑳′ + 𝜳 and Cov(𝒛, 𝑭) = 𝑳 can be obtained easily, where the covariance 

matrix 𝜮 is a nonsingular matrix. 

 

There is information loss if 𝑄 < 𝑁 + 𝑀 + 𝐵 because the original data is of 

dimensions 𝑁 + 𝑀 + 𝐵, and the information loss can be measured by the specific 

factors. In order to figure out the weights for comparing distances in various 

dimensions, we set 𝑄 = 𝑁 + 𝑀 + 𝐵 instead of simply reducing the dimensions. 

Since 𝜮 is nonsingular, one can always find 𝑁 + 𝑀 + 𝐵 common factors. Given 

𝑄 = 𝑁 + 𝑀 + 𝐵, consider 𝜺 = 𝟎 and 𝜳 = 𝟎 for now, equation (3.4) can be 

simplified into the following: 

𝒛(𝑁+𝑀+𝐵)×1 = 𝝁(𝑁+𝑀+𝐵)×1 + 𝑳(𝑁+𝑀+𝐵)×(𝑁+𝑀+𝐵)𝑭(𝑁+𝑀+𝐵)×1, (3.5) 

where 𝜮 = 𝑳𝑳′. There are 𝑁 + 𝑀 + 𝐵 eigenvalues, referred to as 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥

𝜆𝑁+𝑀+𝐵 ≥ 0, and their corresponding normalized eigenvectors are 𝒆𝑖 (𝑖 = 1,⋯ ,𝑁 +

𝑀 + 𝐵). The following can be obtained by factoring the covariance matrix: 

𝜮 = 𝜆1𝒆1𝒆1
′ + ⋯+ 𝜆𝑁+𝑀+𝐵𝒆𝑁+𝑀+𝐵𝒆𝑵+𝑀+𝐵

′  

= [√𝜆1𝒆1, ⋯ ,√𝜆𝑁+𝑀+𝐵𝒆𝑁+𝑀+𝐵] [
√𝜆1𝒆1

′

⋮

√𝜆𝑁+𝑀+𝐵𝒆𝑵+𝑀+𝐵
′

]. (3.6) 

From (3.6) and 𝜮 = 𝑳𝑳′, we have: 

𝑳 = [√𝜆1𝒆1,⋯ , √𝜆𝑁+𝑀+𝐵𝒆𝑁+𝑀+𝐵]. (3.7) 

In summary, the sample means computed from the observed data 𝒛 can be used to 

estimate 𝝁; and the eigenvalues and eigenvectors of sample covariance matrix can be 

used to estimate 𝑳; so the common factors 𝑭 = (𝐹1, ⋯ , 𝐹𝑁+𝑀+𝐵) can be obtained by 

equation (3.5), that is, 𝑭 = 𝑳−1(𝒛 − 𝝁). Because 𝑳 is composed by mutually 

perpendicular eigenvectors, its inverse matrix always exists. 
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When the units of the variables are not comparable, researchers usually standardize 

with 𝒛̃ = (
𝑧1−𝑧̅1

√𝜎11
, ⋯ ,

𝑧𝑁+𝑀+𝐵−𝑧̅𝑁+𝑀+𝐵

√𝜎𝑁+𝑀+𝐵,𝑁+𝑀+𝐵
)′, where 𝑧𝑖̅ and √𝜎𝑖𝑖 are the sample mean and 

standard deviation of variable 𝑖. After standardization, 𝝁̃ = 𝟎 and 𝑭̃ = 𝑳̃−1𝒛̃, where 

𝑳̃ = [√𝜆̃1𝒆̃1,⋯ ,√𝜆̃𝑁+𝑀+𝐵𝒆̃𝑁+𝑀+𝐵] and 𝜮̃ = 𝑳̃𝑳̃′ is the sample correlation matrix. 

Let’s denote the element of matrix 𝑳̃−1 as 𝛼𝑖𝑗. According to 𝑭̃ = 𝑳̃−1𝒛̃, 

𝐹̃1 = 𝛼11𝑧̃1 + 𝛼12𝑧̃2 + ⋯+ 𝛼1,𝑁+𝑀+𝐵𝑧̃𝑁+𝑀+𝐵

𝐹̃2 = 𝛼21𝑧̃1 + 𝛼22𝑧̃2 + ⋯+ 𝛼2,𝑁+𝑀+𝐵𝑧̃𝑁+𝑀+𝐵

⋮
𝐹̃𝑁+𝑀+𝐵 = 𝛼𝑁+𝑀+𝐵,1𝑧̃1 + 𝛼𝑁+𝑀+𝐵,2𝑧̃2 + ⋯+ 𝛼𝑁+𝑀+𝐵,𝑁+𝑀+𝐵𝑧̃𝑁+𝑀+𝐵

 (3.8) 

As demonstrated in Appendix 4, the variance contribution rate of factor 𝐹̃𝑖 is 
𝜆̃𝑖

𝑁+𝑀+𝐵
. 

And 𝐹̃𝑇 = ∑
𝜆̃𝑖𝐹̃𝑖

𝑁+𝑀+𝐵

𝑁+𝑀+𝐵
𝑖=1  represents a comprehensive score, which is a common 

dimensionality reduction strategy in the field of factor analysis. Considering the 

variance decomposition of factor 𝐹̃𝑖, we can obtain: 

Var(𝐹̃𝑖) = ∑ 𝛼𝑖𝑗Cov(𝑧̃𝑗 , 𝐹̃𝑖)
𝑁+𝑀+𝐵
𝑗=1 = 1.9 (3.9) 

Therefore, 𝛼𝑖𝑗Cov(𝑧̃𝑗 , 𝐹̃𝑖) indicates the importance of variable 𝑧̃𝑗 to factor 𝐹̃𝑖. 

Similarly, one can obtain Var(𝐹̃𝑇) = ∑
𝜆̃𝑖

𝑁+𝑀+𝐵
Cov(𝐹̃𝑖, 𝐹̃𝑇)𝑁+𝑀+𝐵

𝑖=1  considering the 

variance decomposition of 𝐹̃𝑇, i.e. ∑
𝜆̃𝑖

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)

Var(𝐹̃𝑇)
𝑁+𝑀+𝐵
𝑖=1 = 1. Therefore, 

𝜆̃𝑖

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)

Var(𝐹̃𝑇)
 indicates the importance of factor 𝐹̃𝑖 to comprehensive score 𝐹̃𝑇.  

 

Taking into account the importance of 𝑧̃𝑗 to factor 𝐹̃𝑖 and the importance of 𝐹̃𝑖 to 

comprehensive score 𝐹̃𝑇, ∑
𝜆̃𝑖𝛼𝑖𝑗

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)Cov(𝑧𝑗,𝐹̃𝑖)

Var(𝐹̃𝑇)
𝑁+𝑀+𝐵
𝑖=1  indicates the importance 

                                                   
9 View 𝐹̃𝑖 as an investment portfolio of 𝑧̃𝑗, 𝑗 = 1,⋯ ,𝑁 + 𝑀 + 𝐵, then according to the capital asset pricing 

model Cov(𝑧̃𝑗 , 𝐹̃𝑖) is the Beta coefficient of 𝑧̃𝑗  that measures the systematic risk of 𝑧̃𝑗, and 

∑ 𝛼𝑖𝑗Cov(𝑧̃𝑗 , 𝐹̃𝑖)
𝑁+𝑀+𝐵
𝑗=1  is the Beta coefficient of the investment portfolio. 
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of 𝑧̃𝑗 to 𝐹̃𝑇. Thus the weights ∑
𝜆̃𝑖𝛼𝑖𝑗

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)Cov(𝑧̃𝑗,𝐹̃𝑖)

