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Abstract

In this paper, I study epidemic diffusion in a generalized spatial SEIRD model, where individuals
are initially connected in a social or geographical network. As the virus spreads in the network, the
structure of interactions between people may endogenously change over time, due to quarantining
measures and/or spatial-distancing policies. I explore via simulations the dynamic properties of
the co-evolutionary process dynamically linking disease diffusion and network properties. Results
suggest that, in order to predict how epidemic phenomena evolve in networked populations, it is not
enough to focus on the properties of initial interaction structures. Indeed, the co-evolution of network
structures and compartment shares strongly shape the process of epidemic diffusion, especially in
terms of its speed. Furthermore, I show that the timing and features of spatial-distancing policies
may dramatically influence their effectiveness.

Keywords: Corona Virus Disease; COVID-19; Diffusion Models on Networks; Spatial SEIRD Models.

I. INTRODUCTION

In the last months, the still ongoing diffusion of the
Coronavirus (COVID-19) pandemia has spurred a large
body of scientific contributions, attempting to explore
how compartmental models [1–4] can reproduce and pre-
dict the spread of the epidemics in different countries and
regions [5, 6].
Most of this work has been focusing on models in which

the mixing process between people in different states or
compartments does not depend on the social or geograph-
ical space where they are embedded in. However, some
previous literature has shown that the (complex) struc-
ture of networks describing the way agents can meet,
and possibly get infected, may affect the dynamics of
the epidemic diffusion and its long-run properties [7–
15]. Furthermore, as the virus spreads in the network,
the structure of interactions between people may change
over time, due to quarantining measures and/or spatial-
distancing policies, which may possibly introduce a co-
evolutionary effect dynamically linking disease diffusion
and network properties [16–18].
Motivated by these observations, the paper introduces

a generalized spatial SEIRD model that, besides the stan-
dard four compartments (susceptible, exposed, infected,
recovered, dead), also considers an additional ‘quaran-
tined’ state, i.e. a SEIQRD model [19]. I explore how
the properties of the spread of the epidemics depend on:
(i) the structure of the social/geographic network initially
connecting the agents in the population, which matches
infective and susceptible agents; (ii) the evolution of the
share of quarantined and recovered agents (as well as so-

cial distancing policies), which dynamically destroy or
re-establish social links.
More specifically, I play with a finite population of

agents (i.e. nodes) initially placed on four different fam-
ilies of interaction structures: (a) regular 2-dimensional
lattices with Moore neighborhoods; (b) small-world lat-
tice [20]; (c) Erdös-Renyi random graphs [21]; (d) scale-
free (preferential-attachment) networks [22]. I then in-
vestigate via Monte-Carlo simulations how the epidemic
diffusion is affected by network structures, as their ini-
tial average degree increases (which in turn makes their
topological properties change) and as the coupled dy-
namics of quarantined and recovered people deletes and
restores social interaction links. Finally, I examine how
alternative spatial-distancing policies, which are taking
again center stage in the political and social debate as
the second wave of COVID-19 rolls across Europe and
elsewhere, interacts with the coevolutionary process of
disease diffusion and network updating.

II. METHODS

A. A Simple Model without Spatial Distancing
Policies

I begin describing a simple model where no spatial dis-
tancing policies are enforced. Consider a population P
of N agents living in a city, which is initially isolated
from other cities. Time is discrete and, for the only
sake of convenience, I will use the terms ‘time periods’ or
‘days’ as synonyms. Agents physically interact according
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to a simple, undirected, binary graph without self-loops,
which at time t = 0 is defined as G0 = (P,L0) , where
P = {1, . . . , N} and L0 is the initial edge list, defined
as the set of pairs (i, j) such that i ∕= j, i ∈ P , j ∈ P ,
and (i, j) ∈ L0 if and only if there exists an edge be-
tween i and j at t = 0. The graph G0 —which, as we
will see below, is going to evolve through time as the
epidemics spreads— can be considered as describing so-
cial or geographical links through which people normally
meet friends or neighbors.

At time t = 0 all nodes are in the state S (susceptible),
but a randomly-chosen share θ of them becomes exposed
(i.e., ⌊θN⌋ agents become in state E, due to a random
inflow of infective agents from other cities). People in
state E enter in an incubation period without symptoms
and are not infectious. At any t > 0, I assume that each
agent i ∈ P meets all its neighbors, i.e. all j ∈ Vit,
where Vit = {j ∈ P : (i, j) ∈ Lt} and Lt is the current
edge list. In each time period, transitions between com-
partments (i.e., states) occur through a parallel updating
mechanism according to the following rules:

(a) An agent in state E becomes in state I (infective)
after an incubation of ⌊D⌋ time periods, where D
is an i.i.d random variable with probability distri-
bution p(D).

