
Norris Keiller, Agnes

Working Paper

Detecting labour submarkets from worker-mobility
networks: A preliminary study

IFS Working Paper, No. W20/30

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Norris Keiller, Agnes (2020) : Detecting labour submarkets from worker-mobility
networks: A preliminary study, IFS Working Paper, No. W20/30, Institute for Fiscal Studies (IFS),
London,
https://doi.org/10.1920/wp.ifs.2020.3020

This Version is available at:
https://hdl.handle.net/10419/242889

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.ifs.2020.3020%0A
https://hdl.handle.net/10419/242889
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


lnstitute for Fiscal Studies
W

or
kin

g p
ap

er

Detecting labour 
submarkets from 
worker-mobility 
networks:
a preliminary study

Agnes Norris Keiller 

W
20

/3
0



Detecting labour submarkets from worker-mobility networks:

a preliminary study

Agnes Norris Keiller

September 9, 2020

Abstract

Despite widespread recognition that the aggregate labour market is composed of a number of

heterogeneous submarkets, there is little guidance on how to appropriately delineate such submar-

kets when conducting economic research. This paper contributes to a small but growing body of

work addressing this issue by exploring the potential for community detection algorithms to delineate

labour submarkets using observed patterns of labour market mobility. Two alternative approaches to

community detection – modularity maximisation and stochastic block model estimation – are com-

pared from a theoretical perspective and implemented on network data formed by worker transitions

observed in the UK between 2011 and 2019. The theoretical comparison shows the two approaches im-

plement very different definitions of labour submarkets, while the empirical application finds they also

produce different submarket partitions in practice. This highlights that future research using com-

munity detection methods to delineate labour submarkets should ideally implement both approaches

and examine whether any subsequent results are robust to the choice between them. Additional

analysis looks at how occupational skill requirements change following worker transitions and how

they vary within labour submarkets. This provides preliminary evidence that differences in manual

skill requirements are a greater impediment to occupational changes that are made involuntarily than

differences in non-manual skill requirements.

The author would like to thank Fabien Postel-Vinay, Richard Blundell, Monica Costa Dias and Robert

Joyce for providing helpful comments. Funding from the Turing–HSBC–ONS Economic Data Science

Awards 2018 (grant TEDSA2/100038) is gratefully acknowledged. Any errors and all views expressed

are those of the author.



1 Introduction and relation to literature

Economists and researchers in other social sciences have long recognised the labour market is not a single,

unified entity in which workers are able to instantly take up job opportunities as they arise (Dufty, 1969;

Reich et al., 1973). A more accurate characterisation instead views the aggregate labour market as being

composed of a number of heterogeneous labour submarkets or market segments, with workers and firms

operating in at least one particular submarket. In an extreme case, labour submarkets are disjoint and

workers within a given submarket only consider employment options within their own submarket.

Despite widespread recognition and use of the labour submarket concept, there is little guidance on how

to appropriately delineate submarkets when conducting economic research. It has become somewhat

conventional to distinguish between geographically distinct submarkets (for example through the use of

‘commuting zones’, which are defined by national statistical agencies using commuting data), owing to

evidence on the geographic immobility of workers. As well as geographic frictions, however, it is also

likely that workers face labour market frictions due to the skill requirements of different jobs. There is

far less consensus on how to incorporate these type of frictions when delineating submarkets (or indeed

whether to do so at all), with researchers typically relying on pre-defined categories such as occupational

class (for example see Burstein et al., 2019). As well as being a matter of academic interest in its own

right, the delineation of labour submarkets is a key identifying assumption in much empirical labour

research (for example see Autor et al., 2013; Cengiz et al., 2019; and Glitz, 2012), and also underpins more

descriptive work such as recent efforts to quantify the level of labour market concentration. Exploring

empirically-grounded methods of identifying submarkets therefore appears a worthwhile exercise with

the potential to contibute to a range of economic literature.

A small but growing body of work has proposed various ways to move beyond ad-hoc approaches to labour

submarket delineation. Manning and Petrongolo (2017), address how to define geographically-specific

‘local’ labour markets by developing and estimating a model of spatial job search. Their estimates suggest

local labour markets are far smaller than conventional geographic classifications such as ‘communting

zones’ and, unlike the standard classifications, are overlapping. Schmutte (2014) and Nimczik (2018),

by contrast, demonstrate how labour submarkets can be estimated via the application of community

detection algorithms developed in physics and computer science to network data formed by labour

market transitions. The intuition of this approach is that community detection algorithms can be used

to group jobs or firms into submarkets so that entities in the same submarket are characterised by similar

patterns of labour mobility. Although the papers are similar in their general approach, they each propose

a different class of community detection algorithm: Schmutte (2014), implements ‘Louvain’ modularity
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maximisation, while Nimczik (2018) estimates a Stochatic Block Model.

Taking inspiration from Schmutte (2014) and Nimczik (2018), this paper explores the potential for

community detection algorithms to delineate labour submarkets according to occupation and makes

four contributions in the process. First, by comparing the theory of modularity maximisation and

stochastic block models, it highlights that labour submarkets will have a very different interpretation

depending on which method is implemented. Modularity maximisation aims to define submarkets such

that intra-submarket transitions are relatively common and inter-submarket transitions are relatively

rare whereas stochastic block models delineate submarkets so that entities in the same submarket exhibit

similar transition probabilities between the other submarkets. Such differences in interpretation are not

mentionned by either Schmutte or Nimczik and mean the most appropriate method to implement will

depend on the particular research question of interest.

Second, empirical analysis of occupational mobility in the UK between 2011 and 2019 reveals large

variation in the amount of worker transitions between different occupations. This means further work

that uses community detection algorithms to delineate labour submarkets from worker-mobility networks

should use ‘degree correction’ methods that account for this type of heterogeneity.

Third, O*NET data is used to examine how occupational skill requirements change following voluntary

and involuntary worker transitions and whether labour submarkets appear to be delineated according to

skill. While the analysis of voluntary transitions is inconclusive, results related to involuntary transitions

provide preliminary evidence that differences in manual skill requirements pose greater impediments to

occupational reallocation among workers who change jobs involuntarily that non-manual skill require-

ments.

Finally the paper implements both the Louvain modularity maximisation and stochastic block model

community detection algorithms to delineate occupational labour submarkets. The contrasting results

highlight that the ‘modular’ submarket structure, which is implicitly assumed by modularity maximisa-

tion methods, is not supported by the stochastic block model approach. This demonstrates that the two

community detection algorithms will typically return different labour submarket partitions and suggests

that any future research using such methods should carefully consider which is the more appropriate

approach given the research question of interest.

The remainder of the paper is as follows. Section 2 provides a formal explanation of how the labour

market can be represented as a worker-mobility network and how community detection methods can

be used to recover labour submarkets from such a network using the alternative methods implemented

by Schmutte (2014) and Nimczik (2018). Section 3 explains the decisions taken and the data used
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to construct voluntary and involuntary occupational-mobility networks used in subsequent empirical

analysis. Section 4 provides descriptive results on the patterns of worker mobility observed in the

UK and the characteristics of the occupational-mobility networks formed by these transitions. Section

5 contrasts the submarkets delineated by the Louvain modularity maximisation and stochastic block

model approaches to community detection and Section 6 concludes.

2 Detecting labour submarkets from a worker-mobility network

This section explains how the labour market can be represented as a worker-mobility network and

describes two alternate ways such a network can be to estimate labour submarkets.