Var(𝐹̃𝑇)
𝑁+𝑀+𝐵
𝑖=1  (𝑗 = 1,⋯ ,𝑁 +

𝑀 + 𝐵) can be used to weigh the distances (|𝑠𝑗|) in various dimensions to obtain an 

average distance, that is: 

‖𝒔‖𝐶 = 𝒗 ∙ 𝒔 = (⋯∑
𝜆̃𝑖𝛼𝑖𝑗

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)Cov(𝑧𝑗,𝐹̃𝑖)Sig(𝑠𝑗)

Var(𝐹̃𝑇)
𝑁+𝑀+𝐵
𝑖=1 ⋯)

(𝑁+𝑀+𝐵)×1
∙ 𝒔 (3.10) 

where Sig(𝑠𝑗) = −1 if 𝑠𝑗 < 0 and Sig(𝑠𝑖) = +1 if 𝑠𝑗 ≥ 0. The sum of the 

weights equals to 1, i.e. ∑ ∑
𝜆̃𝑖𝛼𝑖𝑗

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)Cov(𝑧𝑗,𝐹̃𝑖)

Var(𝐹̃𝑇)
𝑁+𝑀+𝐵
𝑖=1

𝑁+𝑀+𝐵
𝑗=1 = 1.10 

 

This weighting method, as specified by equation (3.10), has several advantages: (1) 

same as the Mahalanobis distance, it is unitless, scale-invariant, and accounts for the 

correlation structure of the data set; but (2) unlike the Mahalanobis distance and 

Euclidean distance, it is linear. The corresponding slacks-based measure is therefore 

easy to solve; (3) it uses common factors that are mutually perpendicular to explain 

the relative importance of variables (i.e. inputs and outputs). Due to the desirable 

statistical properties processed by the common factors, distances in different 

dimensions are comparable after adjusting the variables with the common factors; and 

(4) compared to conventional factor-based analysis, we set the number of common 

factors equal to the rank of the covariance matrix to prevent information loss, i.e. 𝜮 =

𝑳𝑳′ (or 𝜮̃ = 𝑳̃𝑳̃′). 

 

One particular caveat is that even though relative distance is commonly used, we are 

not able to define the weighted distance of slacks as the following: 

‖𝒛̃𝒓 ⊙ 𝒔‖𝐶 = 𝒗(𝒛̃𝒓 ⊙ 𝒔) = ∑ ∑
𝜆̃𝑖𝛼𝑖𝑗

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)Cov(𝑧𝑗,𝐹̃𝑖)Sig(𝑠𝑗)

Var(𝐹̃𝑇)

𝑠𝑗

𝑧𝑗

𝑁+𝑀+𝐵
𝑖=1

𝑁+𝑀+𝐵
𝑗=1   

                                                   

10 ∑ ∑
𝜆̃𝑖

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)𝛼𝑖𝑗Cov(𝑧𝑗,𝐹̃𝑖)

Var(𝐹̃𝑇)
𝑁+𝑀+𝐵
𝑖=1

𝑁+𝑀+𝐵
𝑗=1 = ∑

𝜆̃𝑖

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)

Var(𝐹̃𝑇)
∑ 𝛼𝑖𝑗Cov(𝑧̃𝑗 , 𝐹̃𝑖)

𝑁+𝑀+𝐵
𝑗=1

𝑁+𝑀+𝐵
𝑖=1 = 1. 
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where 𝒛̃𝒓 = (
𝟏

𝑧1
, ⋯ ,

𝟏

𝑧𝑁+𝑀+𝐵
)
′

 and ⊙ denotes the Hadamard product of two vectors. 

This is because the standardized 𝑧̃𝑗 could be negative. The following can be specified 

instead: 

𝒛̃𝒓𝒓 = (√𝜎11

𝑧1
, ⋯ ,

√𝜎𝑁+𝑀+𝐵,𝑁+𝑀+𝐵

𝑧𝑁+𝑀+𝐵
)
′

, (3.10) 

and we can calculate: 

‖𝒛̃𝒓𝒓 ⊙ 𝒔‖𝐶 = 𝒗(𝒛̃𝒓𝒓 ⊙ 𝒔) 

= ∑ ∑
𝜆̃𝑖𝛼𝑖𝑗

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)Cov(𝑧𝑗,𝐹̃𝑖)√𝜎𝑗𝑗Sig(𝑠𝑗)

Var(𝐹̃𝑇)

𝑠𝑗

𝑧𝑗

𝑁+𝑀+𝐵
𝑖=1

𝑁+𝑀+𝐵
𝑗=1 . (3.11) 

 

‖𝒛̃𝒓𝒓 ⊙ 𝒔‖𝐶 can be interpreted as using ∑
𝜆̃𝑖𝛼𝑖𝑗

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)Cov(𝑧𝑗,𝐹̃𝑖)√𝜎𝑗𝑗Sig(𝑠𝑗)

Var(𝐹̃𝑇)

1

𝑧𝑗

𝑁+𝑀+𝐵
𝑖=1  

to weigh the absolute distance 𝑠𝑗, or using ∑
𝜆̃𝑖𝛼𝑖𝑗

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)Cov(𝑧̃𝑗,𝐹̃𝑖)Sig(𝑠𝑗)

Var(𝐹̃𝑇)
𝑁+𝑀+𝐵
𝑖=1  

to weigh the relative distance 
√𝜎𝑗𝑗𝑠𝑗

𝑧𝑗
. 

 

3.2. The factor-analysis-based DDF with an endogenous direction 

To sum up, the development of this new approach is based primarily on the utilization 

of factor analysis in determining the optimal weight vector 𝒗. The resulting weighted 

distance, i.e. 𝒗 ∙ 𝒔, is then used as the objective function in a SBM of efficiency. 

Because of the dualities between DDF and SBM, one can obtain the direction vector 

𝒈 corresponding to the optimal weight vector 𝒗. The resulting DDF analysis is 

therefore called the FAB-DDF in which not only the selection of direction is 

endogenous but also the reliance on any exogenous settings or price information is 

unnecessary. The specific steps involved in the application of this FAB-DDF can be 

summarized below: 

Step 1. Standardize all the input-output variables 𝒛 by 𝒛̃ = (
𝑧1−𝑧̅1

√𝜎11
, ⋯ ,

𝑧𝑁+𝑀+𝐵−𝑧̅𝑁+𝑀+𝐵

√𝜎𝑁+𝑀+𝐵,𝑁+𝑀+𝐵
)
′

; 

Step 2. Determine the optimal weight vector 𝒗 in the SBM using factor analysis: 

2.1 use the standardized sample data to obtain the sample correlation matrix 𝜮̃; 
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2.2 calculate the eigenvalues and eigenvectors of 𝜮̃, i.e. (𝜆̃𝑖;  𝒆̃𝑖) where 𝑖 = 1,⋯ ,𝑁 + 𝑀 + 𝐵; 

2.3 calculate the inverse matrix of 𝑳̃ = [√𝜆̃1𝒆̃1, ⋯ ,√𝜆̃𝑁+𝑀+𝐵𝒆̃𝑁+𝑀+𝐵] to obtain 

the elements of matrix 𝑳̃−1, i.e. 𝛼𝑖𝑗; 

2.4 calculate the common factors 𝐹̃𝑖 (𝑖 = 1,⋯ ,𝑁 + 𝑀 + 𝐵) and comprehensive 

factor 𝐹̃𝑇 using the factor analysis approach; and 

2.5 obtain the distance weights, 𝑣𝑗 = ∑
𝜆̃𝑖𝛼𝑖𝑗

𝑁+𝑀+𝐵

Cov(𝐹̃𝑖,𝐹̃𝑇)Cov(𝑧𝑗,𝐹̃𝑖)√𝜎𝑗𝑗Sig(𝑠𝑗)

Var(𝐹̃𝑇)

1

𝑧𝑗

𝑁+𝑀+𝐵
𝑖=1 . 