(b) An agent in state E becomes infected with proba-
bility π = 1 − (1 − α)k if h/she meets k infective
agents in its neighborhood, where α is a parame-
ter tuning the likelihood of becoming infected in a
single direct meeting and 0 ≤ k ≤ |Vit|.1

(c) An agent in state I becomes quarantined (in state
Q) with a daily quarantine rate (DQRt). Agents
in state Q cannot meet anyone, i.e. they instanta-
neously cut all their bilateral links with their neigh-
bors.2

(d) An agent in state Q dies (i.e., becomes in state D)
with a daily death rate (DRRt), recovers (in state
R) with a daily recovery rate (DRRt) or stays quar-
antined otherwise. Recovered agents are assumed
to be immunized and re-establish connections that
they used to have in G0 (provided that neighbors
are still alive and are not quarantined).

A flow-chart description of model dynamics is provided
in the Supplementary Material (SM), see Figure S1.

1 In other words, π is the probability of being infected by at least
one infective neighbor in a random sequence of meetings.

2 Since I do not distinguish between mild and severe symptoms in
the development of the illness, there is not any difference in the
model between being quarantined at home or at the hospital.

B. Initial Network Structures

The initial network G0 is assumed to belong to one out
of the following graph families:

(i) Regular 2-dimensional boundary-less lattices en-
dowed with the Chebyshev distance (LA hence-
forth). This defines squared Moore neighborhoods
of radius rLA ≥ 1 and degrees kLA

i = (2rLA+1)2−1
for all i.

(ii) Small-worlds lattice [20] built starting from nodes
placed on a ring, with rewiring probability pSW > 0
and expected average degree k̄SW = 2rSW , where
rSW ≥ 1 is the interaction radius on the initial ring
(SW henceforth).

(iii) Erdös-Renyi random graphs [21], with link proba-
bility pER > 0 and expected average degree k̄ER =
(N − 1)pER (ER henceforth).

(iv) Scale-free networks with linear preferential-
attachment [22] and entrance of mSF ≥ 1 new
nodes, generating an expected average degree
k̄ = 2mSF + o(1/mSF ) (SF henceforth).

To summarize network topology, I focus, besides aver-
age degree, on three statistics that have been found to in-
fluence, in general, the spread of epidemics on graphs [10].
These are: the standard deviation of node degree distri-
bution (sk), global clustering coefficient (c) and average
path-length (ℓ), computed ignoring infinite path-lengths
between nodes of different components. Their expected
values (with standard errors) are reported in SM, Table
S1. To get a better feel, fixing rLA ∈ {1, 2, 3, 4}, and thus
k̄ ∈ {8, 24, 48, 80}, sk, c and ℓ approximately scale as k̄β ,
with β > 0 for sk and c and β < 0 for ℓ in all networks.

C. Parameter Setup

All simulations refer to a population of N = 1024
agents (chosen to build a square lattice with edge L = 32)
and a number of days T sufficient to reach a steady state.
The epidemic parameters of the model are cali-

brated using data at the national level for Italy, made
available by “Dipartimento della Protezione Civile”,
see https://github.com/pcm-dpc/COVID-19/tree/
master/dati-andamento-nazionale, covering the
period from February, 22nd onward. In the simula-
tions, I assume for simplicity that DRRt = DRR,
DQRt = DQR and DDRt = DDR and, on the
basis of empirical diffusion curves, I build three
epidemic scenarios: (i) strong-impact scenario:
(DQR,DDR,DRR) = (0.20, 0.10, 0.10); (ii) mid-impact
scenario: (DQR,DDR,DRR) = (0.15, 0.07, 0.15);
(ii) low-impact scenario: (DQR,DDR,DRR) =
(0.10, 0.04, 0.20) —see SM, Section S2 for more details.
Since the theoretical infection probability in a single
meeting cannot be directly observed, I play with values
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of α that are (0.20, 0.10, 0.05), respectively in the three
scenarios. The percentage θ of exposed agents in day 0
is set to 5% throughout. The probability distribution
p(D) of incubation days is calibrated using results from
[23], who show that D is log-normally distributed with
parameters (µ,σ) = (1.621, 0.418).