2.1 The labour market as a worker-mobility network

A network or graph, G, is defined by a set of nodes or vertices, V (G) = {1, ..., N}, which are connected

by a set of edges E(G) ⊆ V (G)×V (G).1 In many applications, including the present one, it is desirable

to account for multiple occurences of the same edge. It is therefore convenient to characterise each edge

as a triple (i, j, ω), where ω ∈ N denotes the number of times node i ∈ V (G) is connected to node

j ∈ V (G). The network G can thus be summarised by its adjacency matrix: an N × N matrix, A,

where the (i, j)-th element, aij = ω. Networks with symmetric adjacency matrices are referred to as

‘undirected’. The total number of edges joining to a particular node i is referred to as the degree of node

i, ki. In the case of undirected networks, this is given by

ki =
∑

j∈V (G)

aij (1)

A labour market can be cast in this framework by assuming it consists of N job types, represented by

the network’s nodes.2 Edges in the network are formed by worker transitions between jobs, with the

elements of the adjacency matrix aij , denoting the number of worker transitions from job type i ∈ V (G)

1The terminology and notation used here is conventional in the network analysis literature (for example see Newman,
2010), and is used in both Schmutte (2014) and Nimczik (2018).

2The term ‘job type’ is used here to allow for a relatively general exposition. In theory the researcher is free to define
job types using any combination of observed categorical worker and job attributes, although in practice this freedom is
constrained by sample size and by computing power. Schmutte (2014), defines job types as industry-occupation pairs, while
Nimczik (2018) – equipped with universal employer-employee matched data – defines them as jobs at a particular firm. For
reasons discussed in Section 3.1, the empirical analysis in this paper defines job types as four-digit occupation codes.
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to job type j ∈ V (G). The worker-mobility networks analysed in this paper allow for edges that connect

a job type to itself (referred to in the network literature as ‘self-loops’), to account for worker transitions

that don’t result in changes in job types. The mobility networks are also ‘undirected’, in the sense that

transitions from i ∈ V (G) to job type j ∈ V (G) and from j ∈ V (G) to job type i ∈ V (G) are treated

as analogous.3 The adjacency matrix representation of the worker-mobility network therefore contains

non-zero diagonal elements (due to self-loops), and is symmetric (as the network is undirected).

2.2 Detecting labour submarkets from the network

Once a labour market has been represented as a worker-mobility network, labour submarkets can be

defined as a partition of nodes in the network (i.e. as groups of job types).4. The network science

literature has proposed several ‘community detection’ algorithms that can recover the partition that

most accurately reflects a network’s underlying community structure. Two of the most widely-used

approaches are the modularity maximisation method, which is implemented in Schmutte (2014), and

estimation of a stochastic block model, which is implemented in Nimczik (2018). The remainder of this

section provides further details on these methods and discusses the interpretation of labour submarkets

defined under each approach.

2.2.1 Modularity maximisation

The modularity of a partition quantifies the extent to which nodes in a given set of the partition are

more likely to form edges with nodes in the same set than with nodes in a different set. It is defined as

Q =
1

2m

∑
i,j∈V (G)

[
aij −

kikj
2m

]
I[bi = bj ] (2)

where m = 1
2

∑
i,j∈V (G) aij gives the total number of edges in the network, bi is a categorical variable

that gives the partition membership of node i and I[·] is an indicator function equal to 1 if the expression

within the square brackets is true and equal to 0 otherwise.

3The undirectedness assumption, although somewhat counter-intuitive, is primarily made because community detection
algorithms for the analysis of directed networks are far less developed than those for undirected networks. Section 3.1
provides further discussion of the reasons for these decisions.

4In theory the sets of the partition needn’t be disjoint, but methods of community detection that allow for such ‘overlap-
ping’ community structures are less developed. This paper therefore focuses on the disjoint case, which is also the approach
taken in Schmutte (2014) and Nimczik (2018).
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Equation 2 gives the fraction of network edges that connect nodes in the same set of the partition in

excess of the fraction of such edges one would expect if edges were formed at random. This can be

seen by observing that 2m gives the total number of edge ends in the network and hence ki
2m gives

the probability that any particular edge connects to node i. If edges in the network were formed at

random, the probability that a randomly-chosen edge connected nodes i and j is therefore
kikj
4m2 . By

contrast, the probability that an edge in the observed network connects nodes i and j is
kikj
2m . The term

1
2m

[
aij − kikj

2m

]
therefore gives the fraction of edges between nodes i and j greater than the fraction that

would be expected if edges formed at random. The indicator function in equation 2 means this quantity

is only counted for nodes belonging to the same subset of the partition, which leads to the interpretation

of Q stated above (Newman, 2010).

Modularity can be used to examine the performance of a given network partition and acts as an opti-

misation criterion in several community detection algorithms (Girvan and Newman, 2002). One of the

most widely-used algorithms of this class is the ‘Louvain’ algorithm proposed by Blondel et al. (2008).

The Louvain algorithm can be described as ‘agglomerative’ in the sense that it iteratively combines

communities until no gain in the modularity of the community partition can be achieved. The algorithm

achieves this by first assigning each node in the network to its own community and then iterating on

the following steps.5

1. (a) For each node, i, calculate the change in modularity that occers when removing i from its own

community and placing it in the community of node j, where j is one of the nodes sharing

an edge with i (i.e j ∈ {V (G)|j 6= i, aij > 0}.

(b) Repeat step 1 (a) for all nodes j that share an edge with node i and identify j∗ as the node

that results in the greatest increase in modularity. If no increase is modularity is possible,

leave j∗ undefined.

(c) Place node i in the community of node j∗ if j∗ is defined and leave node i in its own community

otherwise.

(d) Repeat steps 1 (a) to 1 (c) for all nodes i ∈ V (G), until no modularity increase can occur.

2. (a) Create a new network where the number of nodes is the number of communities found in

step 1 and edges are defined from the network analysed in step 1 by aggregating edges across

nodes in the same community.

(b) Stop if the new network is the same as the network analysed in step 1 otherwise repeat from

step 1.

5A more detailled description of the algorithm can be found in Blondel et al. (ibid.).
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These steps mean the Louvain algorithm is capable of identifying the optimal number of partition

elements, which is a notable advantage over the SBM estimation approach discussed in the following

subsection. While the Louvain algorithm can be influenced by the order in which nodes are considered,

it has been shown to be highly effective at recovering underlying partitions from networks with a known

community structure (Yang et al., 2016).

Considerable criticisms have however been raised against the ability of modularity-maximising algorithms

in general to accurately recover community structures that are unknown a priori from network data.

Good et al. (2010), show the modularity function exhibits degeneracies, which cause the globally maximal

modularity partition to often be ‘hidden’ among a number of other high-modularity partitions. These

sub-optimal, high-modularity partitions can differ in non-trivial ways from the global optimum partition

thereby undermining the ability of modularity-maximising algorithms to provide accurate information

on underlying community structure.

The concerns raised by Good et al. (ibid.), question the ability of modularity-maximising techniques to

accurately infer community structure from network data when the true community structure is a ‘modu-

lar’ one in the sense that intra-community edges are far more common than inter-community edges. A fur-

ther criticism of modularity-maximising algorithms is their inability to detect other types of community

structure, such as those of bi-partite or core-periphery networks.6 Implementing modularity-maximising

algorithms therefore requires the assumption that a modular community structure is the most appro-

priate. Peixoto (2020), shows this assumption – which is often implicit – means modularity-maximising

algorithms may recover community structures that appear highly modular from randomly-generated net-

work data. In the absence of a notion of statistical significance, the modularity-maximisation method

is therefore susceptible to overfitting whereby spurious modular communities are misinterpreted as the

true underlying network structure (ibid.).

Despite these concerns, the Louvain algorithm is implemented by Schmutte (2014), and is implemented

in the present analysis to enable comparison with this earlier work and to provide evidence on the extent

to which occupational skill requirements impede labour mobility.

2.2.2 Stochastic block model estimation

A relatively structural approach in network analysis involves specifying a model of network generation

and using observed network data to estimate the model’s parameters. This method can recover com-

6Bi-partite networks feature two disjoint sets of nodes with all edges joining one node from each set. Core-periphery
networks feature a densely-connected ‘core’ and a sparsely-connected ‘periphery’.
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munity structure by including node communities in the network generation model and specifying nodes’

community membership as parameters to be estimated.