Step 3. Solve the SBM model (i.e. equation (2.6)) using the weight vector 𝒗 obtained 

from the previous step. 

Step 4. Based on the results obtained, further solve for the optimal directional vector 

𝒈 using equations (2.7) and (2.8). Substituting this direction vector 𝒈 into 

the conventional DDF analysis (i.e. equation (2.5)) with the standardized 

input-output vector 𝒛̃, identical efficiency scores as to the SBM model can be 

obtained. 

If one only cares about the efficiency scores, there is no need to proceed with Step 4, 

the purpose of which is to solve the direction selection problem in case the DDF 

analysis has been chosen as the preferred approach. 

 

4. Efficiency Analysis of New Zealand Hospitals 

4.1. Data sources and description 

The data used in this study are provided by the Ministry of Health (MOH), which 

contains input information for each local DHB in the form of monthly financial 

statements during the year 2011-2017. We constructed four inputs (the number of full 

time equivalent (FTE) medical doctors, nurses, other staff, and capital), two good 

outputs (case-weighted inpatient discharges and price-weighted outpatient visits), and 

one bad output (readmission within 28 days of discharge) to implement this new FAB-

DDF model. 

 

A multiple-step procedure is followed to derive measures that can more accurately 

reflect input volumes. In the first stage, we estimate the price of medical service by 

taking the ratio of payments made to employed medical staff to the total FTE doctors 
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on the payroll. There is no equivalent FTE counts for doctors who are outsourced 

from private practices so the monetary expenses on outsourced medical is often used 

for this purpose. The problem is that the monthly expenditures on outsourced inputs 

often contain negative values as a result of balancing the accounts, any input volume 

measures derived from such financial accounts are unlikely to represent the actual 

usage, and there is no way to ascertain this deviation. One solution is to aggregate the 

monthly expenditures on outsourced medical over the whole financial year. The FTE 

counts for outsourced medical can now be estimated by taking the ratio of this 

aggregate expenditures and the price of medical service (estimated in the first stage 

for employed medical), assuming both hired medical and outsourced medical doctors 

receive similar remuneration. The final FTE counts are the sum of employed medical 

and estimated outsourced medical. 

 

The total FTE counts for nurses and other staff are derived in the same way. Other 

staff is a weighted sum of allied professional staff, support staff and management 

staff. The weights used are the expenditure shares for each category. 

 

Capital is often more challenge to measure due to the lack of data to separate the flow 

of capital services from capital stock. The number of installed beds is a common 

proxy variable for capital input (Aletras et al. 2007; Ancarani et al. 2009; Brown, 

2003; Chang et al. 2004; Friesner et al. 2013; Herr, 2008; Herr et al. 2011; 

Worthington, 2004). Unfortunately, that information for NZ DHB was not 

consistently collected. Others resort to use measures like depreciation (Marcinko and 

Hetico, 2012; Zelman et al. 2009) and capital charges (Parkin and Hollingsworth, 

1997). Depreciation intends to measure the reduction in the value of capital assets and 

is calculated using the straight-line method (i.e. assets depreciate by the same 

percentage each year) in NZ. Capital charges is considered to be the best proxy 

because it reflects the opportunity cost of capital employed in public health services 

(NZ Productivity Commission, 2017). 
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Output information is extracted from the National Minimum Hospital Datasets 

(NMDS) and National Non-Admitted Patient Collection (NNPAC) by the MOH. Two 

desirable output measures are used to reflect the full range of hospital services 

provided: case-weighted inpatient discharges and price-weighted outpatient visits. As 

mentioned previously, public hospitals in NZ are run and owned by DHBs to provide 

a variety of publicly funded health and disability services, they can be broadly 

categorized into inpatient admissions and outpatient visits. Although detailed case 

information is available for both categories (such as maternity, medical and surgical 

cases), the use of which comes at the cost of losing more degrees of freedom in such a 

small census dataset. Provided inpatient discharges have been adjusted using the case-

mix methodology which accounts for the complexity of the diagnosis as well as the 

relative resources for treatment, the resulting output measures are reasonably 

comparable across different hospitals in different DHBs (Fraser and Nolan, 2017). 

Outpatient visits have been weighted with national prices (from the National Cost 

Collection and Pricing Programme) which are calculated for the purpose of inter-

district flows. There are potentially two measures of undesirable outputs: adverse 

events11 and readmissions. The former is identified and reported by each DHB on a 

voluntary basis. which implies it does not count as an objective measure comparable 

across observations. As a result, we considered hospital readmissions within 28 days 

of discharge as an indicator for undesirable output. 

 

The final dataset is a balanced panel containing 20 observations (all DHBs) each year, 

for the year 2011-2017. Descriptive statistics of the variables for each DHB are 

presented in Table 2. There are three DHBs in the city of Auckland serving over one 

third of the national population together, they are Counties Manukau DHB, Waitemata 

DHB, and Auckland DHB. Counties Manukau has the highest average number of 

                                                   
11 Adverse events are cases that involve serious harm or death. They are collected by the Health Quality & Safety 

Commission and categorized into (1) harm from falls; (2) clinical management events such as delays in 

treatment, concerns about the accuracy of diagnosis, inadequate patient monitoring; and (3) medical overdose 

and surgical site infections. 
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outpatient-visit (29,923). Auckland generates the highest average number of inpatient-

discharge (130,053), the associated undesirable outcomes are also the highest (77 self-

reported adverse events and 14,786 readmissions). 

[Insert Table 2 approximately here] 

4.2. Efficiency evaluation  

Direction selection 

During the first step of implementing this new FAB-DDF, the collective input-output 

vector 𝒛 is standardized by 𝒛̃ = (
𝑧1−𝑧̅1

√𝜎11
, ⋯ ,

𝑧7−𝑧̅7

√𝜎77
)
′

 and the sample correlation 

matrix 𝜮̃ is obtained. The Kaiser-Meyer-Olkin measure of sampling adequacy is 

0.865, and the Bartlett’s test of sphericity is significant at 0.1%. These indicate that 

the factor analysis based on this dataset is adequate. There are 7 eigenvalues of 𝜮̃: 

𝜆̃1 = 6.5318, 𝜆̃2 = 0.2731, 𝜆̃3 = 0.0930, 𝜆̃4 = 0.0474, 𝜆̃5 = 0.0379, 𝜆̃6 =

0.0097, and 𝜆̃7 = 0.0072. The corresponding eigenvectors being selected are: 

(𝒆̃1 𝒆̃2 𝒆̃3 𝒆̃4 𝒆̃5 𝒆̃6 𝒆̃7) =

[
 
 
 
 
 
 
0.3837 0.2017 0.2897 0.1670 0.6378 0.5156 0.1662
0.3828 −0.2451 0.4593 −0.1718 −0.2097 −0.3350 0.6298
0.3864 −0.0501 0.1988 −0.3992 −0.4907 0.4892 −0.4113
0.3570 0.7452 −0.2857 0.2534 −0.3604 −0.0915 0.1819
0.3666 −0.5786 −0.3863 0.5791 −0.1463 0.1556 0.0258
0.3880 0.0281 0.2767 0.1970 0.1985 −0.5682 −0.6091
0.3802 −0.0765 −0.5985 −0.5872 0.3431 −0.1646 0.0422 ]

 
 
 
 
 
 

. 

The matrix 𝑳̃ = [√𝜆̃1𝒆̃1, ⋯ ,√𝜆̃𝑁+𝑀+𝐵𝒆̃𝑁+𝑀+𝐵] can be obtained and its inverse 

matrix is: 

𝑳̃−1 =

[
 
 
 
 
 
 
0.1501 0.1499 0.1512 0.1397 0.1434 0.1517 0.1488
0.3862 −0.4688 −0.0959 1.4260 −1.1072 0.0533 −0.1462
0.9492 1.5076 0.6511 −0.9364 −1.2663 0.9070 −1.9630
0.7675 −0.7889 −1.8341 1.1638 2.6599 0.9046 −2.6973
3.2760 −1.0776 −2.5189 −1.8519 −0.7517 1.0198 1.7620
5.2440 −3.4082 4.9769 −0.9315 1.5814 −5.7765 −1.6742
1.9578 7.4260 −4.8518 2.1439 0.3028 −7.1767 0.4992 ]

 
 
 
 
 
 

. 

