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Abstract

This paper seeks to contribute to the understanding of diffusion patterns and relatedness within
ICT as a technology system in the EU28 region. Considering ICT as a technology system, first,
I break down ICT into a set of distinct technologies employing OECD and WIPO classifications.
Then, using text analysis and the Algorithmic Links with Probabilities method, I construct industry–
technology links to connect industries with ICT and track ICT’s diffusion over the period 1977-2020.
The analysis highlights the heterogeneity of the technologies that constitute the ICT cluster. As
not all ICTs are pervasive and not all ICTs are key technologies, this leads to differences in industry
reliance on them. The results indicate that the ICT cluster shows signs of a “phase transition”,
passing the phase of building bulk elements of the infrastructure and around the 2000s entering the
phase of working on the functionality for business applications deployment and users’ convenience.
This transition is marked by the surging relevance of ICT technologies such as mobile communication,
information analysis, security, and human interface. Studying the ICT as a cluster allows putting
each ICT technology in context to compare them in relative terms; this is especially important for
the discussion of novel and fast–growing technologies such as Artificial Intelligence (AI). Concerning
the structure of industry reliance on the ICT cluster, ICT’s penetration is characterized by increasing
scope but unevenly distributed scale; depending on the industry and the distinct ICT technology
the intensity of their connections varies significantly. Remarkably, looking closer at AI technologies,
in line with the current literature, a wide array of “shallow” connections with industries is revealed.
Finally, I calculate relatedness metrics to estimate proximity among ICT technologies. The analysis
reveals differences in the underlying knowledge base among the overwhelming majority of the ICT
technologies but a similar structure of their application base.
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1 Introduction

The system or cluster of technologies labeled Information and Communication Technologies

(ICT) came to the attention of economists in the late 1980s due to a mismatch between expected

and de facto productivity dynamics and have been studied extensively since then. The intensive

investments into ICT fueled the development and production of new IT capital and the expansion

of ICT application. Eventually, catering to heterogeneous demand needs, ICT evolved into a

complex and interconnected system of technologies that forms an infrastructure with a variety of

applications based on it. However, in the literature ICT is very often considered as a monolith

at a coarse, aggregate level, while in fact it is composite. This makes it difficult to isolate

the effects (both benefits and failures) of ICT diffusion and understand how they are achieved.

Firms, entrepreneurs and policy–makers cannot utilize information on ICT at such aggregated

level for strategy and policy design. This leads to coordination failures between ICT supply and

demand and makes the development of ICT myopic or haphazard (Bresnahan, 2019b).

In this paper, I adopt a systemic approach to ICT by considering industrial diffusion of a

set of distinct ICT technologies, each separately as well as in relation to each other within the

ICT cluster. More precisely, the analysis estimates the scale and scope of industrial connections

for each distinct ICT technology and their dynamics. This reveals directions of development by

identifying those ICT technologies that intensify connections with industries by moving closer to

the center of the knowledge base and those that experience an exploration phase acquiring new

industrial connections. The consideration of the ICT cluster allows putting each ICT technology

in context to compare scale and scope of their diffusion not only based on individual growth

rates but also in relative terms; this is especially important for the discussion of novel and

fast–growing technologies such as Artificial Intelligence (AI). Then, I estimate the relatedness

among ICT technologies based on their co–occurrence in the knowledge space and in industries

to identify the dimension in which ICT technologies are proximate. The study seeks to identify

patterns in the dynamics of industrial penetration by ICT over the period 1977–2020 among

28 EU member states. This helps to estimate the modern state of ICT diffusion and put it in

historical perspective.

Methodologically, the ICT cluster is captured combining the new ICT taxonomy by OECD

(Inaba & Squicciarini, 2017) and the PATENSCOPE AI index (WIPO, 2019). The resulting

taxonomy used in the paper aggregates patents’ IPC technological classes into 13 distinct ICT

technologies including AI. Economic activities are represented by 74 industries at the 2–digit level

from International Standard Industrial Classification of All Economic Activities rev.4 (ISIC).

The primary connections between industries and ICT technologies are established through ex-

traction of keywords from ISIC industrial descriptions and their subsequent search in patents’

titles and abstracts. Further refinement of these connections with the Algorithmic Links with

Probabilities method (Lybbert & Zolas, 2014) produces the final ICT technology–industry ma-

trices, one for each subperiod. As these matrices are essentially bimodal networks, several

network metrics are applied to analyze the structure and dynamics of industry reliance on ICT.

Finally, relatedness indicators provide insights into the overlap of knowledge and application

bases among ICT technologies.

This paper contributes to several literature strands. Given that the analysis is set at the

2

Jena Economic Research Papers # 2021 - 005



system level and investigates the linkages within the cluster and beyond, this paper belongs to

the strand of research on technology systems and the industrial connections that they create

(Freeman, 1994; Perez, 2010). It fills the gap of empirical studies that operationalize the concept

of technology system applied to ICT. Unlike studies that consider ICT as a monolith and estimate

its impact on a set of industries (one technology to many industries), for example, through the

lens of General Purpose Technologies (GPTs) (Basu & Fernald, 2007; Castellacci, 2010), this

paper constructs a bimodal technology–industry network connecting a number of well–defined

ICT technologies with many industries to uncover the industry portfolio corresponding to each

ICT technology and decompose pervasiveness of the whole ICT cluster.

The paper builds on studies that focus on the economic impact of ICT (Brynjolfsson & Hitt,

2000; Van Ark et al., 2003; Brynjolfsson et al., 2019) and traces back the source of this impact to

particular ICT technologies. By offering an estimation of pervasiveness, this study contributes

to the literature on GPTs and their identification (Bekar et al., 2018). Another contribution

of this research lies in the field of sectoral patterns of innovation (Malerba, 2002; Castellacci,

2008) by showing the structure of industrial connections through shared technological knowledge

base. In this context, the relatedness indicators used in this paper represent an instantiation of

research on the principle of relatedness (Hidalgo et al., 2018). As the analysis takes a closer look

at AI technologies, the study is a contribution to the Economics of AI (Agrawal et al., 2019b).

In particular, to the best of the author’s knowledge, this work is the first to study together

AI diffusion among the industries’ knowledge base and the complementarity of AI with other

ICT technologies. Finally, considering the methods used, the paper is also an application of the

“text-as-data” approach (Gentzkow et al., 2019) to technological dynamics.

This study can inform both technological and economic perspectives. From a technology–

centered perspective, it offers a fine–grained estimation of ICTs’ pervasiveness and diffusion

patterns. From an economic perspective, the study pinpoints potential loci of adoption exter-

nalities by identifying connected ICT technologies. Establishing influential ICT technologies for

each industry provides insights on the technological regimes they induce and consequently on

the economic conditions such as innovation opportunities, entry dynamics and market concen-

tration, appropriability, and eventually commercial value and price of products and services.

Finally, the industry–technology mapping presented here can help policy–makers in identifying

related markets that rely on the same technologies even across industrial boundaries as well as

technologies related through the same industries–applications; this is especially relevant for the

regulation of merger and acquisition applied to digital markets (see, for example, Federico et al.

(2020); Morton & Dinielli (2020)).

The paper proceeds as follows. Section 2 lays out chronologically the changing focus of

ICT research, from macro level productivity dynamics to micro level changes in organisational

routines and occupations within firms; from a coarse notion of ICT through multiplex networks

of economic complexity to case studies of particular technologies. At the end of this Section,

the systemic nature of the ICT cluster emerges as a crucial feature characterizing ICT. This

frames the rationale behind the construction of the industry–technology mapping described

in Section 3, with a further focus on the connections of the ICT cluster: with industries and

among the distinct ICT technologies. Section 4 discusses the results of the analysis on the within
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ICT cluster structure, the estimation of the pervasiveness of particular ICT technologies, and

their relatedness through knowledge and application bases. Special attention is devoted to AI

technology with a deeper dive into the AI’s connections with other ICT. Section 5 concludes.

2 Many Faces of ICT: from Productivity Paradox of the 80s to

Modern Technology System

It has been many decades since ICT diffuse inside the economies transforming and creating

new markets, business models, and jobs. ICT are enabling technologies engaging in coinven-

tion with application industries to address market demands and organizational supply processes

(Bresnahan & Yin, 2017). ICT have induced an encompassing process of digitalization that

led to a restructuring of the socio–economic life and redomaining the economy around digital

infrastructures.1 In retrospect, the impact of ICT is immense and visible but complex and

often non–linear in how it propagates. The discussion on ICT came across in the context of

the first “productivity paradox” or “productivity puzzle” expressed in 1987 by Roach (1987)

and Solow (1987) as surging growth of investment in Information Technologies (IT), in partic-

ular in computerization, was coupled with retarding growth of productivity. Put simply, the

rationale behind attention to ICT is their expected enhancing effect on resource (capital and

labor) productivity which at the time was not observed, creating a mismatch between expected

increasing and de facto slowing down productivity growth. Eventually, resource productivity

and its rate of growth define feasible production volumes hence market expansion and in the end

economic growth. Given that productivity dynamics reverberates at economic growth, the first

productivity slowdown that lasted until mid–1995 spurred debates on its origins. To investigate

this oddity, scholars went from macro trends down to meso and micro data on industries and

firms; these studies suggested several potential explanations for observed phenomenon such as

an offsetting effect while IT capital substituted for non–IT capital (Dewan & Min, 1997), firm

heterogeneity (Brynjolfsson & Hitt, 1995), and mismeasurement (Diewert & Fox, 1999). Indeed,

the period from mid–1990s until mid–2000s has been characterized by productivity accelera-

tion in the US, suggesting delayed but substantial contribution of the ICT–producing sectors to

aggregate productivity growth and delayed returns on investment in IT capital by ICT–using

sectors due to implementation lags associated with learning, complementary capital accumu-

lation and reorganization (Jorgenson et al., 2003; Basu & Fernald, 2007; Corrado et al., 2007;

Bresnahan et al., 2002). Timmer & Van Ark (2005) conduct a comparative study of the EU

and the US, regions with not completely synchronized business cycles so that differences related

to the time lags are exposed. They find that the contribution to the aggregate productivity by

ICT–manufacturing sectors and overall ICT capital deepening are the two factors that explain

almost fully the US’s lead over the EU in labor productivity growth. While the discussion on

the contribution of ICT to economic growth was still ongoing, the second productivity slowdown

started around mid–2000s (Fernald, 2015; Syverson, 2017), fueling a new wave of debates be-

tween techno–optimists and techno–pessimists. These two research strands differ in predictions

1For example, in 2018 intangible assets account for 84% of value of S&P500 companies including software
code and licenses, data and databases; top–5 largest global companies by market capitalization are digital giants
Apple, Alphabet, Microsoft, Amazon, Facebook (Gonzalez & Ponemon, 2019).
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for the future of productivity dynamics but they all acknowledge the role ICT played initiat-

ing structural changes in production processes, workplace, labor demand, and contributing to

overall economic growth (Bresnahan & Yin, 2017).