As to initial network structures, I experiment with av-
erage degrees k̄ ∈ {8, 24, 48, 80}. These values result from
setting rLA ∈ {1, 2, 3, 4}. Therefore, it follows that rLA ∈
{4, 12, 24, 40}, pER ∈ {k̄(N − 1)−1, k̄ = 8, 24, 48, 80} and
mSF ∈ {4, 12, 24, 40}. See SM, Table S2, for a summary
of parameter setups.

D. Monte Carlo Simulations and Statistics

For each choice of model parameters, I independently
runM = 1000 simulations. This Monte Carlo sample size
is sufficient to get standard errors for across-simulation
averages small enough to ensure that differences between
averages are always statistically significant.

In order to get insights about within-simulation model
behavior, I keep track of several within-simulation statis-
tics, i.e. computed in each day of the epidemic diffusion.
These include: population shares in each compartment,
death and cure rates, the share of agents who become
infected through meetings, and the four network metrics
k̄, sk, c, and ℓ —which change across time as the re-
sult of the evolution population shares in each compart-
ment. Another statistics of interest is the population-
average of the number of neighbors that each I agent
has infected daily (ρ̄ henceforth; see SM, Section S3 for
details), which can be employed as a rough estimate of
the basic reproduction number (R0) of the epidemics.
Finally, I will also look at the spatial correlation coef-
ficients of compartments (SCCC), calculating, for each
state {S,E, I,Q,R,D} the fraction of all existing edges
in the network whose endpoints end up being in the same
state.

To summarize the aggregate behavior of the model (i.e.
across runs), the following set of additional statistics are
computed: (i) peak-time of infections (PTI), defined as
the first day in which the share of infected people reach
its overall maximum; (ii) the shares of agents in states
{S, I,R,D} at the end of simulation (EoS) and at PTI;
(iii) the sum over all compartments of SCCC at PTI; (iv)
the EoS share of agents who become infected through
meetings; (v) the values of network metrics k̄, sk, c and
ℓ at PTI. Furthermore, I provide an estimate of the first
day after which ρ̄ goes below one (cf. SM, Section S3).

Monte Carlo averages of all the above summarizing
statistics will then be compared across initial networks
families, initial average degrees, and epidemiological se-
tups.

III. RESULTS

A. Anatomy of Within-Simulation Dynamics in a
Benchmark Setup

I begin studying the dynamic behavior of disease
spreading across the four network families, focusing on
the ‘Mid Impact’ epidemic scenario with k̄ = 8 (see Fig-
ure 1). Irrespective of the initial network structure, the
population converges to a similar share of deaths, but in
ER and SF networks a small percentage of S people still
remains (see below, Section III C).

In these two networks, epidemic diffusion reaches a
higher peak of infections than in the case of LA and SW ,
since more agents become exposed a little earlier. This
is because in ER and SF networks the average num-
ber of infections per agent grows very quickly during
the outbreak of the epidemic process, and then decreases
earlier and more sharply than in LA and SW networks
(SM, Figure S3). The evolution of SCCC shows, indeed,
that the shares of edges linking two E or two I agents
cross near to PTI and display a more abrupt inverse-
U-shaped pattern over time, illustrating how the virus
spreads across neighborhoods (SM, Figure S4).

As the epidemic process develops over time, the share
of Q agents first grows and then declines. This impacts
on the network structure, because quarantined agents
become isolated, constraining in turn the diffusion of
the disease. Furthermore, the more the infection weak-
ens, the more quarantined people recover and re-establish
some of their initial connections.

To get a better feel about this co-evolutionary pro-
cess, Figure 2 shows how network metrics, normalized
to match the [0, 1] interval, change during a simulation.
Both k̄ and ℓ decrease towards their minimum value
across time in LA and SW , with a pace slowing down
as R people spread in the population. The decline of ℓ
is due to the growing number of small connected compo-
nents and isolated nodes created by Q and D agents. In
LA and SW networks, however, recovered agents that re-
establish their connections are able to slightly boost aver-
age degree and reconnect isolated clusters. More marked
differences across network structures emerge when look-
ing at sk and c. In LA, SW and, particularly, in ER
graphs sk first increases due to the injection of Q agents,
then asR andD gradually replaceQ patients, it oscillates
until getting to a stable level. In SF graphs, instead, sk
follows the same time pattern of k̄ and ℓ, as initial het-
erogeneity is very high and cannot be further increased
by the interplay between Q, R and D shares. Therefore,
populations where the epidemics diffuse in LA, SW and
ER networks end up having a higher final heterogeneity
of degrees, while the opposite holds for SF graphs. The
final clustering level, instead, is almost completely recov-
ered, but with opposite patterns. LA and SW networks
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Figure 1. Within-simulation evolution of agent shares in the six compartments over time. Initial k̄ = 8. Mid-impact epi-
demic scenario. Averages across M=1000 Monte Carlo simulations. Panels: (a) regular 2-dimensional lattice with Moore
neighborhoods; (b) small-world lattice; (c) Erdös-Renyi random graph; (d) scale-free network.