The stochastic block model (SBM) is a widely-used model of network generation that features node

communities. Nodes in a SBM are grouped into communities or ‘blocks’, according to their patterns

of connectivity with other nodes in the network. Specifically, the probability that an edge is formed

between any two nodes in the network depends only on the block membership of the two nodes (Holland

et al., 1983).

A detailled formal description of the SBM estimation is provided by Peixoto (2020). The main com-

ponents of a simple SBM are as follows. A network consists of N nodes that are partitonned into B

disjoint blocks. The community structure of the network is summarised by the N × 1 vector b, with

entries bi ∈ {1, ..., B} denoting the block membership of each node i ∈ V (G). Importantly, the SBM

model assumes that two nodes belonging to the same block have the same probability of forming edges

with nodes from any other block. Edges in the network are therefore formed stochastically according

to probabilities P (aij |b,Φ), where Φ is a B × B matrix whose elements φrs r, s ∈ {1, ..., B} denote the

probability an edge forms between any node in block r and any node in block s. The probability of

observing the network summarised by the adjacency matrix A is denoted P (A|b,Φ) and given by the

product of the P (aij |b,Φ) probabilities.

In order to derive an expression for P (A|b,Φ), which can be used to estimate the SBM parameters

b and Φ, it is necessary to specify a process that generates the edges aij . A conventional approach

is to assume the number of edges between any two nodes i, j ∈ {1, ..., N} are independently Poisson

distributed (Newman and Karrer, 2011). Under these assumptions and given particular values for b and

Φ

P (A|b,Φ) =
∏
i<j

e
−φbi,bjφ

aij
bi,bj

aij !
×
∏
i

e−φbi,bi/2(φbi,bi/2)aii/2

(aii/2)!
(3)

The simple SBM described above does not allow for nodes in the network to differ in their propensity

to form connections with other nodes. In other words it does not allow for degree heterogeneity across

nodes, which is a notable shortcoming in many real-world networks. In the case of worker-mobility

networks, for example, nodes representing job types that employ a relatively large proportion of workers

are likely to have a greater degree than nodes representing smaller job types. A modification of the simple

SBM proposed by Karrer and Newman (2011), overcomes this shortcoming by including node-specific

parameters θ which govern the probability of each node forming an edge. In this ‘degree corrected’
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version of the SBM, equation 3 becomes

P (A|b,Φ,θ) =
∏
i<j

e
−θiθjφbi,bj (θiθjφbi,bj )

aij

aij !
×
∏
i

e−
1
2
θ2i φbi,bi (1

2θ
2
i φbi,bi)

aii/2

(aii/2)!
(4)

Equation 4 (or more typically its logarithm) can be maximised to recover the node membership param-

eters bi for a given choice of B.7 Unless the number of communities in the network is known a priori, it

is therefore necessary to choose model selection criteria that can be used to select a value of B that is

in some sense ‘optimal’.

Nimczik (2018) uses the modularity measure defined in Section 2.2.1 as a model selection criterion.

While this decision allows Nimczik to select the SBM estimate that recovers the most assortative labour

submarket structure from his data, it is puzzling for two reasons. First, if the objective is to identify the

most assortative community structure from network data it is unclear what advantages SBM estimation

offers over the modularity maximisation method described in Section 2.2.1.8 Second, using modularity

as an SBM selection criterion undermines one of the main advantages of SBM estimation: the ability to

identify network structures other than assortative communities (Peixoto, 2020). This advantage is due

to the fact that the likelihood function of the SBM is able to capture a wide class of network structures,

such as bipartite and core-periphery networks, including the modular community structure assumed by

modularity-maximising techniques (Newman, 2016).

Rosvall and Bergstrom (2007), propose the ‘minimum description length’ (MDL) principle developed by

Rissanen (1978) as an SBM selection criterion. The intuition of the MDL approach is that it adds a

penalty to the SBM likelihood to reflect the amount of information necessary to describe the network

(Peixoto 2020). The value of B that maximises this modified likelihood strikes a balance between

the model’s ability to fit the network structure observed in the data and the amount of information

necessary to describe the network (both of which are increasing in B). The use of MDL as an SBM

selection criterion was further developed in Peixoto (2013), is shown to perform well relative to alternative

criteria in Funke and Becker (2019), and is the approach used in this paper.

7The details of likelihood derivation are provided by Karrer and Newman (2011) and are not repeated here for compact-
ness.

8Nimczik (2018), motivates the SBM approach using its explicit structural specification of the network generating
process, which he ascribes with a particular economic interpretation.
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2.2.3 Interpretation of labour submarkets delineated using modularity maximisation and

SBM estimation

The explanation in sections 2.2.1 and 2.2.2 highlights considerable differences between modularity-based

and SBM methods of community detection. Aside from a special case analysed by Newman (2016),

these differences make it unlikely that the two methods will return the same node partition from a

given network dataset.9 Given the focus of this paper, it is therefore worth considering how one should

interpret labour submarkets identified via the application of each method to worker-mobility network

data.

The interpretation of labour submarkets identified using a modularity-maximising method such as the

Louvain algorithm is relatively straightforward. Applying such an algorithm to worker-mobility network

data will recover a partition of job types such that transitions between two job types belonging to the

same subset of the partition are relatively likely, whereas transitions between two job types belonging

to different partition subsets are relatively unlikely. Labour submarkets recovered using modularity

maximisation will therefore represent a modular labour market model and may provide information on

the principal barriers to labour mobility.

The interpretation of labour submarkets identified using the SBM method is more nuanced. The direct

application of the explanation in Section 2.2.2 is that job types belonging to a given labour submarket

have the same probability of workers transitioning to job types in a different labour submarket (once

the propensity of each job type to lose or attract workers is accounted for by the ‘degree-correction’

parameters θ). This is arguably somewhat less intuitive than the interpretation of labour submarkets

identified using modularity maximisation, but it is hard to give further intuition ex ante because the

SBM allows for many alternative types of network structure. Once SBM estimation been implemented on

a worker-mobility network and the details of the community structure examined, however, the intuition

of the labour submarkets may become clearer. If the worker-mobility network was found to have a

core-periphery structure, for example, one interpretation would be that the submarkets belonging to the

‘core’ share many worker skill requirements, whereas those belonging to the ‘periphery’ require more

niche skills.10

9Newman (2016), shows that modularity maximisation and SBM estimation will return the same node partition from a
given network dataset if the true underlying network structure is a ‘planted partition model’, in which the probabilities of
forming intra- and inter-community edges are the same for all communities.

10Nimczik (2018), interprets the labour submarkets found in his SBM application as “sets of firms that have a similar
structure of transition costs”. Since transition costs in his model are primitives, however, this interpretation remains
somewhat vague.
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Given these differences in interpretation, the more appropriate method to use for labour submarket

identification will depend on the particular question of interest. Modularity maximisation is of particular

relevance to those with an interest in delineating distinct segments of an aggregate labour market such

as empirical labour economists, for example, for whom such delineation is often an important identifying

assumption. If, however, the aim is to examine the structure of the labour market without imposing

the assumption that it contains sparsely-connected submarkets, then SBM estimation combined with a

model selection criterion other than modularity (such as MDL), would be more appropriate. In many

instances, including the present study, implementing both a approaches should be encouraged in order

to allow the consistency of the two to be assessed.

3 Creating a worker mobility market network for the UK

To create a worker-mobility network as described in Section 2.1, it is necessary to decide the definition

of specific network features before implementing them on longitudinal data. This section discusses how

and why network features are defined in the present study and describes the longitudinal data on which

they are implemented.