For the second step, the following weight vector in the SBM is obtained: 

𝒗

= (−
0.1470√𝜎𝑥1𝑥1

𝑥1
, −

0.1464√𝜎𝑥2𝑥2

𝑥2
, −

0.1491√𝜎𝑥3𝑥3

𝑥3
, −

0.1282√𝜎𝑥4𝑥4

𝑥4
,
0.1347√𝜎𝑦1𝑦1

𝑦1
,
0.1502√𝜎𝑦2𝑦2

𝑦2
, −

0.1444√𝜎𝑏1𝑏1

𝑏1
) 
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where 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦1, 𝑦2 and 𝑏1correspond to the number of FTE medical 

staff, nurses, other staff, capital charges, outpatient visits, inpatient discharges and 

readmissions. 

 

According to prior discussions, solving equations (2.7) and (2.8) will give us the 

direction vector 𝒈 in a DDF analysis that corresponds to the weight vector 𝒗 found 

in the SBM. For example, the weight vector for the largest DHB Waitemata, in year 

2017, is 

𝒗 = (−0.0641, −0.0538, −0.0497, −0.0504, 0.0399, 0.0638, −0.0385), 

and its equivalent direction vector is 

𝒈 = (−0.6403, −1.9533, −4.7692, −5.8545, 0.8679, 0.0000, −7.4479)′. 

Because of limited space, we do not list the vectors of 𝒗 and 𝒈 associated with all 

observations, they are available upon request to the authors. 

 

Discussion of Efficiency Estimates 

Using the optimal weight vector 𝒗 obtained above and solving the SBM 

programming problem (2.6), efficiency scores are computed based on this newly 

developed FAB-DDF model and the results are displayed in Table 3 and Figure 2.12 

[Insert Table 3 and Figure 2 approximately here] 

Wairarapa is the only DHB operating at full efficiency, while the other 19 DHBs have 

varying degrees of inefficiency. Over the entire sample period from 2011 to 2017, the 

average efficiency score is 91 percent. The rankings across different DHBs are quite 

robust in general when the results are compared with those obtained under 

conventional approaches, as displayed in Figure 2. More specifically, the results 

under the FAB-DDF model closely resembles those from (i) the SBM model in which 

                                                   
12 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1 − 𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1 − 𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛; 𝒗). 
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𝒗 = (
−1

8

1

𝑥1
, ⋯ ,

−1

8

1

𝑥4
,
1

6

1

𝑦1
,
1

6

1

𝑦2
,
−1

6

1

𝑏1
); (ii) the input orientated DEA with 𝒈 =

(−𝒙, 𝟎, 𝟎)′; (iii) the good-output orientated DEA with 𝒈 = (𝟎, 𝒚, 𝟎)′; (iv) the bad-

output orientated DEA with 𝒈 = (𝟎, 𝟎, −𝒃)′; and (v) multi-dimensional orientated 

DDFs with 𝒈 = (𝟎, 𝒚, −𝒃)′ and 𝒈 = (−𝒙, 𝒚,−𝒃)′. 

 

To investigate the main sources of inefficiency, we further decompose the overall 

efficiency score obtained under the FAB-DDF model into various dimensional 

efficiency components and the results are presented in Table 4. 

[Insert Table 4 approximately here] 

The main sources of inefficiency comes from the utilization of capital and other staff, 

as well as the control of bad output (readmissions). The average efficiencies 

associated with capital input (𝑒𝑓𝑓𝑐𝑎𝑝) and readmission reduction (𝑒𝑓𝑓𝑟𝑒𝑎𝑑𝑚) are 74.3 

and 89.9 percent, respectively, which are much lower than the efficiencies for 

providing good outputs. The average efficiency score for inpatient-discharge is 99.1 

percent, with the majority have been operating close to full efficiency. These results 

are expected given the focus on the volume of elective discharges without other 

controls in the National Health Targets against which performance of NZ DHBs are 

monitored. 

 

To achieve full efficiency, the amount of FTE medical staff, nurse, and all other staff 

can be decreased by 8 percent, 3 percent and 10 percent, respectively on average. The 

greatest source of input inefficiency is capital, as measured by the capital charges, an 

average of 25.7 percent downscale has been estimated. With respect to output(s), the 

largest inefficiency is an average of 10 percent reduction in readmissions. 

 

For each DHB, Table 4 provides an optimal direction to improve efficiency. For 

example, the Canterbury DHB should mostly focuse on capital utilization; the West 

Coast DHB could expand on the provision of good outputs (particularly inpatient-
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discharge) while keeping its capital charges in check, some might argue this is 

because of the small rural community West Coast DHB serves, i.e. caused by a 

shortage of demand instead of inefficient supply. The situation for the second smallest 

DHB (Tairawhiti) however is more complex, besides the extremely low capital 

efficiency score, it also needs to deal with excess in medical staff and inadequate 

provision of outpatient service.13 Full efficiency is achieved for inpatient discharges 

so that Tairawhiti would be judged to have better performance under the National 

Health Targets although other dimensions, as well as the overall efficiency score, are 

much worse compared to the West Coast.  

 

Shadow price analysis 

As shown in Figure 2, the conventional SBM of efficiency produces similar estimates 

as to the new FAB-DDF model. Meanwhile, the efficiency estimates obtained from 

conventional DDF analysis with the following direction vectors 𝒈 = (−𝒙, 𝟎, 𝟎)′, 

(𝟎, 𝒚, 𝟎)′, (𝟎, 𝒚, −𝒃)′, and (−𝒙, 𝒚, −𝒃)′ are higher, and the estimates from 𝒈 =

(𝟎, 𝟎, −𝒃)′ are lower on average.  

 

To illustrate the advantage of the new FAB-DDF approach, we compute the shadow 

price for medical staff. Under desirable theoretical properties, the salary paid to 

medical doctors should reflect its shadow price. Summary statistics of the average 

annual salary to medical staff are presented in Table 2. For a given level of efficiency 

and using the implicit differentiation rule: 

𝜕𝑧𝑖

𝜕𝑧𝑗
= −

𝜕𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛̃;𝒗) 𝜕⁄ 𝑧𝑗

𝜕𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛̃;𝒗) 𝜕⁄ 𝑧𝑖
√𝜎𝑧𝑖𝑧𝑖 √𝜎𝑧𝑗𝑧𝑗

⁄ , 

the shadow price of 𝑧𝑗 with respect to 𝑧𝑖 is derived. By solving the FAB-DDF 

                                                   
13 Since capital charges is used as the proxy for the flow of capital services, it is possible that inefficiency in 

capital input might reflect the underlying fact that some public hospitals are being over charged. Capital charges 

is supposed to capture the opportunity cost of capital used in public services, i.e. what will it cost if the same 

capital is leased to the private sector? Nonetheless, it is highly questionable whether or not public use of capital 

is equivalent to private use given the obvious externalities associated with public health services. It has been 

reported that the NZ hospitals are experiencing problems in replacing and upgrading critical infrastructures. 
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model, one can obtain ∂𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛̃; 𝒗) ∂⁄ 𝑧̃𝑗 and ∂𝑆𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒛̃; 𝒗) ∂⁄ 𝑧̃𝑖. A vast amount of 

literature treats good-output as 𝑧𝑖. Hence, the shadow price of medical staff can be 

measured by: 

𝜕𝑖𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝜕𝑚𝑒𝑑𝑖𝑐𝑎𝑙_𝑠𝑡𝑎𝑓𝑓_𝐹𝑇𝐸
 or 

𝜕𝑜𝑢𝑡𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑣𝑖𝑠𝑖𝑡

𝜕𝑚𝑒𝑑𝑖𝑐𝑎𝑙_𝑠𝑡𝑎𝑓𝑓_𝐹𝑇𝐸
. 