first experience an increase in c (albeit very moderate
in magnitude) because the diffusion evolves less quickly.
Instead, in ER and SF graphs, some triads are rapidly
destroyed by Q people and then R people re-establish
them when the epidemics softens.
In the SM, Section S4, I also show that, as the share of

Q agents first increases and then decreases, and that of
R agents keeps growing in time, the topological proper-
ties of the network changes in very heterogeneous ways,
depending on the family to which it belongs. This is
due to the dynamic removal and re-establishment of links
—which affects in non-trivial ways, in particular, the
standard deviation of node degrees and global clustering
coefficients— and ultimately impacts on the properties
of the diffusion process itself.

B. The Impact of Initial Average Degree

I now investigate the behavior of the model when
the initial average degree increases in the range
{8, 24, 40, 80}, keeping fixed the epidemic scenario to the
‘Mid Impact’ one. If agents initially have, on average,

more neighbors they can meet more infective people.
Therefore, the probability to become E increases for the
population in each single day. However, a larger k̄ does
not imply the at the end of the simulation (EoS) there
will be a larger fraction of deaths and/or recovered, as
this is mainly affected by the epidemic parameters. What
changes in the speed at which the contagion evolves and
some of its dynamic properties.

For example, as shown in Figure 3 both the peak-time
of infections and the estimate of the first day after which
ρ̄ goes below one, quickly decrease with k̄. Furthermore,
as the initial average degree grows, the contagion evolves
more quickly in ER and, especially, in SF networks.

Furthermore, in all networks, the fraction of infected
people at PTI immediately jumps up when k̄ increases
fromz 8 to 24, and then keeps growing with k̄ but less
quickly (cf. Figure S5 in the SM). This implies that,
since the epidemic scenario is fixed, the share of agents
that are quarantined in the first days of the contagion in-
creases more than linearly. Therefore, at PTI, the shares
of susceptible, recovered and dead agents actually de-
crease with initial average degree.
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Figure 2. Within-simulation evolution of network metrics, re-scaled to match the [0, 1] interval. Initial k̄ = 8. Mid-impact
epidemic scenario. Averages across M=1000 Monte Carlo simulations.
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Figure 3. Panel (a): Peak-time of infections (PTI), defined as the first day in which the share of infected people reach its overall
maximum, against initial average degree. Panel (b) estimate of the first day after which ρ̄ goes below one (cf. SM, Section
S3). Initial average degree in the range {8, 24, 40, 80}. Mid-impact epidemic scenario. Averages across M=1000 Monte Carlo
simulations. Y-axis in log scale.

C. Model Behavior in Alternative Epidemic
Scenarios

Next, I explore what happens in the model when al-
ternative epidemic scenarios are assumed (cf. Section

IIC). For the sake of comparison, I keep fixed k̄ = 8
throughout. Simulation results show that, as expected,
EoS shares of dead (respectively, recovered) agents de-
crease (respectively, increase) in all network setups as one
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moves from the bad to the good epidemic scenario (see
Figure 4). More interestingly, within the same scenario,
the model behaves differently across network setups, and
these differences are amplified as the contagion is less
strong. Indeed, in ER and SF networks the epidemics
diffuses quicker than in LA and SW graphs —as docu-
mented in SM, Figure S6, panels (a) and (c). Therefore,
LA and SW display more S (and less I) agents at PTI
than ER and SW do — see Figure 4, panel (c)— and a
significantly smaller spatial correlation of compartments
(panel (b) in SM, Figure S6). At the end of the sim-
ulation (EoS), conversely, many more susceptible agents
remain in ER and, especially, in SF networks. This is due
to the higher heterogeneity of the degree distribution in
such networks: the existence of many small-degree nodes
at the beginning of the process prevents them to be in-
fected, especially when the contagion becomes softer and
their few neighbors are quickly quarantined. As a conse-
quence, slightly smaller shares of deaths are observed in
ER and, in particular, in SF networks at EoS.