To capture the profound transformations ICT induced and mechanisms through which these

transformations unfold, scholars employ different approaches: (i) inductive inference analyzing

the changes at the micro and meso level e.g. demand for skills and income distribution (Autor

et al., 1998; Michaels et al., 2014), organizational routines and structures (Brynjolfsson & Hitt,

2000), novel products and services (Bakos & Brynjolfsson, 2001), etc.; (ii) deductive analysis

assuming a mechanism that potentially produces a set of observed stylized facts and/or state of

the economy e.g. modeling new production factors experimenting with a production function,

structural models and simulation and/or more technology–centered framework of General Pur-

pose Technologies (GPT) (Castellacci, 2010; Corrado et al., 2009; Basu et al., 2003; Guerrieri &

Padoan, 2007). In both (i) and (ii), ICT is very often considered as a monolith, a coarse notion of

all information technologies with differentiation between ICT–using and ICT–producing firms

and industries. However, the technology under consideration does make a difference. Given

that, another approach to capturing ICT transformations is (iii) studying up close the diffusion

of a particular technology considering a larger set of factors including (a) supply–side and (b)

technological ones along with demand–side and economic factors such as preferences and price.

As argued by Rosenberg (1972), (a) “the rate at which new technologies replace old ones will

depend upon the speed with which it is possible to overcome an array of supply side problems”

and (b) “better understanding of the timing of diffusion is possible by probing more deeply at

the technological level itself, where it may be possible to identify factors accounting for both the

general slowness as well as wide variations in the rate of diffusion.”.

Indeed, at the level of individual technology, the economic value is endogenous to the techno-

logical function(s) a particular technology can perform, and how exactly this technology executes

the function(s): as infrastructure or network vs fully–fledged component or stand–alone product

or service (for example, mobile telecommunication network vs integrated circuit). Moreover,

different technologies induce different technological regimes that form around them; in turn, a

technological regime defines the environment for innovating agents: opportunity and appropri-

ability conditions, properties and channels of transmission of technological knowledge. These

conditions implied by the technological regime reverberate to innovation patterns as well as firm

size and entry–exit dynamics at the supply side, and foster industrial dynamics and evolution

at various rates and directions (Malerba & Orsenigo, 1997). At the same time, “individual

technologies are not introduced in isolation. They enter into a changing context that strongly

influences their potential and is already shaped by previous innovations in the system.” (Perez,

2010, p.188). These previous innovations might be instantiations of the same technology illus-

trating path dependency (David, 2007) within one technological trajectory (Dosi, 1982) as well

as of another related technology in the technology system (Freeman, 1994) capturing dynamic

interrelatedness among technologies. Indeed, Freeman (1994) stresses the systemic aspect of

technological diffusion. All this applies to ICT as well, hence the ICT cluster can be consid-

ered a technology system. Studying ICT as a system of interrelated technologies in connection

to industries can provide a better understanding of their diffusion patterns and impact. For
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example, several ICT–producing industries, being connected via complementary technologies,

might engage in synergistic interactions (Steinmueller, 2002) through, for example, (indirect)

networks with adoption externality (Church & Gandal, 2005). In the field of ICT, a famous case

of strategic exploitation of such positive externalities is the so–called Wintel standard formed

between Microsoft’s OS and Intel’s processors (Takahashi & Namiki, 2003).

ICT technology system spans over a wide range of industries and hence constitutes a part of

their technological knowledge base. ICT carved a slot in the knowledge space becoming a distinct

technology system through the tortuous process of upstreaming and technological convergence

(Rosenberg, 1963); a complex infrastructure has been built gradually around the function of

handling information (Steinmueller, 1996; Greenstein, 2019) performed within commercial as

well as military and scientific applications. An increasing number of application industries

incorporates ICT in the knowledge base tying their business models, production processes and

overall development to the technical progress and manufacturing of ICT goods. On the one

hand, this creates an inflow of investments in ICT–producing industries, boosting their growth.

On the other hand, numerous application sectors have heterogeneous preferences about the pace

of production and performance of ICT capital. Locked inside the so–called dual inducement

mechanism (Bresnahan & Trajtenberg, 1995), for example, the semiconductor industry adopted

Moore’s law as the main roadmap to sustain the demands of its applications and control the pace

of development. Nevertheless, preemption strategies and capacity races (Steinmueller, 1992) in

producing the next generation of chips have been always present in the industry, contesting

the established roadmap. Besides pressures from the heterogeneity of ICT–using industries,

a failure to recognize the economic value of ICT application might occur as well; technology–

provided opportunities for commercial applications are not always obvious ex ante which creates

the coordination problem between technical progress in ICT and the technical progress in its

applications (Bresnahan, 2019b).

The multiplicity of linkages between economic activities and technologies is highlighted in the

literature on regional development and economic complexity (Balland et al., 2019). Such studies

represent the path of regional growth through a bimodal network that connects local capabilities2

and diversity of economic activities in the region (Hidalgo & Hausmann, 2009). Establishing

these connections serves two purposes: (i) it uncovers the correspondence between products

or industries (economic activities) and the required knowledge or inputs (capabilities) and (ii)

reveals related economic activities that require similar capabilities. The latter is measured

through various relatedness metrics (Hidalgo et al., 2018). For example, two industries or

products can be considered related if they rely on similar technological knowledge (Breschi et al.,

2003; Balland et al., 2019), labor skills (Neffke et al., 2011, 2018), or input–output structure

(Essletzbichler, 2015). In dynamic perspective, it helps to explain the entry probability of a new

economic activity in a spatial unit based on existing local capabilities (industrial change), and the

consequent evolution of local capabilities (structural change) in response to the entrance of new

industries (Neffke et al., 2011). In sum, in the field of economic complexity, this circular impact

between industries and technological knowledge base as an instantiation of capabilities illustrates

the underlying mechanism of regional diversification and growth (Frenken et al., 2007). The

2Capabilities is an umbrella concept that comprises resources, institutional framework, human capital and
knowledge (Maskell & Malmberg, 1999).
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current study shares this rationale and introduces complexity through the constructed industry–

technology mapping with relatedness metrics applied to it. Unlike the economic complexity

literature that conventionally focuses on economic activities (industries, products), this paper

focuses on ICT technologies as part of the technological knowledge base in the EU28 region to

study the diffusion of the ICT cluster among industries.

In sum, ICT constitutes a technology system or cluster, has a transformative effect on eco-

nomic activities that incorporated ICT in their technological knowledge base, and enables in-

dustrial synergies. Referring to ICT as a cluster or a system is crucial because it stresses the

composite nature of ICT and exposes the rationale to consider it as a set of interrelated yet

distinct technologies. In this paper, I adopt this systemic approach to ICT and claim that

within the ICT cluster technologies are heterogeneous in their nature, leading to uneven scale

and scope of adoption among industries. In other words, not all ICTs are pervasive, not all

ICTs are key technologies3. A more fine–grained consideration of the ICT cluster can reveal

the structure of its pervasiveness by identifying ICT technologies that experience (a) increas-

ing scale of penetration by deepening the connection with industries or (b) increasing scope

of application by creation of new applications/markets or both. The analysis of relatedness is

aimed at uncovering the dimensions along which heterogeneous ICT technologies are proximate.

Altogether, this draws a more complex and up–to–date picture of the ICT cluster.

3 Methodology: Constructing Industry–Technology Mapping

To conduct the analysis, I employ OECD and WIPO patent–based classifications to break down

ICT into a set of technologies, and using text mining and probabilistic matching, construct

technology–industry nexus tracking its development over time. This nexus is a dynamic map-

ping between economic activities represented by industries and the set of ICT technologies.

Estimating how distinct ICT technologies penetrate industries’ knowledge base in dynamics and

looking deeper into the origin of these relations provides a more accurate and meaningful view

on ICT diffusion. The approach I have employed to construct industry–technology mapping

is based on the Algorithmic Links with Probabilities (ALP) method proposed by Lybbert &

Zolas (2014). This method allows establishing industry–technology connections in two essential

steps: (i) connect industries and patents via the search of keywords extracted from industries’

descriptions in patent’s abstract and title, and then, based on these links through patents, (ii)

connect industries with patents’ technological classes that belong to the ICT taxonomy. Fur-

ther refinement of obtained industry–technology frequency matches implies a transformation of

simple cross–tabulation values into Bayesian probabilities.