Because the units of measurement for outpatient-visit and inpatient-discharge are not 

in dollar terms, the nominal shadow price can be approximated as: 

𝑐𝑜𝑠𝑡𝑠_𝑝𝑒𝑟_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ×
𝜕𝑖𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝜕𝑚𝑒𝑑𝑖𝑐𝑎𝑙_𝑠𝑡𝑎𝑓𝑓_𝐹𝑇𝐸
, 

where the costs per discharge is obtained from the total expenditures on all personnel, 

outsourced clinical services and clinical supplies, the summary statistics are provided 

in Table 2. The correlation coefficients between the estimated shadow prices and the 

observed salary made to medical staff are displayed in Table 5. The shadow prices 

obtained under the new FAB-DDF approach always correlate more closely and 

significantly with the observed salary payment than those from other approaches. 

[Insert Table 5 approximately here] 

Furthermore, the efficiency decomposition displayed in Table 4 indicates that the 

major source of output inefficiency is readmission, the control of which has been left 

out by the National Health Targets. The shadow values, as explained in Färe et al. 

(2006), and the total shadow costs associated with readmission are given by: 

𝑟𝑒𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛 × 𝑐𝑜𝑠𝑡𝑠_𝑝𝑒𝑟_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ×
𝜕𝑖𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝜕𝑟𝑒𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛
. 

Since each DHB needs to reduce the number of readmission by 𝑠𝑏1√𝜎𝑏1𝑏1
𝑏1⁄  in 

order to achieve full efficiency in the bad-output dimension, the total costs association 

with readmission reduction can be calculated as: 

𝑠𝑏1√𝜎𝑏1𝑏1
𝑏1⁄ × 𝑠ℎ𝑎𝑑𝑜𝑤 𝑐𝑜𝑠𝑡𝑠_𝑟𝑒𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛. 
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The variations in shadow costs and reduction costs are presented in Figure 3, the top 

panel provides the average figure for each DHB during 2011-2017 and the bottom 

panel provides the national annual average. The largest DHB, Waitemata (WTM), has 

the highest readmission reduction costs (around $105 million) and the second highest 

shadow costs (around $291 million). Canterbury (CAN) has the highest shadow cost 

(around $330 million), but it is efficient in minimizing readmissions. West Coast DHB 

(WTC) is the third one down the list facing high shadow costs associated with 

readmission. On average, the reduction costs of readmission is $10 million over the 

last 7 years, implying substantial gain in health care efficiency from one of the 

missing component in the National Health Targets. The national average spikes in 

2011 and 2016 (but falls in the years that follow) reassure this observation, which are 

the two years the issue of healthcare quality was brought up by the Heath Quality & 

Safety Commission through the release of public reports. 

[Insert Figure 3 approximately here] 

5. Conclusions 

As DDF analysis becomes increasingly popular in estimating production technologies 

involving multiple-output and multiple-input, the issue of justifying the choice of 

appropriate directions becomes crucial for robust efficiency estimates. This study 

proposes a new approach, namely, factor-analysis-based DDF (FAB-DFF), which 

provides a non-radial endogenous optimal direction for efficiency improvement. It is 

built upon the fundamental equivalence embedded within DDF and SBM. 

 

Compared to conventional DDF and SBM analysis, this new FAB-DDF model has a 

number of merits. First of all, as a non-radical measure it can help eliminate any 

potential bias introduced by radial measures (Fukuyama and Weber, 2009). Second, 

the directional choice is endogenous rather than exogenous. Pre-fixed exogenous 

directions do not consider the relative importance of distances (slacks) in each 

dimension. However, the FAB-DDF takes the advantages of the Mahalanobis distance 
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and factor analysis through incorporating the correlation structure of the input-output 

dataset, i.e. the relative ease with which various input-output can be adjusted. Finally, 

unlike the endogenous directions put forward by Zofio et al. (2013), Atkinson and 

Tsionas (2016), Lee (2014), and Deng (2016), this new FAB-DDF model does not 

rely on additional price information. A step-by-step guide for application of this FAB-

DDF model has been provided and a dataset containing all the public hospitals in NZ 

observed during 2011-2017 is utilized. 

 

The efficiency scores computed using the new approach for NZ hospitals are 

compared with those obtained under conventional DDF and SBM analysis (with 

preassigned directions). The SBM provides similar efficiency estimates but the 

shadow price analysis shows that the estimates from the new FAB-DDF approach are 

more closely correlated with the observed salary paid to medical doctors. To achieve 

full efficiency, on average, the number of FTE medical staff, nurse, other staff, capital 

charges, and readmission within 28 days of discharge need to be reduced by 8.3%, 

3.1%, 10.1%, 25.7%, and 10.1%, respectively; and the number of price-weighted 

outpatient-visit and case-weighted inpatient-discharge can be increased by 7.3% and 

0.9%. The main source of inefficiency comes from the utilization of capital input, 

followed by readmission reduction.14 On average, the costs associated with reducing 

the number of readmission over the last 7 years is around $10 million, implying that 

substantial gain in healthcare efficiency is possible if the mission components in the 

National Health Targets could be built into future policy initiatives governing the 

evaluation of hospital performance. 

                                                   
14 The final ranking of 20 District Health Boards in NZ is: Wairarapa (1st), Waikato (2nd), Bay of Plenty (3rd), 

Counties Manukau (4th), Auckland (5th), Lakes (6th), Canterbury (7th), Capital Coast (8th), Southern (9th), 

South Canterbury (10th), Nelson Marlborough (11th), Hawke's Bay (12th), West Coast (13th), Hutt Valley 

(14th), Taranaki (15th), MidCentral (16th), Northland (17th), Waitemata (18th), Whanganui (19th), Tairawhiti 

(20th) DHBs. 
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Table 1: Common directions in a DDF analysis 

Literature Direction vector Require Price information 

Chambers et al. (1996), Kumar (2006) 𝒈 = (𝟎, 𝒚, −𝒃)′ No 

Charnes et al. (1978) 𝒈 = (−𝒙, 𝟎, 𝟎)′, 𝒈 = (𝟎, 𝒚, 𝟎)′ or 𝒈 = (𝟎, 𝟎, −𝒃)′ No 

Färe et al. (2005), Färe et al. (2006), Feng and Serletis (2014) 𝒈 = (𝟎, 𝟏, −𝟏)′ No 

Färe et al. (2013) 𝒈 = (𝟎,
𝒔𝒚

‖𝒔𝒚‖1
+ ‖𝒔𝒃‖1

,
𝒔𝒃

‖𝒔𝒚‖1
+ ‖𝒔𝒃‖1

)

′

 No 

Krüger (2017) 
𝒈 = (−𝝍𝒙 ⊙ 𝒙,𝝍𝒚 ⊙ 𝒚,−𝝍𝒃 ⊙ 𝒃)

′
  

where ‖𝝍𝒙‖1 + ‖𝝍𝒚‖1
+ ‖𝝍𝒃‖1 = 1 

No 

Zofio et al. (2013), Atkinson and Tsionas (2016) (𝒈𝒙, 𝒈𝒚, 𝒈𝒃)
′
= arg max

𝒈𝒙,𝒈𝒚,𝒈𝒃

{𝜋} Yes 

Lee (2014) (𝒈𝒚, 𝒈𝒃)
′
= arg max

𝒈𝒚,𝒈𝒃

{𝜕𝜋 𝜕𝒙⁄ }, 𝒈𝒙 = 𝟎 Yes 

Deng (2016) (𝒈𝒚, 𝒈𝒃)
′
= arg max

𝒈𝒚,𝒈𝒃

{𝜕𝜋 𝜕𝑐⁄ }, 𝒈𝒙 = 𝟎 Yes 

Source: authors' compliance. 