D. Spatial Distancing

Spatial distancing (SD) is implemented in the model
in a very stylized way. I assume that the city govern-
ment only tracks the evolution of Q agents and enforces
SD when xt(Q) > q", where xt(Q) is the current share
of agents in the Q compartment and q" ∈ (0, 1). The SD
policy aims at making more difficult face-to-face meetings
between neighbors, and can be enforced with increasing
strengths. Of course, its ex-post effectiveness also de-
pends on how strictly people follow the rules. Here, I do
not separately model the ex-ante plans of the government
and the response of the agents. Therefore, more formally,
I define θ ∈ (0, 1) as the ex-post effectiveness of SD policy
and assume that, under SD, an agent meets each neigh-
bor in any time period t with probability ψ = 1−θ. This
implies that, under SD, an agent in state E now becomes
infected with probability:

πSD = 1− (1− ψα)k (1)

where k is the number of infective agents the agent meets
in its neighborhood. I allow for two versions of SD: (i)
permanent, if SD is enforced from the first day when
xt(Q) > q" onwards, i.e. during the period {t, . . . , T},
where t = inft{t : xt(Q) > q"}; (ii) temporary, if SD is
enforced only whenever xt(Q) > q", and it is removed
(i.e. θ is switched back to zero) if xt(Q) ≤ q" − ε. Here,
the ε-term prevents the SD policy to be too sensitive
to oscillations of xt(Q) around q∗, thus avoiding stop-
and-go patterns. In the following simulations, I consider
three SD setups: (a) strong: (q", θ) = (0.02, 0.7); (b)
intermediate: (q", θ) = (0.04, 0.5); (a) mild: (q", θ) =
(0.06, 0.3), whilst keeping fixed throughout k̄ = 8 in the
mid epidemic scenario and ε = 0.05.

Figure 5 plots EoS shares of agents under SD (either

permanent or temporary) minus the correspondent share
without SD. In each SD setup, I target the share of peo-
ple ending up in either S or D compartments, and the
share of deaths (D). Results show that, as expected, a
permanent SD policy is better than a temporary one in-
dependently of network structure. However, especially
when a strong setup is enforced in the permanent SD
policy version, networked populations that benefit the
most are those where agents are located on either lattices
or small-worlds. Conversely, temporary SD policies are
more effective in ER and, in particular, in SF networks,
provided that they are implemented more rigorously.
This is due to how network structures evolve during a

typical run, see Figure 2. Indeed, when a permanent SD
policy is likely to be implemented, LA and SW exhibits
larger average degrees and clustering than ER and SF.
This prevents the infection to be transmitted more effec-
tively during the peak. Instead, enforcing temporary SD
policies allow an even smaller probability that low-degree
agents remain susceptible, which is more likely to happen
in ER and SF networks, due to their higher degree vari-
ability. When such a policy is switched off, ER and SF
systems display higher (and more dispersed) average de-
grees and larger clustering than in the LA and SW cases,
but the share of infected people is now smaller. There-
fore, one observes less deaths. Disaggregating S and R
shares shows also that, in the permanent SD case, the
improvement in LA and SW is obtained via an almost
similar increase of both compartments. On the contrary,
when SD is temporary, much of the improvement is due
to an increase in EoS susceptible agents only.

IV. DISCUSSION

In this paper, I studied a generalized spatial SEIRD
model to explore the impact of alternative social-network
structures on the diffusion of the COVID-19 disease.
The introduction of quarantined agents generates a coe-
volving process between epidemic spreading and network
structure, ultimately shaping steady-state outcomes and
the speed of diffusion.
In the simplest framework, without spatial distancing

policies and a given benchmark choice of initial aver-
age degrees and epidemic parameters, the initial network
structure does not affect the final shares of susceptible,
dead and recovered people, but it strongly impact on the
timing and the speed of diffusion. In ER and, in particu-
lar, in SF networks, more agents become exposed earlier
and diffusion takes place quicker and more strongly than
in the LA and SW cases. This is linked with how net-
work structure coevolves across time with the shares of
Q, R and D agents. Indeed, in ER and SF networks, av-
erage degree initially decreases less sharply than it does
in LA and SW. Furthermore, degree variation and clus-
tering is higher. Therefore, the probability of becoming
exposed increases, as susceptible agents face larger and
more clustered neighborhoods. Increasing initial average
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Figure 4. Comparing the behavior of the model across three epidemic scenarios: Bad vs. Mid vs. Good (see Section II C).
Panels (a) and (c): % of agents in compartment S at peak-time of infections (PTI). Panel (b): % of agents in compartment
I at the end of simulation (EoS). Panel (d): % of agents in compartment D at the end of simulation (EoS). Initial average
degree: k̄ = 8. Averages across M=1000 Monte Carlo simulations.