The ALP method has a number of advantages in comparison with other industry–technology

concordances (e.g. Yale Technology Concordance (YTC) (Kortum & Putnam, 1997) and DG

Concordance (Schmoch et al., 2003) as it is: (i) modifiable — new keywords, industries, or tech-

nologies can be added and linkages easily recalculated without reconstructing the whole mapping

from scratch; (ii) dynamic — over time the industry–technology linkages can emerge or disap-

pear; the method is dynamic as it allows construction of the mapping for any defined period; (iii)

3“Key technologies are defined as holding a central position within the knowledge base.”(Graf, 2012)
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scalable — technology and industry classifications employed in the study each has several levels

e.g. 4–, 3–, 2–digit level; the ALP method can be applied to any combination of classifications’

levels; once industry–technology connections are calculated at chosen levels, further aggregation

along each classification is possible: for example, 2–digit level (ISIC divisions) can be further

aggregated up to 1–digit (ISIC sections) level by simple summation of calculated connections

for nested industries. Overall, the ALP method employed for the purposes of this paper helps to

connect meaningfully industries to large but distinct ICT classes, not to a particular technology

confined in a patent.

Industrial classification. The first step of the ALP method requires the extraction of

keywords that characterize the economic activity the industry carries out. The description of

industries comes from the United Nations’ International Standard Industrial Classification of

All Economic Activities Revision 4 (ISIC Rev.4) (UN, 2008). It is a suitable choice of meso–level

classification that spans over all sectors of the economy from the primary sector with agriculture

and raw materials production to the tertiary sector of services such as consultancy, advertising,

research, etc. The choice of ISIC taxonomy’s depth fell on 2–digit level because this level at the

same time allows for a sufficient amount of text description per industry and produces a fine–

grained matching between industries and technologies. Overall, there are 74 industries included

in the analysis.

Keywords extraction. The purpose of keyword extraction is to create a set of characteristic

tokens to represent each industry. The text corpus used for keyword extraction is ISIC rev.4

industrial description with industries at the 2–digit level (division) including their nested levels

(3–digit group and 4–digit class) treated as separate documents. The choice to go for the

characteristic tokens or phrases, so-called n–grams, is motivated by the need to balance between

type I and type II errors: exclusion of useful tokens (false positive) and inclusion of distorting

tokens (false negative). The latter means that some words can have multiple and sometimes

quite distant meanings while indeed being actively used in a particular economic activity. Thus,

the exclusion of such words from the keywords set would harm the representation of an industry

while inclusion would confuse/conflate several industries. Bigrams help to solve this conundrum

because they can consist of separately ambiguous words and by combining them create a phrase

with a more specific meaning that allows attributing it to a particular industry unequivocally and

not losing an important word. Table 1 illustrates the described principle with some examples.

Word Bigram ISIC

equipment irrigation equipment 16
communication equipment 26
signaling equipment 27
freezing equipment 28
dental equipment 32
optical equipment 33

plant forage plant 11
plant propagation 13
power plant 42
nuclear plant 71
sewage plant 81

Table 1: Disambiguation with bigrams
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Breaking down the text into tokens leads to a large list of single words and bigrams with

many of them being redundant. To illustrate the process with an example, one sentence of n

words turns into a list with n single words and (n − 1) bigrams. Removal of n–grams that

contain stop–words, such as articles, forms of the verb to be, etc. accounts for only a fraction

of cleansing of this list. To select meaningful n–grams after the removal of stop–words, I have

applied two techniques (i) Part–of–Speech tagging (PoS) and (ii) calculation of term frequency–

inverse document frequency statistic (TF–IDF).

The TF–IDF statistic is a composite indicator that helps to construct a broad representation

of what a document is about. Precisely, it estimates how important is an n–gram to a document

based on its occurrence frequency within and between documents. The first component, term

frequency (TF), is a simple frequency of an n–gram within a document that shows how often

the n–gram occurs in the document. The second component, inverse document frequency (IDF),

divides the total number of documents by the number of documents that contain the n–gram

which reaches its minimum (equals to 1) when the n-gram is found in all documents and its

maximum (equals to log(n)) when the n–gram belongs to only one document. The product of

these two parts form the TF–IDF statistic that is high for n–grams that are frequent within

one document but is not common for the rest documents. Calculation of TF–IDF is possible for

n–gram of any length. In application to ISIC description of industries, the notion of document is

equivalent to 2–digit level industry description with all nested 3– and 4–digit level descriptions.

More generic words, like already used example of word equipment, go down in the ranking

because they can occur in many 2–digit industries at the same time.

The PoS tagging is a Natural Language Processing (NLP) technique that helps to iden-

tify word’s part of speech (noun, verb, adjective, gerund, etc.) given the context of the text.

Consideration of the context in identifying word’s part of speech is important because of the

coincidence between forms of different parts of speech (e.g. to fish and a fish) which creates

ambiguity which tag to attach to a word. Therefore, the PoS method is applied to the raw text

to identify contextually the part of speech for every word in the text. As a result, the text is

transformed into a lexicon where every word has a corresponding PoS tag. Only then the text

is broken down into n–grams which should be sorted in the following way. First, nouns both

singular and plural and gerund parts of speech are selected from the words list as potential

candidates for keywords. Second, with bigrams the criterion of selection is put on each word

separately to create a meaningful combination: the first word can be a noun, gerund or adjective

while the second can be still only a gerund or noun.

Stop–words removal and application of these two techniques to the ISIC industrial descrip-

tions provide each type of n–gram (word, bigram) with its PoS tag and TF–IDF statistic. This

treatment cleanses the initial list of n–grams to almost purely characteristic phrases. However,

the number of key n–grams per industry is not evenly distributed across industries because the

original description can consist of few short lines that result in a few key n–grams to extract.

To tackle this problem and reduce type I error for industries represented with a small number

of tokens, the set of tokens was expanded using two methods: (i) synonyms search and (ii)

vocabulary expansion. The first method, expansion through synonyms, uses PATENTSCOPE’s
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Cross Lingual Expansion.4 This tool provides synonyms found in patents’ texts based on se-

lected technological domains. The same tool can help with finding synonyms for words with

many meanings that differ conditional on the context hence it also helps to act upon type II

error, the same problem as the usage of bigrams does. To illustrate the mechanism at work,

consider a word skin whose lexical connotation changes from textile industry to pharmaceutical

one. Thus, for textile, the synonyms can be leather, pelt, and hide, while for pharmaceuticals

derma can be used.

The second method, vocabulary expansion, uses patents selected during the first round of

search of the preliminary list of keywords and extracts additional keywords relevant to the

economic activity from titles and abstracts of these selected patents. Consider an industry with

k key tokens (both words and bigrams). These k tokens are found in n patents’ abstracts and

titles. Most of these n patents contain only one token, less contain two tokens and so on; in

other words, such histogram is skewed resembling some asymmetric distribution like Pareto or

exponential. I select a subset of m patents out of these n where 2 or more tokens are found.5

The titles and abstracts of the subset m patents are broken down into tokens as well; stop words

removal and TF–IDF are applied to extract additional characteristic tokens. Given that a patent

mostly contains information about technology and only a small share of patent’s abstract might

describe the application related to the economic activity, tokens extracted in this way were

manually revised and selected. The final list of key n–grams contains slightly more than 4800

regularized n–grams for 74 2–digit industries.6

Algorithmic Links with Probabilities. The link between an industry and a technology

is established through searching a key token extracted from the industry’s description in the

patent’s title and abstract. Thus, technology areas that a patent belongs to according to Inter-

national Patent Classification (IPC) serve as an approximation for technologies that industry

might rely on. The sample of patents to construct the mapping is limited to original European

patents where either inventor or an applicant is located in one of 28 European countries (EU28)

based on the data from the OECD REGPAT 2020 database.7 The data on abstracts and titles

of EU28 patents is retrieved from the EPO Worldwide Patent Statistical Database (PATSTAT)

Spring 2020.

The ALP method is extensively described in Lybbert & Zolas (2014), hence here I will outline

only its essence and some important details for this study. Once a key token for the industry is

found in the title or abstract of a patent, it also creates a connection between the industry and

the IPC classes of the patent.8 The IPC classes represent technologies. Therefore, the outcome

of the first step of the ALP method is a matrix with a simple count of matching between

industries and IPC classes. To transform the raw count into the industry–to–technology ALP

concordances, Bayes rule is applied. The resulting ALP concordances are Bayesian probabilities

adjusted to account for some technological fields that can be naturally very prolific in patenting

4https://patentscope.wipo.int/search/en/clir/clir.jsf.
5i.e. the full set of patents found with k key tokens is f(1 ≤ x ≤ k) = n while a subset of patents that contain

at least two key tokes out of k is f(2 ≤ x ≤ k) = m where m ≤ n
6The quantiles for the number of key tokens per industry: Q25 = 34, Q50 = 50, Q75 = 74
7Consideration of EU28 countries that include the UK is motivated by the UK’s participation in the EC and

later in the EU since 1973. Given that the time period in the study covers years from 1977 till 2020, it justifies
the usage of the data on EU28.