⊙ denotes the Hadamard product of two vectors. 

max𝒈𝒙,𝒈𝒚,𝒈𝒃
{𝜋} means that enterprises choose optimal direction to maximize profit. 

max𝒈𝒚,𝒈𝒃
{𝜕𝜋 𝜕𝒙⁄ } means that enterprises choose optimal direction to maximize marginal profit of unit input. 

max𝒈𝒚,𝒈𝒃
{𝜕𝜋 𝜕𝑐⁄ } means that enterprises choose optimal direction to maximize marginal profit of unit investment. 
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Table 2: Summary of input-output variables during 2011-2017 

DHB 
Outpatient 

Visits  

Inpatient 

Discharges  
Adverse Events Readmissions 

Medical staff 

(FTE) 

Nurses 

(FTE) 

Other staff 

(FTE) 

Capital Charges 

(in $1000) 

Salary to medical staff 

(in $1000) 

Total adjusted costs per 

discharge (in $1000) 

Auckland 24,205 130,053 77 14,786 1,636 3,374 1,474 37,282 184.73 8.63 

(1,764) (4,796) (16) (835) (97) (120) (61) (3,818) (13.09) (0.44) 

Bay of Plenty 14,294 38,537 12 5,301 323 1,118  430 6,326 208.36 7.54 

(920) (2,723) (2) (461) (22) (42) (26) (1,174) (6.94) (0.17) 

Canterbury 25,387 92,574  54 9,544 950 3,542 1,258 13,809 194.85 8.31 

(2,088) (4,281) (10) (947) (51) (158) (57) (4,122) (9.77) (0.32) 

Capital Coast 17,655 65,528  21 7,150 795 2,059 749 8,364 165.84 8.26 

(805) (3,240) (4) (360) (83) (88) (16) (1,311) (4.04) (0.23) 

Counties Manukau 29,923 84,317  47 11,072 983 2,589 909 14,708 175.64 8.24 

(1,265) (3,183) (15) (531) (57) (117) (41) (2,702) (11.25) (0.44) 

Hawke's Bay 10,458 27,152 12 3,789 312  858 376 4,193 165.40 8.44 

(656) (762) (4) (324) (22) (40) (10) (1,557) (9.38) (0.55) 

Hutt Valley 10,585 23,130 8 3,207 251  729 354 6,207 192.87 8.52 

(506) (1,131) (2) (555) (13) (26) (12) (1,196) (7.70) (0.19) 

Lakes 6,986 17,440  10 3,200 170  485 208 3,410 202.81 7.65 

(324) (1,169) (4) (349) (14) (21) (10) (671) (7.31) (0.14) 

MidCentral 11,606 28,133 19 3,845 308  960 422 8,529 196.40 9.02 

(564) (791) (2) (205) (20) (29) (8) (1,776) (5.21) (0.51) 

Nelson Marlborough 9,746 21,402 13 2,638 191 644 454 6,104 238.26 9.60 

(1,203) (582) (12) (330) (10) (9) (8) (1,085) (11.98) (0.41) 

Northland 10,243 27,483 13 4,277 272 973 421 7,926 210.38 9.23 

(974) (1,326) (6) (136) (30) (45) (14) (1,788) (5.80) (0.56) 
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Table 2-continued: Summary of input-output variables during 2011-2017 

DHB 
Outpatient 

Visits  

Inpatient 

Discharges  
Adverse Events Readmissions 

Medical staff 

(FTE)  

Nurses 

(FTE) 

Other staff 

(FTE) 

Capital Charges  

(in $1000) 

Salary to medical staff  

(in $1000) 

Total adjusted costs per 

discharge (in $1000) 

South Canterbury 4,427 8,604 12 1,173 67 327 105 620 271.23 9.25 

(276) (200) (6) (103) (6) (6) (4) (117) (15.23) (0.63) 

Southern 19,508 52,084 41 6,151 519 1,593 632 8,607 222.01 8.37 

(2,397) (1,761) (12) (658) (23) (51) (9) (1,679) (8.24) (0.39) 

Tairawhiti 3,102 7,388 5 900 77 268 140 2,269 270.98 10.71 

(192) (226) (2) (48) (4) (14) (3) (493) (24.91) (0.60) 

Taranaki 7,859 17,588 9 2,881 154 571 245  5,826 206.92 9.04 

(419) (762) (6) (411) (5) (22) (8) (733) (16.93) (0.30) 

Waikato 23,412 82,131 41 10,845 725 2,384 986 15,568 209.94 8.17 

(1,455) (4,089) (9) (1,448) (52) (124) (39) (1,800) (6.74) (0.31) 

Wairarapa 
3,559 6,174 5 890 49 212 87 487 234.02 8.56 

(425) (214) (3) (142) (4) (16) (6) (167) (15.25) (0.45) 

Waitemata 25,550 72,621 43 14,509 877 2,579 1,150 17,122 181.55 9.31 

(4,154) (6,568) (10) (1,885) (74) (194) (60) (4,546) (7.87) (0.30) 

West Coast 3,227 3,783 8 418 60 320 138 746 298.77 19.04 

(195) (183) (4) (58) (5) (12) (13) (116) (22.16) (0.72) 

Whanganui 4,924 11,157 9 1,972 114 391 155 1,801 218.65 8.73 

(364) (287) (4) (202) (4) (10) (4) (372) (5.47) (0.52) 
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Table 3: Average efficiency estimates over 2011-2017 

DHB FAB-DDF SBM 
DDFs 

(−𝒙, 𝟎, 𝟎)′ (𝟎, 𝒚, 𝟎)′ (𝟎, 𝟎, −𝒃)′ (𝟎, 𝒚, −𝒃)′ (−𝒙, 𝒚, −𝒃)′ 

Auckland 0.980 0.979 1.000 1.000 0.985 1.000 1.000 

(0.027) (0.027) (0.000) (0.000) (0.021) (0.000) (0.000) 

Bay of Plenty 0.996 0.996 0.999 0.998 0.986 1.000 1.000 

(0.007) (0.007) (0.003) (0.003) (0.034) (0.001) (0.000) 

Canterbury 0.973 0.973 0.992 0.997 0.985 0.997 1.000 

(0.046) (0.047) (0.020) (0.009) (0.029) (0.008) (0.000) 

Capital Coast 0.965 0.962 0.983 0.982 0.960 0.986 0.994 

(0.032) (0.034) (0.030) (0.024) (0.044) (0.018) (0.012) 

Counties Manukau 0.984 0.985 1.000 0.993 0.972 0.997 1.000 

(0.020) (0.020) (0.000) (0.009) (0.041) (0.006) (0.000) 

Hawke's Bay 0.894 0.896 0.955 0.927 0.768 0.938 0.985 

(0.054) (0.053) (0.025) (0.053) (0.117) (0.045) (0.015) 

Hutt Valley 0.875 0.878 0.979 0.938 0.732 0.942 0.994 

(0.058) (0.057) (0.032) (0.031) (0.122) (0.029) (0.016) 

Lakes 0.975 0.974 0.998 0.998 0.894 0.998 1.000 

(0.024) (0.026) (0.003) (0.004) (0.104) (0.004) (0.001) 

MidCentral 0.831 0.832 0.922 0.833 0.714 0.870 0.969  
(0.027) (0.028) (0.082) (0.030) (0.026) (0.019) (0.040) 

Nelson Marlborough 0.899 0.905 0.996 0.972 0.877 0.975 1.000 

(0.075) (0.071) (0.009) (0.024) (0.101) (0.022) (0.000) 