degree, while keeping fixed epidemic parameters, thus re-
sults in a faster speed of infection, especially in ER and
SF networks, both in terms of smaller PTIs and average
number of neighbors that each agent has infected daily.
When instead different epidemic scenarios are assumed
for a fixed initial degree, network structure impacts dif-
ferently model behavior, and these differences are ampli-
fied as the strength of the contagion weakens. In partic-
ular, since the epidemics initially diffuses quicker in ER
and SF networks, one typically observes more S (and less
I) agents at PTI in LA and SW graphs, and many more
remaining S agents at EoS in ER and SF networks (with
slightly smaller shares of deaths).

The effect of SD policies depends in the model on the
strength with which they are enforced, as well as whether
they are temporary of permanent. In particular, whereas
permanent SD policies allow for better results than tem-
porary ones irrespective of network structure, permanent
(and strong) SD measures are more effective in LA and
SW structures, whereas temporary (and strong) SD poli-
cies should be preferred if interactions occur through ER
or SF graphs. This is again due to the interplay between
network structure and compartment shares in the evolu-
tion of the epidemics. Indeed, switching on and off SD
policies may hit the system when the topological proper-
ties of its network structure are very different, depending

on the initial graph family describing social interactions.

More generally, results suggest that, in order to pre-
dict how epidemic phenomena evolve in networked pop-
ulations, it is not enough to focus on the properties of
initial interaction structures. In fact, if the epidemic dif-
fusion requires quarantining people, and possibly enforc-
ing SD policies, the coevolution of network structures and
compartment shares strongly shape the way in which the
virus spreads into the population, especially in terms of
its speed. On the one hand, the average and standard
deviation of degree distribution, as well as clustering,
of initial networks are, together with epidemic parame-
ters, important determinants of the subsequent diffusion
patterns. On the other hand, the topology of social in-
teraction structures evolves over time, due the rise and
fall of Q, R and D agents, in different and non trivial
ways across alternative network families, and this in turn
impacts diffusion patterns. As a result, the timing and
features of SD policies may dramatically influence their
effectiveness.

The foregoing analysis can be extended and im-
proved in several directions. To begin with, alterna-
tive parametrizations for the epidemic process, more in
line with evidence from the ongoing second wave, could
be tested. Furthermore, it would be interesting to as-
sess the extent to which results are robust to increasing
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Figure 5. Effects of spatial distancing (SD). Comparing the behavior of the model across three SD setups: Strong vs. Interme-
diate vs. Bad (see Section IIID). Panels (a) and (b): Permanent SD policy. Panels (c) and (d): Temporary SD policy. Panels
(a) and (c): Share of agents in states S or R at EoS with SD minus the same share without SD. Panels (b) and (d): Share
of agents in state D at EoS with SD minus same share without SD. Initial average degree: k̄ = 8. Mid epidemic scenario.
Averages across M=1000 Monte Carlo simulations.

population size, additional network structures (e.g., core-
periphery graphs), and different values for the share of
agents that become initially exposed. In this last respect,
one could also play with alternative assumptions as to
the mechanism governing the way in which exposures ini-
tially occur, e.g. allowing for the emergence of spatially-
clustered exposed agents, instead of just supposing that

a randomly-chosen share of people get infected. Finally,
one can perform a deeper analysis to better understand
how the topology of network structures influences epi-
demic diffusion, for example asking whether centrality
indicators such as k-coreness measures [24, 25] can help
in investigating the role of super spreaders [26].
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Figure S1. Flow-chart of model dynamics in any given time period.
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Standard Deviation of Degree (sk)

Avg Deg (k̄) Lattice Small World Erdös-Renyi Scale-Free

8
0.0000 0.8730 2.8180 8.8610

- (0.00086) (0.00207) (0.01083)

24
0.0000 1.5080 4.8330 21.2190

- (0.00119) (0.00349) (0.01066)

48
0.0000 2.1320 6.7570 36.6450

- (0.00159) (0.00489) (0.0109)