8In this study the 4–digit level of IPC classes is taken for the mapping construction.
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hence by size compress shares of other, less prone to patenting, technological fields in industry’s

recipe. Thus, the share WH
ij of technology j (IPCj) in industry’s i (ISICi) technological recipe

is calculated according to the following formula:

WH
ij =

Pr(ISICi|IPCj)×WR
ij /J

Pr(ISICi|IPC1)×WR
i1/J + ...+ Pr(ISICi|IPCJ)×WR

iJ/J
j = 1, J (1)

WR
ij =

Pr(ISICi|IPCj)× Pr(IPCj)

Pr(ISICi|IPC1)× Pr(IPC1) + ...+ Pr(ISICi|IPCJ)× Pr(IPCJ)
(2)

where J is a number of IPC classes at the 4–digit level. Inevitably, some rubbish connections

can show up due to a large number of abstracts and titles and various key n–grams. To eliminate

such connections the cut–off threshold is set at 2% meaning shares WH
ij lower than 0.02 are set

to zero and the remaining shares are renormalized to sum up to 1. In sum, the ALP concordance

matrix WH for each period consists of 74 2–digit ISIC industries and 638 technologies at 4–digit

level of IPC classes (IPC4). The choice of IPC4 level is motivated by construction of the ICT

taxonomy so that it allows application of the ALP method; the next paragraphs discuss it in

details.

ICT cluster. The constructed mapping is used to track the diffusion of the ICT cluster

over time. The representation of the ICT cluster expressed in patents’ IPC classes is constructed

for this study combining two taxonomies: (i) the new ICT taxonomy of OECD (Inaba & Squic-

ciarini, 2017) and (ii) PATENTSCOPE AI Index (WIPO, 2019). The new ICT taxonomy by

OECD provides concordance between 13 ICT classes such as High speed network and Mobile

communication and various–level IPC classes. This taxonomy is taken as the main structure

of the ICT cluster. The modification of the OECD taxonomy concerns its class Cognition and

meaning understanding which is turned into a class of Artificial Intelligence (AI). The rationale

behind is that original class Cognition and meaning understanding represents a subset of AI

while the latter gains place inside the ICT cluster as a distinct class of technologies by enter-

ing the active commercial phase and experiencing intensive development and experimentation.

First, I have identified that IPC classes which represent AI techniques and AI functions from

WIPO’s AI Index are found only in three ICT groups of OECD taxonomy: (i) a substantial

overlap with class Cognition and meaning understanding, (ii) Imaging and sound technology

and (iii) Others. Then, to create AI class on the basis of Cognition and meaning understanding,

all WIPO’s AI–related IPC classes were excluded from (ii) and (iii) and transferred to (i) so the

13 ICT classes remain mutually exclusive. Table 2 contains the resulting ICT taxonomy.

Overall, 55 4–digit IPC classes constitute the ICT cluster. Limiting the constructed mapping

to these 55 IPC classes and their subsequent aggregation into 13 ICT classes focuses the attention

on the ICT cluster. However, according to the ICT taxonomy, only a fraction of 4–digit IPC

class might be related to the ICT cluster. Moreover, the distinction between one or the other

ICT group can occur at a deeper level of IPC class than 4–digit; an ICT group can consist of

various–level IPC classes at the same time such as 4–digit along with fine–grained 8–digit. In

other words, the ICT taxonomy is constructed on varying IPC level.
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ICT class Description

cl1 High speed network
cl2 Mobile communication
cl3 Security
cl4 Sensor and device network
cl5 High speed computing
cl6 Large–capacity and high speed storage
cl7 Large–capacity information analysis
cl8 Artificial Intelligence*
cl9 Human–interface
cl10 Imaging and sound technology
cl11 Information communication device
cl12 Electronic measurement
cl13 Others

*Created on the basis of class Cognition and meaning understanding
by merging with PATENTSCOPE AI Index taxonomy

Table 2: The modified new ICT taxonomy by OECD

For example, in the upper panel of Table 3 distribution of IPC4 class G06K among 13 ICT

groups is shown. The division of IPC G06K between ICT classes occurs on a 5– and 6–digit

levels and one subclass, G06K21, doesn’t belong to ICT at all. Therefore, counting every patent

with G06K IPC class as 1 for each ICT group connected with G06K — ICT classes 3, 6, 8, 9,

13 — would inflate the size of each ICT class as not all patents with G06K IPC4 class belong

to ICT class 6 or 13. In general, the ALP method uses a single level of IPC to construct

concordance, e.g. 4–digit, and cannot use different levels at the same time. For example, a

concordance matrix constructed at 5–digit level can be aggregated to 4–digit level, but it cannot

contain 4– and 5–digit levels simultaneously. Thus, to keep the ALP concordances on the chosen

4–digit level with respect to the technologies and avoid double counting, the following shares are

calculated based on the sample. First, the between share, the de facto share of an IPC4 class

that belongs to the whole ICT cluster, without division into 13 groups. According to the lower

panel of Table 3, in the third period, 99.9% of patents with IPC4 class G06K belong to the ICT

cluster i.e. patents’ IPC classes (4–digit and longer) match with IPC classes listed in the ICT

taxonomy. This means that in the EU28 sample, there is only 0.1% of patents that belong to

non–ICT subclass G06K21 in the third period. Second, the within share, the de facto share of

an IPC4 class that relates to one of the 13 ICT classes. In other words, the between share is

now further decomposed into 13 shares, each for one ICT class, that are renormalized to sum

up to 1. In the example of G06K class, the 99.9% between share is decomposed into within ICT

cluster shares shown in the lower panel of Table 3. For instance, the 29.8% within share of class

3 Security means that inside the 99.9% between share of IPC4 class G06K there are 29.8% of

patents that belong to longer IPC subclass G06K19.

In sum, the IPC4 level for the study is a convenient choice as 4–digit level is the highest

among IPC classes used in the ICT taxonomy because combined with the between and within

ICT shares, it allows (i) working with a single level of IPC classes to apply the ALP method

and (ii) avoid double the counting by tracking precisely the share of the whole ICT cluster in

the technological composition of industries and the shares of its 13 classes separately.

Figure 1 shows the stepwise procedure that leads to obtaining industry–ICT class matrices

for each period. Starting from extraction of preliminary keywords, the subsequent synonym
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Decomposition of G06K 4–digit class among ICT groups based on the OECD taxonomy

G06K cl1 cl2 cl3 cl4 cl5 cl6 cl7 cl8 cl9 cl10 cl11 cl12 cl13 non-ICT
G06K19 G06K1 G06K9 G06K11 G06K15 G06K21

G06K3 G06K17
G06K5
G06K7
G06K13

Within and between shares based on actual patent count in the sample

G06K cl1 cl2 cl3 cl4 cl5 cl6 cl7 cl8 cl9 cl10 cl11 cl12 cl13 Between ICT
Within ICT
(% of between)

0.0 0.0 29.8 0.0 0.0 19.1 0.0 0.0 48.0 0.0 0.0 0.0 3.1 99.9

Table 3: The between and within shares of G06K class in the ICT cluster in the third period 2005—2020

and vocabulary expansion result in the final list of 4.8 thousand tokens that characterise 74

industries. Frequency matches between industries and IPC4 patent classes that represent all

technologies are further transformed into Bayesian probabilities. The modified ICT taxonomy

created based on merged OECD and WIPO classifications is applied to subset ICT technologies

(55 IPC4 classes out of 638) obtaining industry–ICT matrices WH for each period. Finally, the

correction with between and within shares is applied to avoid inflation of ICT groups’ sizes.

Figure 1: Procedure of obtaining industry–ICT concordance with used techniques and data

Network analysis and relatedness. As a next step, the industry–ICT class matrices are

transformed into bipartite networks. In this study, ICT technologies represent a subset of tech-
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nological knowledge base i.e. proxy for a part of local capabilities. The set of industries reflects

diversity of economic activities in the EU28 region related to ICT technologies. This part of

analysis is focused on ICT technologies unlike studies on economic complexity that convention-

ally focus on economic activities. However, the paper shares the methodological approach and

the stance on capability–activity dynamic interrelatdness as an important mechanism of growth.

Network analysis provides a variety of tools to uncover structural properties of a network.

For example, flow betweenness centrality (FBC) is used in this paper to rank ICT classes ac-

cording to their mediation role in connecting industries. It is worth noting that industry–ICT

class connections are shares (WH
ij from Equation 1) or probabilities hence the higher the share

of a particular ICT class in a technological recipe of an industry, the stronger the connection.

This explains the rationale behind the choice of FBC, as it accounts for the strength of con-

nections between an ICT class and all incident industries, and thus shows a weighted scale of

industry reliance on each ICT class. Nevertheless, in the context of industries–ICT relationship,

a node’s degree carries useful information about the scope of industry reliance on each ICT class.

These two indicators provide further details for a more fine–grained consideration of otherwise

homogeneous ICT cluster.

Another dimension to study ICT technologies is their relatedness. As pointed out earlier in

the paper, very often ICT technologies are pooled together under an umbrella label of generic

ICT or digital technologies. However, not only ICT cluster comprises a wide array of distinct

technologies, their alleged similarity can be tested. To do so, I calculate two metrics, technolog-

ical and application relatedness, to measure the proximity of ICT technologies with regard to

the underlying knowledge and application bases respectively.