3.1 Network definition

The definition of job types, which will form the nodes of the resultant worker-mobility network, is an

important decision. In theory job types can be defined by any combination of categorical job or worker

attributes but in practice any choice faces a trade off between the number of attributes considered and

increased computing requirements due to the size of resultant network. Sample size places an additional

constraint on the number of attributes considered, with networks featuring many job types typically

requiring larger sample sizes in order to avoid large sparse sections in the resultant worker-mobility

network.

The appropriate choice of attributes used to define job types will depend on the particular topic of

interest. While the primary purpose of this paper is to contrast modularity-maximising and SBM

community detection methods in a labour market context, it seems sensible to try and obtain results of

relevance to wider research areas in the process. The COVID-19 pandemic has prompted renewed interest

in understanding processes of worker mobility in order to facilitate reallocation from contracting parts of

the economy to areas of growth and thereby mitigate increases in unemployment. While several different
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types of labour market friction impede worker mobility, including informational and geographic barriers,

recent policy announcements in the UK have focused on reducing skill-based barriers with a “National

retraining scheme”. In light of this, job types in this paper are defined as the 369 four-digit occupations

of the UK’s Standard Occupation Classification (SOC), which allows them to be linked with O*NET

data on occupational skill requirements. This approach results in an ‘occupational-mobility’ network,

which may provide evidence on the types of skills that pose relatively high barriers to reallocation.

It is plausible that barriers to occupational reallocation vary according to whether changes in occupation

are made on a voluntary or involuntary basis.11 In order to account for such variation, this paper

constructs two separate occupational-mobility networks in which edges are formed by either voluntary

or involuntary transitions only and implements the Louvain and SBM community detection algorithms

on each network separately. The benefit of this approach is that differences in the submarket structure of

the two networks will shed light on the ways in which occupational mobility varies according to whether

workers change occupation voluntarily or involuntarily.

The definition of edges in a worker-mobility network requires the researcher to decide whether to ac-

count for the frequency and direction of worker transitions between job types, and whether to allow

for self-loops, which represent the event that a worker transition results in no change in job type. The

occupational-mobility network analysed in this paper accounts for the frequency of worker transitions

and for self-loops, as both aspects are likely to reflect labour market frictions that should be accounted

for when delineating labour submarkets. Section 4.2 also shows both factors are prominant features of

the pattern of worker reallocation observed in the UK. This paper does not, however, account for the

direction of worker transitions. This is primarily because community detection algorithms for directed

networks are considerably less developed than those for undirected networks with the result that there is

less evidence on the relative performance of alternative algorithms. In addition, the interpretation of the

community structure found by such algorithms is somewhat more complex than in non-directed analysis

(Barroso et al. 2020). Despite this, it is worth emphasising that directed worker-mobility networks

could provide novel labour market insights, for example by providing evidence on patterns of career

progression, and would be a worthwhile subject for future research.

These decisions result in two occupational-mobility networks that each feature 369 nodes (the number of

four-digit occupations of the UK’s SOC), and differ according to whether edges represent either voluntary

or involuntary job changes only.

11If, for example, worker skills depreciate during unemployment then one would expect unemployed workers would be
more likely to accept jobs in occupations with lower skill requirements than their previous jobs than workers who move
voluntarily between jobs. This reasoning would suggest that worker aversion to skill-downgrading would pose less of a
barrier to involuntary occupational reallocation than to voluntary occupational reallocation.
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3.2 Data

The UK’s Quarterly Labour Force Survey (QLFS), is a quarterly survey of around 40,000 households

containing 100,000 individuals. It is conducted using a rotational sampling design in which participating

households remain in the sample for five consecutive quarters during which time they are interviewed at

three-monthly intervals. The Longitudinal LFS is constructed by linking the responses of QLFS sample

members over consecutive quarters and is available in both two- and five-quarter version. This paper

uses the five-quarter Longitudinal LFS (henceforth referred to as the LLFS for compactness).

The LLFS contains information on respondents’ economic status and detailled occupation and is large

compared to other sources of UK panel data. While these features make it a relatively good source of

data to construct the occupational mobility network described in Section 3.1, it also suffers from two

main drawbacks. First, the QLFS uses an address-based sampling design. This means that, although

the QLFS sample is nationally representative, the LLFS sample may be unrepresentative owing to non-

random attrition. Because moving house is likely to be correlated with changing job, attrition is likely to

be particularly problematic for analysis, such as the present one, which focuses on job changers.12 Second,

the LLFS does not contain information on unemployed respondents’ last occupation of employment. This

means unemployed respondents’ previous occupation has to be inferred from their responses in previous

waves (using the method described below), with the result that the maximum spell of unemployment

that can feature in the sample of involuntary transitions is twelve months.13

An alternative source of UK panel data is the UKHLS, which consists of around 40,000 adults who are

interviewed on an annual basis. The UKHLS may be less affected by attrition due to job changes than

the LLFS, as respondents remain in the sample even if they change residence. It does not, however,

record the occupation of job spells that occur in between interviews and is therefore more susceptible

to mis-measurement of occupation transitions than the LLFS because of the far lower frequency of

interviews.

This paper analyses occupational mobility networks constructed using LLFS, despite the shortcomings of

this data noted above, as it is more likely to accurately capture occupation transitions than the UKHLS.

The LLFS data used cover the period from the first quarter of 2011 until the third quarter of 2019,

12The LLFS contains longitudinal weights that are intended to adjust for non-random attrition. Table 9 in appendix A
shows that although these weights succeed in making workers in the LLFS sample similar to those in the QLFS sample
along a range of demographic characteristics, differences between the QLFS and LLFS samples remain significant.

13In principle, it is possible to overcome this problem as the QLFS contains a variable recording the occupation of previous
employment for currently unemployed respondents, which could be merged with the LLFS based on an individual identifier.
However, this is not possible in practice without access to a secure version of the QLFS as the open-access version doesn’t
contain the variables necessary to derive the individual identifiers used in the LLFS.
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which was the latest data available at the time of writing. Data prior to 2011 is not used as it records

occupation under a different classification, making it impossible to analyse occupation transitions on a

consistent basis over a longer period.

Information on the skill requirements of different occupations are taken from the “worker skills” O*NET

data (version 21.1), which contains ratings from a panel of occupational analysts that reflect the level

at which various skills are required to adequately fulfill the job description of a particular occupation

(Tsacoumis and Willison, 2010).14 The O*NET data was mapped from the O*NET occupation classifica-

tion to the UK’s SOC using the International Standard Classification of Occupations as an intermediate

link. Skill requirement information is not observed for three of the 369 four-digit occupations in the UK’s

SOC (elected officers and representatives, officers in the armed forces and non-commissioned officers and

other ranks in the armed forces), as the O*NET data initiative does not collect information for these

occupations.

3.3 Sample selection and variable definition

To construct the occupational mobility networks described in Section 3.1, the LLFS was restricted to a

working-age sample consisting of individuals aged between 16 and 59 at all five interviews. Job transi-

tions among this sample were identified based on the length of time workers reported being continuously

employed at their current employer, or continuously self-employed in the case of self-employed peo-

ple.15 All workers who reported being continuously employed at their current employer or continuously

self-employed for three months or less were included in the job transitions subsample. To account for

interviews occuring at intervals slightly longer than three months, workers who reported being continu-

ously employed at their current employer or self-employed for between three and six months were also

included if they were not in work at the previous interview.

Edges of the occupational-mobility networks are defined by the ‘source’ and ‘destination’ occupations of

workers in the job transitions subsample. The destination occupation of workers in the job transitions

14The O*NET data also includes ratings of how important the skills are to each occupation. The level and importance
ratings are highly correlated, which suggests results are likely to be robust to the choice of whether to use the level or
importance ratings.