Northland 0.810 0.806 0.893 0.814 0.636 0.858 0.965 

(0.026) (0.029) (0.076) (0.061) (0.018) (0.055) (0.034) 

South Canterbury 0.958 0.959 0.990 0.988 0.939 0.989 0.998 

(0.053) (0.052) (0.018) (0.021) (0.085) (0.020) (0.005) 

Southern 0.964 0.962 0.974 0.980 0.936 0.985 0.990 

(0.037) (0.039) (0.027) (0.021) (0.063) (0.016) (0.010) 

Tairawhiti 0.744 0.747 0.964 0.962 0.804 0.982 0.990 

(0.018) (0.017) (0.054) (0.066) (0.025) (0.031) (0.018) 

Taranaki 0.845 0.842 0.986 0.923 0.637 0.951 0.997 

(0.016) (0.018) (0.024) (0.030) (0.044) (0.048) (0.008) 

Waikato 0.997 0.997 1.000 1.000 1.000 1.000 1.000 

(0.007) (0.008) (0.000) (0.000) (0.001) (0.000) (0.000) 

Wairarapa 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Waitemata 0.806 0.808 0.966 0.877 0.556 0.940 1.000 

(0.028) (0.031) (0.066) (0.097) (0.058) (0.088) (0.000) 

West Coast 0.888 0.892 1.000 0.994 0.909 0.998 1.000 

(0.091) (0.087) (0.000) (0.011) (0.095) (0.006) (0.000) 

Whanganui 0.805 0.806 0.875 0.851 0.581 0.882 0.946 

(0.015) (0.016) (0.025) (0.030) (0.055) (0.057) (0.029) 

Total 0.909 0.910 0.974 0.951 0.844 0.964 0.991 

(0.087) (0.086) (0.049) (0.069) (0.160) (0.055) (0.020) 

In the SBM model, weight vector is the one used by Fukuyama and Weber (2009).
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Table 4: Decomposition of average efficiency during 2011-2017 

DHB 𝑒𝑓𝑓 𝑒𝑓𝑓𝑚𝑒𝑑 𝑒𝑓𝑓𝑛𝑢𝑟  𝑒𝑓𝑓𝑜𝑡ℎ 𝑒𝑓𝑓𝑐𝑎𝑝 𝑒𝑓𝑓𝑜𝑢𝑡𝑝 𝑒𝑓𝑓𝑖𝑛𝑝 𝑒𝑓𝑓𝑟𝑒𝑎𝑑𝑚 

Auckland 0.980 0.988 0.996 0.974 0.946 0.961 1.000 0.987 

Bay of Plenty 0.996 1.000 0.998 0.997 0.989 0.996 1.000 0.993 

Canterbury 0.973 0.989 0.990 0.987 0.872 0.958 1.000 1.000 

Capital Coast 0.965 0.950 0.997 0.987 0.908 0.897 1.000 1.000 

Counties Manukau 0.984 0.971 0.996 0.997 0.954 0.988 1.000 0.980 

Hawke's Bay 0.894 0.844 0.990 0.880 0.657 0.952 1.000 0.907 

Hutt Valley 0.875 0.842 1.000 0.841 0.606 0.992 0.998 0.820 

Lakes 0.975 0.952 1.000 0.999 0.978 0.977 1.000 0.918 

MidCentral 0.831 0.848 0.930 0.835 0.518 0.879 1.000 0.766 

Nelson Marlborough 0.899 0.951 1.000 0.716 0.666 0.976 1.000 0.967 

Northland 0.810 0.931 0.894 0.803 0.497 0.790 1.000 0.709 

South Canterbury 0.958 0.916 0.960 0.983 0.939 0.956 1.000 0.952 

Southern 0.964 0.996 1.000 0.993 0.806 0.932 1.000 0.996 

Tairawhiti 0.744 0.660 0.945 0.721 0.252 0.623 1.000 0.933 

Taranaki 0.845 0.955 0.992 0.867 0.386 0.946 1.000 0.713 

Waikato 0.997 1.000 1.000 1.000 1.000 0.982 1.000 1.000 

Wairarapa 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Waitemata 0.806 0.893 0.867 0.697 0.601 0.932 0.997 0.634 

West Coast 0.888 0.936 0.859 0.869 0.777 0.949 0.819 1.000 

Whanganui 0.805 0.720 0.975 0.832 0.514 0.849 1.000 0.707 

Total 0.909 0.917 0.969 0.899 0.743 0.927 0.991 0.899 

𝑒𝑓𝑓 is the average efficiency for each DHB over 2011-2017, obtained under the FAB-DDF model. 

𝑒𝑓𝑓𝑚𝑒𝑑 = (1 − 𝑠𝑥1√𝜎𝑥1𝑥1
𝑥1⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average efficiency for medical staff. 

𝑒𝑓𝑓𝑛𝑢𝑟 = (1 − 𝑠𝑥2√𝜎𝑥2𝑥2
𝑥2⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average efficiency for the nurse input. 

𝑒𝑓𝑓𝑜𝑡ℎ = (1 − 𝑠𝑥3√𝜎𝑥3𝑥3
𝑥3⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average efficiency for all other staff. 

𝑒𝑓𝑓𝑐𝑎𝑝 = (1 − 𝑠𝑥4√𝜎𝑥4𝑥4
𝑥4⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average efficiency for capital input. 

𝑒𝑓𝑓𝑜𝑢𝑡𝑝 = (1 − 𝑠𝑦1√𝜎𝑦1𝑦1
𝑦1⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average efficiency for outpatient-visit. 

𝑒𝑓𝑓𝑖𝑛𝑝 = (1 − 𝑠𝑦2√𝜎𝑦2𝑦2
𝑦2⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average efficiency for inpatient-discharge. 

𝑒𝑓𝑓𝑟𝑒𝑎𝑑𝑚 = (1 − 𝑠𝑏1√𝜎𝑏1𝑏1
𝑏1⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average efficiency for readmissions. 

𝑒𝑓𝑓 = 0.1470 ∙ 𝑒𝑓𝑓𝑚𝑒𝑑 + 0.1464 ∙ 𝑒𝑓𝑓𝑛𝑢𝑟 + 0.1491 ∙ 𝑒𝑓𝑓𝑜𝑡ℎ + 0.1282 ∙ 𝑒𝑓𝑓𝑐𝑎𝑝 + 0.1347 ∙ 𝑒𝑓𝑓𝑜𝑢𝑡𝑝 + 0.1502 ∙

𝑒𝑓𝑓𝑖𝑛𝑝 + 0.1444 ∙ 𝑒𝑓𝑓𝑟𝑒𝑎𝑑𝑚. 
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Table 5: Correlation coefficients between observed salary of medical staff and 

estimated shadow prices 

Measures of Shadow Price for Medical Doctors FAB-DDF 
Conventional  

SBM 

Conventional DDF 

with 𝒈 = (𝟎, 𝒚, 𝟎)′ 

𝜕𝑖𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝜕𝑚𝑒𝑑𝑖𝑐𝑎𝑙_𝑠𝑡𝑎𝑓𝑓_𝐹𝑇𝐸
 

0.5279** 

(0.0000) 

0.5127*** 

(0.0000) 

0.0247 

(0.7764) 

𝑐𝑜𝑠𝑡𝑠_𝑝𝑒𝑟_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ×
𝜕𝑖𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝜕𝑚𝑒𝑑𝑖𝑐𝑎𝑙_𝑠𝑡𝑎𝑓𝑓_𝐹𝑇𝐸
 

0.5635*** 

(0.0000) 

0.5305*** 

(0.0000) 

0.0496 

(0.5681) 

The values in parentheses are the significance of Pearson’s correlation test. 
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Figure 1 Direction selection in DDF and SBM  

 

 

 

 