The technological relatedness applied to ICT technologies shows which of them are rooted

in similar knowledge base i.e. related through shared knowledge areas. This is measured as a

standardized frequency of co–occurrence of ICT classes in patents. If, according to the modified

OECD taxonomy, IPC classes of a patent belong to two different ICT classes this represents an

instance of co–occurrence; the total number of co–occurrences of two ICT classes is an absolute

frequency. However, the absolute frequency of co–occurrence can be a misleading indicator of

technological relatedness for two reasons. First, a larger ICT class has a higher potential to

co–occur with other ICT classes even by randomness. Second, in absolute terms frequency of

co–occurrence of two small ICT classes, for example, i and j, might look negligible in comparison

with co–occurrence of two large ICT classes, p and k, and yet represent significant technological

relatedness of i and j. Therefore, a test for the randomness that accounts for the size of the

ICT classes (number of patents assigned to each of them) must be conducted. Following Breschi

et al. (2003), I assume that the frequency of co–occurrence of any two ICT classes, Oij , is a

hypergeometric random variable Xij . Thus, ICT classes i and j co–occur in exactly x patents

with the following probability, mean and variance:

P [Xij = x] =

(
Ri

x

)(
T −Ri

Rj − x

)
(
T

Rj

) µij =
RiRj

T
; σ2ij = µij

(
1− Ri

T

)(
T

T − 1

)
(3)
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where T is the number of patents in a particular period, Ri and Rj patents belong to ICT

class i and j respectively. The standardized frequency of co–occurrence (with zero mean and

unit variance) is equal to:

τij =
Oij − µij

σij
(4)

The τij statistic takes into account the size of the ICT classes and compares the actual co–

occurrence with the expected one as if patents were assigned to ICT classes randomly. If the

statistic is significant the null hypothesis of a random relationship between two ICT classes is

rejected; the positive statistic τij > 0 suggests the presence of technological relatedness of two

ICT classes while the negative one τij < 0 means two ICT classes occur together even less often

than by random assignment.

The application relatedness is a correlation that measures how (dis)similar the structure

of industry reliance for each pair of ICT classes. There are two significant differences of this

novel indicator in comparison with other relatedness metrics used in the literature on economic

complexity. First, as the focus is placed on technologies and not on industries, the applica-

tion relatedness indicates proximity of two technologies through linkages to shared industries

i.e. shared application base for the two technologies. Thus, the logic of the application re-

latedness is reversed with regard to co–occurrence based industry relatedness. For example,

Neffke et al. (2011) derive relatedness of industries “from the co–occurrence of products that

belong to different industries in the portfolios of manufacturing plants”. Technically, Neffke

et al. (2011) calculate product relatedness, and the industry relatedness derived from it is called

revealed relatedness because it is measured through the intermediate layer of products. However,

the overarching logic of industrial relatedness as co–occurrence of industries in plants stands.

Reversing this logic, I define application relatedness as co–occurrence of ICT technologies in

industries using industry–technology matrices WH .

To calculate co–occurrence based relatedness for a set of technologies, for example, a techno-

logy–to–technology adjacency matrix is used. Each cell of such matrix contains the co–occurrence

frequency of two respective technologies in all relevant industries pooled together and each

counted as one. This might lead to an incorrect estimation of relatedness between technologies.

For example, in a conventional relatedness metric, if two technologies are jointly present in a

particular industry, this would add one to the overall co–occurrence count. Such binary count

and summation to obtain frequencies do not include useful information respectively on (i) the

strength of industry–technology connections and on (ii) the set of particular industries relevant

to each of the two technologies. Together (i) and (ii) constitute a distribution or a structure of

industrial connections of each technology. Thus, the second difference of the suggested appli-

cation relatedness is that it captures the similarity of distribution of industrial connections for

a pair of technologies. By accounting for both (i) and (ii), the metric can capture relatedness

of technologies that both have weak connections with industries but the distribution of their

connections is similar for the two technologies.

The application relatedness calculates the correlation between two columns that represent
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two ICT technologies of the industry–technology matrix WH .9 In each period there are m

industries (indexed i = 1,m) that rely on at least one of the 13 ICT classes (indexed j = 1, n

where n = 13) (see Appendix A) for some share or weight WH
ij . For example, for ICT class j = 1

there are k < m industrial connections10 WH
i=1,k,j=1

= (WH
1,j=1,W

H
2,j=1, ...,W

H
k,j=1). This vector

represents the structure of industry reliance on ICT class j = 1. The same vector exists for

ICT class j = 2 (and any other class in the ICT cluster). Therefore, the application relatedness

between class 1 and 2 is calculated as:

r1,2 = corr(WH
i,j=1,W

H
i,j=2) ∀ i = 1,m (5)

Together the two indicators, application and technological relatedness, create four combina-

tions characterizing similarity among ICT technologies. There are shown in the quadrants of

Table 4. This scheme provides a useful framework to identify potential loci of adoption external-

ities and drivers of development for each pair of ICT technologies. As implied by the notions of

dynamic interrelatedness and dual inducement mechanism, the development of a particular ICT

technology is linked to and influenced by both its related technologies and industries. For exam-

ple, Bresnahan (2019b) distinguishes between two types of ICT, namely scientific and engineering

ICT and commercial and enterprise ICT, and argues that innovation processes occurring in each

domain are subject to different factors. In a nutshell, the invention of a scientific and engineering

ICT application follows “purely technical requirement” while “[t]he invention of the applications

of ICT in much of commercial and enterprise uses necessarily takes the analysis outside “purely

technological level”” and follows “visibility” or obviousness of application. Thus, for example,

in the first and the forth quadrant, where the technologies are proximate in terms of underlying

knowledge, it is easier to find a common technical ground for two ICT technologies and innovate

based on available technical possibilities. While in the second quadrant, where ICT technolo-

gies exhibit similar strength of connections across shared set of industries but not proximate in

knowledge space, the invention might indeed follow “visibility” of commercial value. In general,

if a pair of ICT technologies exhibits high application relatedness, one might observe bundling of

products and services embodying these two technologies inside a shared set of industries as it is

motivated by commercial value. If technologies are not only co–present in an industry but also

complementary, that will produce adoption externalities which imply even bigger commercial

value but also larger risks (for concrete examples see Simcoe & Watson (2019)). An even further

degree of integration between two application–related technologies is mergers and acquisitions

among firms producing products and services that have commercial value in bundling and/or

exhibit adoption externalities. Therefore, the estimation of application relatedness can inform

regulators and policy–makers by identifying related markets even across industrial boundaries

connected by technologies that themselves are not related in the knowledge space.

In sum, the rationale behind the construction and usage of the mapping with the ALP method

is the dynamic nature of constructed concordances as that allows capturing the changing reliance

9Undoubtedly, this is a coarse, linear approximation of the relationship among ICT classes through industries.
One can test for non–linear relations using polynomial models or various link functions under the Generalized
Linear Model (GLM) framework.

10The length of all vectors is m as the remaining m − k connections that do not exist between an ICT class
and an industry are set to 0.
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Table 4: Relatedness space with four distinct quadrants

of industries on a set of ICT technologies; some industry–technology connection might decline

and some might emerge. On the one hand, the invention and patenting process can last for

years and it also takes time for a new technology to enter the knowledge base of an industry,

hence it makes sense to use longer time periods to construct ALP concordances. On the other

hand, considering too long periods would extinguish the dynamic nature of the concordances.

Therefore, I split the whole time period into three subperiods approaching 15 years length

which also creates a nearly even distribution of patent sample over these three periods: (i)

14 years: 1977—1990; (ii) 14 years: 1991—2004; (iii) 16 years11: 2005—2020. Finally, the

chosen industry and technology levels for which ALP matrices are constructed can be changed

by aggregation of matrices’ values instead of their recalculation. For example, the industrial

level can be aggregated going from 2– to 1–digit ISIC codes without changing the patents’ IPC

level or layering up another industry–IPC concordance for the novel combination of levels.

4 Results and Discussion: Inside the ICT Technology System

The application of the methods outlined in Section 3 allows considering the ICT cluster not as

a monolith and look behind the common notion of “pervasive ICT”. First, I will provide initial

findings based on a bird’s eye view of the cluster. Then I proceed to a more fine–grained level

and analyze the ICT cluster as a collection of distinguished technological classes.

Industrial diffusion of the ICT cluster. In this study, the whole economy of EU28 is

represented by 74 industries. The construction of ALP concordances reveals that over the time

span from 1977 to 2020 the number of industries relying on the ICT cluster increases from 26

to 36 (see Appendix A), covering almost half of the industries. This means that one third of

all economic activities in the first period and nearly half in the last systematically incorporates

technologies from the ICT cluster into its knowledge base.12 Thus, the scope of ICT application

grows over time. Nevertheless, the intensity (scale) of reliance on the ICT cluster is distributed

unevenly across industries as it is shown in the left panel of Figure 2.

The left panel of Figure 2 plots the share of the whole ICT cluster in the technological

11The last period from 2005 till 2020 includes more years because the patenting activity of the last couple of
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Figure 2: The share of the ICT cluster in technological recipes of industries

Color–period correspondence: period 1 — white, period 2 — red, period 3 — blue. The bars are overlaid with transparency parameter allowing
to see all three periods at once. In the left panel, for example, for industry 65 the red bar being the tallest means that in period 2 this industry
had the highest share of ICT cluster in its technological composition in comparison with two other periods. In the right panel, period 1 is
taken as a baseline by subtracting the share of the first period from the second and third; all bars to the right side of the vertical axis indicate
increasing share of the ICT cluster in industries’ recipes while the left ones — decreasing.

recipe of industries. The industries that exhibit the strongest connection with the ICT cluster

are not surprising: programming and broadcasting (code 60), information services (63) and

telecommunications (61), motion picture, video and television programme production, sound

recording and music publishing activities (59), computer programming and consultancy (62),

manufacture of computer, electronic and optical products (26). The right panel of Figure 2

displays the first differences of the ICT cluster share in the total technological composition of

an industry with the first period as a baseline; it shows that for the majority of industries

the connection with the ICT cluster is strengthening. The top–3 industries that experience

the highest growth are 73–Advertising and market research (in accord with Anderson (2012)),

and 69–Legal and accounting activities followed by the whole Section K: Financial and insurance

activities (divisions 64–66). Overall, the majority of industries that exhibit at least some reliance

on the ICT cluster belong to services starting from Section H: Transportation and storage

onward.13

Inner structure of the ICT cluster. The modified OECD taxonomy (see Table 2) allows

looking deeper into the ICT cluster distinguishing 13 classes of ICT technologies. Figure 3 helps

to conduct an inspection of the ICT cluster composition based on the sample of EU28 patents.