15This approach means that occupation changes that occur without any change in employer, for example those due to
internal promotions, are excluded from the present analysis. This decision was taken because within-firm labour reallocation
is known to differ considerably from worker reallocation that occurs across firms (Kramarz et al., in preparation), and
because occupation changes that aren’t accompanied with employer changes appeared to be relatively noisy. For the
avoidance of ambiguity, both employed and self-employed people in any given occupation are classified as being in the same
job type.
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subsample is taken as the occupation at the time of interview, while the source occupation is taken

as the occupation in the interview when they were last observed in work. Two separate occupational-

mobility matrices were constructed by defining edges using either voluntary or involuntary transitions

only. Involuntary transitions were identified as those made by workers in the job transitions subsample

who were not in work at the previous interview and those made by workers who were in work at the

previous interview but reported being made redundant in the last three months. All other transitions

made by workers in the job transitions subsample were classed as voluntary.

Summary measures of occupations’ skill requirements were constructed by taking the first two principal

components of the 35 O*NET skill ratings, which respectively explain 48% and 30% of the overall

variance.16 Table 10 in appendix A shows the weighting that the two principal components give to each

of the 35 skill ratings. The first principal component gives positive weight to all skill ratings except eight,

such as ‘equipment maintenance’ and ‘operation and control’, which are related to manual work. The

second principal component gives large positive weight to these eight ‘manual’ skills, smaller positive

weight to certain manegerial skills, such as ‘management of material resources’ and ‘operations analysis’,

and negative weight to certain social skills, such as ‘service orientation’ and ‘social perceptiveness’. In

light of these weightings the first principal component is interpreted as a measure of general non-manual

skills, while the second is interpreted as a measure of general manual skills. To facilitate comparison

between the manual and non-manual variables, both principal components were rescaled so that they

are non-negative and have standard deviation equal to 1 in the working-age sample of the LLFS.

4 Patterns of job mobility in the UK

This section provides descriptive information on patterns of job mobility observed in the LLFS data.

Section 4.1 presents results on various transition-level characteristics before Section 4.2 describes the

occupational-mobility networks formed by these transitions.

4.1 Describing job mobility

Table 1 shows demographic and job characteristics of workers making job transitions, distiguishing be-

tween the voluntary status of transitions. The table also provides information for all working-age workers

for comparison. The table shows that 6636 job transitions were observed in the LLFS data between 2011

16Only the first two principal components are considered as the proportion of variance explained drops to 6% for the
third principal component.
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and 2019, of which 72% were voluntary. Workers who make transitions tend to be younger than the

workforce as a whole, with an average age of 33 (34 among workers making involuntary transitions)

compared to 39, which is consistent with research that shows job-to-job moves occur more regularly

during the early part of working life (Bagger et al., 2014; Menzio et al., 2016). Transitioning workers

also differ in terms of gender and educational composition and the presence and age of children, although

these differences are not large. Differences in job characteristics between all and transitioning workers

are more pronounced. Only 6% of the workforce as a whole worked in a temporary job, whereas 19%

(31%) of workers making voluntary (involuntary) transitions moved into temporary jobs. The mean

hourly wage of jobs taken by workers making voluntary (involuntary) transitions is 10% (17%) lower

than among the workforce as a whole, which will in part be due to transitioning workers being younger

and therefore less experienced.

Table 1: Sample characteristics

(1) All workers Workers making job transitions
aged 16-59 (2) Voluntary (3) Involuntary

Female (%) 47 49 47
Mean age 39 33 34
Has child aged 0-4 (%) 22 23 21
Has child aged 5-16 (%) 35 32 33
Qualifications: above A-levels (%) 46 45 41
Qualifications: A-levels (%) 22 25 25
Qualifications: GCSEs A*-C (%) 15 16 19
Qualifications: GCSEs below C; other; none (%) 17 14 15
Self-employed (%) 12 8 11
Fulltime (%) 73 74 63
Temporary job (%) 6 19 31
Mean weekly earnings (£) 534 469 415
Mean hourly wage (£) 14.93 13.50 12.36

N 363639 4814 1872
N (earnings and wages) 104770 855 475

Notes: table shows characteristics of the working-age and voluntary and involuntary transition subsamples of the LLFS
described in Section 3.3. Qualifications refer to respondents’ highest educational qualification. Job characteristics for
workers in the transition subsamples relate to the jobs workers move into following a transition. Earnings and wages are
windsorized at the top and bottom 2%, are deflated using CPIH and expressed in 2020Q1 prices. The sample size for
the pay variables is smaller as the LFS records pay information only for employees at the first and fifth interview.

Table 2 shows the percentage of voluntary and involuntary transitions due to different labour market

flows. A large majority (84%) of voluntary transitions are job-to-job changes made by employees, with
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transitions from self-employment to employment and vice versa each accounting for 8% of voluntary

transitions. Most involuntary transitions represent previously unemployed individuals moving into work

either as employees (70% of all involuntary transitions), or as a self-employed worker (8%). The remaining

involuntary transitions are due to people who left their previous job because they were made redundant

but who found a new job relatively quickly and are therefore not observed in an intervening spell of

unemployment.

Table 2: Transition types

(1) Voluntary (2) Involuntary
transitions (%) transitions (%)

E-E 84 16
SE-E 8 0
U-E 0 70
E-SE 8 4
SE-SE 1 0
U-SE 0 8

N 4814 1872

Notes: table shows transition types of voluntary and involuntary transition subsamples of the LLFS described in Section
3.3. ‘E’ denotes employment, ‘SE’ denotes self-employment, ‘U’ denotes unemployment and includes non-participation.
The first letter of each row denotes the ‘source’ state of transitions, whereas the second denotes the ‘destination’ state.
Columns do not sum to 100 across rows because of rounding.

Table 3 summarises how occupational skill requirements change following voluntary and involuntary

transitions. Columns (1) and (2) in the first two rows of the table show voluntary transitions lead to

increases in manual and non-manual skill requirements on average, whereas involuntary transitions lead

to skill downgrading.17 The mean change in non-manual skills is slightly larger than the mean change

in manual skills for both voluntary and involuntary transitions, suggesting that differences manual skills

may be a greater impediment to occupational reallocation than non-manual skills. The bottom panel of

the table shows these patterns become more pronounced when one excludes transitions that involve no

change in occupation (and hence zero change in occupational skill requirement), which account for 40%

and 36% of voluntary and involuntary transitions respectively.

17As described in Section 3.3, both skill variables are rescaled to have standard deviation equal to 1 in the working-age
sample of the LLFS, which helps interpret the magnitude of the changes shown in columns (1) and (2) of Table 3.
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Table 3: Change in occupation skill requirements

Mean change in skills Fraction with skills decrease (%)

(1) Non-manual (2) Manual (3) Non-manual (4) Manual (5) N

All transitions

Voluntary 0.05 0.03 28 29 4806
Involuntary -0.08 -0.03 34 32 1866

Occupation change transitions

Voluntary 0.08 0.05 47 48 2901
Involuntary -0.13 -0.04 54 50 1191

Notes: table shows changes in occupational skill requirements observed among the voluntary and involuntary transition
subsamples of the LLFS described in Section 3.3. Non-manual and manual skill requirements are measured using O*NET
data described in Section 3.2 following the method described in Section 3.3. Sample sizes are smaller than those shown
in tables 1 and 2, as skill information is not observed for transitions involving one of the three four-digit occupations not
included in the O*NET data.

4.2 The UK’s observed occupational-mobility networks

Section 4.1 presented results on job mobility from the perspective of job transitions. This section

now describes the characteristics of the occupational-mobility networks formed by these transitions.

As explained in sections 2.1 and 3.1, this paper analyses two networks which each feature 369 nodes

representing one of the four-digit occupations of the UK’s SOC. The edges in the networks represent job

transitions and the degree of each node represents the total number of edges connecting to that node (i.e.

the total number of worker transitions in and out of each occuapation). The networks differ according

to whether their edges represent either voluntary or involuntary job transitions.