Figure 2 Average efficiency of NZ DHBs (2011-2017) 

Wairarapa DHB: WRP; Waikato DHB: WKO; Bay of Plenty DHB: BOP; Counties Manukau DHB: CMU; 

Auckland DHB: AUK; Lakes DHB: LAK; Canterbury DHB: CAN; Capital Coast DHB: CCT; Southern DHB: 

SON; South Canterbury DHB: SOC; Nelson Marlborough DHB: NSM; Hawke's Bay DHB: HKB; West Coast 

DHB: WTC; Hutt Valley DHB: HTV; Taranaki DHB: TKI; MidCentral DHB: MDC; Northland DHB: NTL; 

Waitemata DHB: WTM; Whanganui DHB: WGA; Tairawhiti DHB: TWT. 
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Figure 3 Readmission costs of NZ DHBs over 2011-2017 

Calculated by the authors. Lakes DHB: LAK; Wairarapa DHB: WRP; Whanganui DHB: WGA; Tairawhiti DHB: 

TWT; Taranaki DHB: TKI; Waikato DHB: WKO; Hawke's Bay DHB: HKB; Bay of Plenty DHB: BOP; Nelson 

Marlborough DHB: NSM; South Canterbury DHB: SOC; MidCentral DHB: MDC; Northland DHB: NTL; Capital 

Coast DHB: CCT; Hutt Valley DHB: HTV; Counties Manukau DHB: CMU; Auckland DHB: AUK; Southern 

DHB: SON; West Coast DHB: WTC; Waitemata DHB: WTM;. Canterbury DHB: CAN. 
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Appendix 1: New Zealand DHBs 

DHBs Hospitals owned by each DHB Population 

Auckland Auckland City Hospital; and Starship Children’s Hospital. 460,000 

Bay of Plenty Tauranga Hospital; and Whakatane Hospital. 220,000 

Canterbury 

Christchurch Hospital; Christchurch Women’s Hospital; 

Burwood Hospital; The Princess Margaret Hospital; 

Ashburton Hospital; and Hillmorton Hospital. 

501,425 

Capital Coast Wellington Hospital; and Kenepuru Hospital. 300,000 

Counties Manukau 
Middlemore Hospital; Manukau Super Clinic and Surgery 

Centre. 
512,130 

Hawke's Bay Hawke's Bay Hospital. 150,000 

Hutt Valley Hutt Hospital. 140,000 

Lakes Rotorua Hospitals; and Taupo Hospital. 108,000 

MidCentral Palmerston North Hospital; and Horowhenua Health Centre. 166,000 

Nelson Marlborough Nelson Hospital and Wairau Hospital. 134,500 

Northland 
Whangarei Hospital; Bay of Islands Hospital; Dargaville 

Hospital; and Kaitaia Hospital. 
154,700 

South Canterbury Timaru Hospital. 55,626 

Southern 
Dunedin Hospital; Wakari Hospital; Lake district Hospital; 

and Southland Hospital.  
315,000 

Tairawhiti Gisborne Hopsital. 46,000 

Taranaki Taranaki Base Hospital; and Hawera Hospital. 110,000 

Waikato Waikato Hospital.  360,000 

Wairarapa Wairarapa Hospital 40,000 

Waitemata North Shore Hospital; and Waitakere Hospital 560,000 

West Coast Grey base Hospital 31,000 

Whanganui Whanganui Hospital 60,120 

 



39 

 

 

  



40 

 

Appendix 2: National Health Targets for 2017 

 
 

95% of patients will be admitted, discharged, or transferred from an 

emergency department within six hours. 

  The volume of elective surgery will be increased by an average of 4000 

discharges per year nationally. Each DHB is expected to meet the 

agreed number of elective surgeries annually. 

  85% of patients receive their first cancer treatment (or other 

management) within 62 days of being referred with a high suspicion of 

cancer and a need to be seen within 2 weeks. 

  95% of 8-months-olds will have their primary course of immunisation 

(6 weeks, 3 months and 5 months immunisation events) on time. 

  90% of PHO enrolled patients who smoke have been offered help to 

quit smoking by a health care practitioner in the last 15 months. 

  95% of obese children identified in the B4 School Check programme 

will be offered a referral to a health professional for clinical assessment 

and family-based nutrition, activity and lifestyle interventions by 

December 2017. 

 

 

Appendix 3: proof of equation (2.8) 

To make (2.5) equivalent to (2.6), the objective functions in (2.5) and (2.6) should be 

equal, therefore, 

(𝒗𝒔)2 = 𝒔′𝒔(𝒈′𝒈)−1. (A1) 

 

By condition (2.7) in main text, 𝒔 = 𝜏𝒈, where 𝜏 is a constant, substituting this 

relationship into (A1), obtaining: 

𝜏2(𝒗𝒈)2 = 𝜏2𝒈′𝒈(𝒈′𝒈)−1. (A2) 

Simplifying this equation, we obtain 𝒗𝒈 = 1. 
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Appendix 4: derivation of the variance contribution rate of factors 

The variance of variable 𝑧𝑖  (𝑖 = 1,⋯ ,𝑁 + 𝑀 + 𝐵) is Var(𝑧𝑖), the total variance of 

all the variables is tr(𝜮) = Var(𝑧1) + Var(𝑧2) + ⋯+ Var(𝑧𝑁+𝑀+𝐵), where 

Var(𝑧𝑖) = 𝑙𝑖1
2 + 𝑙𝑖2

2 + ⋯+ 𝑙𝑖,𝑁+𝑀+𝐵
2  because 𝜮 = 𝑳𝑳′ and 𝐿 ≡

(𝑙𝑖𝑗)(𝑁+𝑀+𝐵)×(𝑁+𝑀+𝐵)
. Therefore, the contribution of the 𝑗th common factor 𝐹𝑗 to 

tr(𝜮) is ∑ 𝑙𝑖𝑗
2𝑁+𝑀+𝐵

𝑖=1 . 

According to 𝑳 = [√𝜆1𝒆1,⋯ ,√𝜆𝑁+𝑀+𝐵𝒆𝑁+𝑀+𝐵] mentioned in the main text, 

∑ 𝑙𝑖𝑗
2𝑁+𝑀+𝐵

𝑖=1 = (√𝜆𝑗𝒆𝑗)
′
√𝜆𝑗𝒆𝑗 = 𝜆𝑗𝒆𝑗

′𝒆𝑗, (A3) 

where 𝒆𝑗
′𝒆𝑗 = 1, thereby ∑ 𝑙𝑖𝑗

2𝑁+𝑀+𝐵
𝑖=1 = 𝜆𝑗. 

 

Therefore, the variance contribution rate of factor 𝐹𝑗 to tr(𝜮) equals 
𝜆𝑗

tr(𝜮)
. 

According to the properties of matrix trace, tr(𝜮) = ∑ 𝜆𝑖𝑖 , so the variance 

contribution rate of factor 𝐹𝑗 to tr(𝜮) equals 
𝜆𝑗

tr(𝜮)
=

𝜆𝑗

∑ 𝜆𝑗𝑗
. After a standardization of 

variables by 𝒛̃ = (
𝑧1−𝑧̅1

√𝜎11
, ⋯ ,

𝑧𝑁+𝑀+𝐵−𝑧̅𝑁+𝑀+𝐵

√𝜎𝑁+𝑀+𝐵,𝑁+𝑀+𝐵
)
′

, where 𝑧𝑖̅ and 𝜎𝑖𝑖 are the sample 

mean and standard deviation of variable 𝑧𝑖, respectively, the total variance satisfies 

tr(𝜮̃) = dim(𝜮̃) = 𝑁 + 𝑀 + 𝑃, (A4) 

so 
𝜆̃𝑗

tr(𝜮̃)
=

𝜆̃𝑗

𝑁+𝑀+𝐵
. 

 