Notably, the leaders of the ranking in the left panel of Figure 3 by absolute share of an ICT

class in the ICT cluster — classes High speed network, Information communication device and

Large-capacity and high speed storage, — experience a decrease of their shares in the ICT cluster

years is still ongoing and technically they are not fully represented yet
12It is worth noting that this estimation is a lower bound because it is based solely on patent data.
13The share of industries related to the ICT cluster in Sections H, J, K, M, N, P–R on ICT ranges between

60–100%.
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Figure 3: Shares of ICT classes in the cluster

Color–period correspondence: period 1 — white, period 2 — red, period 3 — blue. The bars are overlaid with transparency parameter
allowing to see all three periods at once. The left panel plots shares in all three periods while the right panel takes the first period as a
baseline subtracting it from the second and third periods. For example, class Mobile communication exhibits its highest share in the ICT
cluster in the third period as the blue bar is the tallest. Transparency allows seeing the height of the red bar that indicates share of Mobile
communication class in the ICT cluster in the second period.

though keeping strong positions. Instead, a subset of technologies such as Mobile communica-

tion, Large–capacity information analysis, Security, and Human interface steadily increase their

presence in the ICT cluster indicated by their top positions in the right panel of Figure 3 (first

differences with the first period as a baseline). This can be viewed as a sign of structural change

experienced by the ICT cluster: from building bulk elements of the infrastructure to transmit

data, for example, IDSN and fiber optic networks (Greenstein & Spiller, 1996), Next Generation

Networks (Fitchard, 2003), to working on the functionality for numerous applications to make

the infrastructure more agile, scalable, secure and affable. The latter can be exemplified with

broadband cellular networks such as 4G and 5G, cloud computing, cybersecurity such as HTTPS

protocol, virtual assistants, and proliferation of frontend GUIs and VUIs (Graphical and Voice

User Interface). In other words, soon after the turn of millennia the completion of the physical

infrastructure and its operation processes were mostly over, creating a coherent platform for

applications’ deployment; the new vector of ICT development is oriented at the improvement of

specific aspects of the constructed platform for both businesses and end users. Probably wit-

nessing the end of the first phase of ICT, Nicholas Carr wrote: “While no one can say precisely

when the buildout of an infrastructural technology has concluded, there are many signs that the

IT buildout is much closer to its end than its beginning” (Carr, 2003, p.10). The first and the

third period exemplify the two outlined phases with the second period being transitional where

continued construction of bulk elements like Content Delivery Networks (CDNs) and datacen-

ters (though already improving the capability to distribute workloads dynamically) (Greenstein,

2019) started sharing the spotlight with mobility of access and application–oriented development

of the ICT, for instance, the rise of Application Programming Interface (API) at the turn of

millennia. The phase of establishment of the bulk part of ICT is captured in the literature on
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Large Technical Systems (LTS) (Mayntz & Hughes, 1988) since an early prominent instantia-

tion of ICT was telecommunication infrastructure (Davies, 1996). Later developments of ICT

as control systems rooted in IT (Nightingale et al., 2003) already have a flavor of application–

oriented mode. Beyond a systemic perspective of LTS theory, some studies consider specific ICT

industries and mechanisms that grew atop the ICT infrastructure — Bresnahan et al. (2014)

for mobile applications, Moore & Anderson (2012) for internet security, Jian et al. (2012) for

the user–contributed production model of information goods — just to name few. In sum, in

line with other studies, the results of the analysis indicate that the evolution of the ICT cluster

is taking place and seems to have a direction towards agile, scalable, and omnipresent (mobile

access) configuration with myriads of applications and devices. Thus, using the language of

Helpman & Trajtenberg (1994), the next cycle of reaping the benefits of ICT development is on

its way with the “new fruit” of ICT yet to be plucked.14

Moreover, if this path is to continue even further, more layers of functionality will be created

making every next “frontend” layer more distant from the previous, lower level layers and

providing more opportunities for forking. This calls for an inclusive process of integration,

standardization, and compatibility preserving conditions for fair competition and accounting

for societal welfare. The problem of achieving an inclusive consensus is already prominent in

markets for ICT goods and services that are characterized by strong network effects (Shy, 2011)

and grows larger due to the rise of platform business models (Belleflamme & Peitz, 2018); each

firm has clear incentives to lock the network effects on itself, devising various strategies to cut-

off, outpace or acquire competitors (Simcoe & Watson, 2019; Park et al., 2018; Cabral, 2018).

Digital platforms and mega–apps like WeChat created by Tencent, GAFAM15, Baidu, Alibaba

tech giants are examples, on the one hand, of success of these strategies but severely damage

competition on the other hand (Prat & Valletti, 2019; Laitenberger, 2017). Thus, the current

challenge for ICT development is to resolve the tension between the push for monopolization

and pull for integration and compatibility (Gandal, 2002; Doganoglu & Wright, 2006) to achieve

effective functioning within and among ICT applications and devices and yet preserve fair market

conditions.

Pervasiveness of ICT classes. The estimation of the scope and scale of the economy’s

reliance on a particular technology plays a role in the estimation of the pervasiveness of the

technology under consideration. In turn, the question of pervasiveness or general applicability

is one of the cornerstones of the General Purpose Technology (GPT) theory (Bresnahan & Tra-

jtenberg, 1995). There are ongoing debates on the nature of pervasiveness and its measurement:

using patent data (Hall & Trajtenberg, 2006; Feldman & Yoon, 2012; Graham & Iacopetta, 2014)

or industrial diffusion patterns (Jovanovic & Rousseau, 2005; Castellacci, 2010). In this paper, I

offer an alternative measure of pervasiveness based on the estimated scale and scope of reliance

on ICT classes among industries derived from patent data. This goes in line with the view

of Bekar et al. (2018) who suggest (i) to define GPTs “according to their micro–technological

characteristics, not their macro–economic effects”, and (ii) to assess pervasiveness as one of such

characteristics by distinguishing between cases when technology is (a) widely used and/or has

(b) many uses. The former means that most of the economy relies on technology at scale even

14As opposed to the view of techno–pessimists such as Gordon (2016) and Cette et al. (2016)
15Google, Amazon, Facebook, Apple, and Microsoft
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if the technology has a single application, while the latter implies distinguished and multiple

ways of using this technology or, in other words, a big scope of application. Thus, the calculated

indicators of the scale and scope mirror this perspective on pervasiveness, and can contribute to

the thread of literature on the empirical testing of technological pervasiveness by applying them

to ICT classes. It is worth noting that in this paper I do not test whether either of the ICT

classes is a GPT; instead, I estimate their pervasiveness in a novel way following the theoretical

reasoning of Bekar et al. (2018).

As already mentioned, the industry–ICT matrices are in essence bipartite networks with

industries and ICT classes being two different types of nodes. As explained in Section 3, the flow

betweenness centrality (FBC) is used to proxy the scale of industry reliance on each ICT class.

In application to the industry–ICT network, unweighted betweenness centrality would produce

a similar picture compared to the calculation of the degree metric reflecting the number of

incident industries. Instead, the FBC indicator takes the strength of the connection (i.e. weight

of an edge) into account in the construction of the shortest path. Thus, FBC captures ICT

classes that might be less frequently connected (in terms of the number of incident industries)

but compensate for that by being intensely connected. This convenient property of the FBC

indicator allows comparing it against the degree metric to derive conclusions about the scope

and scale of reliance on each ICT class. In Figure 4, each observation is an ICT class (see Table

2) with the change of the degree and FBC indicators between the first and the third period as

coordinates; the size of observations is defined by the magnitude of FBC of this ICT class in the

third period.

Figure 4: The change of scope (∆ degree) and scale (∆ FBC)

∆ Degree (x–axis) and ∆ Betweenness (y–axis) are the first differences (change) of the respective metrics between the first and third periods.
The size of the observations represents the absolute magnitude of the Flow Betweenness Centrality metric in the third period.

A comparison of Figure 4 and Figure 3 exposes the fact that the most central and connected

ICT classes are not necessarily the most represented ones in the ICT cluster. Significantly smaller

classes like Large–capacity information analysis (cl7) and Security (cl3) forged ahead of top–3
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large classes High speed network (cl1), Information communication device (cl11), and Imaging

and sound technology (cl10) in terms of increase in scope and scale, with class 7 acquiring a

leading position with respect to both indicators and class 3 overcoming in scope and getting to

parity in scale (see Appendix B). In general, the biggest ICT classes have a moderate number

of incident industries but with stronger connections; by contrast, many smaller classes have

numerous but weaker connections. The exceptions from this pattern are the two named classes

7 and 3.

Combining empirical estimations of scale and scope of diffusion and theoretical notions on

pervasiveness, class 7 appears as the fittest candidate to be called pervasive by having many

uses and being widely used. Classes 1, 3, and 10 are the closest competitors, though they

significantly lag behind with respect to either scope or scale. An interesting dynamic unfolds

for class 8 Artificial Intelligence (AI): it shows the largest increase in scope (the same as class

7) yet negligible growth in scale displaying an overall small absolute magnitude of the latter.

Thus, class 8 AI has many applications but each of the applications doesn’t rely at scale on

AI. This finding of multiple but yet “shallow” applications is consistent with observations on

AI diffusion (for example, as noted by Bresnahan (2019a) and Brynjolfsson et al. (2017)). A

reasonable question arises: is AI pervasive? Turning again to Bekar et al. (2018) as the source

of the proposed definition of the pervasiveness, the authors suggest that pervasive (in a GPT

sense) can be called a technology that is rather widely used (at scale) than the one that has

many uses (big scope); AI’s pervasiveness can be overestimated because it is conflated with the

pervasiveness of the whole ICT cluster it belongs to. Altogether, this conclusion raises a valid

point of caution and can contribute to the discussion on whether AI is really a GPT (Vannuccini

& Prytkova, 2020).16

In sum, the whole ICT cluster increases scope and scale of diffusion over four decades with

discernible within–cluster differences among the constituting ICT classes.