Table 4 provides moments of the degree distribution among nodes in the voluntary and involuntary

occupational-mobility networks. Both distributions feature a long right tail, indicating that a small

number of occupations account for a large fraction of transitions. A principal reason for this is that a

small number of occupations account for relatively large shares of total employment. If, for example,

the probability of making a job transition was equal across occupations, occupations accounting for

larger employment shares would have a higher node degree. Although uniform transition probabilities

is an unlikely assumption, figure 1 nonetheless shows a strong positive relationship between an occu-

pations’ employment share and the degree of the node that represents voluntary transitions from that

occupation.18

18Figure 5 in appendix A shows a very similar positive relationship exists between an occupations’ employment share
and the degree of the node that represents involuntary transitions from that occupation.
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Table 4: Degree distribution

(1) Voluntary (2) Involuntary
transitions transitions

Mean 20.93 8.32
Standard deviation 35.47 14.80
10th Percentile 1 0
25th Percentile 4 1
50th Percentile 10 4
75th Percentile 22 10
90th Percentile 49 20
99th Percentile 199 67

N (non-zero degree) 354 320
N (zero degree) 15 49

Notes: table shows moments of the degree distribution for the occupational-mobility network described in Section 3.1
constructed using the voluntary and involuntary transition subsamples of the LLFS described in Section 3.3. Columns
(1) and (2) provide information for nodes representing voluntary and involuntary transtions respectively.
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Figure 1: Occupation voluntary transition degree and employment share
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Notes: figure shows the employment share and voluntary transition degree for the 369 four-digit occupations of the UK’s
SOC. Occupations in the top 1% of the voluntary degree distribution are labelled. Employment share is defined among
workers aged 16-59 and calculated using the working-age sample of the LLFS. Degree is calculated using the voluntary
transition subsample of the LLFS. Both samples are described in Section 3.3.

Table 5 confirms the positive association between occupations’ employment share and node degree. The

table shows coefficient estimates from OLS regressions where the outcome variable is an occupations’

node degree (distinguishing between nodes representing either voluntary or involuntary transitions),

and the explanatory variables are other occupation characteristics. A 1% increase in an occupations’

employment share is associated with an increase in voluntary (involuntary) node degree of 87.7 (34.81).

The other occupational characteristics considered have a far smaller impact on node degree than the

employment share, but the sign of their impacts is intutitive: node degree tends to be increasing in the

fraction of jobs in the associated occupation that are temporary and decreasing the fraction that are

full-time. The negative coefficient on occupational average wage indicates that lower-wage occupations

have higher node degree (i.e. they tend to account for a higher proportion of transitions). Although

figure 1 suggests these relationships may be driven by the small number of occupations with very large

degree, columns (3) and (4) show results are broadly similar excluding occupations in the top percentile

of the degree distribution.
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Table 5: Association between occupation degree and occupation characteristics

All occupations Non-outlier occupations

(1) Voluntary (2) Involuntary (3) Voluntary (4) Involuntary
degree degree degree degree

Employment share (%) 87.73 (0.00) 34.81 (0.00) 75.31 (0.00) 26.21 (0.00)
Temporary jobs (%) 0.28 (0.01) 0.17 (0.00) 0.29 (0.00) 0.18 (0.00)
Fulltime jobs (%) -0.08 (0.03) -0.01 (0.50) -0.07 (0.05) -0.01 (0.45)
Log mean hourly wage -6.84 (0.00) -3.39 (0.00) -4.71 (0.00) -2.62 (0.00)
Constant 20.17 (0.00) 7.89 (0.01) 16.14 (0.00) 7.65 (0.00)

R-squared 0.91 0.82 0.86 0.72
N 369 369 365 364

Notes: table shows coefficient estimates from OLS regressions of occupations’ voluntary (columns (1) and (3)), and
involuntary (columns (2) and (4)) degree on other occupation-level characterstics. P-values are given in parentheses.
Hourly wages are windsorized at the top and bottom 2%, and are deflated using CPIH. Columns (1) and (2) were
calculated using all four-digit occupations of the UK’s SOC, while columns (3) and (4) exclude occupations in the top
1% of the voluntary and involuntary degree distributions. Results were calculated using the voluntary and involuntary
transition subsamples of the LLFS described in Section 3.3.

These results show the UK’s observed occupational-mobility network features large variability in the

connectivity of different nodes, which should be accounted for when delineating labour submarkets. As

explained in sections 2.2.1 and 2.2.2, both the Louvain modularity maximisation and SBM community

detection algorithms implemented in the present study are able to account for such degree variability.

The following section now examines the labour submarkets delineated by the two algorithms.

5 Labour submarkets in the UK’s occupational-mobility network

Both the Louvain and SBM community detection algorithms assign nodes that are unconnected to

any other nodes in the network to their own submarket. If applied to networks featuring many such

unconnected nodes, both algorithms will therefore result in a large number of communities containing a

single network node. In order to avoid such an outcome it is conventional to apply community detection

algorithms to the largest ‘connected component’ of a network, which is the largest subset of nodes such

that all pairs of nodes are connected by a path formed by one or more network edges. Following this

convention, the results presented here were produced by analysing the largest connected component

of the two occupational-mobility networks. This accounts for 94% of nodes and 100% of edges in

the voluntary occupational-mobility network and 81% of nodes and 99% of edges in the involuntary
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occupational-mobility network.

Table 6 provides summary statistics on the labour submarkets delineated by applying the Louvain

and SBM algorithms to the largest connected component of the two occupational-mobility network

described above.19 For comparison, the table also provides the equivalent statistics for labour submarkets

delineated according to 2-digit SOC codes, as this level of the SOC classification results in a similar

number of submarkets. For both the voluntary and involuntary occupational-mobility networks, the

partition created by the Louvain community detection algorithm exhibits a slightly higher modularity

than the other two partitions shown in the table. Given the Louvain algorithm is intended to maximise

modularity, the higher modularity of the Louvain-delineated partitions is to be expected and indicate

that the Louvain-delineated submarkets are more self-contained than those delineated by the other

approaches. Another consistent result across the voluntary and involuntary mobility network partitions

is that the SBM algorithm partition contains fewer submarkets than the other approaches. Both the

Louvain and SBM partitions exhibit greater variation in submarket size than the SOC classification,

delineating some submarkets that contain a small number of nodes and others that contain very large

numbers.

19The Louvain algorithm was implemented using the greedy modularity communities function of the NetworkX python
library (Hagberg et al. 2008), and the SBM algorithm was implemented using the minimize blockmodel dl function of the
graph-tool python library (Peixoto, 2014).
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Table 6: Comparison of labour submarket partitions

(a) Voluntary occupational-mobility network

(1) 2-digit SOC (2) Louvain (3) SBM

Partition modularity 0.45 0.49 0.42
N submarkets 25 28 15

Submarket size

Mean 15 13 23
Smallest 5 1 2
25th Percentile 10 5 5
50th Percentile 14 9 11
75th Percentile 21 11 23
Largest 28 54 133

(b) Involuntary occupational-mobility network

(1) 2-digit SOC (2) Louvain (3) SBM

Partition modularity 0.41 0.55 0.41
N submarkets 25 19 6

Submarket size

Mean 15 18 53
Smallest 5 2 4
25th Percentile 10 9 9
50th Percentile 14 15 44
75th Percentile 21 22 95
Largest 28 70 137

Notes: table shows summary statistics of labour submarket partitions calculated using the occupational-mobility networks
described in Section 3. Column (2) provides statistics for the partition delineated using the degree-corrected Louvain
modularity-maximisation algorithm described in Section 2.2.1. Column (3) provides statistics for the partition delineated
by the degree corrected SBM algorithm using minimum description length as a model selection criteria, as described in
Section 2.2.2.