80
0.0000 2.7460 8.5820 53.9910

- (0.002) (0.00642) (0.01076)

β̂
- 0.4978 0.4809 0.7766
- R2=1.0000 R2=0.9999 R2=0.9999

Global Clustering Coefficient (c)

Avg Deg (k̄) Lattice Small World Erdös-Renyi Scale-Free

8
0.4290 0.4630 0.0080 0.0250

- (0.00025) (0.00003) (0.00004)

24
0.5220 0.5190 0.0230 0.0680

- (0.00015) (0.00002) (0.00003)

48
0.5430 0.5400 0.0470 0.1160

- (0.00011) (0.00001) (0.00002)

80
0.5510 0.5480 0.0780 0.1680

- (0.00008) (0.00001) (0.00002)

β̂
0.1049 0.0719 1.0000 0.7694

R2=0.8891 R2=0.9253 R2=1.0000 R2=0.9982

Average Path Length (ℓ)

Avg Deg (k̄) Lattice Small World Erdös-Renyi Scale-Free

8
10.6820 5.0780 3.5640 3.1780

- (0.00202) (0.00074) (0.00069)

24
5.5910 3.0100 2.5330 2.4550

- (0.00036) (0.00019) (0.00016)

48
3.8890 2.5320 2.0530 2.0780

- (0.00016) (0.0001) (0.00007)

80
3.0300 2.1550 1.9240 1.9350

- (0.00014) (0.00001) (0.00001)

β̂
-0.5634 -0.3927 -0.2860 -0.2242

R2=0.9999 R2=0.9837 R2=0.9903 R2=0.9954

Table S1. Expected values of the standard deviation of degree distribution (sk), global clustering coefficient (c) and average
path length (ℓ) in the four families of networks under study for average degree (k̄) in the range {8,24,48,80}. Network size
N = 1024. Avg Deg (k̄): Exact average degree for 2-dim lattices with Moore neighborhoods (LA) and expected average
degree for Small-World (SW ), Erdös-Renyi (ER) and Scale-Free (SF ) networks. Standard errors for Monte Carlo averages
with sample size M = 1000 are reported in parentheses. In the average degree range considered, all four metrics scale with
k̄ approximately as k̄β . The R2 of the fit is reported below its maximum-likelihood estimate β̂. Note also that, for given
k̄ ∈ {8, 24, 48, 80} the following inequalities hold: sk(LA) < sk(SW ) < sk(ER) < sk(SF ), c(ER) < c(SF ) < c(SW ) < c(LA)
and ℓ(SF ) < ℓ(ER) < ℓ(SW ) < ℓ(LA).
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Global Parameters

N 1024
θ 0.05
D Log Normal with (µ,σ) = (1.621, 0.418)

Network Parameters

k̄ 8 24 48
rLA 1 2 3
rSW 4 12 24
pER 8 · 1023−1 24 · 1023−1 48 · 1023−1

mSF 4 12 24

Epidemic Scenarios
Strong impact Mid Impact Low Impact

DQR 0.20 0.15 0.10
DDR 0.10 0.07 0.04
DRR 0.10 0.15 0.20
α 0.20 0.10 0.05

Table S2. Parametrizations employed in Monte Carlo simulations.
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Figure S2. Time series of daily quarantined rate, recovered rate and death rate for Italy in the first 48 days of the epidemic
diffusion. Data from “Dipartimento della Protezione Civile”, covering the period from February, 22nd onward. Blue lines: scale
on left axis. Red line: scale on right axis. Empirical DQR obtained by dividing quarantined people by total detected cases.
DQR/5 and DQR/10 assume that true infected people are respectively 5 and 10 times higher.
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Figure S3. Within-simulation evolution of spatial correlation coefficients of compartments (SCCC). Colors: S (blue), E (yellow),
I (red), Q (magenta), R (green) and D (black) over time. Averages across M=1000 Monte Carlo simulations. Panels: (a)
regular 2-dimensional lattice with Moore neighborhoods; (b) small-world lattice; (c) Erdös-Renyi random graph; (d) scale-free
network.
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Figure S4. Within-simulation evolution of spatial correlation coefficients of compartments (SCCC). Colors: S (blue), E (yellow),
I (red), Q (magenta), R (green) and D (black) over time. Averages across M=1000 Monte Carlo simulations. Panels: (a)
regular 2-dimensional lattice with Moore neighborhoods; (b) small-world lattice; (c) Erdös-Renyi random graph; (d) scale-free
network.
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Figure S5. Shares of agents in compartments S, I, R and D at peak-time of infections (PTI), when initial average degree ranges
in {8, 24, 40, 80}. Mid-impact epidemic scenario. Averages across M=1000 Monte Carlo simulations. Y-axis in log scale.
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Figure S6. Comparing the behavior of the model across three epidemic scenarios: Bad vs. Mid vs. Good (see Section II C).
Panel (a): Peak-time of infections (PTI). Panel (b): Sum of spatial correlation coefficients of compartments (SCCC) at PTI.
Panel (c): estimate of the first day after which ρ̄ goes below one (cf. SM, Section S3). Initial average degree: k̄ = 8. Averages
across M=1000 Monte Carlo simulations.
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S2. CALIBRATION OF EPIDEMIC PARAMETERS