Technological vs application relatedness. In this part I will discuss (i) obtained results

on relatedness of knowledge and application bases among ICT technologies and (ii) analyse the

change in industrial mix related to ICT.

Figure 5 is an empirical expression of the framework presented in Table 4; it plots technologi-

cal and application relatedness as abscissa and ordinate respectively for each pair of ICT classes

and contains two periods 1977–1990 (t = 1) and 2005–2020 (t = 3) to expose the dynamics

of the indicators. Both indicators must be significant in either period for an ICT pair to be

displayed in the graph.17 For 13 ICT classes, there are 78 pairs (excluding combination with

itself) however only 22 have indicators that are significant, and, hence, present in Figure 5. Most

of these pairs are located in the second quadrant, which implies similarity of application base

among ICT technologies but specific knowledge base underlying each technology in the cluster.

For example, based on Figure 5 one can observe that the following pairs of ICT technologies

increase significantly the similarity of their application base: Information analysis and Security

(pair 7–3), Human Interface and High Speed Computing (pair 9–5), High Speed Computing

and Security (pair 5–3), and Imaging and Sound Technology and AI (pair 10–8). As suggested

16Proponent literature to this statement is represented by Brynjolfsson et al. (2019), Trajtenberg (2019),
Agrawal et al. (2019a)

17Appendix C shows all 78 pairs.
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Figure 5: Movement of ICT pairs in relatedness space between periods 1 and 3

Two connected observations represent the same ICT pair in the first and the third period. Arrows originate in t = 1 position of the ICT pair
going to its t = 3 position.

by the framework in Table 4, bundling and M&A patterns among firms, products and services

embodying one of the listed ICT pair might be more pronounced in the industries related to

these ICT pairs. To test the validity of the framework, further research is required to estimate

bundling and M&A patterns in the industries related to ICT pairs from different quadrants and

investigate their differences.

One exception from the overall picture is the pair formed by class 1 High speed network

and class 2 Mobile communication that lies in the first quadrant. This means the pair not only

exhibits similarity with respect to both relatedness indicators but strengthens its similarities

over time. Overall, only 4 out of the 22 represented pairs increase their technological relatedness

between the first and third period, while 12 out of 22 pairs experience growth of application

relatedness. This indicates that already in the first period ICT technologies shared the applica-

tion base and that tends to grow. As for the knowledge base, it remains delineated along the
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ICT taxonomy classes. Perhaps, probing deeper levels of ICT classification, might reveal further

proximity of knowledge base among more fine–grained, smaller ICT classes.

Completing the analytical exercise, in the next paragraphs I will focus on the AI ICT class to

provide insights in its relatedness with other ICT classes and the change in application base AI

has experienced. In addition to the estimations of pervasiveness, the position in the relatedness

space and the structure of industry reliance on AI contributes to a better understanding of AI’s

development and to the construction of the broader context in which AI is considered.

AI and High speed computing. As can be seen in Figure 5, the two technologies (the pair

of classes 8 and 5) exhibit a decrease in both indicators of relatedness. The pair remains in the

second quadrant indicating similarity of the industrial base but distinct knowledge behind each

technology. Between the two periods the relatedness of knowledge base decreases marginally, and

the pair moves only slightly to the left. In contrast, application relatedness has clear dynamics

plummeting from a strong to moderate level. The next paragraphs provide insights into this

trend.

At the inception in the 1950s, AI was inseparable from contemporary powerful (high speed)

computing machines. It was not yet a commercial technology but a scientific experiment, an

attempt to simulate the higher functions of the human brain such as speaking and understanding

language, sensory perception, reasoning, self–improvement or learning, forming abstractions,

creative thinking, etc (McCarthy et al., 1955).18 This implies that in the past AI instantiations

could exist if attached to an actor that has sufficiently powerful computing capacity and labor

with programming skills. Within the 1977–1990 period, both resources were in their gestation

and growth phases so initially scarce but growing rapidly. According to Beckhusen (2016), at the

beginning of the 1970s in the US, “computers were large, expensive mainframes mostly used by

governments, research laboratories, and manufacturing firms” while in 1990 already penetrated

households and businesses. This also fueled the demand for IT workers whose number grew from

0.45 to 1.5 million between 1970 and 1990. These numbers include all types of IT workers with

computer programmers alongside database administrators and computer network architects,

hence only a fraction of which could be relevant to AI. For example, the enrollment in the

introductory AI and Machine Learning courses in several US universities since 1990 is in the

range of 200–300 up until approximately 2010 when the growth took off (see Appendix D). As

suggested by Timmer & Van Ark (2005), investments in ICT capital and production of ICT

goods in the EU lagged behind the US, therefore a similar dynamics could unfold in the EU

with the whole timeline shifted in time.

In fact, the relation between AI production and the possession of resources for that was

the opposite: at the pre–commercial phase of AI the possession of computing capacity and

programming skills didn’t stem from the incentive to develop AI but eventually allowed doing

so, as opposed to the current substantially commercial phase when the goal of AI development

and/or usage consequently drives the decision to acquire the necessary resources. With the

invention and gradual growth of commercial AI forms, the markets for hardware and labor with

programming skills started experiencing a positive shock. This triggered an ameliorative loop

18Mohamed et al. (2020) summarize the evolution of AI from its onset until now claiming that “AI has seen
itself elevated from an obscure domain of computer science into technological artefacts embedded within and
scrutinised by governments, industry and civil society”.
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among markets for AI–related labor, hardware and AI solutions (software). The form of provision

of labor and hardware resources to developers and adopters of AI solutions is one of these

two: production in–house or purchase (make–or–buy dilemma). In particular, over the decades

computing power became not only more affordable (Flamm, 2019) but also more accessible

facilitated by cloud computing (Byrne et al., 2018). The growing quality and availability of both

AI solutions and AI–related resources facilitates AI adoption in industries where the commercial

value is either not obvious (experimentation) or requires additional adjustments (implementation

lags) of production processes, capital, business models, etc. Thus, those novel industries that

adopt AI are likely not the ones that relied before on high speed computing for their tasks and

functions. Moreover, high speed computing is bound to AI in industries that build functionality

and maintain AI systems in–house and have not purchased access to it from AI provider with

subsequent servicing.

Looking at the empirical results, the most recent industries that appeared in Table 6 such

as pharmaceutical (e.g. drug discovery, medical imaging), scientific R&D (AI as Invention

of Method of Invention (IMI) (Cockburn et al., 2019)), employment (e.g. HR algorithms),

security and investigation (e.g. predictive policing, suspect identification with visual recognition)

are rather industries buying AI solutions for their data processing. As noted earlier, the first

production of AI systems emerged atop of the possession of computing and programming labor

resources hence producers of AI must be the long–standing holders of both resources. In terms of

the current analysis, potential AI–producing industries are likely to be (i) listed among industries

related to both AI and High speed computing since the first period (incumbent industries) and

(ii) ranked high in terms of strength of connection with both ICT classes (by the sum of ranks

over three periods).

ISIC rev. 4 Class 5: HSC Class 8: AI

59 Motion picture, video, sound recording, music publishing activities - 1
62 Computer programming, consultancy and related activities 1 2
63 Information service activities 2 3
26 Manufacturing of computer, electronic and optical products 3 -

Table 5: Top–3 positions in the intertemporal ranking of industries connected to AI and HSC

Not surprisingly, two industries that fulfill both criteria are 62–Computer programming,

consultancy and related activities and 63–Information service activities. As shown in Table

5, these two incumbent industries occupy the second and third positions in the intertemporal

ranking for the strength of connection with the AI class and first and second for the High speed

computing. The production process of digital products and services in these activities involves

precisely the two mentioned production factors — labor with programming skills and computing

machinery as capital. An interesting finding is which industry completes the top–3 ranking for

each of the ICT classes. Concerning AI, the first position in the ranking is held by the endemic

to AI industry 59–Motion picture, video, sound recording, music publishing activities. As for

High speed computing, the third position in the ranking belongs to industry 26–Manufacturing

of computer, electronic and optical products. Altogether, this breaks down AI technology into

its basic components: perception through sensory data, information–processing algorithms, and

computing machinery, echoing the composition suggested by Taddy (2019).
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In sum, the number of AI–related industries grew apparently due to the increase in the

number of AI–using industries. These industries adopt AI solutions developed and managed by

an AI–provider who bundles the provision of AI algorithms with computing power required to

support the application. The joint presence of AI and High Speed Computing becomes localized

and limited to a small number of AI–producing industries (i.e. 62 and 63), while AI–using

industries show connection to AI only. This results in a decreasing application relatedness

between class 8 AI and class 5 High speed computing.