The results in table 6 show the alternative labour submarket partitions differ in terms of how modular

they are, in the sense of the fraction of transitions that occur within submarkets. An alternative way of

illustrating this is provided by figures 2 and 3, which visualise the adjacency matrix of the voluntary and

involuntary occupational-mobility network respectively when matrix entries are ordered according to the

various partitions. The rows and columns in each panel represent a particular node of the occupational-

mobility network whereas the markers represent the network edges formed by worker transitions between

nodes. The greater modularity of the Louvain partitions is shown by the diagonal block structure in

panel (b) of each figure.
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Figure 2: Voluntary occupational-mobility network adjacency matrix

(a) SOC code (b) Louvain (c) SBM

Notes: figures show the adjacency matrix of the occupational-mobility network described in Section 3. Nodes are ordered
according to SOC code in panel (a), according to Louvain-delineated submarket in panel (b), and according to SBM-
delineated submarket in panel (c). White spaces represent the absence of any edges between two nodes.

Figure 3: Involuntary occupational-mobility network adjacency matrix

(a) SOC code (b) Louvain (c) SBM

Notes: figures show the adjacency matrix of the occupational-mobility network described in Section 3. Nodes are ordered
according to SOC code in panel (a), according to Louvain-delineated submarket in panel (b), and according to SBM-
delineated submarket in panel (c). White spaces represent the absence of any edges between two nodes.

It is clear that modularity-maximisation and SBM estimation result in different labour submarket par-

titions of the two occupational-mobility networks. For example only 24% (28%) of occupations that are

grouped together in the Louvain partition of the voluntary (involuntary) occupational-mobility network

are also grouped together in the SBM partition. Such differences are to be expected given the discussion

in Section 2.2.3, which highlighted the interpretation of labour submarkets differs according to which

method was used to delineate them, and means that the Louvain and SBM partitions can offer insight

into different aspects of labour mobility.
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Focussing first on the Louvain partitions, a relatively high modularity means they delineates labour

submarkets that are relatively self-contained. The characteristics of occupations within each submarket

may therefore provide evidence on whether certain frictions impede occupational reallocation. To ex-

amine evidence on labour market frictions due to differences in occupation skill requirements, table 7

shows the mean and standard deviation of non-manual and manual skills for all nodes in the voluntary

occupational-mobility network and by the labour submarkets of the Louvain partition. The values for

the submarkets are expressed relative to the overall values in order to highlight whether each submarket

contains relatively low- or high-skill occupations and whether they contain occupations that are more

homogenous in terms of skills. This shows, for example, that the largest submarket accounts for 16% of

all nodes in the occupational-mobility network and contains occupations that tend to have above-average

non-manual skill requirements and below-average manual skill requirements.

The majority of submarkets exhibit lower standard deviation of both manual and non-manual skill re-

quirements than among all nodes in the network, which provides evidence supporting the (admittedly

intuitive), notion that different skill requirements impede occupational reallocation. The average stan-

dard deviation across submarkets is slightly lower for non-manual skill requirements than for manual

skill requirements (at 70% of the overall value relative to 75%), which contradicts the results shown

in Table 3 by suggesting that differences in non-manual skill requirements are a greater impediment to

voluntary occupational mobility than differences in manual skill requirements. Results from the invol-

untary occupational-mobility network, however, suggest the opposite is true for involuntary changes in

occupation. This can be seen in Table 8, which shows the same information as 7 for the submarkets de-

lineated using the involuntary occupational-mobility matrix. Here the average standard deviation across

submarkets is slightly higher for non-manual skill requirements than for manual skill requirements (at

88% of the overall value relative to 79%), which suggests workers who change occupation involuntarily

are likely to experience greater changes in non-manual occupational skill requirements than manual skill

requirements.
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Table 7: Skill characteristics of submarkets in Louvain partition of voluntary occupational-mobility
network

Non-manual skills Manual skills

(1) N Nodes (2) Mean (3) Std. Dev. (4) Mean (5) Std. Dev.

All 344 2.51 1.02 2.24 1.06

Values for submarkets expressed relative to ‘All’

Submarket 1 0.16 1.30 0.75 0.88 0.75
Submarket 2 0.15 0.91 0.95 1.47 0.92
Submarket 3 0.12 0.54 0.64 1.14 0.89
Submarket 4 0.07 0.89 0.87 0.60 0.60
Submarket 5 0.06 1.09 0.89 0.86 0.96
Submarket 6 0.03 0.86 1.41 1.00 0.90
Submarket 7 0.03 1.24 0.71 0.72 0.41
Submarket 8 0.03 0.96 0.99 0.89 1.28
Submarket 9 0.03 1.19 0.69 1.13 0.82
Submarket 10 0.03 1.20 0.78 1.02 0.68
Submarket 11 0.03 0.90 0.72 1.03 0.95
Submarket 12 0.03 0.83 0.80 0.85 1.06
Submarket 13 0.03 1.39 0.46 0.97 1.01
Submarket 14 0.03 0.72 0.48 1.23 1.15
Submarket 15 0.03 0.89 0.74 0.68 0.58
Submarket 16 0.02 0.88 0.74 0.72 0.92
Submarket 17 0.02 1.25 0.52 0.80 0.70
Submarket 18 0.02 1.02 0.85 0.78 0.47
Submarket 19 0.02 1.24 0.74 0.63 0.47
Submarket 20 0.01 0.83 0.66 1.47 1.20
Submarket 21 0.01 0.98 0.94 0.50 0.45
Submarket 22 0.01 1.68 0.11 1.38 0.14
Submarket 23 0.01 1.38 0.49 0.66 0.08
Submarket 24 0.01 1.39 0.07 1.06 0.01
Submarket 25 0.01 1.22 0.42 1.01 0.96
Submarket 26 0.01 1.16 0.87 1.32 1.77
Submarket 27 0.01 1.04 0.56 0.95 0.22
Submarket 28 0.00 1.50 . 1.83 .

Notes: see note to table 8.
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Table 8: Skill characteristics of submarkets in Louvain partition of involuntary occupational-mobility
network

Non-manual skills Manual skills

(1) N Nodes (2) Mean (3) Std. Dev. (4) Mean (5) Std. Dev.

All 297 2.58 1.02 2.14 1.04

Values for submarkets expressed relative to ‘All’

Submarket 1 0.13 0.80 1.11 1.02 0.96
Submarket 2 0.11 1.20 0.74 0.72 0.52
Submarket 3 0.09 0.78 0.77 1.11 1.20
Submarket 4 0.08 0.77 1.06 1.01 0.78
Submarket 5 0.06 1.20 0.80 0.98 0.95
Submarket 6 0.06 0.85 1.12 0.91 0.89
Submarket 7 0.06 1.27 0.60 1.47 0.81
Submarket 8 0.05 0.99 0.73 1.48 1.39
Submarket 9 0.05 1.08 0.68 0.88 0.69
Submarket 10 0.05 1.22 0.51 0.81 0.57
Submarket 11 0.04 0.94 1.33 0.98 0.84
Submarket 12 0.04 1.16 0.89 0.93 0.60
Submarket 13 0.03 1.08 1.12 1.09 1.15
Submarket 14 0.03 0.99 1.02 0.67 0.58
Submarket 15 0.03 1.07 0.73 0.71 0.86
Submarket 16 0.02 1.13 0.91 0.45 0.34
Submarket 17 0.02 0.87 1.20 1.55 0.54
Submarket 18 0.02 1.07 1.15 1.28 1.15
Submarket 19 0.01 0.90 0.31 0.63 0.13

Notes for tables 7 and 8: tables show moments of occupation skill requirements measured using O*NET data following
the method described in Section 3.2. Results in the first row relate to the occupations covered by the O*NET data
that are included in the largest connected component of the voluntary (Table 7) or involuntary (Table 8) occupational-
mobility network described in Section 3. Values in subsequent rows are expressed relative to those in the first relate to
occupations in each submarket of the partition delineated using the degree-corrected Louvain modularity-maximisation
algorithm described in Section 2.2.1.