In order to calibrate epidemic parameters for the Italian case, I use data from “Dipartimento della Protezione

Civile”, available at https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-nazionale, covering

the period from February, 22nd onward. The time series of total detected cases (TC) is broken into: (i) currently

positive total detected cases, i.e. individuals showing severe symptoms that are therefore quarantined (Q), either at

home or in the hospital; (ii) recovered patients (R); (iii) dead patients (D).

Daily quarantined, recovered, and death rates are computed as ratios to total detected cases (TC), see Figure

S2. Since this figure is highly dependent on the number of swabs taken and asymptomatic individuals, the daily

quarantined rate (DQR), in particular, is likely to suffer from strong overestimation. Indeed, several contributions

have shown that for Italy actual infected people may be 5-10 times higher [27]. Therefore, in the figure we also report

the DQR for these overestimation scenarios. We do not rescale DRR and DDR accordingly as we are here interested

in the fraction of people who, after being quarantined, transition in the R and Q compartments.

Simulation scenarios in Table S2 are then built using the range of DQR5, DQR10,DRR and DDR.

S3. ESTIMATING THE BASIC REPRODUCTION NUMBER (R0)

In each day, agent i in state S may possibly become E if h/she meets k ≥ 1 neighbors j ∈ {j1, . . . , jk} ⊂ P in state

I. If this happens, the burden of having infected i is divided in equal shares ηjh = 1/k across all infecting neighbors.

If an I agent contributes over the day to the infection of more than one neighbor, all its η shares are accordingly

cumulated. At the end of each day, after all infections have been eventually occurred, we compute ρ̄ as the population

average (over non-zero elements) of η shares.

The ρ̄ statistics can be interpreted as a rough estimate of the “basic reproduction number” (R0) of the epidemic

process, as it measures the average number of cases that each infected agent generates.

Given a single simulation, the time-series ρ̄t typically goes down with t, as the set of infective agents shrinks and the

number of recovered (or dead) people increases. It is therefore worthwhile to estimate t∗ = min{1 ≤ t ≤ T : ρ̄t < 1},
which is computed at the end of each simulation as one of its summarizing statistics. Since in each simulation ρ̄t may

oscillate many times around one before decreasing persistently below one, I fit the series with four different functions:

(i) polynomial of degree 1: f(t) = at + b; (ii) polynomial of degree 2: f(t) = at2 + bt + c; (ii) power: f(t) = atb;

(iii) exponential f(t) = a exp (−bt); and then for the best fit f∗ (according to the associated adjusted R2), I define

t∗ = min{1 ≤ t ≤ T : f∗(t) < 1} for t = 1, . . . , T .

S4. NETWORK METRICS VS. Q AND R SHARES

This Section reports more evidence about how the evolution of Q and R shares co-evolve, within a simulation, with

the structure of the network where agents are embedded in. I still focus on a ‘Mid Impact’ epidemic scenario, with

k̄ = 8 for convenience, and plot in Figure S7 the within-simulation time series of network metrics, re-scaled to match

the unit interval, against the shares of Q and R agents. Average path length (ℓ) is not taken into consideration here

as its relationship with k̄ is monotone along the process.

A quick inspection of Figure S7 suggests the process undergoes a series of phases that depend on the family of

network considered. These phases are summarized in the following tables, where for each relationship between network

metrics (k̄, sk, c), shares of agents in Q and R states, and network structure, I identify phases (i.e., subsets of time-

series evolution) where they display a particular co-movement. For example, a pair (↑, ↓) for the entry (x, y) means

a phase where the network metrics x increases and the share of agent in state y decreases.