1977-1990 1991-2004 2005-2020 ISIC rev.4
t=1 t=2 t=3 Code Description

18 Printing and reproduction of recorded media
21 Manufacture of basic pharmaceutical products and pharmaceutical preparations
26 Manufacture of computer, electronic and optical products
32 Other manufacturing
51 Air transport
58 Publishing activities
59 Motion picture, video, sound recording, music publishing activities
61 Telecommunications
62 Computer programming, consultancy and related activities
63 Information service activities
64 Financial service activities, except insurance and pension funding
65 Insurance, reinsurance and pension funding, except compulsory social security
66 Activities auxiliary to financial service and insurance activities
69 Legal and accounting activities
71 Architectural and engineering activities; technical testing and analysis
72 Scientific research and development
73 Advertising and market research
74 Other professional, scientific and technical activities
78 Employment activities
80 Security and investigation activities
82 Office administrative, office support and other business support activities
86 Human health activities
87 Residential care activities
90 Creative, arts and entertainment activities
91 Libraries, archives, museums and other cultural activities

Table 6: Dynamics of industry reliance on AI

AI and Imaging and sound technology. The pair (class 8 and class 10 respectively)

migrates from the first to the second quadrant by decreasing its technological relatedness. Similar

to the previous pair of AI with High speed computing, this pair exhibits a significant change in

the application relatedness but in this case it surges to a strong level.

As it has been pointed out in the previous paragraphs, one of the onset goals of AI is to

replicate the complex function of sensory perception in different modalities (visual, audio, tac-

tile). Understanding the algorithms behind the processing of unstructured, raw sensory data that

results in structured information (pattern recognition) has been a challenge due to algorithms’

non–deterministic nature; only after studying the same processes in living organisms the idea

of artificial neurons and their “assembly formation”, i.e neural networks capable of calculation

have been formulated.19 Even after proof of concept in the late 1950s and 1960s, it took almost

five decades to overcome initial limitations and find the way to scale up a simple perceptron

to a modern version of Artificial Neural Networks (ANN) that surpass human performance in

a set of tasks (see Eckersley et al. (2017)). It turned out that pattern recognition capabilities

of ANNs that could harness raw sensory data without preprocessing can also work as well with

structured, e.g. trading data, demographic data, medical records, and fuzzy–structured, e.g. lan-

19Ground work by McCulloch & Pitts (1943) and Hebb (2005)

26

Jena Economic Research Papers # 2021 - 005



guage, clickstreams, data. Thus, starting in the domain of pure logic and deterministic rules with

the symbolic approach, eventually, AI has evolved eventually into a non–deterministic, highly

perceptive instantiation, representing the connectionist approach. The ability to transform vast

amounts of structured and especially unstructured data into information let connectionist AI in

many different industries where such information (in a form of inference and/or prediction) has

a value (Agrawal et al., 2019c). Thus, Image and sound technology became an ultimate tool of

data collection for further processing by AI systems, which is reflected in the surging growth of

application relatedness between these two ICT classes.

5 Conclusion

The importance of ICT for the functioning of any economic system cannot be underestimated.

However, studies on the impact of ICT often considered this cluster as a monolith block. In this

paper, I distinguish a set of ICT technologies employing the new ICT taxonomy from OECD and

PATENTSCOPE AI Index and estimate ICTs’ connections with industries using the Algorithmic

Links with Probabilities method. The construction of a fine–grained industry–technology map

allows assessing the structure and evolution of industry reliance on ICT. This required the

application of several text analysis techniques to break down industrial descriptions into sets

of keywords to match them with patents’ abstracts and titles. The subsequent application of

network analysis and relatedness indicators helps to uncover patterns and regularities in the

structure and dynamics of the constructed ICT technology–industry network.

The results indicate that the ICT cluster shows signs of a “phase transition”, passing the

phase of building bulk elements of the infrastructure and around the 2000s entering the phase of

working on the functionality for business applications deployment and users’ convenience. More

application–oriented technologies like mobile communication, information analysis, security and

human interface show significant and persistent growth of their shares in the ICT cluster in the

EU28 region. In contrast, more mature technologies that represent major physical components

of the infrastructure such as high speed network and information communication device recede

though keeping a strong presence in the cluster. The inclusion of the industries into consideration

allows looking into the structure of connections between ICT technologies and industries and

its dynamics. Despite being the largest in the ICT system, high speed network, information

communication device and imaging and sound technology are not the most central and connected

ones. Instead, information analysis is forging far ahead with regard to both scale and scope,

penetrating an increasing number of industries and strengthening its industrial connections. Said

differently, information analysis moves rapidly towards the center of the knowledge base of the

ICT–related industries compared to other ICT technologies in the cluster. Security technology

occupies the second position after information analysis by overcoming the largest ICT classes in

scope and getting to parity in scale. Overall, the biggest ICT classes have a moderate number

of incident industries but with stronger connections; by contrast, many smaller classes (except

for information analysis and security) have numerous but weaker connections.

According to the framework represented in Table 4, the position of the overwhelming majority

of ICT pairs the second quadrant indicates shared industrial base though distinct knowledge

underlying each ICT technology. Some pairs strengthen their position in the second quadrant
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such as: Information analysis and Security, Human Interface and High Speed Computing, High

Speed Computing and Security, and Imaging and Sound Technology and AI. Following the

suggested framework in Table 4, for the pairs in the second quadrant the visibility of commercial

value might be a factor that navigates the innovation process. Pursuit of commercial value might

lead to more pronounced and systematic bundling of products and services and/or M&A among

firms producing goods embodying these ICT technologies than for ICT located elsewhere in the

relatedness space. Overall, among ICT pairs, application relatedness tends to increase over time

(12 pairs out of 22) while technological relatedness appears rather stable (4 pairs out of 22).

A special focus of the analysis is placed on AI technology among the ICT cluster. On the one

hand, AI is a novel, fast–growing technology that enters the commercial phase and is subject

to intensive development and experimentation. Multiple applications, unprecedented potential

for automation and billions in generated revenues make AI a fruitful topic to study. On the

other hand, the research on AI might benefit from putting this technology into context, and

study AI in relation and in comparison with other technologies. In this paper, ICT classes serve

simultaneously as potential complementors and as benchmark, building a framework for AI’s

evaluation. An interesting finding concerning AI is that it shows the largest increase in scope

yet negligible growth in scale and its small absolute magnitude. This points at multiple but

yet “shallow” connections between AI and industries going in line with AI’s gestation and early

growth phase. In the technical literature, it is reported that both AI algorithms and hardware

represent ad hoc solutions that lack flexibility (Sze et al., 2020; Hooker, 2020), and producers

are only at the beginning of addressing this issue. In particular, the identified connection

between High Speed Computing and AI technologies shows decreasing but significant application

relatedness perhaps due to the acquisition of AI–using industries that largely rely on computing

power in the cloud or adopt pretrained AI models and themselves do not employ powerful

hardware. This reflects the actual dilemma between fragmentation into specialized hardware

and integration of broad functionality under a platform chip that the semiconductor industry

is currently facing (Prytkova & Vannuccini, 2020). If the semiconductor industry will decide in

favor of specialized hardware (appealing to AI producers) the trend of purchasing access to AI

solutions run by AI producers among industries is likely to continue; the application relatedness

between High Speed Computing and AI might experience a further decrease. This would also

mean the completion of AI upstreaming, with AI becoming a fully–fledged, distinct industry.

In addition to the described challenges to be resolved at the supply side, the reorganization of

production and business models on the demand side and adoption lags are likely to delay AI

deployment at scale as well.

A further disaggregation of the ICT cluster into more fine–grained technologies might im-

prove the precision of estimation of technological relatedness among the technologies in the

cluster. The framework in Table 4 has to be tested, hence further research is required to

estimate bundling and M&A patterns in the industries related to ICT pairs from different quad-

rants and investigate their differences. An investigation into the identified connections between

ICT technologies akin to the ones involving AI discussed in this paper can be not only an

interesting exercise for historians of technology but can also inform economists studying tech-

nological diffusion, system products and network externalities, and policy–makers in identifying
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related markets and technologies even across industrial boundaries. As for the estimation of the

industry–technology connections, the inherent shortcoming lies in the organization of industrial

classification based on the predominant activity; hence in the description the related activities

can be underrepresented. However, related activities can be picked up at least partially if their

keywords are mentioned together with keywords of the predominant activities in a patent doc-

ument. Thus, the keyword–based matching partially tackles the problem of false positives by

placing no restriction on the matching. The same advantage might turn into a disadvantage

when it creates non–existing connections (false negatives). The bigrams and keywords refine-

ment (expansion or/end replacement) with synonyms has been used to reduce the number of

false negatives.
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Appendices

Appendix A Descriptive statistics of industry–ICT bipartite net-

work

Period 1977-1990 1991-2004 2005-2020

Degree
ICT n 13 13 13

mean 8.62 13.92 16.38
median 9.00 14.00 20.00
min 4 1 3
max 14 22 25

ISIC m 26 32 36
mean 4.31 5.66 5.92
median 3.00 6.50 7.50
min 1 1 1
max 13 12 12

Density
Bipartite 0.33 0.44 0.46

Appendix B Flow betweenness centrality and degree indicators

Period t=1 t=2 t=3
ICT class Degree FBC Degree FBC Degree FBC

cl1 7 33.71 14 70.88 16 66.78
cl2 4 3.27 8 20.19 9 33.60
cl3 14 22.48 21 44.70 25 55.46
cl4 6 4.82 9 2.41 10 3.50
cl5 6 12.92 14 20.54 20 22.95
cl6 13 37.70 16 27.98 20 17.04
cl7 9 20.82 20 76.17 24 109.37
cl8 9 1.99 20 5.82 24 4.84
cl9 13 24.89 22 30.18 24 36.84

cl10 9 53.07 13 61.24 12 70.15
cl11 8 33.58 6 17.64 6 16.82
cl12 4 7.61 1 0.00 3 14.49
cl13 10 4.30 17 7.44 20 6.96
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Appendix C Technological and application relatedness

Note: Arrows originate from t = 1 going to t = 3 position

38

Jena Economic Research Papers # 2021 - 005



Appendix D Enrollment in AI and ML courses, US universities

Note: Reproduced from the AI Index report 2019 (Perrault et al., 2019)
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