In contrast to the Louvain algorithm, which groups nodes into submarkets in order to maximise the share

of transitions that occur within a given submarket, the SBM algorithm partitions nodes into submarkets

so that nodes in a given submarket exhibit a similar pattern of mobility between the various submarkets.

This means the defining characteristics of the SBM-delineated submarkets are the probabilities that any

node in a given submarket forms an edge with any node in another submarket. These probabilities

are illustrated in Figure 4. Each row of the graph in panel (a) of the figure represents one of the 15

submarkets delineated by applying the SBM algorithm to the voluntary occupational-mobility network
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and the blocks in the columns are shaded according to the probability that an edge from the row

submarket joins with the column submarket (i.e. the values that underpin the shading sum to 1 across

rows). Panel (b) shows the same information for the six SBM-delineated submarkets of the involuntary

occupational-mobility network.

Figure 4 reveals patterns of inter-submarket mobility that are somewhat hard to interpret. The first two

submarkets of both the voluntary and involuntary network partitions are relatively self-contained (shown

by the darker diagonal elements in the first two rows), but inter-submarket transitions occur relatively

frequently for the other submarkets (shown by the high transition probabilities for many off-diagonal

elements). This suggests the modular labour submarket structure, which is implicitly assumed when

using the Louvain-delineated partition, is not observed when the SBM approach to labour submarket

delineation is implemented.
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Figure 4: SBM partition transition matrices

(a) Voluntary occupational-mobility network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) Involuntary occupational-mobility network
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Notes: panel a (b) of the figure shows transition probabilities between the 15 (6) submarkets of the SBM partition
calculated using the voluntary (involuntary) occupational-mobility network described in Section 3. Submarkets were
delineated by the degree corrected SBM algorithm using minimum description length as a model selection criteria, as
described in Section 2.2.2. Numbers on rows and columns refer to the source and destination submarket respectively.
Transition probabilities are defined so that they sum to 100% across columns for each row.
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6 Discussion and conclusions

This paper has provided a theoretical explanation of how community detection algorithms can be used to

delineate labour submarkets and presented empirical results obtained using two alternative approaches.

Although the results from the empirical implementation are inconclusive, the exercise has revealed a

number of issues that are important for future research on the topic.

The main conclusion from the theoretical discussion of Section 2.2.3, is that labour submarkets will have

very different interpretations depending on whether they are delineated by a modularity-maximising or

stochastic block model community detection method. The interpretation of submarkets delineated using

modularity maximisation is relatively conventional, with job types being grouped into submarkets so

that worker transitions between job types in the same submarket are relatively common whereas inter-

submarket transitions are relatively rare. By contrast, submarkets delineated via SBM estimation are

characterised by common patterns of inter-submarket mobility in the sense that inter-submarket transi-

tion probabilities are the same for job types in the same submarket. These differences in interpretation

mean the choice of whether to delineate labour submarkets using either modularity maximisation or

SBM estimation should be motivated by particular question of interest.20

A number of conclusions can also be drawn from the empirical results. First, there is a large amount

of variation in the number of transitions that involve a particular occupation. This means that worker-

mobility networks in which nodes represent occupations, is characterised by a highly skewed degree

distribution. It is therefore important to select a community detection algorithm that is capable of

accounting for this type of degree heterogeneity.

Second, analysis of worker transitions and of the labour submarkets delineated using the Louvain

modularity-maximisation algorithm provides some preliminary evidence that differences in manual skill

requirements may provide larger impediments to involuntary occupational mobility than differences in

non-manual skill requirements (although evidence regarding voluntary occupational mobility is more

inconclusive). This result has potential high policy relevance and would be a worthwhile subject for

future research. If corroborated with further analysis it would, for example, suggest the success of job

creation programs that aim to help the unemployed find work will be more contingent on the available

pool of worker skills if such programs aim to create jobs that rely on manual skills (such as those in

20For example, implementing a modularity-maximisation algorithm on a worker-mobility network where nodes represent
low-level geographies and edges represent commuting flows could be used to define disjoint geographical labour markets in
a more empirical method than the ad-hoc threshold criteria commonly used by statistical agencies to define local labour
markets such as ‘commuting zones’ in the US or ‘travel to work areas’ in the UK.

29



construction or manufacturing sectors), rather than jobs that rely on non-manual skills.
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Appendix A: supplementary results

Table 9: Descriptive statistics

(1) QLFS (2) LLFS (3) Diff (p-value)

Female (%) 47 47 0 (0.86)
Age 39 39 -0 (0.00)
Has child aged 0-4 (%) 17 22 5 (0.00)
Has child aged 5-16 (%) 30 35 5 (0.00)
Qualifications: above A-levels (%) 43 46 3 (0.00)
Qualifications: A-levels (%) 21 22 1 (0.00)
Qualifications: GCSEs A*-C (%) 16 15 -0 (0.13)
Qualifications: GCSEs below C; other; none (%) 21 17 -3 (0.00)
Self-employed (%) 13 12 -1 (0.00)
Fulltime (%) 76 73 -2 (0.00)
Temporary job (%) 5 6 0 (0.00)
Weekly earnings (£) 531 546 15 (0.00)
Hourly wage (£) 14.74 15.32 0.59 (0.00)

N 1429316 363235
N (earnings and wages) 334636 105320

Notes: table shows characteristics of the workers aged between 16 and 59 in the QLFS and LLFS described in Section
3.2. Qualifications refer to respondents’ highest educational qualification. Earnings and wages are windsorized at the
top and bottom 2%, are deflated using CPIH and expressed in 2020Q1 prices. The sample size for the pay variables is
smaller as the LFS records pay information only for employees at the first and fifth interview.

Table 10: O*NET skill component weightings and explained variance

Begin of Table

(1) Component 1 (2) Component 2

Reading Comprehension 0.21 0.02

Active Listening 0.17 -0.03

Writing 0.22 -0.01

Speaking 0.18 -0.02

Mathematics 0.17 0.13

Science 0.20 0.19

Critical Thinking 0.17 0.02

Active Learning 0.20 0.05

Learning Strategies 0.20 0.04
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Continuation of Table 10

(1) Component 1 (2) Component 2

Monitoring 0.16 0.05

Social Perceptiveness 0.17 -0.04

Coordination 0.12 0.04

Persuasion 0.18 -0.02

Negotiation 0.18 -0.02

Instructing 0.17 0.06

Service Orientation 0.13 -0.07

Complex Problem Solving 0.17 0.07

Operations Analysis 0.24 0.14

Technology Design 0.09 0.14

Equipment Selection -0.10 0.31

Installation -0.04 0.15

Programming 0.12 0.08

Operation Monitoring -0.07 0.30

Operation and Control -0.16 0.34

Equipment Maintenance -0.16 0.35

Troubleshooting -0.10 0.37

Repairing -0.14 0.36

Quality Control Analysis -0.03 0.32

Judgment and Decision Making 0.18 0.04

Systems Analysis 0.22 0.09

Systems Evaluation 0.25 0.10

Time Management 0.14 0.04

Management of Financial Resources 0.23 0.11

Management of Material Resources 0.18 0.14

Management of Personnel Resources 0.18 0.08

Explained variance 0.48 0.30

End of Table

Notes to table 10: table shows variable weightings for the first two principal components of 35 O*NET skill ratings. The

principal component analysis was conducted at the occupation level, using the 366 four-digit occupations of the UK’s

SOC for which skill requirements are measured in the O*NET data.
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Figure 5: Occupation involuntary transition degree and employment share
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Notes: figure shows the employment share and involuntary transition degree for the 369 four-digit occupations of the
UK’s SOC. Occupations in the top 1% of the involuntary degree distribution are labelled. Employment share is defined
among workers aged 16-59 and calculated using the working-age sample of the LLFS. Degree is calculated using the
involuntary transition subsample of the LLFS. Both samples are described in Section 3.3.
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